1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an analysis that determines, for a given memory
10 // operation, what preceding memory operations it depends on.  It builds on
11 // alias analysis information, and tries to provide a lazy, caching interface to
12 // a common kind of alias information query.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/Analysis/PHITransAddr.h"
27 #include "llvm/Analysis/PhiValues.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/PredIteratorCache.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Use.h"
47 #include "llvm/IR/User.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/InitializePasses.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/AtomicOrdering.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/MathExtras.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <iterator>
61 #include <utility>
62 
63 using namespace llvm;
64 
65 #define DEBUG_TYPE "memdep"
66 
67 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
68 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
69 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
70 
71 STATISTIC(NumCacheNonLocalPtr,
72           "Number of fully cached non-local ptr responses");
73 STATISTIC(NumCacheDirtyNonLocalPtr,
74           "Number of cached, but dirty, non-local ptr responses");
75 STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses");
76 STATISTIC(NumCacheCompleteNonLocalPtr,
77           "Number of block queries that were completely cached");
78 
79 // Limit for the number of instructions to scan in a block.
80 
81 static cl::opt<unsigned> BlockScanLimit(
82     "memdep-block-scan-limit", cl::Hidden, cl::init(100),
83     cl::desc("The number of instructions to scan in a block in memory "
84              "dependency analysis (default = 100)"));
85 
86 static cl::opt<unsigned>
87     BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000),
88                      cl::desc("The number of blocks to scan during memory "
89                               "dependency analysis (default = 1000)"));
90 
91 // Limit on the number of memdep results to process.
92 static const unsigned int NumResultsLimit = 100;
93 
94 /// This is a helper function that removes Val from 'Inst's set in ReverseMap.
95 ///
96 /// If the set becomes empty, remove Inst's entry.
97 template <typename KeyTy>
98 static void
99 RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap,
100                      Instruction *Inst, KeyTy Val) {
101   typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt =
102       ReverseMap.find(Inst);
103   assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
104   bool Found = InstIt->second.erase(Val);
105   assert(Found && "Invalid reverse map!");
106   (void)Found;
107   if (InstIt->second.empty())
108     ReverseMap.erase(InstIt);
109 }
110 
111 /// If the given instruction references a specific memory location, fill in Loc
112 /// with the details, otherwise set Loc.Ptr to null.
113 ///
114 /// Returns a ModRefInfo value describing the general behavior of the
115 /// instruction.
116 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc,
117                               const TargetLibraryInfo &TLI) {
118   if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
119     if (LI->isUnordered()) {
120       Loc = MemoryLocation::get(LI);
121       return ModRefInfo::Ref;
122     }
123     if (LI->getOrdering() == AtomicOrdering::Monotonic) {
124       Loc = MemoryLocation::get(LI);
125       return ModRefInfo::ModRef;
126     }
127     Loc = MemoryLocation();
128     return ModRefInfo::ModRef;
129   }
130 
131   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
132     if (SI->isUnordered()) {
133       Loc = MemoryLocation::get(SI);
134       return ModRefInfo::Mod;
135     }
136     if (SI->getOrdering() == AtomicOrdering::Monotonic) {
137       Loc = MemoryLocation::get(SI);
138       return ModRefInfo::ModRef;
139     }
140     Loc = MemoryLocation();
141     return ModRefInfo::ModRef;
142   }
143 
144   if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
145     Loc = MemoryLocation::get(V);
146     return ModRefInfo::ModRef;
147   }
148 
149   if (const CallInst *CI = isFreeCall(Inst, &TLI)) {
150     // calls to free() deallocate the entire structure
151     Loc = MemoryLocation::getAfter(CI->getArgOperand(0));
152     return ModRefInfo::Mod;
153   }
154 
155   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
156     switch (II->getIntrinsicID()) {
157     case Intrinsic::lifetime_start:
158     case Intrinsic::lifetime_end:
159     case Intrinsic::invariant_start:
160       Loc = MemoryLocation::getForArgument(II, 1, TLI);
161       // These intrinsics don't really modify the memory, but returning Mod
162       // will allow them to be handled conservatively.
163       return ModRefInfo::Mod;
164     case Intrinsic::invariant_end:
165       Loc = MemoryLocation::getForArgument(II, 2, TLI);
166       // These intrinsics don't really modify the memory, but returning Mod
167       // will allow them to be handled conservatively.
168       return ModRefInfo::Mod;
169     case Intrinsic::masked_load:
170       Loc = MemoryLocation::getForArgument(II, 0, TLI);
171       return ModRefInfo::Ref;
172     case Intrinsic::masked_store:
173       Loc = MemoryLocation::getForArgument(II, 1, TLI);
174       return ModRefInfo::Mod;
175     default:
176       break;
177     }
178   }
179 
180   // Otherwise, just do the coarse-grained thing that always works.
181   if (Inst->mayWriteToMemory())
182     return ModRefInfo::ModRef;
183   if (Inst->mayReadFromMemory())
184     return ModRefInfo::Ref;
185   return ModRefInfo::NoModRef;
186 }
187 
188 /// Private helper for finding the local dependencies of a call site.
189 MemDepResult MemoryDependenceResults::getCallDependencyFrom(
190     CallBase *Call, bool isReadOnlyCall, BasicBlock::iterator ScanIt,
191     BasicBlock *BB) {
192   unsigned Limit = getDefaultBlockScanLimit();
193 
194   // Walk backwards through the block, looking for dependencies.
195   while (ScanIt != BB->begin()) {
196     Instruction *Inst = &*--ScanIt;
197     // Debug intrinsics don't cause dependences and should not affect Limit
198     if (isa<DbgInfoIntrinsic>(Inst))
199       continue;
200 
201     // Limit the amount of scanning we do so we don't end up with quadratic
202     // running time on extreme testcases.
203     --Limit;
204     if (!Limit)
205       return MemDepResult::getUnknown();
206 
207     // If this inst is a memory op, get the pointer it accessed
208     MemoryLocation Loc;
209     ModRefInfo MR = GetLocation(Inst, Loc, TLI);
210     if (Loc.Ptr) {
211       // A simple instruction.
212       if (isModOrRefSet(AA.getModRefInfo(Call, Loc)))
213         return MemDepResult::getClobber(Inst);
214       continue;
215     }
216 
217     if (auto *CallB = dyn_cast<CallBase>(Inst)) {
218       // If these two calls do not interfere, look past it.
219       if (isNoModRef(AA.getModRefInfo(Call, CallB))) {
220         // If the two calls are the same, return Inst as a Def, so that
221         // Call can be found redundant and eliminated.
222         if (isReadOnlyCall && !isModSet(MR) &&
223             Call->isIdenticalToWhenDefined(CallB))
224           return MemDepResult::getDef(Inst);
225 
226         // Otherwise if the two calls don't interact (e.g. CallB is readnone)
227         // keep scanning.
228         continue;
229       } else
230         return MemDepResult::getClobber(Inst);
231     }
232 
233     // If we could not obtain a pointer for the instruction and the instruction
234     // touches memory then assume that this is a dependency.
235     if (isModOrRefSet(MR))
236       return MemDepResult::getClobber(Inst);
237   }
238 
239   // No dependence found.  If this is the entry block of the function, it is
240   // unknown, otherwise it is non-local.
241   if (BB != &BB->getParent()->getEntryBlock())
242     return MemDepResult::getNonLocal();
243   return MemDepResult::getNonFuncLocal();
244 }
245 
246 MemDepResult MemoryDependenceResults::getPointerDependencyFrom(
247     const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
248     BasicBlock *BB, Instruction *QueryInst, unsigned *Limit,
249     BatchAAResults &BatchAA) {
250   MemDepResult InvariantGroupDependency = MemDepResult::getUnknown();
251   if (QueryInst != nullptr) {
252     if (auto *LI = dyn_cast<LoadInst>(QueryInst)) {
253       InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB);
254 
255       if (InvariantGroupDependency.isDef())
256         return InvariantGroupDependency;
257     }
258   }
259   MemDepResult SimpleDep = getSimplePointerDependencyFrom(
260       MemLoc, isLoad, ScanIt, BB, QueryInst, Limit, BatchAA);
261   if (SimpleDep.isDef())
262     return SimpleDep;
263   // Non-local invariant group dependency indicates there is non local Def
264   // (it only returns nonLocal if it finds nonLocal def), which is better than
265   // local clobber and everything else.
266   if (InvariantGroupDependency.isNonLocal())
267     return InvariantGroupDependency;
268 
269   assert(InvariantGroupDependency.isUnknown() &&
270          "InvariantGroupDependency should be only unknown at this point");
271   return SimpleDep;
272 }
273 
274 MemDepResult MemoryDependenceResults::getPointerDependencyFrom(
275     const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
276     BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
277   BatchAAResults BatchAA(AA);
278   return getPointerDependencyFrom(MemLoc, isLoad, ScanIt, BB, QueryInst, Limit,
279                                   BatchAA);
280 }
281 
282 MemDepResult
283 MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI,
284                                                             BasicBlock *BB) {
285 
286   if (!LI->hasMetadata(LLVMContext::MD_invariant_group))
287     return MemDepResult::getUnknown();
288 
289   // Take the ptr operand after all casts and geps 0. This way we can search
290   // cast graph down only.
291   Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts();
292 
293   // It's is not safe to walk the use list of global value, because function
294   // passes aren't allowed to look outside their functions.
295   // FIXME: this could be fixed by filtering instructions from outside
296   // of current function.
297   if (isa<GlobalValue>(LoadOperand))
298     return MemDepResult::getUnknown();
299 
300   // Queue to process all pointers that are equivalent to load operand.
301   SmallVector<const Value *, 8> LoadOperandsQueue;
302   LoadOperandsQueue.push_back(LoadOperand);
303 
304   Instruction *ClosestDependency = nullptr;
305   // Order of instructions in uses list is unpredictible. In order to always
306   // get the same result, we will look for the closest dominance.
307   auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) {
308     assert(Other && "Must call it with not null instruction");
309     if (Best == nullptr || DT.dominates(Best, Other))
310       return Other;
311     return Best;
312   };
313 
314   // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case
315   // we will see all the instructions. This should be fixed in MSSA.
316   while (!LoadOperandsQueue.empty()) {
317     const Value *Ptr = LoadOperandsQueue.pop_back_val();
318     assert(Ptr && !isa<GlobalValue>(Ptr) &&
319            "Null or GlobalValue should not be inserted");
320 
321     for (const Use &Us : Ptr->uses()) {
322       auto *U = dyn_cast<Instruction>(Us.getUser());
323       if (!U || U == LI || !DT.dominates(U, LI))
324         continue;
325 
326       // Bitcast or gep with zeros are using Ptr. Add to queue to check it's
327       // users.      U = bitcast Ptr
328       if (isa<BitCastInst>(U)) {
329         LoadOperandsQueue.push_back(U);
330         continue;
331       }
332       // Gep with zeros is equivalent to bitcast.
333       // FIXME: we are not sure if some bitcast should be canonicalized to gep 0
334       // or gep 0 to bitcast because of SROA, so there are 2 forms. When
335       // typeless pointers will be ready then both cases will be gone
336       // (and this BFS also won't be needed).
337       if (auto *GEP = dyn_cast<GetElementPtrInst>(U))
338         if (GEP->hasAllZeroIndices()) {
339           LoadOperandsQueue.push_back(U);
340           continue;
341         }
342 
343       // If we hit load/store with the same invariant.group metadata (and the
344       // same pointer operand) we can assume that value pointed by pointer
345       // operand didn't change.
346       if ((isa<LoadInst>(U) ||
347            (isa<StoreInst>(U) &&
348             cast<StoreInst>(U)->getPointerOperand() == Ptr)) &&
349           U->hasMetadata(LLVMContext::MD_invariant_group))
350         ClosestDependency = GetClosestDependency(ClosestDependency, U);
351     }
352   }
353 
354   if (!ClosestDependency)
355     return MemDepResult::getUnknown();
356   if (ClosestDependency->getParent() == BB)
357     return MemDepResult::getDef(ClosestDependency);
358   // Def(U) can't be returned here because it is non-local. If local
359   // dependency won't be found then return nonLocal counting that the
360   // user will call getNonLocalPointerDependency, which will return cached
361   // result.
362   NonLocalDefsCache.try_emplace(
363       LI, NonLocalDepResult(ClosestDependency->getParent(),
364                             MemDepResult::getDef(ClosestDependency), nullptr));
365   ReverseNonLocalDefsCache[ClosestDependency].insert(LI);
366   return MemDepResult::getNonLocal();
367 }
368 
369 MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom(
370     const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
371     BasicBlock *BB, Instruction *QueryInst, unsigned *Limit,
372     BatchAAResults &BatchAA) {
373   bool isInvariantLoad = false;
374 
375   unsigned DefaultLimit = getDefaultBlockScanLimit();
376   if (!Limit)
377     Limit = &DefaultLimit;
378 
379   // We must be careful with atomic accesses, as they may allow another thread
380   //   to touch this location, clobbering it. We are conservative: if the
381   //   QueryInst is not a simple (non-atomic) memory access, we automatically
382   //   return getClobber.
383   // If it is simple, we know based on the results of
384   // "Compiler testing via a theory of sound optimisations in the C11/C++11
385   //   memory model" in PLDI 2013, that a non-atomic location can only be
386   //   clobbered between a pair of a release and an acquire action, with no
387   //   access to the location in between.
388   // Here is an example for giving the general intuition behind this rule.
389   // In the following code:
390   //   store x 0;
391   //   release action; [1]
392   //   acquire action; [4]
393   //   %val = load x;
394   // It is unsafe to replace %val by 0 because another thread may be running:
395   //   acquire action; [2]
396   //   store x 42;
397   //   release action; [3]
398   // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
399   // being 42. A key property of this program however is that if either
400   // 1 or 4 were missing, there would be a race between the store of 42
401   // either the store of 0 or the load (making the whole program racy).
402   // The paper mentioned above shows that the same property is respected
403   // by every program that can detect any optimization of that kind: either
404   // it is racy (undefined) or there is a release followed by an acquire
405   // between the pair of accesses under consideration.
406 
407   // If the load is invariant, we "know" that it doesn't alias *any* write. We
408   // do want to respect mustalias results since defs are useful for value
409   // forwarding, but any mayalias write can be assumed to be noalias.
410   // Arguably, this logic should be pushed inside AliasAnalysis itself.
411   if (isLoad && QueryInst) {
412     LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
413     if (LI && LI->hasMetadata(LLVMContext::MD_invariant_load))
414       isInvariantLoad = true;
415   }
416 
417   // True for volatile instruction.
418   // For Load/Store return true if atomic ordering is stronger than AO,
419   // for other instruction just true if it can read or write to memory.
420   auto isComplexForReordering = [](Instruction * I, AtomicOrdering AO)->bool {
421     if (I->isVolatile())
422       return true;
423     if (auto *LI = dyn_cast<LoadInst>(I))
424       return isStrongerThan(LI->getOrdering(), AO);
425     if (auto *SI = dyn_cast<StoreInst>(I))
426       return isStrongerThan(SI->getOrdering(), AO);
427     return I->mayReadOrWriteMemory();
428   };
429 
430   // Walk backwards through the basic block, looking for dependencies.
431   while (ScanIt != BB->begin()) {
432     Instruction *Inst = &*--ScanIt;
433 
434     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
435       // Debug intrinsics don't (and can't) cause dependencies.
436       if (isa<DbgInfoIntrinsic>(II))
437         continue;
438 
439     // Limit the amount of scanning we do so we don't end up with quadratic
440     // running time on extreme testcases.
441     --*Limit;
442     if (!*Limit)
443       return MemDepResult::getUnknown();
444 
445     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
446       // If we reach a lifetime begin or end marker, then the query ends here
447       // because the value is undefined.
448       Intrinsic::ID ID = II->getIntrinsicID();
449       switch (ID) {
450       case Intrinsic::lifetime_start: {
451         // FIXME: This only considers queries directly on the invariant-tagged
452         // pointer, not on query pointers that are indexed off of them.  It'd
453         // be nice to handle that at some point (the right approach is to use
454         // GetPointerBaseWithConstantOffset).
455         MemoryLocation ArgLoc = MemoryLocation::getAfter(II->getArgOperand(1));
456         if (BatchAA.isMustAlias(ArgLoc, MemLoc))
457           return MemDepResult::getDef(II);
458         continue;
459       }
460       case Intrinsic::masked_load:
461       case Intrinsic::masked_store: {
462         MemoryLocation Loc;
463         /*ModRefInfo MR =*/ GetLocation(II, Loc, TLI);
464         AliasResult R = BatchAA.alias(Loc, MemLoc);
465         if (R == AliasResult::NoAlias)
466           continue;
467         if (R == AliasResult::MustAlias)
468           return MemDepResult::getDef(II);
469         if (ID == Intrinsic::masked_load)
470           continue;
471         return MemDepResult::getClobber(II);
472       }
473       }
474     }
475 
476     // Values depend on loads if the pointers are must aliased.  This means
477     // that a load depends on another must aliased load from the same value.
478     // One exception is atomic loads: a value can depend on an atomic load that
479     // it does not alias with when this atomic load indicates that another
480     // thread may be accessing the location.
481     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
482       // While volatile access cannot be eliminated, they do not have to clobber
483       // non-aliasing locations, as normal accesses, for example, can be safely
484       // reordered with volatile accesses.
485       if (LI->isVolatile()) {
486         if (!QueryInst)
487           // Original QueryInst *may* be volatile
488           return MemDepResult::getClobber(LI);
489         if (QueryInst->isVolatile())
490           // Ordering required if QueryInst is itself volatile
491           return MemDepResult::getClobber(LI);
492         // Otherwise, volatile doesn't imply any special ordering
493       }
494 
495       // Atomic loads have complications involved.
496       // A Monotonic (or higher) load is OK if the query inst is itself not
497       // atomic.
498       // FIXME: This is overly conservative.
499       if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) {
500         if (!QueryInst ||
501             isComplexForReordering(QueryInst, AtomicOrdering::NotAtomic))
502           return MemDepResult::getClobber(LI);
503         if (LI->getOrdering() != AtomicOrdering::Monotonic)
504           return MemDepResult::getClobber(LI);
505       }
506 
507       MemoryLocation LoadLoc = MemoryLocation::get(LI);
508 
509       // If we found a pointer, check if it could be the same as our pointer.
510       AliasResult R = BatchAA.alias(LoadLoc, MemLoc);
511 
512       if (isLoad) {
513         if (R == AliasResult::NoAlias)
514           continue;
515 
516         // Must aliased loads are defs of each other.
517         if (R == AliasResult::MustAlias)
518           return MemDepResult::getDef(Inst);
519 
520         // If we have a partial alias, then return this as a clobber for the
521         // client to handle.
522         if (R == AliasResult::PartialAlias && R.hasOffset()) {
523           ClobberOffsets[LI] = R.getOffset();
524           return MemDepResult::getClobber(Inst);
525         }
526 
527         // Random may-alias loads don't depend on each other without a
528         // dependence.
529         continue;
530       }
531 
532       // Stores don't depend on other no-aliased accesses.
533       if (R == AliasResult::NoAlias)
534         continue;
535 
536       // Stores don't alias loads from read-only memory.
537       if (BatchAA.pointsToConstantMemory(LoadLoc))
538         continue;
539 
540       // Stores depend on may/must aliased loads.
541       return MemDepResult::getDef(Inst);
542     }
543 
544     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
545       // Atomic stores have complications involved.
546       // A Monotonic store is OK if the query inst is itself not atomic.
547       // FIXME: This is overly conservative.
548       if (!SI->isUnordered() && SI->isAtomic()) {
549         if (!QueryInst ||
550             isComplexForReordering(QueryInst, AtomicOrdering::Unordered))
551           return MemDepResult::getClobber(SI);
552         // Ok, if we are here the guard above guarantee us that
553         // QueryInst is a non-atomic or unordered load/store.
554         // SI is atomic with monotonic or release semantic (seq_cst for store
555         // is actually a release semantic plus total order over other seq_cst
556         // instructions, as soon as QueryInst is not seq_cst we can consider it
557         // as simple release semantic).
558         // Monotonic and Release semantic allows re-ordering before store
559         // so we are safe to go further and check the aliasing. It will prohibit
560         // re-ordering in case locations are may or must alias.
561       }
562 
563       // While volatile access cannot be eliminated, they do not have to clobber
564       // non-aliasing locations, as normal accesses can for example be reordered
565       // with volatile accesses.
566       if (SI->isVolatile())
567         if (!QueryInst || QueryInst->isVolatile())
568           return MemDepResult::getClobber(SI);
569 
570       // If alias analysis can tell that this store is guaranteed to not modify
571       // the query pointer, ignore it.  Use getModRefInfo to handle cases where
572       // the query pointer points to constant memory etc.
573       if (!isModOrRefSet(BatchAA.getModRefInfo(SI, MemLoc)))
574         continue;
575 
576       // Ok, this store might clobber the query pointer.  Check to see if it is
577       // a must alias: in this case, we want to return this as a def.
578       // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above.
579       MemoryLocation StoreLoc = MemoryLocation::get(SI);
580 
581       // If we found a pointer, check if it could be the same as our pointer.
582       AliasResult R = BatchAA.alias(StoreLoc, MemLoc);
583 
584       if (R == AliasResult::NoAlias)
585         continue;
586       if (R == AliasResult::MustAlias)
587         return MemDepResult::getDef(Inst);
588       if (isInvariantLoad)
589         continue;
590       return MemDepResult::getClobber(Inst);
591     }
592 
593     // If this is an allocation, and if we know that the accessed pointer is to
594     // the allocation, return Def.  This means that there is no dependence and
595     // the access can be optimized based on that.  For example, a load could
596     // turn into undef.  Note that we can bypass the allocation itself when
597     // looking for a clobber in many cases; that's an alias property and is
598     // handled by BasicAA.
599     if (isa<AllocaInst>(Inst) || isNoAliasCall(Inst)) {
600       const Value *AccessPtr = getUnderlyingObject(MemLoc.Ptr);
601       if (AccessPtr == Inst || BatchAA.isMustAlias(Inst, AccessPtr))
602         return MemDepResult::getDef(Inst);
603     }
604 
605     if (isInvariantLoad)
606       continue;
607 
608     // A release fence requires that all stores complete before it, but does
609     // not prevent the reordering of following loads or stores 'before' the
610     // fence.  As a result, we look past it when finding a dependency for
611     // loads.  DSE uses this to find preceding stores to delete and thus we
612     // can't bypass the fence if the query instruction is a store.
613     if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
614       if (isLoad && FI->getOrdering() == AtomicOrdering::Release)
615         continue;
616 
617     // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
618     ModRefInfo MR = BatchAA.getModRefInfo(Inst, MemLoc);
619     // If necessary, perform additional analysis.
620     if (isModAndRefSet(MR))
621       MR = BatchAA.callCapturesBefore(Inst, MemLoc, &DT);
622     switch (clearMust(MR)) {
623     case ModRefInfo::NoModRef:
624       // If the call has no effect on the queried pointer, just ignore it.
625       continue;
626     case ModRefInfo::Mod:
627       return MemDepResult::getClobber(Inst);
628     case ModRefInfo::Ref:
629       // If the call is known to never store to the pointer, and if this is a
630       // load query, we can safely ignore it (scan past it).
631       if (isLoad)
632         continue;
633       LLVM_FALLTHROUGH;
634     default:
635       // Otherwise, there is a potential dependence.  Return a clobber.
636       return MemDepResult::getClobber(Inst);
637     }
638   }
639 
640   // No dependence found.  If this is the entry block of the function, it is
641   // unknown, otherwise it is non-local.
642   if (BB != &BB->getParent()->getEntryBlock())
643     return MemDepResult::getNonLocal();
644   return MemDepResult::getNonFuncLocal();
645 }
646 
647 MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) {
648   ClobberOffsets.clear();
649   Instruction *ScanPos = QueryInst;
650 
651   // Check for a cached result
652   MemDepResult &LocalCache = LocalDeps[QueryInst];
653 
654   // If the cached entry is non-dirty, just return it.  Note that this depends
655   // on MemDepResult's default constructing to 'dirty'.
656   if (!LocalCache.isDirty())
657     return LocalCache;
658 
659   // Otherwise, if we have a dirty entry, we know we can start the scan at that
660   // instruction, which may save us some work.
661   if (Instruction *Inst = LocalCache.getInst()) {
662     ScanPos = Inst;
663 
664     RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
665   }
666 
667   BasicBlock *QueryParent = QueryInst->getParent();
668 
669   // Do the scan.
670   if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
671     // No dependence found. If this is the entry block of the function, it is
672     // unknown, otherwise it is non-local.
673     if (QueryParent != &QueryParent->getParent()->getEntryBlock())
674       LocalCache = MemDepResult::getNonLocal();
675     else
676       LocalCache = MemDepResult::getNonFuncLocal();
677   } else {
678     MemoryLocation MemLoc;
679     ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI);
680     if (MemLoc.Ptr) {
681       // If we can do a pointer scan, make it happen.
682       bool isLoad = !isModSet(MR);
683       if (auto *II = dyn_cast<IntrinsicInst>(QueryInst))
684         isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
685 
686       LocalCache =
687           getPointerDependencyFrom(MemLoc, isLoad, ScanPos->getIterator(),
688                                    QueryParent, QueryInst, nullptr);
689     } else if (auto *QueryCall = dyn_cast<CallBase>(QueryInst)) {
690       bool isReadOnly = AA.onlyReadsMemory(QueryCall);
691       LocalCache = getCallDependencyFrom(QueryCall, isReadOnly,
692                                          ScanPos->getIterator(), QueryParent);
693     } else
694       // Non-memory instruction.
695       LocalCache = MemDepResult::getUnknown();
696   }
697 
698   // Remember the result!
699   if (Instruction *I = LocalCache.getInst())
700     ReverseLocalDeps[I].insert(QueryInst);
701 
702   return LocalCache;
703 }
704 
705 #ifndef NDEBUG
706 /// This method is used when -debug is specified to verify that cache arrays
707 /// are properly kept sorted.
708 static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache,
709                          int Count = -1) {
710   if (Count == -1)
711     Count = Cache.size();
712   assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) &&
713          "Cache isn't sorted!");
714 }
715 #endif
716 
717 const MemoryDependenceResults::NonLocalDepInfo &
718 MemoryDependenceResults::getNonLocalCallDependency(CallBase *QueryCall) {
719   assert(getDependency(QueryCall).isNonLocal() &&
720          "getNonLocalCallDependency should only be used on calls with "
721          "non-local deps!");
722   PerInstNLInfo &CacheP = NonLocalDepsMap[QueryCall];
723   NonLocalDepInfo &Cache = CacheP.first;
724 
725   // This is the set of blocks that need to be recomputed.  In the cached case,
726   // this can happen due to instructions being deleted etc. In the uncached
727   // case, this starts out as the set of predecessors we care about.
728   SmallVector<BasicBlock *, 32> DirtyBlocks;
729 
730   if (!Cache.empty()) {
731     // Okay, we have a cache entry.  If we know it is not dirty, just return it
732     // with no computation.
733     if (!CacheP.second) {
734       ++NumCacheNonLocal;
735       return Cache;
736     }
737 
738     // If we already have a partially computed set of results, scan them to
739     // determine what is dirty, seeding our initial DirtyBlocks worklist.
740     for (auto &Entry : Cache)
741       if (Entry.getResult().isDirty())
742         DirtyBlocks.push_back(Entry.getBB());
743 
744     // Sort the cache so that we can do fast binary search lookups below.
745     llvm::sort(Cache);
746 
747     ++NumCacheDirtyNonLocal;
748     // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
749     //     << Cache.size() << " cached: " << *QueryInst;
750   } else {
751     // Seed DirtyBlocks with each of the preds of QueryInst's block.
752     BasicBlock *QueryBB = QueryCall->getParent();
753     append_range(DirtyBlocks, PredCache.get(QueryBB));
754     ++NumUncacheNonLocal;
755   }
756 
757   // isReadonlyCall - If this is a read-only call, we can be more aggressive.
758   bool isReadonlyCall = AA.onlyReadsMemory(QueryCall);
759 
760   SmallPtrSet<BasicBlock *, 32> Visited;
761 
762   unsigned NumSortedEntries = Cache.size();
763   LLVM_DEBUG(AssertSorted(Cache));
764 
765   // Iterate while we still have blocks to update.
766   while (!DirtyBlocks.empty()) {
767     BasicBlock *DirtyBB = DirtyBlocks.pop_back_val();
768 
769     // Already processed this block?
770     if (!Visited.insert(DirtyBB).second)
771       continue;
772 
773     // Do a binary search to see if we already have an entry for this block in
774     // the cache set.  If so, find it.
775     LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries));
776     NonLocalDepInfo::iterator Entry =
777         std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries,
778                          NonLocalDepEntry(DirtyBB));
779     if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
780       --Entry;
781 
782     NonLocalDepEntry *ExistingResult = nullptr;
783     if (Entry != Cache.begin() + NumSortedEntries &&
784         Entry->getBB() == DirtyBB) {
785       // If we already have an entry, and if it isn't already dirty, the block
786       // is done.
787       if (!Entry->getResult().isDirty())
788         continue;
789 
790       // Otherwise, remember this slot so we can update the value.
791       ExistingResult = &*Entry;
792     }
793 
794     // If the dirty entry has a pointer, start scanning from it so we don't have
795     // to rescan the entire block.
796     BasicBlock::iterator ScanPos = DirtyBB->end();
797     if (ExistingResult) {
798       if (Instruction *Inst = ExistingResult->getResult().getInst()) {
799         ScanPos = Inst->getIterator();
800         // We're removing QueryInst's use of Inst.
801         RemoveFromReverseMap<Instruction *>(ReverseNonLocalDeps, Inst,
802                                             QueryCall);
803       }
804     }
805 
806     // Find out if this block has a local dependency for QueryInst.
807     MemDepResult Dep;
808 
809     if (ScanPos != DirtyBB->begin()) {
810       Dep = getCallDependencyFrom(QueryCall, isReadonlyCall, ScanPos, DirtyBB);
811     } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
812       // No dependence found.  If this is the entry block of the function, it is
813       // a clobber, otherwise it is unknown.
814       Dep = MemDepResult::getNonLocal();
815     } else {
816       Dep = MemDepResult::getNonFuncLocal();
817     }
818 
819     // If we had a dirty entry for the block, update it.  Otherwise, just add
820     // a new entry.
821     if (ExistingResult)
822       ExistingResult->setResult(Dep);
823     else
824       Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
825 
826     // If the block has a dependency (i.e. it isn't completely transparent to
827     // the value), remember the association!
828     if (!Dep.isNonLocal()) {
829       // Keep the ReverseNonLocalDeps map up to date so we can efficiently
830       // update this when we remove instructions.
831       if (Instruction *Inst = Dep.getInst())
832         ReverseNonLocalDeps[Inst].insert(QueryCall);
833     } else {
834 
835       // If the block *is* completely transparent to the load, we need to check
836       // the predecessors of this block.  Add them to our worklist.
837       append_range(DirtyBlocks, PredCache.get(DirtyBB));
838     }
839   }
840 
841   return Cache;
842 }
843 
844 void MemoryDependenceResults::getNonLocalPointerDependency(
845     Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) {
846   const MemoryLocation Loc = MemoryLocation::get(QueryInst);
847   bool isLoad = isa<LoadInst>(QueryInst);
848   BasicBlock *FromBB = QueryInst->getParent();
849   assert(FromBB);
850 
851   assert(Loc.Ptr->getType()->isPointerTy() &&
852          "Can't get pointer deps of a non-pointer!");
853   Result.clear();
854   {
855     // Check if there is cached Def with invariant.group.
856     auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst);
857     if (NonLocalDefIt != NonLocalDefsCache.end()) {
858       Result.push_back(NonLocalDefIt->second);
859       ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()]
860           .erase(QueryInst);
861       NonLocalDefsCache.erase(NonLocalDefIt);
862       return;
863     }
864   }
865   // This routine does not expect to deal with volatile instructions.
866   // Doing so would require piping through the QueryInst all the way through.
867   // TODO: volatiles can't be elided, but they can be reordered with other
868   // non-volatile accesses.
869 
870   // We currently give up on any instruction which is ordered, but we do handle
871   // atomic instructions which are unordered.
872   // TODO: Handle ordered instructions
873   auto isOrdered = [](Instruction *Inst) {
874     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
875       return !LI->isUnordered();
876     } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
877       return !SI->isUnordered();
878     }
879     return false;
880   };
881   if (QueryInst->isVolatile() || isOrdered(QueryInst)) {
882     Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
883                                        const_cast<Value *>(Loc.Ptr)));
884     return;
885   }
886   const DataLayout &DL = FromBB->getModule()->getDataLayout();
887   PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC);
888 
889   // This is the set of blocks we've inspected, and the pointer we consider in
890   // each block.  Because of critical edges, we currently bail out if querying
891   // a block with multiple different pointers.  This can happen during PHI
892   // translation.
893   DenseMap<BasicBlock *, Value *> Visited;
894   if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB,
895                                    Result, Visited, true))
896     return;
897   Result.clear();
898   Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
899                                      const_cast<Value *>(Loc.Ptr)));
900 }
901 
902 /// Compute the memdep value for BB with Pointer/PointeeSize using either
903 /// cached information in Cache or by doing a lookup (which may use dirty cache
904 /// info if available).
905 ///
906 /// If we do a lookup, add the result to the cache.
907 MemDepResult MemoryDependenceResults::getNonLocalInfoForBlock(
908     Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad,
909     BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries,
910     BatchAAResults &BatchAA) {
911 
912   bool isInvariantLoad = false;
913 
914   if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst))
915     isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load);
916 
917   // Do a binary search to see if we already have an entry for this block in
918   // the cache set.  If so, find it.
919   NonLocalDepInfo::iterator Entry = std::upper_bound(
920       Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB));
921   if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB)
922     --Entry;
923 
924   NonLocalDepEntry *ExistingResult = nullptr;
925   if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB)
926     ExistingResult = &*Entry;
927 
928   // Use cached result for invariant load only if there is no dependency for non
929   // invariant load. In this case invariant load can not have any dependency as
930   // well.
931   if (ExistingResult && isInvariantLoad &&
932       !ExistingResult->getResult().isNonFuncLocal())
933     ExistingResult = nullptr;
934 
935   // If we have a cached entry, and it is non-dirty, use it as the value for
936   // this dependency.
937   if (ExistingResult && !ExistingResult->getResult().isDirty()) {
938     ++NumCacheNonLocalPtr;
939     return ExistingResult->getResult();
940   }
941 
942   // Otherwise, we have to scan for the value.  If we have a dirty cache
943   // entry, start scanning from its position, otherwise we scan from the end
944   // of the block.
945   BasicBlock::iterator ScanPos = BB->end();
946   if (ExistingResult && ExistingResult->getResult().getInst()) {
947     assert(ExistingResult->getResult().getInst()->getParent() == BB &&
948            "Instruction invalidated?");
949     ++NumCacheDirtyNonLocalPtr;
950     ScanPos = ExistingResult->getResult().getInst()->getIterator();
951 
952     // Eliminating the dirty entry from 'Cache', so update the reverse info.
953     ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
954     RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey);
955   } else {
956     ++NumUncacheNonLocalPtr;
957   }
958 
959   // Scan the block for the dependency.
960   MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB,
961                                               QueryInst, nullptr, BatchAA);
962 
963   // Don't cache results for invariant load.
964   if (isInvariantLoad)
965     return Dep;
966 
967   // If we had a dirty entry for the block, update it.  Otherwise, just add
968   // a new entry.
969   if (ExistingResult)
970     ExistingResult->setResult(Dep);
971   else
972     Cache->push_back(NonLocalDepEntry(BB, Dep));
973 
974   // If the block has a dependency (i.e. it isn't completely transparent to
975   // the value), remember the reverse association because we just added it
976   // to Cache!
977   if (!Dep.isDef() && !Dep.isClobber())
978     return Dep;
979 
980   // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
981   // update MemDep when we remove instructions.
982   Instruction *Inst = Dep.getInst();
983   assert(Inst && "Didn't depend on anything?");
984   ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
985   ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
986   return Dep;
987 }
988 
989 /// Sort the NonLocalDepInfo cache, given a certain number of elements in the
990 /// array that are already properly ordered.
991 ///
992 /// This is optimized for the case when only a few entries are added.
993 static void
994 SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache,
995                          unsigned NumSortedEntries) {
996   switch (Cache.size() - NumSortedEntries) {
997   case 0:
998     // done, no new entries.
999     break;
1000   case 2: {
1001     // Two new entries, insert the last one into place.
1002     NonLocalDepEntry Val = Cache.back();
1003     Cache.pop_back();
1004     MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
1005         std::upper_bound(Cache.begin(), Cache.end() - 1, Val);
1006     Cache.insert(Entry, Val);
1007     LLVM_FALLTHROUGH;
1008   }
1009   case 1:
1010     // One new entry, Just insert the new value at the appropriate position.
1011     if (Cache.size() != 1) {
1012       NonLocalDepEntry Val = Cache.back();
1013       Cache.pop_back();
1014       MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
1015           llvm::upper_bound(Cache, Val);
1016       Cache.insert(Entry, Val);
1017     }
1018     break;
1019   default:
1020     // Added many values, do a full scale sort.
1021     llvm::sort(Cache);
1022     break;
1023   }
1024 }
1025 
1026 /// Perform a dependency query based on pointer/pointeesize starting at the end
1027 /// of StartBB.
1028 ///
1029 /// Add any clobber/def results to the results vector and keep track of which
1030 /// blocks are visited in 'Visited'.
1031 ///
1032 /// This has special behavior for the first block queries (when SkipFirstBlock
1033 /// is true).  In this special case, it ignores the contents of the specified
1034 /// block and starts returning dependence info for its predecessors.
1035 ///
1036 /// This function returns true on success, or false to indicate that it could
1037 /// not compute dependence information for some reason.  This should be treated
1038 /// as a clobber dependence on the first instruction in the predecessor block.
1039 bool MemoryDependenceResults::getNonLocalPointerDepFromBB(
1040     Instruction *QueryInst, const PHITransAddr &Pointer,
1041     const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB,
1042     SmallVectorImpl<NonLocalDepResult> &Result,
1043     DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock,
1044     bool IsIncomplete) {
1045   // Look up the cached info for Pointer.
1046   ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
1047 
1048   // Set up a temporary NLPI value. If the map doesn't yet have an entry for
1049   // CacheKey, this value will be inserted as the associated value. Otherwise,
1050   // it'll be ignored, and we'll have to check to see if the cached size and
1051   // aa tags are consistent with the current query.
1052   NonLocalPointerInfo InitialNLPI;
1053   InitialNLPI.Size = Loc.Size;
1054   InitialNLPI.AATags = Loc.AATags;
1055 
1056   bool isInvariantLoad = false;
1057   if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst))
1058     isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load);
1059 
1060   // Get the NLPI for CacheKey, inserting one into the map if it doesn't
1061   // already have one.
1062   std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
1063       NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
1064   NonLocalPointerInfo *CacheInfo = &Pair.first->second;
1065 
1066   // If we already have a cache entry for this CacheKey, we may need to do some
1067   // work to reconcile the cache entry and the current query.
1068   // Invariant loads don't participate in caching. Thus no need to reconcile.
1069   if (!isInvariantLoad && !Pair.second) {
1070     if (CacheInfo->Size != Loc.Size) {
1071       bool ThrowOutEverything;
1072       if (CacheInfo->Size.hasValue() && Loc.Size.hasValue()) {
1073         // FIXME: We may be able to do better in the face of results with mixed
1074         // precision. We don't appear to get them in practice, though, so just
1075         // be conservative.
1076         ThrowOutEverything =
1077             CacheInfo->Size.isPrecise() != Loc.Size.isPrecise() ||
1078             CacheInfo->Size.getValue() < Loc.Size.getValue();
1079       } else {
1080         // For our purposes, unknown size > all others.
1081         ThrowOutEverything = !Loc.Size.hasValue();
1082       }
1083 
1084       if (ThrowOutEverything) {
1085         // The query's Size is greater than the cached one. Throw out the
1086         // cached data and proceed with the query at the greater size.
1087         CacheInfo->Pair = BBSkipFirstBlockPair();
1088         CacheInfo->Size = Loc.Size;
1089         for (auto &Entry : CacheInfo->NonLocalDeps)
1090           if (Instruction *Inst = Entry.getResult().getInst())
1091             RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1092         CacheInfo->NonLocalDeps.clear();
1093         // The cache is cleared (in the above line) so we will have lost
1094         // information about blocks we have already visited. We therefore must
1095         // assume that the cache information is incomplete.
1096         IsIncomplete = true;
1097       } else {
1098         // This query's Size is less than the cached one. Conservatively restart
1099         // the query using the greater size.
1100         return getNonLocalPointerDepFromBB(
1101             QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad,
1102             StartBB, Result, Visited, SkipFirstBlock, IsIncomplete);
1103       }
1104     }
1105 
1106     // If the query's AATags are inconsistent with the cached one,
1107     // conservatively throw out the cached data and restart the query with
1108     // no tag if needed.
1109     if (CacheInfo->AATags != Loc.AATags) {
1110       if (CacheInfo->AATags) {
1111         CacheInfo->Pair = BBSkipFirstBlockPair();
1112         CacheInfo->AATags = AAMDNodes();
1113         for (auto &Entry : CacheInfo->NonLocalDeps)
1114           if (Instruction *Inst = Entry.getResult().getInst())
1115             RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1116         CacheInfo->NonLocalDeps.clear();
1117         // The cache is cleared (in the above line) so we will have lost
1118         // information about blocks we have already visited. We therefore must
1119         // assume that the cache information is incomplete.
1120         IsIncomplete = true;
1121       }
1122       if (Loc.AATags)
1123         return getNonLocalPointerDepFromBB(
1124             QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result,
1125             Visited, SkipFirstBlock, IsIncomplete);
1126     }
1127   }
1128 
1129   NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
1130 
1131   // If we have valid cached information for exactly the block we are
1132   // investigating, just return it with no recomputation.
1133   // Don't use cached information for invariant loads since it is valid for
1134   // non-invariant loads only.
1135   if (!IsIncomplete && !isInvariantLoad &&
1136       CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
1137     // We have a fully cached result for this query then we can just return the
1138     // cached results and populate the visited set.  However, we have to verify
1139     // that we don't already have conflicting results for these blocks.  Check
1140     // to ensure that if a block in the results set is in the visited set that
1141     // it was for the same pointer query.
1142     if (!Visited.empty()) {
1143       for (auto &Entry : *Cache) {
1144         DenseMap<BasicBlock *, Value *>::iterator VI =
1145             Visited.find(Entry.getBB());
1146         if (VI == Visited.end() || VI->second == Pointer.getAddr())
1147           continue;
1148 
1149         // We have a pointer mismatch in a block.  Just return false, saying
1150         // that something was clobbered in this result.  We could also do a
1151         // non-fully cached query, but there is little point in doing this.
1152         return false;
1153       }
1154     }
1155 
1156     Value *Addr = Pointer.getAddr();
1157     for (auto &Entry : *Cache) {
1158       Visited.insert(std::make_pair(Entry.getBB(), Addr));
1159       if (Entry.getResult().isNonLocal()) {
1160         continue;
1161       }
1162 
1163       if (DT.isReachableFromEntry(Entry.getBB())) {
1164         Result.push_back(
1165             NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr));
1166       }
1167     }
1168     ++NumCacheCompleteNonLocalPtr;
1169     return true;
1170   }
1171 
1172   // Otherwise, either this is a new block, a block with an invalid cache
1173   // pointer or one that we're about to invalidate by putting more info into
1174   // it than its valid cache info.  If empty and not explicitly indicated as
1175   // incomplete, the result will be valid cache info, otherwise it isn't.
1176   //
1177   // Invariant loads don't affect cache in any way thus no need to update
1178   // CacheInfo as well.
1179   if (!isInvariantLoad) {
1180     if (!IsIncomplete && Cache->empty())
1181       CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
1182     else
1183       CacheInfo->Pair = BBSkipFirstBlockPair();
1184   }
1185 
1186   SmallVector<BasicBlock *, 32> Worklist;
1187   Worklist.push_back(StartBB);
1188 
1189   // PredList used inside loop.
1190   SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList;
1191 
1192   // Keep track of the entries that we know are sorted.  Previously cached
1193   // entries will all be sorted.  The entries we add we only sort on demand (we
1194   // don't insert every element into its sorted position).  We know that we
1195   // won't get any reuse from currently inserted values, because we don't
1196   // revisit blocks after we insert info for them.
1197   unsigned NumSortedEntries = Cache->size();
1198   unsigned WorklistEntries = BlockNumberLimit;
1199   bool GotWorklistLimit = false;
1200   LLVM_DEBUG(AssertSorted(*Cache));
1201 
1202   BatchAAResults BatchAA(AA);
1203   while (!Worklist.empty()) {
1204     BasicBlock *BB = Worklist.pop_back_val();
1205 
1206     // If we do process a large number of blocks it becomes very expensive and
1207     // likely it isn't worth worrying about
1208     if (Result.size() > NumResultsLimit) {
1209       Worklist.clear();
1210       // Sort it now (if needed) so that recursive invocations of
1211       // getNonLocalPointerDepFromBB and other routines that could reuse the
1212       // cache value will only see properly sorted cache arrays.
1213       if (Cache && NumSortedEntries != Cache->size()) {
1214         SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1215       }
1216       // Since we bail out, the "Cache" set won't contain all of the
1217       // results for the query.  This is ok (we can still use it to accelerate
1218       // specific block queries) but we can't do the fastpath "return all
1219       // results from the set".  Clear out the indicator for this.
1220       CacheInfo->Pair = BBSkipFirstBlockPair();
1221       return false;
1222     }
1223 
1224     // Skip the first block if we have it.
1225     if (!SkipFirstBlock) {
1226       // Analyze the dependency of *Pointer in FromBB.  See if we already have
1227       // been here.
1228       assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1229 
1230       // Get the dependency info for Pointer in BB.  If we have cached
1231       // information, we will use it, otherwise we compute it.
1232       LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries));
1233       MemDepResult Dep = getNonLocalInfoForBlock(
1234           QueryInst, Loc, isLoad, BB, Cache, NumSortedEntries, BatchAA);
1235 
1236       // If we got a Def or Clobber, add this to the list of results.
1237       if (!Dep.isNonLocal()) {
1238         if (DT.isReachableFromEntry(BB)) {
1239           Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1240           continue;
1241         }
1242       }
1243     }
1244 
1245     // If 'Pointer' is an instruction defined in this block, then we need to do
1246     // phi translation to change it into a value live in the predecessor block.
1247     // If not, we just add the predecessors to the worklist and scan them with
1248     // the same Pointer.
1249     if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1250       SkipFirstBlock = false;
1251       SmallVector<BasicBlock *, 16> NewBlocks;
1252       for (BasicBlock *Pred : PredCache.get(BB)) {
1253         // Verify that we haven't looked at this block yet.
1254         std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1255             Visited.insert(std::make_pair(Pred, Pointer.getAddr()));
1256         if (InsertRes.second) {
1257           // First time we've looked at *PI.
1258           NewBlocks.push_back(Pred);
1259           continue;
1260         }
1261 
1262         // If we have seen this block before, but it was with a different
1263         // pointer then we have a phi translation failure and we have to treat
1264         // this as a clobber.
1265         if (InsertRes.first->second != Pointer.getAddr()) {
1266           // Make sure to clean up the Visited map before continuing on to
1267           // PredTranslationFailure.
1268           for (unsigned i = 0; i < NewBlocks.size(); i++)
1269             Visited.erase(NewBlocks[i]);
1270           goto PredTranslationFailure;
1271         }
1272       }
1273       if (NewBlocks.size() > WorklistEntries) {
1274         // Make sure to clean up the Visited map before continuing on to
1275         // PredTranslationFailure.
1276         for (unsigned i = 0; i < NewBlocks.size(); i++)
1277           Visited.erase(NewBlocks[i]);
1278         GotWorklistLimit = true;
1279         goto PredTranslationFailure;
1280       }
1281       WorklistEntries -= NewBlocks.size();
1282       Worklist.append(NewBlocks.begin(), NewBlocks.end());
1283       continue;
1284     }
1285 
1286     // We do need to do phi translation, if we know ahead of time we can't phi
1287     // translate this value, don't even try.
1288     if (!Pointer.IsPotentiallyPHITranslatable())
1289       goto PredTranslationFailure;
1290 
1291     // We may have added values to the cache list before this PHI translation.
1292     // If so, we haven't done anything to ensure that the cache remains sorted.
1293     // Sort it now (if needed) so that recursive invocations of
1294     // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1295     // value will only see properly sorted cache arrays.
1296     if (Cache && NumSortedEntries != Cache->size()) {
1297       SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1298       NumSortedEntries = Cache->size();
1299     }
1300     Cache = nullptr;
1301 
1302     PredList.clear();
1303     for (BasicBlock *Pred : PredCache.get(BB)) {
1304       PredList.push_back(std::make_pair(Pred, Pointer));
1305 
1306       // Get the PHI translated pointer in this predecessor.  This can fail if
1307       // not translatable, in which case the getAddr() returns null.
1308       PHITransAddr &PredPointer = PredList.back().second;
1309       PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false);
1310       Value *PredPtrVal = PredPointer.getAddr();
1311 
1312       // Check to see if we have already visited this pred block with another
1313       // pointer.  If so, we can't do this lookup.  This failure can occur
1314       // with PHI translation when a critical edge exists and the PHI node in
1315       // the successor translates to a pointer value different than the
1316       // pointer the block was first analyzed with.
1317       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1318           Visited.insert(std::make_pair(Pred, PredPtrVal));
1319 
1320       if (!InsertRes.second) {
1321         // We found the pred; take it off the list of preds to visit.
1322         PredList.pop_back();
1323 
1324         // If the predecessor was visited with PredPtr, then we already did
1325         // the analysis and can ignore it.
1326         if (InsertRes.first->second == PredPtrVal)
1327           continue;
1328 
1329         // Otherwise, the block was previously analyzed with a different
1330         // pointer.  We can't represent the result of this case, so we just
1331         // treat this as a phi translation failure.
1332 
1333         // Make sure to clean up the Visited map before continuing on to
1334         // PredTranslationFailure.
1335         for (unsigned i = 0, n = PredList.size(); i < n; ++i)
1336           Visited.erase(PredList[i].first);
1337 
1338         goto PredTranslationFailure;
1339       }
1340     }
1341 
1342     // Actually process results here; this need to be a separate loop to avoid
1343     // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1344     // any results for.  (getNonLocalPointerDepFromBB will modify our
1345     // datastructures in ways the code after the PredTranslationFailure label
1346     // doesn't expect.)
1347     for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
1348       BasicBlock *Pred = PredList[i].first;
1349       PHITransAddr &PredPointer = PredList[i].second;
1350       Value *PredPtrVal = PredPointer.getAddr();
1351 
1352       bool CanTranslate = true;
1353       // If PHI translation was unable to find an available pointer in this
1354       // predecessor, then we have to assume that the pointer is clobbered in
1355       // that predecessor.  We can still do PRE of the load, which would insert
1356       // a computation of the pointer in this predecessor.
1357       if (!PredPtrVal)
1358         CanTranslate = false;
1359 
1360       // FIXME: it is entirely possible that PHI translating will end up with
1361       // the same value.  Consider PHI translating something like:
1362       // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
1363       // to recurse here, pedantically speaking.
1364 
1365       // If getNonLocalPointerDepFromBB fails here, that means the cached
1366       // result conflicted with the Visited list; we have to conservatively
1367       // assume it is unknown, but this also does not block PRE of the load.
1368       if (!CanTranslate ||
1369           !getNonLocalPointerDepFromBB(QueryInst, PredPointer,
1370                                       Loc.getWithNewPtr(PredPtrVal), isLoad,
1371                                       Pred, Result, Visited)) {
1372         // Add the entry to the Result list.
1373         NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1374         Result.push_back(Entry);
1375 
1376         // Since we had a phi translation failure, the cache for CacheKey won't
1377         // include all of the entries that we need to immediately satisfy future
1378         // queries.  Mark this in NonLocalPointerDeps by setting the
1379         // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
1380         // cached value to do more work but not miss the phi trans failure.
1381         NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1382         NLPI.Pair = BBSkipFirstBlockPair();
1383         continue;
1384       }
1385     }
1386 
1387     // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1388     CacheInfo = &NonLocalPointerDeps[CacheKey];
1389     Cache = &CacheInfo->NonLocalDeps;
1390     NumSortedEntries = Cache->size();
1391 
1392     // Since we did phi translation, the "Cache" set won't contain all of the
1393     // results for the query.  This is ok (we can still use it to accelerate
1394     // specific block queries) but we can't do the fastpath "return all
1395     // results from the set"  Clear out the indicator for this.
1396     CacheInfo->Pair = BBSkipFirstBlockPair();
1397     SkipFirstBlock = false;
1398     continue;
1399 
1400   PredTranslationFailure:
1401     // The following code is "failure"; we can't produce a sane translation
1402     // for the given block.  It assumes that we haven't modified any of
1403     // our datastructures while processing the current block.
1404 
1405     if (!Cache) {
1406       // Refresh the CacheInfo/Cache pointer if it got invalidated.
1407       CacheInfo = &NonLocalPointerDeps[CacheKey];
1408       Cache = &CacheInfo->NonLocalDeps;
1409       NumSortedEntries = Cache->size();
1410     }
1411 
1412     // Since we failed phi translation, the "Cache" set won't contain all of the
1413     // results for the query.  This is ok (we can still use it to accelerate
1414     // specific block queries) but we can't do the fastpath "return all
1415     // results from the set".  Clear out the indicator for this.
1416     CacheInfo->Pair = BBSkipFirstBlockPair();
1417 
1418     // If *nothing* works, mark the pointer as unknown.
1419     //
1420     // If this is the magic first block, return this as a clobber of the whole
1421     // incoming value.  Since we can't phi translate to one of the predecessors,
1422     // we have to bail out.
1423     if (SkipFirstBlock)
1424       return false;
1425 
1426     // Results of invariant loads are not cached thus no need to update cached
1427     // information.
1428     if (!isInvariantLoad) {
1429       for (NonLocalDepEntry &I : llvm::reverse(*Cache)) {
1430         if (I.getBB() != BB)
1431           continue;
1432 
1433         assert((GotWorklistLimit || I.getResult().isNonLocal() ||
1434                 !DT.isReachableFromEntry(BB)) &&
1435                "Should only be here with transparent block");
1436 
1437         I.setResult(MemDepResult::getUnknown());
1438 
1439 
1440         break;
1441       }
1442     }
1443     (void)GotWorklistLimit;
1444     // Go ahead and report unknown dependence.
1445     Result.push_back(
1446         NonLocalDepResult(BB, MemDepResult::getUnknown(), Pointer.getAddr()));
1447   }
1448 
1449   // Okay, we're done now.  If we added new values to the cache, re-sort it.
1450   SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1451   LLVM_DEBUG(AssertSorted(*Cache));
1452   return true;
1453 }
1454 
1455 /// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it.
1456 void MemoryDependenceResults::removeCachedNonLocalPointerDependencies(
1457     ValueIsLoadPair P) {
1458 
1459   // Most of the time this cache is empty.
1460   if (!NonLocalDefsCache.empty()) {
1461     auto it = NonLocalDefsCache.find(P.getPointer());
1462     if (it != NonLocalDefsCache.end()) {
1463       RemoveFromReverseMap(ReverseNonLocalDefsCache,
1464                            it->second.getResult().getInst(), P.getPointer());
1465       NonLocalDefsCache.erase(it);
1466     }
1467 
1468     if (auto *I = dyn_cast<Instruction>(P.getPointer())) {
1469       auto toRemoveIt = ReverseNonLocalDefsCache.find(I);
1470       if (toRemoveIt != ReverseNonLocalDefsCache.end()) {
1471         for (const auto *entry : toRemoveIt->second)
1472           NonLocalDefsCache.erase(entry);
1473         ReverseNonLocalDefsCache.erase(toRemoveIt);
1474       }
1475     }
1476   }
1477 
1478   CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P);
1479   if (It == NonLocalPointerDeps.end())
1480     return;
1481 
1482   // Remove all of the entries in the BB->val map.  This involves removing
1483   // instructions from the reverse map.
1484   NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1485 
1486   for (const NonLocalDepEntry &DE : PInfo) {
1487     Instruction *Target = DE.getResult().getInst();
1488     if (!Target)
1489       continue; // Ignore non-local dep results.
1490     assert(Target->getParent() == DE.getBB());
1491 
1492     // Eliminating the dirty entry from 'Cache', so update the reverse info.
1493     RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1494   }
1495 
1496   // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1497   NonLocalPointerDeps.erase(It);
1498 }
1499 
1500 void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) {
1501   // If Ptr isn't really a pointer, just ignore it.
1502   if (!Ptr->getType()->isPointerTy())
1503     return;
1504   // Flush store info for the pointer.
1505   removeCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1506   // Flush load info for the pointer.
1507   removeCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1508   // Invalidate phis that use the pointer.
1509   PV.invalidateValue(Ptr);
1510 }
1511 
1512 void MemoryDependenceResults::invalidateCachedPredecessors() {
1513   PredCache.clear();
1514 }
1515 
1516 void MemoryDependenceResults::removeInstruction(Instruction *RemInst) {
1517   // Walk through the Non-local dependencies, removing this one as the value
1518   // for any cached queries.
1519   NonLocalDepMapType::iterator NLDI = NonLocalDepsMap.find(RemInst);
1520   if (NLDI != NonLocalDepsMap.end()) {
1521     NonLocalDepInfo &BlockMap = NLDI->second.first;
1522     for (auto &Entry : BlockMap)
1523       if (Instruction *Inst = Entry.getResult().getInst())
1524         RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1525     NonLocalDepsMap.erase(NLDI);
1526   }
1527 
1528   // If we have a cached local dependence query for this instruction, remove it.
1529   LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1530   if (LocalDepEntry != LocalDeps.end()) {
1531     // Remove us from DepInst's reverse set now that the local dep info is gone.
1532     if (Instruction *Inst = LocalDepEntry->second.getInst())
1533       RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1534 
1535     // Remove this local dependency info.
1536     LocalDeps.erase(LocalDepEntry);
1537   }
1538 
1539   // If we have any cached dependencies on this instruction, remove
1540   // them.
1541 
1542   // If the instruction is a pointer, remove it from both the load info and the
1543   // store info.
1544   if (RemInst->getType()->isPointerTy()) {
1545     removeCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1546     removeCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1547   } else {
1548     // Otherwise, if the instructions is in the map directly, it must be a load.
1549     // Remove it.
1550     auto toRemoveIt = NonLocalDefsCache.find(RemInst);
1551     if (toRemoveIt != NonLocalDefsCache.end()) {
1552       assert(isa<LoadInst>(RemInst) &&
1553              "only load instructions should be added directly");
1554       const Instruction *DepV = toRemoveIt->second.getResult().getInst();
1555       ReverseNonLocalDefsCache.find(DepV)->second.erase(RemInst);
1556       NonLocalDefsCache.erase(toRemoveIt);
1557     }
1558   }
1559 
1560   // Loop over all of the things that depend on the instruction we're removing.
1561   SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd;
1562 
1563   // If we find RemInst as a clobber or Def in any of the maps for other values,
1564   // we need to replace its entry with a dirty version of the instruction after
1565   // it.  If RemInst is a terminator, we use a null dirty value.
1566   //
1567   // Using a dirty version of the instruction after RemInst saves having to scan
1568   // the entire block to get to this point.
1569   MemDepResult NewDirtyVal;
1570   if (!RemInst->isTerminator())
1571     NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator());
1572 
1573   ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1574   if (ReverseDepIt != ReverseLocalDeps.end()) {
1575     // RemInst can't be the terminator if it has local stuff depending on it.
1576     assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() &&
1577            "Nothing can locally depend on a terminator");
1578 
1579     for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) {
1580       assert(InstDependingOnRemInst != RemInst &&
1581              "Already removed our local dep info");
1582 
1583       LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1584 
1585       // Make sure to remember that new things depend on NewDepInst.
1586       assert(NewDirtyVal.getInst() &&
1587              "There is no way something else can have "
1588              "a local dep on this if it is a terminator!");
1589       ReverseDepsToAdd.push_back(
1590           std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst));
1591     }
1592 
1593     ReverseLocalDeps.erase(ReverseDepIt);
1594 
1595     // Add new reverse deps after scanning the set, to avoid invalidating the
1596     // 'ReverseDeps' reference.
1597     while (!ReverseDepsToAdd.empty()) {
1598       ReverseLocalDeps[ReverseDepsToAdd.back().first].insert(
1599           ReverseDepsToAdd.back().second);
1600       ReverseDepsToAdd.pop_back();
1601     }
1602   }
1603 
1604   ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1605   if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1606     for (Instruction *I : ReverseDepIt->second) {
1607       assert(I != RemInst && "Already removed NonLocalDep info for RemInst");
1608 
1609       PerInstNLInfo &INLD = NonLocalDepsMap[I];
1610       // The information is now dirty!
1611       INLD.second = true;
1612 
1613       for (auto &Entry : INLD.first) {
1614         if (Entry.getResult().getInst() != RemInst)
1615           continue;
1616 
1617         // Convert to a dirty entry for the subsequent instruction.
1618         Entry.setResult(NewDirtyVal);
1619 
1620         if (Instruction *NextI = NewDirtyVal.getInst())
1621           ReverseDepsToAdd.push_back(std::make_pair(NextI, I));
1622       }
1623     }
1624 
1625     ReverseNonLocalDeps.erase(ReverseDepIt);
1626 
1627     // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1628     while (!ReverseDepsToAdd.empty()) {
1629       ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert(
1630           ReverseDepsToAdd.back().second);
1631       ReverseDepsToAdd.pop_back();
1632     }
1633   }
1634 
1635   // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1636   // value in the NonLocalPointerDeps info.
1637   ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1638       ReverseNonLocalPtrDeps.find(RemInst);
1639   if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1640     SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8>
1641         ReversePtrDepsToAdd;
1642 
1643     for (ValueIsLoadPair P : ReversePtrDepIt->second) {
1644       assert(P.getPointer() != RemInst &&
1645              "Already removed NonLocalPointerDeps info for RemInst");
1646 
1647       NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1648 
1649       // The cache is not valid for any specific block anymore.
1650       NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1651 
1652       // Update any entries for RemInst to use the instruction after it.
1653       for (auto &Entry : NLPDI) {
1654         if (Entry.getResult().getInst() != RemInst)
1655           continue;
1656 
1657         // Convert to a dirty entry for the subsequent instruction.
1658         Entry.setResult(NewDirtyVal);
1659 
1660         if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1661           ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1662       }
1663 
1664       // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
1665       // subsequent value may invalidate the sortedness.
1666       llvm::sort(NLPDI);
1667     }
1668 
1669     ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1670 
1671     while (!ReversePtrDepsToAdd.empty()) {
1672       ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert(
1673           ReversePtrDepsToAdd.back().second);
1674       ReversePtrDepsToAdd.pop_back();
1675     }
1676   }
1677 
1678   // Invalidate phis that use the removed instruction.
1679   PV.invalidateValue(RemInst);
1680 
1681   assert(!NonLocalDepsMap.count(RemInst) && "RemInst got reinserted?");
1682   LLVM_DEBUG(verifyRemoved(RemInst));
1683 }
1684 
1685 /// Verify that the specified instruction does not occur in our internal data
1686 /// structures.
1687 ///
1688 /// This function verifies by asserting in debug builds.
1689 void MemoryDependenceResults::verifyRemoved(Instruction *D) const {
1690 #ifndef NDEBUG
1691   for (const auto &DepKV : LocalDeps) {
1692     assert(DepKV.first != D && "Inst occurs in data structures");
1693     assert(DepKV.second.getInst() != D && "Inst occurs in data structures");
1694   }
1695 
1696   for (const auto &DepKV : NonLocalPointerDeps) {
1697     assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key");
1698     for (const auto &Entry : DepKV.second.NonLocalDeps)
1699       assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value");
1700   }
1701 
1702   for (const auto &DepKV : NonLocalDepsMap) {
1703     assert(DepKV.first != D && "Inst occurs in data structures");
1704     const PerInstNLInfo &INLD = DepKV.second;
1705     for (const auto &Entry : INLD.first)
1706       assert(Entry.getResult().getInst() != D &&
1707              "Inst occurs in data structures");
1708   }
1709 
1710   for (const auto &DepKV : ReverseLocalDeps) {
1711     assert(DepKV.first != D && "Inst occurs in data structures");
1712     for (Instruction *Inst : DepKV.second)
1713       assert(Inst != D && "Inst occurs in data structures");
1714   }
1715 
1716   for (const auto &DepKV : ReverseNonLocalDeps) {
1717     assert(DepKV.first != D && "Inst occurs in data structures");
1718     for (Instruction *Inst : DepKV.second)
1719       assert(Inst != D && "Inst occurs in data structures");
1720   }
1721 
1722   for (const auto &DepKV : ReverseNonLocalPtrDeps) {
1723     assert(DepKV.first != D && "Inst occurs in rev NLPD map");
1724 
1725     for (ValueIsLoadPair P : DepKV.second)
1726       assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) &&
1727              "Inst occurs in ReverseNonLocalPtrDeps map");
1728   }
1729 #endif
1730 }
1731 
1732 AnalysisKey MemoryDependenceAnalysis::Key;
1733 
1734 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
1735     : DefaultBlockScanLimit(BlockScanLimit) {}
1736 
1737 MemoryDependenceResults
1738 MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
1739   auto &AA = AM.getResult<AAManager>(F);
1740   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1741   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1742   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1743   auto &PV = AM.getResult<PhiValuesAnalysis>(F);
1744   return MemoryDependenceResults(AA, AC, TLI, DT, PV, DefaultBlockScanLimit);
1745 }
1746 
1747 char MemoryDependenceWrapperPass::ID = 0;
1748 
1749 INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep",
1750                       "Memory Dependence Analysis", false, true)
1751 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1752 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1753 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1754 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1755 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
1756 INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep",
1757                     "Memory Dependence Analysis", false, true)
1758 
1759 MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) {
1760   initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry());
1761 }
1762 
1763 MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default;
1764 
1765 void MemoryDependenceWrapperPass::releaseMemory() {
1766   MemDep.reset();
1767 }
1768 
1769 void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1770   AU.setPreservesAll();
1771   AU.addRequired<AssumptionCacheTracker>();
1772   AU.addRequired<DominatorTreeWrapperPass>();
1773   AU.addRequired<PhiValuesWrapperPass>();
1774   AU.addRequiredTransitive<AAResultsWrapperPass>();
1775   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1776 }
1777 
1778 bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA,
1779                                FunctionAnalysisManager::Invalidator &Inv) {
1780   // Check whether our analysis is preserved.
1781   auto PAC = PA.getChecker<MemoryDependenceAnalysis>();
1782   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
1783     // If not, give up now.
1784     return true;
1785 
1786   // Check whether the analyses we depend on became invalid for any reason.
1787   if (Inv.invalidate<AAManager>(F, PA) ||
1788       Inv.invalidate<AssumptionAnalysis>(F, PA) ||
1789       Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
1790       Inv.invalidate<PhiValuesAnalysis>(F, PA))
1791     return true;
1792 
1793   // Otherwise this analysis result remains valid.
1794   return false;
1795 }
1796 
1797 unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const {
1798   return DefaultBlockScanLimit;
1799 }
1800 
1801 bool MemoryDependenceWrapperPass::runOnFunction(Function &F) {
1802   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1803   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1804   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1805   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1806   auto &PV = getAnalysis<PhiValuesWrapperPass>().getResult();
1807   MemDep.emplace(AA, AC, TLI, DT, PV, BlockScanLimit);
1808   return false;
1809 }
1810