1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements an analysis that determines, for a given memory 11 // operation, what preceding memory operations it depends on. It builds on 12 // alias analysis information, and tries to provide a lazy, caching interface to 13 // a common kind of alias information query. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/MemoryBuiltins.h" 24 #include "llvm/Analysis/PHITransAddr.h" 25 #include "llvm/Analysis/OrderedBasicBlock.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/PredIteratorCache.h" 35 #include "llvm/Support/Debug.h" 36 using namespace llvm; 37 38 #define DEBUG_TYPE "memdep" 39 40 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); 41 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); 42 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); 43 44 STATISTIC(NumCacheNonLocalPtr, 45 "Number of fully cached non-local ptr responses"); 46 STATISTIC(NumCacheDirtyNonLocalPtr, 47 "Number of cached, but dirty, non-local ptr responses"); 48 STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses"); 49 STATISTIC(NumCacheCompleteNonLocalPtr, 50 "Number of block queries that were completely cached"); 51 52 // Limit for the number of instructions to scan in a block. 53 54 static cl::opt<unsigned> BlockScanLimit( 55 "memdep-block-scan-limit", cl::Hidden, cl::init(100), 56 cl::desc("The number of instructions to scan in a block in memory " 57 "dependency analysis (default = 100)")); 58 59 static cl::opt<unsigned> 60 BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000), 61 cl::desc("The number of blocks to scan during memory " 62 "dependency analysis (default = 1000)")); 63 64 // Limit on the number of memdep results to process. 65 static const unsigned int NumResultsLimit = 100; 66 67 /// This is a helper function that removes Val from 'Inst's set in ReverseMap. 68 /// 69 /// If the set becomes empty, remove Inst's entry. 70 template <typename KeyTy> 71 static void 72 RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap, 73 Instruction *Inst, KeyTy Val) { 74 typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt = 75 ReverseMap.find(Inst); 76 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); 77 bool Found = InstIt->second.erase(Val); 78 assert(Found && "Invalid reverse map!"); 79 (void)Found; 80 if (InstIt->second.empty()) 81 ReverseMap.erase(InstIt); 82 } 83 84 /// If the given instruction references a specific memory location, fill in Loc 85 /// with the details, otherwise set Loc.Ptr to null. 86 /// 87 /// Returns a ModRefInfo value describing the general behavior of the 88 /// instruction. 89 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc, 90 const TargetLibraryInfo &TLI) { 91 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 92 if (LI->isUnordered()) { 93 Loc = MemoryLocation::get(LI); 94 return MRI_Ref; 95 } 96 if (LI->getOrdering() == AtomicOrdering::Monotonic) { 97 Loc = MemoryLocation::get(LI); 98 return MRI_ModRef; 99 } 100 Loc = MemoryLocation(); 101 return MRI_ModRef; 102 } 103 104 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 105 if (SI->isUnordered()) { 106 Loc = MemoryLocation::get(SI); 107 return MRI_Mod; 108 } 109 if (SI->getOrdering() == AtomicOrdering::Monotonic) { 110 Loc = MemoryLocation::get(SI); 111 return MRI_ModRef; 112 } 113 Loc = MemoryLocation(); 114 return MRI_ModRef; 115 } 116 117 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { 118 Loc = MemoryLocation::get(V); 119 return MRI_ModRef; 120 } 121 122 if (const CallInst *CI = isFreeCall(Inst, &TLI)) { 123 // calls to free() deallocate the entire structure 124 Loc = MemoryLocation(CI->getArgOperand(0)); 125 return MRI_Mod; 126 } 127 128 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 129 AAMDNodes AAInfo; 130 131 switch (II->getIntrinsicID()) { 132 case Intrinsic::lifetime_start: 133 case Intrinsic::lifetime_end: 134 case Intrinsic::invariant_start: 135 II->getAAMetadata(AAInfo); 136 Loc = MemoryLocation( 137 II->getArgOperand(1), 138 cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(), AAInfo); 139 // These intrinsics don't really modify the memory, but returning Mod 140 // will allow them to be handled conservatively. 141 return MRI_Mod; 142 case Intrinsic::invariant_end: 143 II->getAAMetadata(AAInfo); 144 Loc = MemoryLocation( 145 II->getArgOperand(2), 146 cast<ConstantInt>(II->getArgOperand(1))->getZExtValue(), AAInfo); 147 // These intrinsics don't really modify the memory, but returning Mod 148 // will allow them to be handled conservatively. 149 return MRI_Mod; 150 default: 151 break; 152 } 153 } 154 155 // Otherwise, just do the coarse-grained thing that always works. 156 if (Inst->mayWriteToMemory()) 157 return MRI_ModRef; 158 if (Inst->mayReadFromMemory()) 159 return MRI_Ref; 160 return MRI_NoModRef; 161 } 162 163 /// Private helper for finding the local dependencies of a call site. 164 MemDepResult MemoryDependenceResults::getCallSiteDependencyFrom( 165 CallSite CS, bool isReadOnlyCall, BasicBlock::iterator ScanIt, 166 BasicBlock *BB) { 167 unsigned Limit = BlockScanLimit; 168 169 // Walk backwards through the block, looking for dependencies 170 while (ScanIt != BB->begin()) { 171 // Limit the amount of scanning we do so we don't end up with quadratic 172 // running time on extreme testcases. 173 --Limit; 174 if (!Limit) 175 return MemDepResult::getUnknown(); 176 177 Instruction *Inst = &*--ScanIt; 178 179 // If this inst is a memory op, get the pointer it accessed 180 MemoryLocation Loc; 181 ModRefInfo MR = GetLocation(Inst, Loc, TLI); 182 if (Loc.Ptr) { 183 // A simple instruction. 184 if (AA.getModRefInfo(CS, Loc) != MRI_NoModRef) 185 return MemDepResult::getClobber(Inst); 186 continue; 187 } 188 189 if (auto InstCS = CallSite(Inst)) { 190 // Debug intrinsics don't cause dependences. 191 if (isa<DbgInfoIntrinsic>(Inst)) 192 continue; 193 // If these two calls do not interfere, look past it. 194 switch (AA.getModRefInfo(CS, InstCS)) { 195 case MRI_NoModRef: 196 // If the two calls are the same, return InstCS as a Def, so that 197 // CS can be found redundant and eliminated. 198 if (isReadOnlyCall && !(MR & MRI_Mod) && 199 CS.getInstruction()->isIdenticalToWhenDefined(Inst)) 200 return MemDepResult::getDef(Inst); 201 202 // Otherwise if the two calls don't interact (e.g. InstCS is readnone) 203 // keep scanning. 204 continue; 205 default: 206 return MemDepResult::getClobber(Inst); 207 } 208 } 209 210 // If we could not obtain a pointer for the instruction and the instruction 211 // touches memory then assume that this is a dependency. 212 if (MR != MRI_NoModRef) 213 return MemDepResult::getClobber(Inst); 214 } 215 216 // No dependence found. If this is the entry block of the function, it is 217 // unknown, otherwise it is non-local. 218 if (BB != &BB->getParent()->getEntryBlock()) 219 return MemDepResult::getNonLocal(); 220 return MemDepResult::getNonFuncLocal(); 221 } 222 223 /// Return true if LI is a load that would fully overlap MemLoc if done as 224 /// a wider legal integer load. 225 /// 226 /// MemLocBase, MemLocOffset are lazily computed here the first time the 227 /// base/offs of memloc is needed. 228 static bool isLoadLoadClobberIfExtendedToFullWidth(const MemoryLocation &MemLoc, 229 const Value *&MemLocBase, 230 int64_t &MemLocOffs, 231 const LoadInst *LI) { 232 const DataLayout &DL = LI->getModule()->getDataLayout(); 233 234 // If we haven't already computed the base/offset of MemLoc, do so now. 235 if (!MemLocBase) 236 MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, DL); 237 238 unsigned Size = MemoryDependenceResults::getLoadLoadClobberFullWidthSize( 239 MemLocBase, MemLocOffs, MemLoc.Size, LI); 240 return Size != 0; 241 } 242 243 unsigned MemoryDependenceResults::getLoadLoadClobberFullWidthSize( 244 const Value *MemLocBase, int64_t MemLocOffs, unsigned MemLocSize, 245 const LoadInst *LI) { 246 // We can only extend simple integer loads. 247 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) 248 return 0; 249 250 // Load widening is hostile to ThreadSanitizer: it may cause false positives 251 // or make the reports more cryptic (access sizes are wrong). 252 if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread)) 253 return 0; 254 255 const DataLayout &DL = LI->getModule()->getDataLayout(); 256 257 // Get the base of this load. 258 int64_t LIOffs = 0; 259 const Value *LIBase = 260 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL); 261 262 // If the two pointers are not based on the same pointer, we can't tell that 263 // they are related. 264 if (LIBase != MemLocBase) 265 return 0; 266 267 // Okay, the two values are based on the same pointer, but returned as 268 // no-alias. This happens when we have things like two byte loads at "P+1" 269 // and "P+3". Check to see if increasing the size of the "LI" load up to its 270 // alignment (or the largest native integer type) will allow us to load all 271 // the bits required by MemLoc. 272 273 // If MemLoc is before LI, then no widening of LI will help us out. 274 if (MemLocOffs < LIOffs) 275 return 0; 276 277 // Get the alignment of the load in bytes. We assume that it is safe to load 278 // any legal integer up to this size without a problem. For example, if we're 279 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can 280 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it 281 // to i16. 282 unsigned LoadAlign = LI->getAlignment(); 283 284 int64_t MemLocEnd = MemLocOffs + MemLocSize; 285 286 // If no amount of rounding up will let MemLoc fit into LI, then bail out. 287 if (LIOffs + LoadAlign < MemLocEnd) 288 return 0; 289 290 // This is the size of the load to try. Start with the next larger power of 291 // two. 292 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits() / 8U; 293 NewLoadByteSize = NextPowerOf2(NewLoadByteSize); 294 295 while (1) { 296 // If this load size is bigger than our known alignment or would not fit 297 // into a native integer register, then we fail. 298 if (NewLoadByteSize > LoadAlign || 299 !DL.fitsInLegalInteger(NewLoadByteSize * 8)) 300 return 0; 301 302 if (LIOffs + NewLoadByteSize > MemLocEnd && 303 LI->getParent()->getParent()->hasFnAttribute( 304 Attribute::SanitizeAddress)) 305 // We will be reading past the location accessed by the original program. 306 // While this is safe in a regular build, Address Safety analysis tools 307 // may start reporting false warnings. So, don't do widening. 308 return 0; 309 310 // If a load of this width would include all of MemLoc, then we succeed. 311 if (LIOffs + NewLoadByteSize >= MemLocEnd) 312 return NewLoadByteSize; 313 314 NewLoadByteSize <<= 1; 315 } 316 } 317 318 static bool isVolatile(Instruction *Inst) { 319 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 320 return LI->isVolatile(); 321 else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) 322 return SI->isVolatile(); 323 else if (AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(Inst)) 324 return AI->isVolatile(); 325 return false; 326 } 327 328 MemDepResult MemoryDependenceResults::getPointerDependencyFrom( 329 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, 330 BasicBlock *BB, Instruction *QueryInst) { 331 332 if (QueryInst != nullptr) { 333 if (auto *LI = dyn_cast<LoadInst>(QueryInst)) { 334 MemDepResult invariantGroupDependency = 335 getInvariantGroupPointerDependency(LI, BB); 336 337 if (invariantGroupDependency.isDef()) 338 return invariantGroupDependency; 339 } 340 } 341 return getSimplePointerDependencyFrom(MemLoc, isLoad, ScanIt, BB, QueryInst); 342 } 343 344 MemDepResult 345 MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI, 346 BasicBlock *BB) { 347 Value *LoadOperand = LI->getPointerOperand(); 348 // It's is not safe to walk the use list of global value, because function 349 // passes aren't allowed to look outside their functions. 350 if (isa<GlobalValue>(LoadOperand)) 351 return MemDepResult::getUnknown(); 352 353 auto *InvariantGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group); 354 if (!InvariantGroupMD) 355 return MemDepResult::getUnknown(); 356 357 MemDepResult Result = MemDepResult::getUnknown(); 358 llvm::SmallSet<Value *, 14> Seen; 359 // Queue to process all pointers that are equivalent to load operand. 360 llvm::SmallVector<Value *, 8> LoadOperandsQueue; 361 LoadOperandsQueue.push_back(LoadOperand); 362 while (!LoadOperandsQueue.empty()) { 363 Value *Ptr = LoadOperandsQueue.pop_back_val(); 364 if (isa<GlobalValue>(Ptr)) 365 continue; 366 367 if (auto *BCI = dyn_cast<BitCastInst>(Ptr)) { 368 if (!Seen.count(BCI->getOperand(0))) { 369 LoadOperandsQueue.push_back(BCI->getOperand(0)); 370 Seen.insert(BCI->getOperand(0)); 371 } 372 } 373 374 for (Use &Us : Ptr->uses()) { 375 auto *U = dyn_cast<Instruction>(Us.getUser()); 376 if (!U || U == LI || !DT.dominates(U, LI)) 377 continue; 378 379 if (auto *BCI = dyn_cast<BitCastInst>(U)) { 380 if (!Seen.count(BCI)) { 381 LoadOperandsQueue.push_back(BCI); 382 Seen.insert(BCI); 383 } 384 continue; 385 } 386 // If we hit load/store with the same invariant.group metadata (and the 387 // same pointer operand) we can assume that value pointed by pointer 388 // operand didn't change. 389 if ((isa<LoadInst>(U) || isa<StoreInst>(U)) && U->getParent() == BB && 390 U->getMetadata(LLVMContext::MD_invariant_group) == InvariantGroupMD) 391 return MemDepResult::getDef(U); 392 } 393 } 394 return Result; 395 } 396 397 MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom( 398 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, 399 BasicBlock *BB, Instruction *QueryInst) { 400 401 const Value *MemLocBase = nullptr; 402 int64_t MemLocOffset = 0; 403 unsigned Limit = BlockScanLimit; 404 bool isInvariantLoad = false; 405 406 // We must be careful with atomic accesses, as they may allow another thread 407 // to touch this location, cloberring it. We are conservative: if the 408 // QueryInst is not a simple (non-atomic) memory access, we automatically 409 // return getClobber. 410 // If it is simple, we know based on the results of 411 // "Compiler testing via a theory of sound optimisations in the C11/C++11 412 // memory model" in PLDI 2013, that a non-atomic location can only be 413 // clobbered between a pair of a release and an acquire action, with no 414 // access to the location in between. 415 // Here is an example for giving the general intuition behind this rule. 416 // In the following code: 417 // store x 0; 418 // release action; [1] 419 // acquire action; [4] 420 // %val = load x; 421 // It is unsafe to replace %val by 0 because another thread may be running: 422 // acquire action; [2] 423 // store x 42; 424 // release action; [3] 425 // with synchronization from 1 to 2 and from 3 to 4, resulting in %val 426 // being 42. A key property of this program however is that if either 427 // 1 or 4 were missing, there would be a race between the store of 42 428 // either the store of 0 or the load (making the whole progam racy). 429 // The paper mentioned above shows that the same property is respected 430 // by every program that can detect any optimisation of that kind: either 431 // it is racy (undefined) or there is a release followed by an acquire 432 // between the pair of accesses under consideration. 433 434 // If the load is invariant, we "know" that it doesn't alias *any* write. We 435 // do want to respect mustalias results since defs are useful for value 436 // forwarding, but any mayalias write can be assumed to be noalias. 437 // Arguably, this logic should be pushed inside AliasAnalysis itself. 438 if (isLoad && QueryInst) { 439 LoadInst *LI = dyn_cast<LoadInst>(QueryInst); 440 if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr) 441 isInvariantLoad = true; 442 } 443 444 const DataLayout &DL = BB->getModule()->getDataLayout(); 445 446 // Create a numbered basic block to lazily compute and cache instruction 447 // positions inside a BB. This is used to provide fast queries for relative 448 // position between two instructions in a BB and can be used by 449 // AliasAnalysis::callCapturesBefore. 450 OrderedBasicBlock OBB(BB); 451 452 // Return "true" if and only if the instruction I is either a non-simple 453 // load or a non-simple store. 454 auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool { 455 if (auto *LI = dyn_cast<LoadInst>(I)) 456 return !LI->isSimple(); 457 if (auto *SI = dyn_cast<StoreInst>(I)) 458 return !SI->isSimple(); 459 return false; 460 }; 461 462 // Return "true" if I is not a load and not a store, but it does access 463 // memory. 464 auto isOtherMemAccess = [](Instruction *I) -> bool { 465 return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory(); 466 }; 467 468 // Walk backwards through the basic block, looking for dependencies. 469 while (ScanIt != BB->begin()) { 470 Instruction *Inst = &*--ScanIt; 471 472 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 473 // Debug intrinsics don't (and can't) cause dependencies. 474 if (isa<DbgInfoIntrinsic>(II)) 475 continue; 476 477 // Limit the amount of scanning we do so we don't end up with quadratic 478 // running time on extreme testcases. 479 --Limit; 480 if (!Limit) 481 return MemDepResult::getUnknown(); 482 483 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 484 // If we reach a lifetime begin or end marker, then the query ends here 485 // because the value is undefined. 486 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 487 // FIXME: This only considers queries directly on the invariant-tagged 488 // pointer, not on query pointers that are indexed off of them. It'd 489 // be nice to handle that at some point (the right approach is to use 490 // GetPointerBaseWithConstantOffset). 491 if (AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc)) 492 return MemDepResult::getDef(II); 493 continue; 494 } 495 } 496 497 // Values depend on loads if the pointers are must aliased. This means 498 // that a load depends on another must aliased load from the same value. 499 // One exception is atomic loads: a value can depend on an atomic load that 500 // it does not alias with when this atomic load indicates that another 501 // thread may be accessing the location. 502 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 503 504 // While volatile access cannot be eliminated, they do not have to clobber 505 // non-aliasing locations, as normal accesses, for example, can be safely 506 // reordered with volatile accesses. 507 if (LI->isVolatile()) { 508 if (!QueryInst) 509 // Original QueryInst *may* be volatile 510 return MemDepResult::getClobber(LI); 511 if (isVolatile(QueryInst)) 512 // Ordering required if QueryInst is itself volatile 513 return MemDepResult::getClobber(LI); 514 // Otherwise, volatile doesn't imply any special ordering 515 } 516 517 // Atomic loads have complications involved. 518 // A Monotonic (or higher) load is OK if the query inst is itself not 519 // atomic. 520 // FIXME: This is overly conservative. 521 if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) { 522 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 523 isOtherMemAccess(QueryInst)) 524 return MemDepResult::getClobber(LI); 525 if (LI->getOrdering() != AtomicOrdering::Monotonic) 526 return MemDepResult::getClobber(LI); 527 } 528 529 MemoryLocation LoadLoc = MemoryLocation::get(LI); 530 531 // If we found a pointer, check if it could be the same as our pointer. 532 AliasResult R = AA.alias(LoadLoc, MemLoc); 533 534 if (isLoad) { 535 if (R == NoAlias) { 536 // If this is an over-aligned integer load (for example, 537 // "load i8* %P, align 4") see if it would obviously overlap with the 538 // queried location if widened to a larger load (e.g. if the queried 539 // location is 1 byte at P+1). If so, return it as a load/load 540 // clobber result, allowing the client to decide to widen the load if 541 // it wants to. 542 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) { 543 if (LI->getAlignment() * 8 > ITy->getPrimitiveSizeInBits() && 544 isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase, 545 MemLocOffset, LI)) 546 return MemDepResult::getClobber(Inst); 547 } 548 continue; 549 } 550 551 // Must aliased loads are defs of each other. 552 if (R == MustAlias) 553 return MemDepResult::getDef(Inst); 554 555 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads 556 // in terms of clobbering loads, but since it does this by looking 557 // at the clobbering load directly, it doesn't know about any 558 // phi translation that may have happened along the way. 559 560 // If we have a partial alias, then return this as a clobber for the 561 // client to handle. 562 if (R == PartialAlias) 563 return MemDepResult::getClobber(Inst); 564 #endif 565 566 // Random may-alias loads don't depend on each other without a 567 // dependence. 568 continue; 569 } 570 571 // Stores don't depend on other no-aliased accesses. 572 if (R == NoAlias) 573 continue; 574 575 // Stores don't alias loads from read-only memory. 576 if (AA.pointsToConstantMemory(LoadLoc)) 577 continue; 578 579 // Stores depend on may/must aliased loads. 580 return MemDepResult::getDef(Inst); 581 } 582 583 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 584 // Atomic stores have complications involved. 585 // A Monotonic store is OK if the query inst is itself not atomic. 586 // FIXME: This is overly conservative. 587 if (!SI->isUnordered() && SI->isAtomic()) { 588 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 589 isOtherMemAccess(QueryInst)) 590 return MemDepResult::getClobber(SI); 591 if (SI->getOrdering() != AtomicOrdering::Monotonic) 592 return MemDepResult::getClobber(SI); 593 } 594 595 // FIXME: this is overly conservative. 596 // While volatile access cannot be eliminated, they do not have to clobber 597 // non-aliasing locations, as normal accesses can for example be reordered 598 // with volatile accesses. 599 if (SI->isVolatile()) 600 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 601 isOtherMemAccess(QueryInst)) 602 return MemDepResult::getClobber(SI); 603 604 // If alias analysis can tell that this store is guaranteed to not modify 605 // the query pointer, ignore it. Use getModRefInfo to handle cases where 606 // the query pointer points to constant memory etc. 607 if (AA.getModRefInfo(SI, MemLoc) == MRI_NoModRef) 608 continue; 609 610 // Ok, this store might clobber the query pointer. Check to see if it is 611 // a must alias: in this case, we want to return this as a def. 612 MemoryLocation StoreLoc = MemoryLocation::get(SI); 613 614 // If we found a pointer, check if it could be the same as our pointer. 615 AliasResult R = AA.alias(StoreLoc, MemLoc); 616 617 if (R == NoAlias) 618 continue; 619 if (R == MustAlias) 620 return MemDepResult::getDef(Inst); 621 if (isInvariantLoad) 622 continue; 623 return MemDepResult::getClobber(Inst); 624 } 625 626 // If this is an allocation, and if we know that the accessed pointer is to 627 // the allocation, return Def. This means that there is no dependence and 628 // the access can be optimized based on that. For example, a load could 629 // turn into undef. Note that we can bypass the allocation itself when 630 // looking for a clobber in many cases; that's an alias property and is 631 // handled by BasicAA. 632 if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, &TLI)) { 633 const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL); 634 if (AccessPtr == Inst || AA.isMustAlias(Inst, AccessPtr)) 635 return MemDepResult::getDef(Inst); 636 } 637 638 if (isInvariantLoad) 639 continue; 640 641 // A release fence requires that all stores complete before it, but does 642 // not prevent the reordering of following loads or stores 'before' the 643 // fence. As a result, we look past it when finding a dependency for 644 // loads. DSE uses this to find preceeding stores to delete and thus we 645 // can't bypass the fence if the query instruction is a store. 646 if (FenceInst *FI = dyn_cast<FenceInst>(Inst)) 647 if (isLoad && FI->getOrdering() == AtomicOrdering::Release) 648 continue; 649 650 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. 651 ModRefInfo MR = AA.getModRefInfo(Inst, MemLoc); 652 // If necessary, perform additional analysis. 653 if (MR == MRI_ModRef) 654 MR = AA.callCapturesBefore(Inst, MemLoc, &DT, &OBB); 655 switch (MR) { 656 case MRI_NoModRef: 657 // If the call has no effect on the queried pointer, just ignore it. 658 continue; 659 case MRI_Mod: 660 return MemDepResult::getClobber(Inst); 661 case MRI_Ref: 662 // If the call is known to never store to the pointer, and if this is a 663 // load query, we can safely ignore it (scan past it). 664 if (isLoad) 665 continue; 666 default: 667 // Otherwise, there is a potential dependence. Return a clobber. 668 return MemDepResult::getClobber(Inst); 669 } 670 } 671 672 // No dependence found. If this is the entry block of the function, it is 673 // unknown, otherwise it is non-local. 674 if (BB != &BB->getParent()->getEntryBlock()) 675 return MemDepResult::getNonLocal(); 676 return MemDepResult::getNonFuncLocal(); 677 } 678 679 MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) { 680 Instruction *ScanPos = QueryInst; 681 682 // Check for a cached result 683 MemDepResult &LocalCache = LocalDeps[QueryInst]; 684 685 // If the cached entry is non-dirty, just return it. Note that this depends 686 // on MemDepResult's default constructing to 'dirty'. 687 if (!LocalCache.isDirty()) 688 return LocalCache; 689 690 // Otherwise, if we have a dirty entry, we know we can start the scan at that 691 // instruction, which may save us some work. 692 if (Instruction *Inst = LocalCache.getInst()) { 693 ScanPos = Inst; 694 695 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); 696 } 697 698 BasicBlock *QueryParent = QueryInst->getParent(); 699 700 // Do the scan. 701 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { 702 // No dependence found. If this is the entry block of the function, it is 703 // unknown, otherwise it is non-local. 704 if (QueryParent != &QueryParent->getParent()->getEntryBlock()) 705 LocalCache = MemDepResult::getNonLocal(); 706 else 707 LocalCache = MemDepResult::getNonFuncLocal(); 708 } else { 709 MemoryLocation MemLoc; 710 ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI); 711 if (MemLoc.Ptr) { 712 // If we can do a pointer scan, make it happen. 713 bool isLoad = !(MR & MRI_Mod); 714 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst)) 715 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start; 716 717 LocalCache = getPointerDependencyFrom( 718 MemLoc, isLoad, ScanPos->getIterator(), QueryParent, QueryInst); 719 } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) { 720 CallSite QueryCS(QueryInst); 721 bool isReadOnly = AA.onlyReadsMemory(QueryCS); 722 LocalCache = getCallSiteDependencyFrom( 723 QueryCS, isReadOnly, ScanPos->getIterator(), QueryParent); 724 } else 725 // Non-memory instruction. 726 LocalCache = MemDepResult::getUnknown(); 727 } 728 729 // Remember the result! 730 if (Instruction *I = LocalCache.getInst()) 731 ReverseLocalDeps[I].insert(QueryInst); 732 733 return LocalCache; 734 } 735 736 #ifndef NDEBUG 737 /// This method is used when -debug is specified to verify that cache arrays 738 /// are properly kept sorted. 739 static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache, 740 int Count = -1) { 741 if (Count == -1) 742 Count = Cache.size(); 743 assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) && 744 "Cache isn't sorted!"); 745 } 746 #endif 747 748 const MemoryDependenceResults::NonLocalDepInfo & 749 MemoryDependenceResults::getNonLocalCallDependency(CallSite QueryCS) { 750 assert(getDependency(QueryCS.getInstruction()).isNonLocal() && 751 "getNonLocalCallDependency should only be used on calls with " 752 "non-local deps!"); 753 PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()]; 754 NonLocalDepInfo &Cache = CacheP.first; 755 756 // This is the set of blocks that need to be recomputed. In the cached case, 757 // this can happen due to instructions being deleted etc. In the uncached 758 // case, this starts out as the set of predecessors we care about. 759 SmallVector<BasicBlock *, 32> DirtyBlocks; 760 761 if (!Cache.empty()) { 762 // Okay, we have a cache entry. If we know it is not dirty, just return it 763 // with no computation. 764 if (!CacheP.second) { 765 ++NumCacheNonLocal; 766 return Cache; 767 } 768 769 // If we already have a partially computed set of results, scan them to 770 // determine what is dirty, seeding our initial DirtyBlocks worklist. 771 for (auto &Entry : Cache) 772 if (Entry.getResult().isDirty()) 773 DirtyBlocks.push_back(Entry.getBB()); 774 775 // Sort the cache so that we can do fast binary search lookups below. 776 std::sort(Cache.begin(), Cache.end()); 777 778 ++NumCacheDirtyNonLocal; 779 // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " 780 // << Cache.size() << " cached: " << *QueryInst; 781 } else { 782 // Seed DirtyBlocks with each of the preds of QueryInst's block. 783 BasicBlock *QueryBB = QueryCS.getInstruction()->getParent(); 784 for (BasicBlock *Pred : PredCache.get(QueryBB)) 785 DirtyBlocks.push_back(Pred); 786 ++NumUncacheNonLocal; 787 } 788 789 // isReadonlyCall - If this is a read-only call, we can be more aggressive. 790 bool isReadonlyCall = AA.onlyReadsMemory(QueryCS); 791 792 SmallPtrSet<BasicBlock *, 32> Visited; 793 794 unsigned NumSortedEntries = Cache.size(); 795 DEBUG(AssertSorted(Cache)); 796 797 // Iterate while we still have blocks to update. 798 while (!DirtyBlocks.empty()) { 799 BasicBlock *DirtyBB = DirtyBlocks.back(); 800 DirtyBlocks.pop_back(); 801 802 // Already processed this block? 803 if (!Visited.insert(DirtyBB).second) 804 continue; 805 806 // Do a binary search to see if we already have an entry for this block in 807 // the cache set. If so, find it. 808 DEBUG(AssertSorted(Cache, NumSortedEntries)); 809 NonLocalDepInfo::iterator Entry = 810 std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries, 811 NonLocalDepEntry(DirtyBB)); 812 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB) 813 --Entry; 814 815 NonLocalDepEntry *ExistingResult = nullptr; 816 if (Entry != Cache.begin() + NumSortedEntries && 817 Entry->getBB() == DirtyBB) { 818 // If we already have an entry, and if it isn't already dirty, the block 819 // is done. 820 if (!Entry->getResult().isDirty()) 821 continue; 822 823 // Otherwise, remember this slot so we can update the value. 824 ExistingResult = &*Entry; 825 } 826 827 // If the dirty entry has a pointer, start scanning from it so we don't have 828 // to rescan the entire block. 829 BasicBlock::iterator ScanPos = DirtyBB->end(); 830 if (ExistingResult) { 831 if (Instruction *Inst = ExistingResult->getResult().getInst()) { 832 ScanPos = Inst->getIterator(); 833 // We're removing QueryInst's use of Inst. 834 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, 835 QueryCS.getInstruction()); 836 } 837 } 838 839 // Find out if this block has a local dependency for QueryInst. 840 MemDepResult Dep; 841 842 if (ScanPos != DirtyBB->begin()) { 843 Dep = 844 getCallSiteDependencyFrom(QueryCS, isReadonlyCall, ScanPos, DirtyBB); 845 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { 846 // No dependence found. If this is the entry block of the function, it is 847 // a clobber, otherwise it is unknown. 848 Dep = MemDepResult::getNonLocal(); 849 } else { 850 Dep = MemDepResult::getNonFuncLocal(); 851 } 852 853 // If we had a dirty entry for the block, update it. Otherwise, just add 854 // a new entry. 855 if (ExistingResult) 856 ExistingResult->setResult(Dep); 857 else 858 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); 859 860 // If the block has a dependency (i.e. it isn't completely transparent to 861 // the value), remember the association! 862 if (!Dep.isNonLocal()) { 863 // Keep the ReverseNonLocalDeps map up to date so we can efficiently 864 // update this when we remove instructions. 865 if (Instruction *Inst = Dep.getInst()) 866 ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction()); 867 } else { 868 869 // If the block *is* completely transparent to the load, we need to check 870 // the predecessors of this block. Add them to our worklist. 871 for (BasicBlock *Pred : PredCache.get(DirtyBB)) 872 DirtyBlocks.push_back(Pred); 873 } 874 } 875 876 return Cache; 877 } 878 879 void MemoryDependenceResults::getNonLocalPointerDependency( 880 Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) { 881 const MemoryLocation Loc = MemoryLocation::get(QueryInst); 882 bool isLoad = isa<LoadInst>(QueryInst); 883 BasicBlock *FromBB = QueryInst->getParent(); 884 assert(FromBB); 885 886 assert(Loc.Ptr->getType()->isPointerTy() && 887 "Can't get pointer deps of a non-pointer!"); 888 Result.clear(); 889 890 // This routine does not expect to deal with volatile instructions. 891 // Doing so would require piping through the QueryInst all the way through. 892 // TODO: volatiles can't be elided, but they can be reordered with other 893 // non-volatile accesses. 894 895 // We currently give up on any instruction which is ordered, but we do handle 896 // atomic instructions which are unordered. 897 // TODO: Handle ordered instructions 898 auto isOrdered = [](Instruction *Inst) { 899 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 900 return !LI->isUnordered(); 901 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 902 return !SI->isUnordered(); 903 } 904 return false; 905 }; 906 if (isVolatile(QueryInst) || isOrdered(QueryInst)) { 907 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(), 908 const_cast<Value *>(Loc.Ptr))); 909 return; 910 } 911 const DataLayout &DL = FromBB->getModule()->getDataLayout(); 912 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC); 913 914 // This is the set of blocks we've inspected, and the pointer we consider in 915 // each block. Because of critical edges, we currently bail out if querying 916 // a block with multiple different pointers. This can happen during PHI 917 // translation. 918 DenseMap<BasicBlock *, Value *> Visited; 919 if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB, 920 Result, Visited, true)) 921 return; 922 Result.clear(); 923 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(), 924 const_cast<Value *>(Loc.Ptr))); 925 } 926 927 /// Compute the memdep value for BB with Pointer/PointeeSize using either 928 /// cached information in Cache or by doing a lookup (which may use dirty cache 929 /// info if available). 930 /// 931 /// If we do a lookup, add the result to the cache. 932 MemDepResult MemoryDependenceResults::GetNonLocalInfoForBlock( 933 Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad, 934 BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) { 935 936 // Do a binary search to see if we already have an entry for this block in 937 // the cache set. If so, find it. 938 NonLocalDepInfo::iterator Entry = std::upper_bound( 939 Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB)); 940 if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB) 941 --Entry; 942 943 NonLocalDepEntry *ExistingResult = nullptr; 944 if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB) 945 ExistingResult = &*Entry; 946 947 // If we have a cached entry, and it is non-dirty, use it as the value for 948 // this dependency. 949 if (ExistingResult && !ExistingResult->getResult().isDirty()) { 950 ++NumCacheNonLocalPtr; 951 return ExistingResult->getResult(); 952 } 953 954 // Otherwise, we have to scan for the value. If we have a dirty cache 955 // entry, start scanning from its position, otherwise we scan from the end 956 // of the block. 957 BasicBlock::iterator ScanPos = BB->end(); 958 if (ExistingResult && ExistingResult->getResult().getInst()) { 959 assert(ExistingResult->getResult().getInst()->getParent() == BB && 960 "Instruction invalidated?"); 961 ++NumCacheDirtyNonLocalPtr; 962 ScanPos = ExistingResult->getResult().getInst()->getIterator(); 963 964 // Eliminating the dirty entry from 'Cache', so update the reverse info. 965 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 966 RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey); 967 } else { 968 ++NumUncacheNonLocalPtr; 969 } 970 971 // Scan the block for the dependency. 972 MemDepResult Dep = 973 getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, QueryInst); 974 975 // If we had a dirty entry for the block, update it. Otherwise, just add 976 // a new entry. 977 if (ExistingResult) 978 ExistingResult->setResult(Dep); 979 else 980 Cache->push_back(NonLocalDepEntry(BB, Dep)); 981 982 // If the block has a dependency (i.e. it isn't completely transparent to 983 // the value), remember the reverse association because we just added it 984 // to Cache! 985 if (!Dep.isDef() && !Dep.isClobber()) 986 return Dep; 987 988 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently 989 // update MemDep when we remove instructions. 990 Instruction *Inst = Dep.getInst(); 991 assert(Inst && "Didn't depend on anything?"); 992 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 993 ReverseNonLocalPtrDeps[Inst].insert(CacheKey); 994 return Dep; 995 } 996 997 /// Sort the NonLocalDepInfo cache, given a certain number of elements in the 998 /// array that are already properly ordered. 999 /// 1000 /// This is optimized for the case when only a few entries are added. 1001 static void 1002 SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache, 1003 unsigned NumSortedEntries) { 1004 switch (Cache.size() - NumSortedEntries) { 1005 case 0: 1006 // done, no new entries. 1007 break; 1008 case 2: { 1009 // Two new entries, insert the last one into place. 1010 NonLocalDepEntry Val = Cache.back(); 1011 Cache.pop_back(); 1012 MemoryDependenceResults::NonLocalDepInfo::iterator Entry = 1013 std::upper_bound(Cache.begin(), Cache.end() - 1, Val); 1014 Cache.insert(Entry, Val); 1015 // FALL THROUGH. 1016 } 1017 case 1: 1018 // One new entry, Just insert the new value at the appropriate position. 1019 if (Cache.size() != 1) { 1020 NonLocalDepEntry Val = Cache.back(); 1021 Cache.pop_back(); 1022 MemoryDependenceResults::NonLocalDepInfo::iterator Entry = 1023 std::upper_bound(Cache.begin(), Cache.end(), Val); 1024 Cache.insert(Entry, Val); 1025 } 1026 break; 1027 default: 1028 // Added many values, do a full scale sort. 1029 std::sort(Cache.begin(), Cache.end()); 1030 break; 1031 } 1032 } 1033 1034 /// Perform a dependency query based on pointer/pointeesize starting at the end 1035 /// of StartBB. 1036 /// 1037 /// Add any clobber/def results to the results vector and keep track of which 1038 /// blocks are visited in 'Visited'. 1039 /// 1040 /// This has special behavior for the first block queries (when SkipFirstBlock 1041 /// is true). In this special case, it ignores the contents of the specified 1042 /// block and starts returning dependence info for its predecessors. 1043 /// 1044 /// This function returns true on success, or false to indicate that it could 1045 /// not compute dependence information for some reason. This should be treated 1046 /// as a clobber dependence on the first instruction in the predecessor block. 1047 bool MemoryDependenceResults::getNonLocalPointerDepFromBB( 1048 Instruction *QueryInst, const PHITransAddr &Pointer, 1049 const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB, 1050 SmallVectorImpl<NonLocalDepResult> &Result, 1051 DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock) { 1052 // Look up the cached info for Pointer. 1053 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); 1054 1055 // Set up a temporary NLPI value. If the map doesn't yet have an entry for 1056 // CacheKey, this value will be inserted as the associated value. Otherwise, 1057 // it'll be ignored, and we'll have to check to see if the cached size and 1058 // aa tags are consistent with the current query. 1059 NonLocalPointerInfo InitialNLPI; 1060 InitialNLPI.Size = Loc.Size; 1061 InitialNLPI.AATags = Loc.AATags; 1062 1063 // Get the NLPI for CacheKey, inserting one into the map if it doesn't 1064 // already have one. 1065 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = 1066 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI)); 1067 NonLocalPointerInfo *CacheInfo = &Pair.first->second; 1068 1069 // If we already have a cache entry for this CacheKey, we may need to do some 1070 // work to reconcile the cache entry and the current query. 1071 if (!Pair.second) { 1072 if (CacheInfo->Size < Loc.Size) { 1073 // The query's Size is greater than the cached one. Throw out the 1074 // cached data and proceed with the query at the greater size. 1075 CacheInfo->Pair = BBSkipFirstBlockPair(); 1076 CacheInfo->Size = Loc.Size; 1077 for (auto &Entry : CacheInfo->NonLocalDeps) 1078 if (Instruction *Inst = Entry.getResult().getInst()) 1079 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1080 CacheInfo->NonLocalDeps.clear(); 1081 } else if (CacheInfo->Size > Loc.Size) { 1082 // This query's Size is less than the cached one. Conservatively restart 1083 // the query using the greater size. 1084 return getNonLocalPointerDepFromBB( 1085 QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad, 1086 StartBB, Result, Visited, SkipFirstBlock); 1087 } 1088 1089 // If the query's AATags are inconsistent with the cached one, 1090 // conservatively throw out the cached data and restart the query with 1091 // no tag if needed. 1092 if (CacheInfo->AATags != Loc.AATags) { 1093 if (CacheInfo->AATags) { 1094 CacheInfo->Pair = BBSkipFirstBlockPair(); 1095 CacheInfo->AATags = AAMDNodes(); 1096 for (auto &Entry : CacheInfo->NonLocalDeps) 1097 if (Instruction *Inst = Entry.getResult().getInst()) 1098 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1099 CacheInfo->NonLocalDeps.clear(); 1100 } 1101 if (Loc.AATags) 1102 return getNonLocalPointerDepFromBB( 1103 QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result, 1104 Visited, SkipFirstBlock); 1105 } 1106 } 1107 1108 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps; 1109 1110 // If we have valid cached information for exactly the block we are 1111 // investigating, just return it with no recomputation. 1112 if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { 1113 // We have a fully cached result for this query then we can just return the 1114 // cached results and populate the visited set. However, we have to verify 1115 // that we don't already have conflicting results for these blocks. Check 1116 // to ensure that if a block in the results set is in the visited set that 1117 // it was for the same pointer query. 1118 if (!Visited.empty()) { 1119 for (auto &Entry : *Cache) { 1120 DenseMap<BasicBlock *, Value *>::iterator VI = 1121 Visited.find(Entry.getBB()); 1122 if (VI == Visited.end() || VI->second == Pointer.getAddr()) 1123 continue; 1124 1125 // We have a pointer mismatch in a block. Just return false, saying 1126 // that something was clobbered in this result. We could also do a 1127 // non-fully cached query, but there is little point in doing this. 1128 return false; 1129 } 1130 } 1131 1132 Value *Addr = Pointer.getAddr(); 1133 for (auto &Entry : *Cache) { 1134 Visited.insert(std::make_pair(Entry.getBB(), Addr)); 1135 if (Entry.getResult().isNonLocal()) { 1136 continue; 1137 } 1138 1139 if (DT.isReachableFromEntry(Entry.getBB())) { 1140 Result.push_back( 1141 NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr)); 1142 } 1143 } 1144 ++NumCacheCompleteNonLocalPtr; 1145 return true; 1146 } 1147 1148 // Otherwise, either this is a new block, a block with an invalid cache 1149 // pointer or one that we're about to invalidate by putting more info into it 1150 // than its valid cache info. If empty, the result will be valid cache info, 1151 // otherwise it isn't. 1152 if (Cache->empty()) 1153 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); 1154 else 1155 CacheInfo->Pair = BBSkipFirstBlockPair(); 1156 1157 SmallVector<BasicBlock *, 32> Worklist; 1158 Worklist.push_back(StartBB); 1159 1160 // PredList used inside loop. 1161 SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList; 1162 1163 // Keep track of the entries that we know are sorted. Previously cached 1164 // entries will all be sorted. The entries we add we only sort on demand (we 1165 // don't insert every element into its sorted position). We know that we 1166 // won't get any reuse from currently inserted values, because we don't 1167 // revisit blocks after we insert info for them. 1168 unsigned NumSortedEntries = Cache->size(); 1169 unsigned WorklistEntries = BlockNumberLimit; 1170 bool GotWorklistLimit = false; 1171 DEBUG(AssertSorted(*Cache)); 1172 1173 while (!Worklist.empty()) { 1174 BasicBlock *BB = Worklist.pop_back_val(); 1175 1176 // If we do process a large number of blocks it becomes very expensive and 1177 // likely it isn't worth worrying about 1178 if (Result.size() > NumResultsLimit) { 1179 Worklist.clear(); 1180 // Sort it now (if needed) so that recursive invocations of 1181 // getNonLocalPointerDepFromBB and other routines that could reuse the 1182 // cache value will only see properly sorted cache arrays. 1183 if (Cache && NumSortedEntries != Cache->size()) { 1184 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1185 } 1186 // Since we bail out, the "Cache" set won't contain all of the 1187 // results for the query. This is ok (we can still use it to accelerate 1188 // specific block queries) but we can't do the fastpath "return all 1189 // results from the set". Clear out the indicator for this. 1190 CacheInfo->Pair = BBSkipFirstBlockPair(); 1191 return false; 1192 } 1193 1194 // Skip the first block if we have it. 1195 if (!SkipFirstBlock) { 1196 // Analyze the dependency of *Pointer in FromBB. See if we already have 1197 // been here. 1198 assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); 1199 1200 // Get the dependency info for Pointer in BB. If we have cached 1201 // information, we will use it, otherwise we compute it. 1202 DEBUG(AssertSorted(*Cache, NumSortedEntries)); 1203 MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, Loc, isLoad, BB, 1204 Cache, NumSortedEntries); 1205 1206 // If we got a Def or Clobber, add this to the list of results. 1207 if (!Dep.isNonLocal()) { 1208 if (DT.isReachableFromEntry(BB)) { 1209 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); 1210 continue; 1211 } 1212 } 1213 } 1214 1215 // If 'Pointer' is an instruction defined in this block, then we need to do 1216 // phi translation to change it into a value live in the predecessor block. 1217 // If not, we just add the predecessors to the worklist and scan them with 1218 // the same Pointer. 1219 if (!Pointer.NeedsPHITranslationFromBlock(BB)) { 1220 SkipFirstBlock = false; 1221 SmallVector<BasicBlock *, 16> NewBlocks; 1222 for (BasicBlock *Pred : PredCache.get(BB)) { 1223 // Verify that we haven't looked at this block yet. 1224 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes = 1225 Visited.insert(std::make_pair(Pred, Pointer.getAddr())); 1226 if (InsertRes.second) { 1227 // First time we've looked at *PI. 1228 NewBlocks.push_back(Pred); 1229 continue; 1230 } 1231 1232 // If we have seen this block before, but it was with a different 1233 // pointer then we have a phi translation failure and we have to treat 1234 // this as a clobber. 1235 if (InsertRes.first->second != Pointer.getAddr()) { 1236 // Make sure to clean up the Visited map before continuing on to 1237 // PredTranslationFailure. 1238 for (unsigned i = 0; i < NewBlocks.size(); i++) 1239 Visited.erase(NewBlocks[i]); 1240 goto PredTranslationFailure; 1241 } 1242 } 1243 if (NewBlocks.size() > WorklistEntries) { 1244 // Make sure to clean up the Visited map before continuing on to 1245 // PredTranslationFailure. 1246 for (unsigned i = 0; i < NewBlocks.size(); i++) 1247 Visited.erase(NewBlocks[i]); 1248 GotWorklistLimit = true; 1249 goto PredTranslationFailure; 1250 } 1251 WorklistEntries -= NewBlocks.size(); 1252 Worklist.append(NewBlocks.begin(), NewBlocks.end()); 1253 continue; 1254 } 1255 1256 // We do need to do phi translation, if we know ahead of time we can't phi 1257 // translate this value, don't even try. 1258 if (!Pointer.IsPotentiallyPHITranslatable()) 1259 goto PredTranslationFailure; 1260 1261 // We may have added values to the cache list before this PHI translation. 1262 // If so, we haven't done anything to ensure that the cache remains sorted. 1263 // Sort it now (if needed) so that recursive invocations of 1264 // getNonLocalPointerDepFromBB and other routines that could reuse the cache 1265 // value will only see properly sorted cache arrays. 1266 if (Cache && NumSortedEntries != Cache->size()) { 1267 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1268 NumSortedEntries = Cache->size(); 1269 } 1270 Cache = nullptr; 1271 1272 PredList.clear(); 1273 for (BasicBlock *Pred : PredCache.get(BB)) { 1274 PredList.push_back(std::make_pair(Pred, Pointer)); 1275 1276 // Get the PHI translated pointer in this predecessor. This can fail if 1277 // not translatable, in which case the getAddr() returns null. 1278 PHITransAddr &PredPointer = PredList.back().second; 1279 PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false); 1280 Value *PredPtrVal = PredPointer.getAddr(); 1281 1282 // Check to see if we have already visited this pred block with another 1283 // pointer. If so, we can't do this lookup. This failure can occur 1284 // with PHI translation when a critical edge exists and the PHI node in 1285 // the successor translates to a pointer value different than the 1286 // pointer the block was first analyzed with. 1287 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes = 1288 Visited.insert(std::make_pair(Pred, PredPtrVal)); 1289 1290 if (!InsertRes.second) { 1291 // We found the pred; take it off the list of preds to visit. 1292 PredList.pop_back(); 1293 1294 // If the predecessor was visited with PredPtr, then we already did 1295 // the analysis and can ignore it. 1296 if (InsertRes.first->second == PredPtrVal) 1297 continue; 1298 1299 // Otherwise, the block was previously analyzed with a different 1300 // pointer. We can't represent the result of this case, so we just 1301 // treat this as a phi translation failure. 1302 1303 // Make sure to clean up the Visited map before continuing on to 1304 // PredTranslationFailure. 1305 for (unsigned i = 0, n = PredList.size(); i < n; ++i) 1306 Visited.erase(PredList[i].first); 1307 1308 goto PredTranslationFailure; 1309 } 1310 } 1311 1312 // Actually process results here; this need to be a separate loop to avoid 1313 // calling getNonLocalPointerDepFromBB for blocks we don't want to return 1314 // any results for. (getNonLocalPointerDepFromBB will modify our 1315 // datastructures in ways the code after the PredTranslationFailure label 1316 // doesn't expect.) 1317 for (unsigned i = 0, n = PredList.size(); i < n; ++i) { 1318 BasicBlock *Pred = PredList[i].first; 1319 PHITransAddr &PredPointer = PredList[i].second; 1320 Value *PredPtrVal = PredPointer.getAddr(); 1321 1322 bool CanTranslate = true; 1323 // If PHI translation was unable to find an available pointer in this 1324 // predecessor, then we have to assume that the pointer is clobbered in 1325 // that predecessor. We can still do PRE of the load, which would insert 1326 // a computation of the pointer in this predecessor. 1327 if (!PredPtrVal) 1328 CanTranslate = false; 1329 1330 // FIXME: it is entirely possible that PHI translating will end up with 1331 // the same value. Consider PHI translating something like: 1332 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need* 1333 // to recurse here, pedantically speaking. 1334 1335 // If getNonLocalPointerDepFromBB fails here, that means the cached 1336 // result conflicted with the Visited list; we have to conservatively 1337 // assume it is unknown, but this also does not block PRE of the load. 1338 if (!CanTranslate || 1339 !getNonLocalPointerDepFromBB(QueryInst, PredPointer, 1340 Loc.getWithNewPtr(PredPtrVal), isLoad, 1341 Pred, Result, Visited)) { 1342 // Add the entry to the Result list. 1343 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal); 1344 Result.push_back(Entry); 1345 1346 // Since we had a phi translation failure, the cache for CacheKey won't 1347 // include all of the entries that we need to immediately satisfy future 1348 // queries. Mark this in NonLocalPointerDeps by setting the 1349 // BBSkipFirstBlockPair pointer to null. This requires reuse of the 1350 // cached value to do more work but not miss the phi trans failure. 1351 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey]; 1352 NLPI.Pair = BBSkipFirstBlockPair(); 1353 continue; 1354 } 1355 } 1356 1357 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. 1358 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1359 Cache = &CacheInfo->NonLocalDeps; 1360 NumSortedEntries = Cache->size(); 1361 1362 // Since we did phi translation, the "Cache" set won't contain all of the 1363 // results for the query. This is ok (we can still use it to accelerate 1364 // specific block queries) but we can't do the fastpath "return all 1365 // results from the set" Clear out the indicator for this. 1366 CacheInfo->Pair = BBSkipFirstBlockPair(); 1367 SkipFirstBlock = false; 1368 continue; 1369 1370 PredTranslationFailure: 1371 // The following code is "failure"; we can't produce a sane translation 1372 // for the given block. It assumes that we haven't modified any of 1373 // our datastructures while processing the current block. 1374 1375 if (!Cache) { 1376 // Refresh the CacheInfo/Cache pointer if it got invalidated. 1377 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1378 Cache = &CacheInfo->NonLocalDeps; 1379 NumSortedEntries = Cache->size(); 1380 } 1381 1382 // Since we failed phi translation, the "Cache" set won't contain all of the 1383 // results for the query. This is ok (we can still use it to accelerate 1384 // specific block queries) but we can't do the fastpath "return all 1385 // results from the set". Clear out the indicator for this. 1386 CacheInfo->Pair = BBSkipFirstBlockPair(); 1387 1388 // If *nothing* works, mark the pointer as unknown. 1389 // 1390 // If this is the magic first block, return this as a clobber of the whole 1391 // incoming value. Since we can't phi translate to one of the predecessors, 1392 // we have to bail out. 1393 if (SkipFirstBlock) 1394 return false; 1395 1396 bool foundBlock = false; 1397 for (NonLocalDepEntry &I : llvm::reverse(*Cache)) { 1398 if (I.getBB() != BB) 1399 continue; 1400 1401 assert((GotWorklistLimit || I.getResult().isNonLocal() || 1402 !DT.isReachableFromEntry(BB)) && 1403 "Should only be here with transparent block"); 1404 foundBlock = true; 1405 I.setResult(MemDepResult::getUnknown()); 1406 Result.push_back( 1407 NonLocalDepResult(I.getBB(), I.getResult(), Pointer.getAddr())); 1408 break; 1409 } 1410 (void)foundBlock; (void)GotWorklistLimit; 1411 assert((foundBlock || GotWorklistLimit) && "Current block not in cache?"); 1412 } 1413 1414 // Okay, we're done now. If we added new values to the cache, re-sort it. 1415 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1416 DEBUG(AssertSorted(*Cache)); 1417 return true; 1418 } 1419 1420 /// If P exists in CachedNonLocalPointerInfo, remove it. 1421 void MemoryDependenceResults::RemoveCachedNonLocalPointerDependencies( 1422 ValueIsLoadPair P) { 1423 CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P); 1424 if (It == NonLocalPointerDeps.end()) 1425 return; 1426 1427 // Remove all of the entries in the BB->val map. This involves removing 1428 // instructions from the reverse map. 1429 NonLocalDepInfo &PInfo = It->second.NonLocalDeps; 1430 1431 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { 1432 Instruction *Target = PInfo[i].getResult().getInst(); 1433 if (!Target) 1434 continue; // Ignore non-local dep results. 1435 assert(Target->getParent() == PInfo[i].getBB()); 1436 1437 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1438 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); 1439 } 1440 1441 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). 1442 NonLocalPointerDeps.erase(It); 1443 } 1444 1445 void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) { 1446 // If Ptr isn't really a pointer, just ignore it. 1447 if (!Ptr->getType()->isPointerTy()) 1448 return; 1449 // Flush store info for the pointer. 1450 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); 1451 // Flush load info for the pointer. 1452 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); 1453 } 1454 1455 void MemoryDependenceResults::invalidateCachedPredecessors() { 1456 PredCache.clear(); 1457 } 1458 1459 void MemoryDependenceResults::removeInstruction(Instruction *RemInst) { 1460 // Walk through the Non-local dependencies, removing this one as the value 1461 // for any cached queries. 1462 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst); 1463 if (NLDI != NonLocalDeps.end()) { 1464 NonLocalDepInfo &BlockMap = NLDI->second.first; 1465 for (auto &Entry : BlockMap) 1466 if (Instruction *Inst = Entry.getResult().getInst()) 1467 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); 1468 NonLocalDeps.erase(NLDI); 1469 } 1470 1471 // If we have a cached local dependence query for this instruction, remove it. 1472 // 1473 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); 1474 if (LocalDepEntry != LocalDeps.end()) { 1475 // Remove us from DepInst's reverse set now that the local dep info is gone. 1476 if (Instruction *Inst = LocalDepEntry->second.getInst()) 1477 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); 1478 1479 // Remove this local dependency info. 1480 LocalDeps.erase(LocalDepEntry); 1481 } 1482 1483 // If we have any cached pointer dependencies on this instruction, remove 1484 // them. If the instruction has non-pointer type, then it can't be a pointer 1485 // base. 1486 1487 // Remove it from both the load info and the store info. The instruction 1488 // can't be in either of these maps if it is non-pointer. 1489 if (RemInst->getType()->isPointerTy()) { 1490 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); 1491 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); 1492 } 1493 1494 // Loop over all of the things that depend on the instruction we're removing. 1495 // 1496 SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd; 1497 1498 // If we find RemInst as a clobber or Def in any of the maps for other values, 1499 // we need to replace its entry with a dirty version of the instruction after 1500 // it. If RemInst is a terminator, we use a null dirty value. 1501 // 1502 // Using a dirty version of the instruction after RemInst saves having to scan 1503 // the entire block to get to this point. 1504 MemDepResult NewDirtyVal; 1505 if (!RemInst->isTerminator()) 1506 NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator()); 1507 1508 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); 1509 if (ReverseDepIt != ReverseLocalDeps.end()) { 1510 // RemInst can't be the terminator if it has local stuff depending on it. 1511 assert(!ReverseDepIt->second.empty() && !isa<TerminatorInst>(RemInst) && 1512 "Nothing can locally depend on a terminator"); 1513 1514 for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) { 1515 assert(InstDependingOnRemInst != RemInst && 1516 "Already removed our local dep info"); 1517 1518 LocalDeps[InstDependingOnRemInst] = NewDirtyVal; 1519 1520 // Make sure to remember that new things depend on NewDepInst. 1521 assert(NewDirtyVal.getInst() && 1522 "There is no way something else can have " 1523 "a local dep on this if it is a terminator!"); 1524 ReverseDepsToAdd.push_back( 1525 std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst)); 1526 } 1527 1528 ReverseLocalDeps.erase(ReverseDepIt); 1529 1530 // Add new reverse deps after scanning the set, to avoid invalidating the 1531 // 'ReverseDeps' reference. 1532 while (!ReverseDepsToAdd.empty()) { 1533 ReverseLocalDeps[ReverseDepsToAdd.back().first].insert( 1534 ReverseDepsToAdd.back().second); 1535 ReverseDepsToAdd.pop_back(); 1536 } 1537 } 1538 1539 ReverseDepIt = ReverseNonLocalDeps.find(RemInst); 1540 if (ReverseDepIt != ReverseNonLocalDeps.end()) { 1541 for (Instruction *I : ReverseDepIt->second) { 1542 assert(I != RemInst && "Already removed NonLocalDep info for RemInst"); 1543 1544 PerInstNLInfo &INLD = NonLocalDeps[I]; 1545 // The information is now dirty! 1546 INLD.second = true; 1547 1548 for (auto &Entry : INLD.first) { 1549 if (Entry.getResult().getInst() != RemInst) 1550 continue; 1551 1552 // Convert to a dirty entry for the subsequent instruction. 1553 Entry.setResult(NewDirtyVal); 1554 1555 if (Instruction *NextI = NewDirtyVal.getInst()) 1556 ReverseDepsToAdd.push_back(std::make_pair(NextI, I)); 1557 } 1558 } 1559 1560 ReverseNonLocalDeps.erase(ReverseDepIt); 1561 1562 // Add new reverse deps after scanning the set, to avoid invalidating 'Set' 1563 while (!ReverseDepsToAdd.empty()) { 1564 ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert( 1565 ReverseDepsToAdd.back().second); 1566 ReverseDepsToAdd.pop_back(); 1567 } 1568 } 1569 1570 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a 1571 // value in the NonLocalPointerDeps info. 1572 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = 1573 ReverseNonLocalPtrDeps.find(RemInst); 1574 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { 1575 SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8> 1576 ReversePtrDepsToAdd; 1577 1578 for (ValueIsLoadPair P : ReversePtrDepIt->second) { 1579 assert(P.getPointer() != RemInst && 1580 "Already removed NonLocalPointerDeps info for RemInst"); 1581 1582 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps; 1583 1584 // The cache is not valid for any specific block anymore. 1585 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair(); 1586 1587 // Update any entries for RemInst to use the instruction after it. 1588 for (auto &Entry : NLPDI) { 1589 if (Entry.getResult().getInst() != RemInst) 1590 continue; 1591 1592 // Convert to a dirty entry for the subsequent instruction. 1593 Entry.setResult(NewDirtyVal); 1594 1595 if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) 1596 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); 1597 } 1598 1599 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its 1600 // subsequent value may invalidate the sortedness. 1601 std::sort(NLPDI.begin(), NLPDI.end()); 1602 } 1603 1604 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); 1605 1606 while (!ReversePtrDepsToAdd.empty()) { 1607 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert( 1608 ReversePtrDepsToAdd.back().second); 1609 ReversePtrDepsToAdd.pop_back(); 1610 } 1611 } 1612 1613 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); 1614 DEBUG(verifyRemoved(RemInst)); 1615 } 1616 1617 /// Verify that the specified instruction does not occur in our internal data 1618 /// structures. 1619 /// 1620 /// This function verifies by asserting in debug builds. 1621 void MemoryDependenceResults::verifyRemoved(Instruction *D) const { 1622 #ifndef NDEBUG 1623 for (const auto &DepKV : LocalDeps) { 1624 assert(DepKV.first != D && "Inst occurs in data structures"); 1625 assert(DepKV.second.getInst() != D && "Inst occurs in data structures"); 1626 } 1627 1628 for (const auto &DepKV : NonLocalPointerDeps) { 1629 assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key"); 1630 for (const auto &Entry : DepKV.second.NonLocalDeps) 1631 assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value"); 1632 } 1633 1634 for (const auto &DepKV : NonLocalDeps) { 1635 assert(DepKV.first != D && "Inst occurs in data structures"); 1636 const PerInstNLInfo &INLD = DepKV.second; 1637 for (const auto &Entry : INLD.first) 1638 assert(Entry.getResult().getInst() != D && 1639 "Inst occurs in data structures"); 1640 } 1641 1642 for (const auto &DepKV : ReverseLocalDeps) { 1643 assert(DepKV.first != D && "Inst occurs in data structures"); 1644 for (Instruction *Inst : DepKV.second) 1645 assert(Inst != D && "Inst occurs in data structures"); 1646 } 1647 1648 for (const auto &DepKV : ReverseNonLocalDeps) { 1649 assert(DepKV.first != D && "Inst occurs in data structures"); 1650 for (Instruction *Inst : DepKV.second) 1651 assert(Inst != D && "Inst occurs in data structures"); 1652 } 1653 1654 for (const auto &DepKV : ReverseNonLocalPtrDeps) { 1655 assert(DepKV.first != D && "Inst occurs in rev NLPD map"); 1656 1657 for (ValueIsLoadPair P : DepKV.second) 1658 assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) && 1659 "Inst occurs in ReverseNonLocalPtrDeps map"); 1660 } 1661 #endif 1662 } 1663 1664 char MemoryDependenceAnalysis::PassID; 1665 1666 MemoryDependenceResults 1667 MemoryDependenceAnalysis::run(Function &F, AnalysisManager<Function> &AM) { 1668 auto &AA = AM.getResult<AAManager>(F); 1669 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1670 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1671 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1672 return MemoryDependenceResults(AA, AC, TLI, DT); 1673 } 1674 1675 char MemoryDependenceWrapperPass::ID = 0; 1676 1677 INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep", 1678 "Memory Dependence Analysis", false, true) 1679 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1680 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1681 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1682 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1683 INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep", 1684 "Memory Dependence Analysis", false, true) 1685 1686 MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) { 1687 initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry()); 1688 } 1689 MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() {} 1690 1691 void MemoryDependenceWrapperPass::releaseMemory() { 1692 MemDep.reset(); 1693 } 1694 1695 void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1696 AU.setPreservesAll(); 1697 AU.addRequired<AssumptionCacheTracker>(); 1698 AU.addRequired<DominatorTreeWrapperPass>(); 1699 AU.addRequiredTransitive<AAResultsWrapperPass>(); 1700 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 1701 } 1702 1703 bool MemoryDependenceWrapperPass::runOnFunction(Function &F) { 1704 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 1705 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1706 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1707 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1708 MemDep.emplace(AA, AC, TLI, DT); 1709 return false; 1710 } 1711