1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation --*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements an analysis that determines, for a given memory 11 // operation, what preceding memory operations it depends on. It builds on 12 // alias analysis information, and tries to provide a lazy, caching interface to 13 // a common kind of alias information query. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #define DEBUG_TYPE "memdep" 18 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/Instructions.h" 21 #include "llvm/IntrinsicInst.h" 22 #include "llvm/Function.h" 23 #include "llvm/LLVMContext.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/CaptureTracking.h" 26 #include "llvm/Analysis/Dominators.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/PHITransAddr.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/ADT/STLExtras.h" 33 #include "llvm/Support/PredIteratorCache.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Target/TargetData.h" 36 using namespace llvm; 37 38 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); 39 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); 40 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); 41 42 STATISTIC(NumCacheNonLocalPtr, 43 "Number of fully cached non-local ptr responses"); 44 STATISTIC(NumCacheDirtyNonLocalPtr, 45 "Number of cached, but dirty, non-local ptr responses"); 46 STATISTIC(NumUncacheNonLocalPtr, 47 "Number of uncached non-local ptr responses"); 48 STATISTIC(NumCacheCompleteNonLocalPtr, 49 "Number of block queries that were completely cached"); 50 51 // Limit for the number of instructions to scan in a block. 52 // FIXME: Figure out what a sane value is for this. 53 // (500 is relatively insane.) 54 static const int BlockScanLimit = 500; 55 56 char MemoryDependenceAnalysis::ID = 0; 57 58 // Register this pass... 59 INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep", 60 "Memory Dependence Analysis", false, true) 61 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 62 INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep", 63 "Memory Dependence Analysis", false, true) 64 65 MemoryDependenceAnalysis::MemoryDependenceAnalysis() 66 : FunctionPass(ID), PredCache(0) { 67 initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry()); 68 } 69 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() { 70 } 71 72 /// Clean up memory in between runs 73 void MemoryDependenceAnalysis::releaseMemory() { 74 LocalDeps.clear(); 75 NonLocalDeps.clear(); 76 NonLocalPointerDeps.clear(); 77 ReverseLocalDeps.clear(); 78 ReverseNonLocalDeps.clear(); 79 ReverseNonLocalPtrDeps.clear(); 80 PredCache->clear(); 81 } 82 83 84 85 /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis. 86 /// 87 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 88 AU.setPreservesAll(); 89 AU.addRequiredTransitive<AliasAnalysis>(); 90 } 91 92 bool MemoryDependenceAnalysis::runOnFunction(Function &) { 93 AA = &getAnalysis<AliasAnalysis>(); 94 TD = getAnalysisIfAvailable<TargetData>(); 95 DT = getAnalysisIfAvailable<DominatorTree>(); 96 if (PredCache == 0) 97 PredCache.reset(new PredIteratorCache()); 98 return false; 99 } 100 101 /// RemoveFromReverseMap - This is a helper function that removes Val from 102 /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry. 103 template <typename KeyTy> 104 static void RemoveFromReverseMap(DenseMap<Instruction*, 105 SmallPtrSet<KeyTy, 4> > &ReverseMap, 106 Instruction *Inst, KeyTy Val) { 107 typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator 108 InstIt = ReverseMap.find(Inst); 109 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); 110 bool Found = InstIt->second.erase(Val); 111 assert(Found && "Invalid reverse map!"); (void)Found; 112 if (InstIt->second.empty()) 113 ReverseMap.erase(InstIt); 114 } 115 116 /// GetLocation - If the given instruction references a specific memory 117 /// location, fill in Loc with the details, otherwise set Loc.Ptr to null. 118 /// Return a ModRefInfo value describing the general behavior of the 119 /// instruction. 120 static 121 AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst, 122 AliasAnalysis::Location &Loc, 123 AliasAnalysis *AA) { 124 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 125 if (LI->isUnordered()) { 126 Loc = AA->getLocation(LI); 127 return AliasAnalysis::Ref; 128 } else if (LI->getOrdering() == Monotonic) { 129 Loc = AA->getLocation(LI); 130 return AliasAnalysis::ModRef; 131 } 132 Loc = AliasAnalysis::Location(); 133 return AliasAnalysis::ModRef; 134 } 135 136 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 137 if (SI->isUnordered()) { 138 Loc = AA->getLocation(SI); 139 return AliasAnalysis::Mod; 140 } else if (SI->getOrdering() == Monotonic) { 141 Loc = AA->getLocation(SI); 142 return AliasAnalysis::ModRef; 143 } 144 Loc = AliasAnalysis::Location(); 145 return AliasAnalysis::ModRef; 146 } 147 148 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { 149 Loc = AA->getLocation(V); 150 return AliasAnalysis::ModRef; 151 } 152 153 if (const CallInst *CI = isFreeCall(Inst)) { 154 // calls to free() deallocate the entire structure 155 Loc = AliasAnalysis::Location(CI->getArgOperand(0)); 156 return AliasAnalysis::Mod; 157 } 158 159 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 160 switch (II->getIntrinsicID()) { 161 case Intrinsic::lifetime_start: 162 case Intrinsic::lifetime_end: 163 case Intrinsic::invariant_start: 164 Loc = AliasAnalysis::Location(II->getArgOperand(1), 165 cast<ConstantInt>(II->getArgOperand(0)) 166 ->getZExtValue(), 167 II->getMetadata(LLVMContext::MD_tbaa)); 168 // These intrinsics don't really modify the memory, but returning Mod 169 // will allow them to be handled conservatively. 170 return AliasAnalysis::Mod; 171 case Intrinsic::invariant_end: 172 Loc = AliasAnalysis::Location(II->getArgOperand(2), 173 cast<ConstantInt>(II->getArgOperand(1)) 174 ->getZExtValue(), 175 II->getMetadata(LLVMContext::MD_tbaa)); 176 // These intrinsics don't really modify the memory, but returning Mod 177 // will allow them to be handled conservatively. 178 return AliasAnalysis::Mod; 179 default: 180 break; 181 } 182 183 // Otherwise, just do the coarse-grained thing that always works. 184 if (Inst->mayWriteToMemory()) 185 return AliasAnalysis::ModRef; 186 if (Inst->mayReadFromMemory()) 187 return AliasAnalysis::Ref; 188 return AliasAnalysis::NoModRef; 189 } 190 191 /// getCallSiteDependencyFrom - Private helper for finding the local 192 /// dependencies of a call site. 193 MemDepResult MemoryDependenceAnalysis:: 194 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall, 195 BasicBlock::iterator ScanIt, BasicBlock *BB) { 196 unsigned Limit = BlockScanLimit; 197 198 // Walk backwards through the block, looking for dependencies 199 while (ScanIt != BB->begin()) { 200 // Limit the amount of scanning we do so we don't end up with quadratic 201 // running time on extreme testcases. 202 --Limit; 203 if (!Limit) 204 return MemDepResult::getUnknown(); 205 206 Instruction *Inst = --ScanIt; 207 208 // If this inst is a memory op, get the pointer it accessed 209 AliasAnalysis::Location Loc; 210 AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA); 211 if (Loc.Ptr) { 212 // A simple instruction. 213 if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef) 214 return MemDepResult::getClobber(Inst); 215 continue; 216 } 217 218 if (CallSite InstCS = cast<Value>(Inst)) { 219 // Debug intrinsics don't cause dependences. 220 if (isa<DbgInfoIntrinsic>(Inst)) continue; 221 // If these two calls do not interfere, look past it. 222 switch (AA->getModRefInfo(CS, InstCS)) { 223 case AliasAnalysis::NoModRef: 224 // If the two calls are the same, return InstCS as a Def, so that 225 // CS can be found redundant and eliminated. 226 if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) && 227 CS.getInstruction()->isIdenticalToWhenDefined(Inst)) 228 return MemDepResult::getDef(Inst); 229 230 // Otherwise if the two calls don't interact (e.g. InstCS is readnone) 231 // keep scanning. 232 break; 233 default: 234 return MemDepResult::getClobber(Inst); 235 } 236 } 237 } 238 239 // No dependence found. If this is the entry block of the function, it is 240 // unknown, otherwise it is non-local. 241 if (BB != &BB->getParent()->getEntryBlock()) 242 return MemDepResult::getNonLocal(); 243 return MemDepResult::getNonFuncLocal(); 244 } 245 246 /// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that 247 /// would fully overlap MemLoc if done as a wider legal integer load. 248 /// 249 /// MemLocBase, MemLocOffset are lazily computed here the first time the 250 /// base/offs of memloc is needed. 251 static bool 252 isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc, 253 const Value *&MemLocBase, 254 int64_t &MemLocOffs, 255 const LoadInst *LI, 256 const TargetData *TD) { 257 // If we have no target data, we can't do this. 258 if (TD == 0) return false; 259 260 // If we haven't already computed the base/offset of MemLoc, do so now. 261 if (MemLocBase == 0) 262 MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, *TD); 263 264 unsigned Size = MemoryDependenceAnalysis:: 265 getLoadLoadClobberFullWidthSize(MemLocBase, MemLocOffs, MemLoc.Size, 266 LI, *TD); 267 return Size != 0; 268 } 269 270 /// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that 271 /// looks at a memory location for a load (specified by MemLocBase, Offs, 272 /// and Size) and compares it against a load. If the specified load could 273 /// be safely widened to a larger integer load that is 1) still efficient, 274 /// 2) safe for the target, and 3) would provide the specified memory 275 /// location value, then this function returns the size in bytes of the 276 /// load width to use. If not, this returns zero. 277 unsigned MemoryDependenceAnalysis:: 278 getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs, 279 unsigned MemLocSize, const LoadInst *LI, 280 const TargetData &TD) { 281 // We can only extend simple integer loads. 282 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0; 283 284 // Get the base of this load. 285 int64_t LIOffs = 0; 286 const Value *LIBase = 287 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, TD); 288 289 // If the two pointers are not based on the same pointer, we can't tell that 290 // they are related. 291 if (LIBase != MemLocBase) return 0; 292 293 // Okay, the two values are based on the same pointer, but returned as 294 // no-alias. This happens when we have things like two byte loads at "P+1" 295 // and "P+3". Check to see if increasing the size of the "LI" load up to its 296 // alignment (or the largest native integer type) will allow us to load all 297 // the bits required by MemLoc. 298 299 // If MemLoc is before LI, then no widening of LI will help us out. 300 if (MemLocOffs < LIOffs) return 0; 301 302 // Get the alignment of the load in bytes. We assume that it is safe to load 303 // any legal integer up to this size without a problem. For example, if we're 304 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can 305 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it 306 // to i16. 307 unsigned LoadAlign = LI->getAlignment(); 308 309 int64_t MemLocEnd = MemLocOffs+MemLocSize; 310 311 // If no amount of rounding up will let MemLoc fit into LI, then bail out. 312 if (LIOffs+LoadAlign < MemLocEnd) return 0; 313 314 // This is the size of the load to try. Start with the next larger power of 315 // two. 316 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U; 317 NewLoadByteSize = NextPowerOf2(NewLoadByteSize); 318 319 while (1) { 320 // If this load size is bigger than our known alignment or would not fit 321 // into a native integer register, then we fail. 322 if (NewLoadByteSize > LoadAlign || 323 !TD.fitsInLegalInteger(NewLoadByteSize*8)) 324 return 0; 325 326 if (LIOffs+NewLoadByteSize > MemLocEnd && 327 LI->getParent()->getParent()->hasFnAttr(Attribute::AddressSafety)) { 328 // We will be reading past the location accessed by the original program. 329 // While this is safe in a regular build, Address Safety analysis tools 330 // may start reporting false warnings. So, don't do widening. 331 return 0; 332 } 333 334 // If a load of this width would include all of MemLoc, then we succeed. 335 if (LIOffs+NewLoadByteSize >= MemLocEnd) 336 return NewLoadByteSize; 337 338 NewLoadByteSize <<= 1; 339 } 340 } 341 342 namespace { 343 /// Only find pointer captures which happen before the given instruction. Uses 344 /// the dominator tree to determine whether one instruction is before another. 345 struct CapturesBefore : public CaptureTracker { 346 CapturesBefore(const Instruction *I, DominatorTree *DT) 347 : BeforeHere(I), DT(DT), Captured(false) {} 348 349 void tooManyUses() { Captured = true; } 350 351 bool shouldExplore(Use *U) { 352 Instruction *I = cast<Instruction>(U->getUser()); 353 if (BeforeHere != I && DT->dominates(BeforeHere, I)) 354 return false; 355 return true; 356 } 357 358 bool captured(Use *U) { 359 Instruction *I = cast<Instruction>(U->getUser()); 360 if (BeforeHere != I && DT->dominates(BeforeHere, I)) 361 return false; 362 Captured = true; 363 return true; 364 } 365 366 const Instruction *BeforeHere; 367 DominatorTree *DT; 368 369 bool Captured; 370 }; 371 } 372 373 AliasAnalysis::ModRefResult 374 MemoryDependenceAnalysis::getModRefInfo(const Instruction *Inst, 375 const AliasAnalysis::Location &MemLoc) { 376 AliasAnalysis::ModRefResult MR = AA->getModRefInfo(Inst, MemLoc); 377 if (MR != AliasAnalysis::ModRef) return MR; 378 379 // FIXME: this is really just shoring-up a deficiency in alias analysis. 380 // BasicAA isn't willing to spend linear time determining whether an alloca 381 // was captured before or after this particular call, while we are. However, 382 // with a smarter AA in place, this test is just wasting compile time. 383 if (!DT) return AliasAnalysis::ModRef; 384 const Value *Object = GetUnderlyingObject(MemLoc.Ptr, TD); 385 if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object)) 386 return AliasAnalysis::ModRef; 387 ImmutableCallSite CS(Inst); 388 if (!CS.getInstruction()) return AliasAnalysis::ModRef; 389 390 CapturesBefore CB(Inst, DT); 391 llvm::PointerMayBeCaptured(Object, &CB); 392 393 if (isa<Constant>(Object) || CS.getInstruction() == Object || CB.Captured) 394 return AliasAnalysis::ModRef; 395 396 unsigned ArgNo = 0; 397 for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end(); 398 CI != CE; ++CI, ++ArgNo) { 399 // Only look at the no-capture or byval pointer arguments. If this 400 // pointer were passed to arguments that were neither of these, then it 401 // couldn't be no-capture. 402 if (!(*CI)->getType()->isPointerTy() || 403 (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo))) 404 continue; 405 406 // If this is a no-capture pointer argument, see if we can tell that it 407 // is impossible to alias the pointer we're checking. If not, we have to 408 // assume that the call could touch the pointer, even though it doesn't 409 // escape. 410 if (!AA->isNoAlias(AliasAnalysis::Location(*CI), 411 AliasAnalysis::Location(Object))) { 412 return AliasAnalysis::ModRef; 413 } 414 } 415 return AliasAnalysis::NoModRef; 416 } 417 418 /// getPointerDependencyFrom - Return the instruction on which a memory 419 /// location depends. If isLoad is true, this routine ignores may-aliases with 420 /// read-only operations. If isLoad is false, this routine ignores may-aliases 421 /// with reads from read-only locations. 422 MemDepResult MemoryDependenceAnalysis:: 423 getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, 424 BasicBlock::iterator ScanIt, BasicBlock *BB) { 425 426 const Value *MemLocBase = 0; 427 int64_t MemLocOffset = 0; 428 429 unsigned Limit = BlockScanLimit; 430 431 // Walk backwards through the basic block, looking for dependencies. 432 while (ScanIt != BB->begin()) { 433 // Limit the amount of scanning we do so we don't end up with quadratic 434 // running time on extreme testcases. 435 --Limit; 436 if (!Limit) 437 return MemDepResult::getUnknown(); 438 439 Instruction *Inst = --ScanIt; 440 441 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 442 // Debug intrinsics don't (and can't) cause dependences. 443 if (isa<DbgInfoIntrinsic>(II)) continue; 444 445 // If we reach a lifetime begin or end marker, then the query ends here 446 // because the value is undefined. 447 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 448 // FIXME: This only considers queries directly on the invariant-tagged 449 // pointer, not on query pointers that are indexed off of them. It'd 450 // be nice to handle that at some point (the right approach is to use 451 // GetPointerBaseWithConstantOffset). 452 if (AA->isMustAlias(AliasAnalysis::Location(II->getArgOperand(1)), 453 MemLoc)) 454 return MemDepResult::getDef(II); 455 continue; 456 } 457 } 458 459 // Values depend on loads if the pointers are must aliased. This means that 460 // a load depends on another must aliased load from the same value. 461 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 462 // Atomic loads have complications involved. 463 // FIXME: This is overly conservative. 464 if (!LI->isUnordered()) 465 return MemDepResult::getClobber(LI); 466 467 AliasAnalysis::Location LoadLoc = AA->getLocation(LI); 468 469 // If we found a pointer, check if it could be the same as our pointer. 470 AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc); 471 472 if (isLoad) { 473 if (R == AliasAnalysis::NoAlias) { 474 // If this is an over-aligned integer load (for example, 475 // "load i8* %P, align 4") see if it would obviously overlap with the 476 // queried location if widened to a larger load (e.g. if the queried 477 // location is 1 byte at P+1). If so, return it as a load/load 478 // clobber result, allowing the client to decide to widen the load if 479 // it wants to. 480 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) 481 if (LI->getAlignment()*8 > ITy->getPrimitiveSizeInBits() && 482 isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase, 483 MemLocOffset, LI, TD)) 484 return MemDepResult::getClobber(Inst); 485 486 continue; 487 } 488 489 // Must aliased loads are defs of each other. 490 if (R == AliasAnalysis::MustAlias) 491 return MemDepResult::getDef(Inst); 492 493 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads 494 // in terms of clobbering loads, but since it does this by looking 495 // at the clobbering load directly, it doesn't know about any 496 // phi translation that may have happened along the way. 497 498 // If we have a partial alias, then return this as a clobber for the 499 // client to handle. 500 if (R == AliasAnalysis::PartialAlias) 501 return MemDepResult::getClobber(Inst); 502 #endif 503 504 // Random may-alias loads don't depend on each other without a 505 // dependence. 506 continue; 507 } 508 509 // Stores don't depend on other no-aliased accesses. 510 if (R == AliasAnalysis::NoAlias) 511 continue; 512 513 // Stores don't alias loads from read-only memory. 514 if (AA->pointsToConstantMemory(LoadLoc)) 515 continue; 516 517 // Stores depend on may/must aliased loads. 518 return MemDepResult::getDef(Inst); 519 } 520 521 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 522 // Atomic stores have complications involved. 523 // FIXME: This is overly conservative. 524 if (!SI->isUnordered()) 525 return MemDepResult::getClobber(SI); 526 527 // If alias analysis can tell that this store is guaranteed to not modify 528 // the query pointer, ignore it. Use getModRefInfo to handle cases where 529 // the query pointer points to constant memory etc. 530 if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef) 531 continue; 532 533 // Ok, this store might clobber the query pointer. Check to see if it is 534 // a must alias: in this case, we want to return this as a def. 535 AliasAnalysis::Location StoreLoc = AA->getLocation(SI); 536 537 // If we found a pointer, check if it could be the same as our pointer. 538 AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc); 539 540 if (R == AliasAnalysis::NoAlias) 541 continue; 542 if (R == AliasAnalysis::MustAlias) 543 return MemDepResult::getDef(Inst); 544 return MemDepResult::getClobber(Inst); 545 } 546 547 // If this is an allocation, and if we know that the accessed pointer is to 548 // the allocation, return Def. This means that there is no dependence and 549 // the access can be optimized based on that. For example, a load could 550 // turn into undef. 551 // Note: Only determine this to be a malloc if Inst is the malloc call, not 552 // a subsequent bitcast of the malloc call result. There can be stores to 553 // the malloced memory between the malloc call and its bitcast uses, and we 554 // need to continue scanning until the malloc call. 555 if (isa<AllocaInst>(Inst) || 556 (isa<CallInst>(Inst) && extractMallocCall(Inst))) { 557 const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, TD); 558 559 if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr)) 560 return MemDepResult::getDef(Inst); 561 continue; 562 } 563 564 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. 565 switch (getModRefInfo(Inst, MemLoc)) { 566 case AliasAnalysis::NoModRef: 567 // If the call has no effect on the queried pointer, just ignore it. 568 continue; 569 case AliasAnalysis::Mod: 570 return MemDepResult::getClobber(Inst); 571 case AliasAnalysis::Ref: 572 // If the call is known to never store to the pointer, and if this is a 573 // load query, we can safely ignore it (scan past it). 574 if (isLoad) 575 continue; 576 default: 577 // Otherwise, there is a potential dependence. Return a clobber. 578 return MemDepResult::getClobber(Inst); 579 } 580 } 581 582 // No dependence found. If this is the entry block of the function, it is 583 // unknown, otherwise it is non-local. 584 if (BB != &BB->getParent()->getEntryBlock()) 585 return MemDepResult::getNonLocal(); 586 return MemDepResult::getNonFuncLocal(); 587 } 588 589 /// getDependency - Return the instruction on which a memory operation 590 /// depends. 591 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) { 592 Instruction *ScanPos = QueryInst; 593 594 // Check for a cached result 595 MemDepResult &LocalCache = LocalDeps[QueryInst]; 596 597 // If the cached entry is non-dirty, just return it. Note that this depends 598 // on MemDepResult's default constructing to 'dirty'. 599 if (!LocalCache.isDirty()) 600 return LocalCache; 601 602 // Otherwise, if we have a dirty entry, we know we can start the scan at that 603 // instruction, which may save us some work. 604 if (Instruction *Inst = LocalCache.getInst()) { 605 ScanPos = Inst; 606 607 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); 608 } 609 610 BasicBlock *QueryParent = QueryInst->getParent(); 611 612 // Do the scan. 613 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { 614 // No dependence found. If this is the entry block of the function, it is 615 // unknown, otherwise it is non-local. 616 if (QueryParent != &QueryParent->getParent()->getEntryBlock()) 617 LocalCache = MemDepResult::getNonLocal(); 618 else 619 LocalCache = MemDepResult::getNonFuncLocal(); 620 } else { 621 AliasAnalysis::Location MemLoc; 622 AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA); 623 if (MemLoc.Ptr) { 624 // If we can do a pointer scan, make it happen. 625 bool isLoad = !(MR & AliasAnalysis::Mod); 626 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst)) 627 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start; 628 629 LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos, 630 QueryParent); 631 } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) { 632 CallSite QueryCS(QueryInst); 633 bool isReadOnly = AA->onlyReadsMemory(QueryCS); 634 LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos, 635 QueryParent); 636 } else 637 // Non-memory instruction. 638 LocalCache = MemDepResult::getUnknown(); 639 } 640 641 // Remember the result! 642 if (Instruction *I = LocalCache.getInst()) 643 ReverseLocalDeps[I].insert(QueryInst); 644 645 return LocalCache; 646 } 647 648 #ifndef NDEBUG 649 /// AssertSorted - This method is used when -debug is specified to verify that 650 /// cache arrays are properly kept sorted. 651 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 652 int Count = -1) { 653 if (Count == -1) Count = Cache.size(); 654 if (Count == 0) return; 655 656 for (unsigned i = 1; i != unsigned(Count); ++i) 657 assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!"); 658 } 659 #endif 660 661 /// getNonLocalCallDependency - Perform a full dependency query for the 662 /// specified call, returning the set of blocks that the value is 663 /// potentially live across. The returned set of results will include a 664 /// "NonLocal" result for all blocks where the value is live across. 665 /// 666 /// This method assumes the instruction returns a "NonLocal" dependency 667 /// within its own block. 668 /// 669 /// This returns a reference to an internal data structure that may be 670 /// invalidated on the next non-local query or when an instruction is 671 /// removed. Clients must copy this data if they want it around longer than 672 /// that. 673 const MemoryDependenceAnalysis::NonLocalDepInfo & 674 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) { 675 assert(getDependency(QueryCS.getInstruction()).isNonLocal() && 676 "getNonLocalCallDependency should only be used on calls with non-local deps!"); 677 PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()]; 678 NonLocalDepInfo &Cache = CacheP.first; 679 680 /// DirtyBlocks - This is the set of blocks that need to be recomputed. In 681 /// the cached case, this can happen due to instructions being deleted etc. In 682 /// the uncached case, this starts out as the set of predecessors we care 683 /// about. 684 SmallVector<BasicBlock*, 32> DirtyBlocks; 685 686 if (!Cache.empty()) { 687 // Okay, we have a cache entry. If we know it is not dirty, just return it 688 // with no computation. 689 if (!CacheP.second) { 690 ++NumCacheNonLocal; 691 return Cache; 692 } 693 694 // If we already have a partially computed set of results, scan them to 695 // determine what is dirty, seeding our initial DirtyBlocks worklist. 696 for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end(); 697 I != E; ++I) 698 if (I->getResult().isDirty()) 699 DirtyBlocks.push_back(I->getBB()); 700 701 // Sort the cache so that we can do fast binary search lookups below. 702 std::sort(Cache.begin(), Cache.end()); 703 704 ++NumCacheDirtyNonLocal; 705 //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " 706 // << Cache.size() << " cached: " << *QueryInst; 707 } else { 708 // Seed DirtyBlocks with each of the preds of QueryInst's block. 709 BasicBlock *QueryBB = QueryCS.getInstruction()->getParent(); 710 for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI) 711 DirtyBlocks.push_back(*PI); 712 ++NumUncacheNonLocal; 713 } 714 715 // isReadonlyCall - If this is a read-only call, we can be more aggressive. 716 bool isReadonlyCall = AA->onlyReadsMemory(QueryCS); 717 718 SmallPtrSet<BasicBlock*, 64> Visited; 719 720 unsigned NumSortedEntries = Cache.size(); 721 DEBUG(AssertSorted(Cache)); 722 723 // Iterate while we still have blocks to update. 724 while (!DirtyBlocks.empty()) { 725 BasicBlock *DirtyBB = DirtyBlocks.back(); 726 DirtyBlocks.pop_back(); 727 728 // Already processed this block? 729 if (!Visited.insert(DirtyBB)) 730 continue; 731 732 // Do a binary search to see if we already have an entry for this block in 733 // the cache set. If so, find it. 734 DEBUG(AssertSorted(Cache, NumSortedEntries)); 735 NonLocalDepInfo::iterator Entry = 736 std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries, 737 NonLocalDepEntry(DirtyBB)); 738 if (Entry != Cache.begin() && prior(Entry)->getBB() == DirtyBB) 739 --Entry; 740 741 NonLocalDepEntry *ExistingResult = 0; 742 if (Entry != Cache.begin()+NumSortedEntries && 743 Entry->getBB() == DirtyBB) { 744 // If we already have an entry, and if it isn't already dirty, the block 745 // is done. 746 if (!Entry->getResult().isDirty()) 747 continue; 748 749 // Otherwise, remember this slot so we can update the value. 750 ExistingResult = &*Entry; 751 } 752 753 // If the dirty entry has a pointer, start scanning from it so we don't have 754 // to rescan the entire block. 755 BasicBlock::iterator ScanPos = DirtyBB->end(); 756 if (ExistingResult) { 757 if (Instruction *Inst = ExistingResult->getResult().getInst()) { 758 ScanPos = Inst; 759 // We're removing QueryInst's use of Inst. 760 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, 761 QueryCS.getInstruction()); 762 } 763 } 764 765 // Find out if this block has a local dependency for QueryInst. 766 MemDepResult Dep; 767 768 if (ScanPos != DirtyBB->begin()) { 769 Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB); 770 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { 771 // No dependence found. If this is the entry block of the function, it is 772 // a clobber, otherwise it is unknown. 773 Dep = MemDepResult::getNonLocal(); 774 } else { 775 Dep = MemDepResult::getNonFuncLocal(); 776 } 777 778 // If we had a dirty entry for the block, update it. Otherwise, just add 779 // a new entry. 780 if (ExistingResult) 781 ExistingResult->setResult(Dep); 782 else 783 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); 784 785 // If the block has a dependency (i.e. it isn't completely transparent to 786 // the value), remember the association! 787 if (!Dep.isNonLocal()) { 788 // Keep the ReverseNonLocalDeps map up to date so we can efficiently 789 // update this when we remove instructions. 790 if (Instruction *Inst = Dep.getInst()) 791 ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction()); 792 } else { 793 794 // If the block *is* completely transparent to the load, we need to check 795 // the predecessors of this block. Add them to our worklist. 796 for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI) 797 DirtyBlocks.push_back(*PI); 798 } 799 } 800 801 return Cache; 802 } 803 804 /// getNonLocalPointerDependency - Perform a full dependency query for an 805 /// access to the specified (non-volatile) memory location, returning the 806 /// set of instructions that either define or clobber the value. 807 /// 808 /// This method assumes the pointer has a "NonLocal" dependency within its 809 /// own block. 810 /// 811 void MemoryDependenceAnalysis:: 812 getNonLocalPointerDependency(const AliasAnalysis::Location &Loc, bool isLoad, 813 BasicBlock *FromBB, 814 SmallVectorImpl<NonLocalDepResult> &Result) { 815 assert(Loc.Ptr->getType()->isPointerTy() && 816 "Can't get pointer deps of a non-pointer!"); 817 Result.clear(); 818 819 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), TD); 820 821 // This is the set of blocks we've inspected, and the pointer we consider in 822 // each block. Because of critical edges, we currently bail out if querying 823 // a block with multiple different pointers. This can happen during PHI 824 // translation. 825 DenseMap<BasicBlock*, Value*> Visited; 826 if (!getNonLocalPointerDepFromBB(Address, Loc, isLoad, FromBB, 827 Result, Visited, true)) 828 return; 829 Result.clear(); 830 Result.push_back(NonLocalDepResult(FromBB, 831 MemDepResult::getUnknown(), 832 const_cast<Value *>(Loc.Ptr))); 833 } 834 835 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with 836 /// Pointer/PointeeSize using either cached information in Cache or by doing a 837 /// lookup (which may use dirty cache info if available). If we do a lookup, 838 /// add the result to the cache. 839 MemDepResult MemoryDependenceAnalysis:: 840 GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc, 841 bool isLoad, BasicBlock *BB, 842 NonLocalDepInfo *Cache, unsigned NumSortedEntries) { 843 844 // Do a binary search to see if we already have an entry for this block in 845 // the cache set. If so, find it. 846 NonLocalDepInfo::iterator Entry = 847 std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries, 848 NonLocalDepEntry(BB)); 849 if (Entry != Cache->begin() && (Entry-1)->getBB() == BB) 850 --Entry; 851 852 NonLocalDepEntry *ExistingResult = 0; 853 if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB) 854 ExistingResult = &*Entry; 855 856 // If we have a cached entry, and it is non-dirty, use it as the value for 857 // this dependency. 858 if (ExistingResult && !ExistingResult->getResult().isDirty()) { 859 ++NumCacheNonLocalPtr; 860 return ExistingResult->getResult(); 861 } 862 863 // Otherwise, we have to scan for the value. If we have a dirty cache 864 // entry, start scanning from its position, otherwise we scan from the end 865 // of the block. 866 BasicBlock::iterator ScanPos = BB->end(); 867 if (ExistingResult && ExistingResult->getResult().getInst()) { 868 assert(ExistingResult->getResult().getInst()->getParent() == BB && 869 "Instruction invalidated?"); 870 ++NumCacheDirtyNonLocalPtr; 871 ScanPos = ExistingResult->getResult().getInst(); 872 873 // Eliminating the dirty entry from 'Cache', so update the reverse info. 874 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 875 RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey); 876 } else { 877 ++NumUncacheNonLocalPtr; 878 } 879 880 // Scan the block for the dependency. 881 MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB); 882 883 // If we had a dirty entry for the block, update it. Otherwise, just add 884 // a new entry. 885 if (ExistingResult) 886 ExistingResult->setResult(Dep); 887 else 888 Cache->push_back(NonLocalDepEntry(BB, Dep)); 889 890 // If the block has a dependency (i.e. it isn't completely transparent to 891 // the value), remember the reverse association because we just added it 892 // to Cache! 893 if (!Dep.isDef() && !Dep.isClobber()) 894 return Dep; 895 896 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently 897 // update MemDep when we remove instructions. 898 Instruction *Inst = Dep.getInst(); 899 assert(Inst && "Didn't depend on anything?"); 900 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 901 ReverseNonLocalPtrDeps[Inst].insert(CacheKey); 902 return Dep; 903 } 904 905 /// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain 906 /// number of elements in the array that are already properly ordered. This is 907 /// optimized for the case when only a few entries are added. 908 static void 909 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 910 unsigned NumSortedEntries) { 911 switch (Cache.size() - NumSortedEntries) { 912 case 0: 913 // done, no new entries. 914 break; 915 case 2: { 916 // Two new entries, insert the last one into place. 917 NonLocalDepEntry Val = Cache.back(); 918 Cache.pop_back(); 919 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 920 std::upper_bound(Cache.begin(), Cache.end()-1, Val); 921 Cache.insert(Entry, Val); 922 // FALL THROUGH. 923 } 924 case 1: 925 // One new entry, Just insert the new value at the appropriate position. 926 if (Cache.size() != 1) { 927 NonLocalDepEntry Val = Cache.back(); 928 Cache.pop_back(); 929 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 930 std::upper_bound(Cache.begin(), Cache.end(), Val); 931 Cache.insert(Entry, Val); 932 } 933 break; 934 default: 935 // Added many values, do a full scale sort. 936 std::sort(Cache.begin(), Cache.end()); 937 break; 938 } 939 } 940 941 /// getNonLocalPointerDepFromBB - Perform a dependency query based on 942 /// pointer/pointeesize starting at the end of StartBB. Add any clobber/def 943 /// results to the results vector and keep track of which blocks are visited in 944 /// 'Visited'. 945 /// 946 /// This has special behavior for the first block queries (when SkipFirstBlock 947 /// is true). In this special case, it ignores the contents of the specified 948 /// block and starts returning dependence info for its predecessors. 949 /// 950 /// This function returns false on success, or true to indicate that it could 951 /// not compute dependence information for some reason. This should be treated 952 /// as a clobber dependence on the first instruction in the predecessor block. 953 bool MemoryDependenceAnalysis:: 954 getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, 955 const AliasAnalysis::Location &Loc, 956 bool isLoad, BasicBlock *StartBB, 957 SmallVectorImpl<NonLocalDepResult> &Result, 958 DenseMap<BasicBlock*, Value*> &Visited, 959 bool SkipFirstBlock) { 960 961 // Look up the cached info for Pointer. 962 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); 963 964 // Set up a temporary NLPI value. If the map doesn't yet have an entry for 965 // CacheKey, this value will be inserted as the associated value. Otherwise, 966 // it'll be ignored, and we'll have to check to see if the cached size and 967 // tbaa tag are consistent with the current query. 968 NonLocalPointerInfo InitialNLPI; 969 InitialNLPI.Size = Loc.Size; 970 InitialNLPI.TBAATag = Loc.TBAATag; 971 972 // Get the NLPI for CacheKey, inserting one into the map if it doesn't 973 // already have one. 974 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = 975 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI)); 976 NonLocalPointerInfo *CacheInfo = &Pair.first->second; 977 978 // If we already have a cache entry for this CacheKey, we may need to do some 979 // work to reconcile the cache entry and the current query. 980 if (!Pair.second) { 981 if (CacheInfo->Size < Loc.Size) { 982 // The query's Size is greater than the cached one. Throw out the 983 // cached data and procede with the query at the greater size. 984 CacheInfo->Pair = BBSkipFirstBlockPair(); 985 CacheInfo->Size = Loc.Size; 986 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(), 987 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI) 988 if (Instruction *Inst = DI->getResult().getInst()) 989 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 990 CacheInfo->NonLocalDeps.clear(); 991 } else if (CacheInfo->Size > Loc.Size) { 992 // This query's Size is less than the cached one. Conservatively restart 993 // the query using the greater size. 994 return getNonLocalPointerDepFromBB(Pointer, 995 Loc.getWithNewSize(CacheInfo->Size), 996 isLoad, StartBB, Result, Visited, 997 SkipFirstBlock); 998 } 999 1000 // If the query's TBAATag is inconsistent with the cached one, 1001 // conservatively throw out the cached data and restart the query with 1002 // no tag if needed. 1003 if (CacheInfo->TBAATag != Loc.TBAATag) { 1004 if (CacheInfo->TBAATag) { 1005 CacheInfo->Pair = BBSkipFirstBlockPair(); 1006 CacheInfo->TBAATag = 0; 1007 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(), 1008 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI) 1009 if (Instruction *Inst = DI->getResult().getInst()) 1010 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1011 CacheInfo->NonLocalDeps.clear(); 1012 } 1013 if (Loc.TBAATag) 1014 return getNonLocalPointerDepFromBB(Pointer, Loc.getWithoutTBAATag(), 1015 isLoad, StartBB, Result, Visited, 1016 SkipFirstBlock); 1017 } 1018 } 1019 1020 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps; 1021 1022 // If we have valid cached information for exactly the block we are 1023 // investigating, just return it with no recomputation. 1024 if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { 1025 // We have a fully cached result for this query then we can just return the 1026 // cached results and populate the visited set. However, we have to verify 1027 // that we don't already have conflicting results for these blocks. Check 1028 // to ensure that if a block in the results set is in the visited set that 1029 // it was for the same pointer query. 1030 if (!Visited.empty()) { 1031 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 1032 I != E; ++I) { 1033 DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB()); 1034 if (VI == Visited.end() || VI->second == Pointer.getAddr()) 1035 continue; 1036 1037 // We have a pointer mismatch in a block. Just return clobber, saying 1038 // that something was clobbered in this result. We could also do a 1039 // non-fully cached query, but there is little point in doing this. 1040 return true; 1041 } 1042 } 1043 1044 Value *Addr = Pointer.getAddr(); 1045 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 1046 I != E; ++I) { 1047 Visited.insert(std::make_pair(I->getBB(), Addr)); 1048 if (!I->getResult().isNonLocal()) 1049 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr)); 1050 } 1051 ++NumCacheCompleteNonLocalPtr; 1052 return false; 1053 } 1054 1055 // Otherwise, either this is a new block, a block with an invalid cache 1056 // pointer or one that we're about to invalidate by putting more info into it 1057 // than its valid cache info. If empty, the result will be valid cache info, 1058 // otherwise it isn't. 1059 if (Cache->empty()) 1060 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); 1061 else 1062 CacheInfo->Pair = BBSkipFirstBlockPair(); 1063 1064 SmallVector<BasicBlock*, 32> Worklist; 1065 Worklist.push_back(StartBB); 1066 1067 // PredList used inside loop. 1068 SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList; 1069 1070 // Keep track of the entries that we know are sorted. Previously cached 1071 // entries will all be sorted. The entries we add we only sort on demand (we 1072 // don't insert every element into its sorted position). We know that we 1073 // won't get any reuse from currently inserted values, because we don't 1074 // revisit blocks after we insert info for them. 1075 unsigned NumSortedEntries = Cache->size(); 1076 DEBUG(AssertSorted(*Cache)); 1077 1078 while (!Worklist.empty()) { 1079 BasicBlock *BB = Worklist.pop_back_val(); 1080 1081 // Skip the first block if we have it. 1082 if (!SkipFirstBlock) { 1083 // Analyze the dependency of *Pointer in FromBB. See if we already have 1084 // been here. 1085 assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); 1086 1087 // Get the dependency info for Pointer in BB. If we have cached 1088 // information, we will use it, otherwise we compute it. 1089 DEBUG(AssertSorted(*Cache, NumSortedEntries)); 1090 MemDepResult Dep = GetNonLocalInfoForBlock(Loc, isLoad, BB, Cache, 1091 NumSortedEntries); 1092 1093 // If we got a Def or Clobber, add this to the list of results. 1094 if (!Dep.isNonLocal()) { 1095 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); 1096 continue; 1097 } 1098 } 1099 1100 // If 'Pointer' is an instruction defined in this block, then we need to do 1101 // phi translation to change it into a value live in the predecessor block. 1102 // If not, we just add the predecessors to the worklist and scan them with 1103 // the same Pointer. 1104 if (!Pointer.NeedsPHITranslationFromBlock(BB)) { 1105 SkipFirstBlock = false; 1106 SmallVector<BasicBlock*, 16> NewBlocks; 1107 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) { 1108 // Verify that we haven't looked at this block yet. 1109 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 1110 InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr())); 1111 if (InsertRes.second) { 1112 // First time we've looked at *PI. 1113 NewBlocks.push_back(*PI); 1114 continue; 1115 } 1116 1117 // If we have seen this block before, but it was with a different 1118 // pointer then we have a phi translation failure and we have to treat 1119 // this as a clobber. 1120 if (InsertRes.first->second != Pointer.getAddr()) { 1121 // Make sure to clean up the Visited map before continuing on to 1122 // PredTranslationFailure. 1123 for (unsigned i = 0; i < NewBlocks.size(); i++) 1124 Visited.erase(NewBlocks[i]); 1125 goto PredTranslationFailure; 1126 } 1127 } 1128 Worklist.append(NewBlocks.begin(), NewBlocks.end()); 1129 continue; 1130 } 1131 1132 // We do need to do phi translation, if we know ahead of time we can't phi 1133 // translate this value, don't even try. 1134 if (!Pointer.IsPotentiallyPHITranslatable()) 1135 goto PredTranslationFailure; 1136 1137 // We may have added values to the cache list before this PHI translation. 1138 // If so, we haven't done anything to ensure that the cache remains sorted. 1139 // Sort it now (if needed) so that recursive invocations of 1140 // getNonLocalPointerDepFromBB and other routines that could reuse the cache 1141 // value will only see properly sorted cache arrays. 1142 if (Cache && NumSortedEntries != Cache->size()) { 1143 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1144 NumSortedEntries = Cache->size(); 1145 } 1146 Cache = 0; 1147 1148 PredList.clear(); 1149 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) { 1150 BasicBlock *Pred = *PI; 1151 PredList.push_back(std::make_pair(Pred, Pointer)); 1152 1153 // Get the PHI translated pointer in this predecessor. This can fail if 1154 // not translatable, in which case the getAddr() returns null. 1155 PHITransAddr &PredPointer = PredList.back().second; 1156 PredPointer.PHITranslateValue(BB, Pred, 0); 1157 1158 Value *PredPtrVal = PredPointer.getAddr(); 1159 1160 // Check to see if we have already visited this pred block with another 1161 // pointer. If so, we can't do this lookup. This failure can occur 1162 // with PHI translation when a critical edge exists and the PHI node in 1163 // the successor translates to a pointer value different than the 1164 // pointer the block was first analyzed with. 1165 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 1166 InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal)); 1167 1168 if (!InsertRes.second) { 1169 // We found the pred; take it off the list of preds to visit. 1170 PredList.pop_back(); 1171 1172 // If the predecessor was visited with PredPtr, then we already did 1173 // the analysis and can ignore it. 1174 if (InsertRes.first->second == PredPtrVal) 1175 continue; 1176 1177 // Otherwise, the block was previously analyzed with a different 1178 // pointer. We can't represent the result of this case, so we just 1179 // treat this as a phi translation failure. 1180 1181 // Make sure to clean up the Visited map before continuing on to 1182 // PredTranslationFailure. 1183 for (unsigned i = 0; i < PredList.size(); i++) 1184 Visited.erase(PredList[i].first); 1185 1186 goto PredTranslationFailure; 1187 } 1188 } 1189 1190 // Actually process results here; this need to be a separate loop to avoid 1191 // calling getNonLocalPointerDepFromBB for blocks we don't want to return 1192 // any results for. (getNonLocalPointerDepFromBB will modify our 1193 // datastructures in ways the code after the PredTranslationFailure label 1194 // doesn't expect.) 1195 for (unsigned i = 0; i < PredList.size(); i++) { 1196 BasicBlock *Pred = PredList[i].first; 1197 PHITransAddr &PredPointer = PredList[i].second; 1198 Value *PredPtrVal = PredPointer.getAddr(); 1199 1200 bool CanTranslate = true; 1201 // If PHI translation was unable to find an available pointer in this 1202 // predecessor, then we have to assume that the pointer is clobbered in 1203 // that predecessor. We can still do PRE of the load, which would insert 1204 // a computation of the pointer in this predecessor. 1205 if (PredPtrVal == 0) 1206 CanTranslate = false; 1207 1208 // FIXME: it is entirely possible that PHI translating will end up with 1209 // the same value. Consider PHI translating something like: 1210 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need* 1211 // to recurse here, pedantically speaking. 1212 1213 // If getNonLocalPointerDepFromBB fails here, that means the cached 1214 // result conflicted with the Visited list; we have to conservatively 1215 // assume it is unknown, but this also does not block PRE of the load. 1216 if (!CanTranslate || 1217 getNonLocalPointerDepFromBB(PredPointer, 1218 Loc.getWithNewPtr(PredPtrVal), 1219 isLoad, Pred, 1220 Result, Visited)) { 1221 // Add the entry to the Result list. 1222 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal); 1223 Result.push_back(Entry); 1224 1225 // Since we had a phi translation failure, the cache for CacheKey won't 1226 // include all of the entries that we need to immediately satisfy future 1227 // queries. Mark this in NonLocalPointerDeps by setting the 1228 // BBSkipFirstBlockPair pointer to null. This requires reuse of the 1229 // cached value to do more work but not miss the phi trans failure. 1230 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey]; 1231 NLPI.Pair = BBSkipFirstBlockPair(); 1232 continue; 1233 } 1234 } 1235 1236 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. 1237 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1238 Cache = &CacheInfo->NonLocalDeps; 1239 NumSortedEntries = Cache->size(); 1240 1241 // Since we did phi translation, the "Cache" set won't contain all of the 1242 // results for the query. This is ok (we can still use it to accelerate 1243 // specific block queries) but we can't do the fastpath "return all 1244 // results from the set" Clear out the indicator for this. 1245 CacheInfo->Pair = BBSkipFirstBlockPair(); 1246 SkipFirstBlock = false; 1247 continue; 1248 1249 PredTranslationFailure: 1250 // The following code is "failure"; we can't produce a sane translation 1251 // for the given block. It assumes that we haven't modified any of 1252 // our datastructures while processing the current block. 1253 1254 if (Cache == 0) { 1255 // Refresh the CacheInfo/Cache pointer if it got invalidated. 1256 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1257 Cache = &CacheInfo->NonLocalDeps; 1258 NumSortedEntries = Cache->size(); 1259 } 1260 1261 // Since we failed phi translation, the "Cache" set won't contain all of the 1262 // results for the query. This is ok (we can still use it to accelerate 1263 // specific block queries) but we can't do the fastpath "return all 1264 // results from the set". Clear out the indicator for this. 1265 CacheInfo->Pair = BBSkipFirstBlockPair(); 1266 1267 // If *nothing* works, mark the pointer as unknown. 1268 // 1269 // If this is the magic first block, return this as a clobber of the whole 1270 // incoming value. Since we can't phi translate to one of the predecessors, 1271 // we have to bail out. 1272 if (SkipFirstBlock) 1273 return true; 1274 1275 for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) { 1276 assert(I != Cache->rend() && "Didn't find current block??"); 1277 if (I->getBB() != BB) 1278 continue; 1279 1280 assert(I->getResult().isNonLocal() && 1281 "Should only be here with transparent block"); 1282 I->setResult(MemDepResult::getUnknown()); 1283 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), 1284 Pointer.getAddr())); 1285 break; 1286 } 1287 } 1288 1289 // Okay, we're done now. If we added new values to the cache, re-sort it. 1290 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1291 DEBUG(AssertSorted(*Cache)); 1292 return false; 1293 } 1294 1295 /// RemoveCachedNonLocalPointerDependencies - If P exists in 1296 /// CachedNonLocalPointerInfo, remove it. 1297 void MemoryDependenceAnalysis:: 1298 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) { 1299 CachedNonLocalPointerInfo::iterator It = 1300 NonLocalPointerDeps.find(P); 1301 if (It == NonLocalPointerDeps.end()) return; 1302 1303 // Remove all of the entries in the BB->val map. This involves removing 1304 // instructions from the reverse map. 1305 NonLocalDepInfo &PInfo = It->second.NonLocalDeps; 1306 1307 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { 1308 Instruction *Target = PInfo[i].getResult().getInst(); 1309 if (Target == 0) continue; // Ignore non-local dep results. 1310 assert(Target->getParent() == PInfo[i].getBB()); 1311 1312 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1313 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); 1314 } 1315 1316 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). 1317 NonLocalPointerDeps.erase(It); 1318 } 1319 1320 1321 /// invalidateCachedPointerInfo - This method is used to invalidate cached 1322 /// information about the specified pointer, because it may be too 1323 /// conservative in memdep. This is an optional call that can be used when 1324 /// the client detects an equivalence between the pointer and some other 1325 /// value and replaces the other value with ptr. This can make Ptr available 1326 /// in more places that cached info does not necessarily keep. 1327 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) { 1328 // If Ptr isn't really a pointer, just ignore it. 1329 if (!Ptr->getType()->isPointerTy()) return; 1330 // Flush store info for the pointer. 1331 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); 1332 // Flush load info for the pointer. 1333 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); 1334 } 1335 1336 /// invalidateCachedPredecessors - Clear the PredIteratorCache info. 1337 /// This needs to be done when the CFG changes, e.g., due to splitting 1338 /// critical edges. 1339 void MemoryDependenceAnalysis::invalidateCachedPredecessors() { 1340 PredCache->clear(); 1341 } 1342 1343 /// removeInstruction - Remove an instruction from the dependence analysis, 1344 /// updating the dependence of instructions that previously depended on it. 1345 /// This method attempts to keep the cache coherent using the reverse map. 1346 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) { 1347 // Walk through the Non-local dependencies, removing this one as the value 1348 // for any cached queries. 1349 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst); 1350 if (NLDI != NonLocalDeps.end()) { 1351 NonLocalDepInfo &BlockMap = NLDI->second.first; 1352 for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end(); 1353 DI != DE; ++DI) 1354 if (Instruction *Inst = DI->getResult().getInst()) 1355 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); 1356 NonLocalDeps.erase(NLDI); 1357 } 1358 1359 // If we have a cached local dependence query for this instruction, remove it. 1360 // 1361 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); 1362 if (LocalDepEntry != LocalDeps.end()) { 1363 // Remove us from DepInst's reverse set now that the local dep info is gone. 1364 if (Instruction *Inst = LocalDepEntry->second.getInst()) 1365 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); 1366 1367 // Remove this local dependency info. 1368 LocalDeps.erase(LocalDepEntry); 1369 } 1370 1371 // If we have any cached pointer dependencies on this instruction, remove 1372 // them. If the instruction has non-pointer type, then it can't be a pointer 1373 // base. 1374 1375 // Remove it from both the load info and the store info. The instruction 1376 // can't be in either of these maps if it is non-pointer. 1377 if (RemInst->getType()->isPointerTy()) { 1378 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); 1379 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); 1380 } 1381 1382 // Loop over all of the things that depend on the instruction we're removing. 1383 // 1384 SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd; 1385 1386 // If we find RemInst as a clobber or Def in any of the maps for other values, 1387 // we need to replace its entry with a dirty version of the instruction after 1388 // it. If RemInst is a terminator, we use a null dirty value. 1389 // 1390 // Using a dirty version of the instruction after RemInst saves having to scan 1391 // the entire block to get to this point. 1392 MemDepResult NewDirtyVal; 1393 if (!RemInst->isTerminator()) 1394 NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst)); 1395 1396 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); 1397 if (ReverseDepIt != ReverseLocalDeps.end()) { 1398 SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second; 1399 // RemInst can't be the terminator if it has local stuff depending on it. 1400 assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) && 1401 "Nothing can locally depend on a terminator"); 1402 1403 for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(), 1404 E = ReverseDeps.end(); I != E; ++I) { 1405 Instruction *InstDependingOnRemInst = *I; 1406 assert(InstDependingOnRemInst != RemInst && 1407 "Already removed our local dep info"); 1408 1409 LocalDeps[InstDependingOnRemInst] = NewDirtyVal; 1410 1411 // Make sure to remember that new things depend on NewDepInst. 1412 assert(NewDirtyVal.getInst() && "There is no way something else can have " 1413 "a local dep on this if it is a terminator!"); 1414 ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(), 1415 InstDependingOnRemInst)); 1416 } 1417 1418 ReverseLocalDeps.erase(ReverseDepIt); 1419 1420 // Add new reverse deps after scanning the set, to avoid invalidating the 1421 // 'ReverseDeps' reference. 1422 while (!ReverseDepsToAdd.empty()) { 1423 ReverseLocalDeps[ReverseDepsToAdd.back().first] 1424 .insert(ReverseDepsToAdd.back().second); 1425 ReverseDepsToAdd.pop_back(); 1426 } 1427 } 1428 1429 ReverseDepIt = ReverseNonLocalDeps.find(RemInst); 1430 if (ReverseDepIt != ReverseNonLocalDeps.end()) { 1431 SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second; 1432 for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end(); 1433 I != E; ++I) { 1434 assert(*I != RemInst && "Already removed NonLocalDep info for RemInst"); 1435 1436 PerInstNLInfo &INLD = NonLocalDeps[*I]; 1437 // The information is now dirty! 1438 INLD.second = true; 1439 1440 for (NonLocalDepInfo::iterator DI = INLD.first.begin(), 1441 DE = INLD.first.end(); DI != DE; ++DI) { 1442 if (DI->getResult().getInst() != RemInst) continue; 1443 1444 // Convert to a dirty entry for the subsequent instruction. 1445 DI->setResult(NewDirtyVal); 1446 1447 if (Instruction *NextI = NewDirtyVal.getInst()) 1448 ReverseDepsToAdd.push_back(std::make_pair(NextI, *I)); 1449 } 1450 } 1451 1452 ReverseNonLocalDeps.erase(ReverseDepIt); 1453 1454 // Add new reverse deps after scanning the set, to avoid invalidating 'Set' 1455 while (!ReverseDepsToAdd.empty()) { 1456 ReverseNonLocalDeps[ReverseDepsToAdd.back().first] 1457 .insert(ReverseDepsToAdd.back().second); 1458 ReverseDepsToAdd.pop_back(); 1459 } 1460 } 1461 1462 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a 1463 // value in the NonLocalPointerDeps info. 1464 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = 1465 ReverseNonLocalPtrDeps.find(RemInst); 1466 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { 1467 SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second; 1468 SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd; 1469 1470 for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(), 1471 E = Set.end(); I != E; ++I) { 1472 ValueIsLoadPair P = *I; 1473 assert(P.getPointer() != RemInst && 1474 "Already removed NonLocalPointerDeps info for RemInst"); 1475 1476 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps; 1477 1478 // The cache is not valid for any specific block anymore. 1479 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair(); 1480 1481 // Update any entries for RemInst to use the instruction after it. 1482 for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end(); 1483 DI != DE; ++DI) { 1484 if (DI->getResult().getInst() != RemInst) continue; 1485 1486 // Convert to a dirty entry for the subsequent instruction. 1487 DI->setResult(NewDirtyVal); 1488 1489 if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) 1490 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); 1491 } 1492 1493 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its 1494 // subsequent value may invalidate the sortedness. 1495 std::sort(NLPDI.begin(), NLPDI.end()); 1496 } 1497 1498 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); 1499 1500 while (!ReversePtrDepsToAdd.empty()) { 1501 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first] 1502 .insert(ReversePtrDepsToAdd.back().second); 1503 ReversePtrDepsToAdd.pop_back(); 1504 } 1505 } 1506 1507 1508 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); 1509 AA->deleteValue(RemInst); 1510 DEBUG(verifyRemoved(RemInst)); 1511 } 1512 /// verifyRemoved - Verify that the specified instruction does not occur 1513 /// in our internal data structures. 1514 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const { 1515 for (LocalDepMapType::const_iterator I = LocalDeps.begin(), 1516 E = LocalDeps.end(); I != E; ++I) { 1517 assert(I->first != D && "Inst occurs in data structures"); 1518 assert(I->second.getInst() != D && 1519 "Inst occurs in data structures"); 1520 } 1521 1522 for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(), 1523 E = NonLocalPointerDeps.end(); I != E; ++I) { 1524 assert(I->first.getPointer() != D && "Inst occurs in NLPD map key"); 1525 const NonLocalDepInfo &Val = I->second.NonLocalDeps; 1526 for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end(); 1527 II != E; ++II) 1528 assert(II->getResult().getInst() != D && "Inst occurs as NLPD value"); 1529 } 1530 1531 for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(), 1532 E = NonLocalDeps.end(); I != E; ++I) { 1533 assert(I->first != D && "Inst occurs in data structures"); 1534 const PerInstNLInfo &INLD = I->second; 1535 for (NonLocalDepInfo::const_iterator II = INLD.first.begin(), 1536 EE = INLD.first.end(); II != EE; ++II) 1537 assert(II->getResult().getInst() != D && "Inst occurs in data structures"); 1538 } 1539 1540 for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(), 1541 E = ReverseLocalDeps.end(); I != E; ++I) { 1542 assert(I->first != D && "Inst occurs in data structures"); 1543 for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(), 1544 EE = I->second.end(); II != EE; ++II) 1545 assert(*II != D && "Inst occurs in data structures"); 1546 } 1547 1548 for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(), 1549 E = ReverseNonLocalDeps.end(); 1550 I != E; ++I) { 1551 assert(I->first != D && "Inst occurs in data structures"); 1552 for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(), 1553 EE = I->second.end(); II != EE; ++II) 1554 assert(*II != D && "Inst occurs in data structures"); 1555 } 1556 1557 for (ReverseNonLocalPtrDepTy::const_iterator 1558 I = ReverseNonLocalPtrDeps.begin(), 1559 E = ReverseNonLocalPtrDeps.end(); I != E; ++I) { 1560 assert(I->first != D && "Inst occurs in rev NLPD map"); 1561 1562 for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(), 1563 E = I->second.end(); II != E; ++II) 1564 assert(*II != ValueIsLoadPair(D, false) && 1565 *II != ValueIsLoadPair(D, true) && 1566 "Inst occurs in ReverseNonLocalPtrDeps map"); 1567 } 1568 1569 } 1570