1 //===- Loads.cpp - Local load analysis ------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines simple local analyses for load instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/Loads.h" 15 #include "llvm/Analysis/AliasAnalysis.h" 16 #include "llvm/Analysis/ValueTracking.h" 17 #include "llvm/IR/DataLayout.h" 18 #include "llvm/IR/GlobalAlias.h" 19 #include "llvm/IR/GlobalVariable.h" 20 #include "llvm/IR/IntrinsicInst.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/IR/Operator.h" 24 using namespace llvm; 25 26 /// \brief Test if A and B will obviously have the same value. 27 /// 28 /// This includes recognizing that %t0 and %t1 will have the same 29 /// value in code like this: 30 /// \code 31 /// %t0 = getelementptr \@a, 0, 3 32 /// store i32 0, i32* %t0 33 /// %t1 = getelementptr \@a, 0, 3 34 /// %t2 = load i32* %t1 35 /// \endcode 36 /// 37 static bool AreEquivalentAddressValues(const Value *A, const Value *B) { 38 // Test if the values are trivially equivalent. 39 if (A == B) 40 return true; 41 42 // Test if the values come from identical arithmetic instructions. 43 // Use isIdenticalToWhenDefined instead of isIdenticalTo because 44 // this function is only used when one address use dominates the 45 // other, which means that they'll always either have the same 46 // value or one of them will have an undefined value. 47 if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) || 48 isa<GetElementPtrInst>(A)) 49 if (const Instruction *BI = dyn_cast<Instruction>(B)) 50 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 51 return true; 52 53 // Otherwise they may not be equivalent. 54 return false; 55 } 56 57 /// \brief Check if executing a load of this pointer value cannot trap. 58 /// 59 /// If it is not obviously safe to load from the specified pointer, we do 60 /// a quick local scan of the basic block containing \c ScanFrom, to determine 61 /// if the address is already accessed. 62 /// 63 /// This uses the pointee type to determine how many bytes need to be safe to 64 /// load from the pointer. 65 bool llvm::isSafeToLoadUnconditionally(Value *V, unsigned Align, 66 Instruction *ScanFrom) { 67 const DataLayout &DL = ScanFrom->getModule()->getDataLayout(); 68 69 // Zero alignment means that the load has the ABI alignment for the target 70 if (Align == 0) 71 Align = DL.getABITypeAlignment(V->getType()->getPointerElementType()); 72 assert(isPowerOf2_32(Align)); 73 74 if (isDereferenceableAndAlignedPointer(V, Align, DL)) 75 return true; 76 77 int64_t ByteOffset = 0; 78 Value *Base = V; 79 Base = GetPointerBaseWithConstantOffset(V, ByteOffset, DL); 80 81 if (ByteOffset < 0) // out of bounds 82 return false; 83 84 Type *BaseType = nullptr; 85 unsigned BaseAlign = 0; 86 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Base)) { 87 // An alloca is safe to load from as load as it is suitably aligned. 88 BaseType = AI->getAllocatedType(); 89 BaseAlign = AI->getAlignment(); 90 } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) { 91 // Global variables are not necessarily safe to load from if they are 92 // overridden. Their size may change or they may be weak and require a test 93 // to determine if they were in fact provided. 94 if (!GV->mayBeOverridden()) { 95 BaseType = GV->getType()->getElementType(); 96 BaseAlign = GV->getAlignment(); 97 } 98 } 99 100 PointerType *AddrTy = cast<PointerType>(V->getType()); 101 uint64_t LoadSize = DL.getTypeStoreSize(AddrTy->getElementType()); 102 103 // If we found a base allocated type from either an alloca or global variable, 104 // try to see if we are definitively within the allocated region. We need to 105 // know the size of the base type and the loaded type to do anything in this 106 // case. 107 if (BaseType && BaseType->isSized()) { 108 if (BaseAlign == 0) 109 BaseAlign = DL.getPrefTypeAlignment(BaseType); 110 111 if (Align <= BaseAlign) { 112 // Check if the load is within the bounds of the underlying object. 113 if (ByteOffset + LoadSize <= DL.getTypeAllocSize(BaseType) && 114 ((ByteOffset % Align) == 0)) 115 return true; 116 } 117 } 118 119 // Otherwise, be a little bit aggressive by scanning the local block where we 120 // want to check to see if the pointer is already being loaded or stored 121 // from/to. If so, the previous load or store would have already trapped, 122 // so there is no harm doing an extra load (also, CSE will later eliminate 123 // the load entirely). 124 BasicBlock::iterator BBI = ScanFrom->getIterator(), 125 E = ScanFrom->getParent()->begin(); 126 127 // We can at least always strip pointer casts even though we can't use the 128 // base here. 129 V = V->stripPointerCasts(); 130 131 while (BBI != E) { 132 --BBI; 133 134 // If we see a free or a call which may write to memory (i.e. which might do 135 // a free) the pointer could be marked invalid. 136 if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() && 137 !isa<DbgInfoIntrinsic>(BBI)) 138 return false; 139 140 Value *AccessedPtr; 141 unsigned AccessedAlign; 142 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 143 AccessedPtr = LI->getPointerOperand(); 144 AccessedAlign = LI->getAlignment(); 145 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 146 AccessedPtr = SI->getPointerOperand(); 147 AccessedAlign = SI->getAlignment(); 148 } else 149 continue; 150 151 Type *AccessedTy = AccessedPtr->getType()->getPointerElementType(); 152 if (AccessedAlign == 0) 153 AccessedAlign = DL.getABITypeAlignment(AccessedTy); 154 if (AccessedAlign < Align) 155 continue; 156 157 // Handle trivial cases. 158 if (AccessedPtr == V) 159 return true; 160 161 if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) && 162 LoadSize <= DL.getTypeStoreSize(AccessedTy)) 163 return true; 164 } 165 return false; 166 } 167 168 /// DefMaxInstsToScan - the default number of maximum instructions 169 /// to scan in the block, used by FindAvailableLoadedValue(). 170 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump 171 /// threading in part by eliminating partially redundant loads. 172 /// At that point, the value of MaxInstsToScan was already set to '6' 173 /// without documented explanation. 174 cl::opt<unsigned> 175 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden, 176 cl::desc("Use this to specify the default maximum number of instructions " 177 "to scan backward from a given instruction, when searching for " 178 "available loaded value")); 179 180 /// \brief Scan the ScanBB block backwards to see if we have the value at the 181 /// memory address *Ptr locally available within a small number of instructions. 182 /// 183 /// The scan starts from \c ScanFrom. \c MaxInstsToScan specifies the maximum 184 /// instructions to scan in the block. If it is set to \c 0, it will scan the whole 185 /// block. 186 /// 187 /// If the value is available, this function returns it. If not, it returns the 188 /// iterator for the last validated instruction that the value would be live 189 /// through. If we scanned the entire block and didn't find something that 190 /// invalidates \c *Ptr or provides it, \c ScanFrom is left at the last 191 /// instruction processed and this returns null. 192 /// 193 /// You can also optionally specify an alias analysis implementation, which 194 /// makes this more precise. 195 /// 196 /// If \c AATags is non-null and a load or store is found, the AA tags from the 197 /// load or store are recorded there. If there are no AA tags or if no access is 198 /// found, it is left unmodified. 199 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, BasicBlock *ScanBB, 200 BasicBlock::iterator &ScanFrom, 201 unsigned MaxInstsToScan, 202 AliasAnalysis *AA, AAMDNodes *AATags) { 203 if (MaxInstsToScan == 0) 204 MaxInstsToScan = ~0U; 205 206 Value *Ptr = Load->getPointerOperand(); 207 Type *AccessTy = Load->getType(); 208 209 const DataLayout &DL = ScanBB->getModule()->getDataLayout(); 210 211 // Try to get the store size for the type. 212 uint64_t AccessSize = DL.getTypeStoreSize(AccessTy); 213 214 Value *StrippedPtr = Ptr->stripPointerCasts(); 215 216 while (ScanFrom != ScanBB->begin()) { 217 // We must ignore debug info directives when counting (otherwise they 218 // would affect codegen). 219 Instruction *Inst = &*--ScanFrom; 220 if (isa<DbgInfoIntrinsic>(Inst)) 221 continue; 222 223 // Restore ScanFrom to expected value in case next test succeeds 224 ScanFrom++; 225 226 // Don't scan huge blocks. 227 if (MaxInstsToScan-- == 0) 228 return nullptr; 229 230 --ScanFrom; 231 // If this is a load of Ptr, the loaded value is available. 232 // (This is true even if the load is volatile or atomic, although 233 // those cases are unlikely.) 234 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 235 if (AreEquivalentAddressValues( 236 LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) && 237 CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) { 238 if (AATags) 239 LI->getAAMetadata(*AATags); 240 return LI; 241 } 242 243 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 244 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts(); 245 // If this is a store through Ptr, the value is available! 246 // (This is true even if the store is volatile or atomic, although 247 // those cases are unlikely.) 248 if (AreEquivalentAddressValues(StorePtr, StrippedPtr) && 249 CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(), 250 AccessTy, DL)) { 251 if (AATags) 252 SI->getAAMetadata(*AATags); 253 return SI->getOperand(0); 254 } 255 256 // If both StrippedPtr and StorePtr reach all the way to an alloca or 257 // global and they are different, ignore the store. This is a trivial form 258 // of alias analysis that is important for reg2mem'd code. 259 if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) && 260 (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) && 261 StrippedPtr != StorePtr) 262 continue; 263 264 // If we have alias analysis and it says the store won't modify the loaded 265 // value, ignore the store. 266 if (AA && (AA->getModRefInfo(SI, StrippedPtr, AccessSize) & MRI_Mod) == 0) 267 continue; 268 269 // Otherwise the store that may or may not alias the pointer, bail out. 270 ++ScanFrom; 271 return nullptr; 272 } 273 274 // If this is some other instruction that may clobber Ptr, bail out. 275 if (Inst->mayWriteToMemory()) { 276 // If alias analysis claims that it really won't modify the load, 277 // ignore it. 278 if (AA && 279 (AA->getModRefInfo(Inst, StrippedPtr, AccessSize) & MRI_Mod) == 0) 280 continue; 281 282 // May modify the pointer, bail out. 283 ++ScanFrom; 284 return nullptr; 285 } 286 } 287 288 // Got to the start of the block, we didn't find it, but are done for this 289 // block. 290 return nullptr; 291 } 292