1 //===- Loads.cpp - Local load analysis ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines simple local analyses for load instructions.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/Analysis/Loads.h"
14 #include "llvm/Analysis/AliasAnalysis.h"
15 #include "llvm/Analysis/AssumeBundleQueries.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/MemoryBuiltins.h"
18 #include "llvm/Analysis/MemoryLocation.h"
19 #include "llvm/Analysis/ScalarEvolution.h"
20 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Operator.h"
26
27 using namespace llvm;
28
isAligned(const Value * Base,const APInt & Offset,Align Alignment,const DataLayout & DL)29 static bool isAligned(const Value *Base, const APInt &Offset, Align Alignment,
30 const DataLayout &DL) {
31 Align BA = Base->getPointerAlignment(DL);
32 const APInt APAlign(Offset.getBitWidth(), Alignment.value());
33 assert(APAlign.isPowerOf2() && "must be a power of 2!");
34 return BA >= Alignment && !(Offset & (APAlign - 1));
35 }
36
37 /// Test if V is always a pointer to allocated and suitably aligned memory for
38 /// a simple load or store.
isDereferenceableAndAlignedPointer(const Value * V,Align Alignment,const APInt & Size,const DataLayout & DL,const Instruction * CtxI,const DominatorTree * DT,const TargetLibraryInfo * TLI,SmallPtrSetImpl<const Value * > & Visited,unsigned MaxDepth)39 static bool isDereferenceableAndAlignedPointer(
40 const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL,
41 const Instruction *CtxI, const DominatorTree *DT,
42 const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited,
43 unsigned MaxDepth) {
44 assert(V->getType()->isPointerTy() && "Base must be pointer");
45
46 // Recursion limit.
47 if (MaxDepth-- == 0)
48 return false;
49
50 // Already visited? Bail out, we've likely hit unreachable code.
51 if (!Visited.insert(V).second)
52 return false;
53
54 // Note that it is not safe to speculate into a malloc'd region because
55 // malloc may return null.
56
57 // Recurse into both hands of select.
58 if (const SelectInst *Sel = dyn_cast<SelectInst>(V)) {
59 return isDereferenceableAndAlignedPointer(Sel->getTrueValue(), Alignment,
60 Size, DL, CtxI, DT, TLI, Visited,
61 MaxDepth) &&
62 isDereferenceableAndAlignedPointer(Sel->getFalseValue(), Alignment,
63 Size, DL, CtxI, DT, TLI, Visited,
64 MaxDepth);
65 }
66
67 // bitcast instructions are no-ops as far as dereferenceability is concerned.
68 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) {
69 if (BC->getSrcTy()->isPointerTy())
70 return isDereferenceableAndAlignedPointer(
71 BC->getOperand(0), Alignment, Size, DL, CtxI, DT, TLI,
72 Visited, MaxDepth);
73 }
74
75 bool CheckForNonNull, CheckForFreed;
76 APInt KnownDerefBytes(Size.getBitWidth(),
77 V->getPointerDereferenceableBytes(DL, CheckForNonNull,
78 CheckForFreed));
79 if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) &&
80 !CheckForFreed)
81 if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT)) {
82 // As we recursed through GEPs to get here, we've incrementally checked
83 // that each step advanced by a multiple of the alignment. If our base is
84 // properly aligned, then the original offset accessed must also be.
85 Type *Ty = V->getType();
86 assert(Ty->isSized() && "must be sized");
87 APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
88 return isAligned(V, Offset, Alignment, DL);
89 }
90
91 if (CtxI) {
92 /// Look through assumes to see if both dereferencability and alignment can
93 /// be provent by an assume
94 RetainedKnowledge AlignRK;
95 RetainedKnowledge DerefRK;
96 if (getKnowledgeForValue(
97 V, {Attribute::Dereferenceable, Attribute::Alignment}, nullptr,
98 [&](RetainedKnowledge RK, Instruction *Assume, auto) {
99 if (!isValidAssumeForContext(Assume, CtxI))
100 return false;
101 if (RK.AttrKind == Attribute::Alignment)
102 AlignRK = std::max(AlignRK, RK);
103 if (RK.AttrKind == Attribute::Dereferenceable)
104 DerefRK = std::max(DerefRK, RK);
105 if (AlignRK && DerefRK && AlignRK.ArgValue >= Alignment.value() &&
106 DerefRK.ArgValue >= Size.getZExtValue())
107 return true; // We have found what we needed so we stop looking
108 return false; // Other assumes may have better information. so
109 // keep looking
110 }))
111 return true;
112 }
113 /// TODO refactor this function to be able to search independently for
114 /// Dereferencability and Alignment requirements.
115
116 // For GEPs, determine if the indexing lands within the allocated object.
117 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
118 const Value *Base = GEP->getPointerOperand();
119
120 APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
121 if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() ||
122 !Offset.urem(APInt(Offset.getBitWidth(), Alignment.value()))
123 .isMinValue())
124 return false;
125
126 // If the base pointer is dereferenceable for Offset+Size bytes, then the
127 // GEP (== Base + Offset) is dereferenceable for Size bytes. If the base
128 // pointer is aligned to Align bytes, and the Offset is divisible by Align
129 // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also
130 // aligned to Align bytes.
131
132 // Offset and Size may have different bit widths if we have visited an
133 // addrspacecast, so we can't do arithmetic directly on the APInt values.
134 return isDereferenceableAndAlignedPointer(
135 Base, Alignment, Offset + Size.sextOrTrunc(Offset.getBitWidth()), DL,
136 CtxI, DT, TLI, Visited, MaxDepth);
137 }
138
139 // For gc.relocate, look through relocations
140 if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
141 return isDereferenceableAndAlignedPointer(RelocateInst->getDerivedPtr(),
142 Alignment, Size, DL, CtxI, DT,
143 TLI, Visited, MaxDepth);
144
145 if (const AddrSpaceCastOperator *ASC = dyn_cast<AddrSpaceCastOperator>(V))
146 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Alignment,
147 Size, DL, CtxI, DT, TLI,
148 Visited, MaxDepth);
149
150 if (const auto *Call = dyn_cast<CallBase>(V)) {
151 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
152 return isDereferenceableAndAlignedPointer(RP, Alignment, Size, DL, CtxI,
153 DT, TLI, Visited, MaxDepth);
154
155 // If we have a call we can't recurse through, check to see if this is an
156 // allocation function for which we can establish an minimum object size.
157 // Such a minimum object size is analogous to a deref_or_null attribute in
158 // that we still need to prove the result non-null at point of use.
159 // NOTE: We can only use the object size as a base fact as we a) need to
160 // prove alignment too, and b) don't want the compile time impact of a
161 // separate recursive walk.
162 ObjectSizeOpts Opts;
163 // TODO: It may be okay to round to align, but that would imply that
164 // accessing slightly out of bounds was legal, and we're currently
165 // inconsistent about that. For the moment, be conservative.
166 Opts.RoundToAlign = false;
167 Opts.NullIsUnknownSize = true;
168 uint64_t ObjSize;
169 if (getObjectSize(V, ObjSize, DL, TLI, Opts)) {
170 APInt KnownDerefBytes(Size.getBitWidth(), ObjSize);
171 if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) &&
172 isKnownNonZero(V, DL, 0, nullptr, CtxI, DT) && !V->canBeFreed()) {
173 // As we recursed through GEPs to get here, we've incrementally
174 // checked that each step advanced by a multiple of the alignment. If
175 // our base is properly aligned, then the original offset accessed
176 // must also be.
177 Type *Ty = V->getType();
178 assert(Ty->isSized() && "must be sized");
179 APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
180 return isAligned(V, Offset, Alignment, DL);
181 }
182 }
183 }
184
185 // If we don't know, assume the worst.
186 return false;
187 }
188
isDereferenceableAndAlignedPointer(const Value * V,Align Alignment,const APInt & Size,const DataLayout & DL,const Instruction * CtxI,const DominatorTree * DT,const TargetLibraryInfo * TLI)189 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Align Alignment,
190 const APInt &Size,
191 const DataLayout &DL,
192 const Instruction *CtxI,
193 const DominatorTree *DT,
194 const TargetLibraryInfo *TLI) {
195 // Note: At the moment, Size can be zero. This ends up being interpreted as
196 // a query of whether [Base, V] is dereferenceable and V is aligned (since
197 // that's what the implementation happened to do). It's unclear if this is
198 // the desired semantic, but at least SelectionDAG does exercise this case.
199
200 SmallPtrSet<const Value *, 32> Visited;
201 return ::isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT,
202 TLI, Visited, 16);
203 }
204
isDereferenceableAndAlignedPointer(const Value * V,Type * Ty,Align Alignment,const DataLayout & DL,const Instruction * CtxI,const DominatorTree * DT,const TargetLibraryInfo * TLI)205 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Type *Ty,
206 Align Alignment,
207 const DataLayout &DL,
208 const Instruction *CtxI,
209 const DominatorTree *DT,
210 const TargetLibraryInfo *TLI) {
211 // For unsized types or scalable vectors we don't know exactly how many bytes
212 // are dereferenced, so bail out.
213 if (!Ty->isSized() || isa<ScalableVectorType>(Ty))
214 return false;
215
216 // When dereferenceability information is provided by a dereferenceable
217 // attribute, we know exactly how many bytes are dereferenceable. If we can
218 // determine the exact offset to the attributed variable, we can use that
219 // information here.
220
221 APInt AccessSize(DL.getPointerTypeSizeInBits(V->getType()),
222 DL.getTypeStoreSize(Ty));
223 return isDereferenceableAndAlignedPointer(V, Alignment, AccessSize, DL, CtxI,
224 DT, TLI);
225 }
226
isDereferenceablePointer(const Value * V,Type * Ty,const DataLayout & DL,const Instruction * CtxI,const DominatorTree * DT,const TargetLibraryInfo * TLI)227 bool llvm::isDereferenceablePointer(const Value *V, Type *Ty,
228 const DataLayout &DL,
229 const Instruction *CtxI,
230 const DominatorTree *DT,
231 const TargetLibraryInfo *TLI) {
232 return isDereferenceableAndAlignedPointer(V, Ty, Align(1), DL, CtxI, DT, TLI);
233 }
234
235 /// Test if A and B will obviously have the same value.
236 ///
237 /// This includes recognizing that %t0 and %t1 will have the same
238 /// value in code like this:
239 /// \code
240 /// %t0 = getelementptr \@a, 0, 3
241 /// store i32 0, i32* %t0
242 /// %t1 = getelementptr \@a, 0, 3
243 /// %t2 = load i32* %t1
244 /// \endcode
245 ///
AreEquivalentAddressValues(const Value * A,const Value * B)246 static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
247 // Test if the values are trivially equivalent.
248 if (A == B)
249 return true;
250
251 // Test if the values come from identical arithmetic instructions.
252 // Use isIdenticalToWhenDefined instead of isIdenticalTo because
253 // this function is only used when one address use dominates the
254 // other, which means that they'll always either have the same
255 // value or one of them will have an undefined value.
256 if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) ||
257 isa<GetElementPtrInst>(A))
258 if (const Instruction *BI = dyn_cast<Instruction>(B))
259 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
260 return true;
261
262 // Otherwise they may not be equivalent.
263 return false;
264 }
265
isDereferenceableAndAlignedInLoop(LoadInst * LI,Loop * L,ScalarEvolution & SE,DominatorTree & DT)266 bool llvm::isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L,
267 ScalarEvolution &SE,
268 DominatorTree &DT) {
269 auto &DL = LI->getModule()->getDataLayout();
270 Value *Ptr = LI->getPointerOperand();
271
272 APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()),
273 DL.getTypeStoreSize(LI->getType()).getFixedSize());
274 const Align Alignment = LI->getAlign();
275
276 Instruction *HeaderFirstNonPHI = L->getHeader()->getFirstNonPHI();
277
278 // If given a uniform (i.e. non-varying) address, see if we can prove the
279 // access is safe within the loop w/o needing predication.
280 if (L->isLoopInvariant(Ptr))
281 return isDereferenceableAndAlignedPointer(Ptr, Alignment, EltSize, DL,
282 HeaderFirstNonPHI, &DT);
283
284 // Otherwise, check to see if we have a repeating access pattern where we can
285 // prove that all accesses are well aligned and dereferenceable.
286 auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Ptr));
287 if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine())
288 return false;
289 auto* Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(SE));
290 if (!Step)
291 return false;
292 // TODO: generalize to access patterns which have gaps
293 if (Step->getAPInt() != EltSize)
294 return false;
295
296 auto TC = SE.getSmallConstantMaxTripCount(L);
297 if (!TC)
298 return false;
299
300 const APInt AccessSize = TC * EltSize;
301
302 auto *StartS = dyn_cast<SCEVUnknown>(AddRec->getStart());
303 if (!StartS)
304 return false;
305 assert(SE.isLoopInvariant(StartS, L) && "implied by addrec definition");
306 Value *Base = StartS->getValue();
307
308 // For the moment, restrict ourselves to the case where the access size is a
309 // multiple of the requested alignment and the base is aligned.
310 // TODO: generalize if a case found which warrants
311 if (EltSize.urem(Alignment.value()) != 0)
312 return false;
313 return isDereferenceableAndAlignedPointer(Base, Alignment, AccessSize, DL,
314 HeaderFirstNonPHI, &DT);
315 }
316
317 /// Check if executing a load of this pointer value cannot trap.
318 ///
319 /// If DT and ScanFrom are specified this method performs context-sensitive
320 /// analysis and returns true if it is safe to load immediately before ScanFrom.
321 ///
322 /// If it is not obviously safe to load from the specified pointer, we do
323 /// a quick local scan of the basic block containing \c ScanFrom, to determine
324 /// if the address is already accessed.
325 ///
326 /// This uses the pointee type to determine how many bytes need to be safe to
327 /// load from the pointer.
isSafeToLoadUnconditionally(Value * V,Align Alignment,APInt & Size,const DataLayout & DL,Instruction * ScanFrom,const DominatorTree * DT,const TargetLibraryInfo * TLI)328 bool llvm::isSafeToLoadUnconditionally(Value *V, Align Alignment, APInt &Size,
329 const DataLayout &DL,
330 Instruction *ScanFrom,
331 const DominatorTree *DT,
332 const TargetLibraryInfo *TLI) {
333 // If DT is not specified we can't make context-sensitive query
334 const Instruction* CtxI = DT ? ScanFrom : nullptr;
335 if (isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT, TLI))
336 return true;
337
338 if (!ScanFrom)
339 return false;
340
341 if (Size.getBitWidth() > 64)
342 return false;
343 const uint64_t LoadSize = Size.getZExtValue();
344
345 // Otherwise, be a little bit aggressive by scanning the local block where we
346 // want to check to see if the pointer is already being loaded or stored
347 // from/to. If so, the previous load or store would have already trapped,
348 // so there is no harm doing an extra load (also, CSE will later eliminate
349 // the load entirely).
350 BasicBlock::iterator BBI = ScanFrom->getIterator(),
351 E = ScanFrom->getParent()->begin();
352
353 // We can at least always strip pointer casts even though we can't use the
354 // base here.
355 V = V->stripPointerCasts();
356
357 while (BBI != E) {
358 --BBI;
359
360 // If we see a free or a call which may write to memory (i.e. which might do
361 // a free) the pointer could be marked invalid.
362 if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
363 !isa<DbgInfoIntrinsic>(BBI))
364 return false;
365
366 Value *AccessedPtr;
367 Type *AccessedTy;
368 Align AccessedAlign;
369 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
370 // Ignore volatile loads. The execution of a volatile load cannot
371 // be used to prove an address is backed by regular memory; it can,
372 // for example, point to an MMIO register.
373 if (LI->isVolatile())
374 continue;
375 AccessedPtr = LI->getPointerOperand();
376 AccessedTy = LI->getType();
377 AccessedAlign = LI->getAlign();
378 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
379 // Ignore volatile stores (see comment for loads).
380 if (SI->isVolatile())
381 continue;
382 AccessedPtr = SI->getPointerOperand();
383 AccessedTy = SI->getValueOperand()->getType();
384 AccessedAlign = SI->getAlign();
385 } else
386 continue;
387
388 if (AccessedAlign < Alignment)
389 continue;
390
391 // Handle trivial cases.
392 if (AccessedPtr == V &&
393 LoadSize <= DL.getTypeStoreSize(AccessedTy))
394 return true;
395
396 if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) &&
397 LoadSize <= DL.getTypeStoreSize(AccessedTy))
398 return true;
399 }
400 return false;
401 }
402
isSafeToLoadUnconditionally(Value * V,Type * Ty,Align Alignment,const DataLayout & DL,Instruction * ScanFrom,const DominatorTree * DT,const TargetLibraryInfo * TLI)403 bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, Align Alignment,
404 const DataLayout &DL,
405 Instruction *ScanFrom,
406 const DominatorTree *DT,
407 const TargetLibraryInfo *TLI) {
408 TypeSize TySize = DL.getTypeStoreSize(Ty);
409 if (TySize.isScalable())
410 return false;
411 APInt Size(DL.getIndexTypeSizeInBits(V->getType()), TySize.getFixedValue());
412 return isSafeToLoadUnconditionally(V, Alignment, Size, DL, ScanFrom, DT, TLI);
413 }
414
415 /// DefMaxInstsToScan - the default number of maximum instructions
416 /// to scan in the block, used by FindAvailableLoadedValue().
417 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump
418 /// threading in part by eliminating partially redundant loads.
419 /// At that point, the value of MaxInstsToScan was already set to '6'
420 /// without documented explanation.
421 cl::opt<unsigned>
422 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden,
423 cl::desc("Use this to specify the default maximum number of instructions "
424 "to scan backward from a given instruction, when searching for "
425 "available loaded value"));
426
FindAvailableLoadedValue(LoadInst * Load,BasicBlock * ScanBB,BasicBlock::iterator & ScanFrom,unsigned MaxInstsToScan,AAResults * AA,bool * IsLoad,unsigned * NumScanedInst)427 Value *llvm::FindAvailableLoadedValue(LoadInst *Load,
428 BasicBlock *ScanBB,
429 BasicBlock::iterator &ScanFrom,
430 unsigned MaxInstsToScan,
431 AAResults *AA, bool *IsLoad,
432 unsigned *NumScanedInst) {
433 // Don't CSE load that is volatile or anything stronger than unordered.
434 if (!Load->isUnordered())
435 return nullptr;
436
437 MemoryLocation Loc = MemoryLocation::get(Load);
438 return findAvailablePtrLoadStore(Loc, Load->getType(), Load->isAtomic(),
439 ScanBB, ScanFrom, MaxInstsToScan, AA, IsLoad,
440 NumScanedInst);
441 }
442
443 // Check if the load and the store have the same base, constant offsets and
444 // non-overlapping access ranges.
areNonOverlapSameBaseLoadAndStore(const Value * LoadPtr,Type * LoadTy,const Value * StorePtr,Type * StoreTy,const DataLayout & DL)445 static bool areNonOverlapSameBaseLoadAndStore(const Value *LoadPtr,
446 Type *LoadTy,
447 const Value *StorePtr,
448 Type *StoreTy,
449 const DataLayout &DL) {
450 APInt LoadOffset(DL.getIndexTypeSizeInBits(LoadPtr->getType()), 0);
451 APInt StoreOffset(DL.getIndexTypeSizeInBits(StorePtr->getType()), 0);
452 const Value *LoadBase = LoadPtr->stripAndAccumulateConstantOffsets(
453 DL, LoadOffset, /* AllowNonInbounds */ false);
454 const Value *StoreBase = StorePtr->stripAndAccumulateConstantOffsets(
455 DL, StoreOffset, /* AllowNonInbounds */ false);
456 if (LoadBase != StoreBase)
457 return false;
458 auto LoadAccessSize = LocationSize::precise(DL.getTypeStoreSize(LoadTy));
459 auto StoreAccessSize = LocationSize::precise(DL.getTypeStoreSize(StoreTy));
460 ConstantRange LoadRange(LoadOffset,
461 LoadOffset + LoadAccessSize.toRaw());
462 ConstantRange StoreRange(StoreOffset,
463 StoreOffset + StoreAccessSize.toRaw());
464 return LoadRange.intersectWith(StoreRange).isEmptySet();
465 }
466
getAvailableLoadStore(Instruction * Inst,const Value * Ptr,Type * AccessTy,bool AtLeastAtomic,const DataLayout & DL,bool * IsLoadCSE)467 static Value *getAvailableLoadStore(Instruction *Inst, const Value *Ptr,
468 Type *AccessTy, bool AtLeastAtomic,
469 const DataLayout &DL, bool *IsLoadCSE) {
470 // If this is a load of Ptr, the loaded value is available.
471 // (This is true even if the load is volatile or atomic, although
472 // those cases are unlikely.)
473 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
474 // We can value forward from an atomic to a non-atomic, but not the
475 // other way around.
476 if (LI->isAtomic() < AtLeastAtomic)
477 return nullptr;
478
479 Value *LoadPtr = LI->getPointerOperand()->stripPointerCasts();
480 if (!AreEquivalentAddressValues(LoadPtr, Ptr))
481 return nullptr;
482
483 if (CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) {
484 if (IsLoadCSE)
485 *IsLoadCSE = true;
486 return LI;
487 }
488 }
489
490 // If this is a store through Ptr, the value is available!
491 // (This is true even if the store is volatile or atomic, although
492 // those cases are unlikely.)
493 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
494 // We can value forward from an atomic to a non-atomic, but not the
495 // other way around.
496 if (SI->isAtomic() < AtLeastAtomic)
497 return nullptr;
498
499 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
500 if (!AreEquivalentAddressValues(StorePtr, Ptr))
501 return nullptr;
502
503 if (IsLoadCSE)
504 *IsLoadCSE = false;
505
506 Value *Val = SI->getValueOperand();
507 if (CastInst::isBitOrNoopPointerCastable(Val->getType(), AccessTy, DL))
508 return Val;
509
510 TypeSize StoreSize = DL.getTypeSizeInBits(Val->getType());
511 TypeSize LoadSize = DL.getTypeSizeInBits(AccessTy);
512 if (TypeSize::isKnownLE(LoadSize, StoreSize))
513 if (auto *C = dyn_cast<Constant>(Val))
514 return ConstantFoldLoadFromConst(C, AccessTy, DL);
515 }
516
517 return nullptr;
518 }
519
findAvailablePtrLoadStore(const MemoryLocation & Loc,Type * AccessTy,bool AtLeastAtomic,BasicBlock * ScanBB,BasicBlock::iterator & ScanFrom,unsigned MaxInstsToScan,AAResults * AA,bool * IsLoadCSE,unsigned * NumScanedInst)520 Value *llvm::findAvailablePtrLoadStore(
521 const MemoryLocation &Loc, Type *AccessTy, bool AtLeastAtomic,
522 BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan,
523 AAResults *AA, bool *IsLoadCSE, unsigned *NumScanedInst) {
524 if (MaxInstsToScan == 0)
525 MaxInstsToScan = ~0U;
526
527 const DataLayout &DL = ScanBB->getModule()->getDataLayout();
528 const Value *StrippedPtr = Loc.Ptr->stripPointerCasts();
529
530 while (ScanFrom != ScanBB->begin()) {
531 // We must ignore debug info directives when counting (otherwise they
532 // would affect codegen).
533 Instruction *Inst = &*--ScanFrom;
534 if (Inst->isDebugOrPseudoInst())
535 continue;
536
537 // Restore ScanFrom to expected value in case next test succeeds
538 ScanFrom++;
539
540 if (NumScanedInst)
541 ++(*NumScanedInst);
542
543 // Don't scan huge blocks.
544 if (MaxInstsToScan-- == 0)
545 return nullptr;
546
547 --ScanFrom;
548
549 if (Value *Available = getAvailableLoadStore(Inst, StrippedPtr, AccessTy,
550 AtLeastAtomic, DL, IsLoadCSE))
551 return Available;
552
553 // Try to get the store size for the type.
554 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
555 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
556
557 // If both StrippedPtr and StorePtr reach all the way to an alloca or
558 // global and they are different, ignore the store. This is a trivial form
559 // of alias analysis that is important for reg2mem'd code.
560 if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) &&
561 (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) &&
562 StrippedPtr != StorePtr)
563 continue;
564
565 if (!AA) {
566 // When AA isn't available, but if the load and the store have the same
567 // base, constant offsets and non-overlapping access ranges, ignore the
568 // store. This is a simple form of alias analysis that is used by the
569 // inliner. FIXME: use BasicAA if possible.
570 if (areNonOverlapSameBaseLoadAndStore(
571 Loc.Ptr, AccessTy, SI->getPointerOperand(),
572 SI->getValueOperand()->getType(), DL))
573 continue;
574 } else {
575 // If we have alias analysis and it says the store won't modify the
576 // loaded value, ignore the store.
577 if (!isModSet(AA->getModRefInfo(SI, Loc)))
578 continue;
579 }
580
581 // Otherwise the store that may or may not alias the pointer, bail out.
582 ++ScanFrom;
583 return nullptr;
584 }
585
586 // If this is some other instruction that may clobber Ptr, bail out.
587 if (Inst->mayWriteToMemory()) {
588 // If alias analysis claims that it really won't modify the load,
589 // ignore it.
590 if (AA && !isModSet(AA->getModRefInfo(Inst, Loc)))
591 continue;
592
593 // May modify the pointer, bail out.
594 ++ScanFrom;
595 return nullptr;
596 }
597 }
598
599 // Got to the start of the block, we didn't find it, but are done for this
600 // block.
601 return nullptr;
602 }
603
FindAvailableLoadedValue(LoadInst * Load,AAResults & AA,bool * IsLoadCSE,unsigned MaxInstsToScan)604 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, AAResults &AA,
605 bool *IsLoadCSE,
606 unsigned MaxInstsToScan) {
607 const DataLayout &DL = Load->getModule()->getDataLayout();
608 Value *StrippedPtr = Load->getPointerOperand()->stripPointerCasts();
609 BasicBlock *ScanBB = Load->getParent();
610 Type *AccessTy = Load->getType();
611 bool AtLeastAtomic = Load->isAtomic();
612
613 if (!Load->isUnordered())
614 return nullptr;
615
616 // Try to find an available value first, and delay expensive alias analysis
617 // queries until later.
618 Value *Available = nullptr;;
619 SmallVector<Instruction *> MustNotAliasInsts;
620 for (Instruction &Inst : make_range(++Load->getReverseIterator(),
621 ScanBB->rend())) {
622 if (Inst.isDebugOrPseudoInst())
623 continue;
624
625 if (MaxInstsToScan-- == 0)
626 return nullptr;
627
628 Available = getAvailableLoadStore(&Inst, StrippedPtr, AccessTy,
629 AtLeastAtomic, DL, IsLoadCSE);
630 if (Available)
631 break;
632
633 if (Inst.mayWriteToMemory())
634 MustNotAliasInsts.push_back(&Inst);
635 }
636
637 // If we found an available value, ensure that the instructions in between
638 // did not modify the memory location.
639 if (Available) {
640 MemoryLocation Loc = MemoryLocation::get(Load);
641 for (Instruction *Inst : MustNotAliasInsts)
642 if (isModSet(AA.getModRefInfo(Inst, Loc)))
643 return nullptr;
644 }
645
646 return Available;
647 }
648
canReplacePointersIfEqual(Value * A,Value * B,const DataLayout & DL,Instruction * CtxI)649 bool llvm::canReplacePointersIfEqual(Value *A, Value *B, const DataLayout &DL,
650 Instruction *CtxI) {
651 Type *Ty = A->getType();
652 assert(Ty == B->getType() && Ty->isPointerTy() &&
653 "values must have matching pointer types");
654
655 // NOTE: The checks in the function are incomplete and currently miss illegal
656 // cases! The current implementation is a starting point and the
657 // implementation should be made stricter over time.
658 if (auto *C = dyn_cast<Constant>(B)) {
659 // Do not allow replacing a pointer with a constant pointer, unless it is
660 // either null or at least one byte is dereferenceable.
661 APInt OneByte(DL.getPointerTypeSizeInBits(Ty), 1);
662 return C->isNullValue() ||
663 isDereferenceableAndAlignedPointer(B, Align(1), OneByte, DL, CtxI);
664 }
665
666 return true;
667 }
668