1 //===- Loads.cpp - Local load analysis ------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines simple local analyses for load instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/Loads.h" 15 #include "llvm/Analysis/AliasAnalysis.h" 16 #include "llvm/Analysis/ValueTracking.h" 17 #include "llvm/IR/DataLayout.h" 18 #include "llvm/IR/GlobalAlias.h" 19 #include "llvm/IR/GlobalVariable.h" 20 #include "llvm/IR/IntrinsicInst.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Operator.h" 23 using namespace llvm; 24 25 /// AreEquivalentAddressValues - Test if A and B will obviously have the same 26 /// value. This includes recognizing that %t0 and %t1 will have the same 27 /// value in code like this: 28 /// %t0 = getelementptr \@a, 0, 3 29 /// store i32 0, i32* %t0 30 /// %t1 = getelementptr \@a, 0, 3 31 /// %t2 = load i32* %t1 32 /// 33 static bool AreEquivalentAddressValues(const Value *A, const Value *B) { 34 // Test if the values are trivially equivalent. 35 if (A == B) return true; 36 37 // Test if the values come from identical arithmetic instructions. 38 // Use isIdenticalToWhenDefined instead of isIdenticalTo because 39 // this function is only used when one address use dominates the 40 // other, which means that they'll always either have the same 41 // value or one of them will have an undefined value. 42 if (isa<BinaryOperator>(A) || isa<CastInst>(A) || 43 isa<PHINode>(A) || isa<GetElementPtrInst>(A)) 44 if (const Instruction *BI = dyn_cast<Instruction>(B)) 45 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 46 return true; 47 48 // Otherwise they may not be equivalent. 49 return false; 50 } 51 52 /// isSafeToLoadUnconditionally - Return true if we know that executing a load 53 /// from this value cannot trap. If it is not obviously safe to load from the 54 /// specified pointer, we do a quick local scan of the basic block containing 55 /// ScanFrom, to determine if the address is already accessed. 56 bool llvm::isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom, 57 unsigned Align, const DataLayout *TD) { 58 int64_t ByteOffset = 0; 59 Value *Base = V; 60 if (TD) 61 Base = GetPointerBaseWithConstantOffset(V, ByteOffset, *TD); 62 63 if (ByteOffset < 0) // out of bounds 64 return false; 65 66 Type *BaseType = 0; 67 unsigned BaseAlign = 0; 68 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Base)) { 69 // An alloca is safe to load from as load as it is suitably aligned. 70 BaseType = AI->getAllocatedType(); 71 BaseAlign = AI->getAlignment(); 72 } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) { 73 // Global variables are safe to load from but their size cannot be 74 // guaranteed if they are overridden. 75 if (!GV->mayBeOverridden()) { 76 BaseType = GV->getType()->getElementType(); 77 BaseAlign = GV->getAlignment(); 78 } 79 } 80 81 if (BaseType && BaseType->isSized()) { 82 if (TD && BaseAlign == 0) 83 BaseAlign = TD->getPrefTypeAlignment(BaseType); 84 85 if (Align <= BaseAlign) { 86 if (!TD) 87 return true; // Loading directly from an alloca or global is OK. 88 89 // Check if the load is within the bounds of the underlying object. 90 PointerType *AddrTy = cast<PointerType>(V->getType()); 91 uint64_t LoadSize = TD->getTypeStoreSize(AddrTy->getElementType()); 92 if (ByteOffset + LoadSize <= TD->getTypeAllocSize(BaseType) && 93 (Align == 0 || (ByteOffset % Align) == 0)) 94 return true; 95 } 96 } 97 98 // Otherwise, be a little bit aggressive by scanning the local block where we 99 // want to check to see if the pointer is already being loaded or stored 100 // from/to. If so, the previous load or store would have already trapped, 101 // so there is no harm doing an extra load (also, CSE will later eliminate 102 // the load entirely). 103 BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin(); 104 105 while (BBI != E) { 106 --BBI; 107 108 // If we see a free or a call which may write to memory (i.e. which might do 109 // a free) the pointer could be marked invalid. 110 if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() && 111 !isa<DbgInfoIntrinsic>(BBI)) 112 return false; 113 114 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 115 if (AreEquivalentAddressValues(LI->getOperand(0), V)) return true; 116 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 117 if (AreEquivalentAddressValues(SI->getOperand(1), V)) return true; 118 } 119 } 120 return false; 121 } 122 123 /// FindAvailableLoadedValue - Scan the ScanBB block backwards (starting at the 124 /// instruction before ScanFrom) checking to see if we have the value at the 125 /// memory address *Ptr locally available within a small number of instructions. 126 /// If the value is available, return it. 127 /// 128 /// If not, return the iterator for the last validated instruction that the 129 /// value would be live through. If we scanned the entire block and didn't find 130 /// something that invalidates *Ptr or provides it, ScanFrom would be left at 131 /// begin() and this returns null. ScanFrom could also be left 132 /// 133 /// MaxInstsToScan specifies the maximum instructions to scan in the block. If 134 /// it is set to 0, it will scan the whole block. You can also optionally 135 /// specify an alias analysis implementation, which makes this more precise. 136 /// 137 /// If TBAATag is non-null and a load or store is found, the TBAA tag from the 138 /// load or store is recorded there. If there is no TBAA tag or if no access 139 /// is found, it is left unmodified. 140 Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB, 141 BasicBlock::iterator &ScanFrom, 142 unsigned MaxInstsToScan, 143 AliasAnalysis *AA, 144 MDNode **TBAATag) { 145 if (MaxInstsToScan == 0) MaxInstsToScan = ~0U; 146 147 // If we're using alias analysis to disambiguate get the size of *Ptr. 148 uint64_t AccessSize = 0; 149 if (AA) { 150 Type *AccessTy = cast<PointerType>(Ptr->getType())->getElementType(); 151 AccessSize = AA->getTypeStoreSize(AccessTy); 152 } 153 154 while (ScanFrom != ScanBB->begin()) { 155 // We must ignore debug info directives when counting (otherwise they 156 // would affect codegen). 157 Instruction *Inst = --ScanFrom; 158 if (isa<DbgInfoIntrinsic>(Inst)) 159 continue; 160 161 // Restore ScanFrom to expected value in case next test succeeds 162 ScanFrom++; 163 164 // Don't scan huge blocks. 165 if (MaxInstsToScan-- == 0) return 0; 166 167 --ScanFrom; 168 // If this is a load of Ptr, the loaded value is available. 169 // (This is true even if the load is volatile or atomic, although 170 // those cases are unlikely.) 171 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 172 if (AreEquivalentAddressValues(LI->getOperand(0), Ptr)) { 173 if (TBAATag) *TBAATag = LI->getMetadata(LLVMContext::MD_tbaa); 174 return LI; 175 } 176 177 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 178 // If this is a store through Ptr, the value is available! 179 // (This is true even if the store is volatile or atomic, although 180 // those cases are unlikely.) 181 if (AreEquivalentAddressValues(SI->getOperand(1), Ptr)) { 182 if (TBAATag) *TBAATag = SI->getMetadata(LLVMContext::MD_tbaa); 183 return SI->getOperand(0); 184 } 185 186 // If Ptr is an alloca and this is a store to a different alloca, ignore 187 // the store. This is a trivial form of alias analysis that is important 188 // for reg2mem'd code. 189 if ((isa<AllocaInst>(Ptr) || isa<GlobalVariable>(Ptr)) && 190 (isa<AllocaInst>(SI->getOperand(1)) || 191 isa<GlobalVariable>(SI->getOperand(1)))) 192 continue; 193 194 // If we have alias analysis and it says the store won't modify the loaded 195 // value, ignore the store. 196 if (AA && 197 (AA->getModRefInfo(SI, Ptr, AccessSize) & AliasAnalysis::Mod) == 0) 198 continue; 199 200 // Otherwise the store that may or may not alias the pointer, bail out. 201 ++ScanFrom; 202 return 0; 203 } 204 205 // If this is some other instruction that may clobber Ptr, bail out. 206 if (Inst->mayWriteToMemory()) { 207 // If alias analysis claims that it really won't modify the load, 208 // ignore it. 209 if (AA && 210 (AA->getModRefInfo(Inst, Ptr, AccessSize) & AliasAnalysis::Mod) == 0) 211 continue; 212 213 // May modify the pointer, bail out. 214 ++ScanFrom; 215 return 0; 216 } 217 } 218 219 // Got to the start of the block, we didn't find it, but are done for this 220 // block. 221 return 0; 222 } 223