1 //===- Loads.cpp - Local load analysis ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines simple local analyses for load instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/Loads.h" 14 #include "llvm/Analysis/AliasAnalysis.h" 15 #include "llvm/Analysis/LoopInfo.h" 16 #include "llvm/Analysis/ScalarEvolution.h" 17 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 18 #include "llvm/Analysis/ValueTracking.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/GlobalAlias.h" 21 #include "llvm/IR/GlobalVariable.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/Statepoint.h" 27 28 using namespace llvm; 29 30 static bool isAligned(const Value *Base, const APInt &Offset, Align Alignment, 31 const DataLayout &DL) { 32 Align BA = Base->getPointerAlignment(DL); 33 const APInt APAlign(Offset.getBitWidth(), Alignment.value()); 34 assert(APAlign.isPowerOf2() && "must be a power of 2!"); 35 return BA >= Alignment && !(Offset & (APAlign - 1)); 36 } 37 38 /// Test if V is always a pointer to allocated and suitably aligned memory for 39 /// a simple load or store. 40 static bool isDereferenceableAndAlignedPointer( 41 const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL, 42 const Instruction *CtxI, const DominatorTree *DT, 43 SmallPtrSetImpl<const Value *> &Visited, unsigned MaxDepth) { 44 assert(V->getType()->isPointerTy() && "Base must be pointer"); 45 46 // Recursion limit. 47 if (MaxDepth-- == 0) 48 return false; 49 50 // Already visited? Bail out, we've likely hit unreachable code. 51 if (!Visited.insert(V).second) 52 return false; 53 54 // Note that it is not safe to speculate into a malloc'd region because 55 // malloc may return null. 56 57 // bitcast instructions are no-ops as far as dereferenceability is concerned. 58 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) { 59 if (BC->getSrcTy()->isPointerTy()) 60 return isDereferenceableAndAlignedPointer( 61 BC->getOperand(0), Alignment, Size, DL, CtxI, DT, Visited, MaxDepth); 62 } 63 64 bool CheckForNonNull = false; 65 APInt KnownDerefBytes(Size.getBitWidth(), 66 V->getPointerDereferenceableBytes(DL, CheckForNonNull)); 67 if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size)) 68 if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT)) { 69 // As we recursed through GEPs to get here, we've incrementally checked 70 // that each step advanced by a multiple of the alignment. If our base is 71 // properly aligned, then the original offset accessed must also be. 72 Type *Ty = V->getType(); 73 assert(Ty->isSized() && "must be sized"); 74 APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0); 75 return isAligned(V, Offset, Alignment, DL); 76 } 77 78 // For GEPs, determine if the indexing lands within the allocated object. 79 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 80 const Value *Base = GEP->getPointerOperand(); 81 82 APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0); 83 if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() || 84 !Offset.urem(APInt(Offset.getBitWidth(), Alignment.value())) 85 .isMinValue()) 86 return false; 87 88 // If the base pointer is dereferenceable for Offset+Size bytes, then the 89 // GEP (== Base + Offset) is dereferenceable for Size bytes. If the base 90 // pointer is aligned to Align bytes, and the Offset is divisible by Align 91 // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also 92 // aligned to Align bytes. 93 94 // Offset and Size may have different bit widths if we have visited an 95 // addrspacecast, so we can't do arithmetic directly on the APInt values. 96 return isDereferenceableAndAlignedPointer( 97 Base, Alignment, Offset + Size.sextOrTrunc(Offset.getBitWidth()), DL, 98 CtxI, DT, Visited, MaxDepth); 99 } 100 101 // For gc.relocate, look through relocations 102 if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V)) 103 return isDereferenceableAndAlignedPointer( 104 RelocateInst->getDerivedPtr(), Alignment, Size, DL, CtxI, DT, Visited, MaxDepth); 105 106 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V)) 107 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Alignment, 108 Size, DL, CtxI, DT, Visited, MaxDepth); 109 110 if (const auto *Call = dyn_cast<CallBase>(V)) 111 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 112 return isDereferenceableAndAlignedPointer(RP, Alignment, Size, DL, CtxI, 113 DT, Visited, MaxDepth); 114 115 // If we don't know, assume the worst. 116 return false; 117 } 118 119 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Align Alignment, 120 const APInt &Size, 121 const DataLayout &DL, 122 const Instruction *CtxI, 123 const DominatorTree *DT) { 124 // Note: At the moment, Size can be zero. This ends up being interpreted as 125 // a query of whether [Base, V] is dereferenceable and V is aligned (since 126 // that's what the implementation happened to do). It's unclear if this is 127 // the desired semantic, but at least SelectionDAG does exercise this case. 128 129 SmallPtrSet<const Value *, 32> Visited; 130 return ::isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT, 131 Visited, 16); 132 } 133 134 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, 135 MaybeAlign MA, 136 const DataLayout &DL, 137 const Instruction *CtxI, 138 const DominatorTree *DT) { 139 // For unsized types or scalable vectors we don't know exactly how many bytes 140 // are dereferenced, so bail out. 141 if (!Ty->isSized() || isa<ScalableVectorType>(Ty)) 142 return false; 143 144 // When dereferenceability information is provided by a dereferenceable 145 // attribute, we know exactly how many bytes are dereferenceable. If we can 146 // determine the exact offset to the attributed variable, we can use that 147 // information here. 148 149 // Require ABI alignment for loads without alignment specification 150 const Align Alignment = DL.getValueOrABITypeAlignment(MA, Ty); 151 APInt AccessSize(DL.getPointerTypeSizeInBits(V->getType()), 152 DL.getTypeStoreSize(Ty)); 153 return isDereferenceableAndAlignedPointer(V, Alignment, AccessSize, DL, CtxI, 154 DT); 155 } 156 157 bool llvm::isDereferenceablePointer(const Value *V, Type *Ty, 158 const DataLayout &DL, 159 const Instruction *CtxI, 160 const DominatorTree *DT) { 161 return isDereferenceableAndAlignedPointer(V, Ty, Align(1), DL, CtxI, DT); 162 } 163 164 /// Test if A and B will obviously have the same value. 165 /// 166 /// This includes recognizing that %t0 and %t1 will have the same 167 /// value in code like this: 168 /// \code 169 /// %t0 = getelementptr \@a, 0, 3 170 /// store i32 0, i32* %t0 171 /// %t1 = getelementptr \@a, 0, 3 172 /// %t2 = load i32* %t1 173 /// \endcode 174 /// 175 static bool AreEquivalentAddressValues(const Value *A, const Value *B) { 176 // Test if the values are trivially equivalent. 177 if (A == B) 178 return true; 179 180 // Test if the values come from identical arithmetic instructions. 181 // Use isIdenticalToWhenDefined instead of isIdenticalTo because 182 // this function is only used when one address use dominates the 183 // other, which means that they'll always either have the same 184 // value or one of them will have an undefined value. 185 if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) || 186 isa<GetElementPtrInst>(A)) 187 if (const Instruction *BI = dyn_cast<Instruction>(B)) 188 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 189 return true; 190 191 // Otherwise they may not be equivalent. 192 return false; 193 } 194 195 bool llvm::isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L, 196 ScalarEvolution &SE, 197 DominatorTree &DT) { 198 auto &DL = LI->getModule()->getDataLayout(); 199 Value *Ptr = LI->getPointerOperand(); 200 201 APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()), 202 DL.getTypeStoreSize(LI->getType()).getFixedSize()); 203 const Align Alignment = LI->getAlign(); 204 205 Instruction *HeaderFirstNonPHI = L->getHeader()->getFirstNonPHI(); 206 207 // If given a uniform (i.e. non-varying) address, see if we can prove the 208 // access is safe within the loop w/o needing predication. 209 if (L->isLoopInvariant(Ptr)) 210 return isDereferenceableAndAlignedPointer(Ptr, Alignment, EltSize, DL, 211 HeaderFirstNonPHI, &DT); 212 213 // Otherwise, check to see if we have a repeating access pattern where we can 214 // prove that all accesses are well aligned and dereferenceable. 215 auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Ptr)); 216 if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine()) 217 return false; 218 auto* Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(SE)); 219 if (!Step) 220 return false; 221 // TODO: generalize to access patterns which have gaps 222 if (Step->getAPInt() != EltSize) 223 return false; 224 225 auto TC = SE.getSmallConstantMaxTripCount(L); 226 if (!TC) 227 return false; 228 229 const APInt AccessSize = TC * EltSize; 230 231 auto *StartS = dyn_cast<SCEVUnknown>(AddRec->getStart()); 232 if (!StartS) 233 return false; 234 assert(SE.isLoopInvariant(StartS, L) && "implied by addrec definition"); 235 Value *Base = StartS->getValue(); 236 237 // For the moment, restrict ourselves to the case where the access size is a 238 // multiple of the requested alignment and the base is aligned. 239 // TODO: generalize if a case found which warrants 240 if (EltSize.urem(Alignment.value()) != 0) 241 return false; 242 return isDereferenceableAndAlignedPointer(Base, Alignment, AccessSize, DL, 243 HeaderFirstNonPHI, &DT); 244 } 245 246 /// Check if executing a load of this pointer value cannot trap. 247 /// 248 /// If DT and ScanFrom are specified this method performs context-sensitive 249 /// analysis and returns true if it is safe to load immediately before ScanFrom. 250 /// 251 /// If it is not obviously safe to load from the specified pointer, we do 252 /// a quick local scan of the basic block containing \c ScanFrom, to determine 253 /// if the address is already accessed. 254 /// 255 /// This uses the pointee type to determine how many bytes need to be safe to 256 /// load from the pointer. 257 bool llvm::isSafeToLoadUnconditionally(Value *V, Align Alignment, APInt &Size, 258 const DataLayout &DL, 259 Instruction *ScanFrom, 260 const DominatorTree *DT) { 261 // If DT is not specified we can't make context-sensitive query 262 const Instruction* CtxI = DT ? ScanFrom : nullptr; 263 if (isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT)) 264 return true; 265 266 if (!ScanFrom) 267 return false; 268 269 if (Size.getBitWidth() > 64) 270 return false; 271 const uint64_t LoadSize = Size.getZExtValue(); 272 273 // Otherwise, be a little bit aggressive by scanning the local block where we 274 // want to check to see if the pointer is already being loaded or stored 275 // from/to. If so, the previous load or store would have already trapped, 276 // so there is no harm doing an extra load (also, CSE will later eliminate 277 // the load entirely). 278 BasicBlock::iterator BBI = ScanFrom->getIterator(), 279 E = ScanFrom->getParent()->begin(); 280 281 // We can at least always strip pointer casts even though we can't use the 282 // base here. 283 V = V->stripPointerCasts(); 284 285 while (BBI != E) { 286 --BBI; 287 288 // If we see a free or a call which may write to memory (i.e. which might do 289 // a free) the pointer could be marked invalid. 290 if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() && 291 !isa<DbgInfoIntrinsic>(BBI)) 292 return false; 293 294 Value *AccessedPtr; 295 Type *AccessedTy; 296 Align AccessedAlign; 297 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 298 // Ignore volatile loads. The execution of a volatile load cannot 299 // be used to prove an address is backed by regular memory; it can, 300 // for example, point to an MMIO register. 301 if (LI->isVolatile()) 302 continue; 303 AccessedPtr = LI->getPointerOperand(); 304 AccessedTy = LI->getType(); 305 AccessedAlign = LI->getAlign(); 306 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 307 // Ignore volatile stores (see comment for loads). 308 if (SI->isVolatile()) 309 continue; 310 AccessedPtr = SI->getPointerOperand(); 311 AccessedTy = SI->getValueOperand()->getType(); 312 AccessedAlign = SI->getAlign(); 313 } else 314 continue; 315 316 if (AccessedAlign < Alignment) 317 continue; 318 319 // Handle trivial cases. 320 if (AccessedPtr == V && 321 LoadSize <= DL.getTypeStoreSize(AccessedTy)) 322 return true; 323 324 if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) && 325 LoadSize <= DL.getTypeStoreSize(AccessedTy)) 326 return true; 327 } 328 return false; 329 } 330 331 bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, Align Alignment, 332 const DataLayout &DL, 333 Instruction *ScanFrom, 334 const DominatorTree *DT) { 335 APInt Size(DL.getIndexTypeSizeInBits(V->getType()), DL.getTypeStoreSize(Ty)); 336 return isSafeToLoadUnconditionally(V, Alignment, Size, DL, ScanFrom, DT); 337 } 338 339 /// DefMaxInstsToScan - the default number of maximum instructions 340 /// to scan in the block, used by FindAvailableLoadedValue(). 341 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump 342 /// threading in part by eliminating partially redundant loads. 343 /// At that point, the value of MaxInstsToScan was already set to '6' 344 /// without documented explanation. 345 cl::opt<unsigned> 346 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden, 347 cl::desc("Use this to specify the default maximum number of instructions " 348 "to scan backward from a given instruction, when searching for " 349 "available loaded value")); 350 351 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, 352 BasicBlock *ScanBB, 353 BasicBlock::iterator &ScanFrom, 354 unsigned MaxInstsToScan, 355 AAResults *AA, bool *IsLoad, 356 unsigned *NumScanedInst) { 357 // Don't CSE load that is volatile or anything stronger than unordered. 358 if (!Load->isUnordered()) 359 return nullptr; 360 361 return FindAvailablePtrLoadStore( 362 Load->getPointerOperand(), Load->getType(), Load->isAtomic(), ScanBB, 363 ScanFrom, MaxInstsToScan, AA, IsLoad, NumScanedInst); 364 } 365 366 // Check if the load and the store have the same base, constant offsets and 367 // non-overlapping access ranges. 368 static bool AreNonOverlapSameBaseLoadAndStore( 369 Value *LoadPtr, Type *LoadTy, Value *StorePtr, Type *StoreTy, 370 const DataLayout &DL) { 371 APInt LoadOffset(DL.getTypeSizeInBits(LoadPtr->getType()), 0); 372 APInt StoreOffset(DL.getTypeSizeInBits(StorePtr->getType()), 0); 373 Value *LoadBase = LoadPtr->stripAndAccumulateConstantOffsets( 374 DL, LoadOffset, /* AllowNonInbounds */ false); 375 Value *StoreBase = StorePtr->stripAndAccumulateConstantOffsets( 376 DL, StoreOffset, /* AllowNonInbounds */ false); 377 if (LoadBase != StoreBase) 378 return false; 379 auto LoadAccessSize = LocationSize::precise(DL.getTypeStoreSize(LoadTy)); 380 auto StoreAccessSize = LocationSize::precise(DL.getTypeStoreSize(StoreTy)); 381 ConstantRange LoadRange(LoadOffset, 382 LoadOffset + LoadAccessSize.toRaw()); 383 ConstantRange StoreRange(StoreOffset, 384 StoreOffset + StoreAccessSize.toRaw()); 385 return LoadRange.intersectWith(StoreRange).isEmptySet(); 386 } 387 388 Value *llvm::FindAvailablePtrLoadStore(Value *Ptr, Type *AccessTy, 389 bool AtLeastAtomic, BasicBlock *ScanBB, 390 BasicBlock::iterator &ScanFrom, 391 unsigned MaxInstsToScan, 392 AAResults *AA, bool *IsLoadCSE, 393 unsigned *NumScanedInst) { 394 if (MaxInstsToScan == 0) 395 MaxInstsToScan = ~0U; 396 397 const DataLayout &DL = ScanBB->getModule()->getDataLayout(); 398 Value *StrippedPtr = Ptr->stripPointerCasts(); 399 400 while (ScanFrom != ScanBB->begin()) { 401 // We must ignore debug info directives when counting (otherwise they 402 // would affect codegen). 403 Instruction *Inst = &*--ScanFrom; 404 if (isa<DbgInfoIntrinsic>(Inst)) 405 continue; 406 407 // Restore ScanFrom to expected value in case next test succeeds 408 ScanFrom++; 409 410 if (NumScanedInst) 411 ++(*NumScanedInst); 412 413 // Don't scan huge blocks. 414 if (MaxInstsToScan-- == 0) 415 return nullptr; 416 417 --ScanFrom; 418 // If this is a load of Ptr, the loaded value is available. 419 // (This is true even if the load is volatile or atomic, although 420 // those cases are unlikely.) 421 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 422 if (AreEquivalentAddressValues( 423 LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) && 424 CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) { 425 426 // We can value forward from an atomic to a non-atomic, but not the 427 // other way around. 428 if (LI->isAtomic() < AtLeastAtomic) 429 return nullptr; 430 431 if (IsLoadCSE) 432 *IsLoadCSE = true; 433 return LI; 434 } 435 436 // Try to get the store size for the type. 437 auto AccessSize = LocationSize::precise(DL.getTypeStoreSize(AccessTy)); 438 439 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 440 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts(); 441 // If this is a store through Ptr, the value is available! 442 // (This is true even if the store is volatile or atomic, although 443 // those cases are unlikely.) 444 if (AreEquivalentAddressValues(StorePtr, StrippedPtr) && 445 CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(), 446 AccessTy, DL)) { 447 448 // We can value forward from an atomic to a non-atomic, but not the 449 // other way around. 450 if (SI->isAtomic() < AtLeastAtomic) 451 return nullptr; 452 453 if (IsLoadCSE) 454 *IsLoadCSE = false; 455 return SI->getOperand(0); 456 } 457 458 // If both StrippedPtr and StorePtr reach all the way to an alloca or 459 // global and they are different, ignore the store. This is a trivial form 460 // of alias analysis that is important for reg2mem'd code. 461 if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) && 462 (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) && 463 StrippedPtr != StorePtr) 464 continue; 465 466 if (!AA) { 467 // When AA isn't available, but if the load and the store have the same 468 // base, constant offsets and non-overlapping access ranges, ignore the 469 // store. This is a simple form of alias analysis that is used by the 470 // inliner. FIXME: use BasicAA if possible. 471 if (AreNonOverlapSameBaseLoadAndStore( 472 Ptr, AccessTy, SI->getPointerOperand(), 473 SI->getValueOperand()->getType(), DL)) 474 continue; 475 } else { 476 // If we have alias analysis and it says the store won't modify the 477 // loaded value, ignore the store. 478 if (!isModSet(AA->getModRefInfo(SI, StrippedPtr, AccessSize))) 479 continue; 480 } 481 482 // Otherwise the store that may or may not alias the pointer, bail out. 483 ++ScanFrom; 484 return nullptr; 485 } 486 487 // If this is some other instruction that may clobber Ptr, bail out. 488 if (Inst->mayWriteToMemory()) { 489 // If alias analysis claims that it really won't modify the load, 490 // ignore it. 491 if (AA && !isModSet(AA->getModRefInfo(Inst, StrippedPtr, AccessSize))) 492 continue; 493 494 // May modify the pointer, bail out. 495 ++ScanFrom; 496 return nullptr; 497 } 498 } 499 500 // Got to the start of the block, we didn't find it, but are done for this 501 // block. 502 return nullptr; 503 } 504 505 bool llvm::canReplacePointersIfEqual(Value *A, Value *B, const DataLayout &DL, 506 Instruction *CtxI) { 507 Type *Ty = A->getType(); 508 assert(Ty == B->getType() && Ty->isPointerTy() && 509 "values must have matching pointer types"); 510 511 // NOTE: The checks in the function are incomplete and currently miss illegal 512 // cases! The current implementation is a starting point and the 513 // implementation should be made stricter over time. 514 if (auto *C = dyn_cast<Constant>(B)) { 515 // Do not allow replacing a pointer with a constant pointer, unless it is 516 // either null or at least one byte is dereferenceable. 517 APInt OneByte(DL.getPointerTypeSizeInBits(Ty), 1); 518 return C->isNullValue() || 519 isDereferenceableAndAlignedPointer(B, Align(1), OneByte, DL, CtxI); 520 } 521 522 return true; 523 } 524