1 //===- Loads.cpp - Local load analysis ------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines simple local analyses for load instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/Loads.h" 15 #include "llvm/Analysis/AliasAnalysis.h" 16 #include "llvm/Analysis/ValueTracking.h" 17 #include "llvm/IR/DataLayout.h" 18 #include "llvm/IR/GlobalAlias.h" 19 #include "llvm/IR/GlobalVariable.h" 20 #include "llvm/IR/IntrinsicInst.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/IR/Operator.h" 24 using namespace llvm; 25 26 /// \brief Test if A and B will obviously have the same value. 27 /// 28 /// This includes recognizing that %t0 and %t1 will have the same 29 /// value in code like this: 30 /// \code 31 /// %t0 = getelementptr \@a, 0, 3 32 /// store i32 0, i32* %t0 33 /// %t1 = getelementptr \@a, 0, 3 34 /// %t2 = load i32* %t1 35 /// \endcode 36 /// 37 static bool AreEquivalentAddressValues(const Value *A, const Value *B) { 38 // Test if the values are trivially equivalent. 39 if (A == B) 40 return true; 41 42 // Test if the values come from identical arithmetic instructions. 43 // Use isIdenticalToWhenDefined instead of isIdenticalTo because 44 // this function is only used when one address use dominates the 45 // other, which means that they'll always either have the same 46 // value or one of them will have an undefined value. 47 if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) || 48 isa<GetElementPtrInst>(A)) 49 if (const Instruction *BI = dyn_cast<Instruction>(B)) 50 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 51 return true; 52 53 // Otherwise they may not be equivalent. 54 return false; 55 } 56 57 /// \brief Check if executing a load of this pointer value cannot trap. 58 /// 59 /// If it is not obviously safe to load from the specified pointer, we do 60 /// a quick local scan of the basic block containing \c ScanFrom, to determine 61 /// if the address is already accessed. 62 /// 63 /// This uses the pointee type to determine how many bytes need to be safe to 64 /// load from the pointer. 65 bool llvm::isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom, 66 unsigned Align, const DataLayout *DL) { 67 int64_t ByteOffset = 0; 68 Value *Base = V; 69 Base = GetPointerBaseWithConstantOffset(V, ByteOffset, DL); 70 71 if (ByteOffset < 0) // out of bounds 72 return false; 73 74 Type *BaseType = nullptr; 75 unsigned BaseAlign = 0; 76 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Base)) { 77 // An alloca is safe to load from as load as it is suitably aligned. 78 BaseType = AI->getAllocatedType(); 79 BaseAlign = AI->getAlignment(); 80 } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) { 81 // Global variables are not necessarily safe to load from if they are 82 // overridden. Their size may change or they may be weak and require a test 83 // to determine if they were in fact provided. 84 if (!GV->mayBeOverridden()) { 85 BaseType = GV->getType()->getElementType(); 86 BaseAlign = GV->getAlignment(); 87 } 88 } 89 90 PointerType *AddrTy = cast<PointerType>(V->getType()); 91 uint64_t LoadSize = DL ? DL->getTypeStoreSize(AddrTy->getElementType()) : 0; 92 93 // If we found a base allocated type from either an alloca or global variable, 94 // try to see if we are definitively within the allocated region. We need to 95 // know the size of the base type and the loaded type to do anything in this 96 // case, so only try this when we have the DataLayout available. 97 if (BaseType && BaseType->isSized() && DL) { 98 if (BaseAlign == 0) 99 BaseAlign = DL->getPrefTypeAlignment(BaseType); 100 101 if (Align <= BaseAlign) { 102 // Check if the load is within the bounds of the underlying object. 103 if (ByteOffset + LoadSize <= DL->getTypeAllocSize(BaseType) && 104 (Align == 0 || (ByteOffset % Align) == 0)) 105 return true; 106 } 107 } 108 109 // Otherwise, be a little bit aggressive by scanning the local block where we 110 // want to check to see if the pointer is already being loaded or stored 111 // from/to. If so, the previous load or store would have already trapped, 112 // so there is no harm doing an extra load (also, CSE will later eliminate 113 // the load entirely). 114 BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin(); 115 116 // We can at least always strip pointer casts even though we can't use the 117 // base here. 118 V = V->stripPointerCasts(); 119 120 while (BBI != E) { 121 --BBI; 122 123 // If we see a free or a call which may write to memory (i.e. which might do 124 // a free) the pointer could be marked invalid. 125 if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() && 126 !isa<DbgInfoIntrinsic>(BBI)) 127 return false; 128 129 Value *AccessedPtr; 130 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) 131 AccessedPtr = LI->getPointerOperand(); 132 else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) 133 AccessedPtr = SI->getPointerOperand(); 134 else 135 continue; 136 137 // Handle trivial cases even w/o DataLayout or other work. 138 if (AccessedPtr == V) 139 return true; 140 141 if (!DL) 142 continue; 143 144 auto *AccessedTy = cast<PointerType>(AccessedPtr->getType()); 145 if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) && 146 LoadSize <= DL->getTypeStoreSize(AccessedTy->getElementType())) 147 return true; 148 } 149 return false; 150 } 151 152 /// \brief Scan the ScanBB block backwards to see if we have the value at the 153 /// memory address *Ptr locally available within a small number of instructions. 154 /// 155 /// The scan starts from \c ScanFrom. \c MaxInstsToScan specifies the maximum 156 /// instructions to scan in the block. If it is set to \c 0, it will scan the whole 157 /// block. 158 /// 159 /// If the value is available, this function returns it. If not, it returns the 160 /// iterator for the last validated instruction that the value would be live 161 /// through. If we scanned the entire block and didn't find something that 162 /// invalidates \c *Ptr or provides it, \c ScanFrom is left at the last 163 /// instruction processed and this returns null. 164 /// 165 /// You can also optionally specify an alias analysis implementation, which 166 /// makes this more precise. 167 /// 168 /// If \c AATags is non-null and a load or store is found, the AA tags from the 169 /// load or store are recorded there. If there are no AA tags or if no access is 170 /// found, it is left unmodified. 171 Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB, 172 BasicBlock::iterator &ScanFrom, 173 unsigned MaxInstsToScan, 174 AliasAnalysis *AA, AAMDNodes *AATags) { 175 if (MaxInstsToScan == 0) 176 MaxInstsToScan = ~0U; 177 178 Type *AccessTy = cast<PointerType>(Ptr->getType())->getElementType(); 179 180 // Try to get the DataLayout for this module. This may be null, in which case 181 // the optimizations will be limited. 182 const DataLayout &DL = ScanBB->getModule()->getDataLayout(); 183 184 // Try to get the store size for the type. 185 uint64_t AccessSize = DL.getTypeStoreSize(AccessTy); 186 187 Value *StrippedPtr = Ptr->stripPointerCasts(); 188 189 while (ScanFrom != ScanBB->begin()) { 190 // We must ignore debug info directives when counting (otherwise they 191 // would affect codegen). 192 Instruction *Inst = --ScanFrom; 193 if (isa<DbgInfoIntrinsic>(Inst)) 194 continue; 195 196 // Restore ScanFrom to expected value in case next test succeeds 197 ScanFrom++; 198 199 // Don't scan huge blocks. 200 if (MaxInstsToScan-- == 0) 201 return nullptr; 202 203 --ScanFrom; 204 // If this is a load of Ptr, the loaded value is available. 205 // (This is true even if the load is volatile or atomic, although 206 // those cases are unlikely.) 207 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 208 if (AreEquivalentAddressValues( 209 LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) && 210 CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, &DL)) { 211 if (AATags) 212 LI->getAAMetadata(*AATags); 213 return LI; 214 } 215 216 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 217 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts(); 218 // If this is a store through Ptr, the value is available! 219 // (This is true even if the store is volatile or atomic, although 220 // those cases are unlikely.) 221 if (AreEquivalentAddressValues(StorePtr, StrippedPtr) && 222 CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(), 223 AccessTy, &DL)) { 224 if (AATags) 225 SI->getAAMetadata(*AATags); 226 return SI->getOperand(0); 227 } 228 229 // If both StrippedPtr and StorePtr reach all the way to an alloca or 230 // global and they are different, ignore the store. This is a trivial form 231 // of alias analysis that is important for reg2mem'd code. 232 if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) && 233 (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) && 234 StrippedPtr != StorePtr) 235 continue; 236 237 // If we have alias analysis and it says the store won't modify the loaded 238 // value, ignore the store. 239 if (AA && 240 (AA->getModRefInfo(SI, StrippedPtr, AccessSize) & 241 AliasAnalysis::Mod) == 0) 242 continue; 243 244 // Otherwise the store that may or may not alias the pointer, bail out. 245 ++ScanFrom; 246 return nullptr; 247 } 248 249 // If this is some other instruction that may clobber Ptr, bail out. 250 if (Inst->mayWriteToMemory()) { 251 // If alias analysis claims that it really won't modify the load, 252 // ignore it. 253 if (AA && 254 (AA->getModRefInfo(Inst, StrippedPtr, AccessSize) & 255 AliasAnalysis::Mod) == 0) 256 continue; 257 258 // May modify the pointer, bail out. 259 ++ScanFrom; 260 return nullptr; 261 } 262 } 263 264 // Got to the start of the block, we didn't find it, but are done for this 265 // block. 266 return nullptr; 267 } 268