1 //===- Loads.cpp - Local load analysis ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines simple local analyses for load instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/Loads.h"
14 #include "llvm/Analysis/AliasAnalysis.h"
15 #include "llvm/Analysis/LoopInfo.h"
16 #include "llvm/Analysis/ScalarEvolution.h"
17 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/GlobalAlias.h"
21 #include "llvm/IR/GlobalVariable.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/Statepoint.h"
27 
28 using namespace llvm;
29 
30 static MaybeAlign getBaseAlign(const Value *Base, const DataLayout &DL) {
31   if (const MaybeAlign PA = Base->getPointerAlignment(DL))
32     return *PA;
33   Type *const Ty = Base->getType()->getPointerElementType();
34   if (!Ty->isSized())
35     return None;
36   return Align(DL.getABITypeAlignment(Ty));
37 }
38 
39 static bool isAligned(const Value *Base, const APInt &Offset, Align Alignment,
40                       const DataLayout &DL) {
41   if (MaybeAlign BA = getBaseAlign(Base, DL)) {
42     const APInt APBaseAlign(Offset.getBitWidth(), BA->value());
43     const APInt APAlign(Offset.getBitWidth(), Alignment.value());
44     assert(APAlign.isPowerOf2() && "must be a power of 2!");
45     return APBaseAlign.uge(APAlign) && !(Offset & (APAlign - 1));
46   }
47   return false;
48 }
49 
50 /// Test if V is always a pointer to allocated and suitably aligned memory for
51 /// a simple load or store.
52 static bool isDereferenceableAndAlignedPointer(
53     const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL,
54     const Instruction *CtxI, const DominatorTree *DT,
55     SmallPtrSetImpl<const Value *> &Visited, unsigned MaxDepth) {
56 
57   // Recursion limit.
58   if (MaxDepth-- == 0)
59     return false;
60 
61   // Already visited?  Bail out, we've likely hit unreachable code.
62   if (!Visited.insert(V).second)
63     return false;
64 
65   // Note that it is not safe to speculate into a malloc'd region because
66   // malloc may return null.
67 
68   // bitcast instructions are no-ops as far as dereferenceability is concerned.
69   if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V))
70     return isDereferenceableAndAlignedPointer(BC->getOperand(0), Alignment,
71                                               Size, DL, CtxI, DT, Visited,
72                                               MaxDepth);
73 
74   bool CheckForNonNull = false;
75   APInt KnownDerefBytes(Size.getBitWidth(),
76                         V->getPointerDereferenceableBytes(DL, CheckForNonNull));
77   if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size))
78     if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT)) {
79       // As we recursed through GEPs to get here, we've incrementally checked
80       // that each step advanced by a multiple of the alignment. If our base is
81       // properly aligned, then the original offset accessed must also be.
82       Type *Ty = V->getType();
83       assert(Ty->isSized() && "must be sized");
84       APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
85       return isAligned(V, Offset, Alignment, DL);
86     }
87 
88   // For GEPs, determine if the indexing lands within the allocated object.
89   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
90     const Value *Base = GEP->getPointerOperand();
91 
92     APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
93     if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() ||
94         !Offset.urem(APInt(Offset.getBitWidth(), Alignment.value()))
95              .isMinValue())
96       return false;
97 
98     // If the base pointer is dereferenceable for Offset+Size bytes, then the
99     // GEP (== Base + Offset) is dereferenceable for Size bytes.  If the base
100     // pointer is aligned to Align bytes, and the Offset is divisible by Align
101     // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also
102     // aligned to Align bytes.
103 
104     // Offset and Size may have different bit widths if we have visited an
105     // addrspacecast, so we can't do arithmetic directly on the APInt values.
106     return isDereferenceableAndAlignedPointer(
107         Base, Alignment, Offset + Size.sextOrTrunc(Offset.getBitWidth()), DL,
108         CtxI, DT, Visited, MaxDepth);
109   }
110 
111   // For gc.relocate, look through relocations
112   if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
113     return isDereferenceableAndAlignedPointer(
114       RelocateInst->getDerivedPtr(), Alignment, Size, DL, CtxI, DT, Visited, MaxDepth);
115 
116   if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
117     return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Alignment,
118                                               Size, DL, CtxI, DT, Visited, MaxDepth);
119 
120   if (const auto *Call = dyn_cast<CallBase>(V))
121     if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
122       return isDereferenceableAndAlignedPointer(RP, Alignment, Size, DL, CtxI,
123                                                 DT, Visited, MaxDepth);
124 
125   // If we don't know, assume the worst.
126   return false;
127 }
128 
129 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Align Alignment,
130                                               const APInt &Size,
131                                               const DataLayout &DL,
132                                               const Instruction *CtxI,
133                                               const DominatorTree *DT) {
134   // Note: At the moment, Size can be zero.  This ends up being interpreted as
135   // a query of whether [Base, V] is dereferenceable and V is aligned (since
136   // that's what the implementation happened to do).  It's unclear if this is
137   // the desired semantic, but at least SelectionDAG does exercise this case.
138 
139   SmallPtrSet<const Value *, 32> Visited;
140   return ::isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT,
141                                               Visited, 16);
142 }
143 
144 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Type *Ty,
145                                               MaybeAlign MA,
146                                               const DataLayout &DL,
147                                               const Instruction *CtxI,
148                                               const DominatorTree *DT) {
149   // For unsized types or scalable vectors we don't know exactly how many bytes
150   // are dereferenced, so bail out.
151   if (!Ty->isSized() || isa<ScalableVectorType>(Ty))
152     return false;
153 
154   // When dereferenceability information is provided by a dereferenceable
155   // attribute, we know exactly how many bytes are dereferenceable. If we can
156   // determine the exact offset to the attributed variable, we can use that
157   // information here.
158 
159   // Require ABI alignment for loads without alignment specification
160   const Align Alignment = DL.getValueOrABITypeAlignment(MA, Ty);
161   APInt AccessSize(DL.getPointerTypeSizeInBits(V->getType()),
162                    DL.getTypeStoreSize(Ty));
163   return isDereferenceableAndAlignedPointer(V, Alignment, AccessSize, DL, CtxI,
164                                             DT);
165 }
166 
167 bool llvm::isDereferenceablePointer(const Value *V, Type *Ty,
168                                     const DataLayout &DL,
169                                     const Instruction *CtxI,
170                                     const DominatorTree *DT) {
171   return isDereferenceableAndAlignedPointer(V, Ty, Align(1), DL, CtxI, DT);
172 }
173 
174 /// Test if A and B will obviously have the same value.
175 ///
176 /// This includes recognizing that %t0 and %t1 will have the same
177 /// value in code like this:
178 /// \code
179 ///   %t0 = getelementptr \@a, 0, 3
180 ///   store i32 0, i32* %t0
181 ///   %t1 = getelementptr \@a, 0, 3
182 ///   %t2 = load i32* %t1
183 /// \endcode
184 ///
185 static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
186   // Test if the values are trivially equivalent.
187   if (A == B)
188     return true;
189 
190   // Test if the values come from identical arithmetic instructions.
191   // Use isIdenticalToWhenDefined instead of isIdenticalTo because
192   // this function is only used when one address use dominates the
193   // other, which means that they'll always either have the same
194   // value or one of them will have an undefined value.
195   if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) ||
196       isa<GetElementPtrInst>(A))
197     if (const Instruction *BI = dyn_cast<Instruction>(B))
198       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
199         return true;
200 
201   // Otherwise they may not be equivalent.
202   return false;
203 }
204 
205 bool llvm::isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L,
206                                              ScalarEvolution &SE,
207                                              DominatorTree &DT) {
208   auto &DL = LI->getModule()->getDataLayout();
209   Value *Ptr = LI->getPointerOperand();
210 
211   APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()),
212                 DL.getTypeStoreSize(LI->getType()));
213   const Align Alignment = DL.getValueOrABITypeAlignment(
214       MaybeAlign(LI->getAlignment()), LI->getType());
215 
216   Instruction *HeaderFirstNonPHI = L->getHeader()->getFirstNonPHI();
217 
218   // If given a uniform (i.e. non-varying) address, see if we can prove the
219   // access is safe within the loop w/o needing predication.
220   if (L->isLoopInvariant(Ptr))
221     return isDereferenceableAndAlignedPointer(Ptr, Alignment, EltSize, DL,
222                                               HeaderFirstNonPHI, &DT);
223 
224   // Otherwise, check to see if we have a repeating access pattern where we can
225   // prove that all accesses are well aligned and dereferenceable.
226   auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Ptr));
227   if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine())
228     return false;
229   auto* Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(SE));
230   if (!Step)
231     return false;
232   // TODO: generalize to access patterns which have gaps
233   if (Step->getAPInt() != EltSize)
234     return false;
235 
236   // TODO: If the symbolic trip count has a small bound (max count), we might
237   // be able to prove safety.
238   auto TC = SE.getSmallConstantTripCount(L);
239   if (!TC)
240     return false;
241 
242   const APInt AccessSize = TC * EltSize;
243 
244   auto *StartS = dyn_cast<SCEVUnknown>(AddRec->getStart());
245   if (!StartS)
246     return false;
247   assert(SE.isLoopInvariant(StartS, L) && "implied by addrec definition");
248   Value *Base = StartS->getValue();
249 
250   // For the moment, restrict ourselves to the case where the access size is a
251   // multiple of the requested alignment and the base is aligned.
252   // TODO: generalize if a case found which warrants
253   if (EltSize.urem(Alignment.value()) != 0)
254     return false;
255   return isDereferenceableAndAlignedPointer(Base, Alignment, AccessSize, DL,
256                                             HeaderFirstNonPHI, &DT);
257 }
258 
259 /// Check if executing a load of this pointer value cannot trap.
260 ///
261 /// If DT and ScanFrom are specified this method performs context-sensitive
262 /// analysis and returns true if it is safe to load immediately before ScanFrom.
263 ///
264 /// If it is not obviously safe to load from the specified pointer, we do
265 /// a quick local scan of the basic block containing \c ScanFrom, to determine
266 /// if the address is already accessed.
267 ///
268 /// This uses the pointee type to determine how many bytes need to be safe to
269 /// load from the pointer.
270 bool llvm::isSafeToLoadUnconditionally(Value *V, MaybeAlign MA, APInt &Size,
271                                        const DataLayout &DL,
272                                        Instruction *ScanFrom,
273                                        const DominatorTree *DT) {
274   // Zero alignment means that the load has the ABI alignment for the target
275   const Align Alignment =
276       DL.getValueOrABITypeAlignment(MA, V->getType()->getPointerElementType());
277 
278   // If DT is not specified we can't make context-sensitive query
279   const Instruction* CtxI = DT ? ScanFrom : nullptr;
280   if (isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT))
281     return true;
282 
283   if (!ScanFrom)
284     return false;
285 
286   if (Size.getBitWidth() > 64)
287     return false;
288   const uint64_t LoadSize = Size.getZExtValue();
289 
290   // Otherwise, be a little bit aggressive by scanning the local block where we
291   // want to check to see if the pointer is already being loaded or stored
292   // from/to.  If so, the previous load or store would have already trapped,
293   // so there is no harm doing an extra load (also, CSE will later eliminate
294   // the load entirely).
295   BasicBlock::iterator BBI = ScanFrom->getIterator(),
296                        E = ScanFrom->getParent()->begin();
297 
298   // We can at least always strip pointer casts even though we can't use the
299   // base here.
300   V = V->stripPointerCasts();
301 
302   while (BBI != E) {
303     --BBI;
304 
305     // If we see a free or a call which may write to memory (i.e. which might do
306     // a free) the pointer could be marked invalid.
307     if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
308         !isa<DbgInfoIntrinsic>(BBI))
309       return false;
310 
311     Value *AccessedPtr;
312     MaybeAlign MaybeAccessedAlign;
313     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
314       // Ignore volatile loads. The execution of a volatile load cannot
315       // be used to prove an address is backed by regular memory; it can,
316       // for example, point to an MMIO register.
317       if (LI->isVolatile())
318         continue;
319       AccessedPtr = LI->getPointerOperand();
320       MaybeAccessedAlign = MaybeAlign(LI->getAlignment());
321     } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
322       // Ignore volatile stores (see comment for loads).
323       if (SI->isVolatile())
324         continue;
325       AccessedPtr = SI->getPointerOperand();
326       MaybeAccessedAlign = MaybeAlign(SI->getAlignment());
327     } else
328       continue;
329 
330     Type *AccessedTy = AccessedPtr->getType()->getPointerElementType();
331 
332     const Align AccessedAlign =
333         DL.getValueOrABITypeAlignment(MaybeAccessedAlign, AccessedTy);
334     if (AccessedAlign < Alignment)
335       continue;
336 
337     // Handle trivial cases.
338     if (AccessedPtr == V &&
339         LoadSize <= DL.getTypeStoreSize(AccessedTy))
340       return true;
341 
342     if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) &&
343         LoadSize <= DL.getTypeStoreSize(AccessedTy))
344       return true;
345   }
346   return false;
347 }
348 
349 bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, MaybeAlign Alignment,
350                                        const DataLayout &DL,
351                                        Instruction *ScanFrom,
352                                        const DominatorTree *DT) {
353   APInt Size(DL.getIndexTypeSizeInBits(V->getType()), DL.getTypeStoreSize(Ty));
354   return isSafeToLoadUnconditionally(V, Alignment, Size, DL, ScanFrom, DT);
355 }
356 
357   /// DefMaxInstsToScan - the default number of maximum instructions
358 /// to scan in the block, used by FindAvailableLoadedValue().
359 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump
360 /// threading in part by eliminating partially redundant loads.
361 /// At that point, the value of MaxInstsToScan was already set to '6'
362 /// without documented explanation.
363 cl::opt<unsigned>
364 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden,
365   cl::desc("Use this to specify the default maximum number of instructions "
366            "to scan backward from a given instruction, when searching for "
367            "available loaded value"));
368 
369 Value *llvm::FindAvailableLoadedValue(LoadInst *Load,
370                                       BasicBlock *ScanBB,
371                                       BasicBlock::iterator &ScanFrom,
372                                       unsigned MaxInstsToScan,
373                                       AliasAnalysis *AA, bool *IsLoad,
374                                       unsigned *NumScanedInst) {
375   // Don't CSE load that is volatile or anything stronger than unordered.
376   if (!Load->isUnordered())
377     return nullptr;
378 
379   return FindAvailablePtrLoadStore(
380       Load->getPointerOperand(), Load->getType(), Load->isAtomic(), ScanBB,
381       ScanFrom, MaxInstsToScan, AA, IsLoad, NumScanedInst);
382 }
383 
384 // Check if the load and the store have the same base, constant offsets and
385 // non-overlapping access ranges.
386 static bool AreNonOverlapSameBaseLoadAndStore(
387     Value *LoadPtr, Type *LoadTy, Value *StorePtr, Type *StoreTy,
388     const DataLayout &DL) {
389   APInt LoadOffset(DL.getTypeSizeInBits(LoadPtr->getType()), 0);
390   APInt StoreOffset(DL.getTypeSizeInBits(StorePtr->getType()), 0);
391   Value *LoadBase = LoadPtr->stripAndAccumulateConstantOffsets(
392       DL, LoadOffset, /* AllowNonInbounds */ false);
393   Value *StoreBase = StorePtr->stripAndAccumulateConstantOffsets(
394       DL, StoreOffset, /* AllowNonInbounds */ false);
395   if (LoadBase != StoreBase)
396     return false;
397   auto LoadAccessSize = LocationSize::precise(DL.getTypeStoreSize(LoadTy));
398   auto StoreAccessSize = LocationSize::precise(DL.getTypeStoreSize(StoreTy));
399   ConstantRange LoadRange(LoadOffset,
400                           LoadOffset + LoadAccessSize.toRaw());
401   ConstantRange StoreRange(StoreOffset,
402                            StoreOffset + StoreAccessSize.toRaw());
403   return LoadRange.intersectWith(StoreRange).isEmptySet();
404 }
405 
406 Value *llvm::FindAvailablePtrLoadStore(Value *Ptr, Type *AccessTy,
407                                        bool AtLeastAtomic, BasicBlock *ScanBB,
408                                        BasicBlock::iterator &ScanFrom,
409                                        unsigned MaxInstsToScan,
410                                        AliasAnalysis *AA, bool *IsLoadCSE,
411                                        unsigned *NumScanedInst) {
412   if (MaxInstsToScan == 0)
413     MaxInstsToScan = ~0U;
414 
415   const DataLayout &DL = ScanBB->getModule()->getDataLayout();
416   Value *StrippedPtr = Ptr->stripPointerCasts();
417 
418   while (ScanFrom != ScanBB->begin()) {
419     // We must ignore debug info directives when counting (otherwise they
420     // would affect codegen).
421     Instruction *Inst = &*--ScanFrom;
422     if (isa<DbgInfoIntrinsic>(Inst))
423       continue;
424 
425     // Restore ScanFrom to expected value in case next test succeeds
426     ScanFrom++;
427 
428     if (NumScanedInst)
429       ++(*NumScanedInst);
430 
431     // Don't scan huge blocks.
432     if (MaxInstsToScan-- == 0)
433       return nullptr;
434 
435     --ScanFrom;
436     // If this is a load of Ptr, the loaded value is available.
437     // (This is true even if the load is volatile or atomic, although
438     // those cases are unlikely.)
439     if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
440       if (AreEquivalentAddressValues(
441               LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) &&
442           CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) {
443 
444         // We can value forward from an atomic to a non-atomic, but not the
445         // other way around.
446         if (LI->isAtomic() < AtLeastAtomic)
447           return nullptr;
448 
449         if (IsLoadCSE)
450             *IsLoadCSE = true;
451         return LI;
452       }
453 
454     // Try to get the store size for the type.
455     auto AccessSize = LocationSize::precise(DL.getTypeStoreSize(AccessTy));
456 
457     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
458       Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
459       // If this is a store through Ptr, the value is available!
460       // (This is true even if the store is volatile or atomic, although
461       // those cases are unlikely.)
462       if (AreEquivalentAddressValues(StorePtr, StrippedPtr) &&
463           CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(),
464                                                AccessTy, DL)) {
465 
466         // We can value forward from an atomic to a non-atomic, but not the
467         // other way around.
468         if (SI->isAtomic() < AtLeastAtomic)
469           return nullptr;
470 
471         if (IsLoadCSE)
472           *IsLoadCSE = false;
473         return SI->getOperand(0);
474       }
475 
476       // If both StrippedPtr and StorePtr reach all the way to an alloca or
477       // global and they are different, ignore the store. This is a trivial form
478       // of alias analysis that is important for reg2mem'd code.
479       if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) &&
480           (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) &&
481           StrippedPtr != StorePtr)
482         continue;
483 
484       if (!AA) {
485         // When AA isn't available, but if the load and the store have the same
486         // base, constant offsets and non-overlapping access ranges, ignore the
487         // store. This is a simple form of alias analysis that is used by the
488         // inliner. FIXME: use BasicAA if possible.
489         if (AreNonOverlapSameBaseLoadAndStore(
490                 Ptr, AccessTy, SI->getPointerOperand(),
491                 SI->getValueOperand()->getType(), DL))
492           continue;
493       } else {
494         // If we have alias analysis and it says the store won't modify the
495         // loaded value, ignore the store.
496         if (!isModSet(AA->getModRefInfo(SI, StrippedPtr, AccessSize)))
497           continue;
498       }
499 
500       // Otherwise the store that may or may not alias the pointer, bail out.
501       ++ScanFrom;
502       return nullptr;
503     }
504 
505     // If this is some other instruction that may clobber Ptr, bail out.
506     if (Inst->mayWriteToMemory()) {
507       // If alias analysis claims that it really won't modify the load,
508       // ignore it.
509       if (AA && !isModSet(AA->getModRefInfo(Inst, StrippedPtr, AccessSize)))
510         continue;
511 
512       // May modify the pointer, bail out.
513       ++ScanFrom;
514       return nullptr;
515     }
516   }
517 
518   // Got to the start of the block, we didn't find it, but are done for this
519   // block.
520   return nullptr;
521 }
522