1 //===- Loads.cpp - Local load analysis ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines simple local analyses for load instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/Loads.h"
14 #include "llvm/Analysis/AliasAnalysis.h"
15 #include "llvm/Analysis/CaptureTracking.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/MemoryBuiltins.h"
18 #include "llvm/Analysis/ScalarEvolution.h"
19 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/GlobalAlias.h"
24 #include "llvm/IR/GlobalVariable.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/IR/Statepoint.h"
30 
31 using namespace llvm;
32 
33 static bool isAligned(const Value *Base, const APInt &Offset, Align Alignment,
34                       const DataLayout &DL) {
35   Align BA = Base->getPointerAlignment(DL);
36   const APInt APAlign(Offset.getBitWidth(), Alignment.value());
37   assert(APAlign.isPowerOf2() && "must be a power of 2!");
38   return BA >= Alignment && !(Offset & (APAlign - 1));
39 }
40 
41 /// Test if V is always a pointer to allocated and suitably aligned memory for
42 /// a simple load or store.
43 static bool isDereferenceableAndAlignedPointer(
44     const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL,
45     const Instruction *CtxI, const DominatorTree *DT,
46     const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited,
47     unsigned MaxDepth) {
48   assert(V->getType()->isPointerTy() && "Base must be pointer");
49 
50   // Recursion limit.
51   if (MaxDepth-- == 0)
52     return false;
53 
54   // Already visited?  Bail out, we've likely hit unreachable code.
55   if (!Visited.insert(V).second)
56     return false;
57 
58   // Note that it is not safe to speculate into a malloc'd region because
59   // malloc may return null.
60 
61   // bitcast instructions are no-ops as far as dereferenceability is concerned.
62   if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) {
63     if (BC->getSrcTy()->isPointerTy())
64       return isDereferenceableAndAlignedPointer(
65           BC->getOperand(0), Alignment, Size, DL, CtxI, DT, TLI,
66           Visited, MaxDepth);
67   }
68 
69   bool CheckForNonNull = false;
70   APInt KnownDerefBytes(Size.getBitWidth(),
71                         V->getPointerDereferenceableBytes(DL, CheckForNonNull));
72   if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size))
73     if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT)) {
74       // As we recursed through GEPs to get here, we've incrementally checked
75       // that each step advanced by a multiple of the alignment. If our base is
76       // properly aligned, then the original offset accessed must also be.
77       Type *Ty = V->getType();
78       assert(Ty->isSized() && "must be sized");
79       APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
80       return isAligned(V, Offset, Alignment, DL);
81     }
82 
83   // For GEPs, determine if the indexing lands within the allocated object.
84   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
85     const Value *Base = GEP->getPointerOperand();
86 
87     APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
88     if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() ||
89         !Offset.urem(APInt(Offset.getBitWidth(), Alignment.value()))
90              .isMinValue())
91       return false;
92 
93     // If the base pointer is dereferenceable for Offset+Size bytes, then the
94     // GEP (== Base + Offset) is dereferenceable for Size bytes.  If the base
95     // pointer is aligned to Align bytes, and the Offset is divisible by Align
96     // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also
97     // aligned to Align bytes.
98 
99     // Offset and Size may have different bit widths if we have visited an
100     // addrspacecast, so we can't do arithmetic directly on the APInt values.
101     return isDereferenceableAndAlignedPointer(
102         Base, Alignment, Offset + Size.sextOrTrunc(Offset.getBitWidth()), DL,
103         CtxI, DT, TLI, Visited, MaxDepth);
104   }
105 
106   // For gc.relocate, look through relocations
107   if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
108     return isDereferenceableAndAlignedPointer(RelocateInst->getDerivedPtr(),
109                                               Alignment, Size, DL, CtxI, DT,
110                                               TLI, Visited, MaxDepth);
111 
112   if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
113     return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Alignment,
114                                               Size, DL, CtxI, DT, TLI,
115                                               Visited, MaxDepth);
116 
117   if (const auto *Call = dyn_cast<CallBase>(V)) {
118     if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
119       return isDereferenceableAndAlignedPointer(RP, Alignment, Size, DL, CtxI,
120                                                 DT, TLI, Visited, MaxDepth);
121 
122     // If we have a call we can't recurse through, check to see if this is an
123     // allocation function for which we can establish an minimum object size.
124     // Such a minimum object size is analogous to a deref_or_null attribute in
125     // that we still need to prove the result non-null at point of use.
126     // NOTE: We can only use the object size as a base fact as we a) need to
127     // prove alignment too, and b) don't want the compile time impact of a
128     // separate recursive walk.
129     ObjectSizeOpts Opts;
130     // TODO: It may be okay to round to align, but that would imply that
131     // accessing slightly out of bounds was legal, and we're currently
132     // inconsistent about that.  For the moment, be conservative.
133     Opts.RoundToAlign = false;
134     Opts.NullIsUnknownSize = true;
135     uint64_t ObjSize;
136     // TODO: Plumb through TLI so that malloc routines and such working.
137     if (getObjectSize(V, ObjSize, DL, nullptr, Opts)) {
138       APInt KnownDerefBytes(Size.getBitWidth(), ObjSize);
139       if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) &&
140           isKnownNonZero(V, DL, 0, nullptr, CtxI, DT) &&
141           // TODO: We're currently inconsistent about whether deref(N) is a
142           // global fact or a point in time fact.  Once D61652 eventually
143           // lands, this check will be restricted to the point in time
144           // variant. For that variant, we need to prove that object hasn't
145           // been conditionally freed before ontext instruction - if it has, we
146           // might be hoisting over the inverse conditional and creating a
147           // dynamic use after free.
148           !PointerMayBeCapturedBefore(V, true, true, CtxI, DT, true)) {
149         // As we recursed through GEPs to get here, we've incrementally
150         // checked that each step advanced by a multiple of the alignment. If
151         // our base is properly aligned, then the original offset accessed
152         // must also be.
153         Type *Ty = V->getType();
154         assert(Ty->isSized() && "must be sized");
155         APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
156         return isAligned(V, Offset, Alignment, DL);
157       }
158     }
159   }
160 
161   // If we don't know, assume the worst.
162   return false;
163 }
164 
165 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Align Alignment,
166                                               const APInt &Size,
167                                               const DataLayout &DL,
168                                               const Instruction *CtxI,
169                                               const DominatorTree *DT,
170                                               const TargetLibraryInfo *TLI) {
171   // Note: At the moment, Size can be zero.  This ends up being interpreted as
172   // a query of whether [Base, V] is dereferenceable and V is aligned (since
173   // that's what the implementation happened to do).  It's unclear if this is
174   // the desired semantic, but at least SelectionDAG does exercise this case.
175 
176   SmallPtrSet<const Value *, 32> Visited;
177   return ::isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT,
178                                               TLI, Visited, 16);
179 }
180 
181 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Type *Ty,
182                                               MaybeAlign MA,
183                                               const DataLayout &DL,
184                                               const Instruction *CtxI,
185                                               const DominatorTree *DT,
186                                               const TargetLibraryInfo *TLI) {
187   // For unsized types or scalable vectors we don't know exactly how many bytes
188   // are dereferenced, so bail out.
189   if (!Ty->isSized() || isa<ScalableVectorType>(Ty))
190     return false;
191 
192   // When dereferenceability information is provided by a dereferenceable
193   // attribute, we know exactly how many bytes are dereferenceable. If we can
194   // determine the exact offset to the attributed variable, we can use that
195   // information here.
196 
197   // Require ABI alignment for loads without alignment specification
198   const Align Alignment = DL.getValueOrABITypeAlignment(MA, Ty);
199   APInt AccessSize(DL.getPointerTypeSizeInBits(V->getType()),
200                    DL.getTypeStoreSize(Ty));
201   return isDereferenceableAndAlignedPointer(V, Alignment, AccessSize, DL, CtxI,
202                                             DT, TLI);
203 }
204 
205 bool llvm::isDereferenceablePointer(const Value *V, Type *Ty,
206                                     const DataLayout &DL,
207                                     const Instruction *CtxI,
208                                     const DominatorTree *DT,
209                                     const TargetLibraryInfo *TLI) {
210   return isDereferenceableAndAlignedPointer(V, Ty, Align(1), DL, CtxI, DT, TLI);
211 }
212 
213 /// Test if A and B will obviously have the same value.
214 ///
215 /// This includes recognizing that %t0 and %t1 will have the same
216 /// value in code like this:
217 /// \code
218 ///   %t0 = getelementptr \@a, 0, 3
219 ///   store i32 0, i32* %t0
220 ///   %t1 = getelementptr \@a, 0, 3
221 ///   %t2 = load i32* %t1
222 /// \endcode
223 ///
224 static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
225   // Test if the values are trivially equivalent.
226   if (A == B)
227     return true;
228 
229   // Test if the values come from identical arithmetic instructions.
230   // Use isIdenticalToWhenDefined instead of isIdenticalTo because
231   // this function is only used when one address use dominates the
232   // other, which means that they'll always either have the same
233   // value or one of them will have an undefined value.
234   if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) ||
235       isa<GetElementPtrInst>(A))
236     if (const Instruction *BI = dyn_cast<Instruction>(B))
237       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
238         return true;
239 
240   // Otherwise they may not be equivalent.
241   return false;
242 }
243 
244 bool llvm::isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L,
245                                              ScalarEvolution &SE,
246                                              DominatorTree &DT) {
247   auto &DL = LI->getModule()->getDataLayout();
248   Value *Ptr = LI->getPointerOperand();
249 
250   APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()),
251                 DL.getTypeStoreSize(LI->getType()).getFixedSize());
252   const Align Alignment = LI->getAlign();
253 
254   Instruction *HeaderFirstNonPHI = L->getHeader()->getFirstNonPHI();
255 
256   // If given a uniform (i.e. non-varying) address, see if we can prove the
257   // access is safe within the loop w/o needing predication.
258   if (L->isLoopInvariant(Ptr))
259     return isDereferenceableAndAlignedPointer(Ptr, Alignment, EltSize, DL,
260                                               HeaderFirstNonPHI, &DT);
261 
262   // Otherwise, check to see if we have a repeating access pattern where we can
263   // prove that all accesses are well aligned and dereferenceable.
264   auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Ptr));
265   if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine())
266     return false;
267   auto* Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(SE));
268   if (!Step)
269     return false;
270   // TODO: generalize to access patterns which have gaps
271   if (Step->getAPInt() != EltSize)
272     return false;
273 
274   auto TC = SE.getSmallConstantMaxTripCount(L);
275   if (!TC)
276     return false;
277 
278   const APInt AccessSize = TC * EltSize;
279 
280   auto *StartS = dyn_cast<SCEVUnknown>(AddRec->getStart());
281   if (!StartS)
282     return false;
283   assert(SE.isLoopInvariant(StartS, L) && "implied by addrec definition");
284   Value *Base = StartS->getValue();
285 
286   // For the moment, restrict ourselves to the case where the access size is a
287   // multiple of the requested alignment and the base is aligned.
288   // TODO: generalize if a case found which warrants
289   if (EltSize.urem(Alignment.value()) != 0)
290     return false;
291   return isDereferenceableAndAlignedPointer(Base, Alignment, AccessSize, DL,
292                                             HeaderFirstNonPHI, &DT);
293 }
294 
295 /// Check if executing a load of this pointer value cannot trap.
296 ///
297 /// If DT and ScanFrom are specified this method performs context-sensitive
298 /// analysis and returns true if it is safe to load immediately before ScanFrom.
299 ///
300 /// If it is not obviously safe to load from the specified pointer, we do
301 /// a quick local scan of the basic block containing \c ScanFrom, to determine
302 /// if the address is already accessed.
303 ///
304 /// This uses the pointee type to determine how many bytes need to be safe to
305 /// load from the pointer.
306 bool llvm::isSafeToLoadUnconditionally(Value *V, Align Alignment, APInt &Size,
307                                        const DataLayout &DL,
308                                        Instruction *ScanFrom,
309                                        const DominatorTree *DT,
310                                        const TargetLibraryInfo *TLI) {
311   // If DT is not specified we can't make context-sensitive query
312   const Instruction* CtxI = DT ? ScanFrom : nullptr;
313   if (isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT, TLI))
314     return true;
315 
316   if (!ScanFrom)
317     return false;
318 
319   if (Size.getBitWidth() > 64)
320     return false;
321   const uint64_t LoadSize = Size.getZExtValue();
322 
323   // Otherwise, be a little bit aggressive by scanning the local block where we
324   // want to check to see if the pointer is already being loaded or stored
325   // from/to.  If so, the previous load or store would have already trapped,
326   // so there is no harm doing an extra load (also, CSE will later eliminate
327   // the load entirely).
328   BasicBlock::iterator BBI = ScanFrom->getIterator(),
329                        E = ScanFrom->getParent()->begin();
330 
331   // We can at least always strip pointer casts even though we can't use the
332   // base here.
333   V = V->stripPointerCasts();
334 
335   while (BBI != E) {
336     --BBI;
337 
338     // If we see a free or a call which may write to memory (i.e. which might do
339     // a free) the pointer could be marked invalid.
340     if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
341         !isa<DbgInfoIntrinsic>(BBI))
342       return false;
343 
344     Value *AccessedPtr;
345     Type *AccessedTy;
346     Align AccessedAlign;
347     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
348       // Ignore volatile loads. The execution of a volatile load cannot
349       // be used to prove an address is backed by regular memory; it can,
350       // for example, point to an MMIO register.
351       if (LI->isVolatile())
352         continue;
353       AccessedPtr = LI->getPointerOperand();
354       AccessedTy = LI->getType();
355       AccessedAlign = LI->getAlign();
356     } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
357       // Ignore volatile stores (see comment for loads).
358       if (SI->isVolatile())
359         continue;
360       AccessedPtr = SI->getPointerOperand();
361       AccessedTy = SI->getValueOperand()->getType();
362       AccessedAlign = SI->getAlign();
363     } else
364       continue;
365 
366     if (AccessedAlign < Alignment)
367       continue;
368 
369     // Handle trivial cases.
370     if (AccessedPtr == V &&
371         LoadSize <= DL.getTypeStoreSize(AccessedTy))
372       return true;
373 
374     if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) &&
375         LoadSize <= DL.getTypeStoreSize(AccessedTy))
376       return true;
377   }
378   return false;
379 }
380 
381 bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, Align Alignment,
382                                        const DataLayout &DL,
383                                        Instruction *ScanFrom,
384                                        const DominatorTree *DT,
385                                        const TargetLibraryInfo *TLI) {
386   APInt Size(DL.getIndexTypeSizeInBits(V->getType()), DL.getTypeStoreSize(Ty));
387   return isSafeToLoadUnconditionally(V, Alignment, Size, DL, ScanFrom, DT, TLI);
388 }
389 
390   /// DefMaxInstsToScan - the default number of maximum instructions
391 /// to scan in the block, used by FindAvailableLoadedValue().
392 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump
393 /// threading in part by eliminating partially redundant loads.
394 /// At that point, the value of MaxInstsToScan was already set to '6'
395 /// without documented explanation.
396 cl::opt<unsigned>
397 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden,
398   cl::desc("Use this to specify the default maximum number of instructions "
399            "to scan backward from a given instruction, when searching for "
400            "available loaded value"));
401 
402 Value *llvm::FindAvailableLoadedValue(LoadInst *Load,
403                                       BasicBlock *ScanBB,
404                                       BasicBlock::iterator &ScanFrom,
405                                       unsigned MaxInstsToScan,
406                                       AAResults *AA, bool *IsLoad,
407                                       unsigned *NumScanedInst) {
408   // Don't CSE load that is volatile or anything stronger than unordered.
409   if (!Load->isUnordered())
410     return nullptr;
411 
412   return FindAvailablePtrLoadStore(
413       Load->getPointerOperand(), Load->getType(), Load->isAtomic(), ScanBB,
414       ScanFrom, MaxInstsToScan, AA, IsLoad, NumScanedInst);
415 }
416 
417 // Check if the load and the store have the same base, constant offsets and
418 // non-overlapping access ranges.
419 static bool AreNonOverlapSameBaseLoadAndStore(
420     Value *LoadPtr, Type *LoadTy, Value *StorePtr, Type *StoreTy,
421     const DataLayout &DL) {
422   APInt LoadOffset(DL.getTypeSizeInBits(LoadPtr->getType()), 0);
423   APInt StoreOffset(DL.getTypeSizeInBits(StorePtr->getType()), 0);
424   Value *LoadBase = LoadPtr->stripAndAccumulateConstantOffsets(
425       DL, LoadOffset, /* AllowNonInbounds */ false);
426   Value *StoreBase = StorePtr->stripAndAccumulateConstantOffsets(
427       DL, StoreOffset, /* AllowNonInbounds */ false);
428   if (LoadBase != StoreBase)
429     return false;
430   auto LoadAccessSize = LocationSize::precise(DL.getTypeStoreSize(LoadTy));
431   auto StoreAccessSize = LocationSize::precise(DL.getTypeStoreSize(StoreTy));
432   ConstantRange LoadRange(LoadOffset,
433                           LoadOffset + LoadAccessSize.toRaw());
434   ConstantRange StoreRange(StoreOffset,
435                            StoreOffset + StoreAccessSize.toRaw());
436   return LoadRange.intersectWith(StoreRange).isEmptySet();
437 }
438 
439 Value *llvm::FindAvailablePtrLoadStore(Value *Ptr, Type *AccessTy,
440                                        bool AtLeastAtomic, BasicBlock *ScanBB,
441                                        BasicBlock::iterator &ScanFrom,
442                                        unsigned MaxInstsToScan,
443                                        AAResults *AA, bool *IsLoadCSE,
444                                        unsigned *NumScanedInst) {
445   if (MaxInstsToScan == 0)
446     MaxInstsToScan = ~0U;
447 
448   const DataLayout &DL = ScanBB->getModule()->getDataLayout();
449   Value *StrippedPtr = Ptr->stripPointerCasts();
450 
451   while (ScanFrom != ScanBB->begin()) {
452     // We must ignore debug info directives when counting (otherwise they
453     // would affect codegen).
454     Instruction *Inst = &*--ScanFrom;
455     if (isa<DbgInfoIntrinsic>(Inst))
456       continue;
457 
458     // Restore ScanFrom to expected value in case next test succeeds
459     ScanFrom++;
460 
461     if (NumScanedInst)
462       ++(*NumScanedInst);
463 
464     // Don't scan huge blocks.
465     if (MaxInstsToScan-- == 0)
466       return nullptr;
467 
468     --ScanFrom;
469     // If this is a load of Ptr, the loaded value is available.
470     // (This is true even if the load is volatile or atomic, although
471     // those cases are unlikely.)
472     if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
473       if (AreEquivalentAddressValues(
474               LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) &&
475           CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) {
476 
477         // We can value forward from an atomic to a non-atomic, but not the
478         // other way around.
479         if (LI->isAtomic() < AtLeastAtomic)
480           return nullptr;
481 
482         if (IsLoadCSE)
483             *IsLoadCSE = true;
484         return LI;
485       }
486 
487     // Try to get the store size for the type.
488     auto AccessSize = LocationSize::precise(DL.getTypeStoreSize(AccessTy));
489 
490     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
491       Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
492       // If this is a store through Ptr, the value is available!
493       // (This is true even if the store is volatile or atomic, although
494       // those cases are unlikely.)
495       if (AreEquivalentAddressValues(StorePtr, StrippedPtr) &&
496           CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(),
497                                                AccessTy, DL)) {
498 
499         // We can value forward from an atomic to a non-atomic, but not the
500         // other way around.
501         if (SI->isAtomic() < AtLeastAtomic)
502           return nullptr;
503 
504         if (IsLoadCSE)
505           *IsLoadCSE = false;
506         return SI->getOperand(0);
507       }
508 
509       // If both StrippedPtr and StorePtr reach all the way to an alloca or
510       // global and they are different, ignore the store. This is a trivial form
511       // of alias analysis that is important for reg2mem'd code.
512       if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) &&
513           (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) &&
514           StrippedPtr != StorePtr)
515         continue;
516 
517       if (!AA) {
518         // When AA isn't available, but if the load and the store have the same
519         // base, constant offsets and non-overlapping access ranges, ignore the
520         // store. This is a simple form of alias analysis that is used by the
521         // inliner. FIXME: use BasicAA if possible.
522         if (AreNonOverlapSameBaseLoadAndStore(
523                 Ptr, AccessTy, SI->getPointerOperand(),
524                 SI->getValueOperand()->getType(), DL))
525           continue;
526       } else {
527         // If we have alias analysis and it says the store won't modify the
528         // loaded value, ignore the store.
529         if (!isModSet(AA->getModRefInfo(SI, StrippedPtr, AccessSize)))
530           continue;
531       }
532 
533       // Otherwise the store that may or may not alias the pointer, bail out.
534       ++ScanFrom;
535       return nullptr;
536     }
537 
538     // If this is some other instruction that may clobber Ptr, bail out.
539     if (Inst->mayWriteToMemory()) {
540       // If alias analysis claims that it really won't modify the load,
541       // ignore it.
542       if (AA && !isModSet(AA->getModRefInfo(Inst, StrippedPtr, AccessSize)))
543         continue;
544 
545       // May modify the pointer, bail out.
546       ++ScanFrom;
547       return nullptr;
548     }
549   }
550 
551   // Got to the start of the block, we didn't find it, but are done for this
552   // block.
553   return nullptr;
554 }
555 
556 bool llvm::canReplacePointersIfEqual(Value *A, Value *B, const DataLayout &DL,
557                                      Instruction *CtxI) {
558   Type *Ty = A->getType();
559   assert(Ty == B->getType() && Ty->isPointerTy() &&
560          "values must have matching pointer types");
561 
562   // NOTE: The checks in the function are incomplete and currently miss illegal
563   // cases! The current implementation is a starting point and the
564   // implementation should be made stricter over time.
565   if (auto *C = dyn_cast<Constant>(B)) {
566     // Do not allow replacing a pointer with a constant pointer, unless it is
567     // either null or at least one byte is dereferenceable.
568     APInt OneByte(DL.getPointerTypeSizeInBits(Ty), 1);
569     return C->isNullValue() ||
570            isDereferenceableAndAlignedPointer(B, Align(1), OneByte, DL, CtxI);
571   }
572 
573   return true;
574 }
575