1 //===- Loads.cpp - Local load analysis ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines simple local analyses for load instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/Loads.h" 14 #include "llvm/Analysis/AliasAnalysis.h" 15 #include "llvm/Analysis/LoopInfo.h" 16 #include "llvm/Analysis/ScalarEvolution.h" 17 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 18 #include "llvm/Analysis/ValueTracking.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/GlobalAlias.h" 21 #include "llvm/IR/GlobalVariable.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/Statepoint.h" 27 28 using namespace llvm; 29 30 static bool isAligned(const Value *Base, const APInt &Offset, unsigned Align, 31 const DataLayout &DL) { 32 APInt BaseAlign(Offset.getBitWidth(), Base->getPointerAlignment(DL)); 33 34 if (!BaseAlign) { 35 Type *Ty = Base->getType()->getPointerElementType(); 36 if (!Ty->isSized()) 37 return false; 38 BaseAlign = DL.getABITypeAlignment(Ty); 39 } 40 41 APInt Alignment(Offset.getBitWidth(), Align); 42 43 assert(Alignment.isPowerOf2() && "must be a power of 2!"); 44 return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1)); 45 } 46 47 /// Test if V is always a pointer to allocated and suitably aligned memory for 48 /// a simple load or store. 49 static bool isDereferenceableAndAlignedPointer( 50 const Value *V, unsigned Align, const APInt &Size, const DataLayout &DL, 51 const Instruction *CtxI, const DominatorTree *DT, 52 SmallPtrSetImpl<const Value *> &Visited) { 53 // Already visited? Bail out, we've likely hit unreachable code. 54 if (!Visited.insert(V).second) 55 return false; 56 57 // Note that it is not safe to speculate into a malloc'd region because 58 // malloc may return null. 59 60 // bitcast instructions are no-ops as far as dereferenceability is concerned. 61 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) 62 return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, Size, 63 DL, CtxI, DT, Visited); 64 65 bool CheckForNonNull = false; 66 APInt KnownDerefBytes(Size.getBitWidth(), 67 V->getPointerDereferenceableBytes(DL, CheckForNonNull)); 68 if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size)) 69 if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT)) { 70 // As we recursed through GEPs to get here, we've incrementally checked 71 // that each step advanced by a multiple of the alignment. If our base is 72 // properly aligned, then the original offset accessed must also be. 73 Type *Ty = V->getType(); 74 assert(Ty->isSized() && "must be sized"); 75 APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0); 76 return isAligned(V, Offset, Align, DL); 77 } 78 79 // For GEPs, determine if the indexing lands within the allocated object. 80 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 81 const Value *Base = GEP->getPointerOperand(); 82 83 APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0); 84 if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() || 85 !Offset.urem(APInt(Offset.getBitWidth(), Align)).isMinValue()) 86 return false; 87 88 // If the base pointer is dereferenceable for Offset+Size bytes, then the 89 // GEP (== Base + Offset) is dereferenceable for Size bytes. If the base 90 // pointer is aligned to Align bytes, and the Offset is divisible by Align 91 // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also 92 // aligned to Align bytes. 93 94 // Offset and Size may have different bit widths if we have visited an 95 // addrspacecast, so we can't do arithmetic directly on the APInt values. 96 return isDereferenceableAndAlignedPointer( 97 Base, Align, Offset + Size.sextOrTrunc(Offset.getBitWidth()), 98 DL, CtxI, DT, Visited); 99 } 100 101 // For gc.relocate, look through relocations 102 if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V)) 103 return isDereferenceableAndAlignedPointer( 104 RelocateInst->getDerivedPtr(), Align, Size, DL, CtxI, DT, Visited); 105 106 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V)) 107 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, Size, 108 DL, CtxI, DT, Visited); 109 110 if (const auto *Call = dyn_cast<CallBase>(V)) 111 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 112 return isDereferenceableAndAlignedPointer(RP, Align, Size, DL, CtxI, DT, 113 Visited); 114 115 // If we don't know, assume the worst. 116 return false; 117 } 118 119 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align, 120 const APInt &Size, 121 const DataLayout &DL, 122 const Instruction *CtxI, 123 const DominatorTree *DT) { 124 assert(Align != 0 && "expected explicitly set alignment"); 125 // Note: At the moment, Size can be zero. This ends up being interpreted as 126 // a query of whether [Base, V] is dereferenceable and V is aligned (since 127 // that's what the implementation happened to do). It's unclear if this is 128 // the desired semantic, but at least SelectionDAG does exercise this case. 129 130 SmallPtrSet<const Value *, 32> Visited; 131 return ::isDereferenceableAndAlignedPointer(V, Align, Size, DL, CtxI, DT, 132 Visited); 133 } 134 135 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, 136 unsigned Align, 137 const DataLayout &DL, 138 const Instruction *CtxI, 139 const DominatorTree *DT) { 140 // When dereferenceability information is provided by a dereferenceable 141 // attribute, we know exactly how many bytes are dereferenceable. If we can 142 // determine the exact offset to the attributed variable, we can use that 143 // information here. 144 145 // Require ABI alignment for loads without alignment specification 146 if (Align == 0) 147 Align = DL.getABITypeAlignment(Ty); 148 149 if (!Ty->isSized()) 150 return false; 151 152 APInt AccessSize(DL.getIndexTypeSizeInBits(V->getType()), 153 DL.getTypeStoreSize(Ty)); 154 return isDereferenceableAndAlignedPointer(V, Align, AccessSize, 155 DL, CtxI, DT); 156 } 157 158 bool llvm::isDereferenceablePointer(const Value *V, Type *Ty, 159 const DataLayout &DL, 160 const Instruction *CtxI, 161 const DominatorTree *DT) { 162 return isDereferenceableAndAlignedPointer(V, Ty, 1, DL, CtxI, DT); 163 } 164 165 /// Test if A and B will obviously have the same value. 166 /// 167 /// This includes recognizing that %t0 and %t1 will have the same 168 /// value in code like this: 169 /// \code 170 /// %t0 = getelementptr \@a, 0, 3 171 /// store i32 0, i32* %t0 172 /// %t1 = getelementptr \@a, 0, 3 173 /// %t2 = load i32* %t1 174 /// \endcode 175 /// 176 static bool AreEquivalentAddressValues(const Value *A, const Value *B) { 177 // Test if the values are trivially equivalent. 178 if (A == B) 179 return true; 180 181 // Test if the values come from identical arithmetic instructions. 182 // Use isIdenticalToWhenDefined instead of isIdenticalTo because 183 // this function is only used when one address use dominates the 184 // other, which means that they'll always either have the same 185 // value or one of them will have an undefined value. 186 if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) || 187 isa<GetElementPtrInst>(A)) 188 if (const Instruction *BI = dyn_cast<Instruction>(B)) 189 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 190 return true; 191 192 // Otherwise they may not be equivalent. 193 return false; 194 } 195 196 bool llvm::isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L, 197 ScalarEvolution &SE, 198 DominatorTree &DT) { 199 auto &DL = LI->getModule()->getDataLayout(); 200 Value *Ptr = LI->getPointerOperand(); 201 202 APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()), 203 DL.getTypeStoreSize(LI->getType())); 204 unsigned Align = LI->getAlignment(); 205 if (Align == 0) 206 Align = DL.getABITypeAlignment(LI->getType()); 207 208 Instruction *HeaderFirstNonPHI = L->getHeader()->getFirstNonPHI(); 209 210 // If given a uniform (i.e. non-varying) address, see if we can prove the 211 // access is safe within the loop w/o needing predication. 212 if (L->isLoopInvariant(Ptr)) 213 return isDereferenceableAndAlignedPointer(Ptr, Align, EltSize, DL, 214 HeaderFirstNonPHI, &DT); 215 216 // Otherwise, check to see if we have a repeating access pattern where we can 217 // prove that all accesses are well aligned and dereferenceable. 218 auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Ptr)); 219 if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine()) 220 return false; 221 auto* Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(SE)); 222 if (!Step) 223 return false; 224 // TODO: generalize to access patterns which have gaps 225 if (Step->getAPInt() != EltSize) 226 return false; 227 228 // TODO: If the symbolic trip count has a small bound (max count), we might 229 // be able to prove safety. 230 auto TC = SE.getSmallConstantTripCount(L); 231 if (!TC) 232 return false; 233 234 const APInt AccessSize = TC * EltSize; 235 236 auto *StartS = dyn_cast<SCEVUnknown>(AddRec->getStart()); 237 if (!StartS) 238 return false; 239 assert(SE.isLoopInvariant(StartS, L) && "implied by addrec definition"); 240 Value *Base = StartS->getValue(); 241 242 // For the moment, restrict ourselves to the case where the access size is a 243 // multiple of the requested alignment and the base is aligned. 244 // TODO: generalize if a case found which warrants 245 if (EltSize.urem(Align) != 0) 246 return false; 247 return isDereferenceableAndAlignedPointer(Base, Align, AccessSize, 248 DL, HeaderFirstNonPHI, &DT); 249 } 250 251 /// Check if executing a load of this pointer value cannot trap. 252 /// 253 /// If DT and ScanFrom are specified this method performs context-sensitive 254 /// analysis and returns true if it is safe to load immediately before ScanFrom. 255 /// 256 /// If it is not obviously safe to load from the specified pointer, we do 257 /// a quick local scan of the basic block containing \c ScanFrom, to determine 258 /// if the address is already accessed. 259 /// 260 /// This uses the pointee type to determine how many bytes need to be safe to 261 /// load from the pointer. 262 bool llvm::isSafeToLoadUnconditionally(Value *V, unsigned Align, APInt &Size, 263 const DataLayout &DL, 264 Instruction *ScanFrom, 265 const DominatorTree *DT) { 266 // Zero alignment means that the load has the ABI alignment for the target 267 if (Align == 0) 268 Align = DL.getABITypeAlignment(V->getType()->getPointerElementType()); 269 assert(isPowerOf2_32(Align)); 270 271 // If DT is not specified we can't make context-sensitive query 272 const Instruction* CtxI = DT ? ScanFrom : nullptr; 273 if (isDereferenceableAndAlignedPointer(V, Align, Size, DL, CtxI, DT)) 274 return true; 275 276 if (!ScanFrom) 277 return false; 278 279 if (Size.getBitWidth() > 64) 280 return false; 281 const uint64_t LoadSize = Size.getZExtValue(); 282 283 // Otherwise, be a little bit aggressive by scanning the local block where we 284 // want to check to see if the pointer is already being loaded or stored 285 // from/to. If so, the previous load or store would have already trapped, 286 // so there is no harm doing an extra load (also, CSE will later eliminate 287 // the load entirely). 288 BasicBlock::iterator BBI = ScanFrom->getIterator(), 289 E = ScanFrom->getParent()->begin(); 290 291 // We can at least always strip pointer casts even though we can't use the 292 // base here. 293 V = V->stripPointerCasts(); 294 295 while (BBI != E) { 296 --BBI; 297 298 // If we see a free or a call which may write to memory (i.e. which might do 299 // a free) the pointer could be marked invalid. 300 if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() && 301 !isa<DbgInfoIntrinsic>(BBI)) 302 return false; 303 304 Value *AccessedPtr; 305 unsigned AccessedAlign; 306 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 307 // Ignore volatile loads. The execution of a volatile load cannot 308 // be used to prove an address is backed by regular memory; it can, 309 // for example, point to an MMIO register. 310 if (LI->isVolatile()) 311 continue; 312 AccessedPtr = LI->getPointerOperand(); 313 AccessedAlign = LI->getAlignment(); 314 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 315 // Ignore volatile stores (see comment for loads). 316 if (SI->isVolatile()) 317 continue; 318 AccessedPtr = SI->getPointerOperand(); 319 AccessedAlign = SI->getAlignment(); 320 } else 321 continue; 322 323 Type *AccessedTy = AccessedPtr->getType()->getPointerElementType(); 324 if (AccessedAlign == 0) 325 AccessedAlign = DL.getABITypeAlignment(AccessedTy); 326 if (AccessedAlign < Align) 327 continue; 328 329 // Handle trivial cases. 330 if (AccessedPtr == V && 331 LoadSize <= DL.getTypeStoreSize(AccessedTy)) 332 return true; 333 334 if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) && 335 LoadSize <= DL.getTypeStoreSize(AccessedTy)) 336 return true; 337 } 338 return false; 339 } 340 341 bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, unsigned Align, 342 const DataLayout &DL, 343 Instruction *ScanFrom, 344 const DominatorTree *DT) { 345 APInt Size(DL.getIndexTypeSizeInBits(V->getType()), DL.getTypeStoreSize(Ty)); 346 return isSafeToLoadUnconditionally(V, Align, Size, DL, ScanFrom, DT); 347 } 348 349 /// DefMaxInstsToScan - the default number of maximum instructions 350 /// to scan in the block, used by FindAvailableLoadedValue(). 351 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump 352 /// threading in part by eliminating partially redundant loads. 353 /// At that point, the value of MaxInstsToScan was already set to '6' 354 /// without documented explanation. 355 cl::opt<unsigned> 356 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden, 357 cl::desc("Use this to specify the default maximum number of instructions " 358 "to scan backward from a given instruction, when searching for " 359 "available loaded value")); 360 361 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, 362 BasicBlock *ScanBB, 363 BasicBlock::iterator &ScanFrom, 364 unsigned MaxInstsToScan, 365 AliasAnalysis *AA, bool *IsLoad, 366 unsigned *NumScanedInst) { 367 // Don't CSE load that is volatile or anything stronger than unordered. 368 if (!Load->isUnordered()) 369 return nullptr; 370 371 return FindAvailablePtrLoadStore( 372 Load->getPointerOperand(), Load->getType(), Load->isAtomic(), ScanBB, 373 ScanFrom, MaxInstsToScan, AA, IsLoad, NumScanedInst); 374 } 375 376 Value *llvm::FindAvailablePtrLoadStore(Value *Ptr, Type *AccessTy, 377 bool AtLeastAtomic, BasicBlock *ScanBB, 378 BasicBlock::iterator &ScanFrom, 379 unsigned MaxInstsToScan, 380 AliasAnalysis *AA, bool *IsLoadCSE, 381 unsigned *NumScanedInst) { 382 if (MaxInstsToScan == 0) 383 MaxInstsToScan = ~0U; 384 385 const DataLayout &DL = ScanBB->getModule()->getDataLayout(); 386 387 // Try to get the store size for the type. 388 auto AccessSize = LocationSize::precise(DL.getTypeStoreSize(AccessTy)); 389 390 Value *StrippedPtr = Ptr->stripPointerCasts(); 391 392 while (ScanFrom != ScanBB->begin()) { 393 // We must ignore debug info directives when counting (otherwise they 394 // would affect codegen). 395 Instruction *Inst = &*--ScanFrom; 396 if (isa<DbgInfoIntrinsic>(Inst)) 397 continue; 398 399 // Restore ScanFrom to expected value in case next test succeeds 400 ScanFrom++; 401 402 if (NumScanedInst) 403 ++(*NumScanedInst); 404 405 // Don't scan huge blocks. 406 if (MaxInstsToScan-- == 0) 407 return nullptr; 408 409 --ScanFrom; 410 // If this is a load of Ptr, the loaded value is available. 411 // (This is true even if the load is volatile or atomic, although 412 // those cases are unlikely.) 413 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 414 if (AreEquivalentAddressValues( 415 LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) && 416 CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) { 417 418 // We can value forward from an atomic to a non-atomic, but not the 419 // other way around. 420 if (LI->isAtomic() < AtLeastAtomic) 421 return nullptr; 422 423 if (IsLoadCSE) 424 *IsLoadCSE = true; 425 return LI; 426 } 427 428 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 429 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts(); 430 // If this is a store through Ptr, the value is available! 431 // (This is true even if the store is volatile or atomic, although 432 // those cases are unlikely.) 433 if (AreEquivalentAddressValues(StorePtr, StrippedPtr) && 434 CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(), 435 AccessTy, DL)) { 436 437 // We can value forward from an atomic to a non-atomic, but not the 438 // other way around. 439 if (SI->isAtomic() < AtLeastAtomic) 440 return nullptr; 441 442 if (IsLoadCSE) 443 *IsLoadCSE = false; 444 return SI->getOperand(0); 445 } 446 447 // If both StrippedPtr and StorePtr reach all the way to an alloca or 448 // global and they are different, ignore the store. This is a trivial form 449 // of alias analysis that is important for reg2mem'd code. 450 if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) && 451 (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) && 452 StrippedPtr != StorePtr) 453 continue; 454 455 // If we have alias analysis and it says the store won't modify the loaded 456 // value, ignore the store. 457 if (AA && !isModSet(AA->getModRefInfo(SI, StrippedPtr, AccessSize))) 458 continue; 459 460 // Otherwise the store that may or may not alias the pointer, bail out. 461 ++ScanFrom; 462 return nullptr; 463 } 464 465 // If this is some other instruction that may clobber Ptr, bail out. 466 if (Inst->mayWriteToMemory()) { 467 // If alias analysis claims that it really won't modify the load, 468 // ignore it. 469 if (AA && !isModSet(AA->getModRefInfo(Inst, StrippedPtr, AccessSize))) 470 continue; 471 472 // May modify the pointer, bail out. 473 ++ScanFrom; 474 return nullptr; 475 } 476 } 477 478 // Got to the start of the block, we didn't find it, but are done for this 479 // block. 480 return nullptr; 481 } 482