1 //===- Loads.cpp - Local load analysis ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines simple local analyses for load instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/Loads.h" 14 #include "llvm/Analysis/AliasAnalysis.h" 15 #include "llvm/Analysis/AssumeBundleQueries.h" 16 #include "llvm/Analysis/CaptureTracking.h" 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/Analysis/MemoryBuiltins.h" 19 #include "llvm/Analysis/MemoryLocation.h" 20 #include "llvm/Analysis/ScalarEvolution.h" 21 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/GlobalAlias.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/Statepoint.h" 32 33 using namespace llvm; 34 35 static bool isAligned(const Value *Base, const APInt &Offset, Align Alignment, 36 const DataLayout &DL) { 37 Align BA = Base->getPointerAlignment(DL); 38 const APInt APAlign(Offset.getBitWidth(), Alignment.value()); 39 assert(APAlign.isPowerOf2() && "must be a power of 2!"); 40 return BA >= Alignment && !(Offset & (APAlign - 1)); 41 } 42 43 /// Test if V is always a pointer to allocated and suitably aligned memory for 44 /// a simple load or store. 45 static bool isDereferenceableAndAlignedPointer( 46 const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL, 47 const Instruction *CtxI, const DominatorTree *DT, 48 const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited, 49 unsigned MaxDepth) { 50 assert(V->getType()->isPointerTy() && "Base must be pointer"); 51 52 // Recursion limit. 53 if (MaxDepth-- == 0) 54 return false; 55 56 // Already visited? Bail out, we've likely hit unreachable code. 57 if (!Visited.insert(V).second) 58 return false; 59 60 // Note that it is not safe to speculate into a malloc'd region because 61 // malloc may return null. 62 63 // bitcast instructions are no-ops as far as dereferenceability is concerned. 64 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) { 65 if (BC->getSrcTy()->isPointerTy()) 66 return isDereferenceableAndAlignedPointer( 67 BC->getOperand(0), Alignment, Size, DL, CtxI, DT, TLI, 68 Visited, MaxDepth); 69 } 70 71 bool CheckForNonNull, CheckForFreed; 72 APInt KnownDerefBytes(Size.getBitWidth(), 73 V->getPointerDereferenceableBytes(DL, CheckForNonNull, 74 CheckForFreed)); 75 if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) && 76 !CheckForFreed) 77 if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT)) { 78 // As we recursed through GEPs to get here, we've incrementally checked 79 // that each step advanced by a multiple of the alignment. If our base is 80 // properly aligned, then the original offset accessed must also be. 81 Type *Ty = V->getType(); 82 assert(Ty->isSized() && "must be sized"); 83 APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0); 84 return isAligned(V, Offset, Alignment, DL); 85 } 86 87 if (CtxI) { 88 /// Look through assumes to see if both dereferencability and alignment can 89 /// be provent by an assume 90 RetainedKnowledge AlignRK; 91 RetainedKnowledge DerefRK; 92 if (getKnowledgeForValue( 93 V, {Attribute::Dereferenceable, Attribute::Alignment}, nullptr, 94 [&](RetainedKnowledge RK, Instruction *Assume, auto) { 95 if (!isValidAssumeForContext(Assume, CtxI)) 96 return false; 97 if (RK.AttrKind == Attribute::Alignment) 98 AlignRK = std::max(AlignRK, RK); 99 if (RK.AttrKind == Attribute::Dereferenceable) 100 DerefRK = std::max(DerefRK, RK); 101 if (AlignRK && DerefRK && AlignRK.ArgValue >= Alignment.value() && 102 DerefRK.ArgValue >= Size.getZExtValue()) 103 return true; // We have found what we needed so we stop looking 104 return false; // Other assumes may have better information. so 105 // keep looking 106 })) 107 return true; 108 } 109 /// TODO refactor this function to be able to search independently for 110 /// Dereferencability and Alignment requirements. 111 112 // For GEPs, determine if the indexing lands within the allocated object. 113 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 114 const Value *Base = GEP->getPointerOperand(); 115 116 APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0); 117 if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() || 118 !Offset.urem(APInt(Offset.getBitWidth(), Alignment.value())) 119 .isMinValue()) 120 return false; 121 122 // If the base pointer is dereferenceable for Offset+Size bytes, then the 123 // GEP (== Base + Offset) is dereferenceable for Size bytes. If the base 124 // pointer is aligned to Align bytes, and the Offset is divisible by Align 125 // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also 126 // aligned to Align bytes. 127 128 // Offset and Size may have different bit widths if we have visited an 129 // addrspacecast, so we can't do arithmetic directly on the APInt values. 130 return isDereferenceableAndAlignedPointer( 131 Base, Alignment, Offset + Size.sextOrTrunc(Offset.getBitWidth()), DL, 132 CtxI, DT, TLI, Visited, MaxDepth); 133 } 134 135 // For gc.relocate, look through relocations 136 if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V)) 137 return isDereferenceableAndAlignedPointer(RelocateInst->getDerivedPtr(), 138 Alignment, Size, DL, CtxI, DT, 139 TLI, Visited, MaxDepth); 140 141 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V)) 142 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Alignment, 143 Size, DL, CtxI, DT, TLI, 144 Visited, MaxDepth); 145 146 if (const auto *Call = dyn_cast<CallBase>(V)) { 147 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 148 return isDereferenceableAndAlignedPointer(RP, Alignment, Size, DL, CtxI, 149 DT, TLI, Visited, MaxDepth); 150 151 // If we have a call we can't recurse through, check to see if this is an 152 // allocation function for which we can establish an minimum object size. 153 // Such a minimum object size is analogous to a deref_or_null attribute in 154 // that we still need to prove the result non-null at point of use. 155 // NOTE: We can only use the object size as a base fact as we a) need to 156 // prove alignment too, and b) don't want the compile time impact of a 157 // separate recursive walk. 158 ObjectSizeOpts Opts; 159 // TODO: It may be okay to round to align, but that would imply that 160 // accessing slightly out of bounds was legal, and we're currently 161 // inconsistent about that. For the moment, be conservative. 162 Opts.RoundToAlign = false; 163 Opts.NullIsUnknownSize = true; 164 uint64_t ObjSize; 165 if (getObjectSize(V, ObjSize, DL, TLI, Opts)) { 166 APInt KnownDerefBytes(Size.getBitWidth(), ObjSize); 167 if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) && 168 isKnownNonZero(V, DL, 0, nullptr, CtxI, DT) && !V->canBeFreed()) { 169 // As we recursed through GEPs to get here, we've incrementally 170 // checked that each step advanced by a multiple of the alignment. If 171 // our base is properly aligned, then the original offset accessed 172 // must also be. 173 Type *Ty = V->getType(); 174 assert(Ty->isSized() && "must be sized"); 175 APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0); 176 return isAligned(V, Offset, Alignment, DL); 177 } 178 } 179 } 180 181 // If we don't know, assume the worst. 182 return false; 183 } 184 185 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Align Alignment, 186 const APInt &Size, 187 const DataLayout &DL, 188 const Instruction *CtxI, 189 const DominatorTree *DT, 190 const TargetLibraryInfo *TLI) { 191 // Note: At the moment, Size can be zero. This ends up being interpreted as 192 // a query of whether [Base, V] is dereferenceable and V is aligned (since 193 // that's what the implementation happened to do). It's unclear if this is 194 // the desired semantic, but at least SelectionDAG does exercise this case. 195 196 SmallPtrSet<const Value *, 32> Visited; 197 return ::isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT, 198 TLI, Visited, 16); 199 } 200 201 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, 202 MaybeAlign MA, 203 const DataLayout &DL, 204 const Instruction *CtxI, 205 const DominatorTree *DT, 206 const TargetLibraryInfo *TLI) { 207 // For unsized types or scalable vectors we don't know exactly how many bytes 208 // are dereferenced, so bail out. 209 if (!Ty->isSized() || isa<ScalableVectorType>(Ty)) 210 return false; 211 212 // When dereferenceability information is provided by a dereferenceable 213 // attribute, we know exactly how many bytes are dereferenceable. If we can 214 // determine the exact offset to the attributed variable, we can use that 215 // information here. 216 217 // Require ABI alignment for loads without alignment specification 218 const Align Alignment = DL.getValueOrABITypeAlignment(MA, Ty); 219 APInt AccessSize(DL.getPointerTypeSizeInBits(V->getType()), 220 DL.getTypeStoreSize(Ty)); 221 return isDereferenceableAndAlignedPointer(V, Alignment, AccessSize, DL, CtxI, 222 DT, TLI); 223 } 224 225 bool llvm::isDereferenceablePointer(const Value *V, Type *Ty, 226 const DataLayout &DL, 227 const Instruction *CtxI, 228 const DominatorTree *DT, 229 const TargetLibraryInfo *TLI) { 230 return isDereferenceableAndAlignedPointer(V, Ty, Align(1), DL, CtxI, DT, TLI); 231 } 232 233 /// Test if A and B will obviously have the same value. 234 /// 235 /// This includes recognizing that %t0 and %t1 will have the same 236 /// value in code like this: 237 /// \code 238 /// %t0 = getelementptr \@a, 0, 3 239 /// store i32 0, i32* %t0 240 /// %t1 = getelementptr \@a, 0, 3 241 /// %t2 = load i32* %t1 242 /// \endcode 243 /// 244 static bool AreEquivalentAddressValues(const Value *A, const Value *B) { 245 // Test if the values are trivially equivalent. 246 if (A == B) 247 return true; 248 249 // Test if the values come from identical arithmetic instructions. 250 // Use isIdenticalToWhenDefined instead of isIdenticalTo because 251 // this function is only used when one address use dominates the 252 // other, which means that they'll always either have the same 253 // value or one of them will have an undefined value. 254 if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) || 255 isa<GetElementPtrInst>(A)) 256 if (const Instruction *BI = dyn_cast<Instruction>(B)) 257 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 258 return true; 259 260 // Otherwise they may not be equivalent. 261 return false; 262 } 263 264 bool llvm::isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L, 265 ScalarEvolution &SE, 266 DominatorTree &DT) { 267 auto &DL = LI->getModule()->getDataLayout(); 268 Value *Ptr = LI->getPointerOperand(); 269 270 APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()), 271 DL.getTypeStoreSize(LI->getType()).getFixedSize()); 272 const Align Alignment = LI->getAlign(); 273 274 Instruction *HeaderFirstNonPHI = L->getHeader()->getFirstNonPHI(); 275 276 // If given a uniform (i.e. non-varying) address, see if we can prove the 277 // access is safe within the loop w/o needing predication. 278 if (L->isLoopInvariant(Ptr)) 279 return isDereferenceableAndAlignedPointer(Ptr, Alignment, EltSize, DL, 280 HeaderFirstNonPHI, &DT); 281 282 // Otherwise, check to see if we have a repeating access pattern where we can 283 // prove that all accesses are well aligned and dereferenceable. 284 auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Ptr)); 285 if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine()) 286 return false; 287 auto* Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(SE)); 288 if (!Step) 289 return false; 290 // TODO: generalize to access patterns which have gaps 291 if (Step->getAPInt() != EltSize) 292 return false; 293 294 auto TC = SE.getSmallConstantMaxTripCount(L); 295 if (!TC) 296 return false; 297 298 const APInt AccessSize = TC * EltSize; 299 300 auto *StartS = dyn_cast<SCEVUnknown>(AddRec->getStart()); 301 if (!StartS) 302 return false; 303 assert(SE.isLoopInvariant(StartS, L) && "implied by addrec definition"); 304 Value *Base = StartS->getValue(); 305 306 // For the moment, restrict ourselves to the case where the access size is a 307 // multiple of the requested alignment and the base is aligned. 308 // TODO: generalize if a case found which warrants 309 if (EltSize.urem(Alignment.value()) != 0) 310 return false; 311 return isDereferenceableAndAlignedPointer(Base, Alignment, AccessSize, DL, 312 HeaderFirstNonPHI, &DT); 313 } 314 315 /// Check if executing a load of this pointer value cannot trap. 316 /// 317 /// If DT and ScanFrom are specified this method performs context-sensitive 318 /// analysis and returns true if it is safe to load immediately before ScanFrom. 319 /// 320 /// If it is not obviously safe to load from the specified pointer, we do 321 /// a quick local scan of the basic block containing \c ScanFrom, to determine 322 /// if the address is already accessed. 323 /// 324 /// This uses the pointee type to determine how many bytes need to be safe to 325 /// load from the pointer. 326 bool llvm::isSafeToLoadUnconditionally(Value *V, Align Alignment, APInt &Size, 327 const DataLayout &DL, 328 Instruction *ScanFrom, 329 const DominatorTree *DT, 330 const TargetLibraryInfo *TLI) { 331 // If DT is not specified we can't make context-sensitive query 332 const Instruction* CtxI = DT ? ScanFrom : nullptr; 333 if (isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT, TLI)) 334 return true; 335 336 if (!ScanFrom) 337 return false; 338 339 if (Size.getBitWidth() > 64) 340 return false; 341 const uint64_t LoadSize = Size.getZExtValue(); 342 343 // Otherwise, be a little bit aggressive by scanning the local block where we 344 // want to check to see if the pointer is already being loaded or stored 345 // from/to. If so, the previous load or store would have already trapped, 346 // so there is no harm doing an extra load (also, CSE will later eliminate 347 // the load entirely). 348 BasicBlock::iterator BBI = ScanFrom->getIterator(), 349 E = ScanFrom->getParent()->begin(); 350 351 // We can at least always strip pointer casts even though we can't use the 352 // base here. 353 V = V->stripPointerCasts(); 354 355 while (BBI != E) { 356 --BBI; 357 358 // If we see a free or a call which may write to memory (i.e. which might do 359 // a free) the pointer could be marked invalid. 360 if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() && 361 !isa<DbgInfoIntrinsic>(BBI)) 362 return false; 363 364 Value *AccessedPtr; 365 Type *AccessedTy; 366 Align AccessedAlign; 367 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 368 // Ignore volatile loads. The execution of a volatile load cannot 369 // be used to prove an address is backed by regular memory; it can, 370 // for example, point to an MMIO register. 371 if (LI->isVolatile()) 372 continue; 373 AccessedPtr = LI->getPointerOperand(); 374 AccessedTy = LI->getType(); 375 AccessedAlign = LI->getAlign(); 376 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 377 // Ignore volatile stores (see comment for loads). 378 if (SI->isVolatile()) 379 continue; 380 AccessedPtr = SI->getPointerOperand(); 381 AccessedTy = SI->getValueOperand()->getType(); 382 AccessedAlign = SI->getAlign(); 383 } else 384 continue; 385 386 if (AccessedAlign < Alignment) 387 continue; 388 389 // Handle trivial cases. 390 if (AccessedPtr == V && 391 LoadSize <= DL.getTypeStoreSize(AccessedTy)) 392 return true; 393 394 if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) && 395 LoadSize <= DL.getTypeStoreSize(AccessedTy)) 396 return true; 397 } 398 return false; 399 } 400 401 bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, Align Alignment, 402 const DataLayout &DL, 403 Instruction *ScanFrom, 404 const DominatorTree *DT, 405 const TargetLibraryInfo *TLI) { 406 APInt Size(DL.getIndexTypeSizeInBits(V->getType()), DL.getTypeStoreSize(Ty)); 407 return isSafeToLoadUnconditionally(V, Alignment, Size, DL, ScanFrom, DT, TLI); 408 } 409 410 /// DefMaxInstsToScan - the default number of maximum instructions 411 /// to scan in the block, used by FindAvailableLoadedValue(). 412 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump 413 /// threading in part by eliminating partially redundant loads. 414 /// At that point, the value of MaxInstsToScan was already set to '6' 415 /// without documented explanation. 416 cl::opt<unsigned> 417 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden, 418 cl::desc("Use this to specify the default maximum number of instructions " 419 "to scan backward from a given instruction, when searching for " 420 "available loaded value")); 421 422 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, 423 BasicBlock *ScanBB, 424 BasicBlock::iterator &ScanFrom, 425 unsigned MaxInstsToScan, 426 AAResults *AA, bool *IsLoad, 427 unsigned *NumScanedInst) { 428 // Don't CSE load that is volatile or anything stronger than unordered. 429 if (!Load->isUnordered()) 430 return nullptr; 431 432 MemoryLocation Loc = MemoryLocation::get(Load); 433 return findAvailablePtrLoadStore(Loc, Load->getType(), Load->isAtomic(), 434 ScanBB, ScanFrom, MaxInstsToScan, AA, IsLoad, 435 NumScanedInst); 436 } 437 438 // Check if the load and the store have the same base, constant offsets and 439 // non-overlapping access ranges. 440 static bool areNonOverlapSameBaseLoadAndStore(const Value *LoadPtr, 441 Type *LoadTy, 442 const Value *StorePtr, 443 Type *StoreTy, 444 const DataLayout &DL) { 445 APInt LoadOffset(DL.getTypeSizeInBits(LoadPtr->getType()), 0); 446 APInt StoreOffset(DL.getTypeSizeInBits(StorePtr->getType()), 0); 447 const Value *LoadBase = LoadPtr->stripAndAccumulateConstantOffsets( 448 DL, LoadOffset, /* AllowNonInbounds */ false); 449 const Value *StoreBase = StorePtr->stripAndAccumulateConstantOffsets( 450 DL, StoreOffset, /* AllowNonInbounds */ false); 451 if (LoadBase != StoreBase) 452 return false; 453 auto LoadAccessSize = LocationSize::precise(DL.getTypeStoreSize(LoadTy)); 454 auto StoreAccessSize = LocationSize::precise(DL.getTypeStoreSize(StoreTy)); 455 ConstantRange LoadRange(LoadOffset, 456 LoadOffset + LoadAccessSize.toRaw()); 457 ConstantRange StoreRange(StoreOffset, 458 StoreOffset + StoreAccessSize.toRaw()); 459 return LoadRange.intersectWith(StoreRange).isEmptySet(); 460 } 461 462 static Value *getAvailableLoadStore(Instruction *Inst, const Value *Ptr, 463 Type *AccessTy, bool AtLeastAtomic, 464 const DataLayout &DL, bool *IsLoadCSE) { 465 // If this is a load of Ptr, the loaded value is available. 466 // (This is true even if the load is volatile or atomic, although 467 // those cases are unlikely.) 468 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 469 // We can value forward from an atomic to a non-atomic, but not the 470 // other way around. 471 if (LI->isAtomic() < AtLeastAtomic) 472 return nullptr; 473 474 Value *LoadPtr = LI->getPointerOperand()->stripPointerCasts(); 475 if (!AreEquivalentAddressValues(LoadPtr, Ptr)) 476 return nullptr; 477 478 if (CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) { 479 if (IsLoadCSE) 480 *IsLoadCSE = true; 481 return LI; 482 } 483 } 484 485 // If this is a store through Ptr, the value is available! 486 // (This is true even if the store is volatile or atomic, although 487 // those cases are unlikely.) 488 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 489 // We can value forward from an atomic to a non-atomic, but not the 490 // other way around. 491 if (SI->isAtomic() < AtLeastAtomic) 492 return nullptr; 493 494 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts(); 495 if (!AreEquivalentAddressValues(StorePtr, Ptr)) 496 return nullptr; 497 498 if (IsLoadCSE) 499 *IsLoadCSE = false; 500 501 Value *Val = SI->getValueOperand(); 502 if (CastInst::isBitOrNoopPointerCastable(Val->getType(), AccessTy, DL)) 503 return Val; 504 505 if (auto *C = dyn_cast<Constant>(Val)) 506 return ConstantFoldLoadThroughBitcast(C, AccessTy, DL); 507 } 508 509 return nullptr; 510 } 511 512 Value *llvm::findAvailablePtrLoadStore( 513 const MemoryLocation &Loc, Type *AccessTy, bool AtLeastAtomic, 514 BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan, 515 AAResults *AA, bool *IsLoadCSE, unsigned *NumScanedInst) { 516 if (MaxInstsToScan == 0) 517 MaxInstsToScan = ~0U; 518 519 const DataLayout &DL = ScanBB->getModule()->getDataLayout(); 520 const Value *StrippedPtr = Loc.Ptr->stripPointerCasts(); 521 522 while (ScanFrom != ScanBB->begin()) { 523 // We must ignore debug info directives when counting (otherwise they 524 // would affect codegen). 525 Instruction *Inst = &*--ScanFrom; 526 if (isa<DbgInfoIntrinsic>(Inst)) 527 continue; 528 529 // Restore ScanFrom to expected value in case next test succeeds 530 ScanFrom++; 531 532 if (NumScanedInst) 533 ++(*NumScanedInst); 534 535 // Don't scan huge blocks. 536 if (MaxInstsToScan-- == 0) 537 return nullptr; 538 539 --ScanFrom; 540 541 if (Value *Available = getAvailableLoadStore(Inst, StrippedPtr, AccessTy, 542 AtLeastAtomic, DL, IsLoadCSE)) 543 return Available; 544 545 // Try to get the store size for the type. 546 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 547 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts(); 548 549 // If both StrippedPtr and StorePtr reach all the way to an alloca or 550 // global and they are different, ignore the store. This is a trivial form 551 // of alias analysis that is important for reg2mem'd code. 552 if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) && 553 (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) && 554 StrippedPtr != StorePtr) 555 continue; 556 557 if (!AA) { 558 // When AA isn't available, but if the load and the store have the same 559 // base, constant offsets and non-overlapping access ranges, ignore the 560 // store. This is a simple form of alias analysis that is used by the 561 // inliner. FIXME: use BasicAA if possible. 562 if (areNonOverlapSameBaseLoadAndStore( 563 Loc.Ptr, AccessTy, SI->getPointerOperand(), 564 SI->getValueOperand()->getType(), DL)) 565 continue; 566 } else { 567 // If we have alias analysis and it says the store won't modify the 568 // loaded value, ignore the store. 569 if (!isModSet(AA->getModRefInfo(SI, Loc))) 570 continue; 571 } 572 573 // Otherwise the store that may or may not alias the pointer, bail out. 574 ++ScanFrom; 575 return nullptr; 576 } 577 578 // If this is some other instruction that may clobber Ptr, bail out. 579 if (Inst->mayWriteToMemory()) { 580 // If alias analysis claims that it really won't modify the load, 581 // ignore it. 582 if (AA && !isModSet(AA->getModRefInfo(Inst, Loc))) 583 continue; 584 585 // May modify the pointer, bail out. 586 ++ScanFrom; 587 return nullptr; 588 } 589 } 590 591 // Got to the start of the block, we didn't find it, but are done for this 592 // block. 593 return nullptr; 594 } 595 596 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, AAResults &AA, 597 bool *IsLoadCSE, 598 unsigned MaxInstsToScan) { 599 const DataLayout &DL = Load->getModule()->getDataLayout(); 600 Value *StrippedPtr = Load->getPointerOperand()->stripPointerCasts(); 601 BasicBlock *ScanBB = Load->getParent(); 602 Type *AccessTy = Load->getType(); 603 bool AtLeastAtomic = Load->isAtomic(); 604 605 if (!Load->isUnordered()) 606 return nullptr; 607 608 // Try to find an available value first, and delay expensive alias analysis 609 // queries until later. 610 Value *Available = nullptr;; 611 SmallVector<Instruction *> MustNotAliasInsts; 612 for (Instruction &Inst : make_range(++Load->getReverseIterator(), 613 ScanBB->rend())) { 614 if (isa<DbgInfoIntrinsic>(&Inst)) 615 continue; 616 617 if (MaxInstsToScan-- == 0) 618 return nullptr; 619 620 Available = getAvailableLoadStore(&Inst, StrippedPtr, AccessTy, 621 AtLeastAtomic, DL, IsLoadCSE); 622 if (Available) 623 break; 624 625 if (Inst.mayWriteToMemory()) 626 MustNotAliasInsts.push_back(&Inst); 627 } 628 629 // If we found an available value, ensure that the instructions in between 630 // did not modify the memory location. 631 if (Available) { 632 MemoryLocation Loc = MemoryLocation::get(Load); 633 for (Instruction *Inst : MustNotAliasInsts) 634 if (isModSet(AA.getModRefInfo(Inst, Loc))) 635 return nullptr; 636 } 637 638 return Available; 639 } 640 641 bool llvm::canReplacePointersIfEqual(Value *A, Value *B, const DataLayout &DL, 642 Instruction *CtxI) { 643 Type *Ty = A->getType(); 644 assert(Ty == B->getType() && Ty->isPointerTy() && 645 "values must have matching pointer types"); 646 647 // NOTE: The checks in the function are incomplete and currently miss illegal 648 // cases! The current implementation is a starting point and the 649 // implementation should be made stricter over time. 650 if (auto *C = dyn_cast<Constant>(B)) { 651 // Do not allow replacing a pointer with a constant pointer, unless it is 652 // either null or at least one byte is dereferenceable. 653 APInt OneByte(DL.getPointerTypeSizeInBits(Ty), 1); 654 return C->isNullValue() || 655 isDereferenceableAndAlignedPointer(B, Align(1), OneByte, DL, CtxI); 656 } 657 658 return true; 659 } 660