1 //===- Loads.cpp - Local load analysis ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines simple local analyses for load instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/Loads.h" 14 #include "llvm/Analysis/AliasAnalysis.h" 15 #include "llvm/Analysis/AssumeBundleQueries.h" 16 #include "llvm/Analysis/CaptureTracking.h" 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/Analysis/MemoryBuiltins.h" 19 #include "llvm/Analysis/MemoryLocation.h" 20 #include "llvm/Analysis/ScalarEvolution.h" 21 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/GlobalAlias.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/Operator.h" 31 32 using namespace llvm; 33 34 static bool isAligned(const Value *Base, const APInt &Offset, Align Alignment, 35 const DataLayout &DL) { 36 Align BA = Base->getPointerAlignment(DL); 37 const APInt APAlign(Offset.getBitWidth(), Alignment.value()); 38 assert(APAlign.isPowerOf2() && "must be a power of 2!"); 39 return BA >= Alignment && !(Offset & (APAlign - 1)); 40 } 41 42 /// Test if V is always a pointer to allocated and suitably aligned memory for 43 /// a simple load or store. 44 static bool isDereferenceableAndAlignedPointer( 45 const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL, 46 const Instruction *CtxI, const DominatorTree *DT, 47 const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited, 48 unsigned MaxDepth) { 49 assert(V->getType()->isPointerTy() && "Base must be pointer"); 50 51 // Recursion limit. 52 if (MaxDepth-- == 0) 53 return false; 54 55 // Already visited? Bail out, we've likely hit unreachable code. 56 if (!Visited.insert(V).second) 57 return false; 58 59 // Note that it is not safe to speculate into a malloc'd region because 60 // malloc may return null. 61 62 // bitcast instructions are no-ops as far as dereferenceability is concerned. 63 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) { 64 if (BC->getSrcTy()->isPointerTy()) 65 return isDereferenceableAndAlignedPointer( 66 BC->getOperand(0), Alignment, Size, DL, CtxI, DT, TLI, 67 Visited, MaxDepth); 68 } 69 70 bool CheckForNonNull, CheckForFreed; 71 APInt KnownDerefBytes(Size.getBitWidth(), 72 V->getPointerDereferenceableBytes(DL, CheckForNonNull, 73 CheckForFreed)); 74 if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) && 75 !CheckForFreed) 76 if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT)) { 77 // As we recursed through GEPs to get here, we've incrementally checked 78 // that each step advanced by a multiple of the alignment. If our base is 79 // properly aligned, then the original offset accessed must also be. 80 Type *Ty = V->getType(); 81 assert(Ty->isSized() && "must be sized"); 82 APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0); 83 return isAligned(V, Offset, Alignment, DL); 84 } 85 86 if (CtxI) { 87 /// Look through assumes to see if both dereferencability and alignment can 88 /// be provent by an assume 89 RetainedKnowledge AlignRK; 90 RetainedKnowledge DerefRK; 91 if (getKnowledgeForValue( 92 V, {Attribute::Dereferenceable, Attribute::Alignment}, nullptr, 93 [&](RetainedKnowledge RK, Instruction *Assume, auto) { 94 if (!isValidAssumeForContext(Assume, CtxI)) 95 return false; 96 if (RK.AttrKind == Attribute::Alignment) 97 AlignRK = std::max(AlignRK, RK); 98 if (RK.AttrKind == Attribute::Dereferenceable) 99 DerefRK = std::max(DerefRK, RK); 100 if (AlignRK && DerefRK && AlignRK.ArgValue >= Alignment.value() && 101 DerefRK.ArgValue >= Size.getZExtValue()) 102 return true; // We have found what we needed so we stop looking 103 return false; // Other assumes may have better information. so 104 // keep looking 105 })) 106 return true; 107 } 108 /// TODO refactor this function to be able to search independently for 109 /// Dereferencability and Alignment requirements. 110 111 // For GEPs, determine if the indexing lands within the allocated object. 112 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 113 const Value *Base = GEP->getPointerOperand(); 114 115 APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0); 116 if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() || 117 !Offset.urem(APInt(Offset.getBitWidth(), Alignment.value())) 118 .isMinValue()) 119 return false; 120 121 // If the base pointer is dereferenceable for Offset+Size bytes, then the 122 // GEP (== Base + Offset) is dereferenceable for Size bytes. If the base 123 // pointer is aligned to Align bytes, and the Offset is divisible by Align 124 // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also 125 // aligned to Align bytes. 126 127 // Offset and Size may have different bit widths if we have visited an 128 // addrspacecast, so we can't do arithmetic directly on the APInt values. 129 return isDereferenceableAndAlignedPointer( 130 Base, Alignment, Offset + Size.sextOrTrunc(Offset.getBitWidth()), DL, 131 CtxI, DT, TLI, Visited, MaxDepth); 132 } 133 134 // For gc.relocate, look through relocations 135 if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V)) 136 return isDereferenceableAndAlignedPointer(RelocateInst->getDerivedPtr(), 137 Alignment, Size, DL, CtxI, DT, 138 TLI, Visited, MaxDepth); 139 140 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V)) 141 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Alignment, 142 Size, DL, CtxI, DT, TLI, 143 Visited, MaxDepth); 144 145 if (const auto *Call = dyn_cast<CallBase>(V)) { 146 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 147 return isDereferenceableAndAlignedPointer(RP, Alignment, Size, DL, CtxI, 148 DT, TLI, Visited, MaxDepth); 149 150 // If we have a call we can't recurse through, check to see if this is an 151 // allocation function for which we can establish an minimum object size. 152 // Such a minimum object size is analogous to a deref_or_null attribute in 153 // that we still need to prove the result non-null at point of use. 154 // NOTE: We can only use the object size as a base fact as we a) need to 155 // prove alignment too, and b) don't want the compile time impact of a 156 // separate recursive walk. 157 ObjectSizeOpts Opts; 158 // TODO: It may be okay to round to align, but that would imply that 159 // accessing slightly out of bounds was legal, and we're currently 160 // inconsistent about that. For the moment, be conservative. 161 Opts.RoundToAlign = false; 162 Opts.NullIsUnknownSize = true; 163 uint64_t ObjSize; 164 if (getObjectSize(V, ObjSize, DL, TLI, Opts)) { 165 APInt KnownDerefBytes(Size.getBitWidth(), ObjSize); 166 if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) && 167 isKnownNonZero(V, DL, 0, nullptr, CtxI, DT) && !V->canBeFreed()) { 168 // As we recursed through GEPs to get here, we've incrementally 169 // checked that each step advanced by a multiple of the alignment. If 170 // our base is properly aligned, then the original offset accessed 171 // must also be. 172 Type *Ty = V->getType(); 173 assert(Ty->isSized() && "must be sized"); 174 APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0); 175 return isAligned(V, Offset, Alignment, DL); 176 } 177 } 178 } 179 180 // If we don't know, assume the worst. 181 return false; 182 } 183 184 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Align Alignment, 185 const APInt &Size, 186 const DataLayout &DL, 187 const Instruction *CtxI, 188 const DominatorTree *DT, 189 const TargetLibraryInfo *TLI) { 190 // Note: At the moment, Size can be zero. This ends up being interpreted as 191 // a query of whether [Base, V] is dereferenceable and V is aligned (since 192 // that's what the implementation happened to do). It's unclear if this is 193 // the desired semantic, but at least SelectionDAG does exercise this case. 194 195 SmallPtrSet<const Value *, 32> Visited; 196 return ::isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT, 197 TLI, Visited, 16); 198 } 199 200 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, 201 MaybeAlign MA, 202 const DataLayout &DL, 203 const Instruction *CtxI, 204 const DominatorTree *DT, 205 const TargetLibraryInfo *TLI) { 206 // For unsized types or scalable vectors we don't know exactly how many bytes 207 // are dereferenced, so bail out. 208 if (!Ty->isSized() || isa<ScalableVectorType>(Ty)) 209 return false; 210 211 // When dereferenceability information is provided by a dereferenceable 212 // attribute, we know exactly how many bytes are dereferenceable. If we can 213 // determine the exact offset to the attributed variable, we can use that 214 // information here. 215 216 // Require ABI alignment for loads without alignment specification 217 const Align Alignment = DL.getValueOrABITypeAlignment(MA, Ty); 218 APInt AccessSize(DL.getPointerTypeSizeInBits(V->getType()), 219 DL.getTypeStoreSize(Ty)); 220 return isDereferenceableAndAlignedPointer(V, Alignment, AccessSize, DL, CtxI, 221 DT, TLI); 222 } 223 224 bool llvm::isDereferenceablePointer(const Value *V, Type *Ty, 225 const DataLayout &DL, 226 const Instruction *CtxI, 227 const DominatorTree *DT, 228 const TargetLibraryInfo *TLI) { 229 return isDereferenceableAndAlignedPointer(V, Ty, Align(1), DL, CtxI, DT, TLI); 230 } 231 232 /// Test if A and B will obviously have the same value. 233 /// 234 /// This includes recognizing that %t0 and %t1 will have the same 235 /// value in code like this: 236 /// \code 237 /// %t0 = getelementptr \@a, 0, 3 238 /// store i32 0, i32* %t0 239 /// %t1 = getelementptr \@a, 0, 3 240 /// %t2 = load i32* %t1 241 /// \endcode 242 /// 243 static bool AreEquivalentAddressValues(const Value *A, const Value *B) { 244 // Test if the values are trivially equivalent. 245 if (A == B) 246 return true; 247 248 // Test if the values come from identical arithmetic instructions. 249 // Use isIdenticalToWhenDefined instead of isIdenticalTo because 250 // this function is only used when one address use dominates the 251 // other, which means that they'll always either have the same 252 // value or one of them will have an undefined value. 253 if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) || 254 isa<GetElementPtrInst>(A)) 255 if (const Instruction *BI = dyn_cast<Instruction>(B)) 256 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 257 return true; 258 259 // Otherwise they may not be equivalent. 260 return false; 261 } 262 263 bool llvm::isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L, 264 ScalarEvolution &SE, 265 DominatorTree &DT) { 266 auto &DL = LI->getModule()->getDataLayout(); 267 Value *Ptr = LI->getPointerOperand(); 268 269 APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()), 270 DL.getTypeStoreSize(LI->getType()).getFixedSize()); 271 const Align Alignment = LI->getAlign(); 272 273 Instruction *HeaderFirstNonPHI = L->getHeader()->getFirstNonPHI(); 274 275 // If given a uniform (i.e. non-varying) address, see if we can prove the 276 // access is safe within the loop w/o needing predication. 277 if (L->isLoopInvariant(Ptr)) 278 return isDereferenceableAndAlignedPointer(Ptr, Alignment, EltSize, DL, 279 HeaderFirstNonPHI, &DT); 280 281 // Otherwise, check to see if we have a repeating access pattern where we can 282 // prove that all accesses are well aligned and dereferenceable. 283 auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Ptr)); 284 if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine()) 285 return false; 286 auto* Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(SE)); 287 if (!Step) 288 return false; 289 // TODO: generalize to access patterns which have gaps 290 if (Step->getAPInt() != EltSize) 291 return false; 292 293 auto TC = SE.getSmallConstantMaxTripCount(L); 294 if (!TC) 295 return false; 296 297 const APInt AccessSize = TC * EltSize; 298 299 auto *StartS = dyn_cast<SCEVUnknown>(AddRec->getStart()); 300 if (!StartS) 301 return false; 302 assert(SE.isLoopInvariant(StartS, L) && "implied by addrec definition"); 303 Value *Base = StartS->getValue(); 304 305 // For the moment, restrict ourselves to the case where the access size is a 306 // multiple of the requested alignment and the base is aligned. 307 // TODO: generalize if a case found which warrants 308 if (EltSize.urem(Alignment.value()) != 0) 309 return false; 310 return isDereferenceableAndAlignedPointer(Base, Alignment, AccessSize, DL, 311 HeaderFirstNonPHI, &DT); 312 } 313 314 /// Check if executing a load of this pointer value cannot trap. 315 /// 316 /// If DT and ScanFrom are specified this method performs context-sensitive 317 /// analysis and returns true if it is safe to load immediately before ScanFrom. 318 /// 319 /// If it is not obviously safe to load from the specified pointer, we do 320 /// a quick local scan of the basic block containing \c ScanFrom, to determine 321 /// if the address is already accessed. 322 /// 323 /// This uses the pointee type to determine how many bytes need to be safe to 324 /// load from the pointer. 325 bool llvm::isSafeToLoadUnconditionally(Value *V, Align Alignment, APInt &Size, 326 const DataLayout &DL, 327 Instruction *ScanFrom, 328 const DominatorTree *DT, 329 const TargetLibraryInfo *TLI) { 330 // If DT is not specified we can't make context-sensitive query 331 const Instruction* CtxI = DT ? ScanFrom : nullptr; 332 if (isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT, TLI)) 333 return true; 334 335 if (!ScanFrom) 336 return false; 337 338 if (Size.getBitWidth() > 64) 339 return false; 340 const uint64_t LoadSize = Size.getZExtValue(); 341 342 // Otherwise, be a little bit aggressive by scanning the local block where we 343 // want to check to see if the pointer is already being loaded or stored 344 // from/to. If so, the previous load or store would have already trapped, 345 // so there is no harm doing an extra load (also, CSE will later eliminate 346 // the load entirely). 347 BasicBlock::iterator BBI = ScanFrom->getIterator(), 348 E = ScanFrom->getParent()->begin(); 349 350 // We can at least always strip pointer casts even though we can't use the 351 // base here. 352 V = V->stripPointerCasts(); 353 354 while (BBI != E) { 355 --BBI; 356 357 // If we see a free or a call which may write to memory (i.e. which might do 358 // a free) the pointer could be marked invalid. 359 if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() && 360 !isa<DbgInfoIntrinsic>(BBI)) 361 return false; 362 363 Value *AccessedPtr; 364 Type *AccessedTy; 365 Align AccessedAlign; 366 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 367 // Ignore volatile loads. The execution of a volatile load cannot 368 // be used to prove an address is backed by regular memory; it can, 369 // for example, point to an MMIO register. 370 if (LI->isVolatile()) 371 continue; 372 AccessedPtr = LI->getPointerOperand(); 373 AccessedTy = LI->getType(); 374 AccessedAlign = LI->getAlign(); 375 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 376 // Ignore volatile stores (see comment for loads). 377 if (SI->isVolatile()) 378 continue; 379 AccessedPtr = SI->getPointerOperand(); 380 AccessedTy = SI->getValueOperand()->getType(); 381 AccessedAlign = SI->getAlign(); 382 } else 383 continue; 384 385 if (AccessedAlign < Alignment) 386 continue; 387 388 // Handle trivial cases. 389 if (AccessedPtr == V && 390 LoadSize <= DL.getTypeStoreSize(AccessedTy)) 391 return true; 392 393 if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) && 394 LoadSize <= DL.getTypeStoreSize(AccessedTy)) 395 return true; 396 } 397 return false; 398 } 399 400 bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, Align Alignment, 401 const DataLayout &DL, 402 Instruction *ScanFrom, 403 const DominatorTree *DT, 404 const TargetLibraryInfo *TLI) { 405 APInt Size(DL.getIndexTypeSizeInBits(V->getType()), DL.getTypeStoreSize(Ty)); 406 return isSafeToLoadUnconditionally(V, Alignment, Size, DL, ScanFrom, DT, TLI); 407 } 408 409 /// DefMaxInstsToScan - the default number of maximum instructions 410 /// to scan in the block, used by FindAvailableLoadedValue(). 411 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump 412 /// threading in part by eliminating partially redundant loads. 413 /// At that point, the value of MaxInstsToScan was already set to '6' 414 /// without documented explanation. 415 cl::opt<unsigned> 416 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden, 417 cl::desc("Use this to specify the default maximum number of instructions " 418 "to scan backward from a given instruction, when searching for " 419 "available loaded value")); 420 421 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, 422 BasicBlock *ScanBB, 423 BasicBlock::iterator &ScanFrom, 424 unsigned MaxInstsToScan, 425 AAResults *AA, bool *IsLoad, 426 unsigned *NumScanedInst) { 427 // Don't CSE load that is volatile or anything stronger than unordered. 428 if (!Load->isUnordered()) 429 return nullptr; 430 431 MemoryLocation Loc = MemoryLocation::get(Load); 432 return findAvailablePtrLoadStore(Loc, Load->getType(), Load->isAtomic(), 433 ScanBB, ScanFrom, MaxInstsToScan, AA, IsLoad, 434 NumScanedInst); 435 } 436 437 // Check if the load and the store have the same base, constant offsets and 438 // non-overlapping access ranges. 439 static bool areNonOverlapSameBaseLoadAndStore(const Value *LoadPtr, 440 Type *LoadTy, 441 const Value *StorePtr, 442 Type *StoreTy, 443 const DataLayout &DL) { 444 APInt LoadOffset(DL.getTypeSizeInBits(LoadPtr->getType()), 0); 445 APInt StoreOffset(DL.getTypeSizeInBits(StorePtr->getType()), 0); 446 const Value *LoadBase = LoadPtr->stripAndAccumulateConstantOffsets( 447 DL, LoadOffset, /* AllowNonInbounds */ false); 448 const Value *StoreBase = StorePtr->stripAndAccumulateConstantOffsets( 449 DL, StoreOffset, /* AllowNonInbounds */ false); 450 if (LoadBase != StoreBase) 451 return false; 452 auto LoadAccessSize = LocationSize::precise(DL.getTypeStoreSize(LoadTy)); 453 auto StoreAccessSize = LocationSize::precise(DL.getTypeStoreSize(StoreTy)); 454 ConstantRange LoadRange(LoadOffset, 455 LoadOffset + LoadAccessSize.toRaw()); 456 ConstantRange StoreRange(StoreOffset, 457 StoreOffset + StoreAccessSize.toRaw()); 458 return LoadRange.intersectWith(StoreRange).isEmptySet(); 459 } 460 461 static Value *getAvailableLoadStore(Instruction *Inst, const Value *Ptr, 462 Type *AccessTy, bool AtLeastAtomic, 463 const DataLayout &DL, bool *IsLoadCSE) { 464 // If this is a load of Ptr, the loaded value is available. 465 // (This is true even if the load is volatile or atomic, although 466 // those cases are unlikely.) 467 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 468 // We can value forward from an atomic to a non-atomic, but not the 469 // other way around. 470 if (LI->isAtomic() < AtLeastAtomic) 471 return nullptr; 472 473 Value *LoadPtr = LI->getPointerOperand()->stripPointerCasts(); 474 if (!AreEquivalentAddressValues(LoadPtr, Ptr)) 475 return nullptr; 476 477 if (CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) { 478 if (IsLoadCSE) 479 *IsLoadCSE = true; 480 return LI; 481 } 482 } 483 484 // If this is a store through Ptr, the value is available! 485 // (This is true even if the store is volatile or atomic, although 486 // those cases are unlikely.) 487 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 488 // We can value forward from an atomic to a non-atomic, but not the 489 // other way around. 490 if (SI->isAtomic() < AtLeastAtomic) 491 return nullptr; 492 493 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts(); 494 if (!AreEquivalentAddressValues(StorePtr, Ptr)) 495 return nullptr; 496 497 if (IsLoadCSE) 498 *IsLoadCSE = false; 499 500 Value *Val = SI->getValueOperand(); 501 if (CastInst::isBitOrNoopPointerCastable(Val->getType(), AccessTy, DL)) 502 return Val; 503 504 if (auto *C = dyn_cast<Constant>(Val)) 505 return ConstantFoldLoadThroughBitcast(C, AccessTy, DL); 506 } 507 508 return nullptr; 509 } 510 511 Value *llvm::findAvailablePtrLoadStore( 512 const MemoryLocation &Loc, Type *AccessTy, bool AtLeastAtomic, 513 BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan, 514 AAResults *AA, bool *IsLoadCSE, unsigned *NumScanedInst) { 515 if (MaxInstsToScan == 0) 516 MaxInstsToScan = ~0U; 517 518 const DataLayout &DL = ScanBB->getModule()->getDataLayout(); 519 const Value *StrippedPtr = Loc.Ptr->stripPointerCasts(); 520 521 while (ScanFrom != ScanBB->begin()) { 522 // We must ignore debug info directives when counting (otherwise they 523 // would affect codegen). 524 Instruction *Inst = &*--ScanFrom; 525 if (isa<DbgInfoIntrinsic>(Inst)) 526 continue; 527 528 // Restore ScanFrom to expected value in case next test succeeds 529 ScanFrom++; 530 531 if (NumScanedInst) 532 ++(*NumScanedInst); 533 534 // Don't scan huge blocks. 535 if (MaxInstsToScan-- == 0) 536 return nullptr; 537 538 --ScanFrom; 539 540 if (Value *Available = getAvailableLoadStore(Inst, StrippedPtr, AccessTy, 541 AtLeastAtomic, DL, IsLoadCSE)) 542 return Available; 543 544 // Try to get the store size for the type. 545 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 546 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts(); 547 548 // If both StrippedPtr and StorePtr reach all the way to an alloca or 549 // global and they are different, ignore the store. This is a trivial form 550 // of alias analysis that is important for reg2mem'd code. 551 if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) && 552 (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) && 553 StrippedPtr != StorePtr) 554 continue; 555 556 if (!AA) { 557 // When AA isn't available, but if the load and the store have the same 558 // base, constant offsets and non-overlapping access ranges, ignore the 559 // store. This is a simple form of alias analysis that is used by the 560 // inliner. FIXME: use BasicAA if possible. 561 if (areNonOverlapSameBaseLoadAndStore( 562 Loc.Ptr, AccessTy, SI->getPointerOperand(), 563 SI->getValueOperand()->getType(), DL)) 564 continue; 565 } else { 566 // If we have alias analysis and it says the store won't modify the 567 // loaded value, ignore the store. 568 if (!isModSet(AA->getModRefInfo(SI, Loc))) 569 continue; 570 } 571 572 // Otherwise the store that may or may not alias the pointer, bail out. 573 ++ScanFrom; 574 return nullptr; 575 } 576 577 // If this is some other instruction that may clobber Ptr, bail out. 578 if (Inst->mayWriteToMemory()) { 579 // If alias analysis claims that it really won't modify the load, 580 // ignore it. 581 if (AA && !isModSet(AA->getModRefInfo(Inst, Loc))) 582 continue; 583 584 // May modify the pointer, bail out. 585 ++ScanFrom; 586 return nullptr; 587 } 588 } 589 590 // Got to the start of the block, we didn't find it, but are done for this 591 // block. 592 return nullptr; 593 } 594 595 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, AAResults &AA, 596 bool *IsLoadCSE, 597 unsigned MaxInstsToScan) { 598 const DataLayout &DL = Load->getModule()->getDataLayout(); 599 Value *StrippedPtr = Load->getPointerOperand()->stripPointerCasts(); 600 BasicBlock *ScanBB = Load->getParent(); 601 Type *AccessTy = Load->getType(); 602 bool AtLeastAtomic = Load->isAtomic(); 603 604 if (!Load->isUnordered()) 605 return nullptr; 606 607 // Try to find an available value first, and delay expensive alias analysis 608 // queries until later. 609 Value *Available = nullptr;; 610 SmallVector<Instruction *> MustNotAliasInsts; 611 for (Instruction &Inst : make_range(++Load->getReverseIterator(), 612 ScanBB->rend())) { 613 if (isa<DbgInfoIntrinsic>(&Inst)) 614 continue; 615 616 if (MaxInstsToScan-- == 0) 617 return nullptr; 618 619 Available = getAvailableLoadStore(&Inst, StrippedPtr, AccessTy, 620 AtLeastAtomic, DL, IsLoadCSE); 621 if (Available) 622 break; 623 624 if (Inst.mayWriteToMemory()) 625 MustNotAliasInsts.push_back(&Inst); 626 } 627 628 // If we found an available value, ensure that the instructions in between 629 // did not modify the memory location. 630 if (Available) { 631 MemoryLocation Loc = MemoryLocation::get(Load); 632 for (Instruction *Inst : MustNotAliasInsts) 633 if (isModSet(AA.getModRefInfo(Inst, Loc))) 634 return nullptr; 635 } 636 637 return Available; 638 } 639 640 bool llvm::canReplacePointersIfEqual(Value *A, Value *B, const DataLayout &DL, 641 Instruction *CtxI) { 642 Type *Ty = A->getType(); 643 assert(Ty == B->getType() && Ty->isPointerTy() && 644 "values must have matching pointer types"); 645 646 // NOTE: The checks in the function are incomplete and currently miss illegal 647 // cases! The current implementation is a starting point and the 648 // implementation should be made stricter over time. 649 if (auto *C = dyn_cast<Constant>(B)) { 650 // Do not allow replacing a pointer with a constant pointer, unless it is 651 // either null or at least one byte is dereferenceable. 652 APInt OneByte(DL.getPointerTypeSizeInBits(Ty), 1); 653 return C->isNullValue() || 654 isDereferenceableAndAlignedPointer(B, Align(1), OneByte, DL, CtxI); 655 } 656 657 return true; 658 } 659