1 //===- Loads.cpp - Local load analysis ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines simple local analyses for load instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/Loads.h"
14 #include "llvm/Analysis/AliasAnalysis.h"
15 #include "llvm/Analysis/AssumeBundleQueries.h"
16 #include "llvm/Analysis/CaptureTracking.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Analysis/MemoryBuiltins.h"
19 #include "llvm/Analysis/ScalarEvolution.h"
20 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/GlobalAlias.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/IR/Statepoint.h"
31 
32 using namespace llvm;
33 
34 static bool isAligned(const Value *Base, const APInt &Offset, Align Alignment,
35                       const DataLayout &DL) {
36   Align BA = Base->getPointerAlignment(DL);
37   const APInt APAlign(Offset.getBitWidth(), Alignment.value());
38   assert(APAlign.isPowerOf2() && "must be a power of 2!");
39   return BA >= Alignment && !(Offset & (APAlign - 1));
40 }
41 
42 /// Test if V is always a pointer to allocated and suitably aligned memory for
43 /// a simple load or store.
44 static bool isDereferenceableAndAlignedPointer(
45     const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL,
46     const Instruction *CtxI, const DominatorTree *DT,
47     const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited,
48     unsigned MaxDepth) {
49   assert(V->getType()->isPointerTy() && "Base must be pointer");
50 
51   // Recursion limit.
52   if (MaxDepth-- == 0)
53     return false;
54 
55   // Already visited?  Bail out, we've likely hit unreachable code.
56   if (!Visited.insert(V).second)
57     return false;
58 
59   // Note that it is not safe to speculate into a malloc'd region because
60   // malloc may return null.
61 
62   // bitcast instructions are no-ops as far as dereferenceability is concerned.
63   if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) {
64     if (BC->getSrcTy()->isPointerTy())
65       return isDereferenceableAndAlignedPointer(
66           BC->getOperand(0), Alignment, Size, DL, CtxI, DT, TLI,
67           Visited, MaxDepth);
68   }
69 
70   bool CheckForNonNull, CheckForFreed;
71   APInt KnownDerefBytes(Size.getBitWidth(),
72                         V->getPointerDereferenceableBytes(DL, CheckForNonNull,
73                                                           CheckForFreed));
74   if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) &&
75       !CheckForFreed)
76     if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT)) {
77       // As we recursed through GEPs to get here, we've incrementally checked
78       // that each step advanced by a multiple of the alignment. If our base is
79       // properly aligned, then the original offset accessed must also be.
80       Type *Ty = V->getType();
81       assert(Ty->isSized() && "must be sized");
82       APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
83       return isAligned(V, Offset, Alignment, DL);
84     }
85 
86   if (CtxI) {
87     /// Look through assumes to see if both dereferencability and alignment can
88     /// be provent by an assume
89     RetainedKnowledge AlignRK;
90     RetainedKnowledge DerefRK;
91     if (getKnowledgeForValue(
92             V, {Attribute::Dereferenceable, Attribute::Alignment}, nullptr,
93             [&](RetainedKnowledge RK, Instruction *Assume, auto) {
94               if (!isValidAssumeForContext(Assume, CtxI))
95                 return false;
96               if (RK.AttrKind == Attribute::Alignment)
97                 AlignRK = std::max(AlignRK, RK);
98               if (RK.AttrKind == Attribute::Dereferenceable)
99                 DerefRK = std::max(DerefRK, RK);
100               if (AlignRK && DerefRK && AlignRK.ArgValue >= Alignment.value() &&
101                   DerefRK.ArgValue >= Size.getZExtValue())
102                 return true; // We have found what we needed so we stop looking
103               return false;  // Other assumes may have better information. so
104                              // keep looking
105             }))
106       return true;
107   }
108   /// TODO refactor this function to be able to search independently for
109   /// Dereferencability and Alignment requirements.
110 
111   // For GEPs, determine if the indexing lands within the allocated object.
112   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
113     const Value *Base = GEP->getPointerOperand();
114 
115     APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
116     if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() ||
117         !Offset.urem(APInt(Offset.getBitWidth(), Alignment.value()))
118              .isMinValue())
119       return false;
120 
121     // If the base pointer is dereferenceable for Offset+Size bytes, then the
122     // GEP (== Base + Offset) is dereferenceable for Size bytes.  If the base
123     // pointer is aligned to Align bytes, and the Offset is divisible by Align
124     // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also
125     // aligned to Align bytes.
126 
127     // Offset and Size may have different bit widths if we have visited an
128     // addrspacecast, so we can't do arithmetic directly on the APInt values.
129     return isDereferenceableAndAlignedPointer(
130         Base, Alignment, Offset + Size.sextOrTrunc(Offset.getBitWidth()), DL,
131         CtxI, DT, TLI, Visited, MaxDepth);
132   }
133 
134   // For gc.relocate, look through relocations
135   if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
136     return isDereferenceableAndAlignedPointer(RelocateInst->getDerivedPtr(),
137                                               Alignment, Size, DL, CtxI, DT,
138                                               TLI, Visited, MaxDepth);
139 
140   if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
141     return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Alignment,
142                                               Size, DL, CtxI, DT, TLI,
143                                               Visited, MaxDepth);
144 
145   if (const auto *Call = dyn_cast<CallBase>(V)) {
146     if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
147       return isDereferenceableAndAlignedPointer(RP, Alignment, Size, DL, CtxI,
148                                                 DT, TLI, Visited, MaxDepth);
149 
150     // If we have a call we can't recurse through, check to see if this is an
151     // allocation function for which we can establish an minimum object size.
152     // Such a minimum object size is analogous to a deref_or_null attribute in
153     // that we still need to prove the result non-null at point of use.
154     // NOTE: We can only use the object size as a base fact as we a) need to
155     // prove alignment too, and b) don't want the compile time impact of a
156     // separate recursive walk.
157     ObjectSizeOpts Opts;
158     // TODO: It may be okay to round to align, but that would imply that
159     // accessing slightly out of bounds was legal, and we're currently
160     // inconsistent about that.  For the moment, be conservative.
161     Opts.RoundToAlign = false;
162     Opts.NullIsUnknownSize = true;
163     uint64_t ObjSize;
164     // TODO: Plumb through TLI so that malloc routines and such working.
165     if (getObjectSize(V, ObjSize, DL, nullptr, Opts)) {
166       APInt KnownDerefBytes(Size.getBitWidth(), ObjSize);
167       if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) &&
168           isKnownNonZero(V, DL, 0, nullptr, CtxI, DT) &&
169           // TODO: We're currently inconsistent about whether deref(N) is a
170           // global fact or a point in time fact.  Once D61652 eventually
171           // lands, this check will be restricted to the point in time
172           // variant. For that variant, we need to prove that object hasn't
173           // been conditionally freed before ontext instruction - if it has, we
174           // might be hoisting over the inverse conditional and creating a
175           // dynamic use after free.
176           !PointerMayBeCapturedBefore(V, true, true, CtxI, DT, true)) {
177         // As we recursed through GEPs to get here, we've incrementally
178         // checked that each step advanced by a multiple of the alignment. If
179         // our base is properly aligned, then the original offset accessed
180         // must also be.
181         Type *Ty = V->getType();
182         assert(Ty->isSized() && "must be sized");
183         APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
184         return isAligned(V, Offset, Alignment, DL);
185       }
186     }
187   }
188 
189   // If we don't know, assume the worst.
190   return false;
191 }
192 
193 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Align Alignment,
194                                               const APInt &Size,
195                                               const DataLayout &DL,
196                                               const Instruction *CtxI,
197                                               const DominatorTree *DT,
198                                               const TargetLibraryInfo *TLI) {
199   // Note: At the moment, Size can be zero.  This ends up being interpreted as
200   // a query of whether [Base, V] is dereferenceable and V is aligned (since
201   // that's what the implementation happened to do).  It's unclear if this is
202   // the desired semantic, but at least SelectionDAG does exercise this case.
203 
204   SmallPtrSet<const Value *, 32> Visited;
205   return ::isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT,
206                                               TLI, Visited, 16);
207 }
208 
209 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Type *Ty,
210                                               MaybeAlign MA,
211                                               const DataLayout &DL,
212                                               const Instruction *CtxI,
213                                               const DominatorTree *DT,
214                                               const TargetLibraryInfo *TLI) {
215   // For unsized types or scalable vectors we don't know exactly how many bytes
216   // are dereferenced, so bail out.
217   if (!Ty->isSized() || isa<ScalableVectorType>(Ty))
218     return false;
219 
220   // When dereferenceability information is provided by a dereferenceable
221   // attribute, we know exactly how many bytes are dereferenceable. If we can
222   // determine the exact offset to the attributed variable, we can use that
223   // information here.
224 
225   // Require ABI alignment for loads without alignment specification
226   const Align Alignment = DL.getValueOrABITypeAlignment(MA, Ty);
227   APInt AccessSize(DL.getPointerTypeSizeInBits(V->getType()),
228                    DL.getTypeStoreSize(Ty));
229   return isDereferenceableAndAlignedPointer(V, Alignment, AccessSize, DL, CtxI,
230                                             DT, TLI);
231 }
232 
233 bool llvm::isDereferenceablePointer(const Value *V, Type *Ty,
234                                     const DataLayout &DL,
235                                     const Instruction *CtxI,
236                                     const DominatorTree *DT,
237                                     const TargetLibraryInfo *TLI) {
238   return isDereferenceableAndAlignedPointer(V, Ty, Align(1), DL, CtxI, DT, TLI);
239 }
240 
241 /// Test if A and B will obviously have the same value.
242 ///
243 /// This includes recognizing that %t0 and %t1 will have the same
244 /// value in code like this:
245 /// \code
246 ///   %t0 = getelementptr \@a, 0, 3
247 ///   store i32 0, i32* %t0
248 ///   %t1 = getelementptr \@a, 0, 3
249 ///   %t2 = load i32* %t1
250 /// \endcode
251 ///
252 static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
253   // Test if the values are trivially equivalent.
254   if (A == B)
255     return true;
256 
257   // Test if the values come from identical arithmetic instructions.
258   // Use isIdenticalToWhenDefined instead of isIdenticalTo because
259   // this function is only used when one address use dominates the
260   // other, which means that they'll always either have the same
261   // value or one of them will have an undefined value.
262   if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) ||
263       isa<GetElementPtrInst>(A))
264     if (const Instruction *BI = dyn_cast<Instruction>(B))
265       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
266         return true;
267 
268   // Otherwise they may not be equivalent.
269   return false;
270 }
271 
272 bool llvm::isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L,
273                                              ScalarEvolution &SE,
274                                              DominatorTree &DT) {
275   auto &DL = LI->getModule()->getDataLayout();
276   Value *Ptr = LI->getPointerOperand();
277 
278   APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()),
279                 DL.getTypeStoreSize(LI->getType()).getFixedSize());
280   const Align Alignment = LI->getAlign();
281 
282   Instruction *HeaderFirstNonPHI = L->getHeader()->getFirstNonPHI();
283 
284   // If given a uniform (i.e. non-varying) address, see if we can prove the
285   // access is safe within the loop w/o needing predication.
286   if (L->isLoopInvariant(Ptr))
287     return isDereferenceableAndAlignedPointer(Ptr, Alignment, EltSize, DL,
288                                               HeaderFirstNonPHI, &DT);
289 
290   // Otherwise, check to see if we have a repeating access pattern where we can
291   // prove that all accesses are well aligned and dereferenceable.
292   auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Ptr));
293   if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine())
294     return false;
295   auto* Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(SE));
296   if (!Step)
297     return false;
298   // TODO: generalize to access patterns which have gaps
299   if (Step->getAPInt() != EltSize)
300     return false;
301 
302   auto TC = SE.getSmallConstantMaxTripCount(L);
303   if (!TC)
304     return false;
305 
306   const APInt AccessSize = TC * EltSize;
307 
308   auto *StartS = dyn_cast<SCEVUnknown>(AddRec->getStart());
309   if (!StartS)
310     return false;
311   assert(SE.isLoopInvariant(StartS, L) && "implied by addrec definition");
312   Value *Base = StartS->getValue();
313 
314   // For the moment, restrict ourselves to the case where the access size is a
315   // multiple of the requested alignment and the base is aligned.
316   // TODO: generalize if a case found which warrants
317   if (EltSize.urem(Alignment.value()) != 0)
318     return false;
319   return isDereferenceableAndAlignedPointer(Base, Alignment, AccessSize, DL,
320                                             HeaderFirstNonPHI, &DT);
321 }
322 
323 /// Check if executing a load of this pointer value cannot trap.
324 ///
325 /// If DT and ScanFrom are specified this method performs context-sensitive
326 /// analysis and returns true if it is safe to load immediately before ScanFrom.
327 ///
328 /// If it is not obviously safe to load from the specified pointer, we do
329 /// a quick local scan of the basic block containing \c ScanFrom, to determine
330 /// if the address is already accessed.
331 ///
332 /// This uses the pointee type to determine how many bytes need to be safe to
333 /// load from the pointer.
334 bool llvm::isSafeToLoadUnconditionally(Value *V, Align Alignment, APInt &Size,
335                                        const DataLayout &DL,
336                                        Instruction *ScanFrom,
337                                        const DominatorTree *DT,
338                                        const TargetLibraryInfo *TLI) {
339   // If DT is not specified we can't make context-sensitive query
340   const Instruction* CtxI = DT ? ScanFrom : nullptr;
341   if (isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT, TLI))
342     return true;
343 
344   if (!ScanFrom)
345     return false;
346 
347   if (Size.getBitWidth() > 64)
348     return false;
349   const uint64_t LoadSize = Size.getZExtValue();
350 
351   // Otherwise, be a little bit aggressive by scanning the local block where we
352   // want to check to see if the pointer is already being loaded or stored
353   // from/to.  If so, the previous load or store would have already trapped,
354   // so there is no harm doing an extra load (also, CSE will later eliminate
355   // the load entirely).
356   BasicBlock::iterator BBI = ScanFrom->getIterator(),
357                        E = ScanFrom->getParent()->begin();
358 
359   // We can at least always strip pointer casts even though we can't use the
360   // base here.
361   V = V->stripPointerCasts();
362 
363   while (BBI != E) {
364     --BBI;
365 
366     // If we see a free or a call which may write to memory (i.e. which might do
367     // a free) the pointer could be marked invalid.
368     if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
369         !isa<DbgInfoIntrinsic>(BBI))
370       return false;
371 
372     Value *AccessedPtr;
373     Type *AccessedTy;
374     Align AccessedAlign;
375     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
376       // Ignore volatile loads. The execution of a volatile load cannot
377       // be used to prove an address is backed by regular memory; it can,
378       // for example, point to an MMIO register.
379       if (LI->isVolatile())
380         continue;
381       AccessedPtr = LI->getPointerOperand();
382       AccessedTy = LI->getType();
383       AccessedAlign = LI->getAlign();
384     } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
385       // Ignore volatile stores (see comment for loads).
386       if (SI->isVolatile())
387         continue;
388       AccessedPtr = SI->getPointerOperand();
389       AccessedTy = SI->getValueOperand()->getType();
390       AccessedAlign = SI->getAlign();
391     } else
392       continue;
393 
394     if (AccessedAlign < Alignment)
395       continue;
396 
397     // Handle trivial cases.
398     if (AccessedPtr == V &&
399         LoadSize <= DL.getTypeStoreSize(AccessedTy))
400       return true;
401 
402     if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) &&
403         LoadSize <= DL.getTypeStoreSize(AccessedTy))
404       return true;
405   }
406   return false;
407 }
408 
409 bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, Align Alignment,
410                                        const DataLayout &DL,
411                                        Instruction *ScanFrom,
412                                        const DominatorTree *DT,
413                                        const TargetLibraryInfo *TLI) {
414   APInt Size(DL.getIndexTypeSizeInBits(V->getType()), DL.getTypeStoreSize(Ty));
415   return isSafeToLoadUnconditionally(V, Alignment, Size, DL, ScanFrom, DT, TLI);
416 }
417 
418   /// DefMaxInstsToScan - the default number of maximum instructions
419 /// to scan in the block, used by FindAvailableLoadedValue().
420 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump
421 /// threading in part by eliminating partially redundant loads.
422 /// At that point, the value of MaxInstsToScan was already set to '6'
423 /// without documented explanation.
424 cl::opt<unsigned>
425 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden,
426   cl::desc("Use this to specify the default maximum number of instructions "
427            "to scan backward from a given instruction, when searching for "
428            "available loaded value"));
429 
430 Value *llvm::FindAvailableLoadedValue(LoadInst *Load,
431                                       BasicBlock *ScanBB,
432                                       BasicBlock::iterator &ScanFrom,
433                                       unsigned MaxInstsToScan,
434                                       AAResults *AA, bool *IsLoad,
435                                       unsigned *NumScanedInst) {
436   // Don't CSE load that is volatile or anything stronger than unordered.
437   if (!Load->isUnordered())
438     return nullptr;
439 
440   return FindAvailablePtrLoadStore(
441       Load->getPointerOperand(), Load->getType(), Load->isAtomic(), ScanBB,
442       ScanFrom, MaxInstsToScan, AA, IsLoad, NumScanedInst);
443 }
444 
445 // Check if the load and the store have the same base, constant offsets and
446 // non-overlapping access ranges.
447 static bool AreNonOverlapSameBaseLoadAndStore(
448     Value *LoadPtr, Type *LoadTy, Value *StorePtr, Type *StoreTy,
449     const DataLayout &DL) {
450   APInt LoadOffset(DL.getTypeSizeInBits(LoadPtr->getType()), 0);
451   APInt StoreOffset(DL.getTypeSizeInBits(StorePtr->getType()), 0);
452   Value *LoadBase = LoadPtr->stripAndAccumulateConstantOffsets(
453       DL, LoadOffset, /* AllowNonInbounds */ false);
454   Value *StoreBase = StorePtr->stripAndAccumulateConstantOffsets(
455       DL, StoreOffset, /* AllowNonInbounds */ false);
456   if (LoadBase != StoreBase)
457     return false;
458   auto LoadAccessSize = LocationSize::precise(DL.getTypeStoreSize(LoadTy));
459   auto StoreAccessSize = LocationSize::precise(DL.getTypeStoreSize(StoreTy));
460   ConstantRange LoadRange(LoadOffset,
461                           LoadOffset + LoadAccessSize.toRaw());
462   ConstantRange StoreRange(StoreOffset,
463                            StoreOffset + StoreAccessSize.toRaw());
464   return LoadRange.intersectWith(StoreRange).isEmptySet();
465 }
466 
467 static Value *getAvailableLoadStore(Instruction *Inst, Value *Ptr,
468                                     Type *AccessTy, bool AtLeastAtomic,
469                                     const DataLayout &DL, bool *IsLoadCSE) {
470   // If this is a load of Ptr, the loaded value is available.
471   // (This is true even if the load is volatile or atomic, although
472   // those cases are unlikely.)
473   if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
474     // We can value forward from an atomic to a non-atomic, but not the
475     // other way around.
476     if (LI->isAtomic() < AtLeastAtomic)
477       return nullptr;
478 
479     Value *LoadPtr = LI->getPointerOperand()->stripPointerCasts();
480     if (!AreEquivalentAddressValues(LoadPtr, Ptr))
481       return nullptr;
482 
483     if (CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) {
484       if (IsLoadCSE)
485         *IsLoadCSE = true;
486       return LI;
487     }
488   }
489 
490   // If this is a store through Ptr, the value is available!
491   // (This is true even if the store is volatile or atomic, although
492   // those cases are unlikely.)
493   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
494     // We can value forward from an atomic to a non-atomic, but not the
495     // other way around.
496     if (SI->isAtomic() < AtLeastAtomic)
497       return nullptr;
498 
499     Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
500     if (!AreEquivalentAddressValues(StorePtr, Ptr))
501       return nullptr;
502 
503     Value *Val = SI->getValueOperand();
504     if (CastInst::isBitOrNoopPointerCastable(Val->getType(), AccessTy, DL)) {
505       if (IsLoadCSE)
506         *IsLoadCSE = false;
507       return Val;
508     }
509   }
510 
511   return nullptr;
512 }
513 
514 Value *llvm::FindAvailablePtrLoadStore(Value *Ptr, Type *AccessTy,
515                                        bool AtLeastAtomic, BasicBlock *ScanBB,
516                                        BasicBlock::iterator &ScanFrom,
517                                        unsigned MaxInstsToScan,
518                                        AAResults *AA, bool *IsLoadCSE,
519                                        unsigned *NumScanedInst) {
520   if (MaxInstsToScan == 0)
521     MaxInstsToScan = ~0U;
522 
523   const DataLayout &DL = ScanBB->getModule()->getDataLayout();
524   Value *StrippedPtr = Ptr->stripPointerCasts();
525 
526   while (ScanFrom != ScanBB->begin()) {
527     // We must ignore debug info directives when counting (otherwise they
528     // would affect codegen).
529     Instruction *Inst = &*--ScanFrom;
530     if (isa<DbgInfoIntrinsic>(Inst))
531       continue;
532 
533     // Restore ScanFrom to expected value in case next test succeeds
534     ScanFrom++;
535 
536     if (NumScanedInst)
537       ++(*NumScanedInst);
538 
539     // Don't scan huge blocks.
540     if (MaxInstsToScan-- == 0)
541       return nullptr;
542 
543     --ScanFrom;
544 
545     if (Value *Available = getAvailableLoadStore(Inst, StrippedPtr, AccessTy,
546                                                  AtLeastAtomic, DL, IsLoadCSE))
547       return Available;
548 
549     // Try to get the store size for the type.
550     auto AccessSize = LocationSize::precise(DL.getTypeStoreSize(AccessTy));
551 
552     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
553       Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
554 
555       // If both StrippedPtr and StorePtr reach all the way to an alloca or
556       // global and they are different, ignore the store. This is a trivial form
557       // of alias analysis that is important for reg2mem'd code.
558       if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) &&
559           (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) &&
560           StrippedPtr != StorePtr)
561         continue;
562 
563       if (!AA) {
564         // When AA isn't available, but if the load and the store have the same
565         // base, constant offsets and non-overlapping access ranges, ignore the
566         // store. This is a simple form of alias analysis that is used by the
567         // inliner. FIXME: use BasicAA if possible.
568         if (AreNonOverlapSameBaseLoadAndStore(
569                 Ptr, AccessTy, SI->getPointerOperand(),
570                 SI->getValueOperand()->getType(), DL))
571           continue;
572       } else {
573         // If we have alias analysis and it says the store won't modify the
574         // loaded value, ignore the store.
575         if (!isModSet(AA->getModRefInfo(SI, StrippedPtr, AccessSize)))
576           continue;
577       }
578 
579       // Otherwise the store that may or may not alias the pointer, bail out.
580       ++ScanFrom;
581       return nullptr;
582     }
583 
584     // If this is some other instruction that may clobber Ptr, bail out.
585     if (Inst->mayWriteToMemory()) {
586       // If alias analysis claims that it really won't modify the load,
587       // ignore it.
588       if (AA && !isModSet(AA->getModRefInfo(Inst, StrippedPtr, AccessSize)))
589         continue;
590 
591       // May modify the pointer, bail out.
592       ++ScanFrom;
593       return nullptr;
594     }
595   }
596 
597   // Got to the start of the block, we didn't find it, but are done for this
598   // block.
599   return nullptr;
600 }
601 
602 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, AAResults &AA,
603                                       bool *IsLoadCSE,
604                                       unsigned MaxInstsToScan) {
605   const DataLayout &DL = Load->getModule()->getDataLayout();
606   Value *StrippedPtr = Load->getPointerOperand()->stripPointerCasts();
607   BasicBlock *ScanBB = Load->getParent();
608   Type *AccessTy = Load->getType();
609   bool AtLeastAtomic = Load->isAtomic();
610 
611   if (!Load->isUnordered())
612     return nullptr;
613 
614   // Try to find an available value first, and delay expensive alias analysis
615   // queries until later.
616   Value *Available = nullptr;;
617   SmallVector<Instruction *> MustNotAliasInsts;
618   for (Instruction &Inst : make_range(++Load->getReverseIterator(),
619                                       ScanBB->rend())) {
620     if (isa<DbgInfoIntrinsic>(&Inst))
621       continue;
622 
623     if (MaxInstsToScan-- == 0)
624       return nullptr;
625 
626     Available = getAvailableLoadStore(&Inst, StrippedPtr, AccessTy,
627                                       AtLeastAtomic, DL, IsLoadCSE);
628     if (Available)
629       break;
630 
631     if (Inst.mayWriteToMemory())
632       MustNotAliasInsts.push_back(&Inst);
633   }
634 
635   // If we found an available value, ensure that the instructions in between
636   // did not modify the memory location.
637   if (Available) {
638     auto AccessSize = LocationSize::precise(DL.getTypeStoreSize(AccessTy));
639     for (Instruction *Inst : MustNotAliasInsts)
640       if (isModSet(AA.getModRefInfo(Inst, StrippedPtr, AccessSize)))
641         return nullptr;
642   }
643 
644   return Available;
645 }
646 
647 bool llvm::canReplacePointersIfEqual(Value *A, Value *B, const DataLayout &DL,
648                                      Instruction *CtxI) {
649   Type *Ty = A->getType();
650   assert(Ty == B->getType() && Ty->isPointerTy() &&
651          "values must have matching pointer types");
652 
653   // NOTE: The checks in the function are incomplete and currently miss illegal
654   // cases! The current implementation is a starting point and the
655   // implementation should be made stricter over time.
656   if (auto *C = dyn_cast<Constant>(B)) {
657     // Do not allow replacing a pointer with a constant pointer, unless it is
658     // either null or at least one byte is dereferenceable.
659     APInt OneByte(DL.getPointerTypeSizeInBits(Ty), 1);
660     return C->isNullValue() ||
661            isDereferenceableAndAlignedPointer(B, Align(1), OneByte, DL, CtxI);
662   }
663 
664   return true;
665 }
666