1 //===- Loads.cpp - Local load analysis ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines simple local analyses for load instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/Loads.h" 14 #include "llvm/Analysis/AliasAnalysis.h" 15 #include "llvm/Analysis/LoopInfo.h" 16 #include "llvm/Analysis/ScalarEvolution.h" 17 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 18 #include "llvm/Analysis/ValueTracking.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/GlobalAlias.h" 21 #include "llvm/IR/GlobalVariable.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/Statepoint.h" 27 28 using namespace llvm; 29 30 static MaybeAlign getBaseAlign(const Value *Base, const DataLayout &DL) { 31 if (const MaybeAlign PA = Base->getPointerAlignment(DL)) 32 return *PA; 33 Type *const Ty = Base->getType()->getPointerElementType(); 34 if (!Ty->isSized()) 35 return None; 36 return Align(DL.getABITypeAlignment(Ty)); 37 } 38 39 static bool isAligned(const Value *Base, const APInt &Offset, Align Alignment, 40 const DataLayout &DL) { 41 if (MaybeAlign BA = getBaseAlign(Base, DL)) { 42 const APInt APBaseAlign(Offset.getBitWidth(), BA->value()); 43 const APInt APAlign(Offset.getBitWidth(), Alignment.value()); 44 assert(APAlign.isPowerOf2() && "must be a power of 2!"); 45 return APBaseAlign.uge(APAlign) && !(Offset & (APAlign - 1)); 46 } 47 return false; 48 } 49 50 /// Test if V is always a pointer to allocated and suitably aligned memory for 51 /// a simple load or store. 52 static bool isDereferenceableAndAlignedPointer( 53 const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL, 54 const Instruction *CtxI, const DominatorTree *DT, 55 SmallPtrSetImpl<const Value *> &Visited, unsigned MaxDepth) { 56 57 // Recursion limit. 58 if (MaxDepth-- == 0) 59 return false; 60 61 // Already visited? Bail out, we've likely hit unreachable code. 62 if (!Visited.insert(V).second) 63 return false; 64 65 // Note that it is not safe to speculate into a malloc'd region because 66 // malloc may return null. 67 68 // bitcast instructions are no-ops as far as dereferenceability is concerned. 69 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) 70 return isDereferenceableAndAlignedPointer(BC->getOperand(0), Alignment, 71 Size, DL, CtxI, DT, Visited, 72 MaxDepth); 73 74 bool CheckForNonNull = false; 75 APInt KnownDerefBytes(Size.getBitWidth(), 76 V->getPointerDereferenceableBytes(DL, CheckForNonNull)); 77 if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size)) 78 if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT)) { 79 // As we recursed through GEPs to get here, we've incrementally checked 80 // that each step advanced by a multiple of the alignment. If our base is 81 // properly aligned, then the original offset accessed must also be. 82 Type *Ty = V->getType(); 83 assert(Ty->isSized() && "must be sized"); 84 APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0); 85 return isAligned(V, Offset, Alignment, DL); 86 } 87 88 // For GEPs, determine if the indexing lands within the allocated object. 89 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 90 const Value *Base = GEP->getPointerOperand(); 91 92 APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0); 93 if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() || 94 !Offset.urem(APInt(Offset.getBitWidth(), Alignment.value())) 95 .isMinValue()) 96 return false; 97 98 // If the base pointer is dereferenceable for Offset+Size bytes, then the 99 // GEP (== Base + Offset) is dereferenceable for Size bytes. If the base 100 // pointer is aligned to Align bytes, and the Offset is divisible by Align 101 // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also 102 // aligned to Align bytes. 103 104 // Offset and Size may have different bit widths if we have visited an 105 // addrspacecast, so we can't do arithmetic directly on the APInt values. 106 return isDereferenceableAndAlignedPointer( 107 Base, Alignment, Offset + Size.sextOrTrunc(Offset.getBitWidth()), DL, 108 CtxI, DT, Visited, MaxDepth); 109 } 110 111 // For gc.relocate, look through relocations 112 if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V)) 113 return isDereferenceableAndAlignedPointer( 114 RelocateInst->getDerivedPtr(), Alignment, Size, DL, CtxI, DT, Visited, MaxDepth); 115 116 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V)) 117 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Alignment, 118 Size, DL, CtxI, DT, Visited, MaxDepth); 119 120 if (const auto *Call = dyn_cast<CallBase>(V)) 121 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 122 return isDereferenceableAndAlignedPointer(RP, Alignment, Size, DL, CtxI, 123 DT, Visited, MaxDepth); 124 125 // If we don't know, assume the worst. 126 return false; 127 } 128 129 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Align Alignment, 130 const APInt &Size, 131 const DataLayout &DL, 132 const Instruction *CtxI, 133 const DominatorTree *DT) { 134 // Note: At the moment, Size can be zero. This ends up being interpreted as 135 // a query of whether [Base, V] is dereferenceable and V is aligned (since 136 // that's what the implementation happened to do). It's unclear if this is 137 // the desired semantic, but at least SelectionDAG does exercise this case. 138 139 SmallPtrSet<const Value *, 32> Visited; 140 return ::isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT, 141 Visited, 16); 142 } 143 144 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, 145 MaybeAlign MA, 146 const DataLayout &DL, 147 const Instruction *CtxI, 148 const DominatorTree *DT) { 149 // For unsized types or scalable vectors we don't know exactly how many bytes 150 // are dereferenced, so bail out. 151 if (!Ty->isSized() || isa<ScalableVectorType>(Ty)) 152 return false; 153 154 // When dereferenceability information is provided by a dereferenceable 155 // attribute, we know exactly how many bytes are dereferenceable. If we can 156 // determine the exact offset to the attributed variable, we can use that 157 // information here. 158 159 // Require ABI alignment for loads without alignment specification 160 const Align Alignment = DL.getValueOrABITypeAlignment(MA, Ty); 161 APInt AccessSize(DL.getPointerTypeSizeInBits(V->getType()), 162 DL.getTypeStoreSize(Ty)); 163 return isDereferenceableAndAlignedPointer(V, Alignment, AccessSize, DL, CtxI, 164 DT); 165 } 166 167 bool llvm::isDereferenceablePointer(const Value *V, Type *Ty, 168 const DataLayout &DL, 169 const Instruction *CtxI, 170 const DominatorTree *DT) { 171 return isDereferenceableAndAlignedPointer(V, Ty, Align(1), DL, CtxI, DT); 172 } 173 174 /// Test if A and B will obviously have the same value. 175 /// 176 /// This includes recognizing that %t0 and %t1 will have the same 177 /// value in code like this: 178 /// \code 179 /// %t0 = getelementptr \@a, 0, 3 180 /// store i32 0, i32* %t0 181 /// %t1 = getelementptr \@a, 0, 3 182 /// %t2 = load i32* %t1 183 /// \endcode 184 /// 185 static bool AreEquivalentAddressValues(const Value *A, const Value *B) { 186 // Test if the values are trivially equivalent. 187 if (A == B) 188 return true; 189 190 // Test if the values come from identical arithmetic instructions. 191 // Use isIdenticalToWhenDefined instead of isIdenticalTo because 192 // this function is only used when one address use dominates the 193 // other, which means that they'll always either have the same 194 // value or one of them will have an undefined value. 195 if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) || 196 isa<GetElementPtrInst>(A)) 197 if (const Instruction *BI = dyn_cast<Instruction>(B)) 198 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 199 return true; 200 201 // Otherwise they may not be equivalent. 202 return false; 203 } 204 205 bool llvm::isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L, 206 ScalarEvolution &SE, 207 DominatorTree &DT) { 208 auto &DL = LI->getModule()->getDataLayout(); 209 Value *Ptr = LI->getPointerOperand(); 210 211 APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()), 212 DL.getTypeStoreSize(LI->getType())); 213 const Align Alignment = LI->getAlign(); 214 215 Instruction *HeaderFirstNonPHI = L->getHeader()->getFirstNonPHI(); 216 217 // If given a uniform (i.e. non-varying) address, see if we can prove the 218 // access is safe within the loop w/o needing predication. 219 if (L->isLoopInvariant(Ptr)) 220 return isDereferenceableAndAlignedPointer(Ptr, Alignment, EltSize, DL, 221 HeaderFirstNonPHI, &DT); 222 223 // Otherwise, check to see if we have a repeating access pattern where we can 224 // prove that all accesses are well aligned and dereferenceable. 225 auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Ptr)); 226 if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine()) 227 return false; 228 auto* Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(SE)); 229 if (!Step) 230 return false; 231 // TODO: generalize to access patterns which have gaps 232 if (Step->getAPInt() != EltSize) 233 return false; 234 235 // TODO: If the symbolic trip count has a small bound (max count), we might 236 // be able to prove safety. 237 auto TC = SE.getSmallConstantTripCount(L); 238 if (!TC) 239 return false; 240 241 const APInt AccessSize = TC * EltSize; 242 243 auto *StartS = dyn_cast<SCEVUnknown>(AddRec->getStart()); 244 if (!StartS) 245 return false; 246 assert(SE.isLoopInvariant(StartS, L) && "implied by addrec definition"); 247 Value *Base = StartS->getValue(); 248 249 // For the moment, restrict ourselves to the case where the access size is a 250 // multiple of the requested alignment and the base is aligned. 251 // TODO: generalize if a case found which warrants 252 if (EltSize.urem(Alignment.value()) != 0) 253 return false; 254 return isDereferenceableAndAlignedPointer(Base, Alignment, AccessSize, DL, 255 HeaderFirstNonPHI, &DT); 256 } 257 258 /// Check if executing a load of this pointer value cannot trap. 259 /// 260 /// If DT and ScanFrom are specified this method performs context-sensitive 261 /// analysis and returns true if it is safe to load immediately before ScanFrom. 262 /// 263 /// If it is not obviously safe to load from the specified pointer, we do 264 /// a quick local scan of the basic block containing \c ScanFrom, to determine 265 /// if the address is already accessed. 266 /// 267 /// This uses the pointee type to determine how many bytes need to be safe to 268 /// load from the pointer. 269 bool llvm::isSafeToLoadUnconditionally(Value *V, Align Alignment, APInt &Size, 270 const DataLayout &DL, 271 Instruction *ScanFrom, 272 const DominatorTree *DT) { 273 // If DT is not specified we can't make context-sensitive query 274 const Instruction* CtxI = DT ? ScanFrom : nullptr; 275 if (isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT)) 276 return true; 277 278 if (!ScanFrom) 279 return false; 280 281 if (Size.getBitWidth() > 64) 282 return false; 283 const uint64_t LoadSize = Size.getZExtValue(); 284 285 // Otherwise, be a little bit aggressive by scanning the local block where we 286 // want to check to see if the pointer is already being loaded or stored 287 // from/to. If so, the previous load or store would have already trapped, 288 // so there is no harm doing an extra load (also, CSE will later eliminate 289 // the load entirely). 290 BasicBlock::iterator BBI = ScanFrom->getIterator(), 291 E = ScanFrom->getParent()->begin(); 292 293 // We can at least always strip pointer casts even though we can't use the 294 // base here. 295 V = V->stripPointerCasts(); 296 297 while (BBI != E) { 298 --BBI; 299 300 // If we see a free or a call which may write to memory (i.e. which might do 301 // a free) the pointer could be marked invalid. 302 if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() && 303 !isa<DbgInfoIntrinsic>(BBI)) 304 return false; 305 306 Value *AccessedPtr; 307 Type *AccessedTy; 308 Align AccessedAlign; 309 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 310 // Ignore volatile loads. The execution of a volatile load cannot 311 // be used to prove an address is backed by regular memory; it can, 312 // for example, point to an MMIO register. 313 if (LI->isVolatile()) 314 continue; 315 AccessedPtr = LI->getPointerOperand(); 316 AccessedTy = LI->getType(); 317 AccessedAlign = LI->getAlign(); 318 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 319 // Ignore volatile stores (see comment for loads). 320 if (SI->isVolatile()) 321 continue; 322 AccessedPtr = SI->getPointerOperand(); 323 AccessedTy = SI->getValueOperand()->getType(); 324 AccessedAlign = SI->getAlign(); 325 } else 326 continue; 327 328 if (AccessedAlign < Alignment) 329 continue; 330 331 // Handle trivial cases. 332 if (AccessedPtr == V && 333 LoadSize <= DL.getTypeStoreSize(AccessedTy)) 334 return true; 335 336 if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) && 337 LoadSize <= DL.getTypeStoreSize(AccessedTy)) 338 return true; 339 } 340 return false; 341 } 342 343 bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, Align Alignment, 344 const DataLayout &DL, 345 Instruction *ScanFrom, 346 const DominatorTree *DT) { 347 APInt Size(DL.getIndexTypeSizeInBits(V->getType()), DL.getTypeStoreSize(Ty)); 348 return isSafeToLoadUnconditionally(V, Alignment, Size, DL, ScanFrom, DT); 349 } 350 351 /// DefMaxInstsToScan - the default number of maximum instructions 352 /// to scan in the block, used by FindAvailableLoadedValue(). 353 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump 354 /// threading in part by eliminating partially redundant loads. 355 /// At that point, the value of MaxInstsToScan was already set to '6' 356 /// without documented explanation. 357 cl::opt<unsigned> 358 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden, 359 cl::desc("Use this to specify the default maximum number of instructions " 360 "to scan backward from a given instruction, when searching for " 361 "available loaded value")); 362 363 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, 364 BasicBlock *ScanBB, 365 BasicBlock::iterator &ScanFrom, 366 unsigned MaxInstsToScan, 367 AliasAnalysis *AA, bool *IsLoad, 368 unsigned *NumScanedInst) { 369 // Don't CSE load that is volatile or anything stronger than unordered. 370 if (!Load->isUnordered()) 371 return nullptr; 372 373 return FindAvailablePtrLoadStore( 374 Load->getPointerOperand(), Load->getType(), Load->isAtomic(), ScanBB, 375 ScanFrom, MaxInstsToScan, AA, IsLoad, NumScanedInst); 376 } 377 378 // Check if the load and the store have the same base, constant offsets and 379 // non-overlapping access ranges. 380 static bool AreNonOverlapSameBaseLoadAndStore( 381 Value *LoadPtr, Type *LoadTy, Value *StorePtr, Type *StoreTy, 382 const DataLayout &DL) { 383 APInt LoadOffset(DL.getTypeSizeInBits(LoadPtr->getType()), 0); 384 APInt StoreOffset(DL.getTypeSizeInBits(StorePtr->getType()), 0); 385 Value *LoadBase = LoadPtr->stripAndAccumulateConstantOffsets( 386 DL, LoadOffset, /* AllowNonInbounds */ false); 387 Value *StoreBase = StorePtr->stripAndAccumulateConstantOffsets( 388 DL, StoreOffset, /* AllowNonInbounds */ false); 389 if (LoadBase != StoreBase) 390 return false; 391 auto LoadAccessSize = LocationSize::precise(DL.getTypeStoreSize(LoadTy)); 392 auto StoreAccessSize = LocationSize::precise(DL.getTypeStoreSize(StoreTy)); 393 ConstantRange LoadRange(LoadOffset, 394 LoadOffset + LoadAccessSize.toRaw()); 395 ConstantRange StoreRange(StoreOffset, 396 StoreOffset + StoreAccessSize.toRaw()); 397 return LoadRange.intersectWith(StoreRange).isEmptySet(); 398 } 399 400 Value *llvm::FindAvailablePtrLoadStore(Value *Ptr, Type *AccessTy, 401 bool AtLeastAtomic, BasicBlock *ScanBB, 402 BasicBlock::iterator &ScanFrom, 403 unsigned MaxInstsToScan, 404 AliasAnalysis *AA, bool *IsLoadCSE, 405 unsigned *NumScanedInst) { 406 if (MaxInstsToScan == 0) 407 MaxInstsToScan = ~0U; 408 409 const DataLayout &DL = ScanBB->getModule()->getDataLayout(); 410 Value *StrippedPtr = Ptr->stripPointerCasts(); 411 412 while (ScanFrom != ScanBB->begin()) { 413 // We must ignore debug info directives when counting (otherwise they 414 // would affect codegen). 415 Instruction *Inst = &*--ScanFrom; 416 if (isa<DbgInfoIntrinsic>(Inst)) 417 continue; 418 419 // Restore ScanFrom to expected value in case next test succeeds 420 ScanFrom++; 421 422 if (NumScanedInst) 423 ++(*NumScanedInst); 424 425 // Don't scan huge blocks. 426 if (MaxInstsToScan-- == 0) 427 return nullptr; 428 429 --ScanFrom; 430 // If this is a load of Ptr, the loaded value is available. 431 // (This is true even if the load is volatile or atomic, although 432 // those cases are unlikely.) 433 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 434 if (AreEquivalentAddressValues( 435 LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) && 436 CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) { 437 438 // We can value forward from an atomic to a non-atomic, but not the 439 // other way around. 440 if (LI->isAtomic() < AtLeastAtomic) 441 return nullptr; 442 443 if (IsLoadCSE) 444 *IsLoadCSE = true; 445 return LI; 446 } 447 448 // Try to get the store size for the type. 449 auto AccessSize = LocationSize::precise(DL.getTypeStoreSize(AccessTy)); 450 451 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 452 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts(); 453 // If this is a store through Ptr, the value is available! 454 // (This is true even if the store is volatile or atomic, although 455 // those cases are unlikely.) 456 if (AreEquivalentAddressValues(StorePtr, StrippedPtr) && 457 CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(), 458 AccessTy, DL)) { 459 460 // We can value forward from an atomic to a non-atomic, but not the 461 // other way around. 462 if (SI->isAtomic() < AtLeastAtomic) 463 return nullptr; 464 465 if (IsLoadCSE) 466 *IsLoadCSE = false; 467 return SI->getOperand(0); 468 } 469 470 // If both StrippedPtr and StorePtr reach all the way to an alloca or 471 // global and they are different, ignore the store. This is a trivial form 472 // of alias analysis that is important for reg2mem'd code. 473 if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) && 474 (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) && 475 StrippedPtr != StorePtr) 476 continue; 477 478 if (!AA) { 479 // When AA isn't available, but if the load and the store have the same 480 // base, constant offsets and non-overlapping access ranges, ignore the 481 // store. This is a simple form of alias analysis that is used by the 482 // inliner. FIXME: use BasicAA if possible. 483 if (AreNonOverlapSameBaseLoadAndStore( 484 Ptr, AccessTy, SI->getPointerOperand(), 485 SI->getValueOperand()->getType(), DL)) 486 continue; 487 } else { 488 // If we have alias analysis and it says the store won't modify the 489 // loaded value, ignore the store. 490 if (!isModSet(AA->getModRefInfo(SI, StrippedPtr, AccessSize))) 491 continue; 492 } 493 494 // Otherwise the store that may or may not alias the pointer, bail out. 495 ++ScanFrom; 496 return nullptr; 497 } 498 499 // If this is some other instruction that may clobber Ptr, bail out. 500 if (Inst->mayWriteToMemory()) { 501 // If alias analysis claims that it really won't modify the load, 502 // ignore it. 503 if (AA && !isModSet(AA->getModRefInfo(Inst, StrippedPtr, AccessSize))) 504 continue; 505 506 // May modify the pointer, bail out. 507 ++ScanFrom; 508 return nullptr; 509 } 510 } 511 512 // Got to the start of the block, we didn't find it, but are done for this 513 // block. 514 return nullptr; 515 } 516