1 //===- Loads.cpp - Local load analysis ------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines simple local analyses for load instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/Loads.h" 15 #include "llvm/Analysis/AliasAnalysis.h" 16 #include "llvm/Analysis/ValueTracking.h" 17 #include "llvm/IR/DataLayout.h" 18 #include "llvm/IR/GlobalAlias.h" 19 #include "llvm/IR/GlobalVariable.h" 20 #include "llvm/IR/IntrinsicInst.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/IR/Operator.h" 24 #include "llvm/IR/Statepoint.h" 25 26 using namespace llvm; 27 28 static bool isAligned(const Value *Base, const APInt &Offset, unsigned Align, 29 const DataLayout &DL) { 30 APInt BaseAlign(Offset.getBitWidth(), Base->getPointerAlignment(DL)); 31 32 if (!BaseAlign) { 33 Type *Ty = Base->getType()->getPointerElementType(); 34 if (!Ty->isSized()) 35 return false; 36 BaseAlign = DL.getABITypeAlignment(Ty); 37 } 38 39 APInt Alignment(Offset.getBitWidth(), Align); 40 41 assert(Alignment.isPowerOf2() && "must be a power of 2!"); 42 return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1)); 43 } 44 45 static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) { 46 Type *Ty = Base->getType(); 47 assert(Ty->isSized() && "must be sized"); 48 APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0); 49 return isAligned(Base, Offset, Align, DL); 50 } 51 52 /// Test if V is always a pointer to allocated and suitably aligned memory for 53 /// a simple load or store. 54 static bool isDereferenceableAndAlignedPointer( 55 const Value *V, unsigned Align, const APInt &Size, const DataLayout &DL, 56 const Instruction *CtxI, const DominatorTree *DT, 57 SmallPtrSetImpl<const Value *> &Visited) { 58 // Already visited? Bail out, we've likely hit unreachable code. 59 if (!Visited.insert(V).second) 60 return false; 61 62 // Note that it is not safe to speculate into a malloc'd region because 63 // malloc may return null. 64 65 // bitcast instructions are no-ops as far as dereferenceability is concerned. 66 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) 67 return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, Size, 68 DL, CtxI, DT, Visited); 69 70 bool CheckForNonNull = false; 71 APInt KnownDerefBytes(Size.getBitWidth(), 72 V->getPointerDereferenceableBytes(DL, CheckForNonNull)); 73 if (KnownDerefBytes.getBoolValue()) { 74 if (KnownDerefBytes.uge(Size)) 75 if (!CheckForNonNull || isKnownNonNullAt(V, CtxI, DT)) 76 return isAligned(V, Align, DL); 77 } 78 79 // For GEPs, determine if the indexing lands within the allocated object. 80 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 81 const Value *Base = GEP->getPointerOperand(); 82 83 APInt Offset(DL.getPointerTypeSizeInBits(GEP->getType()), 0); 84 if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() || 85 !Offset.urem(APInt(Offset.getBitWidth(), Align)).isMinValue()) 86 return false; 87 88 // If the base pointer is dereferenceable for Offset+Size bytes, then the 89 // GEP (== Base + Offset) is dereferenceable for Size bytes. If the base 90 // pointer is aligned to Align bytes, and the Offset is divisible by Align 91 // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also 92 // aligned to Align bytes. 93 94 return isDereferenceableAndAlignedPointer(Base, Align, Offset + Size, DL, 95 CtxI, DT, Visited); 96 } 97 98 // For gc.relocate, look through relocations 99 if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V)) 100 return isDereferenceableAndAlignedPointer( 101 RelocateInst->getDerivedPtr(), Align, Size, DL, CtxI, DT, Visited); 102 103 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V)) 104 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, Size, 105 DL, CtxI, DT, Visited); 106 107 if (auto CS = ImmutableCallSite(V)) 108 if (const Value *RV = CS.getReturnedArgOperand()) 109 return isDereferenceableAndAlignedPointer(RV, Align, Size, DL, CtxI, DT, 110 Visited); 111 112 // If we don't know, assume the worst. 113 return false; 114 } 115 116 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align, 117 const DataLayout &DL, 118 const Instruction *CtxI, 119 const DominatorTree *DT) { 120 // When dereferenceability information is provided by a dereferenceable 121 // attribute, we know exactly how many bytes are dereferenceable. If we can 122 // determine the exact offset to the attributed variable, we can use that 123 // information here. 124 Type *VTy = V->getType(); 125 Type *Ty = VTy->getPointerElementType(); 126 127 // Require ABI alignment for loads without alignment specification 128 if (Align == 0) 129 Align = DL.getABITypeAlignment(Ty); 130 131 if (!Ty->isSized()) 132 return false; 133 134 SmallPtrSet<const Value *, 32> Visited; 135 return ::isDereferenceableAndAlignedPointer( 136 V, Align, APInt(DL.getTypeSizeInBits(VTy), DL.getTypeStoreSize(Ty)), DL, 137 CtxI, DT, Visited); 138 } 139 140 bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL, 141 const Instruction *CtxI, 142 const DominatorTree *DT) { 143 return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT); 144 } 145 146 /// \brief Test if A and B will obviously have the same value. 147 /// 148 /// This includes recognizing that %t0 and %t1 will have the same 149 /// value in code like this: 150 /// \code 151 /// %t0 = getelementptr \@a, 0, 3 152 /// store i32 0, i32* %t0 153 /// %t1 = getelementptr \@a, 0, 3 154 /// %t2 = load i32* %t1 155 /// \endcode 156 /// 157 static bool AreEquivalentAddressValues(const Value *A, const Value *B) { 158 // Test if the values are trivially equivalent. 159 if (A == B) 160 return true; 161 162 // Test if the values come from identical arithmetic instructions. 163 // Use isIdenticalToWhenDefined instead of isIdenticalTo because 164 // this function is only used when one address use dominates the 165 // other, which means that they'll always either have the same 166 // value or one of them will have an undefined value. 167 if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) || 168 isa<GetElementPtrInst>(A)) 169 if (const Instruction *BI = dyn_cast<Instruction>(B)) 170 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 171 return true; 172 173 // Otherwise they may not be equivalent. 174 return false; 175 } 176 177 /// \brief Check if executing a load of this pointer value cannot trap. 178 /// 179 /// If DT and ScanFrom are specified this method performs context-sensitive 180 /// analysis and returns true if it is safe to load immediately before ScanFrom. 181 /// 182 /// If it is not obviously safe to load from the specified pointer, we do 183 /// a quick local scan of the basic block containing \c ScanFrom, to determine 184 /// if the address is already accessed. 185 /// 186 /// This uses the pointee type to determine how many bytes need to be safe to 187 /// load from the pointer. 188 bool llvm::isSafeToLoadUnconditionally(Value *V, unsigned Align, 189 const DataLayout &DL, 190 Instruction *ScanFrom, 191 const DominatorTree *DT) { 192 // Zero alignment means that the load has the ABI alignment for the target 193 if (Align == 0) 194 Align = DL.getABITypeAlignment(V->getType()->getPointerElementType()); 195 assert(isPowerOf2_32(Align)); 196 197 // If DT is not specified we can't make context-sensitive query 198 const Instruction* CtxI = DT ? ScanFrom : nullptr; 199 if (isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT)) 200 return true; 201 202 int64_t ByteOffset = 0; 203 Value *Base = V; 204 Base = GetPointerBaseWithConstantOffset(V, ByteOffset, DL); 205 206 if (ByteOffset < 0) // out of bounds 207 return false; 208 209 Type *BaseType = nullptr; 210 unsigned BaseAlign = 0; 211 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Base)) { 212 // An alloca is safe to load from as load as it is suitably aligned. 213 BaseType = AI->getAllocatedType(); 214 BaseAlign = AI->getAlignment(); 215 } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) { 216 // Global variables are not necessarily safe to load from if they are 217 // interposed arbitrarily. Their size may change or they may be weak and 218 // require a test to determine if they were in fact provided. 219 if (!GV->isInterposable()) { 220 BaseType = GV->getType()->getElementType(); 221 BaseAlign = GV->getAlignment(); 222 } 223 } 224 225 PointerType *AddrTy = cast<PointerType>(V->getType()); 226 uint64_t LoadSize = DL.getTypeStoreSize(AddrTy->getElementType()); 227 228 // If we found a base allocated type from either an alloca or global variable, 229 // try to see if we are definitively within the allocated region. We need to 230 // know the size of the base type and the loaded type to do anything in this 231 // case. 232 if (BaseType && BaseType->isSized()) { 233 if (BaseAlign == 0) 234 BaseAlign = DL.getPrefTypeAlignment(BaseType); 235 236 if (Align <= BaseAlign) { 237 // Check if the load is within the bounds of the underlying object. 238 if (ByteOffset + LoadSize <= DL.getTypeAllocSize(BaseType) && 239 ((ByteOffset % Align) == 0)) 240 return true; 241 } 242 } 243 244 if (!ScanFrom) 245 return false; 246 247 // Otherwise, be a little bit aggressive by scanning the local block where we 248 // want to check to see if the pointer is already being loaded or stored 249 // from/to. If so, the previous load or store would have already trapped, 250 // so there is no harm doing an extra load (also, CSE will later eliminate 251 // the load entirely). 252 BasicBlock::iterator BBI = ScanFrom->getIterator(), 253 E = ScanFrom->getParent()->begin(); 254 255 // We can at least always strip pointer casts even though we can't use the 256 // base here. 257 V = V->stripPointerCasts(); 258 259 while (BBI != E) { 260 --BBI; 261 262 // If we see a free or a call which may write to memory (i.e. which might do 263 // a free) the pointer could be marked invalid. 264 if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() && 265 !isa<DbgInfoIntrinsic>(BBI)) 266 return false; 267 268 Value *AccessedPtr; 269 unsigned AccessedAlign; 270 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 271 AccessedPtr = LI->getPointerOperand(); 272 AccessedAlign = LI->getAlignment(); 273 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 274 AccessedPtr = SI->getPointerOperand(); 275 AccessedAlign = SI->getAlignment(); 276 } else 277 continue; 278 279 Type *AccessedTy = AccessedPtr->getType()->getPointerElementType(); 280 if (AccessedAlign == 0) 281 AccessedAlign = DL.getABITypeAlignment(AccessedTy); 282 if (AccessedAlign < Align) 283 continue; 284 285 // Handle trivial cases. 286 if (AccessedPtr == V) 287 return true; 288 289 if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) && 290 LoadSize <= DL.getTypeStoreSize(AccessedTy)) 291 return true; 292 } 293 return false; 294 } 295 296 /// DefMaxInstsToScan - the default number of maximum instructions 297 /// to scan in the block, used by FindAvailableLoadedValue(). 298 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump 299 /// threading in part by eliminating partially redundant loads. 300 /// At that point, the value of MaxInstsToScan was already set to '6' 301 /// without documented explanation. 302 cl::opt<unsigned> 303 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden, 304 cl::desc("Use this to specify the default maximum number of instructions " 305 "to scan backward from a given instruction, when searching for " 306 "available loaded value")); 307 308 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, 309 BasicBlock *ScanBB, 310 BasicBlock::iterator &ScanFrom, 311 unsigned MaxInstsToScan, 312 AliasAnalysis *AA, bool *IsLoadCSE) { 313 if (MaxInstsToScan == 0) 314 MaxInstsToScan = ~0U; 315 316 Value *Ptr = Load->getPointerOperand(); 317 Type *AccessTy = Load->getType(); 318 319 // We can never remove a volatile load 320 if (Load->isVolatile()) 321 return nullptr; 322 323 // Anything stronger than unordered is currently unimplemented. 324 if (!Load->isUnordered()) 325 return nullptr; 326 327 const DataLayout &DL = ScanBB->getModule()->getDataLayout(); 328 329 // Try to get the store size for the type. 330 uint64_t AccessSize = DL.getTypeStoreSize(AccessTy); 331 332 Value *StrippedPtr = Ptr->stripPointerCasts(); 333 334 while (ScanFrom != ScanBB->begin()) { 335 // We must ignore debug info directives when counting (otherwise they 336 // would affect codegen). 337 Instruction *Inst = &*--ScanFrom; 338 if (isa<DbgInfoIntrinsic>(Inst)) 339 continue; 340 341 // Restore ScanFrom to expected value in case next test succeeds 342 ScanFrom++; 343 344 // Don't scan huge blocks. 345 if (MaxInstsToScan-- == 0) 346 return nullptr; 347 348 --ScanFrom; 349 // If this is a load of Ptr, the loaded value is available. 350 // (This is true even if the load is volatile or atomic, although 351 // those cases are unlikely.) 352 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 353 if (AreEquivalentAddressValues( 354 LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) && 355 CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) { 356 357 // We can value forward from an atomic to a non-atomic, but not the 358 // other way around. 359 if (LI->isAtomic() < Load->isAtomic()) 360 return nullptr; 361 362 if (IsLoadCSE) 363 *IsLoadCSE = true; 364 return LI; 365 } 366 367 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 368 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts(); 369 // If this is a store through Ptr, the value is available! 370 // (This is true even if the store is volatile or atomic, although 371 // those cases are unlikely.) 372 if (AreEquivalentAddressValues(StorePtr, StrippedPtr) && 373 CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(), 374 AccessTy, DL)) { 375 376 // We can value forward from an atomic to a non-atomic, but not the 377 // other way around. 378 if (SI->isAtomic() < Load->isAtomic()) 379 return nullptr; 380 381 if (IsLoadCSE) 382 *IsLoadCSE = false; 383 return SI->getOperand(0); 384 } 385 386 // If both StrippedPtr and StorePtr reach all the way to an alloca or 387 // global and they are different, ignore the store. This is a trivial form 388 // of alias analysis that is important for reg2mem'd code. 389 if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) && 390 (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) && 391 StrippedPtr != StorePtr) 392 continue; 393 394 // If we have alias analysis and it says the store won't modify the loaded 395 // value, ignore the store. 396 if (AA && (AA->getModRefInfo(SI, StrippedPtr, AccessSize) & MRI_Mod) == 0) 397 continue; 398 399 // Otherwise the store that may or may not alias the pointer, bail out. 400 ++ScanFrom; 401 return nullptr; 402 } 403 404 // If this is some other instruction that may clobber Ptr, bail out. 405 if (Inst->mayWriteToMemory()) { 406 // If alias analysis claims that it really won't modify the load, 407 // ignore it. 408 if (AA && 409 (AA->getModRefInfo(Inst, StrippedPtr, AccessSize) & MRI_Mod) == 0) 410 continue; 411 412 // May modify the pointer, bail out. 413 ++ScanFrom; 414 return nullptr; 415 } 416 } 417 418 // Got to the start of the block, we didn't find it, but are done for this 419 // block. 420 return nullptr; 421 } 422