1 //===- Loads.cpp - Local load analysis ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines simple local analyses for load instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/Loads.h" 14 #include "llvm/Analysis/AliasAnalysis.h" 15 #include "llvm/Analysis/AssumeBundleQueries.h" 16 #include "llvm/Analysis/CaptureTracking.h" 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/Analysis/MemoryBuiltins.h" 19 #include "llvm/Analysis/ScalarEvolution.h" 20 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/GlobalAlias.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/Statepoint.h" 31 32 using namespace llvm; 33 34 static bool isAligned(const Value *Base, const APInt &Offset, Align Alignment, 35 const DataLayout &DL) { 36 Align BA = Base->getPointerAlignment(DL); 37 const APInt APAlign(Offset.getBitWidth(), Alignment.value()); 38 assert(APAlign.isPowerOf2() && "must be a power of 2!"); 39 return BA >= Alignment && !(Offset & (APAlign - 1)); 40 } 41 42 /// Test if V is always a pointer to allocated and suitably aligned memory for 43 /// a simple load or store. 44 static bool isDereferenceableAndAlignedPointer( 45 const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL, 46 const Instruction *CtxI, const DominatorTree *DT, 47 const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited, 48 unsigned MaxDepth) { 49 assert(V->getType()->isPointerTy() && "Base must be pointer"); 50 51 // Recursion limit. 52 if (MaxDepth-- == 0) 53 return false; 54 55 // Already visited? Bail out, we've likely hit unreachable code. 56 if (!Visited.insert(V).second) 57 return false; 58 59 // Note that it is not safe to speculate into a malloc'd region because 60 // malloc may return null. 61 62 // bitcast instructions are no-ops as far as dereferenceability is concerned. 63 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) { 64 if (BC->getSrcTy()->isPointerTy()) 65 return isDereferenceableAndAlignedPointer( 66 BC->getOperand(0), Alignment, Size, DL, CtxI, DT, TLI, 67 Visited, MaxDepth); 68 } 69 70 bool CheckForNonNull = false; 71 APInt KnownDerefBytes(Size.getBitWidth(), 72 V->getPointerDereferenceableBytes(DL, CheckForNonNull)); 73 if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size)) 74 if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT)) { 75 // As we recursed through GEPs to get here, we've incrementally checked 76 // that each step advanced by a multiple of the alignment. If our base is 77 // properly aligned, then the original offset accessed must also be. 78 Type *Ty = V->getType(); 79 assert(Ty->isSized() && "must be sized"); 80 APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0); 81 return isAligned(V, Offset, Alignment, DL); 82 } 83 84 if (CtxI) { 85 /// Look through assumes to see if both dereferencability and alignment can 86 /// be provent by an assume 87 RetainedKnowledge AlignRK; 88 RetainedKnowledge DerefRK; 89 if (getKnowledgeForValue( 90 V, {Attribute::Dereferenceable, Attribute::Alignment}, nullptr, 91 [&](RetainedKnowledge RK, Instruction *Assume, auto) { 92 if (!isValidAssumeForContext(Assume, CtxI)) 93 return false; 94 if (RK.AttrKind == Attribute::Alignment) 95 AlignRK = std::max(AlignRK, RK); 96 if (RK.AttrKind == Attribute::Dereferenceable) 97 DerefRK = std::max(DerefRK, RK); 98 if (AlignRK && DerefRK && AlignRK.ArgValue >= Alignment.value() && 99 DerefRK.ArgValue >= Size.getZExtValue()) 100 return true; // We have found what we needed so we stop looking 101 return false; // Other assumes may have better information. so 102 // keep looking 103 })) 104 return true; 105 } 106 /// TODO refactor this function to be able to search independently for 107 /// Dereferencability and Alignment requirements. 108 109 // For GEPs, determine if the indexing lands within the allocated object. 110 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 111 const Value *Base = GEP->getPointerOperand(); 112 113 APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0); 114 if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() || 115 !Offset.urem(APInt(Offset.getBitWidth(), Alignment.value())) 116 .isMinValue()) 117 return false; 118 119 // If the base pointer is dereferenceable for Offset+Size bytes, then the 120 // GEP (== Base + Offset) is dereferenceable for Size bytes. If the base 121 // pointer is aligned to Align bytes, and the Offset is divisible by Align 122 // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also 123 // aligned to Align bytes. 124 125 // Offset and Size may have different bit widths if we have visited an 126 // addrspacecast, so we can't do arithmetic directly on the APInt values. 127 return isDereferenceableAndAlignedPointer( 128 Base, Alignment, Offset + Size.sextOrTrunc(Offset.getBitWidth()), DL, 129 CtxI, DT, TLI, Visited, MaxDepth); 130 } 131 132 // For gc.relocate, look through relocations 133 if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V)) 134 return isDereferenceableAndAlignedPointer(RelocateInst->getDerivedPtr(), 135 Alignment, Size, DL, CtxI, DT, 136 TLI, Visited, MaxDepth); 137 138 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V)) 139 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Alignment, 140 Size, DL, CtxI, DT, TLI, 141 Visited, MaxDepth); 142 143 if (const auto *Call = dyn_cast<CallBase>(V)) { 144 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 145 return isDereferenceableAndAlignedPointer(RP, Alignment, Size, DL, CtxI, 146 DT, TLI, Visited, MaxDepth); 147 148 // If we have a call we can't recurse through, check to see if this is an 149 // allocation function for which we can establish an minimum object size. 150 // Such a minimum object size is analogous to a deref_or_null attribute in 151 // that we still need to prove the result non-null at point of use. 152 // NOTE: We can only use the object size as a base fact as we a) need to 153 // prove alignment too, and b) don't want the compile time impact of a 154 // separate recursive walk. 155 ObjectSizeOpts Opts; 156 // TODO: It may be okay to round to align, but that would imply that 157 // accessing slightly out of bounds was legal, and we're currently 158 // inconsistent about that. For the moment, be conservative. 159 Opts.RoundToAlign = false; 160 Opts.NullIsUnknownSize = true; 161 uint64_t ObjSize; 162 // TODO: Plumb through TLI so that malloc routines and such working. 163 if (getObjectSize(V, ObjSize, DL, nullptr, Opts)) { 164 APInt KnownDerefBytes(Size.getBitWidth(), ObjSize); 165 if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) && 166 isKnownNonZero(V, DL, 0, nullptr, CtxI, DT) && 167 // TODO: We're currently inconsistent about whether deref(N) is a 168 // global fact or a point in time fact. Once D61652 eventually 169 // lands, this check will be restricted to the point in time 170 // variant. For that variant, we need to prove that object hasn't 171 // been conditionally freed before ontext instruction - if it has, we 172 // might be hoisting over the inverse conditional and creating a 173 // dynamic use after free. 174 !PointerMayBeCapturedBefore(V, true, true, CtxI, DT, true)) { 175 // As we recursed through GEPs to get here, we've incrementally 176 // checked that each step advanced by a multiple of the alignment. If 177 // our base is properly aligned, then the original offset accessed 178 // must also be. 179 Type *Ty = V->getType(); 180 assert(Ty->isSized() && "must be sized"); 181 APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0); 182 return isAligned(V, Offset, Alignment, DL); 183 } 184 } 185 } 186 187 // If we don't know, assume the worst. 188 return false; 189 } 190 191 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Align Alignment, 192 const APInt &Size, 193 const DataLayout &DL, 194 const Instruction *CtxI, 195 const DominatorTree *DT, 196 const TargetLibraryInfo *TLI) { 197 // Note: At the moment, Size can be zero. This ends up being interpreted as 198 // a query of whether [Base, V] is dereferenceable and V is aligned (since 199 // that's what the implementation happened to do). It's unclear if this is 200 // the desired semantic, but at least SelectionDAG does exercise this case. 201 202 SmallPtrSet<const Value *, 32> Visited; 203 return ::isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT, 204 TLI, Visited, 16); 205 } 206 207 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, 208 MaybeAlign MA, 209 const DataLayout &DL, 210 const Instruction *CtxI, 211 const DominatorTree *DT, 212 const TargetLibraryInfo *TLI) { 213 // For unsized types or scalable vectors we don't know exactly how many bytes 214 // are dereferenced, so bail out. 215 if (!Ty->isSized() || isa<ScalableVectorType>(Ty)) 216 return false; 217 218 // When dereferenceability information is provided by a dereferenceable 219 // attribute, we know exactly how many bytes are dereferenceable. If we can 220 // determine the exact offset to the attributed variable, we can use that 221 // information here. 222 223 // Require ABI alignment for loads without alignment specification 224 const Align Alignment = DL.getValueOrABITypeAlignment(MA, Ty); 225 APInt AccessSize(DL.getPointerTypeSizeInBits(V->getType()), 226 DL.getTypeStoreSize(Ty)); 227 return isDereferenceableAndAlignedPointer(V, Alignment, AccessSize, DL, CtxI, 228 DT, TLI); 229 } 230 231 bool llvm::isDereferenceablePointer(const Value *V, Type *Ty, 232 const DataLayout &DL, 233 const Instruction *CtxI, 234 const DominatorTree *DT, 235 const TargetLibraryInfo *TLI) { 236 return isDereferenceableAndAlignedPointer(V, Ty, Align(1), DL, CtxI, DT, TLI); 237 } 238 239 /// Test if A and B will obviously have the same value. 240 /// 241 /// This includes recognizing that %t0 and %t1 will have the same 242 /// value in code like this: 243 /// \code 244 /// %t0 = getelementptr \@a, 0, 3 245 /// store i32 0, i32* %t0 246 /// %t1 = getelementptr \@a, 0, 3 247 /// %t2 = load i32* %t1 248 /// \endcode 249 /// 250 static bool AreEquivalentAddressValues(const Value *A, const Value *B) { 251 // Test if the values are trivially equivalent. 252 if (A == B) 253 return true; 254 255 // Test if the values come from identical arithmetic instructions. 256 // Use isIdenticalToWhenDefined instead of isIdenticalTo because 257 // this function is only used when one address use dominates the 258 // other, which means that they'll always either have the same 259 // value or one of them will have an undefined value. 260 if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) || 261 isa<GetElementPtrInst>(A)) 262 if (const Instruction *BI = dyn_cast<Instruction>(B)) 263 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 264 return true; 265 266 // Otherwise they may not be equivalent. 267 return false; 268 } 269 270 bool llvm::isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L, 271 ScalarEvolution &SE, 272 DominatorTree &DT) { 273 auto &DL = LI->getModule()->getDataLayout(); 274 Value *Ptr = LI->getPointerOperand(); 275 276 APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()), 277 DL.getTypeStoreSize(LI->getType()).getFixedSize()); 278 const Align Alignment = LI->getAlign(); 279 280 Instruction *HeaderFirstNonPHI = L->getHeader()->getFirstNonPHI(); 281 282 // If given a uniform (i.e. non-varying) address, see if we can prove the 283 // access is safe within the loop w/o needing predication. 284 if (L->isLoopInvariant(Ptr)) 285 return isDereferenceableAndAlignedPointer(Ptr, Alignment, EltSize, DL, 286 HeaderFirstNonPHI, &DT); 287 288 // Otherwise, check to see if we have a repeating access pattern where we can 289 // prove that all accesses are well aligned and dereferenceable. 290 auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Ptr)); 291 if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine()) 292 return false; 293 auto* Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(SE)); 294 if (!Step) 295 return false; 296 // TODO: generalize to access patterns which have gaps 297 if (Step->getAPInt() != EltSize) 298 return false; 299 300 auto TC = SE.getSmallConstantMaxTripCount(L); 301 if (!TC) 302 return false; 303 304 const APInt AccessSize = TC * EltSize; 305 306 auto *StartS = dyn_cast<SCEVUnknown>(AddRec->getStart()); 307 if (!StartS) 308 return false; 309 assert(SE.isLoopInvariant(StartS, L) && "implied by addrec definition"); 310 Value *Base = StartS->getValue(); 311 312 // For the moment, restrict ourselves to the case where the access size is a 313 // multiple of the requested alignment and the base is aligned. 314 // TODO: generalize if a case found which warrants 315 if (EltSize.urem(Alignment.value()) != 0) 316 return false; 317 return isDereferenceableAndAlignedPointer(Base, Alignment, AccessSize, DL, 318 HeaderFirstNonPHI, &DT); 319 } 320 321 /// Check if executing a load of this pointer value cannot trap. 322 /// 323 /// If DT and ScanFrom are specified this method performs context-sensitive 324 /// analysis and returns true if it is safe to load immediately before ScanFrom. 325 /// 326 /// If it is not obviously safe to load from the specified pointer, we do 327 /// a quick local scan of the basic block containing \c ScanFrom, to determine 328 /// if the address is already accessed. 329 /// 330 /// This uses the pointee type to determine how many bytes need to be safe to 331 /// load from the pointer. 332 bool llvm::isSafeToLoadUnconditionally(Value *V, Align Alignment, APInt &Size, 333 const DataLayout &DL, 334 Instruction *ScanFrom, 335 const DominatorTree *DT, 336 const TargetLibraryInfo *TLI) { 337 // If DT is not specified we can't make context-sensitive query 338 const Instruction* CtxI = DT ? ScanFrom : nullptr; 339 if (isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT, TLI)) 340 return true; 341 342 if (!ScanFrom) 343 return false; 344 345 if (Size.getBitWidth() > 64) 346 return false; 347 const uint64_t LoadSize = Size.getZExtValue(); 348 349 // Otherwise, be a little bit aggressive by scanning the local block where we 350 // want to check to see if the pointer is already being loaded or stored 351 // from/to. If so, the previous load or store would have already trapped, 352 // so there is no harm doing an extra load (also, CSE will later eliminate 353 // the load entirely). 354 BasicBlock::iterator BBI = ScanFrom->getIterator(), 355 E = ScanFrom->getParent()->begin(); 356 357 // We can at least always strip pointer casts even though we can't use the 358 // base here. 359 V = V->stripPointerCasts(); 360 361 while (BBI != E) { 362 --BBI; 363 364 // If we see a free or a call which may write to memory (i.e. which might do 365 // a free) the pointer could be marked invalid. 366 if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() && 367 !isa<DbgInfoIntrinsic>(BBI)) 368 return false; 369 370 Value *AccessedPtr; 371 Type *AccessedTy; 372 Align AccessedAlign; 373 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 374 // Ignore volatile loads. The execution of a volatile load cannot 375 // be used to prove an address is backed by regular memory; it can, 376 // for example, point to an MMIO register. 377 if (LI->isVolatile()) 378 continue; 379 AccessedPtr = LI->getPointerOperand(); 380 AccessedTy = LI->getType(); 381 AccessedAlign = LI->getAlign(); 382 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 383 // Ignore volatile stores (see comment for loads). 384 if (SI->isVolatile()) 385 continue; 386 AccessedPtr = SI->getPointerOperand(); 387 AccessedTy = SI->getValueOperand()->getType(); 388 AccessedAlign = SI->getAlign(); 389 } else 390 continue; 391 392 if (AccessedAlign < Alignment) 393 continue; 394 395 // Handle trivial cases. 396 if (AccessedPtr == V && 397 LoadSize <= DL.getTypeStoreSize(AccessedTy)) 398 return true; 399 400 if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) && 401 LoadSize <= DL.getTypeStoreSize(AccessedTy)) 402 return true; 403 } 404 return false; 405 } 406 407 bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, Align Alignment, 408 const DataLayout &DL, 409 Instruction *ScanFrom, 410 const DominatorTree *DT, 411 const TargetLibraryInfo *TLI) { 412 APInt Size(DL.getIndexTypeSizeInBits(V->getType()), DL.getTypeStoreSize(Ty)); 413 return isSafeToLoadUnconditionally(V, Alignment, Size, DL, ScanFrom, DT, TLI); 414 } 415 416 /// DefMaxInstsToScan - the default number of maximum instructions 417 /// to scan in the block, used by FindAvailableLoadedValue(). 418 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump 419 /// threading in part by eliminating partially redundant loads. 420 /// At that point, the value of MaxInstsToScan was already set to '6' 421 /// without documented explanation. 422 cl::opt<unsigned> 423 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden, 424 cl::desc("Use this to specify the default maximum number of instructions " 425 "to scan backward from a given instruction, when searching for " 426 "available loaded value")); 427 428 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, 429 BasicBlock *ScanBB, 430 BasicBlock::iterator &ScanFrom, 431 unsigned MaxInstsToScan, 432 AAResults *AA, bool *IsLoad, 433 unsigned *NumScanedInst) { 434 // Don't CSE load that is volatile or anything stronger than unordered. 435 if (!Load->isUnordered()) 436 return nullptr; 437 438 return FindAvailablePtrLoadStore( 439 Load->getPointerOperand(), Load->getType(), Load->isAtomic(), ScanBB, 440 ScanFrom, MaxInstsToScan, AA, IsLoad, NumScanedInst); 441 } 442 443 // Check if the load and the store have the same base, constant offsets and 444 // non-overlapping access ranges. 445 static bool AreNonOverlapSameBaseLoadAndStore( 446 Value *LoadPtr, Type *LoadTy, Value *StorePtr, Type *StoreTy, 447 const DataLayout &DL) { 448 APInt LoadOffset(DL.getTypeSizeInBits(LoadPtr->getType()), 0); 449 APInt StoreOffset(DL.getTypeSizeInBits(StorePtr->getType()), 0); 450 Value *LoadBase = LoadPtr->stripAndAccumulateConstantOffsets( 451 DL, LoadOffset, /* AllowNonInbounds */ false); 452 Value *StoreBase = StorePtr->stripAndAccumulateConstantOffsets( 453 DL, StoreOffset, /* AllowNonInbounds */ false); 454 if (LoadBase != StoreBase) 455 return false; 456 auto LoadAccessSize = LocationSize::precise(DL.getTypeStoreSize(LoadTy)); 457 auto StoreAccessSize = LocationSize::precise(DL.getTypeStoreSize(StoreTy)); 458 ConstantRange LoadRange(LoadOffset, 459 LoadOffset + LoadAccessSize.toRaw()); 460 ConstantRange StoreRange(StoreOffset, 461 StoreOffset + StoreAccessSize.toRaw()); 462 return LoadRange.intersectWith(StoreRange).isEmptySet(); 463 } 464 465 static Value *getAvailableLoadStore(Instruction *Inst, Value *Ptr, 466 Type *AccessTy, bool AtLeastAtomic, 467 const DataLayout &DL, bool *IsLoadCSE) { 468 // If this is a load of Ptr, the loaded value is available. 469 // (This is true even if the load is volatile or atomic, although 470 // those cases are unlikely.) 471 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 472 // We can value forward from an atomic to a non-atomic, but not the 473 // other way around. 474 if (LI->isAtomic() < AtLeastAtomic) 475 return nullptr; 476 477 Value *LoadPtr = LI->getPointerOperand()->stripPointerCasts(); 478 if (!AreEquivalentAddressValues(LoadPtr, Ptr)) 479 return nullptr; 480 481 if (CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) { 482 if (IsLoadCSE) 483 *IsLoadCSE = true; 484 return LI; 485 } 486 } 487 488 // If this is a store through Ptr, the value is available! 489 // (This is true even if the store is volatile or atomic, although 490 // those cases are unlikely.) 491 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 492 // We can value forward from an atomic to a non-atomic, but not the 493 // other way around. 494 if (SI->isAtomic() < AtLeastAtomic) 495 return nullptr; 496 497 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts(); 498 if (!AreEquivalentAddressValues(StorePtr, Ptr)) 499 return nullptr; 500 501 Value *Val = SI->getValueOperand(); 502 if (CastInst::isBitOrNoopPointerCastable(Val->getType(), AccessTy, DL)) { 503 if (IsLoadCSE) 504 *IsLoadCSE = false; 505 return Val; 506 } 507 } 508 509 return nullptr; 510 } 511 512 Value *llvm::FindAvailablePtrLoadStore(Value *Ptr, Type *AccessTy, 513 bool AtLeastAtomic, BasicBlock *ScanBB, 514 BasicBlock::iterator &ScanFrom, 515 unsigned MaxInstsToScan, 516 AAResults *AA, bool *IsLoadCSE, 517 unsigned *NumScanedInst) { 518 if (MaxInstsToScan == 0) 519 MaxInstsToScan = ~0U; 520 521 const DataLayout &DL = ScanBB->getModule()->getDataLayout(); 522 Value *StrippedPtr = Ptr->stripPointerCasts(); 523 524 while (ScanFrom != ScanBB->begin()) { 525 // We must ignore debug info directives when counting (otherwise they 526 // would affect codegen). 527 Instruction *Inst = &*--ScanFrom; 528 if (isa<DbgInfoIntrinsic>(Inst)) 529 continue; 530 531 // Restore ScanFrom to expected value in case next test succeeds 532 ScanFrom++; 533 534 if (NumScanedInst) 535 ++(*NumScanedInst); 536 537 // Don't scan huge blocks. 538 if (MaxInstsToScan-- == 0) 539 return nullptr; 540 541 --ScanFrom; 542 543 if (Value *Available = getAvailableLoadStore(Inst, StrippedPtr, AccessTy, 544 AtLeastAtomic, DL, IsLoadCSE)) 545 return Available; 546 547 // Try to get the store size for the type. 548 auto AccessSize = LocationSize::precise(DL.getTypeStoreSize(AccessTy)); 549 550 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 551 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts(); 552 553 // If both StrippedPtr and StorePtr reach all the way to an alloca or 554 // global and they are different, ignore the store. This is a trivial form 555 // of alias analysis that is important for reg2mem'd code. 556 if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) && 557 (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) && 558 StrippedPtr != StorePtr) 559 continue; 560 561 if (!AA) { 562 // When AA isn't available, but if the load and the store have the same 563 // base, constant offsets and non-overlapping access ranges, ignore the 564 // store. This is a simple form of alias analysis that is used by the 565 // inliner. FIXME: use BasicAA if possible. 566 if (AreNonOverlapSameBaseLoadAndStore( 567 Ptr, AccessTy, SI->getPointerOperand(), 568 SI->getValueOperand()->getType(), DL)) 569 continue; 570 } else { 571 // If we have alias analysis and it says the store won't modify the 572 // loaded value, ignore the store. 573 if (!isModSet(AA->getModRefInfo(SI, StrippedPtr, AccessSize))) 574 continue; 575 } 576 577 // Otherwise the store that may or may not alias the pointer, bail out. 578 ++ScanFrom; 579 return nullptr; 580 } 581 582 // If this is some other instruction that may clobber Ptr, bail out. 583 if (Inst->mayWriteToMemory()) { 584 // If alias analysis claims that it really won't modify the load, 585 // ignore it. 586 if (AA && !isModSet(AA->getModRefInfo(Inst, StrippedPtr, AccessSize))) 587 continue; 588 589 // May modify the pointer, bail out. 590 ++ScanFrom; 591 return nullptr; 592 } 593 } 594 595 // Got to the start of the block, we didn't find it, but are done for this 596 // block. 597 return nullptr; 598 } 599 600 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, AAResults &AA, 601 bool *IsLoadCSE, 602 unsigned MaxInstsToScan) { 603 const DataLayout &DL = Load->getModule()->getDataLayout(); 604 Value *StrippedPtr = Load->getPointerOperand()->stripPointerCasts(); 605 BasicBlock *ScanBB = Load->getParent(); 606 Type *AccessTy = Load->getType(); 607 bool AtLeastAtomic = Load->isAtomic(); 608 609 if (!Load->isUnordered()) 610 return nullptr; 611 612 // Try to find an available value first, and delay expensive alias analysis 613 // queries until later. 614 Value *Available = nullptr;; 615 SmallVector<Instruction *> MustNotAliasInsts; 616 for (Instruction &Inst : make_range(++Load->getReverseIterator(), 617 ScanBB->rend())) { 618 if (isa<DbgInfoIntrinsic>(&Inst)) 619 continue; 620 621 if (MaxInstsToScan-- == 0) 622 return nullptr; 623 624 Available = getAvailableLoadStore(&Inst, StrippedPtr, AccessTy, 625 AtLeastAtomic, DL, IsLoadCSE); 626 if (Available) 627 break; 628 629 if (Inst.mayWriteToMemory()) 630 MustNotAliasInsts.push_back(&Inst); 631 } 632 633 // If we found an available value, ensure that the instructions in between 634 // did not modify the memory location. 635 if (Available) { 636 auto AccessSize = LocationSize::precise(DL.getTypeStoreSize(AccessTy)); 637 for (Instruction *Inst : MustNotAliasInsts) 638 if (isModSet(AA.getModRefInfo(Inst, StrippedPtr, AccessSize))) 639 return nullptr; 640 } 641 642 return Available; 643 } 644 645 bool llvm::canReplacePointersIfEqual(Value *A, Value *B, const DataLayout &DL, 646 Instruction *CtxI) { 647 Type *Ty = A->getType(); 648 assert(Ty == B->getType() && Ty->isPointerTy() && 649 "values must have matching pointer types"); 650 651 // NOTE: The checks in the function are incomplete and currently miss illegal 652 // cases! The current implementation is a starting point and the 653 // implementation should be made stricter over time. 654 if (auto *C = dyn_cast<Constant>(B)) { 655 // Do not allow replacing a pointer with a constant pointer, unless it is 656 // either null or at least one byte is dereferenceable. 657 APInt OneByte(DL.getPointerTypeSizeInBits(Ty), 1); 658 return C->isNullValue() || 659 isDereferenceableAndAlignedPointer(B, Align(1), OneByte, DL, CtxI); 660 } 661 662 return true; 663 } 664