1 //===- Loads.cpp - Local load analysis ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines simple local analyses for load instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/Loads.h"
14 #include "llvm/Analysis/AliasAnalysis.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/IR/DataLayout.h"
17 #include "llvm/IR/GlobalAlias.h"
18 #include "llvm/IR/GlobalVariable.h"
19 #include "llvm/IR/IntrinsicInst.h"
20 #include "llvm/IR/LLVMContext.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/IR/Operator.h"
23 #include "llvm/IR/Statepoint.h"
24 
25 using namespace llvm;
26 
27 static bool isAligned(const Value *Base, const APInt &Offset, unsigned Align,
28                       const DataLayout &DL) {
29   APInt BaseAlign(Offset.getBitWidth(), Base->getPointerAlignment(DL));
30 
31   if (!BaseAlign) {
32     Type *Ty = Base->getType()->getPointerElementType();
33     if (!Ty->isSized())
34       return false;
35     BaseAlign = DL.getABITypeAlignment(Ty);
36   }
37 
38   APInt Alignment(Offset.getBitWidth(), Align);
39 
40   assert(Alignment.isPowerOf2() && "must be a power of 2!");
41   return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1));
42 }
43 
44 /// Test if V is always a pointer to allocated and suitably aligned memory for
45 /// a simple load or store.
46 static bool isDereferenceableAndAlignedPointer(
47     const Value *V, unsigned Align, const APInt &Size, const DataLayout &DL,
48     const Instruction *CtxI, const DominatorTree *DT,
49     SmallPtrSetImpl<const Value *> &Visited) {
50   // Already visited?  Bail out, we've likely hit unreachable code.
51   if (!Visited.insert(V).second)
52     return false;
53 
54   // Note that it is not safe to speculate into a malloc'd region because
55   // malloc may return null.
56 
57   // bitcast instructions are no-ops as far as dereferenceability is concerned.
58   if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V))
59     return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, Size,
60                                               DL, CtxI, DT, Visited);
61 
62   bool CheckForNonNull = false;
63   APInt KnownDerefBytes(Size.getBitWidth(),
64                         V->getPointerDereferenceableBytes(DL, CheckForNonNull));
65   if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size))
66     if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT)) {
67       // As we recursed through GEPs to get here, we've incrementally checked
68       // that each step advanced by a multiple of the alignment. If our base is
69       // properly aligned, then the original offset accessed must also be.
70       Type *Ty = V->getType();
71       assert(Ty->isSized() && "must be sized");
72       APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
73       return isAligned(V, Offset, Align, DL);
74     }
75 
76   // For GEPs, determine if the indexing lands within the allocated object.
77   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
78     const Value *Base = GEP->getPointerOperand();
79 
80     APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
81     if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() ||
82         !Offset.urem(APInt(Offset.getBitWidth(), Align)).isMinValue())
83       return false;
84 
85     // If the base pointer is dereferenceable for Offset+Size bytes, then the
86     // GEP (== Base + Offset) is dereferenceable for Size bytes.  If the base
87     // pointer is aligned to Align bytes, and the Offset is divisible by Align
88     // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also
89     // aligned to Align bytes.
90 
91     // Offset and Size may have different bit widths if we have visited an
92     // addrspacecast, so we can't do arithmetic directly on the APInt values.
93     return isDereferenceableAndAlignedPointer(
94         Base, Align, Offset + Size.sextOrTrunc(Offset.getBitWidth()),
95         DL, CtxI, DT, Visited);
96   }
97 
98   // For gc.relocate, look through relocations
99   if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
100     return isDereferenceableAndAlignedPointer(
101         RelocateInst->getDerivedPtr(), Align, Size, DL, CtxI, DT, Visited);
102 
103   if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
104     return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, Size,
105                                               DL, CtxI, DT, Visited);
106 
107   if (const auto *Call = dyn_cast<CallBase>(V))
108     if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
109       return isDereferenceableAndAlignedPointer(RP, Align, Size, DL, CtxI, DT,
110                                                 Visited);
111 
112   // If we don't know, assume the worst.
113   return false;
114 }
115 
116 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align,
117                                               const APInt &Size,
118                                               const DataLayout &DL,
119                                               const Instruction *CtxI,
120                                               const DominatorTree *DT) {
121   assert(Align != 0 && "expected explicitly set alignment");
122   // Note: At the moment, Size can be zero.  This ends up being interpreted as
123   // a query of whether [Base, V] is dereferenceable and V is aligned (since
124   // that's what the implementation happened to do).  It's unclear if this is
125   // the desired semantic, but at least SelectionDAG does exercise this case.
126 
127   SmallPtrSet<const Value *, 32> Visited;
128   return ::isDereferenceableAndAlignedPointer(V, Align, Size, DL, CtxI, DT,
129                                               Visited);
130 }
131 
132 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Type *Ty,
133                                               unsigned Align,
134                                               const DataLayout &DL,
135                                               const Instruction *CtxI,
136                                               const DominatorTree *DT) {
137   // When dereferenceability information is provided by a dereferenceable
138   // attribute, we know exactly how many bytes are dereferenceable. If we can
139   // determine the exact offset to the attributed variable, we can use that
140   // information here.
141 
142   // Require ABI alignment for loads without alignment specification
143   if (Align == 0)
144     Align = DL.getABITypeAlignment(Ty);
145 
146   if (!Ty->isSized())
147     return false;
148 
149   APInt AccessSize(DL.getIndexTypeSizeInBits(V->getType()),
150                    DL.getTypeStoreSize(Ty));
151   return isDereferenceableAndAlignedPointer(V, Align, AccessSize,
152                                             DL, CtxI, DT);
153 }
154 
155 bool llvm::isDereferenceablePointer(const Value *V, Type *Ty,
156                                     const DataLayout &DL,
157                                     const Instruction *CtxI,
158                                     const DominatorTree *DT) {
159   return isDereferenceableAndAlignedPointer(V, Ty, 1, DL, CtxI, DT);
160 }
161 
162 /// Test if A and B will obviously have the same value.
163 ///
164 /// This includes recognizing that %t0 and %t1 will have the same
165 /// value in code like this:
166 /// \code
167 ///   %t0 = getelementptr \@a, 0, 3
168 ///   store i32 0, i32* %t0
169 ///   %t1 = getelementptr \@a, 0, 3
170 ///   %t2 = load i32* %t1
171 /// \endcode
172 ///
173 static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
174   // Test if the values are trivially equivalent.
175   if (A == B)
176     return true;
177 
178   // Test if the values come from identical arithmetic instructions.
179   // Use isIdenticalToWhenDefined instead of isIdenticalTo because
180   // this function is only used when one address use dominates the
181   // other, which means that they'll always either have the same
182   // value or one of them will have an undefined value.
183   if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) ||
184       isa<GetElementPtrInst>(A))
185     if (const Instruction *BI = dyn_cast<Instruction>(B))
186       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
187         return true;
188 
189   // Otherwise they may not be equivalent.
190   return false;
191 }
192 
193 /// Check if executing a load of this pointer value cannot trap.
194 ///
195 /// If DT and ScanFrom are specified this method performs context-sensitive
196 /// analysis and returns true if it is safe to load immediately before ScanFrom.
197 ///
198 /// If it is not obviously safe to load from the specified pointer, we do
199 /// a quick local scan of the basic block containing \c ScanFrom, to determine
200 /// if the address is already accessed.
201 ///
202 /// This uses the pointee type to determine how many bytes need to be safe to
203 /// load from the pointer.
204 bool llvm::isSafeToLoadUnconditionally(Value *V, unsigned Align, APInt &Size,
205                                        const DataLayout &DL,
206                                        Instruction *ScanFrom,
207                                        const DominatorTree *DT) {
208   // Zero alignment means that the load has the ABI alignment for the target
209   if (Align == 0)
210     Align = DL.getABITypeAlignment(V->getType()->getPointerElementType());
211   assert(isPowerOf2_32(Align));
212 
213   // If DT is not specified we can't make context-sensitive query
214   const Instruction* CtxI = DT ? ScanFrom : nullptr;
215   if (isDereferenceableAndAlignedPointer(V, Align, Size, DL, CtxI, DT))
216     return true;
217 
218   if (!ScanFrom)
219     return false;
220 
221   if (Size.getBitWidth() > 64)
222     return false;
223   const uint64_t LoadSize = Size.getZExtValue();
224 
225   // Otherwise, be a little bit aggressive by scanning the local block where we
226   // want to check to see if the pointer is already being loaded or stored
227   // from/to.  If so, the previous load or store would have already trapped,
228   // so there is no harm doing an extra load (also, CSE will later eliminate
229   // the load entirely).
230   BasicBlock::iterator BBI = ScanFrom->getIterator(),
231                        E = ScanFrom->getParent()->begin();
232 
233   // We can at least always strip pointer casts even though we can't use the
234   // base here.
235   V = V->stripPointerCasts();
236 
237   while (BBI != E) {
238     --BBI;
239 
240     // If we see a free or a call which may write to memory (i.e. which might do
241     // a free) the pointer could be marked invalid.
242     if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
243         !isa<DbgInfoIntrinsic>(BBI))
244       return false;
245 
246     Value *AccessedPtr;
247     unsigned AccessedAlign;
248     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
249       // Ignore volatile loads. The execution of a volatile load cannot
250       // be used to prove an address is backed by regular memory; it can,
251       // for example, point to an MMIO register.
252       if (LI->isVolatile())
253         continue;
254       AccessedPtr = LI->getPointerOperand();
255       AccessedAlign = LI->getAlignment();
256     } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
257       // Ignore volatile stores (see comment for loads).
258       if (SI->isVolatile())
259         continue;
260       AccessedPtr = SI->getPointerOperand();
261       AccessedAlign = SI->getAlignment();
262     } else
263       continue;
264 
265     Type *AccessedTy = AccessedPtr->getType()->getPointerElementType();
266     if (AccessedAlign == 0)
267       AccessedAlign = DL.getABITypeAlignment(AccessedTy);
268     if (AccessedAlign < Align)
269       continue;
270 
271     // Handle trivial cases.
272     if (AccessedPtr == V &&
273         LoadSize <= DL.getTypeStoreSize(AccessedTy))
274       return true;
275 
276     if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) &&
277         LoadSize <= DL.getTypeStoreSize(AccessedTy))
278       return true;
279   }
280   return false;
281 }
282 
283 bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, unsigned Align,
284                                        const DataLayout &DL,
285                                        Instruction *ScanFrom,
286                                        const DominatorTree *DT) {
287   APInt Size(DL.getIndexTypeSizeInBits(V->getType()), DL.getTypeStoreSize(Ty));
288   return isSafeToLoadUnconditionally(V, Align, Size, DL, ScanFrom, DT);
289 }
290 
291   /// DefMaxInstsToScan - the default number of maximum instructions
292 /// to scan in the block, used by FindAvailableLoadedValue().
293 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump
294 /// threading in part by eliminating partially redundant loads.
295 /// At that point, the value of MaxInstsToScan was already set to '6'
296 /// without documented explanation.
297 cl::opt<unsigned>
298 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden,
299   cl::desc("Use this to specify the default maximum number of instructions "
300            "to scan backward from a given instruction, when searching for "
301            "available loaded value"));
302 
303 Value *llvm::FindAvailableLoadedValue(LoadInst *Load,
304                                       BasicBlock *ScanBB,
305                                       BasicBlock::iterator &ScanFrom,
306                                       unsigned MaxInstsToScan,
307                                       AliasAnalysis *AA, bool *IsLoad,
308                                       unsigned *NumScanedInst) {
309   // Don't CSE load that is volatile or anything stronger than unordered.
310   if (!Load->isUnordered())
311     return nullptr;
312 
313   return FindAvailablePtrLoadStore(
314       Load->getPointerOperand(), Load->getType(), Load->isAtomic(), ScanBB,
315       ScanFrom, MaxInstsToScan, AA, IsLoad, NumScanedInst);
316 }
317 
318 Value *llvm::FindAvailablePtrLoadStore(Value *Ptr, Type *AccessTy,
319                                        bool AtLeastAtomic, BasicBlock *ScanBB,
320                                        BasicBlock::iterator &ScanFrom,
321                                        unsigned MaxInstsToScan,
322                                        AliasAnalysis *AA, bool *IsLoadCSE,
323                                        unsigned *NumScanedInst) {
324   if (MaxInstsToScan == 0)
325     MaxInstsToScan = ~0U;
326 
327   const DataLayout &DL = ScanBB->getModule()->getDataLayout();
328 
329   // Try to get the store size for the type.
330   auto AccessSize = LocationSize::precise(DL.getTypeStoreSize(AccessTy));
331 
332   Value *StrippedPtr = Ptr->stripPointerCasts();
333 
334   while (ScanFrom != ScanBB->begin()) {
335     // We must ignore debug info directives when counting (otherwise they
336     // would affect codegen).
337     Instruction *Inst = &*--ScanFrom;
338     if (isa<DbgInfoIntrinsic>(Inst))
339       continue;
340 
341     // Restore ScanFrom to expected value in case next test succeeds
342     ScanFrom++;
343 
344     if (NumScanedInst)
345       ++(*NumScanedInst);
346 
347     // Don't scan huge blocks.
348     if (MaxInstsToScan-- == 0)
349       return nullptr;
350 
351     --ScanFrom;
352     // If this is a load of Ptr, the loaded value is available.
353     // (This is true even if the load is volatile or atomic, although
354     // those cases are unlikely.)
355     if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
356       if (AreEquivalentAddressValues(
357               LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) &&
358           CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) {
359 
360         // We can value forward from an atomic to a non-atomic, but not the
361         // other way around.
362         if (LI->isAtomic() < AtLeastAtomic)
363           return nullptr;
364 
365         if (IsLoadCSE)
366             *IsLoadCSE = true;
367         return LI;
368       }
369 
370     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
371       Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
372       // If this is a store through Ptr, the value is available!
373       // (This is true even if the store is volatile or atomic, although
374       // those cases are unlikely.)
375       if (AreEquivalentAddressValues(StorePtr, StrippedPtr) &&
376           CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(),
377                                                AccessTy, DL)) {
378 
379         // We can value forward from an atomic to a non-atomic, but not the
380         // other way around.
381         if (SI->isAtomic() < AtLeastAtomic)
382           return nullptr;
383 
384         if (IsLoadCSE)
385           *IsLoadCSE = false;
386         return SI->getOperand(0);
387       }
388 
389       // If both StrippedPtr and StorePtr reach all the way to an alloca or
390       // global and they are different, ignore the store. This is a trivial form
391       // of alias analysis that is important for reg2mem'd code.
392       if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) &&
393           (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) &&
394           StrippedPtr != StorePtr)
395         continue;
396 
397       // If we have alias analysis and it says the store won't modify the loaded
398       // value, ignore the store.
399       if (AA && !isModSet(AA->getModRefInfo(SI, StrippedPtr, AccessSize)))
400         continue;
401 
402       // Otherwise the store that may or may not alias the pointer, bail out.
403       ++ScanFrom;
404       return nullptr;
405     }
406 
407     // If this is some other instruction that may clobber Ptr, bail out.
408     if (Inst->mayWriteToMemory()) {
409       // If alias analysis claims that it really won't modify the load,
410       // ignore it.
411       if (AA && !isModSet(AA->getModRefInfo(Inst, StrippedPtr, AccessSize)))
412         continue;
413 
414       // May modify the pointer, bail out.
415       ++ScanFrom;
416       return nullptr;
417     }
418   }
419 
420   // Got to the start of the block, we didn't find it, but are done for this
421   // block.
422   return nullptr;
423 }
424