1 //===- Loads.cpp - Local load analysis ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines simple local analyses for load instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/Loads.h" 14 #include "llvm/Analysis/AliasAnalysis.h" 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/IR/DataLayout.h" 17 #include "llvm/IR/GlobalAlias.h" 18 #include "llvm/IR/GlobalVariable.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 #include "llvm/IR/LLVMContext.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/IR/Operator.h" 23 #include "llvm/IR/Statepoint.h" 24 25 using namespace llvm; 26 27 static bool isAligned(const Value *Base, const APInt &Offset, unsigned Align, 28 const DataLayout &DL) { 29 APInt BaseAlign(Offset.getBitWidth(), Base->getPointerAlignment(DL)); 30 31 if (!BaseAlign) { 32 Type *Ty = Base->getType()->getPointerElementType(); 33 if (!Ty->isSized()) 34 return false; 35 BaseAlign = DL.getABITypeAlignment(Ty); 36 } 37 38 APInt Alignment(Offset.getBitWidth(), Align); 39 40 assert(Alignment.isPowerOf2() && "must be a power of 2!"); 41 return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1)); 42 } 43 44 static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) { 45 Type *Ty = Base->getType(); 46 assert(Ty->isSized() && "must be sized"); 47 APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0); 48 return isAligned(Base, Offset, Align, DL); 49 } 50 51 /// Test if V is always a pointer to allocated and suitably aligned memory for 52 /// a simple load or store. 53 static bool isDereferenceableAndAlignedPointer( 54 const Value *V, unsigned Align, const APInt &Size, const DataLayout &DL, 55 const Instruction *CtxI, const DominatorTree *DT, 56 SmallPtrSetImpl<const Value *> &Visited) { 57 // Already visited? Bail out, we've likely hit unreachable code. 58 if (!Visited.insert(V).second) 59 return false; 60 61 // Note that it is not safe to speculate into a malloc'd region because 62 // malloc may return null. 63 64 // bitcast instructions are no-ops as far as dereferenceability is concerned. 65 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) 66 return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, Size, 67 DL, CtxI, DT, Visited); 68 69 bool CheckForNonNull = false; 70 APInt KnownDerefBytes(Size.getBitWidth(), 71 V->getPointerDereferenceableBytes(DL, CheckForNonNull)); 72 if (KnownDerefBytes.getBoolValue()) { 73 if (KnownDerefBytes.uge(Size)) 74 if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT)) 75 return isAligned(V, Align, DL); 76 } 77 78 // For GEPs, determine if the indexing lands within the allocated object. 79 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 80 const Value *Base = GEP->getPointerOperand(); 81 82 APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0); 83 if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() || 84 !Offset.urem(APInt(Offset.getBitWidth(), Align)).isMinValue()) 85 return false; 86 87 // If the base pointer is dereferenceable for Offset+Size bytes, then the 88 // GEP (== Base + Offset) is dereferenceable for Size bytes. If the base 89 // pointer is aligned to Align bytes, and the Offset is divisible by Align 90 // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also 91 // aligned to Align bytes. 92 93 // Offset and Size may have different bit widths if we have visited an 94 // addrspacecast, so we can't do arithmetic directly on the APInt values. 95 return isDereferenceableAndAlignedPointer( 96 Base, Align, Offset + Size.sextOrTrunc(Offset.getBitWidth()), 97 DL, CtxI, DT, Visited); 98 } 99 100 // For gc.relocate, look through relocations 101 if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V)) 102 return isDereferenceableAndAlignedPointer( 103 RelocateInst->getDerivedPtr(), Align, Size, DL, CtxI, DT, Visited); 104 105 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V)) 106 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, Size, 107 DL, CtxI, DT, Visited); 108 109 if (const auto *Call = dyn_cast<CallBase>(V)) 110 if (auto *RP = getArgumentAliasingToReturnedPointer(Call)) 111 return isDereferenceableAndAlignedPointer(RP, Align, Size, DL, CtxI, DT, 112 Visited); 113 114 // If we don't know, assume the worst. 115 return false; 116 } 117 118 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align, 119 const APInt &Size, 120 const DataLayout &DL, 121 const Instruction *CtxI, 122 const DominatorTree *DT) { 123 SmallPtrSet<const Value *, 32> Visited; 124 return ::isDereferenceableAndAlignedPointer(V, Align, Size, DL, CtxI, DT, 125 Visited); 126 } 127 128 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align, 129 const DataLayout &DL, 130 const Instruction *CtxI, 131 const DominatorTree *DT) { 132 // When dereferenceability information is provided by a dereferenceable 133 // attribute, we know exactly how many bytes are dereferenceable. If we can 134 // determine the exact offset to the attributed variable, we can use that 135 // information here. 136 Type *VTy = V->getType(); 137 Type *Ty = VTy->getPointerElementType(); 138 139 // Require ABI alignment for loads without alignment specification 140 if (Align == 0) 141 Align = DL.getABITypeAlignment(Ty); 142 143 if (!Ty->isSized()) 144 return false; 145 146 SmallPtrSet<const Value *, 32> Visited; 147 return ::isDereferenceableAndAlignedPointer( 148 V, Align, APInt(DL.getIndexTypeSizeInBits(VTy), DL.getTypeStoreSize(Ty)), DL, 149 CtxI, DT, Visited); 150 } 151 152 bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL, 153 const Instruction *CtxI, 154 const DominatorTree *DT) { 155 return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT); 156 } 157 158 /// Test if A and B will obviously have the same value. 159 /// 160 /// This includes recognizing that %t0 and %t1 will have the same 161 /// value in code like this: 162 /// \code 163 /// %t0 = getelementptr \@a, 0, 3 164 /// store i32 0, i32* %t0 165 /// %t1 = getelementptr \@a, 0, 3 166 /// %t2 = load i32* %t1 167 /// \endcode 168 /// 169 static bool AreEquivalentAddressValues(const Value *A, const Value *B) { 170 // Test if the values are trivially equivalent. 171 if (A == B) 172 return true; 173 174 // Test if the values come from identical arithmetic instructions. 175 // Use isIdenticalToWhenDefined instead of isIdenticalTo because 176 // this function is only used when one address use dominates the 177 // other, which means that they'll always either have the same 178 // value or one of them will have an undefined value. 179 if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) || 180 isa<GetElementPtrInst>(A)) 181 if (const Instruction *BI = dyn_cast<Instruction>(B)) 182 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 183 return true; 184 185 // Otherwise they may not be equivalent. 186 return false; 187 } 188 189 /// Check if executing a load of this pointer value cannot trap. 190 /// 191 /// If DT and ScanFrom are specified this method performs context-sensitive 192 /// analysis and returns true if it is safe to load immediately before ScanFrom. 193 /// 194 /// If it is not obviously safe to load from the specified pointer, we do 195 /// a quick local scan of the basic block containing \c ScanFrom, to determine 196 /// if the address is already accessed. 197 /// 198 /// This uses the pointee type to determine how many bytes need to be safe to 199 /// load from the pointer. 200 bool llvm::isSafeToLoadUnconditionally(Value *V, unsigned Align, 201 const DataLayout &DL, 202 Instruction *ScanFrom, 203 const DominatorTree *DT) { 204 // Zero alignment means that the load has the ABI alignment for the target 205 if (Align == 0) 206 Align = DL.getABITypeAlignment(V->getType()->getPointerElementType()); 207 assert(isPowerOf2_32(Align)); 208 209 // If DT is not specified we can't make context-sensitive query 210 const Instruction* CtxI = DT ? ScanFrom : nullptr; 211 if (isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT)) 212 return true; 213 214 int64_t ByteOffset = 0; 215 Value *Base = V; 216 Base = GetPointerBaseWithConstantOffset(V, ByteOffset, DL); 217 218 if (ByteOffset < 0) // out of bounds 219 return false; 220 221 Type *BaseType = nullptr; 222 unsigned BaseAlign = 0; 223 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Base)) { 224 // An alloca is safe to load from as load as it is suitably aligned. 225 BaseType = AI->getAllocatedType(); 226 BaseAlign = AI->getAlignment(); 227 } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) { 228 // Global variables are not necessarily safe to load from if they are 229 // interposed arbitrarily. Their size may change or they may be weak and 230 // require a test to determine if they were in fact provided. 231 if (!GV->isInterposable()) { 232 BaseType = GV->getType()->getElementType(); 233 BaseAlign = GV->getAlignment(); 234 } 235 } 236 237 PointerType *AddrTy = cast<PointerType>(V->getType()); 238 uint64_t LoadSize = DL.getTypeStoreSize(AddrTy->getElementType()); 239 240 // If we found a base allocated type from either an alloca or global variable, 241 // try to see if we are definitively within the allocated region. We need to 242 // know the size of the base type and the loaded type to do anything in this 243 // case. 244 if (BaseType && BaseType->isSized()) { 245 if (BaseAlign == 0) 246 BaseAlign = DL.getPrefTypeAlignment(BaseType); 247 248 if (Align <= BaseAlign) { 249 // Check if the load is within the bounds of the underlying object. 250 if (ByteOffset + LoadSize <= DL.getTypeAllocSize(BaseType) && 251 ((ByteOffset % Align) == 0)) 252 return true; 253 } 254 } 255 256 if (!ScanFrom) 257 return false; 258 259 // Otherwise, be a little bit aggressive by scanning the local block where we 260 // want to check to see if the pointer is already being loaded or stored 261 // from/to. If so, the previous load or store would have already trapped, 262 // so there is no harm doing an extra load (also, CSE will later eliminate 263 // the load entirely). 264 BasicBlock::iterator BBI = ScanFrom->getIterator(), 265 E = ScanFrom->getParent()->begin(); 266 267 // We can at least always strip pointer casts even though we can't use the 268 // base here. 269 V = V->stripPointerCasts(); 270 271 while (BBI != E) { 272 --BBI; 273 274 // If we see a free or a call which may write to memory (i.e. which might do 275 // a free) the pointer could be marked invalid. 276 if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() && 277 !isa<DbgInfoIntrinsic>(BBI)) 278 return false; 279 280 Value *AccessedPtr; 281 unsigned AccessedAlign; 282 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 283 // Ignore volatile loads. The execution of a volatile load cannot 284 // be used to prove an address is backed by regular memory; it can, 285 // for example, point to an MMIO register. 286 if (LI->isVolatile()) 287 continue; 288 AccessedPtr = LI->getPointerOperand(); 289 AccessedAlign = LI->getAlignment(); 290 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 291 // Ignore volatile stores (see comment for loads). 292 if (SI->isVolatile()) 293 continue; 294 AccessedPtr = SI->getPointerOperand(); 295 AccessedAlign = SI->getAlignment(); 296 } else 297 continue; 298 299 Type *AccessedTy = AccessedPtr->getType()->getPointerElementType(); 300 if (AccessedAlign == 0) 301 AccessedAlign = DL.getABITypeAlignment(AccessedTy); 302 if (AccessedAlign < Align) 303 continue; 304 305 // Handle trivial cases. 306 if (AccessedPtr == V) 307 return true; 308 309 if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) && 310 LoadSize <= DL.getTypeStoreSize(AccessedTy)) 311 return true; 312 } 313 return false; 314 } 315 316 /// DefMaxInstsToScan - the default number of maximum instructions 317 /// to scan in the block, used by FindAvailableLoadedValue(). 318 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump 319 /// threading in part by eliminating partially redundant loads. 320 /// At that point, the value of MaxInstsToScan was already set to '6' 321 /// without documented explanation. 322 cl::opt<unsigned> 323 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden, 324 cl::desc("Use this to specify the default maximum number of instructions " 325 "to scan backward from a given instruction, when searching for " 326 "available loaded value")); 327 328 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, 329 BasicBlock *ScanBB, 330 BasicBlock::iterator &ScanFrom, 331 unsigned MaxInstsToScan, 332 AliasAnalysis *AA, bool *IsLoad, 333 unsigned *NumScanedInst) { 334 // Don't CSE load that is volatile or anything stronger than unordered. 335 if (!Load->isUnordered()) 336 return nullptr; 337 338 return FindAvailablePtrLoadStore( 339 Load->getPointerOperand(), Load->getType(), Load->isAtomic(), ScanBB, 340 ScanFrom, MaxInstsToScan, AA, IsLoad, NumScanedInst); 341 } 342 343 Value *llvm::FindAvailablePtrLoadStore(Value *Ptr, Type *AccessTy, 344 bool AtLeastAtomic, BasicBlock *ScanBB, 345 BasicBlock::iterator &ScanFrom, 346 unsigned MaxInstsToScan, 347 AliasAnalysis *AA, bool *IsLoadCSE, 348 unsigned *NumScanedInst) { 349 if (MaxInstsToScan == 0) 350 MaxInstsToScan = ~0U; 351 352 const DataLayout &DL = ScanBB->getModule()->getDataLayout(); 353 354 // Try to get the store size for the type. 355 auto AccessSize = LocationSize::precise(DL.getTypeStoreSize(AccessTy)); 356 357 Value *StrippedPtr = Ptr->stripPointerCasts(); 358 359 while (ScanFrom != ScanBB->begin()) { 360 // We must ignore debug info directives when counting (otherwise they 361 // would affect codegen). 362 Instruction *Inst = &*--ScanFrom; 363 if (isa<DbgInfoIntrinsic>(Inst)) 364 continue; 365 366 // Restore ScanFrom to expected value in case next test succeeds 367 ScanFrom++; 368 369 if (NumScanedInst) 370 ++(*NumScanedInst); 371 372 // Don't scan huge blocks. 373 if (MaxInstsToScan-- == 0) 374 return nullptr; 375 376 --ScanFrom; 377 // If this is a load of Ptr, the loaded value is available. 378 // (This is true even if the load is volatile or atomic, although 379 // those cases are unlikely.) 380 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 381 if (AreEquivalentAddressValues( 382 LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) && 383 CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) { 384 385 // We can value forward from an atomic to a non-atomic, but not the 386 // other way around. 387 if (LI->isAtomic() < AtLeastAtomic) 388 return nullptr; 389 390 if (IsLoadCSE) 391 *IsLoadCSE = true; 392 return LI; 393 } 394 395 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 396 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts(); 397 // If this is a store through Ptr, the value is available! 398 // (This is true even if the store is volatile or atomic, although 399 // those cases are unlikely.) 400 if (AreEquivalentAddressValues(StorePtr, StrippedPtr) && 401 CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(), 402 AccessTy, DL)) { 403 404 // We can value forward from an atomic to a non-atomic, but not the 405 // other way around. 406 if (SI->isAtomic() < AtLeastAtomic) 407 return nullptr; 408 409 if (IsLoadCSE) 410 *IsLoadCSE = false; 411 return SI->getOperand(0); 412 } 413 414 // If both StrippedPtr and StorePtr reach all the way to an alloca or 415 // global and they are different, ignore the store. This is a trivial form 416 // of alias analysis that is important for reg2mem'd code. 417 if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) && 418 (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) && 419 StrippedPtr != StorePtr) 420 continue; 421 422 // If we have alias analysis and it says the store won't modify the loaded 423 // value, ignore the store. 424 if (AA && !isModSet(AA->getModRefInfo(SI, StrippedPtr, AccessSize))) 425 continue; 426 427 // Otherwise the store that may or may not alias the pointer, bail out. 428 ++ScanFrom; 429 return nullptr; 430 } 431 432 // If this is some other instruction that may clobber Ptr, bail out. 433 if (Inst->mayWriteToMemory()) { 434 // If alias analysis claims that it really won't modify the load, 435 // ignore it. 436 if (AA && !isModSet(AA->getModRefInfo(Inst, StrippedPtr, AccessSize))) 437 continue; 438 439 // May modify the pointer, bail out. 440 ++ScanFrom; 441 return nullptr; 442 } 443 } 444 445 // Got to the start of the block, we didn't find it, but are done for this 446 // block. 447 return nullptr; 448 } 449