1 //===- Loads.cpp - Local load analysis ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines simple local analyses for load instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/Loads.h"
14 #include "llvm/Analysis/AliasAnalysis.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/IR/DataLayout.h"
17 #include "llvm/IR/GlobalAlias.h"
18 #include "llvm/IR/GlobalVariable.h"
19 #include "llvm/IR/IntrinsicInst.h"
20 #include "llvm/IR/LLVMContext.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/IR/Operator.h"
23 #include "llvm/IR/Statepoint.h"
24 
25 using namespace llvm;
26 
27 static bool isAligned(const Value *Base, const APInt &Offset, unsigned Align,
28                       const DataLayout &DL) {
29   APInt BaseAlign(Offset.getBitWidth(), Base->getPointerAlignment(DL));
30 
31   if (!BaseAlign) {
32     Type *Ty = Base->getType()->getPointerElementType();
33     if (!Ty->isSized())
34       return false;
35     BaseAlign = DL.getABITypeAlignment(Ty);
36   }
37 
38   APInt Alignment(Offset.getBitWidth(), Align);
39 
40   assert(Alignment.isPowerOf2() && "must be a power of 2!");
41   return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1));
42 }
43 
44 static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) {
45   Type *Ty = Base->getType();
46   assert(Ty->isSized() && "must be sized");
47   APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
48   return isAligned(Base, Offset, Align, DL);
49 }
50 
51 /// Test if V is always a pointer to allocated and suitably aligned memory for
52 /// a simple load or store.
53 static bool isDereferenceableAndAlignedPointer(
54     const Value *V, unsigned Align, const APInt &Size, const DataLayout &DL,
55     const Instruction *CtxI, const DominatorTree *DT,
56     SmallPtrSetImpl<const Value *> &Visited) {
57   // Already visited?  Bail out, we've likely hit unreachable code.
58   if (!Visited.insert(V).second)
59     return false;
60 
61   // Note that it is not safe to speculate into a malloc'd region because
62   // malloc may return null.
63 
64   // bitcast instructions are no-ops as far as dereferenceability is concerned.
65   if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V))
66     return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, Size,
67                                               DL, CtxI, DT, Visited);
68 
69   bool CheckForNonNull = false;
70   APInt KnownDerefBytes(Size.getBitWidth(),
71                         V->getPointerDereferenceableBytes(DL, CheckForNonNull));
72   if (KnownDerefBytes.getBoolValue()) {
73     if (KnownDerefBytes.uge(Size))
74       if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT))
75         return isAligned(V, Align, DL);
76   }
77 
78   // For GEPs, determine if the indexing lands within the allocated object.
79   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
80     const Value *Base = GEP->getPointerOperand();
81 
82     APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
83     if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() ||
84         !Offset.urem(APInt(Offset.getBitWidth(), Align)).isMinValue())
85       return false;
86 
87     // If the base pointer is dereferenceable for Offset+Size bytes, then the
88     // GEP (== Base + Offset) is dereferenceable for Size bytes.  If the base
89     // pointer is aligned to Align bytes, and the Offset is divisible by Align
90     // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also
91     // aligned to Align bytes.
92 
93     // Offset and Size may have different bit widths if we have visited an
94     // addrspacecast, so we can't do arithmetic directly on the APInt values.
95     return isDereferenceableAndAlignedPointer(
96         Base, Align, Offset + Size.sextOrTrunc(Offset.getBitWidth()),
97         DL, CtxI, DT, Visited);
98   }
99 
100   // For gc.relocate, look through relocations
101   if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
102     return isDereferenceableAndAlignedPointer(
103         RelocateInst->getDerivedPtr(), Align, Size, DL, CtxI, DT, Visited);
104 
105   if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
106     return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, Size,
107                                               DL, CtxI, DT, Visited);
108 
109   if (const auto *Call = dyn_cast<CallBase>(V))
110     if (auto *RP = getArgumentAliasingToReturnedPointer(Call))
111       return isDereferenceableAndAlignedPointer(RP, Align, Size, DL, CtxI, DT,
112                                                 Visited);
113 
114   // If we don't know, assume the worst.
115   return false;
116 }
117 
118 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align,
119                                               const APInt &Size,
120                                               const DataLayout &DL,
121                                               const Instruction *CtxI,
122                                               const DominatorTree *DT) {
123   SmallPtrSet<const Value *, 32> Visited;
124   return ::isDereferenceableAndAlignedPointer(V, Align, Size, DL, CtxI, DT,
125                                               Visited);
126 }
127 
128 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align,
129                                               const DataLayout &DL,
130                                               const Instruction *CtxI,
131                                               const DominatorTree *DT) {
132   // When dereferenceability information is provided by a dereferenceable
133   // attribute, we know exactly how many bytes are dereferenceable. If we can
134   // determine the exact offset to the attributed variable, we can use that
135   // information here.
136   Type *VTy = V->getType();
137   Type *Ty = VTy->getPointerElementType();
138 
139   // Require ABI alignment for loads without alignment specification
140   if (Align == 0)
141     Align = DL.getABITypeAlignment(Ty);
142 
143   if (!Ty->isSized())
144     return false;
145 
146   SmallPtrSet<const Value *, 32> Visited;
147   return ::isDereferenceableAndAlignedPointer(
148       V, Align, APInt(DL.getIndexTypeSizeInBits(VTy), DL.getTypeStoreSize(Ty)), DL,
149       CtxI, DT, Visited);
150 }
151 
152 bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL,
153                                     const Instruction *CtxI,
154                                     const DominatorTree *DT) {
155   return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT);
156 }
157 
158 /// Test if A and B will obviously have the same value.
159 ///
160 /// This includes recognizing that %t0 and %t1 will have the same
161 /// value in code like this:
162 /// \code
163 ///   %t0 = getelementptr \@a, 0, 3
164 ///   store i32 0, i32* %t0
165 ///   %t1 = getelementptr \@a, 0, 3
166 ///   %t2 = load i32* %t1
167 /// \endcode
168 ///
169 static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
170   // Test if the values are trivially equivalent.
171   if (A == B)
172     return true;
173 
174   // Test if the values come from identical arithmetic instructions.
175   // Use isIdenticalToWhenDefined instead of isIdenticalTo because
176   // this function is only used when one address use dominates the
177   // other, which means that they'll always either have the same
178   // value or one of them will have an undefined value.
179   if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) ||
180       isa<GetElementPtrInst>(A))
181     if (const Instruction *BI = dyn_cast<Instruction>(B))
182       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
183         return true;
184 
185   // Otherwise they may not be equivalent.
186   return false;
187 }
188 
189 /// Check if executing a load of this pointer value cannot trap.
190 ///
191 /// If DT and ScanFrom are specified this method performs context-sensitive
192 /// analysis and returns true if it is safe to load immediately before ScanFrom.
193 ///
194 /// If it is not obviously safe to load from the specified pointer, we do
195 /// a quick local scan of the basic block containing \c ScanFrom, to determine
196 /// if the address is already accessed.
197 ///
198 /// This uses the pointee type to determine how many bytes need to be safe to
199 /// load from the pointer.
200 bool llvm::isSafeToLoadUnconditionally(Value *V, unsigned Align,
201                                        const DataLayout &DL,
202                                        Instruction *ScanFrom,
203                                        const DominatorTree *DT) {
204   // Zero alignment means that the load has the ABI alignment for the target
205   if (Align == 0)
206     Align = DL.getABITypeAlignment(V->getType()->getPointerElementType());
207   assert(isPowerOf2_32(Align));
208 
209   // If DT is not specified we can't make context-sensitive query
210   const Instruction* CtxI = DT ? ScanFrom : nullptr;
211   if (isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT))
212     return true;
213 
214   int64_t ByteOffset = 0;
215   Value *Base = V;
216   Base = GetPointerBaseWithConstantOffset(V, ByteOffset, DL);
217 
218   if (ByteOffset < 0) // out of bounds
219     return false;
220 
221   Type *BaseType = nullptr;
222   unsigned BaseAlign = 0;
223   if (const AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
224     // An alloca is safe to load from as load as it is suitably aligned.
225     BaseType = AI->getAllocatedType();
226     BaseAlign = AI->getAlignment();
227   } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
228     // Global variables are not necessarily safe to load from if they are
229     // interposed arbitrarily. Their size may change or they may be weak and
230     // require a test to determine if they were in fact provided.
231     if (!GV->isInterposable()) {
232       BaseType = GV->getType()->getElementType();
233       BaseAlign = GV->getAlignment();
234     }
235   }
236 
237   PointerType *AddrTy = cast<PointerType>(V->getType());
238   uint64_t LoadSize = DL.getTypeStoreSize(AddrTy->getElementType());
239 
240   // If we found a base allocated type from either an alloca or global variable,
241   // try to see if we are definitively within the allocated region. We need to
242   // know the size of the base type and the loaded type to do anything in this
243   // case.
244   if (BaseType && BaseType->isSized()) {
245     if (BaseAlign == 0)
246       BaseAlign = DL.getPrefTypeAlignment(BaseType);
247 
248     if (Align <= BaseAlign) {
249       // Check if the load is within the bounds of the underlying object.
250       if (ByteOffset + LoadSize <= DL.getTypeAllocSize(BaseType) &&
251           ((ByteOffset % Align) == 0))
252         return true;
253     }
254   }
255 
256   if (!ScanFrom)
257     return false;
258 
259   // Otherwise, be a little bit aggressive by scanning the local block where we
260   // want to check to see if the pointer is already being loaded or stored
261   // from/to.  If so, the previous load or store would have already trapped,
262   // so there is no harm doing an extra load (also, CSE will later eliminate
263   // the load entirely).
264   BasicBlock::iterator BBI = ScanFrom->getIterator(),
265                        E = ScanFrom->getParent()->begin();
266 
267   // We can at least always strip pointer casts even though we can't use the
268   // base here.
269   V = V->stripPointerCasts();
270 
271   while (BBI != E) {
272     --BBI;
273 
274     // If we see a free or a call which may write to memory (i.e. which might do
275     // a free) the pointer could be marked invalid.
276     if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
277         !isa<DbgInfoIntrinsic>(BBI))
278       return false;
279 
280     Value *AccessedPtr;
281     unsigned AccessedAlign;
282     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
283       // Ignore volatile loads. The execution of a volatile load cannot
284       // be used to prove an address is backed by regular memory; it can,
285       // for example, point to an MMIO register.
286       if (LI->isVolatile())
287         continue;
288       AccessedPtr = LI->getPointerOperand();
289       AccessedAlign = LI->getAlignment();
290     } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
291       // Ignore volatile stores (see comment for loads).
292       if (SI->isVolatile())
293         continue;
294       AccessedPtr = SI->getPointerOperand();
295       AccessedAlign = SI->getAlignment();
296     } else
297       continue;
298 
299     Type *AccessedTy = AccessedPtr->getType()->getPointerElementType();
300     if (AccessedAlign == 0)
301       AccessedAlign = DL.getABITypeAlignment(AccessedTy);
302     if (AccessedAlign < Align)
303       continue;
304 
305     // Handle trivial cases.
306     if (AccessedPtr == V)
307       return true;
308 
309     if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) &&
310         LoadSize <= DL.getTypeStoreSize(AccessedTy))
311       return true;
312   }
313   return false;
314 }
315 
316 /// DefMaxInstsToScan - the default number of maximum instructions
317 /// to scan in the block, used by FindAvailableLoadedValue().
318 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump
319 /// threading in part by eliminating partially redundant loads.
320 /// At that point, the value of MaxInstsToScan was already set to '6'
321 /// without documented explanation.
322 cl::opt<unsigned>
323 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden,
324   cl::desc("Use this to specify the default maximum number of instructions "
325            "to scan backward from a given instruction, when searching for "
326            "available loaded value"));
327 
328 Value *llvm::FindAvailableLoadedValue(LoadInst *Load,
329                                       BasicBlock *ScanBB,
330                                       BasicBlock::iterator &ScanFrom,
331                                       unsigned MaxInstsToScan,
332                                       AliasAnalysis *AA, bool *IsLoad,
333                                       unsigned *NumScanedInst) {
334   // Don't CSE load that is volatile or anything stronger than unordered.
335   if (!Load->isUnordered())
336     return nullptr;
337 
338   return FindAvailablePtrLoadStore(
339       Load->getPointerOperand(), Load->getType(), Load->isAtomic(), ScanBB,
340       ScanFrom, MaxInstsToScan, AA, IsLoad, NumScanedInst);
341 }
342 
343 Value *llvm::FindAvailablePtrLoadStore(Value *Ptr, Type *AccessTy,
344                                        bool AtLeastAtomic, BasicBlock *ScanBB,
345                                        BasicBlock::iterator &ScanFrom,
346                                        unsigned MaxInstsToScan,
347                                        AliasAnalysis *AA, bool *IsLoadCSE,
348                                        unsigned *NumScanedInst) {
349   if (MaxInstsToScan == 0)
350     MaxInstsToScan = ~0U;
351 
352   const DataLayout &DL = ScanBB->getModule()->getDataLayout();
353 
354   // Try to get the store size for the type.
355   auto AccessSize = LocationSize::precise(DL.getTypeStoreSize(AccessTy));
356 
357   Value *StrippedPtr = Ptr->stripPointerCasts();
358 
359   while (ScanFrom != ScanBB->begin()) {
360     // We must ignore debug info directives when counting (otherwise they
361     // would affect codegen).
362     Instruction *Inst = &*--ScanFrom;
363     if (isa<DbgInfoIntrinsic>(Inst))
364       continue;
365 
366     // Restore ScanFrom to expected value in case next test succeeds
367     ScanFrom++;
368 
369     if (NumScanedInst)
370       ++(*NumScanedInst);
371 
372     // Don't scan huge blocks.
373     if (MaxInstsToScan-- == 0)
374       return nullptr;
375 
376     --ScanFrom;
377     // If this is a load of Ptr, the loaded value is available.
378     // (This is true even if the load is volatile or atomic, although
379     // those cases are unlikely.)
380     if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
381       if (AreEquivalentAddressValues(
382               LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) &&
383           CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) {
384 
385         // We can value forward from an atomic to a non-atomic, but not the
386         // other way around.
387         if (LI->isAtomic() < AtLeastAtomic)
388           return nullptr;
389 
390         if (IsLoadCSE)
391             *IsLoadCSE = true;
392         return LI;
393       }
394 
395     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
396       Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
397       // If this is a store through Ptr, the value is available!
398       // (This is true even if the store is volatile or atomic, although
399       // those cases are unlikely.)
400       if (AreEquivalentAddressValues(StorePtr, StrippedPtr) &&
401           CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(),
402                                                AccessTy, DL)) {
403 
404         // We can value forward from an atomic to a non-atomic, but not the
405         // other way around.
406         if (SI->isAtomic() < AtLeastAtomic)
407           return nullptr;
408 
409         if (IsLoadCSE)
410           *IsLoadCSE = false;
411         return SI->getOperand(0);
412       }
413 
414       // If both StrippedPtr and StorePtr reach all the way to an alloca or
415       // global and they are different, ignore the store. This is a trivial form
416       // of alias analysis that is important for reg2mem'd code.
417       if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) &&
418           (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) &&
419           StrippedPtr != StorePtr)
420         continue;
421 
422       // If we have alias analysis and it says the store won't modify the loaded
423       // value, ignore the store.
424       if (AA && !isModSet(AA->getModRefInfo(SI, StrippedPtr, AccessSize)))
425         continue;
426 
427       // Otherwise the store that may or may not alias the pointer, bail out.
428       ++ScanFrom;
429       return nullptr;
430     }
431 
432     // If this is some other instruction that may clobber Ptr, bail out.
433     if (Inst->mayWriteToMemory()) {
434       // If alias analysis claims that it really won't modify the load,
435       // ignore it.
436       if (AA && !isModSet(AA->getModRefInfo(Inst, StrippedPtr, AccessSize)))
437         continue;
438 
439       // May modify the pointer, bail out.
440       ++ScanFrom;
441       return nullptr;
442     }
443   }
444 
445   // Got to the start of the block, we didn't find it, but are done for this
446   // block.
447   return nullptr;
448 }
449