1 //===- Loads.cpp - Local load analysis ------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines simple local analyses for load instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/Loads.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/Analysis/ValueTracking.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/IR/GlobalAlias.h"
19 #include "llvm/IR/GlobalVariable.h"
20 #include "llvm/IR/IntrinsicInst.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/IR/Operator.h"
24 #include "llvm/IR/Statepoint.h"
25 
26 using namespace llvm;
27 
28 static bool isAligned(const Value *Base, const APInt &Offset, unsigned Align,
29                       const DataLayout &DL) {
30   APInt BaseAlign(Offset.getBitWidth(), Base->getPointerAlignment(DL));
31 
32   if (!BaseAlign) {
33     Type *Ty = Base->getType()->getPointerElementType();
34     if (!Ty->isSized())
35       return false;
36     BaseAlign = DL.getABITypeAlignment(Ty);
37   }
38 
39   APInt Alignment(Offset.getBitWidth(), Align);
40 
41   assert(Alignment.isPowerOf2() && "must be a power of 2!");
42   return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1));
43 }
44 
45 static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) {
46   Type *Ty = Base->getType();
47   assert(Ty->isSized() && "must be sized");
48   APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
49   return isAligned(Base, Offset, Align, DL);
50 }
51 
52 /// Test if V is always a pointer to allocated and suitably aligned memory for
53 /// a simple load or store.
54 static bool isDereferenceableAndAlignedPointer(
55     const Value *V, unsigned Align, const APInt &Size, const DataLayout &DL,
56     const Instruction *CtxI, const DominatorTree *DT,
57     const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited) {
58   // Note that it is not safe to speculate into a malloc'd region because
59   // malloc may return null.
60 
61   // bitcast instructions are no-ops as far as dereferenceability is concerned.
62   if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V))
63     return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, Size,
64                                               DL, CtxI, DT, TLI, Visited);
65 
66   bool CheckForNonNull = false;
67   APInt KnownDerefBytes(Size.getBitWidth(),
68                         V->getPointerDereferenceableBytes(DL, CheckForNonNull));
69   if (KnownDerefBytes.getBoolValue()) {
70     if (KnownDerefBytes.uge(Size))
71       if (!CheckForNonNull || isKnownNonNullAt(V, CtxI, DT, TLI))
72         return isAligned(V, Align, DL);
73   }
74 
75   // For GEPs, determine if the indexing lands within the allocated object.
76   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
77     const Value *Base = GEP->getPointerOperand();
78 
79     APInt Offset(DL.getPointerTypeSizeInBits(GEP->getType()), 0);
80     if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() ||
81         !Offset.urem(APInt(Offset.getBitWidth(), Align)).isMinValue())
82       return false;
83 
84     // If the base pointer is dereferenceable for Offset+Size bytes, then the
85     // GEP (== Base + Offset) is dereferenceable for Size bytes.  If the base
86     // pointer is aligned to Align bytes, and the Offset is divisible by Align
87     // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also
88     // aligned to Align bytes.
89 
90     return Visited.insert(Base).second &&
91            isDereferenceableAndAlignedPointer(Base, Align, Offset + Size, DL,
92                                               CtxI, DT, TLI, Visited);
93   }
94 
95   // For gc.relocate, look through relocations
96   if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
97     return isDereferenceableAndAlignedPointer(
98         RelocateInst->getDerivedPtr(), Align, Size, DL, CtxI, DT, TLI, Visited);
99 
100   if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
101     return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, Size,
102                                               DL, CtxI, DT, TLI, Visited);
103 
104   // If we don't know, assume the worst.
105   return false;
106 }
107 
108 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align,
109                                               const DataLayout &DL,
110                                               const Instruction *CtxI,
111                                               const DominatorTree *DT,
112                                               const TargetLibraryInfo *TLI) {
113   // When dereferenceability information is provided by a dereferenceable
114   // attribute, we know exactly how many bytes are dereferenceable. If we can
115   // determine the exact offset to the attributed variable, we can use that
116   // information here.
117   Type *VTy = V->getType();
118   Type *Ty = VTy->getPointerElementType();
119 
120   // Require ABI alignment for loads without alignment specification
121   if (Align == 0)
122     Align = DL.getABITypeAlignment(Ty);
123 
124   if (!Ty->isSized())
125     return false;
126 
127   SmallPtrSet<const Value *, 32> Visited;
128   return ::isDereferenceableAndAlignedPointer(
129       V, Align, APInt(DL.getTypeSizeInBits(VTy), DL.getTypeStoreSize(Ty)), DL,
130       CtxI, DT, TLI, Visited);
131 }
132 
133 bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL,
134                                     const Instruction *CtxI,
135                                     const DominatorTree *DT,
136                                     const TargetLibraryInfo *TLI) {
137   return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT, TLI);
138 }
139 
140 /// \brief Test if A and B will obviously have the same value.
141 ///
142 /// This includes recognizing that %t0 and %t1 will have the same
143 /// value in code like this:
144 /// \code
145 ///   %t0 = getelementptr \@a, 0, 3
146 ///   store i32 0, i32* %t0
147 ///   %t1 = getelementptr \@a, 0, 3
148 ///   %t2 = load i32* %t1
149 /// \endcode
150 ///
151 static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
152   // Test if the values are trivially equivalent.
153   if (A == B)
154     return true;
155 
156   // Test if the values come from identical arithmetic instructions.
157   // Use isIdenticalToWhenDefined instead of isIdenticalTo because
158   // this function is only used when one address use dominates the
159   // other, which means that they'll always either have the same
160   // value or one of them will have an undefined value.
161   if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) ||
162       isa<GetElementPtrInst>(A))
163     if (const Instruction *BI = dyn_cast<Instruction>(B))
164       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
165         return true;
166 
167   // Otherwise they may not be equivalent.
168   return false;
169 }
170 
171 /// \brief Check if executing a load of this pointer value cannot trap.
172 ///
173 /// If DT and ScanFrom are specified this method performs context-sensitive
174 /// analysis and returns true if it is safe to load immediately before ScanFrom.
175 ///
176 /// If it is not obviously safe to load from the specified pointer, we do
177 /// a quick local scan of the basic block containing \c ScanFrom, to determine
178 /// if the address is already accessed.
179 ///
180 /// This uses the pointee type to determine how many bytes need to be safe to
181 /// load from the pointer.
182 bool llvm::isSafeToLoadUnconditionally(Value *V, unsigned Align,
183                                        const DataLayout &DL,
184                                        Instruction *ScanFrom,
185                                        const DominatorTree *DT,
186                                        const TargetLibraryInfo *TLI) {
187   // Zero alignment means that the load has the ABI alignment for the target
188   if (Align == 0)
189     Align = DL.getABITypeAlignment(V->getType()->getPointerElementType());
190   assert(isPowerOf2_32(Align));
191 
192   // If DT is not specified we can't make context-sensitive query
193   const Instruction* CtxI = DT ? ScanFrom : nullptr;
194   if (isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT, TLI))
195     return true;
196 
197   int64_t ByteOffset = 0;
198   Value *Base = V;
199   Base = GetPointerBaseWithConstantOffset(V, ByteOffset, DL);
200 
201   if (ByteOffset < 0) // out of bounds
202     return false;
203 
204   Type *BaseType = nullptr;
205   unsigned BaseAlign = 0;
206   if (const AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
207     // An alloca is safe to load from as load as it is suitably aligned.
208     BaseType = AI->getAllocatedType();
209     BaseAlign = AI->getAlignment();
210   } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
211     // Global variables are not necessarily safe to load from if they are
212     // interposed arbitrarily. Their size may change or they may be weak and
213     // require a test to determine if they were in fact provided.
214     if (!GV->isInterposable()) {
215       BaseType = GV->getType()->getElementType();
216       BaseAlign = GV->getAlignment();
217     }
218   }
219 
220   PointerType *AddrTy = cast<PointerType>(V->getType());
221   uint64_t LoadSize = DL.getTypeStoreSize(AddrTy->getElementType());
222 
223   // If we found a base allocated type from either an alloca or global variable,
224   // try to see if we are definitively within the allocated region. We need to
225   // know the size of the base type and the loaded type to do anything in this
226   // case.
227   if (BaseType && BaseType->isSized()) {
228     if (BaseAlign == 0)
229       BaseAlign = DL.getPrefTypeAlignment(BaseType);
230 
231     if (Align <= BaseAlign) {
232       // Check if the load is within the bounds of the underlying object.
233       if (ByteOffset + LoadSize <= DL.getTypeAllocSize(BaseType) &&
234           ((ByteOffset % Align) == 0))
235         return true;
236     }
237   }
238 
239   if (!ScanFrom)
240     return false;
241 
242   // Otherwise, be a little bit aggressive by scanning the local block where we
243   // want to check to see if the pointer is already being loaded or stored
244   // from/to.  If so, the previous load or store would have already trapped,
245   // so there is no harm doing an extra load (also, CSE will later eliminate
246   // the load entirely).
247   BasicBlock::iterator BBI = ScanFrom->getIterator(),
248                        E = ScanFrom->getParent()->begin();
249 
250   // We can at least always strip pointer casts even though we can't use the
251   // base here.
252   V = V->stripPointerCasts();
253 
254   while (BBI != E) {
255     --BBI;
256 
257     // If we see a free or a call which may write to memory (i.e. which might do
258     // a free) the pointer could be marked invalid.
259     if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
260         !isa<DbgInfoIntrinsic>(BBI))
261       return false;
262 
263     Value *AccessedPtr;
264     unsigned AccessedAlign;
265     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
266       AccessedPtr = LI->getPointerOperand();
267       AccessedAlign = LI->getAlignment();
268     } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
269       AccessedPtr = SI->getPointerOperand();
270       AccessedAlign = SI->getAlignment();
271     } else
272       continue;
273 
274     Type *AccessedTy = AccessedPtr->getType()->getPointerElementType();
275     if (AccessedAlign == 0)
276       AccessedAlign = DL.getABITypeAlignment(AccessedTy);
277     if (AccessedAlign < Align)
278       continue;
279 
280     // Handle trivial cases.
281     if (AccessedPtr == V)
282       return true;
283 
284     if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) &&
285         LoadSize <= DL.getTypeStoreSize(AccessedTy))
286       return true;
287   }
288   return false;
289 }
290 
291 /// DefMaxInstsToScan - the default number of maximum instructions
292 /// to scan in the block, used by FindAvailableLoadedValue().
293 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump
294 /// threading in part by eliminating partially redundant loads.
295 /// At that point, the value of MaxInstsToScan was already set to '6'
296 /// without documented explanation.
297 cl::opt<unsigned>
298 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden,
299   cl::desc("Use this to specify the default maximum number of instructions "
300            "to scan backward from a given instruction, when searching for "
301            "available loaded value"));
302 
303 /// \brief Scan the ScanBB block backwards to see if we have the value at the
304 /// memory address *Ptr locally available within a small number of instructions.
305 ///
306 /// The scan starts from \c ScanFrom. \c MaxInstsToScan specifies the maximum
307 /// instructions to scan in the block. If it is set to \c 0, it will scan the whole
308 /// block.
309 ///
310 /// If the value is available, this function returns it. If not, it returns the
311 /// iterator for the last validated instruction that the value would be live
312 /// through. If we scanned the entire block and didn't find something that
313 /// invalidates \c *Ptr or provides it, \c ScanFrom is left at the last
314 /// instruction processed and this returns null.
315 ///
316 /// You can also optionally specify an alias analysis implementation, which
317 /// makes this more precise.
318 ///
319 /// If \c AATags is non-null and a load or store is found, the AA tags from the
320 /// load or store are recorded there. If there are no AA tags or if no access is
321 /// found, it is left unmodified.
322 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, BasicBlock *ScanBB,
323                                       BasicBlock::iterator &ScanFrom,
324                                       unsigned MaxInstsToScan,
325                                       AliasAnalysis *AA, AAMDNodes *AATags,
326                                       bool *IsLoadCSE) {
327   if (MaxInstsToScan == 0)
328     MaxInstsToScan = ~0U;
329 
330   Value *Ptr = Load->getPointerOperand();
331   Type *AccessTy = Load->getType();
332 
333   // We can never remove a volatile load
334   if (Load->isVolatile())
335     return nullptr;
336 
337   // Anything stronger than unordered is currently unimplemented.
338   if (!Load->isUnordered())
339     return nullptr;
340 
341   const DataLayout &DL = ScanBB->getModule()->getDataLayout();
342 
343   // Try to get the store size for the type.
344   uint64_t AccessSize = DL.getTypeStoreSize(AccessTy);
345 
346   Value *StrippedPtr = Ptr->stripPointerCasts();
347 
348   while (ScanFrom != ScanBB->begin()) {
349     // We must ignore debug info directives when counting (otherwise they
350     // would affect codegen).
351     Instruction *Inst = &*--ScanFrom;
352     if (isa<DbgInfoIntrinsic>(Inst))
353       continue;
354 
355     // Restore ScanFrom to expected value in case next test succeeds
356     ScanFrom++;
357 
358     // Don't scan huge blocks.
359     if (MaxInstsToScan-- == 0)
360       return nullptr;
361 
362     --ScanFrom;
363     // If this is a load of Ptr, the loaded value is available.
364     // (This is true even if the load is volatile or atomic, although
365     // those cases are unlikely.)
366     if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
367       if (AreEquivalentAddressValues(
368               LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) &&
369           CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) {
370 
371         // We can value forward from an atomic to a non-atomic, but not the
372         // other way around.
373         if (LI->isAtomic() < Load->isAtomic())
374           return nullptr;
375 
376         if (AATags)
377           LI->getAAMetadata(*AATags);
378         if (IsLoadCSE)
379             *IsLoadCSE = true;
380         return LI;
381       }
382 
383     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
384       Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
385       // If this is a store through Ptr, the value is available!
386       // (This is true even if the store is volatile or atomic, although
387       // those cases are unlikely.)
388       if (AreEquivalentAddressValues(StorePtr, StrippedPtr) &&
389           CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(),
390                                                AccessTy, DL)) {
391 
392         // We can value forward from an atomic to a non-atomic, but not the
393         // other way around.
394         if (SI->isAtomic() < Load->isAtomic())
395           return nullptr;
396 
397         if (AATags)
398           SI->getAAMetadata(*AATags);
399         return SI->getOperand(0);
400       }
401 
402       // If both StrippedPtr and StorePtr reach all the way to an alloca or
403       // global and they are different, ignore the store. This is a trivial form
404       // of alias analysis that is important for reg2mem'd code.
405       if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) &&
406           (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) &&
407           StrippedPtr != StorePtr)
408         continue;
409 
410       // If we have alias analysis and it says the store won't modify the loaded
411       // value, ignore the store.
412       if (AA && (AA->getModRefInfo(SI, StrippedPtr, AccessSize) & MRI_Mod) == 0)
413         continue;
414 
415       // Otherwise the store that may or may not alias the pointer, bail out.
416       ++ScanFrom;
417       return nullptr;
418     }
419 
420     // If this is some other instruction that may clobber Ptr, bail out.
421     if (Inst->mayWriteToMemory()) {
422       // If alias analysis claims that it really won't modify the load,
423       // ignore it.
424       if (AA &&
425           (AA->getModRefInfo(Inst, StrippedPtr, AccessSize) & MRI_Mod) == 0)
426         continue;
427 
428       // May modify the pointer, bail out.
429       ++ScanFrom;
430       return nullptr;
431     }
432   }
433 
434   // Got to the start of the block, we didn't find it, but are done for this
435   // block.
436   return nullptr;
437 }
438