1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Analysis/LazyCallGraph.h"
11 #include "llvm/ADT/ScopeExit.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/IR/CallSite.h"
14 #include "llvm/IR/InstVisitor.h"
15 #include "llvm/IR/Instructions.h"
16 #include "llvm/IR/PassManager.h"
17 #include "llvm/Support/Debug.h"
18 #include "llvm/Support/GraphWriter.h"
19 
20 using namespace llvm;
21 
22 #define DEBUG_TYPE "lcg"
23 
24 static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges,
25                     DenseMap<Function *, int> &EdgeIndexMap, Function &F,
26                     LazyCallGraph::Edge::Kind EK) {
27   // Note that we consider *any* function with a definition to be a viable
28   // edge. Even if the function's definition is subject to replacement by
29   // some other module (say, a weak definition) there may still be
30   // optimizations which essentially speculate based on the definition and
31   // a way to check that the specific definition is in fact the one being
32   // used. For example, this could be done by moving the weak definition to
33   // a strong (internal) definition and making the weak definition be an
34   // alias. Then a test of the address of the weak function against the new
35   // strong definition's address would be an effective way to determine the
36   // safety of optimizing a direct call edge.
37   if (!F.isDeclaration() &&
38       EdgeIndexMap.insert({&F, Edges.size()}).second) {
39     DEBUG(dbgs() << "    Added callable function: " << F.getName() << "\n");
40     Edges.emplace_back(LazyCallGraph::Edge(F, EK));
41   }
42 }
43 
44 LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F)
45     : G(&G), F(F), DFSNumber(0), LowLink(0) {
46   DEBUG(dbgs() << "  Adding functions called by '" << F.getName()
47                << "' to the graph.\n");
48 
49   SmallVector<Constant *, 16> Worklist;
50   SmallPtrSet<Function *, 4> Callees;
51   SmallPtrSet<Constant *, 16> Visited;
52 
53   // Find all the potential call graph edges in this function. We track both
54   // actual call edges and indirect references to functions. The direct calls
55   // are trivially added, but to accumulate the latter we walk the instructions
56   // and add every operand which is a constant to the worklist to process
57   // afterward.
58   for (BasicBlock &BB : F)
59     for (Instruction &I : BB) {
60       if (auto CS = CallSite(&I))
61         if (Function *Callee = CS.getCalledFunction())
62           if (Callees.insert(Callee).second) {
63             Visited.insert(Callee);
64             addEdge(Edges, EdgeIndexMap, *Callee, LazyCallGraph::Edge::Call);
65           }
66 
67       for (Value *Op : I.operand_values())
68         if (Constant *C = dyn_cast<Constant>(Op))
69           if (Visited.insert(C).second)
70             Worklist.push_back(C);
71     }
72 
73   // We've collected all the constant (and thus potentially function or
74   // function containing) operands to all of the instructions in the function.
75   // Process them (recursively) collecting every function found.
76   visitReferences(Worklist, Visited, [&](Function &F) {
77     addEdge(Edges, EdgeIndexMap, F, LazyCallGraph::Edge::Ref);
78   });
79 }
80 
81 void LazyCallGraph::Node::insertEdgeInternal(Function &Target, Edge::Kind EK) {
82   if (Node *N = G->lookup(Target))
83     return insertEdgeInternal(*N, EK);
84 
85   EdgeIndexMap.insert({&Target, Edges.size()});
86   Edges.emplace_back(Target, EK);
87 }
88 
89 void LazyCallGraph::Node::insertEdgeInternal(Node &TargetN, Edge::Kind EK) {
90   EdgeIndexMap.insert({&TargetN.getFunction(), Edges.size()});
91   Edges.emplace_back(TargetN, EK);
92 }
93 
94 void LazyCallGraph::Node::setEdgeKind(Function &TargetF, Edge::Kind EK) {
95   Edges[EdgeIndexMap.find(&TargetF)->second].setKind(EK);
96 }
97 
98 void LazyCallGraph::Node::removeEdgeInternal(Function &Target) {
99   auto IndexMapI = EdgeIndexMap.find(&Target);
100   assert(IndexMapI != EdgeIndexMap.end() &&
101          "Target not in the edge set for this caller?");
102 
103   Edges[IndexMapI->second] = Edge();
104   EdgeIndexMap.erase(IndexMapI);
105 }
106 
107 void LazyCallGraph::Node::dump() const {
108   dbgs() << *this << '\n';
109 }
110 
111 LazyCallGraph::LazyCallGraph(Module &M) : NextDFSNumber(0) {
112   DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
113                << "\n");
114   for (Function &F : M)
115     if (!F.isDeclaration() && !F.hasLocalLinkage())
116       if (EntryIndexMap.insert({&F, EntryEdges.size()}).second) {
117         DEBUG(dbgs() << "  Adding '" << F.getName()
118                      << "' to entry set of the graph.\n");
119         EntryEdges.emplace_back(F, Edge::Ref);
120       }
121 
122   // Now add entry nodes for functions reachable via initializers to globals.
123   SmallVector<Constant *, 16> Worklist;
124   SmallPtrSet<Constant *, 16> Visited;
125   for (GlobalVariable &GV : M.globals())
126     if (GV.hasInitializer())
127       if (Visited.insert(GV.getInitializer()).second)
128         Worklist.push_back(GV.getInitializer());
129 
130   DEBUG(dbgs() << "  Adding functions referenced by global initializers to the "
131                   "entry set.\n");
132   visitReferences(Worklist, Visited, [&](Function &F) {
133     addEdge(EntryEdges, EntryIndexMap, F, LazyCallGraph::Edge::Ref);
134   });
135 
136   for (const Edge &E : EntryEdges)
137     RefSCCEntryNodes.push_back(&E.getFunction());
138 }
139 
140 LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
141     : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
142       EntryEdges(std::move(G.EntryEdges)),
143       EntryIndexMap(std::move(G.EntryIndexMap)), SCCBPA(std::move(G.SCCBPA)),
144       SCCMap(std::move(G.SCCMap)), LeafRefSCCs(std::move(G.LeafRefSCCs)),
145       DFSStack(std::move(G.DFSStack)),
146       RefSCCEntryNodes(std::move(G.RefSCCEntryNodes)),
147       NextDFSNumber(G.NextDFSNumber) {
148   updateGraphPtrs();
149 }
150 
151 LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
152   BPA = std::move(G.BPA);
153   NodeMap = std::move(G.NodeMap);
154   EntryEdges = std::move(G.EntryEdges);
155   EntryIndexMap = std::move(G.EntryIndexMap);
156   SCCBPA = std::move(G.SCCBPA);
157   SCCMap = std::move(G.SCCMap);
158   LeafRefSCCs = std::move(G.LeafRefSCCs);
159   DFSStack = std::move(G.DFSStack);
160   RefSCCEntryNodes = std::move(G.RefSCCEntryNodes);
161   NextDFSNumber = G.NextDFSNumber;
162   updateGraphPtrs();
163   return *this;
164 }
165 
166 void LazyCallGraph::SCC::dump() const {
167   dbgs() << *this << '\n';
168 }
169 
170 #ifndef NDEBUG
171 void LazyCallGraph::SCC::verify() {
172   assert(OuterRefSCC && "Can't have a null RefSCC!");
173   assert(!Nodes.empty() && "Can't have an empty SCC!");
174 
175   for (Node *N : Nodes) {
176     assert(N && "Can't have a null node!");
177     assert(OuterRefSCC->G->lookupSCC(*N) == this &&
178            "Node does not map to this SCC!");
179     assert(N->DFSNumber == -1 &&
180            "Must set DFS numbers to -1 when adding a node to an SCC!");
181     assert(N->LowLink == -1 &&
182            "Must set low link to -1 when adding a node to an SCC!");
183     for (Edge &E : *N)
184       assert(E.getNode() && "Can't have an edge to a raw function!");
185   }
186 }
187 #endif
188 
189 LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {}
190 
191 void LazyCallGraph::RefSCC::dump() const {
192   dbgs() << *this << '\n';
193 }
194 
195 #ifndef NDEBUG
196 void LazyCallGraph::RefSCC::verify() {
197   assert(G && "Can't have a null graph!");
198   assert(!SCCs.empty() && "Can't have an empty SCC!");
199 
200   // Verify basic properties of the SCCs.
201   SmallPtrSet<SCC *, 4> SCCSet;
202   for (SCC *C : SCCs) {
203     assert(C && "Can't have a null SCC!");
204     C->verify();
205     assert(&C->getOuterRefSCC() == this &&
206            "SCC doesn't think it is inside this RefSCC!");
207     bool Inserted = SCCSet.insert(C).second;
208     assert(Inserted && "Found a duplicate SCC!");
209   }
210 
211   // Check that our indices map correctly.
212   for (auto &SCCIndexPair : SCCIndices) {
213     SCC *C = SCCIndexPair.first;
214     int i = SCCIndexPair.second;
215     assert(C && "Can't have a null SCC in the indices!");
216     assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!");
217     assert(SCCs[i] == C && "Index doesn't point to SCC!");
218   }
219 
220   // Check that the SCCs are in fact in post-order.
221   for (int i = 0, Size = SCCs.size(); i < Size; ++i) {
222     SCC &SourceSCC = *SCCs[i];
223     for (Node &N : SourceSCC)
224       for (Edge &E : N) {
225         if (!E.isCall())
226           continue;
227         SCC &TargetSCC = *G->lookupSCC(*E.getNode());
228         if (&TargetSCC.getOuterRefSCC() == this) {
229           assert(SCCIndices.find(&TargetSCC)->second <= i &&
230                  "Edge between SCCs violates post-order relationship.");
231           continue;
232         }
233         assert(TargetSCC.getOuterRefSCC().Parents.count(this) &&
234                "Edge to a RefSCC missing us in its parent set.");
235       }
236   }
237 }
238 #endif
239 
240 bool LazyCallGraph::RefSCC::isDescendantOf(const RefSCC &C) const {
241   // Walk up the parents of this SCC and verify that we eventually find C.
242   SmallVector<const RefSCC *, 4> AncestorWorklist;
243   AncestorWorklist.push_back(this);
244   do {
245     const RefSCC *AncestorC = AncestorWorklist.pop_back_val();
246     if (AncestorC->isChildOf(C))
247       return true;
248     for (const RefSCC *ParentC : AncestorC->Parents)
249       AncestorWorklist.push_back(ParentC);
250   } while (!AncestorWorklist.empty());
251 
252   return false;
253 }
254 
255 /// Generic helper that updates a postorder sequence of SCCs for a potentially
256 /// cycle-introducing edge insertion.
257 ///
258 /// A postorder sequence of SCCs of a directed graph has one fundamental
259 /// property: all deges in the DAG of SCCs point "up" the sequence. That is,
260 /// all edges in the SCC DAG point to prior SCCs in the sequence.
261 ///
262 /// This routine both updates a postorder sequence and uses that sequence to
263 /// compute the set of SCCs connected into a cycle. It should only be called to
264 /// insert a "downward" edge which will require changing the sequence to
265 /// restore it to a postorder.
266 ///
267 /// When inserting an edge from an earlier SCC to a later SCC in some postorder
268 /// sequence, all of the SCCs which may be impacted are in the closed range of
269 /// those two within the postorder sequence. The algorithm used here to restore
270 /// the state is as follows:
271 ///
272 /// 1) Starting from the source SCC, construct a set of SCCs which reach the
273 ///    source SCC consisting of just the source SCC. Then scan toward the
274 ///    target SCC in postorder and for each SCC, if it has an edge to an SCC
275 ///    in the set, add it to the set. Otherwise, the source SCC is not
276 ///    a successor, move it in the postorder sequence to immediately before
277 ///    the source SCC, shifting the source SCC and all SCCs in the set one
278 ///    position toward the target SCC. Stop scanning after processing the
279 ///    target SCC.
280 /// 2) If the source SCC is now past the target SCC in the postorder sequence,
281 ///    and thus the new edge will flow toward the start, we are done.
282 /// 3) Otherwise, starting from the target SCC, walk all edges which reach an
283 ///    SCC between the source and the target, and add them to the set of
284 ///    connected SCCs, then recurse through them. Once a complete set of the
285 ///    SCCs the target connects to is known, hoist the remaining SCCs between
286 ///    the source and the target to be above the target. Note that there is no
287 ///    need to process the source SCC, it is already known to connect.
288 /// 4) At this point, all of the SCCs in the closed range between the source
289 ///    SCC and the target SCC in the postorder sequence are connected,
290 ///    including the target SCC and the source SCC. Inserting the edge from
291 ///    the source SCC to the target SCC will form a cycle out of precisely
292 ///    these SCCs. Thus we can merge all of the SCCs in this closed range into
293 ///    a single SCC.
294 ///
295 /// This process has various important properties:
296 /// - Only mutates the SCCs when adding the edge actually changes the SCC
297 ///   structure.
298 /// - Never mutates SCCs which are unaffected by the change.
299 /// - Updates the postorder sequence to correctly satisfy the postorder
300 ///   constraint after the edge is inserted.
301 /// - Only reorders SCCs in the closed postorder sequence from the source to
302 ///   the target, so easy to bound how much has changed even in the ordering.
303 /// - Big-O is the number of edges in the closed postorder range of SCCs from
304 ///   source to target.
305 ///
306 /// This helper routine, in addition to updating the postorder sequence itself
307 /// will also update a map from SCCs to indices within that sequecne.
308 ///
309 /// The sequence and the map must operate on pointers to the SCC type.
310 ///
311 /// Two callbacks must be provided. The first computes the subset of SCCs in
312 /// the postorder closed range from the source to the target which connect to
313 /// the source SCC via some (transitive) set of edges. The second computes the
314 /// subset of the same range which the target SCC connects to via some
315 /// (transitive) set of edges. Both callbacks should populate the set argument
316 /// provided.
317 template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT,
318           typename ComputeSourceConnectedSetCallableT,
319           typename ComputeTargetConnectedSetCallableT>
320 static iterator_range<typename PostorderSequenceT::iterator>
321 updatePostorderSequenceForEdgeInsertion(
322     SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs,
323     SCCIndexMapT &SCCIndices,
324     ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet,
325     ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) {
326   int SourceIdx = SCCIndices[&SourceSCC];
327   int TargetIdx = SCCIndices[&TargetSCC];
328   assert(SourceIdx < TargetIdx && "Cannot have equal indices here!");
329 
330   SmallPtrSet<SCCT *, 4> ConnectedSet;
331 
332   // Compute the SCCs which (transitively) reach the source.
333   ComputeSourceConnectedSet(ConnectedSet);
334 
335   // Partition the SCCs in this part of the port-order sequence so only SCCs
336   // connecting to the source remain between it and the target. This is
337   // a benign partition as it preserves postorder.
338   auto SourceI = std::stable_partition(
339       SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1,
340       [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); });
341   for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i)
342     SCCIndices.find(SCCs[i])->second = i;
343 
344   // If the target doesn't connect to the source, then we've corrected the
345   // post-order and there are no cycles formed.
346   if (!ConnectedSet.count(&TargetSCC)) {
347     assert(SourceI > (SCCs.begin() + SourceIdx) &&
348            "Must have moved the source to fix the post-order.");
349     assert(*std::prev(SourceI) == &TargetSCC &&
350            "Last SCC to move should have bene the target.");
351 
352     // Return an empty range at the target SCC indicating there is nothing to
353     // merge.
354     return make_range(std::prev(SourceI), std::prev(SourceI));
355   }
356 
357   assert(SCCs[TargetIdx] == &TargetSCC &&
358          "Should not have moved target if connected!");
359   SourceIdx = SourceI - SCCs.begin();
360   assert(SCCs[SourceIdx] == &SourceSCC &&
361          "Bad updated index computation for the source SCC!");
362 
363 
364   // See whether there are any remaining intervening SCCs between the source
365   // and target. If so we need to make sure they all are reachable form the
366   // target.
367   if (SourceIdx + 1 < TargetIdx) {
368     ConnectedSet.clear();
369     ComputeTargetConnectedSet(ConnectedSet);
370 
371     // Partition SCCs so that only SCCs reached from the target remain between
372     // the source and the target. This preserves postorder.
373     auto TargetI = std::stable_partition(
374         SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1,
375         [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); });
376     for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i)
377       SCCIndices.find(SCCs[i])->second = i;
378     TargetIdx = std::prev(TargetI) - SCCs.begin();
379     assert(SCCs[TargetIdx] == &TargetSCC &&
380            "Should always end with the target!");
381   }
382 
383   // At this point, we know that connecting source to target forms a cycle
384   // because target connects back to source, and we know that all of the SCCs
385   // between the source and target in the postorder sequence participate in that
386   // cycle.
387   return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx);
388 }
389 
390 SmallVector<LazyCallGraph::SCC *, 1>
391 LazyCallGraph::RefSCC::switchInternalEdgeToCall(Node &SourceN, Node &TargetN) {
392   assert(!SourceN[TargetN].isCall() && "Must start with a ref edge!");
393   SmallVector<SCC *, 1> DeletedSCCs;
394 
395 #ifndef NDEBUG
396   // In a debug build, verify the RefSCC is valid to start with and when this
397   // routine finishes.
398   verify();
399   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
400 #endif
401 
402   SCC &SourceSCC = *G->lookupSCC(SourceN);
403   SCC &TargetSCC = *G->lookupSCC(TargetN);
404 
405   // If the two nodes are already part of the same SCC, we're also done as
406   // we've just added more connectivity.
407   if (&SourceSCC == &TargetSCC) {
408     SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
409     return DeletedSCCs;
410   }
411 
412   // At this point we leverage the postorder list of SCCs to detect when the
413   // insertion of an edge changes the SCC structure in any way.
414   //
415   // First and foremost, we can eliminate the need for any changes when the
416   // edge is toward the beginning of the postorder sequence because all edges
417   // flow in that direction already. Thus adding a new one cannot form a cycle.
418   int SourceIdx = SCCIndices[&SourceSCC];
419   int TargetIdx = SCCIndices[&TargetSCC];
420   if (TargetIdx < SourceIdx) {
421     SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
422     return DeletedSCCs;
423   }
424 
425   // Compute the SCCs which (transitively) reach the source.
426   auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
427 #ifndef NDEBUG
428     // Check that the RefSCC is still valid before computing this as the
429     // results will be nonsensical of we've broken its invariants.
430     verify();
431 #endif
432     ConnectedSet.insert(&SourceSCC);
433     auto IsConnected = [&](SCC &C) {
434       for (Node &N : C)
435         for (Edge &E : N.calls()) {
436           assert(E.getNode() && "Must have formed a node within an SCC!");
437           if (ConnectedSet.count(G->lookupSCC(*E.getNode())))
438             return true;
439         }
440 
441       return false;
442     };
443 
444     for (SCC *C :
445          make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1))
446       if (IsConnected(*C))
447         ConnectedSet.insert(C);
448   };
449 
450   // Use a normal worklist to find which SCCs the target connects to. We still
451   // bound the search based on the range in the postorder list we care about,
452   // but because this is forward connectivity we just "recurse" through the
453   // edges.
454   auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
455 #ifndef NDEBUG
456     // Check that the RefSCC is still valid before computing this as the
457     // results will be nonsensical of we've broken its invariants.
458     verify();
459 #endif
460     ConnectedSet.insert(&TargetSCC);
461     SmallVector<SCC *, 4> Worklist;
462     Worklist.push_back(&TargetSCC);
463     do {
464       SCC &C = *Worklist.pop_back_val();
465       for (Node &N : C)
466         for (Edge &E : N) {
467           assert(E.getNode() && "Must have formed a node within an SCC!");
468           if (!E.isCall())
469             continue;
470           SCC &EdgeC = *G->lookupSCC(*E.getNode());
471           if (&EdgeC.getOuterRefSCC() != this)
472             // Not in this RefSCC...
473             continue;
474           if (SCCIndices.find(&EdgeC)->second <= SourceIdx)
475             // Not in the postorder sequence between source and target.
476             continue;
477 
478           if (ConnectedSet.insert(&EdgeC).second)
479             Worklist.push_back(&EdgeC);
480         }
481     } while (!Worklist.empty());
482   };
483 
484   // Use a generic helper to update the postorder sequence of SCCs and return
485   // a range of any SCCs connected into a cycle by inserting this edge. This
486   // routine will also take care of updating the indices into the postorder
487   // sequence.
488   auto MergeRange = updatePostorderSequenceForEdgeInsertion(
489       SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet,
490       ComputeTargetConnectedSet);
491 
492   // If the merge range is empty, then adding the edge didn't actually form any
493   // new cycles. We're done.
494   if (MergeRange.begin() == MergeRange.end()) {
495     // Now that the SCC structure is finalized, flip the kind to call.
496     SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
497     return DeletedSCCs;
498   }
499 
500 #ifndef NDEBUG
501   // Before merging, check that the RefSCC remains valid after all the
502   // postorder updates.
503   verify();
504 #endif
505 
506   // Otherwise we need to merge all of the SCCs in the cycle into a single
507   // result SCC.
508   //
509   // NB: We merge into the target because all of these functions were already
510   // reachable from the target, meaning any SCC-wide properties deduced about it
511   // other than the set of functions within it will not have changed.
512   for (SCC *C : MergeRange) {
513     assert(C != &TargetSCC &&
514            "We merge *into* the target and shouldn't process it here!");
515     SCCIndices.erase(C);
516     TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end());
517     for (Node *N : C->Nodes)
518       G->SCCMap[N] = &TargetSCC;
519     C->clear();
520     DeletedSCCs.push_back(C);
521   }
522 
523   // Erase the merged SCCs from the list and update the indices of the
524   // remaining SCCs.
525   int IndexOffset = MergeRange.end() - MergeRange.begin();
526   auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end());
527   for (SCC *C : make_range(EraseEnd, SCCs.end()))
528     SCCIndices[C] -= IndexOffset;
529 
530   // Now that the SCC structure is finalized, flip the kind to call.
531   SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
532 
533   // And we're done!
534   return DeletedSCCs;
535 }
536 
537 iterator_range<LazyCallGraph::RefSCC::iterator>
538 LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) {
539   assert(SourceN[TargetN].isCall() && "Must start with a call edge!");
540 
541 #ifndef NDEBUG
542   // In a debug build, verify the RefSCC is valid to start with and when this
543   // routine finishes.
544   verify();
545   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
546 #endif
547 
548   SCC &SourceSCC = *G->lookupSCC(SourceN);
549   SCC &TargetSCC = *G->lookupSCC(TargetN);
550 
551   assert(&SourceSCC.getOuterRefSCC() == this &&
552          "Source must be in this RefSCC.");
553   assert(&TargetSCC.getOuterRefSCC() == this &&
554          "Target must be in this RefSCC.");
555 
556   // Set the edge kind.
557   SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref);
558 
559   // If this call edge is just connecting two separate SCCs within this RefSCC,
560   // there is nothing to do.
561   if (&SourceSCC != &TargetSCC)
562     return make_range(SCCs.end(), SCCs.end());
563 
564   // Otherwise we are removing a call edge from a single SCC. This may break
565   // the cycle. In order to compute the new set of SCCs, we need to do a small
566   // DFS over the nodes within the SCC to form any sub-cycles that remain as
567   // distinct SCCs and compute a postorder over the resulting SCCs.
568   //
569   // However, we specially handle the target node. The target node is known to
570   // reach all other nodes in the original SCC by definition. This means that
571   // we want the old SCC to be replaced with an SCC contaning that node as it
572   // will be the root of whatever SCC DAG results from the DFS. Assumptions
573   // about an SCC such as the set of functions called will continue to hold,
574   // etc.
575 
576   SCC &OldSCC = TargetSCC;
577   SmallVector<std::pair<Node *, call_edge_iterator>, 16> DFSStack;
578   SmallVector<Node *, 16> PendingSCCStack;
579   SmallVector<SCC *, 4> NewSCCs;
580 
581   // Prepare the nodes for a fresh DFS.
582   SmallVector<Node *, 16> Worklist;
583   Worklist.swap(OldSCC.Nodes);
584   for (Node *N : Worklist) {
585     N->DFSNumber = N->LowLink = 0;
586     G->SCCMap.erase(N);
587   }
588 
589   // Force the target node to be in the old SCC. This also enables us to take
590   // a very significant short-cut in the standard Tarjan walk to re-form SCCs
591   // below: whenever we build an edge that reaches the target node, we know
592   // that the target node eventually connects back to all other nodes in our
593   // walk. As a consequence, we can detect and handle participants in that
594   // cycle without walking all the edges that form this connection, and instead
595   // by relying on the fundamental guarantee coming into this operation (all
596   // nodes are reachable from the target due to previously forming an SCC).
597   TargetN.DFSNumber = TargetN.LowLink = -1;
598   OldSCC.Nodes.push_back(&TargetN);
599   G->SCCMap[&TargetN] = &OldSCC;
600 
601   // Scan down the stack and DFS across the call edges.
602   for (Node *RootN : Worklist) {
603     assert(DFSStack.empty() &&
604            "Cannot begin a new root with a non-empty DFS stack!");
605     assert(PendingSCCStack.empty() &&
606            "Cannot begin a new root with pending nodes for an SCC!");
607 
608     // Skip any nodes we've already reached in the DFS.
609     if (RootN->DFSNumber != 0) {
610       assert(RootN->DFSNumber == -1 &&
611              "Shouldn't have any mid-DFS root nodes!");
612       continue;
613     }
614 
615     RootN->DFSNumber = RootN->LowLink = 1;
616     int NextDFSNumber = 2;
617 
618     DFSStack.push_back({RootN, RootN->call_begin()});
619     do {
620       Node *N;
621       call_edge_iterator I;
622       std::tie(N, I) = DFSStack.pop_back_val();
623       auto E = N->call_end();
624       while (I != E) {
625         Node &ChildN = *I->getNode();
626         if (ChildN.DFSNumber == 0) {
627           // We haven't yet visited this child, so descend, pushing the current
628           // node onto the stack.
629           DFSStack.push_back({N, I});
630 
631           assert(!G->SCCMap.count(&ChildN) &&
632                  "Found a node with 0 DFS number but already in an SCC!");
633           ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
634           N = &ChildN;
635           I = N->call_begin();
636           E = N->call_end();
637           continue;
638         }
639 
640         // Check for the child already being part of some component.
641         if (ChildN.DFSNumber == -1) {
642           if (G->lookupSCC(ChildN) == &OldSCC) {
643             // If the child is part of the old SCC, we know that it can reach
644             // every other node, so we have formed a cycle. Pull the entire DFS
645             // and pending stacks into it. See the comment above about setting
646             // up the old SCC for why we do this.
647             int OldSize = OldSCC.size();
648             OldSCC.Nodes.push_back(N);
649             OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end());
650             PendingSCCStack.clear();
651             while (!DFSStack.empty())
652               OldSCC.Nodes.push_back(DFSStack.pop_back_val().first);
653             for (Node &N : make_range(OldSCC.begin() + OldSize, OldSCC.end())) {
654               N.DFSNumber = N.LowLink = -1;
655               G->SCCMap[&N] = &OldSCC;
656             }
657             N = nullptr;
658             break;
659           }
660 
661           // If the child has already been added to some child component, it
662           // couldn't impact the low-link of this parent because it isn't
663           // connected, and thus its low-link isn't relevant so skip it.
664           ++I;
665           continue;
666         }
667 
668         // Track the lowest linked child as the lowest link for this node.
669         assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
670         if (ChildN.LowLink < N->LowLink)
671           N->LowLink = ChildN.LowLink;
672 
673         // Move to the next edge.
674         ++I;
675       }
676       if (!N)
677         // Cleared the DFS early, start another round.
678         break;
679 
680       // We've finished processing N and its descendents, put it on our pending
681       // SCC stack to eventually get merged into an SCC of nodes.
682       PendingSCCStack.push_back(N);
683 
684       // If this node is linked to some lower entry, continue walking up the
685       // stack.
686       if (N->LowLink != N->DFSNumber)
687         continue;
688 
689       // Otherwise, we've completed an SCC. Append it to our post order list of
690       // SCCs.
691       int RootDFSNumber = N->DFSNumber;
692       // Find the range of the node stack by walking down until we pass the
693       // root DFS number.
694       auto SCCNodes = make_range(
695           PendingSCCStack.rbegin(),
696           find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
697             return N->DFSNumber < RootDFSNumber;
698           }));
699 
700       // Form a new SCC out of these nodes and then clear them off our pending
701       // stack.
702       NewSCCs.push_back(G->createSCC(*this, SCCNodes));
703       for (Node &N : *NewSCCs.back()) {
704         N.DFSNumber = N.LowLink = -1;
705         G->SCCMap[&N] = NewSCCs.back();
706       }
707       PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
708     } while (!DFSStack.empty());
709   }
710 
711   // Insert the remaining SCCs before the old one. The old SCC can reach all
712   // other SCCs we form because it contains the target node of the removed edge
713   // of the old SCC. This means that we will have edges into all of the new
714   // SCCs, which means the old one must come last for postorder.
715   int OldIdx = SCCIndices[&OldSCC];
716   SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end());
717 
718   // Update the mapping from SCC* to index to use the new SCC*s, and remove the
719   // old SCC from the mapping.
720   for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx)
721     SCCIndices[SCCs[Idx]] = Idx;
722 
723   return make_range(SCCs.begin() + OldIdx,
724                     SCCs.begin() + OldIdx + NewSCCs.size());
725 }
726 
727 void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN,
728                                                      Node &TargetN) {
729   assert(!SourceN[TargetN].isCall() && "Must start with a ref edge!");
730 
731   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
732   assert(G->lookupRefSCC(TargetN) != this &&
733          "Target must not be in this RefSCC.");
734   assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
735          "Target must be a descendant of the Source.");
736 
737   // Edges between RefSCCs are the same regardless of call or ref, so we can
738   // just flip the edge here.
739   SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
740 
741 #ifndef NDEBUG
742   // Check that the RefSCC is still valid.
743   verify();
744 #endif
745 }
746 
747 void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN,
748                                                     Node &TargetN) {
749   assert(SourceN[TargetN].isCall() && "Must start with a call edge!");
750 
751   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
752   assert(G->lookupRefSCC(TargetN) != this &&
753          "Target must not be in this RefSCC.");
754   assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
755          "Target must be a descendant of the Source.");
756 
757   // Edges between RefSCCs are the same regardless of call or ref, so we can
758   // just flip the edge here.
759   SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref);
760 
761 #ifndef NDEBUG
762   // Check that the RefSCC is still valid.
763   verify();
764 #endif
765 }
766 
767 void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN,
768                                                   Node &TargetN) {
769   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
770   assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
771 
772   SourceN.insertEdgeInternal(TargetN, Edge::Ref);
773 
774 #ifndef NDEBUG
775   // Check that the RefSCC is still valid.
776   verify();
777 #endif
778 }
779 
780 void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN,
781                                                Edge::Kind EK) {
782   // First insert it into the caller.
783   SourceN.insertEdgeInternal(TargetN, EK);
784 
785   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
786 
787   RefSCC &TargetC = *G->lookupRefSCC(TargetN);
788   assert(&TargetC != this && "Target must not be in this RefSCC.");
789   assert(TargetC.isDescendantOf(*this) &&
790          "Target must be a descendant of the Source.");
791 
792   // The only change required is to add this SCC to the parent set of the
793   // callee.
794   TargetC.Parents.insert(this);
795 
796 #ifndef NDEBUG
797   // Check that the RefSCC is still valid.
798   verify();
799 #endif
800 }
801 
802 SmallVector<LazyCallGraph::RefSCC *, 1>
803 LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) {
804   assert(G->lookupRefSCC(TargetN) == this && "Target must be in this SCC.");
805 
806 #ifndef NDEBUG
807   // In a debug build, verify the RefSCC is valid to start with and when this
808   // routine finishes.
809   verify();
810   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
811 #endif
812 
813   // We store the RefSCCs found to be connected in postorder so that we can use
814   // that when merging. We also return this to the caller to allow them to
815   // invalidate information pertaining to these RefSCCs.
816   SmallVector<RefSCC *, 1> Connected;
817 
818   RefSCC &SourceC = *G->lookupRefSCC(SourceN);
819   assert(&SourceC != this && "Source must not be in this SCC.");
820   assert(SourceC.isDescendantOf(*this) &&
821          "Source must be a descendant of the Target.");
822 
823   // The algorithm we use for merging SCCs based on the cycle introduced here
824   // is to walk the RefSCC inverted DAG formed by the parent sets. The inverse
825   // graph has the same cycle properties as the actual DAG of the RefSCCs, and
826   // when forming RefSCCs lazily by a DFS, the bottom of the graph won't exist
827   // in many cases which should prune the search space.
828   //
829   // FIXME: We can get this pruning behavior even after the incremental RefSCC
830   // formation by leaving behind (conservative) DFS numberings in the nodes,
831   // and pruning the search with them. These would need to be cleverly updated
832   // during the removal of intra-SCC edges, but could be preserved
833   // conservatively.
834   //
835   // FIXME: This operation currently creates ordering stability problems
836   // because we don't use stably ordered containers for the parent SCCs.
837 
838   // The set of RefSCCs that are connected to the parent, and thus will
839   // participate in the merged connected component.
840   SmallPtrSet<RefSCC *, 8> ConnectedSet;
841   ConnectedSet.insert(this);
842 
843   // We build up a DFS stack of the parents chains.
844   SmallVector<std::pair<RefSCC *, parent_iterator>, 8> DFSStack;
845   SmallPtrSet<RefSCC *, 8> Visited;
846   int ConnectedDepth = -1;
847   DFSStack.push_back({&SourceC, SourceC.parent_begin()});
848   do {
849     auto DFSPair = DFSStack.pop_back_val();
850     RefSCC *C = DFSPair.first;
851     parent_iterator I = DFSPair.second;
852     auto E = C->parent_end();
853 
854     while (I != E) {
855       RefSCC &Parent = *I++;
856 
857       // If we have already processed this parent SCC, skip it, and remember
858       // whether it was connected so we don't have to check the rest of the
859       // stack. This also handles when we reach a child of the 'this' SCC (the
860       // callee) which terminates the search.
861       if (ConnectedSet.count(&Parent)) {
862         assert(ConnectedDepth < (int)DFSStack.size() &&
863                "Cannot have a connected depth greater than the DFS depth!");
864         ConnectedDepth = DFSStack.size();
865         continue;
866       }
867       if (Visited.count(&Parent))
868         continue;
869 
870       // We fully explore the depth-first space, adding nodes to the connected
871       // set only as we pop them off, so "recurse" by rotating to the parent.
872       DFSStack.push_back({C, I});
873       C = &Parent;
874       I = C->parent_begin();
875       E = C->parent_end();
876     }
877 
878     // If we've found a connection anywhere below this point on the stack (and
879     // thus up the parent graph from the caller), the current node needs to be
880     // added to the connected set now that we've processed all of its parents.
881     if ((int)DFSStack.size() == ConnectedDepth) {
882       --ConnectedDepth; // We're finished with this connection.
883       bool Inserted = ConnectedSet.insert(C).second;
884       (void)Inserted;
885       assert(Inserted && "Cannot insert a refSCC multiple times!");
886       Connected.push_back(C);
887     } else {
888       // Otherwise remember that its parents don't ever connect.
889       assert(ConnectedDepth < (int)DFSStack.size() &&
890              "Cannot have a connected depth greater than the DFS depth!");
891       Visited.insert(C);
892     }
893   } while (!DFSStack.empty());
894 
895   // Now that we have identified all of the SCCs which need to be merged into
896   // a connected set with the inserted edge, merge all of them into this SCC.
897   // We walk the newly connected RefSCCs in the reverse postorder of the parent
898   // DAG walk above and merge in each of their SCC postorder lists. This
899   // ensures a merged postorder SCC list.
900   SmallVector<SCC *, 16> MergedSCCs;
901   int SCCIndex = 0;
902   for (RefSCC *C : reverse(Connected)) {
903     assert(C != this &&
904            "This RefSCC should terminate the DFS without being reached.");
905 
906     // Merge the parents which aren't part of the merge into the our parents.
907     for (RefSCC *ParentC : C->Parents)
908       if (!ConnectedSet.count(ParentC))
909         Parents.insert(ParentC);
910     C->Parents.clear();
911 
912     // Walk the inner SCCs to update their up-pointer and walk all the edges to
913     // update any parent sets.
914     // FIXME: We should try to find a way to avoid this (rather expensive) edge
915     // walk by updating the parent sets in some other manner.
916     for (SCC &InnerC : *C) {
917       InnerC.OuterRefSCC = this;
918       SCCIndices[&InnerC] = SCCIndex++;
919       for (Node &N : InnerC) {
920         G->SCCMap[&N] = &InnerC;
921         for (Edge &E : N) {
922           assert(E.getNode() &&
923                  "Cannot have a null node within a visited SCC!");
924           RefSCC &ChildRC = *G->lookupRefSCC(*E.getNode());
925           if (ConnectedSet.count(&ChildRC))
926             continue;
927           ChildRC.Parents.erase(C);
928           ChildRC.Parents.insert(this);
929         }
930       }
931     }
932 
933     // Now merge in the SCCs. We can actually move here so try to reuse storage
934     // the first time through.
935     if (MergedSCCs.empty())
936       MergedSCCs = std::move(C->SCCs);
937     else
938       MergedSCCs.append(C->SCCs.begin(), C->SCCs.end());
939     C->SCCs.clear();
940   }
941 
942   // Finally append our original SCCs to the merged list and move it into
943   // place.
944   for (SCC &InnerC : *this)
945     SCCIndices[&InnerC] = SCCIndex++;
946   MergedSCCs.append(SCCs.begin(), SCCs.end());
947   SCCs = std::move(MergedSCCs);
948 
949   // At this point we have a merged RefSCC with a post-order SCCs list, just
950   // connect the nodes to form the new edge.
951   SourceN.insertEdgeInternal(TargetN, Edge::Ref);
952 
953   // We return the list of SCCs which were merged so that callers can
954   // invalidate any data they have associated with those SCCs. Note that these
955   // SCCs are no longer in an interesting state (they are totally empty) but
956   // the pointers will remain stable for the life of the graph itself.
957   return Connected;
958 }
959 
960 void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) {
961   assert(G->lookupRefSCC(SourceN) == this &&
962          "The source must be a member of this RefSCC.");
963 
964   RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
965   assert(&TargetRC != this && "The target must not be a member of this RefSCC");
966 
967   assert(!is_contained(G->LeafRefSCCs, this) &&
968          "Cannot have a leaf RefSCC source.");
969 
970 #ifndef NDEBUG
971   // In a debug build, verify the RefSCC is valid to start with and when this
972   // routine finishes.
973   verify();
974   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
975 #endif
976 
977   // First remove it from the node.
978   SourceN.removeEdgeInternal(TargetN.getFunction());
979 
980   bool HasOtherEdgeToChildRC = false;
981   bool HasOtherChildRC = false;
982   for (SCC *InnerC : SCCs) {
983     for (Node &N : *InnerC) {
984       for (Edge &E : N) {
985         assert(E.getNode() && "Cannot have a missing node in a visited SCC!");
986         RefSCC &OtherChildRC = *G->lookupRefSCC(*E.getNode());
987         if (&OtherChildRC == &TargetRC) {
988           HasOtherEdgeToChildRC = true;
989           break;
990         }
991         if (&OtherChildRC != this)
992           HasOtherChildRC = true;
993       }
994       if (HasOtherEdgeToChildRC)
995         break;
996     }
997     if (HasOtherEdgeToChildRC)
998       break;
999   }
1000   // Because the SCCs form a DAG, deleting such an edge cannot change the set
1001   // of SCCs in the graph. However, it may cut an edge of the SCC DAG, making
1002   // the source SCC no longer connected to the target SCC. If so, we need to
1003   // update the target SCC's map of its parents.
1004   if (!HasOtherEdgeToChildRC) {
1005     bool Removed = TargetRC.Parents.erase(this);
1006     (void)Removed;
1007     assert(Removed &&
1008            "Did not find the source SCC in the target SCC's parent list!");
1009 
1010     // It may orphan an SCC if it is the last edge reaching it, but that does
1011     // not violate any invariants of the graph.
1012     if (TargetRC.Parents.empty())
1013       DEBUG(dbgs() << "LCG: Update removing " << SourceN.getFunction().getName()
1014                    << " -> " << TargetN.getFunction().getName()
1015                    << " edge orphaned the callee's SCC!\n");
1016 
1017     // It may make the Source SCC a leaf SCC.
1018     if (!HasOtherChildRC)
1019       G->LeafRefSCCs.push_back(this);
1020   }
1021 }
1022 
1023 SmallVector<LazyCallGraph::RefSCC *, 1>
1024 LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN, Node &TargetN) {
1025   assert(!SourceN[TargetN].isCall() &&
1026          "Cannot remove a call edge, it must first be made a ref edge");
1027 
1028 #ifndef NDEBUG
1029   // In a debug build, verify the RefSCC is valid to start with and when this
1030   // routine finishes.
1031   verify();
1032   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
1033 #endif
1034 
1035   // First remove the actual edge.
1036   SourceN.removeEdgeInternal(TargetN.getFunction());
1037 
1038   // We return a list of the resulting *new* RefSCCs in post-order.
1039   SmallVector<RefSCC *, 1> Result;
1040 
1041   // Direct recursion doesn't impact the SCC graph at all.
1042   if (&SourceN == &TargetN)
1043     return Result;
1044 
1045   // We build somewhat synthetic new RefSCCs by providing a postorder mapping
1046   // for each inner SCC. We also store these associated with *nodes* rather
1047   // than SCCs because this saves a round-trip through the node->SCC map and in
1048   // the common case, SCCs are small. We will verify that we always give the
1049   // same number to every node in the SCC such that these are equivalent.
1050   const int RootPostOrderNumber = 0;
1051   int PostOrderNumber = RootPostOrderNumber + 1;
1052   SmallDenseMap<Node *, int> PostOrderMapping;
1053 
1054   // Every node in the target SCC can already reach every node in this RefSCC
1055   // (by definition). It is the only node we know will stay inside this RefSCC.
1056   // Everything which transitively reaches Target will also remain in the
1057   // RefSCC. We handle this by pre-marking that the nodes in the target SCC map
1058   // back to the root post order number.
1059   //
1060   // This also enables us to take a very significant short-cut in the standard
1061   // Tarjan walk to re-form RefSCCs below: whenever we build an edge that
1062   // references the target node, we know that the target node eventually
1063   // references all other nodes in our walk. As a consequence, we can detect
1064   // and handle participants in that cycle without walking all the edges that
1065   // form the connections, and instead by relying on the fundamental guarantee
1066   // coming into this operation.
1067   SCC &TargetC = *G->lookupSCC(TargetN);
1068   for (Node &N : TargetC)
1069     PostOrderMapping[&N] = RootPostOrderNumber;
1070 
1071   // Reset all the other nodes to prepare for a DFS over them, and add them to
1072   // our worklist.
1073   SmallVector<Node *, 8> Worklist;
1074   for (SCC *C : SCCs) {
1075     if (C == &TargetC)
1076       continue;
1077 
1078     for (Node &N : *C)
1079       N.DFSNumber = N.LowLink = 0;
1080 
1081     Worklist.append(C->Nodes.begin(), C->Nodes.end());
1082   }
1083 
1084   auto MarkNodeForSCCNumber = [&PostOrderMapping](Node &N, int Number) {
1085     N.DFSNumber = N.LowLink = -1;
1086     PostOrderMapping[&N] = Number;
1087   };
1088 
1089   SmallVector<std::pair<Node *, edge_iterator>, 4> DFSStack;
1090   SmallVector<Node *, 4> PendingRefSCCStack;
1091   do {
1092     assert(DFSStack.empty() &&
1093            "Cannot begin a new root with a non-empty DFS stack!");
1094     assert(PendingRefSCCStack.empty() &&
1095            "Cannot begin a new root with pending nodes for an SCC!");
1096 
1097     Node *RootN = Worklist.pop_back_val();
1098     // Skip any nodes we've already reached in the DFS.
1099     if (RootN->DFSNumber != 0) {
1100       assert(RootN->DFSNumber == -1 &&
1101              "Shouldn't have any mid-DFS root nodes!");
1102       continue;
1103     }
1104 
1105     RootN->DFSNumber = RootN->LowLink = 1;
1106     int NextDFSNumber = 2;
1107 
1108     DFSStack.push_back({RootN, RootN->begin()});
1109     do {
1110       Node *N;
1111       edge_iterator I;
1112       std::tie(N, I) = DFSStack.pop_back_val();
1113       auto E = N->end();
1114 
1115       assert(N->DFSNumber != 0 && "We should always assign a DFS number "
1116                                   "before processing a node.");
1117 
1118       while (I != E) {
1119         Node &ChildN = I->getNode(*G);
1120         if (ChildN.DFSNumber == 0) {
1121           // Mark that we should start at this child when next this node is the
1122           // top of the stack. We don't start at the next child to ensure this
1123           // child's lowlink is reflected.
1124           DFSStack.push_back({N, I});
1125 
1126           // Continue, resetting to the child node.
1127           ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
1128           N = &ChildN;
1129           I = ChildN.begin();
1130           E = ChildN.end();
1131           continue;
1132         }
1133         if (ChildN.DFSNumber == -1) {
1134           // Check if this edge's target node connects to the deleted edge's
1135           // target node. If so, we know that every node connected will end up
1136           // in this RefSCC, so collapse the entire current stack into the root
1137           // slot in our SCC numbering. See above for the motivation of
1138           // optimizing the target connected nodes in this way.
1139           auto PostOrderI = PostOrderMapping.find(&ChildN);
1140           if (PostOrderI != PostOrderMapping.end() &&
1141               PostOrderI->second == RootPostOrderNumber) {
1142             MarkNodeForSCCNumber(*N, RootPostOrderNumber);
1143             while (!PendingRefSCCStack.empty())
1144               MarkNodeForSCCNumber(*PendingRefSCCStack.pop_back_val(),
1145                                    RootPostOrderNumber);
1146             while (!DFSStack.empty())
1147               MarkNodeForSCCNumber(*DFSStack.pop_back_val().first,
1148                                    RootPostOrderNumber);
1149             // Ensure we break all the way out of the enclosing loop.
1150             N = nullptr;
1151             break;
1152           }
1153 
1154           // If this child isn't currently in this RefSCC, no need to process
1155           // it.
1156           // However, we do need to remove this RefSCC from its RefSCC's parent
1157           // set.
1158           RefSCC &ChildRC = *G->lookupRefSCC(ChildN);
1159           ChildRC.Parents.erase(this);
1160           ++I;
1161           continue;
1162         }
1163 
1164         // Track the lowest link of the children, if any are still in the stack.
1165         // Any child not on the stack will have a LowLink of -1.
1166         assert(ChildN.LowLink != 0 &&
1167                "Low-link must not be zero with a non-zero DFS number.");
1168         if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
1169           N->LowLink = ChildN.LowLink;
1170         ++I;
1171       }
1172       if (!N)
1173         // We short-circuited this node.
1174         break;
1175 
1176       // We've finished processing N and its descendents, put it on our pending
1177       // stack to eventually get merged into a RefSCC.
1178       PendingRefSCCStack.push_back(N);
1179 
1180       // If this node is linked to some lower entry, continue walking up the
1181       // stack.
1182       if (N->LowLink != N->DFSNumber) {
1183         assert(!DFSStack.empty() &&
1184                "We never found a viable root for a RefSCC to pop off!");
1185         continue;
1186       }
1187 
1188       // Otherwise, form a new RefSCC from the top of the pending node stack.
1189       int RootDFSNumber = N->DFSNumber;
1190       // Find the range of the node stack by walking down until we pass the
1191       // root DFS number.
1192       auto RefSCCNodes = make_range(
1193           PendingRefSCCStack.rbegin(),
1194           find_if(reverse(PendingRefSCCStack), [RootDFSNumber](const Node *N) {
1195             return N->DFSNumber < RootDFSNumber;
1196           }));
1197 
1198       // Mark the postorder number for these nodes and clear them off the
1199       // stack. We'll use the postorder number to pull them into RefSCCs at the
1200       // end. FIXME: Fuse with the loop above.
1201       int RefSCCNumber = PostOrderNumber++;
1202       for (Node *N : RefSCCNodes)
1203         MarkNodeForSCCNumber(*N, RefSCCNumber);
1204 
1205       PendingRefSCCStack.erase(RefSCCNodes.end().base(),
1206                                PendingRefSCCStack.end());
1207     } while (!DFSStack.empty());
1208 
1209     assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
1210     assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!");
1211   } while (!Worklist.empty());
1212 
1213   // We now have a post-order numbering for RefSCCs and a mapping from each
1214   // node in this RefSCC to its final RefSCC. We create each new RefSCC node
1215   // (re-using this RefSCC node for the root) and build a radix-sort style map
1216   // from postorder number to the RefSCC. We then append SCCs to each of these
1217   // RefSCCs in the order they occured in the original SCCs container.
1218   for (int i = 1; i < PostOrderNumber; ++i)
1219     Result.push_back(G->createRefSCC(*G));
1220 
1221   for (SCC *C : SCCs) {
1222     auto PostOrderI = PostOrderMapping.find(&*C->begin());
1223     assert(PostOrderI != PostOrderMapping.end() &&
1224            "Cannot have missing mappings for nodes!");
1225     int SCCNumber = PostOrderI->second;
1226 #ifndef NDEBUG
1227     for (Node &N : *C)
1228       assert(PostOrderMapping.find(&N)->second == SCCNumber &&
1229              "Cannot have different numbers for nodes in the same SCC!");
1230 #endif
1231     if (SCCNumber == 0)
1232       // The root node is handled separately by removing the SCCs.
1233       continue;
1234 
1235     RefSCC &RC = *Result[SCCNumber - 1];
1236     int SCCIndex = RC.SCCs.size();
1237     RC.SCCs.push_back(C);
1238     SCCIndices[C] = SCCIndex;
1239     C->OuterRefSCC = &RC;
1240   }
1241 
1242   // FIXME: We re-walk the edges in each RefSCC to establish whether it is
1243   // a leaf and connect it to the rest of the graph's parents lists. This is
1244   // really wasteful. We should instead do this during the DFS to avoid yet
1245   // another edge walk.
1246   for (RefSCC *RC : Result)
1247     G->connectRefSCC(*RC);
1248 
1249   // Now erase all but the root's SCCs.
1250   SCCs.erase(remove_if(SCCs,
1251                        [&](SCC *C) {
1252                          return PostOrderMapping.lookup(&*C->begin()) !=
1253                                 RootPostOrderNumber;
1254                        }),
1255              SCCs.end());
1256   SCCIndices.clear();
1257   for (int i = 0, Size = SCCs.size(); i < Size; ++i)
1258     SCCIndices[SCCs[i]] = i;
1259 
1260 #ifndef NDEBUG
1261   // Now we need to reconnect the current (root) SCC to the graph. We do this
1262   // manually because we can special case our leaf handling and detect errors.
1263   bool IsLeaf = true;
1264 #endif
1265   for (SCC *C : SCCs)
1266     for (Node &N : *C) {
1267       for (Edge &E : N) {
1268         assert(E.getNode() && "Cannot have a missing node in a visited SCC!");
1269         RefSCC &ChildRC = *G->lookupRefSCC(*E.getNode());
1270         if (&ChildRC == this)
1271           continue;
1272         ChildRC.Parents.insert(this);
1273 #ifndef NDEBUG
1274         IsLeaf = false;
1275 #endif
1276       }
1277     }
1278 #ifndef NDEBUG
1279   if (!Result.empty())
1280     assert(!IsLeaf && "This SCC cannot be a leaf as we have split out new "
1281                       "SCCs by removing this edge.");
1282   if (none_of(G->LeafRefSCCs, [&](RefSCC *C) { return C == this; }))
1283     assert(!IsLeaf && "This SCC cannot be a leaf as it already had child "
1284                       "SCCs before we removed this edge.");
1285 #endif
1286   // If this SCC stopped being a leaf through this edge removal, remove it from
1287   // the leaf SCC list. Note that this DTRT in the case where this was never
1288   // a leaf.
1289   // FIXME: As LeafRefSCCs could be very large, we might want to not walk the
1290   // entire list if this RefSCC wasn't a leaf before the edge removal.
1291   if (!Result.empty())
1292     G->LeafRefSCCs.erase(
1293         std::remove(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(), this),
1294         G->LeafRefSCCs.end());
1295 
1296   // Return the new list of SCCs.
1297   return Result;
1298 }
1299 
1300 void LazyCallGraph::insertEdge(Node &SourceN, Function &Target, Edge::Kind EK) {
1301   assert(SCCMap.empty() && DFSStack.empty() &&
1302          "This method cannot be called after SCCs have been formed!");
1303 
1304   return SourceN.insertEdgeInternal(Target, EK);
1305 }
1306 
1307 void LazyCallGraph::removeEdge(Node &SourceN, Function &Target) {
1308   assert(SCCMap.empty() && DFSStack.empty() &&
1309          "This method cannot be called after SCCs have been formed!");
1310 
1311   return SourceN.removeEdgeInternal(Target);
1312 }
1313 
1314 LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
1315   return *new (MappedN = BPA.Allocate()) Node(*this, F);
1316 }
1317 
1318 void LazyCallGraph::updateGraphPtrs() {
1319   // Process all nodes updating the graph pointers.
1320   {
1321     SmallVector<Node *, 16> Worklist;
1322     for (Edge &E : EntryEdges)
1323       if (Node *EntryN = E.getNode())
1324         Worklist.push_back(EntryN);
1325 
1326     while (!Worklist.empty()) {
1327       Node *N = Worklist.pop_back_val();
1328       N->G = this;
1329       for (Edge &E : N->Edges)
1330         if (Node *TargetN = E.getNode())
1331           Worklist.push_back(TargetN);
1332     }
1333   }
1334 
1335   // Process all SCCs updating the graph pointers.
1336   {
1337     SmallVector<RefSCC *, 16> Worklist(LeafRefSCCs.begin(), LeafRefSCCs.end());
1338 
1339     while (!Worklist.empty()) {
1340       RefSCC &C = *Worklist.pop_back_val();
1341       C.G = this;
1342       for (RefSCC &ParentC : C.parents())
1343         Worklist.push_back(&ParentC);
1344     }
1345   }
1346 }
1347 
1348 /// Build the internal SCCs for a RefSCC from a sequence of nodes.
1349 ///
1350 /// Appends the SCCs to the provided vector and updates the map with their
1351 /// indices. Both the vector and map must be empty when passed into this
1352 /// routine.
1353 void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
1354   assert(RC.SCCs.empty() && "Already built SCCs!");
1355   assert(RC.SCCIndices.empty() && "Already mapped SCC indices!");
1356 
1357   for (Node *N : Nodes) {
1358     assert(N->LowLink >= (*Nodes.begin())->LowLink &&
1359            "We cannot have a low link in an SCC lower than its root on the "
1360            "stack!");
1361 
1362     // This node will go into the next RefSCC, clear out its DFS and low link
1363     // as we scan.
1364     N->DFSNumber = N->LowLink = 0;
1365   }
1366 
1367   // Each RefSCC contains a DAG of the call SCCs. To build these, we do
1368   // a direct walk of the call edges using Tarjan's algorithm. We reuse the
1369   // internal storage as we won't need it for the outer graph's DFS any longer.
1370 
1371   SmallVector<std::pair<Node *, call_edge_iterator>, 16> DFSStack;
1372   SmallVector<Node *, 16> PendingSCCStack;
1373 
1374   // Scan down the stack and DFS across the call edges.
1375   for (Node *RootN : Nodes) {
1376     assert(DFSStack.empty() &&
1377            "Cannot begin a new root with a non-empty DFS stack!");
1378     assert(PendingSCCStack.empty() &&
1379            "Cannot begin a new root with pending nodes for an SCC!");
1380 
1381     // Skip any nodes we've already reached in the DFS.
1382     if (RootN->DFSNumber != 0) {
1383       assert(RootN->DFSNumber == -1 &&
1384              "Shouldn't have any mid-DFS root nodes!");
1385       continue;
1386     }
1387 
1388     RootN->DFSNumber = RootN->LowLink = 1;
1389     int NextDFSNumber = 2;
1390 
1391     DFSStack.push_back({RootN, RootN->call_begin()});
1392     do {
1393       Node *N;
1394       call_edge_iterator I;
1395       std::tie(N, I) = DFSStack.pop_back_val();
1396       auto E = N->call_end();
1397       while (I != E) {
1398         Node &ChildN = *I->getNode();
1399         if (ChildN.DFSNumber == 0) {
1400           // We haven't yet visited this child, so descend, pushing the current
1401           // node onto the stack.
1402           DFSStack.push_back({N, I});
1403 
1404           assert(!lookupSCC(ChildN) &&
1405                  "Found a node with 0 DFS number but already in an SCC!");
1406           ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
1407           N = &ChildN;
1408           I = N->call_begin();
1409           E = N->call_end();
1410           continue;
1411         }
1412 
1413         // If the child has already been added to some child component, it
1414         // couldn't impact the low-link of this parent because it isn't
1415         // connected, and thus its low-link isn't relevant so skip it.
1416         if (ChildN.DFSNumber == -1) {
1417           ++I;
1418           continue;
1419         }
1420 
1421         // Track the lowest linked child as the lowest link for this node.
1422         assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
1423         if (ChildN.LowLink < N->LowLink)
1424           N->LowLink = ChildN.LowLink;
1425 
1426         // Move to the next edge.
1427         ++I;
1428       }
1429 
1430       // We've finished processing N and its descendents, put it on our pending
1431       // SCC stack to eventually get merged into an SCC of nodes.
1432       PendingSCCStack.push_back(N);
1433 
1434       // If this node is linked to some lower entry, continue walking up the
1435       // stack.
1436       if (N->LowLink != N->DFSNumber)
1437         continue;
1438 
1439       // Otherwise, we've completed an SCC. Append it to our post order list of
1440       // SCCs.
1441       int RootDFSNumber = N->DFSNumber;
1442       // Find the range of the node stack by walking down until we pass the
1443       // root DFS number.
1444       auto SCCNodes = make_range(
1445           PendingSCCStack.rbegin(),
1446           find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
1447             return N->DFSNumber < RootDFSNumber;
1448           }));
1449       // Form a new SCC out of these nodes and then clear them off our pending
1450       // stack.
1451       RC.SCCs.push_back(createSCC(RC, SCCNodes));
1452       for (Node &N : *RC.SCCs.back()) {
1453         N.DFSNumber = N.LowLink = -1;
1454         SCCMap[&N] = RC.SCCs.back();
1455       }
1456       PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
1457     } while (!DFSStack.empty());
1458   }
1459 
1460   // Wire up the SCC indices.
1461   for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i)
1462     RC.SCCIndices[RC.SCCs[i]] = i;
1463 }
1464 
1465 // FIXME: We should move callers of this to embed the parent linking and leaf
1466 // tracking into their DFS in order to remove a full walk of all edges.
1467 void LazyCallGraph::connectRefSCC(RefSCC &RC) {
1468   // Walk all edges in the RefSCC (this remains linear as we only do this once
1469   // when we build the RefSCC) to connect it to the parent sets of its
1470   // children.
1471   bool IsLeaf = true;
1472   for (SCC &C : RC)
1473     for (Node &N : C)
1474       for (Edge &E : N) {
1475         assert(E.getNode() &&
1476                "Cannot have a missing node in a visited part of the graph!");
1477         RefSCC &ChildRC = *lookupRefSCC(*E.getNode());
1478         if (&ChildRC == &RC)
1479           continue;
1480         ChildRC.Parents.insert(&RC);
1481         IsLeaf = false;
1482       }
1483 
1484   // For the SCCs where we fine no child SCCs, add them to the leaf list.
1485   if (IsLeaf)
1486     LeafRefSCCs.push_back(&RC);
1487 }
1488 
1489 LazyCallGraph::RefSCC *LazyCallGraph::getNextRefSCCInPostOrder() {
1490   if (DFSStack.empty()) {
1491     Node *N;
1492     do {
1493       // If we've handled all candidate entry nodes to the SCC forest, we're
1494       // done.
1495       if (RefSCCEntryNodes.empty())
1496         return nullptr;
1497 
1498       N = &get(*RefSCCEntryNodes.pop_back_val());
1499     } while (N->DFSNumber != 0);
1500 
1501     // Found a new root, begin the DFS here.
1502     N->LowLink = N->DFSNumber = 1;
1503     NextDFSNumber = 2;
1504     DFSStack.push_back({N, N->begin()});
1505   }
1506 
1507   for (;;) {
1508     Node *N;
1509     edge_iterator I;
1510     std::tie(N, I) = DFSStack.pop_back_val();
1511 
1512     assert(N->DFSNumber > 0 && "We should always assign a DFS number "
1513                                "before placing a node onto the stack.");
1514 
1515     auto E = N->end();
1516     while (I != E) {
1517       Node &ChildN = I->getNode(*this);
1518       if (ChildN.DFSNumber == 0) {
1519         // We haven't yet visited this child, so descend, pushing the current
1520         // node onto the stack.
1521         DFSStack.push_back({N, N->begin()});
1522 
1523         assert(!SCCMap.count(&ChildN) &&
1524                "Found a node with 0 DFS number but already in an SCC!");
1525         ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
1526         N = &ChildN;
1527         I = N->begin();
1528         E = N->end();
1529         continue;
1530       }
1531 
1532       // If the child has already been added to some child component, it
1533       // couldn't impact the low-link of this parent because it isn't
1534       // connected, and thus its low-link isn't relevant so skip it.
1535       if (ChildN.DFSNumber == -1) {
1536         ++I;
1537         continue;
1538       }
1539 
1540       // Track the lowest linked child as the lowest link for this node.
1541       assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
1542       if (ChildN.LowLink < N->LowLink)
1543         N->LowLink = ChildN.LowLink;
1544 
1545       // Move to the next edge.
1546       ++I;
1547     }
1548 
1549     // We've finished processing N and its descendents, put it on our pending
1550     // SCC stack to eventually get merged into an SCC of nodes.
1551     PendingRefSCCStack.push_back(N);
1552 
1553     // If this node is linked to some lower entry, continue walking up the
1554     // stack.
1555     if (N->LowLink != N->DFSNumber) {
1556       assert(!DFSStack.empty() &&
1557              "We never found a viable root for an SCC to pop off!");
1558       continue;
1559     }
1560 
1561     // Otherwise, form a new RefSCC from the top of the pending node stack.
1562     int RootDFSNumber = N->DFSNumber;
1563     // Find the range of the node stack by walking down until we pass the
1564     // root DFS number.
1565     auto RefSCCNodes = node_stack_range(
1566         PendingRefSCCStack.rbegin(),
1567         find_if(reverse(PendingRefSCCStack), [RootDFSNumber](const Node *N) {
1568           return N->DFSNumber < RootDFSNumber;
1569         }));
1570     // Form a new RefSCC out of these nodes and then clear them off our pending
1571     // stack.
1572     RefSCC *NewRC = createRefSCC(*this);
1573     buildSCCs(*NewRC, RefSCCNodes);
1574     connectRefSCC(*NewRC);
1575     PendingRefSCCStack.erase(RefSCCNodes.end().base(),
1576                              PendingRefSCCStack.end());
1577 
1578     // We return the new node here. This essentially suspends the DFS walk
1579     // until another RefSCC is requested.
1580     return NewRC;
1581   }
1582 }
1583 
1584 char LazyCallGraphAnalysis::PassID;
1585 
1586 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
1587 
1588 static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) {
1589   OS << "  Edges in function: " << N.getFunction().getName() << "\n";
1590   for (const LazyCallGraph::Edge &E : N)
1591     OS << "    " << (E.isCall() ? "call" : "ref ") << " -> "
1592        << E.getFunction().getName() << "\n";
1593 
1594   OS << "\n";
1595 }
1596 
1597 static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) {
1598   ptrdiff_t Size = std::distance(C.begin(), C.end());
1599   OS << "    SCC with " << Size << " functions:\n";
1600 
1601   for (LazyCallGraph::Node &N : C)
1602     OS << "      " << N.getFunction().getName() << "\n";
1603 }
1604 
1605 static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) {
1606   ptrdiff_t Size = std::distance(C.begin(), C.end());
1607   OS << "  RefSCC with " << Size << " call SCCs:\n";
1608 
1609   for (LazyCallGraph::SCC &InnerC : C)
1610     printSCC(OS, InnerC);
1611 
1612   OS << "\n";
1613 }
1614 
1615 PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
1616                                                 ModuleAnalysisManager &AM) {
1617   LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
1618 
1619   OS << "Printing the call graph for module: " << M.getModuleIdentifier()
1620      << "\n\n";
1621 
1622   for (Function &F : M)
1623     printNode(OS, G.get(F));
1624 
1625   for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs())
1626     printRefSCC(OS, C);
1627 
1628   return PreservedAnalyses::all();
1629 }
1630 
1631 LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS)
1632     : OS(OS) {}
1633 
1634 static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) {
1635   std::string Name = "\"" + DOT::EscapeString(N.getFunction().getName()) + "\"";
1636 
1637   for (const LazyCallGraph::Edge &E : N) {
1638     OS << "  " << Name << " -> \""
1639        << DOT::EscapeString(E.getFunction().getName()) << "\"";
1640     if (!E.isCall()) // It is a ref edge.
1641       OS << " [style=dashed,label=\"ref\"]";
1642     OS << ";\n";
1643   }
1644 
1645   OS << "\n";
1646 }
1647 
1648 PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M,
1649                                                    ModuleAnalysisManager &AM) {
1650   LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
1651 
1652   OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n";
1653 
1654   for (Function &F : M)
1655     printNodeDOT(OS, G.get(F));
1656 
1657   OS << "}\n";
1658 
1659   return PreservedAnalyses::all();
1660 }
1661