1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "llvm/Analysis/LazyCallGraph.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/Sequence.h"
13 #include "llvm/ADT/SmallPtrSet.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/iterator_range.h"
16 #include "llvm/Analysis/TargetLibraryInfo.h"
17 #include "llvm/Config/llvm-config.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/Function.h"
20 #include "llvm/IR/GlobalVariable.h"
21 #include "llvm/IR/InstIterator.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/PassManager.h"
25 #include "llvm/Support/Casting.h"
26 #include "llvm/Support/Compiler.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/GraphWriter.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <iterator>
33 #include <string>
34 #include <tuple>
35 #include <utility>
36
37 #ifdef EXPENSIVE_CHECKS
38 #include "llvm/ADT/ScopeExit.h"
39 #endif
40
41 using namespace llvm;
42
43 #define DEBUG_TYPE "lcg"
44
insertEdgeInternal(Node & TargetN,Edge::Kind EK)45 void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node &TargetN,
46 Edge::Kind EK) {
47 EdgeIndexMap.insert({&TargetN, Edges.size()});
48 Edges.emplace_back(TargetN, EK);
49 }
50
setEdgeKind(Node & TargetN,Edge::Kind EK)51 void LazyCallGraph::EdgeSequence::setEdgeKind(Node &TargetN, Edge::Kind EK) {
52 Edges[EdgeIndexMap.find(&TargetN)->second].setKind(EK);
53 }
54
removeEdgeInternal(Node & TargetN)55 bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node &TargetN) {
56 auto IndexMapI = EdgeIndexMap.find(&TargetN);
57 if (IndexMapI == EdgeIndexMap.end())
58 return false;
59
60 Edges[IndexMapI->second] = Edge();
61 EdgeIndexMap.erase(IndexMapI);
62 return true;
63 }
64
addEdge(SmallVectorImpl<LazyCallGraph::Edge> & Edges,DenseMap<LazyCallGraph::Node *,int> & EdgeIndexMap,LazyCallGraph::Node & N,LazyCallGraph::Edge::Kind EK)65 static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges,
66 DenseMap<LazyCallGraph::Node *, int> &EdgeIndexMap,
67 LazyCallGraph::Node &N, LazyCallGraph::Edge::Kind EK) {
68 if (!EdgeIndexMap.insert({&N, Edges.size()}).second)
69 return;
70
71 LLVM_DEBUG(dbgs() << " Added callable function: " << N.getName() << "\n");
72 Edges.emplace_back(LazyCallGraph::Edge(N, EK));
73 }
74
populateSlow()75 LazyCallGraph::EdgeSequence &LazyCallGraph::Node::populateSlow() {
76 assert(!Edges && "Must not have already populated the edges for this node!");
77
78 LLVM_DEBUG(dbgs() << " Adding functions called by '" << getName()
79 << "' to the graph.\n");
80
81 Edges = EdgeSequence();
82
83 SmallVector<Constant *, 16> Worklist;
84 SmallPtrSet<Function *, 4> Callees;
85 SmallPtrSet<Constant *, 16> Visited;
86
87 // Find all the potential call graph edges in this function. We track both
88 // actual call edges and indirect references to functions. The direct calls
89 // are trivially added, but to accumulate the latter we walk the instructions
90 // and add every operand which is a constant to the worklist to process
91 // afterward.
92 //
93 // Note that we consider *any* function with a definition to be a viable
94 // edge. Even if the function's definition is subject to replacement by
95 // some other module (say, a weak definition) there may still be
96 // optimizations which essentially speculate based on the definition and
97 // a way to check that the specific definition is in fact the one being
98 // used. For example, this could be done by moving the weak definition to
99 // a strong (internal) definition and making the weak definition be an
100 // alias. Then a test of the address of the weak function against the new
101 // strong definition's address would be an effective way to determine the
102 // safety of optimizing a direct call edge.
103 for (BasicBlock &BB : *F)
104 for (Instruction &I : BB) {
105 if (auto *CB = dyn_cast<CallBase>(&I))
106 if (Function *Callee = CB->getCalledFunction())
107 if (!Callee->isDeclaration())
108 if (Callees.insert(Callee).second) {
109 Visited.insert(Callee);
110 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*Callee),
111 LazyCallGraph::Edge::Call);
112 }
113
114 for (Value *Op : I.operand_values())
115 if (Constant *C = dyn_cast<Constant>(Op))
116 if (Visited.insert(C).second)
117 Worklist.push_back(C);
118 }
119
120 // We've collected all the constant (and thus potentially function or
121 // function containing) operands to all of the instructions in the function.
122 // Process them (recursively) collecting every function found.
123 visitReferences(Worklist, Visited, [&](Function &F) {
124 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(F),
125 LazyCallGraph::Edge::Ref);
126 });
127
128 // Add implicit reference edges to any defined libcall functions (if we
129 // haven't found an explicit edge).
130 for (auto *F : G->LibFunctions)
131 if (!Visited.count(F))
132 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*F),
133 LazyCallGraph::Edge::Ref);
134
135 return *Edges;
136 }
137
replaceFunction(Function & NewF)138 void LazyCallGraph::Node::replaceFunction(Function &NewF) {
139 assert(F != &NewF && "Must not replace a function with itself!");
140 F = &NewF;
141 }
142
143 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const144 LLVM_DUMP_METHOD void LazyCallGraph::Node::dump() const {
145 dbgs() << *this << '\n';
146 }
147 #endif
148
isKnownLibFunction(Function & F,TargetLibraryInfo & TLI)149 static bool isKnownLibFunction(Function &F, TargetLibraryInfo &TLI) {
150 LibFunc LF;
151
152 // Either this is a normal library function or a "vectorizable"
153 // function. Not using the VFDatabase here because this query
154 // is related only to libraries handled via the TLI.
155 return TLI.getLibFunc(F, LF) ||
156 TLI.isKnownVectorFunctionInLibrary(F.getName());
157 }
158
LazyCallGraph(Module & M,function_ref<TargetLibraryInfo & (Function &)> GetTLI)159 LazyCallGraph::LazyCallGraph(
160 Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
161 LLVM_DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
162 << "\n");
163 for (Function &F : M) {
164 if (F.isDeclaration())
165 continue;
166 // If this function is a known lib function to LLVM then we want to
167 // synthesize reference edges to it to model the fact that LLVM can turn
168 // arbitrary code into a library function call.
169 if (isKnownLibFunction(F, GetTLI(F)))
170 LibFunctions.insert(&F);
171
172 if (F.hasLocalLinkage())
173 continue;
174
175 // External linkage defined functions have edges to them from other
176 // modules.
177 LLVM_DEBUG(dbgs() << " Adding '" << F.getName()
178 << "' to entry set of the graph.\n");
179 addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), Edge::Ref);
180 }
181
182 // Externally visible aliases of internal functions are also viable entry
183 // edges to the module.
184 for (auto &A : M.aliases()) {
185 if (A.hasLocalLinkage())
186 continue;
187 if (Function* F = dyn_cast<Function>(A.getAliasee())) {
188 LLVM_DEBUG(dbgs() << " Adding '" << F->getName()
189 << "' with alias '" << A.getName()
190 << "' to entry set of the graph.\n");
191 addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(*F), Edge::Ref);
192 }
193 }
194
195 // Now add entry nodes for functions reachable via initializers to globals.
196 SmallVector<Constant *, 16> Worklist;
197 SmallPtrSet<Constant *, 16> Visited;
198 for (GlobalVariable &GV : M.globals())
199 if (GV.hasInitializer())
200 if (Visited.insert(GV.getInitializer()).second)
201 Worklist.push_back(GV.getInitializer());
202
203 LLVM_DEBUG(
204 dbgs() << " Adding functions referenced by global initializers to the "
205 "entry set.\n");
206 visitReferences(Worklist, Visited, [&](Function &F) {
207 addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F),
208 LazyCallGraph::Edge::Ref);
209 });
210 }
211
LazyCallGraph(LazyCallGraph && G)212 LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
213 : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
214 EntryEdges(std::move(G.EntryEdges)), SCCBPA(std::move(G.SCCBPA)),
215 SCCMap(std::move(G.SCCMap)),
216 LibFunctions(std::move(G.LibFunctions)) {
217 updateGraphPtrs();
218 }
219
invalidate(Module &,const PreservedAnalyses & PA,ModuleAnalysisManager::Invalidator &)220 bool LazyCallGraph::invalidate(Module &, const PreservedAnalyses &PA,
221 ModuleAnalysisManager::Invalidator &) {
222 // Check whether the analysis, all analyses on functions, or the function's
223 // CFG have been preserved.
224 auto PAC = PA.getChecker<llvm::LazyCallGraphAnalysis>();
225 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>());
226 }
227
operator =(LazyCallGraph && G)228 LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
229 BPA = std::move(G.BPA);
230 NodeMap = std::move(G.NodeMap);
231 EntryEdges = std::move(G.EntryEdges);
232 SCCBPA = std::move(G.SCCBPA);
233 SCCMap = std::move(G.SCCMap);
234 LibFunctions = std::move(G.LibFunctions);
235 updateGraphPtrs();
236 return *this;
237 }
238
239 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const240 LLVM_DUMP_METHOD void LazyCallGraph::SCC::dump() const {
241 dbgs() << *this << '\n';
242 }
243 #endif
244
245 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
verify()246 void LazyCallGraph::SCC::verify() {
247 assert(OuterRefSCC && "Can't have a null RefSCC!");
248 assert(!Nodes.empty() && "Can't have an empty SCC!");
249
250 for (Node *N : Nodes) {
251 assert(N && "Can't have a null node!");
252 assert(OuterRefSCC->G->lookupSCC(*N) == this &&
253 "Node does not map to this SCC!");
254 assert(N->DFSNumber == -1 &&
255 "Must set DFS numbers to -1 when adding a node to an SCC!");
256 assert(N->LowLink == -1 &&
257 "Must set low link to -1 when adding a node to an SCC!");
258 for (Edge &E : **N)
259 assert(E.getNode().isPopulated() && "Can't have an unpopulated node!");
260
261 #ifdef EXPENSIVE_CHECKS
262 // Verify that all nodes in this SCC can reach all other nodes.
263 SmallVector<Node *, 4> Worklist;
264 SmallPtrSet<Node *, 4> Visited;
265 Worklist.push_back(N);
266 while (!Worklist.empty()) {
267 Node *VisitingNode = Worklist.pop_back_val();
268 if (!Visited.insert(VisitingNode).second)
269 continue;
270 for (Edge &E : (*VisitingNode)->calls())
271 Worklist.push_back(&E.getNode());
272 }
273 for (Node *NodeToVisit : Nodes) {
274 assert(Visited.contains(NodeToVisit) &&
275 "Cannot reach all nodes within SCC");
276 }
277 #endif
278 }
279 }
280 #endif
281
isParentOf(const SCC & C) const282 bool LazyCallGraph::SCC::isParentOf(const SCC &C) const {
283 if (this == &C)
284 return false;
285
286 for (Node &N : *this)
287 for (Edge &E : N->calls())
288 if (OuterRefSCC->G->lookupSCC(E.getNode()) == &C)
289 return true;
290
291 // No edges found.
292 return false;
293 }
294
isAncestorOf(const SCC & TargetC) const295 bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const {
296 if (this == &TargetC)
297 return false;
298
299 LazyCallGraph &G = *OuterRefSCC->G;
300
301 // Start with this SCC.
302 SmallPtrSet<const SCC *, 16> Visited = {this};
303 SmallVector<const SCC *, 16> Worklist = {this};
304
305 // Walk down the graph until we run out of edges or find a path to TargetC.
306 do {
307 const SCC &C = *Worklist.pop_back_val();
308 for (Node &N : C)
309 for (Edge &E : N->calls()) {
310 SCC *CalleeC = G.lookupSCC(E.getNode());
311 if (!CalleeC)
312 continue;
313
314 // If the callee's SCC is the TargetC, we're done.
315 if (CalleeC == &TargetC)
316 return true;
317
318 // If this is the first time we've reached this SCC, put it on the
319 // worklist to recurse through.
320 if (Visited.insert(CalleeC).second)
321 Worklist.push_back(CalleeC);
322 }
323 } while (!Worklist.empty());
324
325 // No paths found.
326 return false;
327 }
328
RefSCC(LazyCallGraph & G)329 LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {}
330
331 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const332 LLVM_DUMP_METHOD void LazyCallGraph::RefSCC::dump() const {
333 dbgs() << *this << '\n';
334 }
335 #endif
336
337 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
verify()338 void LazyCallGraph::RefSCC::verify() {
339 assert(G && "Can't have a null graph!");
340 assert(!SCCs.empty() && "Can't have an empty SCC!");
341
342 // Verify basic properties of the SCCs.
343 SmallPtrSet<SCC *, 4> SCCSet;
344 for (SCC *C : SCCs) {
345 assert(C && "Can't have a null SCC!");
346 C->verify();
347 assert(&C->getOuterRefSCC() == this &&
348 "SCC doesn't think it is inside this RefSCC!");
349 bool Inserted = SCCSet.insert(C).second;
350 assert(Inserted && "Found a duplicate SCC!");
351 auto IndexIt = SCCIndices.find(C);
352 assert(IndexIt != SCCIndices.end() &&
353 "Found an SCC that doesn't have an index!");
354 }
355
356 // Check that our indices map correctly.
357 for (auto &SCCIndexPair : SCCIndices) {
358 SCC *C = SCCIndexPair.first;
359 int i = SCCIndexPair.second;
360 assert(C && "Can't have a null SCC in the indices!");
361 assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!");
362 assert(SCCs[i] == C && "Index doesn't point to SCC!");
363 }
364
365 // Check that the SCCs are in fact in post-order.
366 for (int i = 0, Size = SCCs.size(); i < Size; ++i) {
367 SCC &SourceSCC = *SCCs[i];
368 for (Node &N : SourceSCC)
369 for (Edge &E : *N) {
370 if (!E.isCall())
371 continue;
372 SCC &TargetSCC = *G->lookupSCC(E.getNode());
373 if (&TargetSCC.getOuterRefSCC() == this) {
374 assert(SCCIndices.find(&TargetSCC)->second <= i &&
375 "Edge between SCCs violates post-order relationship.");
376 continue;
377 }
378 }
379 }
380
381 #ifdef EXPENSIVE_CHECKS
382 // Verify that all nodes in this RefSCC can reach all other nodes.
383 SmallVector<Node *> Nodes;
384 for (SCC *C : SCCs) {
385 for (Node &N : *C)
386 Nodes.push_back(&N);
387 }
388 for (Node *N : Nodes) {
389 SmallVector<Node *, 4> Worklist;
390 SmallPtrSet<Node *, 4> Visited;
391 Worklist.push_back(N);
392 while (!Worklist.empty()) {
393 Node *VisitingNode = Worklist.pop_back_val();
394 if (!Visited.insert(VisitingNode).second)
395 continue;
396 for (Edge &E : **VisitingNode)
397 Worklist.push_back(&E.getNode());
398 }
399 for (Node *NodeToVisit : Nodes) {
400 assert(Visited.contains(NodeToVisit) &&
401 "Cannot reach all nodes within RefSCC");
402 }
403 }
404 #endif
405 }
406 #endif
407
isParentOf(const RefSCC & RC) const408 bool LazyCallGraph::RefSCC::isParentOf(const RefSCC &RC) const {
409 if (&RC == this)
410 return false;
411
412 // Search all edges to see if this is a parent.
413 for (SCC &C : *this)
414 for (Node &N : C)
415 for (Edge &E : *N)
416 if (G->lookupRefSCC(E.getNode()) == &RC)
417 return true;
418
419 return false;
420 }
421
isAncestorOf(const RefSCC & RC) const422 bool LazyCallGraph::RefSCC::isAncestorOf(const RefSCC &RC) const {
423 if (&RC == this)
424 return false;
425
426 // For each descendant of this RefSCC, see if one of its children is the
427 // argument. If not, add that descendant to the worklist and continue
428 // searching.
429 SmallVector<const RefSCC *, 4> Worklist;
430 SmallPtrSet<const RefSCC *, 4> Visited;
431 Worklist.push_back(this);
432 Visited.insert(this);
433 do {
434 const RefSCC &DescendantRC = *Worklist.pop_back_val();
435 for (SCC &C : DescendantRC)
436 for (Node &N : C)
437 for (Edge &E : *N) {
438 auto *ChildRC = G->lookupRefSCC(E.getNode());
439 if (ChildRC == &RC)
440 return true;
441 if (!ChildRC || !Visited.insert(ChildRC).second)
442 continue;
443 Worklist.push_back(ChildRC);
444 }
445 } while (!Worklist.empty());
446
447 return false;
448 }
449
450 /// Generic helper that updates a postorder sequence of SCCs for a potentially
451 /// cycle-introducing edge insertion.
452 ///
453 /// A postorder sequence of SCCs of a directed graph has one fundamental
454 /// property: all deges in the DAG of SCCs point "up" the sequence. That is,
455 /// all edges in the SCC DAG point to prior SCCs in the sequence.
456 ///
457 /// This routine both updates a postorder sequence and uses that sequence to
458 /// compute the set of SCCs connected into a cycle. It should only be called to
459 /// insert a "downward" edge which will require changing the sequence to
460 /// restore it to a postorder.
461 ///
462 /// When inserting an edge from an earlier SCC to a later SCC in some postorder
463 /// sequence, all of the SCCs which may be impacted are in the closed range of
464 /// those two within the postorder sequence. The algorithm used here to restore
465 /// the state is as follows:
466 ///
467 /// 1) Starting from the source SCC, construct a set of SCCs which reach the
468 /// source SCC consisting of just the source SCC. Then scan toward the
469 /// target SCC in postorder and for each SCC, if it has an edge to an SCC
470 /// in the set, add it to the set. Otherwise, the source SCC is not
471 /// a successor, move it in the postorder sequence to immediately before
472 /// the source SCC, shifting the source SCC and all SCCs in the set one
473 /// position toward the target SCC. Stop scanning after processing the
474 /// target SCC.
475 /// 2) If the source SCC is now past the target SCC in the postorder sequence,
476 /// and thus the new edge will flow toward the start, we are done.
477 /// 3) Otherwise, starting from the target SCC, walk all edges which reach an
478 /// SCC between the source and the target, and add them to the set of
479 /// connected SCCs, then recurse through them. Once a complete set of the
480 /// SCCs the target connects to is known, hoist the remaining SCCs between
481 /// the source and the target to be above the target. Note that there is no
482 /// need to process the source SCC, it is already known to connect.
483 /// 4) At this point, all of the SCCs in the closed range between the source
484 /// SCC and the target SCC in the postorder sequence are connected,
485 /// including the target SCC and the source SCC. Inserting the edge from
486 /// the source SCC to the target SCC will form a cycle out of precisely
487 /// these SCCs. Thus we can merge all of the SCCs in this closed range into
488 /// a single SCC.
489 ///
490 /// This process has various important properties:
491 /// - Only mutates the SCCs when adding the edge actually changes the SCC
492 /// structure.
493 /// - Never mutates SCCs which are unaffected by the change.
494 /// - Updates the postorder sequence to correctly satisfy the postorder
495 /// constraint after the edge is inserted.
496 /// - Only reorders SCCs in the closed postorder sequence from the source to
497 /// the target, so easy to bound how much has changed even in the ordering.
498 /// - Big-O is the number of edges in the closed postorder range of SCCs from
499 /// source to target.
500 ///
501 /// This helper routine, in addition to updating the postorder sequence itself
502 /// will also update a map from SCCs to indices within that sequence.
503 ///
504 /// The sequence and the map must operate on pointers to the SCC type.
505 ///
506 /// Two callbacks must be provided. The first computes the subset of SCCs in
507 /// the postorder closed range from the source to the target which connect to
508 /// the source SCC via some (transitive) set of edges. The second computes the
509 /// subset of the same range which the target SCC connects to via some
510 /// (transitive) set of edges. Both callbacks should populate the set argument
511 /// provided.
512 template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT,
513 typename ComputeSourceConnectedSetCallableT,
514 typename ComputeTargetConnectedSetCallableT>
515 static iterator_range<typename PostorderSequenceT::iterator>
updatePostorderSequenceForEdgeInsertion(SCCT & SourceSCC,SCCT & TargetSCC,PostorderSequenceT & SCCs,SCCIndexMapT & SCCIndices,ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet,ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet)516 updatePostorderSequenceForEdgeInsertion(
517 SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs,
518 SCCIndexMapT &SCCIndices,
519 ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet,
520 ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) {
521 int SourceIdx = SCCIndices[&SourceSCC];
522 int TargetIdx = SCCIndices[&TargetSCC];
523 assert(SourceIdx < TargetIdx && "Cannot have equal indices here!");
524
525 SmallPtrSet<SCCT *, 4> ConnectedSet;
526
527 // Compute the SCCs which (transitively) reach the source.
528 ComputeSourceConnectedSet(ConnectedSet);
529
530 // Partition the SCCs in this part of the port-order sequence so only SCCs
531 // connecting to the source remain between it and the target. This is
532 // a benign partition as it preserves postorder.
533 auto SourceI = std::stable_partition(
534 SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1,
535 [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); });
536 for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i)
537 SCCIndices.find(SCCs[i])->second = i;
538
539 // If the target doesn't connect to the source, then we've corrected the
540 // post-order and there are no cycles formed.
541 if (!ConnectedSet.count(&TargetSCC)) {
542 assert(SourceI > (SCCs.begin() + SourceIdx) &&
543 "Must have moved the source to fix the post-order.");
544 assert(*std::prev(SourceI) == &TargetSCC &&
545 "Last SCC to move should have bene the target.");
546
547 // Return an empty range at the target SCC indicating there is nothing to
548 // merge.
549 return make_range(std::prev(SourceI), std::prev(SourceI));
550 }
551
552 assert(SCCs[TargetIdx] == &TargetSCC &&
553 "Should not have moved target if connected!");
554 SourceIdx = SourceI - SCCs.begin();
555 assert(SCCs[SourceIdx] == &SourceSCC &&
556 "Bad updated index computation for the source SCC!");
557
558
559 // See whether there are any remaining intervening SCCs between the source
560 // and target. If so we need to make sure they all are reachable form the
561 // target.
562 if (SourceIdx + 1 < TargetIdx) {
563 ConnectedSet.clear();
564 ComputeTargetConnectedSet(ConnectedSet);
565
566 // Partition SCCs so that only SCCs reached from the target remain between
567 // the source and the target. This preserves postorder.
568 auto TargetI = std::stable_partition(
569 SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1,
570 [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); });
571 for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i)
572 SCCIndices.find(SCCs[i])->second = i;
573 TargetIdx = std::prev(TargetI) - SCCs.begin();
574 assert(SCCs[TargetIdx] == &TargetSCC &&
575 "Should always end with the target!");
576 }
577
578 // At this point, we know that connecting source to target forms a cycle
579 // because target connects back to source, and we know that all of the SCCs
580 // between the source and target in the postorder sequence participate in that
581 // cycle.
582 return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx);
583 }
584
585 bool
switchInternalEdgeToCall(Node & SourceN,Node & TargetN,function_ref<void (ArrayRef<SCC * > MergeSCCs)> MergeCB)586 LazyCallGraph::RefSCC::switchInternalEdgeToCall(
587 Node &SourceN, Node &TargetN,
588 function_ref<void(ArrayRef<SCC *> MergeSCCs)> MergeCB) {
589 assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
590 SmallVector<SCC *, 1> DeletedSCCs;
591
592 #ifdef EXPENSIVE_CHECKS
593 verify();
594 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
595 #endif
596
597 SCC &SourceSCC = *G->lookupSCC(SourceN);
598 SCC &TargetSCC = *G->lookupSCC(TargetN);
599
600 // If the two nodes are already part of the same SCC, we're also done as
601 // we've just added more connectivity.
602 if (&SourceSCC == &TargetSCC) {
603 SourceN->setEdgeKind(TargetN, Edge::Call);
604 return false; // No new cycle.
605 }
606
607 // At this point we leverage the postorder list of SCCs to detect when the
608 // insertion of an edge changes the SCC structure in any way.
609 //
610 // First and foremost, we can eliminate the need for any changes when the
611 // edge is toward the beginning of the postorder sequence because all edges
612 // flow in that direction already. Thus adding a new one cannot form a cycle.
613 int SourceIdx = SCCIndices[&SourceSCC];
614 int TargetIdx = SCCIndices[&TargetSCC];
615 if (TargetIdx < SourceIdx) {
616 SourceN->setEdgeKind(TargetN, Edge::Call);
617 return false; // No new cycle.
618 }
619
620 // Compute the SCCs which (transitively) reach the source.
621 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
622 #ifdef EXPENSIVE_CHECKS
623 // Check that the RefSCC is still valid before computing this as the
624 // results will be nonsensical of we've broken its invariants.
625 verify();
626 #endif
627 ConnectedSet.insert(&SourceSCC);
628 auto IsConnected = [&](SCC &C) {
629 for (Node &N : C)
630 for (Edge &E : N->calls())
631 if (ConnectedSet.count(G->lookupSCC(E.getNode())))
632 return true;
633
634 return false;
635 };
636
637 for (SCC *C :
638 make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1))
639 if (IsConnected(*C))
640 ConnectedSet.insert(C);
641 };
642
643 // Use a normal worklist to find which SCCs the target connects to. We still
644 // bound the search based on the range in the postorder list we care about,
645 // but because this is forward connectivity we just "recurse" through the
646 // edges.
647 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
648 #ifdef EXPENSIVE_CHECKS
649 // Check that the RefSCC is still valid before computing this as the
650 // results will be nonsensical of we've broken its invariants.
651 verify();
652 #endif
653 ConnectedSet.insert(&TargetSCC);
654 SmallVector<SCC *, 4> Worklist;
655 Worklist.push_back(&TargetSCC);
656 do {
657 SCC &C = *Worklist.pop_back_val();
658 for (Node &N : C)
659 for (Edge &E : *N) {
660 if (!E.isCall())
661 continue;
662 SCC &EdgeC = *G->lookupSCC(E.getNode());
663 if (&EdgeC.getOuterRefSCC() != this)
664 // Not in this RefSCC...
665 continue;
666 if (SCCIndices.find(&EdgeC)->second <= SourceIdx)
667 // Not in the postorder sequence between source and target.
668 continue;
669
670 if (ConnectedSet.insert(&EdgeC).second)
671 Worklist.push_back(&EdgeC);
672 }
673 } while (!Worklist.empty());
674 };
675
676 // Use a generic helper to update the postorder sequence of SCCs and return
677 // a range of any SCCs connected into a cycle by inserting this edge. This
678 // routine will also take care of updating the indices into the postorder
679 // sequence.
680 auto MergeRange = updatePostorderSequenceForEdgeInsertion(
681 SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet,
682 ComputeTargetConnectedSet);
683
684 // Run the user's callback on the merged SCCs before we actually merge them.
685 if (MergeCB)
686 MergeCB(makeArrayRef(MergeRange.begin(), MergeRange.end()));
687
688 // If the merge range is empty, then adding the edge didn't actually form any
689 // new cycles. We're done.
690 if (MergeRange.empty()) {
691 // Now that the SCC structure is finalized, flip the kind to call.
692 SourceN->setEdgeKind(TargetN, Edge::Call);
693 return false; // No new cycle.
694 }
695
696 #ifdef EXPENSIVE_CHECKS
697 // Before merging, check that the RefSCC remains valid after all the
698 // postorder updates.
699 verify();
700 #endif
701
702 // Otherwise we need to merge all of the SCCs in the cycle into a single
703 // result SCC.
704 //
705 // NB: We merge into the target because all of these functions were already
706 // reachable from the target, meaning any SCC-wide properties deduced about it
707 // other than the set of functions within it will not have changed.
708 for (SCC *C : MergeRange) {
709 assert(C != &TargetSCC &&
710 "We merge *into* the target and shouldn't process it here!");
711 SCCIndices.erase(C);
712 TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end());
713 for (Node *N : C->Nodes)
714 G->SCCMap[N] = &TargetSCC;
715 C->clear();
716 DeletedSCCs.push_back(C);
717 }
718
719 // Erase the merged SCCs from the list and update the indices of the
720 // remaining SCCs.
721 int IndexOffset = MergeRange.end() - MergeRange.begin();
722 auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end());
723 for (SCC *C : make_range(EraseEnd, SCCs.end()))
724 SCCIndices[C] -= IndexOffset;
725
726 // Now that the SCC structure is finalized, flip the kind to call.
727 SourceN->setEdgeKind(TargetN, Edge::Call);
728
729 // And we're done, but we did form a new cycle.
730 return true;
731 }
732
switchTrivialInternalEdgeToRef(Node & SourceN,Node & TargetN)733 void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node &SourceN,
734 Node &TargetN) {
735 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
736
737 #ifdef EXPENSIVE_CHECKS
738 verify();
739 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
740 #endif
741
742 assert(G->lookupRefSCC(SourceN) == this &&
743 "Source must be in this RefSCC.");
744 assert(G->lookupRefSCC(TargetN) == this &&
745 "Target must be in this RefSCC.");
746 assert(G->lookupSCC(SourceN) != G->lookupSCC(TargetN) &&
747 "Source and Target must be in separate SCCs for this to be trivial!");
748
749 // Set the edge kind.
750 SourceN->setEdgeKind(TargetN, Edge::Ref);
751 }
752
753 iterator_range<LazyCallGraph::RefSCC::iterator>
switchInternalEdgeToRef(Node & SourceN,Node & TargetN)754 LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) {
755 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
756
757 #ifdef EXPENSIVE_CHECKS
758 verify();
759 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
760 #endif
761
762 assert(G->lookupRefSCC(SourceN) == this &&
763 "Source must be in this RefSCC.");
764 assert(G->lookupRefSCC(TargetN) == this &&
765 "Target must be in this RefSCC.");
766
767 SCC &TargetSCC = *G->lookupSCC(TargetN);
768 assert(G->lookupSCC(SourceN) == &TargetSCC && "Source and Target must be in "
769 "the same SCC to require the "
770 "full CG update.");
771
772 // Set the edge kind.
773 SourceN->setEdgeKind(TargetN, Edge::Ref);
774
775 // Otherwise we are removing a call edge from a single SCC. This may break
776 // the cycle. In order to compute the new set of SCCs, we need to do a small
777 // DFS over the nodes within the SCC to form any sub-cycles that remain as
778 // distinct SCCs and compute a postorder over the resulting SCCs.
779 //
780 // However, we specially handle the target node. The target node is known to
781 // reach all other nodes in the original SCC by definition. This means that
782 // we want the old SCC to be replaced with an SCC containing that node as it
783 // will be the root of whatever SCC DAG results from the DFS. Assumptions
784 // about an SCC such as the set of functions called will continue to hold,
785 // etc.
786
787 SCC &OldSCC = TargetSCC;
788 SmallVector<std::pair<Node *, EdgeSequence::call_iterator>, 16> DFSStack;
789 SmallVector<Node *, 16> PendingSCCStack;
790 SmallVector<SCC *, 4> NewSCCs;
791
792 // Prepare the nodes for a fresh DFS.
793 SmallVector<Node *, 16> Worklist;
794 Worklist.swap(OldSCC.Nodes);
795 for (Node *N : Worklist) {
796 N->DFSNumber = N->LowLink = 0;
797 G->SCCMap.erase(N);
798 }
799
800 // Force the target node to be in the old SCC. This also enables us to take
801 // a very significant short-cut in the standard Tarjan walk to re-form SCCs
802 // below: whenever we build an edge that reaches the target node, we know
803 // that the target node eventually connects back to all other nodes in our
804 // walk. As a consequence, we can detect and handle participants in that
805 // cycle without walking all the edges that form this connection, and instead
806 // by relying on the fundamental guarantee coming into this operation (all
807 // nodes are reachable from the target due to previously forming an SCC).
808 TargetN.DFSNumber = TargetN.LowLink = -1;
809 OldSCC.Nodes.push_back(&TargetN);
810 G->SCCMap[&TargetN] = &OldSCC;
811
812 // Scan down the stack and DFS across the call edges.
813 for (Node *RootN : Worklist) {
814 assert(DFSStack.empty() &&
815 "Cannot begin a new root with a non-empty DFS stack!");
816 assert(PendingSCCStack.empty() &&
817 "Cannot begin a new root with pending nodes for an SCC!");
818
819 // Skip any nodes we've already reached in the DFS.
820 if (RootN->DFSNumber != 0) {
821 assert(RootN->DFSNumber == -1 &&
822 "Shouldn't have any mid-DFS root nodes!");
823 continue;
824 }
825
826 RootN->DFSNumber = RootN->LowLink = 1;
827 int NextDFSNumber = 2;
828
829 DFSStack.push_back({RootN, (*RootN)->call_begin()});
830 do {
831 Node *N;
832 EdgeSequence::call_iterator I;
833 std::tie(N, I) = DFSStack.pop_back_val();
834 auto E = (*N)->call_end();
835 while (I != E) {
836 Node &ChildN = I->getNode();
837 if (ChildN.DFSNumber == 0) {
838 // We haven't yet visited this child, so descend, pushing the current
839 // node onto the stack.
840 DFSStack.push_back({N, I});
841
842 assert(!G->SCCMap.count(&ChildN) &&
843 "Found a node with 0 DFS number but already in an SCC!");
844 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
845 N = &ChildN;
846 I = (*N)->call_begin();
847 E = (*N)->call_end();
848 continue;
849 }
850
851 // Check for the child already being part of some component.
852 if (ChildN.DFSNumber == -1) {
853 if (G->lookupSCC(ChildN) == &OldSCC) {
854 // If the child is part of the old SCC, we know that it can reach
855 // every other node, so we have formed a cycle. Pull the entire DFS
856 // and pending stacks into it. See the comment above about setting
857 // up the old SCC for why we do this.
858 int OldSize = OldSCC.size();
859 OldSCC.Nodes.push_back(N);
860 OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end());
861 PendingSCCStack.clear();
862 while (!DFSStack.empty())
863 OldSCC.Nodes.push_back(DFSStack.pop_back_val().first);
864 for (Node &N : drop_begin(OldSCC, OldSize)) {
865 N.DFSNumber = N.LowLink = -1;
866 G->SCCMap[&N] = &OldSCC;
867 }
868 N = nullptr;
869 break;
870 }
871
872 // If the child has already been added to some child component, it
873 // couldn't impact the low-link of this parent because it isn't
874 // connected, and thus its low-link isn't relevant so skip it.
875 ++I;
876 continue;
877 }
878
879 // Track the lowest linked child as the lowest link for this node.
880 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
881 if (ChildN.LowLink < N->LowLink)
882 N->LowLink = ChildN.LowLink;
883
884 // Move to the next edge.
885 ++I;
886 }
887 if (!N)
888 // Cleared the DFS early, start another round.
889 break;
890
891 // We've finished processing N and its descendants, put it on our pending
892 // SCC stack to eventually get merged into an SCC of nodes.
893 PendingSCCStack.push_back(N);
894
895 // If this node is linked to some lower entry, continue walking up the
896 // stack.
897 if (N->LowLink != N->DFSNumber)
898 continue;
899
900 // Otherwise, we've completed an SCC. Append it to our post order list of
901 // SCCs.
902 int RootDFSNumber = N->DFSNumber;
903 // Find the range of the node stack by walking down until we pass the
904 // root DFS number.
905 auto SCCNodes = make_range(
906 PendingSCCStack.rbegin(),
907 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
908 return N->DFSNumber < RootDFSNumber;
909 }));
910
911 // Form a new SCC out of these nodes and then clear them off our pending
912 // stack.
913 NewSCCs.push_back(G->createSCC(*this, SCCNodes));
914 for (Node &N : *NewSCCs.back()) {
915 N.DFSNumber = N.LowLink = -1;
916 G->SCCMap[&N] = NewSCCs.back();
917 }
918 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
919 } while (!DFSStack.empty());
920 }
921
922 // Insert the remaining SCCs before the old one. The old SCC can reach all
923 // other SCCs we form because it contains the target node of the removed edge
924 // of the old SCC. This means that we will have edges into all of the new
925 // SCCs, which means the old one must come last for postorder.
926 int OldIdx = SCCIndices[&OldSCC];
927 SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end());
928
929 // Update the mapping from SCC* to index to use the new SCC*s, and remove the
930 // old SCC from the mapping.
931 for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx)
932 SCCIndices[SCCs[Idx]] = Idx;
933
934 return make_range(SCCs.begin() + OldIdx,
935 SCCs.begin() + OldIdx + NewSCCs.size());
936 }
937
switchOutgoingEdgeToCall(Node & SourceN,Node & TargetN)938 void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN,
939 Node &TargetN) {
940 assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
941
942 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
943 assert(G->lookupRefSCC(TargetN) != this &&
944 "Target must not be in this RefSCC.");
945 #ifdef EXPENSIVE_CHECKS
946 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
947 "Target must be a descendant of the Source.");
948 #endif
949
950 // Edges between RefSCCs are the same regardless of call or ref, so we can
951 // just flip the edge here.
952 SourceN->setEdgeKind(TargetN, Edge::Call);
953
954 #ifdef EXPENSIVE_CHECKS
955 verify();
956 #endif
957 }
958
switchOutgoingEdgeToRef(Node & SourceN,Node & TargetN)959 void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN,
960 Node &TargetN) {
961 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
962
963 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
964 assert(G->lookupRefSCC(TargetN) != this &&
965 "Target must not be in this RefSCC.");
966 #ifdef EXPENSIVE_CHECKS
967 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
968 "Target must be a descendant of the Source.");
969 #endif
970
971 // Edges between RefSCCs are the same regardless of call or ref, so we can
972 // just flip the edge here.
973 SourceN->setEdgeKind(TargetN, Edge::Ref);
974
975 #ifdef EXPENSIVE_CHECKS
976 verify();
977 #endif
978 }
979
insertInternalRefEdge(Node & SourceN,Node & TargetN)980 void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN,
981 Node &TargetN) {
982 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
983 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
984
985 SourceN->insertEdgeInternal(TargetN, Edge::Ref);
986
987 #ifdef EXPENSIVE_CHECKS
988 verify();
989 #endif
990 }
991
insertOutgoingEdge(Node & SourceN,Node & TargetN,Edge::Kind EK)992 void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN,
993 Edge::Kind EK) {
994 // First insert it into the caller.
995 SourceN->insertEdgeInternal(TargetN, EK);
996
997 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
998
999 assert(G->lookupRefSCC(TargetN) != this &&
1000 "Target must not be in this RefSCC.");
1001 #ifdef EXPENSIVE_CHECKS
1002 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
1003 "Target must be a descendant of the Source.");
1004 #endif
1005
1006 #ifdef EXPENSIVE_CHECKS
1007 verify();
1008 #endif
1009 }
1010
1011 SmallVector<LazyCallGraph::RefSCC *, 1>
insertIncomingRefEdge(Node & SourceN,Node & TargetN)1012 LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) {
1013 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
1014 RefSCC &SourceC = *G->lookupRefSCC(SourceN);
1015 assert(&SourceC != this && "Source must not be in this RefSCC.");
1016 #ifdef EXPENSIVE_CHECKS
1017 assert(SourceC.isDescendantOf(*this) &&
1018 "Source must be a descendant of the Target.");
1019 #endif
1020
1021 SmallVector<RefSCC *, 1> DeletedRefSCCs;
1022
1023 #ifdef EXPENSIVE_CHECKS
1024 verify();
1025 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
1026 #endif
1027
1028 int SourceIdx = G->RefSCCIndices[&SourceC];
1029 int TargetIdx = G->RefSCCIndices[this];
1030 assert(SourceIdx < TargetIdx &&
1031 "Postorder list doesn't see edge as incoming!");
1032
1033 // Compute the RefSCCs which (transitively) reach the source. We do this by
1034 // working backwards from the source using the parent set in each RefSCC,
1035 // skipping any RefSCCs that don't fall in the postorder range. This has the
1036 // advantage of walking the sparser parent edge (in high fan-out graphs) but
1037 // more importantly this removes examining all forward edges in all RefSCCs
1038 // within the postorder range which aren't in fact connected. Only connected
1039 // RefSCCs (and their edges) are visited here.
1040 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
1041 Set.insert(&SourceC);
1042 auto IsConnected = [&](RefSCC &RC) {
1043 for (SCC &C : RC)
1044 for (Node &N : C)
1045 for (Edge &E : *N)
1046 if (Set.count(G->lookupRefSCC(E.getNode())))
1047 return true;
1048
1049 return false;
1050 };
1051
1052 for (RefSCC *C : make_range(G->PostOrderRefSCCs.begin() + SourceIdx + 1,
1053 G->PostOrderRefSCCs.begin() + TargetIdx + 1))
1054 if (IsConnected(*C))
1055 Set.insert(C);
1056 };
1057
1058 // Use a normal worklist to find which SCCs the target connects to. We still
1059 // bound the search based on the range in the postorder list we care about,
1060 // but because this is forward connectivity we just "recurse" through the
1061 // edges.
1062 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
1063 Set.insert(this);
1064 SmallVector<RefSCC *, 4> Worklist;
1065 Worklist.push_back(this);
1066 do {
1067 RefSCC &RC = *Worklist.pop_back_val();
1068 for (SCC &C : RC)
1069 for (Node &N : C)
1070 for (Edge &E : *N) {
1071 RefSCC &EdgeRC = *G->lookupRefSCC(E.getNode());
1072 if (G->getRefSCCIndex(EdgeRC) <= SourceIdx)
1073 // Not in the postorder sequence between source and target.
1074 continue;
1075
1076 if (Set.insert(&EdgeRC).second)
1077 Worklist.push_back(&EdgeRC);
1078 }
1079 } while (!Worklist.empty());
1080 };
1081
1082 // Use a generic helper to update the postorder sequence of RefSCCs and return
1083 // a range of any RefSCCs connected into a cycle by inserting this edge. This
1084 // routine will also take care of updating the indices into the postorder
1085 // sequence.
1086 iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange =
1087 updatePostorderSequenceForEdgeInsertion(
1088 SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices,
1089 ComputeSourceConnectedSet, ComputeTargetConnectedSet);
1090
1091 // Build a set so we can do fast tests for whether a RefSCC will end up as
1092 // part of the merged RefSCC.
1093 SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end());
1094
1095 // This RefSCC will always be part of that set, so just insert it here.
1096 MergeSet.insert(this);
1097
1098 // Now that we have identified all of the SCCs which need to be merged into
1099 // a connected set with the inserted edge, merge all of them into this SCC.
1100 SmallVector<SCC *, 16> MergedSCCs;
1101 int SCCIndex = 0;
1102 for (RefSCC *RC : MergeRange) {
1103 assert(RC != this && "We're merging into the target RefSCC, so it "
1104 "shouldn't be in the range.");
1105
1106 // Walk the inner SCCs to update their up-pointer and walk all the edges to
1107 // update any parent sets.
1108 // FIXME: We should try to find a way to avoid this (rather expensive) edge
1109 // walk by updating the parent sets in some other manner.
1110 for (SCC &InnerC : *RC) {
1111 InnerC.OuterRefSCC = this;
1112 SCCIndices[&InnerC] = SCCIndex++;
1113 for (Node &N : InnerC)
1114 G->SCCMap[&N] = &InnerC;
1115 }
1116
1117 // Now merge in the SCCs. We can actually move here so try to reuse storage
1118 // the first time through.
1119 if (MergedSCCs.empty())
1120 MergedSCCs = std::move(RC->SCCs);
1121 else
1122 MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end());
1123 RC->SCCs.clear();
1124 DeletedRefSCCs.push_back(RC);
1125 }
1126
1127 // Append our original SCCs to the merged list and move it into place.
1128 for (SCC &InnerC : *this)
1129 SCCIndices[&InnerC] = SCCIndex++;
1130 MergedSCCs.append(SCCs.begin(), SCCs.end());
1131 SCCs = std::move(MergedSCCs);
1132
1133 // Remove the merged away RefSCCs from the post order sequence.
1134 for (RefSCC *RC : MergeRange)
1135 G->RefSCCIndices.erase(RC);
1136 int IndexOffset = MergeRange.end() - MergeRange.begin();
1137 auto EraseEnd =
1138 G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end());
1139 for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end()))
1140 G->RefSCCIndices[RC] -= IndexOffset;
1141
1142 // At this point we have a merged RefSCC with a post-order SCCs list, just
1143 // connect the nodes to form the new edge.
1144 SourceN->insertEdgeInternal(TargetN, Edge::Ref);
1145
1146 // We return the list of SCCs which were merged so that callers can
1147 // invalidate any data they have associated with those SCCs. Note that these
1148 // SCCs are no longer in an interesting state (they are totally empty) but
1149 // the pointers will remain stable for the life of the graph itself.
1150 return DeletedRefSCCs;
1151 }
1152
removeOutgoingEdge(Node & SourceN,Node & TargetN)1153 void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) {
1154 assert(G->lookupRefSCC(SourceN) == this &&
1155 "The source must be a member of this RefSCC.");
1156 assert(G->lookupRefSCC(TargetN) != this &&
1157 "The target must not be a member of this RefSCC");
1158
1159 #ifdef EXPENSIVE_CHECKS
1160 verify();
1161 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
1162 #endif
1163
1164 // First remove it from the node.
1165 bool Removed = SourceN->removeEdgeInternal(TargetN);
1166 (void)Removed;
1167 assert(Removed && "Target not in the edge set for this caller?");
1168 }
1169
1170 SmallVector<LazyCallGraph::RefSCC *, 1>
removeInternalRefEdge(Node & SourceN,ArrayRef<Node * > TargetNs)1171 LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN,
1172 ArrayRef<Node *> TargetNs) {
1173 // We return a list of the resulting *new* RefSCCs in post-order.
1174 SmallVector<RefSCC *, 1> Result;
1175
1176 #ifdef EXPENSIVE_CHECKS
1177 // Verify the RefSCC is valid to start with and that either we return an empty
1178 // list of result RefSCCs and this RefSCC remains valid, or we return new
1179 // RefSCCs and this RefSCC is dead.
1180 verify();
1181 auto VerifyOnExit = make_scope_exit([&]() {
1182 // If we didn't replace our RefSCC with new ones, check that this one
1183 // remains valid.
1184 if (G)
1185 verify();
1186 });
1187 #endif
1188
1189 // First remove the actual edges.
1190 for (Node *TargetN : TargetNs) {
1191 assert(!(*SourceN)[*TargetN].isCall() &&
1192 "Cannot remove a call edge, it must first be made a ref edge");
1193
1194 bool Removed = SourceN->removeEdgeInternal(*TargetN);
1195 (void)Removed;
1196 assert(Removed && "Target not in the edge set for this caller?");
1197 }
1198
1199 // Direct self references don't impact the ref graph at all.
1200 if (llvm::all_of(TargetNs,
1201 [&](Node *TargetN) { return &SourceN == TargetN; }))
1202 return Result;
1203
1204 // If all targets are in the same SCC as the source, because no call edges
1205 // were removed there is no RefSCC structure change.
1206 SCC &SourceC = *G->lookupSCC(SourceN);
1207 if (llvm::all_of(TargetNs, [&](Node *TargetN) {
1208 return G->lookupSCC(*TargetN) == &SourceC;
1209 }))
1210 return Result;
1211
1212 // We build somewhat synthetic new RefSCCs by providing a postorder mapping
1213 // for each inner SCC. We store these inside the low-link field of the nodes
1214 // rather than associated with SCCs because this saves a round-trip through
1215 // the node->SCC map and in the common case, SCCs are small. We will verify
1216 // that we always give the same number to every node in the SCC such that
1217 // these are equivalent.
1218 int PostOrderNumber = 0;
1219
1220 // Reset all the other nodes to prepare for a DFS over them, and add them to
1221 // our worklist.
1222 SmallVector<Node *, 8> Worklist;
1223 for (SCC *C : SCCs) {
1224 for (Node &N : *C)
1225 N.DFSNumber = N.LowLink = 0;
1226
1227 Worklist.append(C->Nodes.begin(), C->Nodes.end());
1228 }
1229
1230 // Track the number of nodes in this RefSCC so that we can quickly recognize
1231 // an important special case of the edge removal not breaking the cycle of
1232 // this RefSCC.
1233 const int NumRefSCCNodes = Worklist.size();
1234
1235 SmallVector<std::pair<Node *, EdgeSequence::iterator>, 4> DFSStack;
1236 SmallVector<Node *, 4> PendingRefSCCStack;
1237 do {
1238 assert(DFSStack.empty() &&
1239 "Cannot begin a new root with a non-empty DFS stack!");
1240 assert(PendingRefSCCStack.empty() &&
1241 "Cannot begin a new root with pending nodes for an SCC!");
1242
1243 Node *RootN = Worklist.pop_back_val();
1244 // Skip any nodes we've already reached in the DFS.
1245 if (RootN->DFSNumber != 0) {
1246 assert(RootN->DFSNumber == -1 &&
1247 "Shouldn't have any mid-DFS root nodes!");
1248 continue;
1249 }
1250
1251 RootN->DFSNumber = RootN->LowLink = 1;
1252 int NextDFSNumber = 2;
1253
1254 DFSStack.push_back({RootN, (*RootN)->begin()});
1255 do {
1256 Node *N;
1257 EdgeSequence::iterator I;
1258 std::tie(N, I) = DFSStack.pop_back_val();
1259 auto E = (*N)->end();
1260
1261 assert(N->DFSNumber != 0 && "We should always assign a DFS number "
1262 "before processing a node.");
1263
1264 while (I != E) {
1265 Node &ChildN = I->getNode();
1266 if (ChildN.DFSNumber == 0) {
1267 // Mark that we should start at this child when next this node is the
1268 // top of the stack. We don't start at the next child to ensure this
1269 // child's lowlink is reflected.
1270 DFSStack.push_back({N, I});
1271
1272 // Continue, resetting to the child node.
1273 ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
1274 N = &ChildN;
1275 I = ChildN->begin();
1276 E = ChildN->end();
1277 continue;
1278 }
1279 if (ChildN.DFSNumber == -1) {
1280 // If this child isn't currently in this RefSCC, no need to process
1281 // it.
1282 ++I;
1283 continue;
1284 }
1285
1286 // Track the lowest link of the children, if any are still in the stack.
1287 // Any child not on the stack will have a LowLink of -1.
1288 assert(ChildN.LowLink != 0 &&
1289 "Low-link must not be zero with a non-zero DFS number.");
1290 if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
1291 N->LowLink = ChildN.LowLink;
1292 ++I;
1293 }
1294
1295 // We've finished processing N and its descendants, put it on our pending
1296 // stack to eventually get merged into a RefSCC.
1297 PendingRefSCCStack.push_back(N);
1298
1299 // If this node is linked to some lower entry, continue walking up the
1300 // stack.
1301 if (N->LowLink != N->DFSNumber) {
1302 assert(!DFSStack.empty() &&
1303 "We never found a viable root for a RefSCC to pop off!");
1304 continue;
1305 }
1306
1307 // Otherwise, form a new RefSCC from the top of the pending node stack.
1308 int RefSCCNumber = PostOrderNumber++;
1309 int RootDFSNumber = N->DFSNumber;
1310
1311 // Find the range of the node stack by walking down until we pass the
1312 // root DFS number. Update the DFS numbers and low link numbers in the
1313 // process to avoid re-walking this list where possible.
1314 auto StackRI = find_if(reverse(PendingRefSCCStack), [&](Node *N) {
1315 if (N->DFSNumber < RootDFSNumber)
1316 // We've found the bottom.
1317 return true;
1318
1319 // Update this node and keep scanning.
1320 N->DFSNumber = -1;
1321 // Save the post-order number in the lowlink field so that we can use
1322 // it to map SCCs into new RefSCCs after we finish the DFS.
1323 N->LowLink = RefSCCNumber;
1324 return false;
1325 });
1326 auto RefSCCNodes = make_range(StackRI.base(), PendingRefSCCStack.end());
1327
1328 // If we find a cycle containing all nodes originally in this RefSCC then
1329 // the removal hasn't changed the structure at all. This is an important
1330 // special case and we can directly exit the entire routine more
1331 // efficiently as soon as we discover it.
1332 if (llvm::size(RefSCCNodes) == NumRefSCCNodes) {
1333 // Clear out the low link field as we won't need it.
1334 for (Node *N : RefSCCNodes)
1335 N->LowLink = -1;
1336 // Return the empty result immediately.
1337 return Result;
1338 }
1339
1340 // We've already marked the nodes internally with the RefSCC number so
1341 // just clear them off the stack and continue.
1342 PendingRefSCCStack.erase(RefSCCNodes.begin(), PendingRefSCCStack.end());
1343 } while (!DFSStack.empty());
1344
1345 assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
1346 assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!");
1347 } while (!Worklist.empty());
1348
1349 assert(PostOrderNumber > 1 &&
1350 "Should never finish the DFS when the existing RefSCC remains valid!");
1351
1352 // Otherwise we create a collection of new RefSCC nodes and build
1353 // a radix-sort style map from postorder number to these new RefSCCs. We then
1354 // append SCCs to each of these RefSCCs in the order they occurred in the
1355 // original SCCs container.
1356 for (int i = 0; i < PostOrderNumber; ++i)
1357 Result.push_back(G->createRefSCC(*G));
1358
1359 // Insert the resulting postorder sequence into the global graph postorder
1360 // sequence before the current RefSCC in that sequence, and then remove the
1361 // current one.
1362 //
1363 // FIXME: It'd be nice to change the APIs so that we returned an iterator
1364 // range over the global postorder sequence and generally use that sequence
1365 // rather than building a separate result vector here.
1366 int Idx = G->getRefSCCIndex(*this);
1367 G->PostOrderRefSCCs.erase(G->PostOrderRefSCCs.begin() + Idx);
1368 G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx, Result.begin(),
1369 Result.end());
1370 for (int i : seq<int>(Idx, G->PostOrderRefSCCs.size()))
1371 G->RefSCCIndices[G->PostOrderRefSCCs[i]] = i;
1372
1373 for (SCC *C : SCCs) {
1374 // We store the SCC number in the node's low-link field above.
1375 int SCCNumber = C->begin()->LowLink;
1376 // Clear out all of the SCC's node's low-link fields now that we're done
1377 // using them as side-storage.
1378 for (Node &N : *C) {
1379 assert(N.LowLink == SCCNumber &&
1380 "Cannot have different numbers for nodes in the same SCC!");
1381 N.LowLink = -1;
1382 }
1383
1384 RefSCC &RC = *Result[SCCNumber];
1385 int SCCIndex = RC.SCCs.size();
1386 RC.SCCs.push_back(C);
1387 RC.SCCIndices[C] = SCCIndex;
1388 C->OuterRefSCC = &RC;
1389 }
1390
1391 // Now that we've moved things into the new RefSCCs, clear out our current
1392 // one.
1393 G = nullptr;
1394 SCCs.clear();
1395 SCCIndices.clear();
1396
1397 #ifdef EXPENSIVE_CHECKS
1398 // Verify the new RefSCCs we've built.
1399 for (RefSCC *RC : Result)
1400 RC->verify();
1401 #endif
1402
1403 // Return the new list of SCCs.
1404 return Result;
1405 }
1406
insertTrivialCallEdge(Node & SourceN,Node & TargetN)1407 void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN,
1408 Node &TargetN) {
1409 #ifdef EXPENSIVE_CHECKS
1410 auto ExitVerifier = make_scope_exit([this] { verify(); });
1411
1412 // Check that we aren't breaking some invariants of the SCC graph. Note that
1413 // this is quadratic in the number of edges in the call graph!
1414 SCC &SourceC = *G->lookupSCC(SourceN);
1415 SCC &TargetC = *G->lookupSCC(TargetN);
1416 if (&SourceC != &TargetC)
1417 assert(SourceC.isAncestorOf(TargetC) &&
1418 "Call edge is not trivial in the SCC graph!");
1419 #endif
1420
1421 // First insert it into the source or find the existing edge.
1422 auto InsertResult =
1423 SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()});
1424 if (!InsertResult.second) {
1425 // Already an edge, just update it.
1426 Edge &E = SourceN->Edges[InsertResult.first->second];
1427 if (E.isCall())
1428 return; // Nothing to do!
1429 E.setKind(Edge::Call);
1430 } else {
1431 // Create the new edge.
1432 SourceN->Edges.emplace_back(TargetN, Edge::Call);
1433 }
1434 }
1435
insertTrivialRefEdge(Node & SourceN,Node & TargetN)1436 void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) {
1437 #ifdef EXPENSIVE_CHECKS
1438 auto ExitVerifier = make_scope_exit([this] { verify(); });
1439
1440 // Check that we aren't breaking some invariants of the RefSCC graph.
1441 RefSCC &SourceRC = *G->lookupRefSCC(SourceN);
1442 RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
1443 if (&SourceRC != &TargetRC)
1444 assert(SourceRC.isAncestorOf(TargetRC) &&
1445 "Ref edge is not trivial in the RefSCC graph!");
1446 #endif
1447
1448 // First insert it into the source or find the existing edge.
1449 auto InsertResult =
1450 SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()});
1451 if (!InsertResult.second)
1452 // Already an edge, we're done.
1453 return;
1454
1455 // Create the new edge.
1456 SourceN->Edges.emplace_back(TargetN, Edge::Ref);
1457 }
1458
replaceNodeFunction(Node & N,Function & NewF)1459 void LazyCallGraph::RefSCC::replaceNodeFunction(Node &N, Function &NewF) {
1460 Function &OldF = N.getFunction();
1461
1462 #ifdef EXPENSIVE_CHECKS
1463 auto ExitVerifier = make_scope_exit([this] { verify(); });
1464
1465 assert(G->lookupRefSCC(N) == this &&
1466 "Cannot replace the function of a node outside this RefSCC.");
1467
1468 assert(G->NodeMap.find(&NewF) == G->NodeMap.end() &&
1469 "Must not have already walked the new function!'");
1470
1471 // It is important that this replacement not introduce graph changes so we
1472 // insist that the caller has already removed every use of the original
1473 // function and that all uses of the new function correspond to existing
1474 // edges in the graph. The common and expected way to use this is when
1475 // replacing the function itself in the IR without changing the call graph
1476 // shape and just updating the analysis based on that.
1477 assert(&OldF != &NewF && "Cannot replace a function with itself!");
1478 assert(OldF.use_empty() &&
1479 "Must have moved all uses from the old function to the new!");
1480 #endif
1481
1482 N.replaceFunction(NewF);
1483
1484 // Update various call graph maps.
1485 G->NodeMap.erase(&OldF);
1486 G->NodeMap[&NewF] = &N;
1487 }
1488
insertEdge(Node & SourceN,Node & TargetN,Edge::Kind EK)1489 void LazyCallGraph::insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK) {
1490 assert(SCCMap.empty() &&
1491 "This method cannot be called after SCCs have been formed!");
1492
1493 return SourceN->insertEdgeInternal(TargetN, EK);
1494 }
1495
removeEdge(Node & SourceN,Node & TargetN)1496 void LazyCallGraph::removeEdge(Node &SourceN, Node &TargetN) {
1497 assert(SCCMap.empty() &&
1498 "This method cannot be called after SCCs have been formed!");
1499
1500 bool Removed = SourceN->removeEdgeInternal(TargetN);
1501 (void)Removed;
1502 assert(Removed && "Target not in the edge set for this caller?");
1503 }
1504
removeDeadFunction(Function & F)1505 void LazyCallGraph::removeDeadFunction(Function &F) {
1506 // FIXME: This is unnecessarily restrictive. We should be able to remove
1507 // functions which recursively call themselves.
1508 assert(F.hasZeroLiveUses() &&
1509 "This routine should only be called on trivially dead functions!");
1510
1511 // We shouldn't remove library functions as they are never really dead while
1512 // the call graph is in use -- every function definition refers to them.
1513 assert(!isLibFunction(F) &&
1514 "Must not remove lib functions from the call graph!");
1515
1516 auto NI = NodeMap.find(&F);
1517 if (NI == NodeMap.end())
1518 // Not in the graph at all!
1519 return;
1520
1521 Node &N = *NI->second;
1522 NodeMap.erase(NI);
1523
1524 // Remove this from the entry edges if present.
1525 EntryEdges.removeEdgeInternal(N);
1526
1527 // Cannot remove a function which has yet to be visited in the DFS walk, so
1528 // if we have a node at all then we must have an SCC and RefSCC.
1529 auto CI = SCCMap.find(&N);
1530 assert(CI != SCCMap.end() &&
1531 "Tried to remove a node without an SCC after DFS walk started!");
1532 SCC &C = *CI->second;
1533 SCCMap.erase(CI);
1534 RefSCC &RC = C.getOuterRefSCC();
1535
1536 // This node must be the only member of its SCC as it has no callers, and
1537 // that SCC must be the only member of a RefSCC as it has no references.
1538 // Validate these properties first.
1539 assert(C.size() == 1 && "Dead functions must be in a singular SCC");
1540 assert(RC.size() == 1 && "Dead functions must be in a singular RefSCC");
1541
1542 // Finally clear out all the data structures from the node down through the
1543 // components. postorder_ref_scc_iterator will skip empty RefSCCs, so no need
1544 // to adjust LazyCallGraph data structures.
1545 N.clear();
1546 N.G = nullptr;
1547 N.F = nullptr;
1548 C.clear();
1549 RC.clear();
1550 RC.G = nullptr;
1551
1552 // Nothing to delete as all the objects are allocated in stable bump pointer
1553 // allocators.
1554 }
1555
1556 // Gets the Edge::Kind from one function to another by looking at the function's
1557 // instructions. Asserts if there is no edge.
1558 // Useful for determining what type of edge should exist between functions when
1559 // the edge hasn't been created yet.
getEdgeKind(Function & OriginalFunction,Function & NewFunction)1560 static LazyCallGraph::Edge::Kind getEdgeKind(Function &OriginalFunction,
1561 Function &NewFunction) {
1562 // In release builds, assume that if there are no direct calls to the new
1563 // function, then there is a ref edge. In debug builds, keep track of
1564 // references to assert that there is actually a ref edge if there is no call
1565 // edge.
1566 #ifndef NDEBUG
1567 SmallVector<Constant *, 16> Worklist;
1568 SmallPtrSet<Constant *, 16> Visited;
1569 #endif
1570
1571 for (Instruction &I : instructions(OriginalFunction)) {
1572 if (auto *CB = dyn_cast<CallBase>(&I)) {
1573 if (Function *Callee = CB->getCalledFunction()) {
1574 if (Callee == &NewFunction)
1575 return LazyCallGraph::Edge::Kind::Call;
1576 }
1577 }
1578 #ifndef NDEBUG
1579 for (Value *Op : I.operand_values()) {
1580 if (Constant *C = dyn_cast<Constant>(Op)) {
1581 if (Visited.insert(C).second)
1582 Worklist.push_back(C);
1583 }
1584 }
1585 #endif
1586 }
1587
1588 #ifndef NDEBUG
1589 bool FoundNewFunction = false;
1590 LazyCallGraph::visitReferences(Worklist, Visited, [&](Function &F) {
1591 if (&F == &NewFunction)
1592 FoundNewFunction = true;
1593 });
1594 assert(FoundNewFunction && "No edge from original function to new function");
1595 #endif
1596
1597 return LazyCallGraph::Edge::Kind::Ref;
1598 }
1599
addSplitFunction(Function & OriginalFunction,Function & NewFunction)1600 void LazyCallGraph::addSplitFunction(Function &OriginalFunction,
1601 Function &NewFunction) {
1602 assert(lookup(OriginalFunction) &&
1603 "Original function's node should already exist");
1604 Node &OriginalN = get(OriginalFunction);
1605 SCC *OriginalC = lookupSCC(OriginalN);
1606 RefSCC *OriginalRC = lookupRefSCC(OriginalN);
1607
1608 #ifdef EXPENSIVE_CHECKS
1609 OriginalRC->verify();
1610 auto VerifyOnExit = make_scope_exit([&]() { OriginalRC->verify(); });
1611 #endif
1612
1613 assert(!lookup(NewFunction) &&
1614 "New function's node should not already exist");
1615 Node &NewN = initNode(NewFunction);
1616
1617 Edge::Kind EK = getEdgeKind(OriginalFunction, NewFunction);
1618
1619 SCC *NewC = nullptr;
1620 for (Edge &E : *NewN) {
1621 Node &EN = E.getNode();
1622 if (EK == Edge::Kind::Call && E.isCall() && lookupSCC(EN) == OriginalC) {
1623 // If the edge to the new function is a call edge and there is a call edge
1624 // from the new function to any function in the original function's SCC,
1625 // it is in the same SCC (and RefSCC) as the original function.
1626 NewC = OriginalC;
1627 NewC->Nodes.push_back(&NewN);
1628 break;
1629 }
1630 }
1631
1632 if (!NewC) {
1633 for (Edge &E : *NewN) {
1634 Node &EN = E.getNode();
1635 if (lookupRefSCC(EN) == OriginalRC) {
1636 // If there is any edge from the new function to any function in the
1637 // original function's RefSCC, it is in the same RefSCC as the original
1638 // function but a new SCC.
1639 RefSCC *NewRC = OriginalRC;
1640 NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN}));
1641
1642 // The new function's SCC is not the same as the original function's
1643 // SCC, since that case was handled earlier. If the edge from the
1644 // original function to the new function was a call edge, then we need
1645 // to insert the newly created function's SCC before the original
1646 // function's SCC. Otherwise either the new SCC comes after the original
1647 // function's SCC, or it doesn't matter, and in both cases we can add it
1648 // to the very end.
1649 int InsertIndex = EK == Edge::Kind::Call ? NewRC->SCCIndices[OriginalC]
1650 : NewRC->SCCIndices.size();
1651 NewRC->SCCs.insert(NewRC->SCCs.begin() + InsertIndex, NewC);
1652 for (int I = InsertIndex, Size = NewRC->SCCs.size(); I < Size; ++I)
1653 NewRC->SCCIndices[NewRC->SCCs[I]] = I;
1654
1655 break;
1656 }
1657 }
1658 }
1659
1660 if (!NewC) {
1661 // We didn't find any edges back to the original function's RefSCC, so the
1662 // new function belongs in a new RefSCC. The new RefSCC goes before the
1663 // original function's RefSCC.
1664 RefSCC *NewRC = createRefSCC(*this);
1665 NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN}));
1666 NewRC->SCCIndices[NewC] = 0;
1667 NewRC->SCCs.push_back(NewC);
1668 auto OriginalRCIndex = RefSCCIndices.find(OriginalRC)->second;
1669 PostOrderRefSCCs.insert(PostOrderRefSCCs.begin() + OriginalRCIndex, NewRC);
1670 for (int I = OriginalRCIndex, Size = PostOrderRefSCCs.size(); I < Size; ++I)
1671 RefSCCIndices[PostOrderRefSCCs[I]] = I;
1672 }
1673
1674 SCCMap[&NewN] = NewC;
1675
1676 OriginalN->insertEdgeInternal(NewN, EK);
1677 }
1678
addSplitRefRecursiveFunctions(Function & OriginalFunction,ArrayRef<Function * > NewFunctions)1679 void LazyCallGraph::addSplitRefRecursiveFunctions(
1680 Function &OriginalFunction, ArrayRef<Function *> NewFunctions) {
1681 assert(!NewFunctions.empty() && "Can't add zero functions");
1682 assert(lookup(OriginalFunction) &&
1683 "Original function's node should already exist");
1684 Node &OriginalN = get(OriginalFunction);
1685 RefSCC *OriginalRC = lookupRefSCC(OriginalN);
1686
1687 #ifdef EXPENSIVE_CHECKS
1688 OriginalRC->verify();
1689 auto VerifyOnExit = make_scope_exit([&]() {
1690 OriginalRC->verify();
1691 for (Function *NewFunction : NewFunctions)
1692 lookupRefSCC(get(*NewFunction))->verify();
1693 });
1694 #endif
1695
1696 bool ExistsRefToOriginalRefSCC = false;
1697
1698 for (Function *NewFunction : NewFunctions) {
1699 Node &NewN = initNode(*NewFunction);
1700
1701 OriginalN->insertEdgeInternal(NewN, Edge::Kind::Ref);
1702
1703 // Check if there is any edge from any new function back to any function in
1704 // the original function's RefSCC.
1705 for (Edge &E : *NewN) {
1706 if (lookupRefSCC(E.getNode()) == OriginalRC) {
1707 ExistsRefToOriginalRefSCC = true;
1708 break;
1709 }
1710 }
1711 }
1712
1713 RefSCC *NewRC;
1714 if (ExistsRefToOriginalRefSCC) {
1715 // If there is any edge from any new function to any function in the
1716 // original function's RefSCC, all new functions will be in the same RefSCC
1717 // as the original function.
1718 NewRC = OriginalRC;
1719 } else {
1720 // Otherwise the new functions are in their own RefSCC.
1721 NewRC = createRefSCC(*this);
1722 // The new RefSCC goes before the original function's RefSCC in postorder
1723 // since there are only edges from the original function's RefSCC to the new
1724 // RefSCC.
1725 auto OriginalRCIndex = RefSCCIndices.find(OriginalRC)->second;
1726 PostOrderRefSCCs.insert(PostOrderRefSCCs.begin() + OriginalRCIndex, NewRC);
1727 for (int I = OriginalRCIndex, Size = PostOrderRefSCCs.size(); I < Size; ++I)
1728 RefSCCIndices[PostOrderRefSCCs[I]] = I;
1729 }
1730
1731 for (Function *NewFunction : NewFunctions) {
1732 Node &NewN = get(*NewFunction);
1733 // Each new function is in its own new SCC. The original function can only
1734 // have a ref edge to new functions, and no other existing functions can
1735 // have references to new functions. Each new function only has a ref edge
1736 // to the other new functions.
1737 SCC *NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN}));
1738 // The new SCCs are either sibling SCCs or parent SCCs to all other existing
1739 // SCCs in the RefSCC. Either way, they can go at the back of the postorder
1740 // SCC list.
1741 auto Index = NewRC->SCCIndices.size();
1742 NewRC->SCCIndices[NewC] = Index;
1743 NewRC->SCCs.push_back(NewC);
1744 SCCMap[&NewN] = NewC;
1745 }
1746
1747 #ifndef NDEBUG
1748 for (Function *F1 : NewFunctions) {
1749 assert(getEdgeKind(OriginalFunction, *F1) == Edge::Kind::Ref &&
1750 "Expected ref edges from original function to every new function");
1751 Node &N1 = get(*F1);
1752 for (Function *F2 : NewFunctions) {
1753 if (F1 == F2)
1754 continue;
1755 Node &N2 = get(*F2);
1756 assert(!N1->lookup(N2)->isCall() &&
1757 "Edges between new functions must be ref edges");
1758 }
1759 }
1760 #endif
1761 }
1762
insertInto(Function & F,Node * & MappedN)1763 LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
1764 return *new (MappedN = BPA.Allocate()) Node(*this, F);
1765 }
1766
updateGraphPtrs()1767 void LazyCallGraph::updateGraphPtrs() {
1768 // Walk the node map to update their graph pointers. While this iterates in
1769 // an unstable order, the order has no effect so it remains correct.
1770 for (auto &FunctionNodePair : NodeMap)
1771 FunctionNodePair.second->G = this;
1772
1773 for (auto *RC : PostOrderRefSCCs)
1774 RC->G = this;
1775 }
1776
initNode(Function & F)1777 LazyCallGraph::Node &LazyCallGraph::initNode(Function &F) {
1778 Node &N = get(F);
1779 N.DFSNumber = N.LowLink = -1;
1780 N.populate();
1781 NodeMap[&F] = &N;
1782 return N;
1783 }
1784
1785 template <typename RootsT, typename GetBeginT, typename GetEndT,
1786 typename GetNodeT, typename FormSCCCallbackT>
buildGenericSCCs(RootsT && Roots,GetBeginT && GetBegin,GetEndT && GetEnd,GetNodeT && GetNode,FormSCCCallbackT && FormSCC)1787 void LazyCallGraph::buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin,
1788 GetEndT &&GetEnd, GetNodeT &&GetNode,
1789 FormSCCCallbackT &&FormSCC) {
1790 using EdgeItT = decltype(GetBegin(std::declval<Node &>()));
1791
1792 SmallVector<std::pair<Node *, EdgeItT>, 16> DFSStack;
1793 SmallVector<Node *, 16> PendingSCCStack;
1794
1795 // Scan down the stack and DFS across the call edges.
1796 for (Node *RootN : Roots) {
1797 assert(DFSStack.empty() &&
1798 "Cannot begin a new root with a non-empty DFS stack!");
1799 assert(PendingSCCStack.empty() &&
1800 "Cannot begin a new root with pending nodes for an SCC!");
1801
1802 // Skip any nodes we've already reached in the DFS.
1803 if (RootN->DFSNumber != 0) {
1804 assert(RootN->DFSNumber == -1 &&
1805 "Shouldn't have any mid-DFS root nodes!");
1806 continue;
1807 }
1808
1809 RootN->DFSNumber = RootN->LowLink = 1;
1810 int NextDFSNumber = 2;
1811
1812 DFSStack.push_back({RootN, GetBegin(*RootN)});
1813 do {
1814 Node *N;
1815 EdgeItT I;
1816 std::tie(N, I) = DFSStack.pop_back_val();
1817 auto E = GetEnd(*N);
1818 while (I != E) {
1819 Node &ChildN = GetNode(I);
1820 if (ChildN.DFSNumber == 0) {
1821 // We haven't yet visited this child, so descend, pushing the current
1822 // node onto the stack.
1823 DFSStack.push_back({N, I});
1824
1825 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
1826 N = &ChildN;
1827 I = GetBegin(*N);
1828 E = GetEnd(*N);
1829 continue;
1830 }
1831
1832 // If the child has already been added to some child component, it
1833 // couldn't impact the low-link of this parent because it isn't
1834 // connected, and thus its low-link isn't relevant so skip it.
1835 if (ChildN.DFSNumber == -1) {
1836 ++I;
1837 continue;
1838 }
1839
1840 // Track the lowest linked child as the lowest link for this node.
1841 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
1842 if (ChildN.LowLink < N->LowLink)
1843 N->LowLink = ChildN.LowLink;
1844
1845 // Move to the next edge.
1846 ++I;
1847 }
1848
1849 // We've finished processing N and its descendants, put it on our pending
1850 // SCC stack to eventually get merged into an SCC of nodes.
1851 PendingSCCStack.push_back(N);
1852
1853 // If this node is linked to some lower entry, continue walking up the
1854 // stack.
1855 if (N->LowLink != N->DFSNumber)
1856 continue;
1857
1858 // Otherwise, we've completed an SCC. Append it to our post order list of
1859 // SCCs.
1860 int RootDFSNumber = N->DFSNumber;
1861 // Find the range of the node stack by walking down until we pass the
1862 // root DFS number.
1863 auto SCCNodes = make_range(
1864 PendingSCCStack.rbegin(),
1865 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
1866 return N->DFSNumber < RootDFSNumber;
1867 }));
1868 // Form a new SCC out of these nodes and then clear them off our pending
1869 // stack.
1870 FormSCC(SCCNodes);
1871 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
1872 } while (!DFSStack.empty());
1873 }
1874 }
1875
1876 /// Build the internal SCCs for a RefSCC from a sequence of nodes.
1877 ///
1878 /// Appends the SCCs to the provided vector and updates the map with their
1879 /// indices. Both the vector and map must be empty when passed into this
1880 /// routine.
buildSCCs(RefSCC & RC,node_stack_range Nodes)1881 void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
1882 assert(RC.SCCs.empty() && "Already built SCCs!");
1883 assert(RC.SCCIndices.empty() && "Already mapped SCC indices!");
1884
1885 for (Node *N : Nodes) {
1886 assert(N->LowLink >= (*Nodes.begin())->LowLink &&
1887 "We cannot have a low link in an SCC lower than its root on the "
1888 "stack!");
1889
1890 // This node will go into the next RefSCC, clear out its DFS and low link
1891 // as we scan.
1892 N->DFSNumber = N->LowLink = 0;
1893 }
1894
1895 // Each RefSCC contains a DAG of the call SCCs. To build these, we do
1896 // a direct walk of the call edges using Tarjan's algorithm. We reuse the
1897 // internal storage as we won't need it for the outer graph's DFS any longer.
1898 buildGenericSCCs(
1899 Nodes, [](Node &N) { return N->call_begin(); },
1900 [](Node &N) { return N->call_end(); },
1901 [](EdgeSequence::call_iterator I) -> Node & { return I->getNode(); },
1902 [this, &RC](node_stack_range Nodes) {
1903 RC.SCCs.push_back(createSCC(RC, Nodes));
1904 for (Node &N : *RC.SCCs.back()) {
1905 N.DFSNumber = N.LowLink = -1;
1906 SCCMap[&N] = RC.SCCs.back();
1907 }
1908 });
1909
1910 // Wire up the SCC indices.
1911 for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i)
1912 RC.SCCIndices[RC.SCCs[i]] = i;
1913 }
1914
buildRefSCCs()1915 void LazyCallGraph::buildRefSCCs() {
1916 if (EntryEdges.empty() || !PostOrderRefSCCs.empty())
1917 // RefSCCs are either non-existent or already built!
1918 return;
1919
1920 assert(RefSCCIndices.empty() && "Already mapped RefSCC indices!");
1921
1922 SmallVector<Node *, 16> Roots;
1923 for (Edge &E : *this)
1924 Roots.push_back(&E.getNode());
1925
1926 // The roots will be iterated in order.
1927 buildGenericSCCs(
1928 Roots,
1929 [](Node &N) {
1930 // We need to populate each node as we begin to walk its edges.
1931 N.populate();
1932 return N->begin();
1933 },
1934 [](Node &N) { return N->end(); },
1935 [](EdgeSequence::iterator I) -> Node & { return I->getNode(); },
1936 [this](node_stack_range Nodes) {
1937 RefSCC *NewRC = createRefSCC(*this);
1938 buildSCCs(*NewRC, Nodes);
1939
1940 // Push the new node into the postorder list and remember its position
1941 // in the index map.
1942 bool Inserted =
1943 RefSCCIndices.insert({NewRC, PostOrderRefSCCs.size()}).second;
1944 (void)Inserted;
1945 assert(Inserted && "Cannot already have this RefSCC in the index map!");
1946 PostOrderRefSCCs.push_back(NewRC);
1947 #ifdef EXPENSIVE_CHECKS
1948 NewRC->verify();
1949 #endif
1950 });
1951 }
1952
visitReferences(SmallVectorImpl<Constant * > & Worklist,SmallPtrSetImpl<Constant * > & Visited,function_ref<void (Function &)> Callback)1953 void LazyCallGraph::visitReferences(SmallVectorImpl<Constant *> &Worklist,
1954 SmallPtrSetImpl<Constant *> &Visited,
1955 function_ref<void(Function &)> Callback) {
1956 while (!Worklist.empty()) {
1957 Constant *C = Worklist.pop_back_val();
1958
1959 if (Function *F = dyn_cast<Function>(C)) {
1960 if (!F->isDeclaration())
1961 Callback(*F);
1962 continue;
1963 }
1964
1965 // blockaddresses are weird and don't participate in the call graph anyway,
1966 // skip them.
1967 if (isa<BlockAddress>(C))
1968 continue;
1969
1970 for (Value *Op : C->operand_values())
1971 if (Visited.insert(cast<Constant>(Op)).second)
1972 Worklist.push_back(cast<Constant>(Op));
1973 }
1974 }
1975
1976 AnalysisKey LazyCallGraphAnalysis::Key;
1977
LazyCallGraphPrinterPass(raw_ostream & OS)1978 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
1979
printNode(raw_ostream & OS,LazyCallGraph::Node & N)1980 static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) {
1981 OS << " Edges in function: " << N.getFunction().getName() << "\n";
1982 for (LazyCallGraph::Edge &E : N.populate())
1983 OS << " " << (E.isCall() ? "call" : "ref ") << " -> "
1984 << E.getFunction().getName() << "\n";
1985
1986 OS << "\n";
1987 }
1988
printSCC(raw_ostream & OS,LazyCallGraph::SCC & C)1989 static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) {
1990 OS << " SCC with " << C.size() << " functions:\n";
1991
1992 for (LazyCallGraph::Node &N : C)
1993 OS << " " << N.getFunction().getName() << "\n";
1994 }
1995
printRefSCC(raw_ostream & OS,LazyCallGraph::RefSCC & C)1996 static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) {
1997 OS << " RefSCC with " << C.size() << " call SCCs:\n";
1998
1999 for (LazyCallGraph::SCC &InnerC : C)
2000 printSCC(OS, InnerC);
2001
2002 OS << "\n";
2003 }
2004
run(Module & M,ModuleAnalysisManager & AM)2005 PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
2006 ModuleAnalysisManager &AM) {
2007 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
2008
2009 OS << "Printing the call graph for module: " << M.getModuleIdentifier()
2010 << "\n\n";
2011
2012 for (Function &F : M)
2013 printNode(OS, G.get(F));
2014
2015 G.buildRefSCCs();
2016 for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs())
2017 printRefSCC(OS, C);
2018
2019 return PreservedAnalyses::all();
2020 }
2021
LazyCallGraphDOTPrinterPass(raw_ostream & OS)2022 LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS)
2023 : OS(OS) {}
2024
printNodeDOT(raw_ostream & OS,LazyCallGraph::Node & N)2025 static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) {
2026 std::string Name =
2027 "\"" + DOT::EscapeString(std::string(N.getFunction().getName())) + "\"";
2028
2029 for (LazyCallGraph::Edge &E : N.populate()) {
2030 OS << " " << Name << " -> \""
2031 << DOT::EscapeString(std::string(E.getFunction().getName())) << "\"";
2032 if (!E.isCall()) // It is a ref edge.
2033 OS << " [style=dashed,label=\"ref\"]";
2034 OS << ";\n";
2035 }
2036
2037 OS << "\n";
2038 }
2039
run(Module & M,ModuleAnalysisManager & AM)2040 PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M,
2041 ModuleAnalysisManager &AM) {
2042 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
2043
2044 OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n";
2045
2046 for (Function &F : M)
2047 printNodeDOT(OS, G.get(F));
2048
2049 OS << "}\n";
2050
2051 return PreservedAnalyses::all();
2052 }
2053