1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Analysis/LazyCallGraph.h" 11 #include "llvm/ADT/ArrayRef.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/ScopeExit.h" 14 #include "llvm/ADT/Sequence.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/iterator_range.h" 18 #include "llvm/Analysis/TargetLibraryInfo.h" 19 #include "llvm/IR/CallSite.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/GlobalVariable.h" 22 #include "llvm/IR/Instruction.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/PassManager.h" 25 #include "llvm/Support/Casting.h" 26 #include "llvm/Support/Compiler.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/GraphWriter.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include <algorithm> 31 #include <cassert> 32 #include <cstddef> 33 #include <iterator> 34 #include <string> 35 #include <tuple> 36 #include <utility> 37 38 using namespace llvm; 39 40 #define DEBUG_TYPE "lcg" 41 42 void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node &TargetN, 43 Edge::Kind EK) { 44 EdgeIndexMap.insert({&TargetN, Edges.size()}); 45 Edges.emplace_back(TargetN, EK); 46 } 47 48 void LazyCallGraph::EdgeSequence::setEdgeKind(Node &TargetN, Edge::Kind EK) { 49 Edges[EdgeIndexMap.find(&TargetN)->second].setKind(EK); 50 } 51 52 bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node &TargetN) { 53 auto IndexMapI = EdgeIndexMap.find(&TargetN); 54 if (IndexMapI == EdgeIndexMap.end()) 55 return false; 56 57 Edges[IndexMapI->second] = Edge(); 58 EdgeIndexMap.erase(IndexMapI); 59 return true; 60 } 61 62 static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges, 63 DenseMap<LazyCallGraph::Node *, int> &EdgeIndexMap, 64 LazyCallGraph::Node &N, LazyCallGraph::Edge::Kind EK) { 65 if (!EdgeIndexMap.insert({&N, Edges.size()}).second) 66 return; 67 68 DEBUG(dbgs() << " Added callable function: " << N.getName() << "\n"); 69 Edges.emplace_back(LazyCallGraph::Edge(N, EK)); 70 } 71 72 LazyCallGraph::EdgeSequence &LazyCallGraph::Node::populateSlow() { 73 assert(!Edges && "Must not have already populated the edges for this node!"); 74 75 DEBUG(dbgs() << " Adding functions called by '" << getName() 76 << "' to the graph.\n"); 77 78 Edges = EdgeSequence(); 79 80 SmallVector<Constant *, 16> Worklist; 81 SmallPtrSet<Function *, 4> Callees; 82 SmallPtrSet<Constant *, 16> Visited; 83 84 // Find all the potential call graph edges in this function. We track both 85 // actual call edges and indirect references to functions. The direct calls 86 // are trivially added, but to accumulate the latter we walk the instructions 87 // and add every operand which is a constant to the worklist to process 88 // afterward. 89 // 90 // Note that we consider *any* function with a definition to be a viable 91 // edge. Even if the function's definition is subject to replacement by 92 // some other module (say, a weak definition) there may still be 93 // optimizations which essentially speculate based on the definition and 94 // a way to check that the specific definition is in fact the one being 95 // used. For example, this could be done by moving the weak definition to 96 // a strong (internal) definition and making the weak definition be an 97 // alias. Then a test of the address of the weak function against the new 98 // strong definition's address would be an effective way to determine the 99 // safety of optimizing a direct call edge. 100 for (BasicBlock &BB : *F) 101 for (Instruction &I : BB) { 102 if (auto CS = CallSite(&I)) 103 if (Function *Callee = CS.getCalledFunction()) 104 if (!Callee->isDeclaration()) 105 if (Callees.insert(Callee).second) { 106 Visited.insert(Callee); 107 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*Callee), 108 LazyCallGraph::Edge::Call); 109 } 110 111 for (Value *Op : I.operand_values()) 112 if (Constant *C = dyn_cast<Constant>(Op)) 113 if (Visited.insert(C).second) 114 Worklist.push_back(C); 115 } 116 117 // We've collected all the constant (and thus potentially function or 118 // function containing) operands to all of the instructions in the function. 119 // Process them (recursively) collecting every function found. 120 visitReferences(Worklist, Visited, [&](Function &F) { 121 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(F), 122 LazyCallGraph::Edge::Ref); 123 }); 124 125 // Add implicit reference edges to any defined libcall functions (if we 126 // haven't found an explicit edge). 127 for (auto *F : G->LibFunctions) 128 if (!Visited.count(F)) 129 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*F), 130 LazyCallGraph::Edge::Ref); 131 132 return *Edges; 133 } 134 135 void LazyCallGraph::Node::replaceFunction(Function &NewF) { 136 assert(F != &NewF && "Must not replace a function with itself!"); 137 F = &NewF; 138 } 139 140 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 141 LLVM_DUMP_METHOD void LazyCallGraph::Node::dump() const { 142 dbgs() << *this << '\n'; 143 } 144 #endif 145 146 static bool isKnownLibFunction(Function &F, TargetLibraryInfo &TLI) { 147 LibFunc LF; 148 149 // Either this is a normal library function or a "vectorizable" function. 150 return TLI.getLibFunc(F, LF) || TLI.isFunctionVectorizable(F.getName()); 151 } 152 153 LazyCallGraph::LazyCallGraph(Module &M, TargetLibraryInfo &TLI) { 154 DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier() 155 << "\n"); 156 for (Function &F : M) { 157 if (F.isDeclaration()) 158 continue; 159 // If this function is a known lib function to LLVM then we want to 160 // synthesize reference edges to it to model the fact that LLVM can turn 161 // arbitrary code into a library function call. 162 if (isKnownLibFunction(F, TLI)) 163 LibFunctions.insert(&F); 164 165 if (F.hasLocalLinkage()) 166 continue; 167 168 // External linkage defined functions have edges to them from other 169 // modules. 170 DEBUG(dbgs() << " Adding '" << F.getName() 171 << "' to entry set of the graph.\n"); 172 addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), Edge::Ref); 173 } 174 175 // Now add entry nodes for functions reachable via initializers to globals. 176 SmallVector<Constant *, 16> Worklist; 177 SmallPtrSet<Constant *, 16> Visited; 178 for (GlobalVariable &GV : M.globals()) 179 if (GV.hasInitializer()) 180 if (Visited.insert(GV.getInitializer()).second) 181 Worklist.push_back(GV.getInitializer()); 182 183 DEBUG(dbgs() << " Adding functions referenced by global initializers to the " 184 "entry set.\n"); 185 visitReferences(Worklist, Visited, [&](Function &F) { 186 addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), 187 LazyCallGraph::Edge::Ref); 188 }); 189 } 190 191 LazyCallGraph::LazyCallGraph(LazyCallGraph &&G) 192 : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)), 193 EntryEdges(std::move(G.EntryEdges)), SCCBPA(std::move(G.SCCBPA)), 194 SCCMap(std::move(G.SCCMap)), 195 LibFunctions(std::move(G.LibFunctions)) { 196 updateGraphPtrs(); 197 } 198 199 LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) { 200 BPA = std::move(G.BPA); 201 NodeMap = std::move(G.NodeMap); 202 EntryEdges = std::move(G.EntryEdges); 203 SCCBPA = std::move(G.SCCBPA); 204 SCCMap = std::move(G.SCCMap); 205 LibFunctions = std::move(G.LibFunctions); 206 updateGraphPtrs(); 207 return *this; 208 } 209 210 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 211 LLVM_DUMP_METHOD void LazyCallGraph::SCC::dump() const { 212 dbgs() << *this << '\n'; 213 } 214 #endif 215 216 #ifndef NDEBUG 217 void LazyCallGraph::SCC::verify() { 218 assert(OuterRefSCC && "Can't have a null RefSCC!"); 219 assert(!Nodes.empty() && "Can't have an empty SCC!"); 220 221 for (Node *N : Nodes) { 222 assert(N && "Can't have a null node!"); 223 assert(OuterRefSCC->G->lookupSCC(*N) == this && 224 "Node does not map to this SCC!"); 225 assert(N->DFSNumber == -1 && 226 "Must set DFS numbers to -1 when adding a node to an SCC!"); 227 assert(N->LowLink == -1 && 228 "Must set low link to -1 when adding a node to an SCC!"); 229 for (Edge &E : **N) 230 assert(E.getNode().isPopulated() && "Can't have an unpopulated node!"); 231 } 232 } 233 #endif 234 235 bool LazyCallGraph::SCC::isParentOf(const SCC &C) const { 236 if (this == &C) 237 return false; 238 239 for (Node &N : *this) 240 for (Edge &E : N->calls()) 241 if (OuterRefSCC->G->lookupSCC(E.getNode()) == &C) 242 return true; 243 244 // No edges found. 245 return false; 246 } 247 248 bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const { 249 if (this == &TargetC) 250 return false; 251 252 LazyCallGraph &G = *OuterRefSCC->G; 253 254 // Start with this SCC. 255 SmallPtrSet<const SCC *, 16> Visited = {this}; 256 SmallVector<const SCC *, 16> Worklist = {this}; 257 258 // Walk down the graph until we run out of edges or find a path to TargetC. 259 do { 260 const SCC &C = *Worklist.pop_back_val(); 261 for (Node &N : C) 262 for (Edge &E : N->calls()) { 263 SCC *CalleeC = G.lookupSCC(E.getNode()); 264 if (!CalleeC) 265 continue; 266 267 // If the callee's SCC is the TargetC, we're done. 268 if (CalleeC == &TargetC) 269 return true; 270 271 // If this is the first time we've reached this SCC, put it on the 272 // worklist to recurse through. 273 if (Visited.insert(CalleeC).second) 274 Worklist.push_back(CalleeC); 275 } 276 } while (!Worklist.empty()); 277 278 // No paths found. 279 return false; 280 } 281 282 LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {} 283 284 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 285 LLVM_DUMP_METHOD void LazyCallGraph::RefSCC::dump() const { 286 dbgs() << *this << '\n'; 287 } 288 #endif 289 290 #ifndef NDEBUG 291 void LazyCallGraph::RefSCC::verify() { 292 assert(G && "Can't have a null graph!"); 293 assert(!SCCs.empty() && "Can't have an empty SCC!"); 294 295 // Verify basic properties of the SCCs. 296 SmallPtrSet<SCC *, 4> SCCSet; 297 for (SCC *C : SCCs) { 298 assert(C && "Can't have a null SCC!"); 299 C->verify(); 300 assert(&C->getOuterRefSCC() == this && 301 "SCC doesn't think it is inside this RefSCC!"); 302 bool Inserted = SCCSet.insert(C).second; 303 assert(Inserted && "Found a duplicate SCC!"); 304 auto IndexIt = SCCIndices.find(C); 305 assert(IndexIt != SCCIndices.end() && 306 "Found an SCC that doesn't have an index!"); 307 } 308 309 // Check that our indices map correctly. 310 for (auto &SCCIndexPair : SCCIndices) { 311 SCC *C = SCCIndexPair.first; 312 int i = SCCIndexPair.second; 313 assert(C && "Can't have a null SCC in the indices!"); 314 assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!"); 315 assert(SCCs[i] == C && "Index doesn't point to SCC!"); 316 } 317 318 // Check that the SCCs are in fact in post-order. 319 for (int i = 0, Size = SCCs.size(); i < Size; ++i) { 320 SCC &SourceSCC = *SCCs[i]; 321 for (Node &N : SourceSCC) 322 for (Edge &E : *N) { 323 if (!E.isCall()) 324 continue; 325 SCC &TargetSCC = *G->lookupSCC(E.getNode()); 326 if (&TargetSCC.getOuterRefSCC() == this) { 327 assert(SCCIndices.find(&TargetSCC)->second <= i && 328 "Edge between SCCs violates post-order relationship."); 329 continue; 330 } 331 } 332 } 333 } 334 #endif 335 336 bool LazyCallGraph::RefSCC::isParentOf(const RefSCC &RC) const { 337 if (&RC == this) 338 return false; 339 340 // Search all edges to see if this is a parent. 341 for (SCC &C : *this) 342 for (Node &N : C) 343 for (Edge &E : *N) 344 if (G->lookupRefSCC(E.getNode()) == &RC) 345 return true; 346 347 return false; 348 } 349 350 bool LazyCallGraph::RefSCC::isAncestorOf(const RefSCC &RC) const { 351 if (&RC == this) 352 return false; 353 354 // For each descendant of this RefSCC, see if one of its children is the 355 // argument. If not, add that descendant to the worklist and continue 356 // searching. 357 SmallVector<const RefSCC *, 4> Worklist; 358 SmallPtrSet<const RefSCC *, 4> Visited; 359 Worklist.push_back(this); 360 Visited.insert(this); 361 do { 362 const RefSCC &DescendantRC = *Worklist.pop_back_val(); 363 for (SCC &C : DescendantRC) 364 for (Node &N : C) 365 for (Edge &E : *N) { 366 auto *ChildRC = G->lookupRefSCC(E.getNode()); 367 if (ChildRC == &RC) 368 return true; 369 if (!ChildRC || !Visited.insert(ChildRC).second) 370 continue; 371 Worklist.push_back(ChildRC); 372 } 373 } while (!Worklist.empty()); 374 375 return false; 376 } 377 378 /// Generic helper that updates a postorder sequence of SCCs for a potentially 379 /// cycle-introducing edge insertion. 380 /// 381 /// A postorder sequence of SCCs of a directed graph has one fundamental 382 /// property: all deges in the DAG of SCCs point "up" the sequence. That is, 383 /// all edges in the SCC DAG point to prior SCCs in the sequence. 384 /// 385 /// This routine both updates a postorder sequence and uses that sequence to 386 /// compute the set of SCCs connected into a cycle. It should only be called to 387 /// insert a "downward" edge which will require changing the sequence to 388 /// restore it to a postorder. 389 /// 390 /// When inserting an edge from an earlier SCC to a later SCC in some postorder 391 /// sequence, all of the SCCs which may be impacted are in the closed range of 392 /// those two within the postorder sequence. The algorithm used here to restore 393 /// the state is as follows: 394 /// 395 /// 1) Starting from the source SCC, construct a set of SCCs which reach the 396 /// source SCC consisting of just the source SCC. Then scan toward the 397 /// target SCC in postorder and for each SCC, if it has an edge to an SCC 398 /// in the set, add it to the set. Otherwise, the source SCC is not 399 /// a successor, move it in the postorder sequence to immediately before 400 /// the source SCC, shifting the source SCC and all SCCs in the set one 401 /// position toward the target SCC. Stop scanning after processing the 402 /// target SCC. 403 /// 2) If the source SCC is now past the target SCC in the postorder sequence, 404 /// and thus the new edge will flow toward the start, we are done. 405 /// 3) Otherwise, starting from the target SCC, walk all edges which reach an 406 /// SCC between the source and the target, and add them to the set of 407 /// connected SCCs, then recurse through them. Once a complete set of the 408 /// SCCs the target connects to is known, hoist the remaining SCCs between 409 /// the source and the target to be above the target. Note that there is no 410 /// need to process the source SCC, it is already known to connect. 411 /// 4) At this point, all of the SCCs in the closed range between the source 412 /// SCC and the target SCC in the postorder sequence are connected, 413 /// including the target SCC and the source SCC. Inserting the edge from 414 /// the source SCC to the target SCC will form a cycle out of precisely 415 /// these SCCs. Thus we can merge all of the SCCs in this closed range into 416 /// a single SCC. 417 /// 418 /// This process has various important properties: 419 /// - Only mutates the SCCs when adding the edge actually changes the SCC 420 /// structure. 421 /// - Never mutates SCCs which are unaffected by the change. 422 /// - Updates the postorder sequence to correctly satisfy the postorder 423 /// constraint after the edge is inserted. 424 /// - Only reorders SCCs in the closed postorder sequence from the source to 425 /// the target, so easy to bound how much has changed even in the ordering. 426 /// - Big-O is the number of edges in the closed postorder range of SCCs from 427 /// source to target. 428 /// 429 /// This helper routine, in addition to updating the postorder sequence itself 430 /// will also update a map from SCCs to indices within that sequecne. 431 /// 432 /// The sequence and the map must operate on pointers to the SCC type. 433 /// 434 /// Two callbacks must be provided. The first computes the subset of SCCs in 435 /// the postorder closed range from the source to the target which connect to 436 /// the source SCC via some (transitive) set of edges. The second computes the 437 /// subset of the same range which the target SCC connects to via some 438 /// (transitive) set of edges. Both callbacks should populate the set argument 439 /// provided. 440 template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT, 441 typename ComputeSourceConnectedSetCallableT, 442 typename ComputeTargetConnectedSetCallableT> 443 static iterator_range<typename PostorderSequenceT::iterator> 444 updatePostorderSequenceForEdgeInsertion( 445 SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs, 446 SCCIndexMapT &SCCIndices, 447 ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet, 448 ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) { 449 int SourceIdx = SCCIndices[&SourceSCC]; 450 int TargetIdx = SCCIndices[&TargetSCC]; 451 assert(SourceIdx < TargetIdx && "Cannot have equal indices here!"); 452 453 SmallPtrSet<SCCT *, 4> ConnectedSet; 454 455 // Compute the SCCs which (transitively) reach the source. 456 ComputeSourceConnectedSet(ConnectedSet); 457 458 // Partition the SCCs in this part of the port-order sequence so only SCCs 459 // connecting to the source remain between it and the target. This is 460 // a benign partition as it preserves postorder. 461 auto SourceI = std::stable_partition( 462 SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1, 463 [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); }); 464 for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i) 465 SCCIndices.find(SCCs[i])->second = i; 466 467 // If the target doesn't connect to the source, then we've corrected the 468 // post-order and there are no cycles formed. 469 if (!ConnectedSet.count(&TargetSCC)) { 470 assert(SourceI > (SCCs.begin() + SourceIdx) && 471 "Must have moved the source to fix the post-order."); 472 assert(*std::prev(SourceI) == &TargetSCC && 473 "Last SCC to move should have bene the target."); 474 475 // Return an empty range at the target SCC indicating there is nothing to 476 // merge. 477 return make_range(std::prev(SourceI), std::prev(SourceI)); 478 } 479 480 assert(SCCs[TargetIdx] == &TargetSCC && 481 "Should not have moved target if connected!"); 482 SourceIdx = SourceI - SCCs.begin(); 483 assert(SCCs[SourceIdx] == &SourceSCC && 484 "Bad updated index computation for the source SCC!"); 485 486 487 // See whether there are any remaining intervening SCCs between the source 488 // and target. If so we need to make sure they all are reachable form the 489 // target. 490 if (SourceIdx + 1 < TargetIdx) { 491 ConnectedSet.clear(); 492 ComputeTargetConnectedSet(ConnectedSet); 493 494 // Partition SCCs so that only SCCs reached from the target remain between 495 // the source and the target. This preserves postorder. 496 auto TargetI = std::stable_partition( 497 SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1, 498 [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); }); 499 for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i) 500 SCCIndices.find(SCCs[i])->second = i; 501 TargetIdx = std::prev(TargetI) - SCCs.begin(); 502 assert(SCCs[TargetIdx] == &TargetSCC && 503 "Should always end with the target!"); 504 } 505 506 // At this point, we know that connecting source to target forms a cycle 507 // because target connects back to source, and we know that all of the SCCs 508 // between the source and target in the postorder sequence participate in that 509 // cycle. 510 return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx); 511 } 512 513 bool 514 LazyCallGraph::RefSCC::switchInternalEdgeToCall( 515 Node &SourceN, Node &TargetN, 516 function_ref<void(ArrayRef<SCC *> MergeSCCs)> MergeCB) { 517 assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!"); 518 SmallVector<SCC *, 1> DeletedSCCs; 519 520 #ifndef NDEBUG 521 // In a debug build, verify the RefSCC is valid to start with and when this 522 // routine finishes. 523 verify(); 524 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 525 #endif 526 527 SCC &SourceSCC = *G->lookupSCC(SourceN); 528 SCC &TargetSCC = *G->lookupSCC(TargetN); 529 530 // If the two nodes are already part of the same SCC, we're also done as 531 // we've just added more connectivity. 532 if (&SourceSCC == &TargetSCC) { 533 SourceN->setEdgeKind(TargetN, Edge::Call); 534 return false; // No new cycle. 535 } 536 537 // At this point we leverage the postorder list of SCCs to detect when the 538 // insertion of an edge changes the SCC structure in any way. 539 // 540 // First and foremost, we can eliminate the need for any changes when the 541 // edge is toward the beginning of the postorder sequence because all edges 542 // flow in that direction already. Thus adding a new one cannot form a cycle. 543 int SourceIdx = SCCIndices[&SourceSCC]; 544 int TargetIdx = SCCIndices[&TargetSCC]; 545 if (TargetIdx < SourceIdx) { 546 SourceN->setEdgeKind(TargetN, Edge::Call); 547 return false; // No new cycle. 548 } 549 550 // Compute the SCCs which (transitively) reach the source. 551 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) { 552 #ifndef NDEBUG 553 // Check that the RefSCC is still valid before computing this as the 554 // results will be nonsensical of we've broken its invariants. 555 verify(); 556 #endif 557 ConnectedSet.insert(&SourceSCC); 558 auto IsConnected = [&](SCC &C) { 559 for (Node &N : C) 560 for (Edge &E : N->calls()) 561 if (ConnectedSet.count(G->lookupSCC(E.getNode()))) 562 return true; 563 564 return false; 565 }; 566 567 for (SCC *C : 568 make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1)) 569 if (IsConnected(*C)) 570 ConnectedSet.insert(C); 571 }; 572 573 // Use a normal worklist to find which SCCs the target connects to. We still 574 // bound the search based on the range in the postorder list we care about, 575 // but because this is forward connectivity we just "recurse" through the 576 // edges. 577 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) { 578 #ifndef NDEBUG 579 // Check that the RefSCC is still valid before computing this as the 580 // results will be nonsensical of we've broken its invariants. 581 verify(); 582 #endif 583 ConnectedSet.insert(&TargetSCC); 584 SmallVector<SCC *, 4> Worklist; 585 Worklist.push_back(&TargetSCC); 586 do { 587 SCC &C = *Worklist.pop_back_val(); 588 for (Node &N : C) 589 for (Edge &E : *N) { 590 if (!E.isCall()) 591 continue; 592 SCC &EdgeC = *G->lookupSCC(E.getNode()); 593 if (&EdgeC.getOuterRefSCC() != this) 594 // Not in this RefSCC... 595 continue; 596 if (SCCIndices.find(&EdgeC)->second <= SourceIdx) 597 // Not in the postorder sequence between source and target. 598 continue; 599 600 if (ConnectedSet.insert(&EdgeC).second) 601 Worklist.push_back(&EdgeC); 602 } 603 } while (!Worklist.empty()); 604 }; 605 606 // Use a generic helper to update the postorder sequence of SCCs and return 607 // a range of any SCCs connected into a cycle by inserting this edge. This 608 // routine will also take care of updating the indices into the postorder 609 // sequence. 610 auto MergeRange = updatePostorderSequenceForEdgeInsertion( 611 SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet, 612 ComputeTargetConnectedSet); 613 614 // Run the user's callback on the merged SCCs before we actually merge them. 615 if (MergeCB) 616 MergeCB(makeArrayRef(MergeRange.begin(), MergeRange.end())); 617 618 // If the merge range is empty, then adding the edge didn't actually form any 619 // new cycles. We're done. 620 if (MergeRange.begin() == MergeRange.end()) { 621 // Now that the SCC structure is finalized, flip the kind to call. 622 SourceN->setEdgeKind(TargetN, Edge::Call); 623 return false; // No new cycle. 624 } 625 626 #ifndef NDEBUG 627 // Before merging, check that the RefSCC remains valid after all the 628 // postorder updates. 629 verify(); 630 #endif 631 632 // Otherwise we need to merge all of the SCCs in the cycle into a single 633 // result SCC. 634 // 635 // NB: We merge into the target because all of these functions were already 636 // reachable from the target, meaning any SCC-wide properties deduced about it 637 // other than the set of functions within it will not have changed. 638 for (SCC *C : MergeRange) { 639 assert(C != &TargetSCC && 640 "We merge *into* the target and shouldn't process it here!"); 641 SCCIndices.erase(C); 642 TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end()); 643 for (Node *N : C->Nodes) 644 G->SCCMap[N] = &TargetSCC; 645 C->clear(); 646 DeletedSCCs.push_back(C); 647 } 648 649 // Erase the merged SCCs from the list and update the indices of the 650 // remaining SCCs. 651 int IndexOffset = MergeRange.end() - MergeRange.begin(); 652 auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end()); 653 for (SCC *C : make_range(EraseEnd, SCCs.end())) 654 SCCIndices[C] -= IndexOffset; 655 656 // Now that the SCC structure is finalized, flip the kind to call. 657 SourceN->setEdgeKind(TargetN, Edge::Call); 658 659 // And we're done, but we did form a new cycle. 660 return true; 661 } 662 663 void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node &SourceN, 664 Node &TargetN) { 665 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!"); 666 667 #ifndef NDEBUG 668 // In a debug build, verify the RefSCC is valid to start with and when this 669 // routine finishes. 670 verify(); 671 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 672 #endif 673 674 assert(G->lookupRefSCC(SourceN) == this && 675 "Source must be in this RefSCC."); 676 assert(G->lookupRefSCC(TargetN) == this && 677 "Target must be in this RefSCC."); 678 assert(G->lookupSCC(SourceN) != G->lookupSCC(TargetN) && 679 "Source and Target must be in separate SCCs for this to be trivial!"); 680 681 // Set the edge kind. 682 SourceN->setEdgeKind(TargetN, Edge::Ref); 683 } 684 685 iterator_range<LazyCallGraph::RefSCC::iterator> 686 LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) { 687 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!"); 688 689 #ifndef NDEBUG 690 // In a debug build, verify the RefSCC is valid to start with and when this 691 // routine finishes. 692 verify(); 693 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 694 #endif 695 696 assert(G->lookupRefSCC(SourceN) == this && 697 "Source must be in this RefSCC."); 698 assert(G->lookupRefSCC(TargetN) == this && 699 "Target must be in this RefSCC."); 700 701 SCC &TargetSCC = *G->lookupSCC(TargetN); 702 assert(G->lookupSCC(SourceN) == &TargetSCC && "Source and Target must be in " 703 "the same SCC to require the " 704 "full CG update."); 705 706 // Set the edge kind. 707 SourceN->setEdgeKind(TargetN, Edge::Ref); 708 709 // Otherwise we are removing a call edge from a single SCC. This may break 710 // the cycle. In order to compute the new set of SCCs, we need to do a small 711 // DFS over the nodes within the SCC to form any sub-cycles that remain as 712 // distinct SCCs and compute a postorder over the resulting SCCs. 713 // 714 // However, we specially handle the target node. The target node is known to 715 // reach all other nodes in the original SCC by definition. This means that 716 // we want the old SCC to be replaced with an SCC contaning that node as it 717 // will be the root of whatever SCC DAG results from the DFS. Assumptions 718 // about an SCC such as the set of functions called will continue to hold, 719 // etc. 720 721 SCC &OldSCC = TargetSCC; 722 SmallVector<std::pair<Node *, EdgeSequence::call_iterator>, 16> DFSStack; 723 SmallVector<Node *, 16> PendingSCCStack; 724 SmallVector<SCC *, 4> NewSCCs; 725 726 // Prepare the nodes for a fresh DFS. 727 SmallVector<Node *, 16> Worklist; 728 Worklist.swap(OldSCC.Nodes); 729 for (Node *N : Worklist) { 730 N->DFSNumber = N->LowLink = 0; 731 G->SCCMap.erase(N); 732 } 733 734 // Force the target node to be in the old SCC. This also enables us to take 735 // a very significant short-cut in the standard Tarjan walk to re-form SCCs 736 // below: whenever we build an edge that reaches the target node, we know 737 // that the target node eventually connects back to all other nodes in our 738 // walk. As a consequence, we can detect and handle participants in that 739 // cycle without walking all the edges that form this connection, and instead 740 // by relying on the fundamental guarantee coming into this operation (all 741 // nodes are reachable from the target due to previously forming an SCC). 742 TargetN.DFSNumber = TargetN.LowLink = -1; 743 OldSCC.Nodes.push_back(&TargetN); 744 G->SCCMap[&TargetN] = &OldSCC; 745 746 // Scan down the stack and DFS across the call edges. 747 for (Node *RootN : Worklist) { 748 assert(DFSStack.empty() && 749 "Cannot begin a new root with a non-empty DFS stack!"); 750 assert(PendingSCCStack.empty() && 751 "Cannot begin a new root with pending nodes for an SCC!"); 752 753 // Skip any nodes we've already reached in the DFS. 754 if (RootN->DFSNumber != 0) { 755 assert(RootN->DFSNumber == -1 && 756 "Shouldn't have any mid-DFS root nodes!"); 757 continue; 758 } 759 760 RootN->DFSNumber = RootN->LowLink = 1; 761 int NextDFSNumber = 2; 762 763 DFSStack.push_back({RootN, (*RootN)->call_begin()}); 764 do { 765 Node *N; 766 EdgeSequence::call_iterator I; 767 std::tie(N, I) = DFSStack.pop_back_val(); 768 auto E = (*N)->call_end(); 769 while (I != E) { 770 Node &ChildN = I->getNode(); 771 if (ChildN.DFSNumber == 0) { 772 // We haven't yet visited this child, so descend, pushing the current 773 // node onto the stack. 774 DFSStack.push_back({N, I}); 775 776 assert(!G->SCCMap.count(&ChildN) && 777 "Found a node with 0 DFS number but already in an SCC!"); 778 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++; 779 N = &ChildN; 780 I = (*N)->call_begin(); 781 E = (*N)->call_end(); 782 continue; 783 } 784 785 // Check for the child already being part of some component. 786 if (ChildN.DFSNumber == -1) { 787 if (G->lookupSCC(ChildN) == &OldSCC) { 788 // If the child is part of the old SCC, we know that it can reach 789 // every other node, so we have formed a cycle. Pull the entire DFS 790 // and pending stacks into it. See the comment above about setting 791 // up the old SCC for why we do this. 792 int OldSize = OldSCC.size(); 793 OldSCC.Nodes.push_back(N); 794 OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end()); 795 PendingSCCStack.clear(); 796 while (!DFSStack.empty()) 797 OldSCC.Nodes.push_back(DFSStack.pop_back_val().first); 798 for (Node &N : make_range(OldSCC.begin() + OldSize, OldSCC.end())) { 799 N.DFSNumber = N.LowLink = -1; 800 G->SCCMap[&N] = &OldSCC; 801 } 802 N = nullptr; 803 break; 804 } 805 806 // If the child has already been added to some child component, it 807 // couldn't impact the low-link of this parent because it isn't 808 // connected, and thus its low-link isn't relevant so skip it. 809 ++I; 810 continue; 811 } 812 813 // Track the lowest linked child as the lowest link for this node. 814 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); 815 if (ChildN.LowLink < N->LowLink) 816 N->LowLink = ChildN.LowLink; 817 818 // Move to the next edge. 819 ++I; 820 } 821 if (!N) 822 // Cleared the DFS early, start another round. 823 break; 824 825 // We've finished processing N and its descendents, put it on our pending 826 // SCC stack to eventually get merged into an SCC of nodes. 827 PendingSCCStack.push_back(N); 828 829 // If this node is linked to some lower entry, continue walking up the 830 // stack. 831 if (N->LowLink != N->DFSNumber) 832 continue; 833 834 // Otherwise, we've completed an SCC. Append it to our post order list of 835 // SCCs. 836 int RootDFSNumber = N->DFSNumber; 837 // Find the range of the node stack by walking down until we pass the 838 // root DFS number. 839 auto SCCNodes = make_range( 840 PendingSCCStack.rbegin(), 841 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) { 842 return N->DFSNumber < RootDFSNumber; 843 })); 844 845 // Form a new SCC out of these nodes and then clear them off our pending 846 // stack. 847 NewSCCs.push_back(G->createSCC(*this, SCCNodes)); 848 for (Node &N : *NewSCCs.back()) { 849 N.DFSNumber = N.LowLink = -1; 850 G->SCCMap[&N] = NewSCCs.back(); 851 } 852 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end()); 853 } while (!DFSStack.empty()); 854 } 855 856 // Insert the remaining SCCs before the old one. The old SCC can reach all 857 // other SCCs we form because it contains the target node of the removed edge 858 // of the old SCC. This means that we will have edges into all of the new 859 // SCCs, which means the old one must come last for postorder. 860 int OldIdx = SCCIndices[&OldSCC]; 861 SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end()); 862 863 // Update the mapping from SCC* to index to use the new SCC*s, and remove the 864 // old SCC from the mapping. 865 for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx) 866 SCCIndices[SCCs[Idx]] = Idx; 867 868 return make_range(SCCs.begin() + OldIdx, 869 SCCs.begin() + OldIdx + NewSCCs.size()); 870 } 871 872 void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN, 873 Node &TargetN) { 874 assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!"); 875 876 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 877 assert(G->lookupRefSCC(TargetN) != this && 878 "Target must not be in this RefSCC."); 879 #ifdef EXPENSIVE_CHECKS 880 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && 881 "Target must be a descendant of the Source."); 882 #endif 883 884 // Edges between RefSCCs are the same regardless of call or ref, so we can 885 // just flip the edge here. 886 SourceN->setEdgeKind(TargetN, Edge::Call); 887 888 #ifndef NDEBUG 889 // Check that the RefSCC is still valid. 890 verify(); 891 #endif 892 } 893 894 void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN, 895 Node &TargetN) { 896 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!"); 897 898 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 899 assert(G->lookupRefSCC(TargetN) != this && 900 "Target must not be in this RefSCC."); 901 #ifdef EXPENSIVE_CHECKS 902 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && 903 "Target must be a descendant of the Source."); 904 #endif 905 906 // Edges between RefSCCs are the same regardless of call or ref, so we can 907 // just flip the edge here. 908 SourceN->setEdgeKind(TargetN, Edge::Ref); 909 910 #ifndef NDEBUG 911 // Check that the RefSCC is still valid. 912 verify(); 913 #endif 914 } 915 916 void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN, 917 Node &TargetN) { 918 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 919 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC."); 920 921 SourceN->insertEdgeInternal(TargetN, Edge::Ref); 922 923 #ifndef NDEBUG 924 // Check that the RefSCC is still valid. 925 verify(); 926 #endif 927 } 928 929 void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN, 930 Edge::Kind EK) { 931 // First insert it into the caller. 932 SourceN->insertEdgeInternal(TargetN, EK); 933 934 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 935 936 assert(G->lookupRefSCC(TargetN) != this && 937 "Target must not be in this RefSCC."); 938 #ifdef EXPENSIVE_CHECKS 939 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && 940 "Target must be a descendant of the Source."); 941 #endif 942 943 #ifndef NDEBUG 944 // Check that the RefSCC is still valid. 945 verify(); 946 #endif 947 } 948 949 SmallVector<LazyCallGraph::RefSCC *, 1> 950 LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) { 951 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC."); 952 RefSCC &SourceC = *G->lookupRefSCC(SourceN); 953 assert(&SourceC != this && "Source must not be in this RefSCC."); 954 #ifdef EXPENSIVE_CHECKS 955 assert(SourceC.isDescendantOf(*this) && 956 "Source must be a descendant of the Target."); 957 #endif 958 959 SmallVector<RefSCC *, 1> DeletedRefSCCs; 960 961 #ifndef NDEBUG 962 // In a debug build, verify the RefSCC is valid to start with and when this 963 // routine finishes. 964 verify(); 965 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 966 #endif 967 968 int SourceIdx = G->RefSCCIndices[&SourceC]; 969 int TargetIdx = G->RefSCCIndices[this]; 970 assert(SourceIdx < TargetIdx && 971 "Postorder list doesn't see edge as incoming!"); 972 973 // Compute the RefSCCs which (transitively) reach the source. We do this by 974 // working backwards from the source using the parent set in each RefSCC, 975 // skipping any RefSCCs that don't fall in the postorder range. This has the 976 // advantage of walking the sparser parent edge (in high fan-out graphs) but 977 // more importantly this removes examining all forward edges in all RefSCCs 978 // within the postorder range which aren't in fact connected. Only connected 979 // RefSCCs (and their edges) are visited here. 980 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) { 981 Set.insert(&SourceC); 982 auto IsConnected = [&](RefSCC &RC) { 983 for (SCC &C : RC) 984 for (Node &N : C) 985 for (Edge &E : *N) 986 if (Set.count(G->lookupRefSCC(E.getNode()))) 987 return true; 988 989 return false; 990 }; 991 992 for (RefSCC *C : make_range(G->PostOrderRefSCCs.begin() + SourceIdx + 1, 993 G->PostOrderRefSCCs.begin() + TargetIdx + 1)) 994 if (IsConnected(*C)) 995 Set.insert(C); 996 }; 997 998 // Use a normal worklist to find which SCCs the target connects to. We still 999 // bound the search based on the range in the postorder list we care about, 1000 // but because this is forward connectivity we just "recurse" through the 1001 // edges. 1002 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) { 1003 Set.insert(this); 1004 SmallVector<RefSCC *, 4> Worklist; 1005 Worklist.push_back(this); 1006 do { 1007 RefSCC &RC = *Worklist.pop_back_val(); 1008 for (SCC &C : RC) 1009 for (Node &N : C) 1010 for (Edge &E : *N) { 1011 RefSCC &EdgeRC = *G->lookupRefSCC(E.getNode()); 1012 if (G->getRefSCCIndex(EdgeRC) <= SourceIdx) 1013 // Not in the postorder sequence between source and target. 1014 continue; 1015 1016 if (Set.insert(&EdgeRC).second) 1017 Worklist.push_back(&EdgeRC); 1018 } 1019 } while (!Worklist.empty()); 1020 }; 1021 1022 // Use a generic helper to update the postorder sequence of RefSCCs and return 1023 // a range of any RefSCCs connected into a cycle by inserting this edge. This 1024 // routine will also take care of updating the indices into the postorder 1025 // sequence. 1026 iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange = 1027 updatePostorderSequenceForEdgeInsertion( 1028 SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices, 1029 ComputeSourceConnectedSet, ComputeTargetConnectedSet); 1030 1031 // Build a set so we can do fast tests for whether a RefSCC will end up as 1032 // part of the merged RefSCC. 1033 SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end()); 1034 1035 // This RefSCC will always be part of that set, so just insert it here. 1036 MergeSet.insert(this); 1037 1038 // Now that we have identified all of the SCCs which need to be merged into 1039 // a connected set with the inserted edge, merge all of them into this SCC. 1040 SmallVector<SCC *, 16> MergedSCCs; 1041 int SCCIndex = 0; 1042 for (RefSCC *RC : MergeRange) { 1043 assert(RC != this && "We're merging into the target RefSCC, so it " 1044 "shouldn't be in the range."); 1045 1046 // Walk the inner SCCs to update their up-pointer and walk all the edges to 1047 // update any parent sets. 1048 // FIXME: We should try to find a way to avoid this (rather expensive) edge 1049 // walk by updating the parent sets in some other manner. 1050 for (SCC &InnerC : *RC) { 1051 InnerC.OuterRefSCC = this; 1052 SCCIndices[&InnerC] = SCCIndex++; 1053 for (Node &N : InnerC) 1054 G->SCCMap[&N] = &InnerC; 1055 } 1056 1057 // Now merge in the SCCs. We can actually move here so try to reuse storage 1058 // the first time through. 1059 if (MergedSCCs.empty()) 1060 MergedSCCs = std::move(RC->SCCs); 1061 else 1062 MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end()); 1063 RC->SCCs.clear(); 1064 DeletedRefSCCs.push_back(RC); 1065 } 1066 1067 // Append our original SCCs to the merged list and move it into place. 1068 for (SCC &InnerC : *this) 1069 SCCIndices[&InnerC] = SCCIndex++; 1070 MergedSCCs.append(SCCs.begin(), SCCs.end()); 1071 SCCs = std::move(MergedSCCs); 1072 1073 // Remove the merged away RefSCCs from the post order sequence. 1074 for (RefSCC *RC : MergeRange) 1075 G->RefSCCIndices.erase(RC); 1076 int IndexOffset = MergeRange.end() - MergeRange.begin(); 1077 auto EraseEnd = 1078 G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end()); 1079 for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end())) 1080 G->RefSCCIndices[RC] -= IndexOffset; 1081 1082 // At this point we have a merged RefSCC with a post-order SCCs list, just 1083 // connect the nodes to form the new edge. 1084 SourceN->insertEdgeInternal(TargetN, Edge::Ref); 1085 1086 // We return the list of SCCs which were merged so that callers can 1087 // invalidate any data they have associated with those SCCs. Note that these 1088 // SCCs are no longer in an interesting state (they are totally empty) but 1089 // the pointers will remain stable for the life of the graph itself. 1090 return DeletedRefSCCs; 1091 } 1092 1093 void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) { 1094 assert(G->lookupRefSCC(SourceN) == this && 1095 "The source must be a member of this RefSCC."); 1096 assert(G->lookupRefSCC(TargetN) != this && 1097 "The target must not be a member of this RefSCC"); 1098 1099 #ifndef NDEBUG 1100 // In a debug build, verify the RefSCC is valid to start with and when this 1101 // routine finishes. 1102 verify(); 1103 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 1104 #endif 1105 1106 // First remove it from the node. 1107 bool Removed = SourceN->removeEdgeInternal(TargetN); 1108 (void)Removed; 1109 assert(Removed && "Target not in the edge set for this caller?"); 1110 } 1111 1112 SmallVector<LazyCallGraph::RefSCC *, 1> 1113 LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN, 1114 ArrayRef<Node *> TargetNs) { 1115 // We return a list of the resulting *new* RefSCCs in post-order. 1116 SmallVector<RefSCC *, 1> Result; 1117 1118 #ifndef NDEBUG 1119 // In a debug build, verify the RefSCC is valid to start with and that either 1120 // we return an empty list of result RefSCCs and this RefSCC remains valid, 1121 // or we return new RefSCCs and this RefSCC is dead. 1122 verify(); 1123 auto VerifyOnExit = make_scope_exit([&]() { 1124 // If we didn't replace our RefSCC with new ones, check that this one 1125 // remains valid. 1126 if (G) 1127 verify(); 1128 }); 1129 #endif 1130 1131 // First remove the actual edges. 1132 for (Node *TargetN : TargetNs) { 1133 assert(!(*SourceN)[*TargetN].isCall() && 1134 "Cannot remove a call edge, it must first be made a ref edge"); 1135 1136 bool Removed = SourceN->removeEdgeInternal(*TargetN); 1137 (void)Removed; 1138 assert(Removed && "Target not in the edge set for this caller?"); 1139 } 1140 1141 // Direct self references don't impact the ref graph at all. 1142 if (llvm::all_of(TargetNs, 1143 [&](Node *TargetN) { return &SourceN == TargetN; })) 1144 return Result; 1145 1146 // If all targets are in the same SCC as the source, because no call edges 1147 // were removed there is no RefSCC structure change. 1148 SCC &SourceC = *G->lookupSCC(SourceN); 1149 if (llvm::all_of(TargetNs, [&](Node *TargetN) { 1150 return G->lookupSCC(*TargetN) == &SourceC; 1151 })) 1152 return Result; 1153 1154 // We build somewhat synthetic new RefSCCs by providing a postorder mapping 1155 // for each inner SCC. We store these inside the low-link field of the nodes 1156 // rather than associated with SCCs because this saves a round-trip through 1157 // the node->SCC map and in the common case, SCCs are small. We will verify 1158 // that we always give the same number to every node in the SCC such that 1159 // these are equivalent. 1160 int PostOrderNumber = 0; 1161 1162 // Reset all the other nodes to prepare for a DFS over them, and add them to 1163 // our worklist. 1164 SmallVector<Node *, 8> Worklist; 1165 for (SCC *C : SCCs) { 1166 for (Node &N : *C) 1167 N.DFSNumber = N.LowLink = 0; 1168 1169 Worklist.append(C->Nodes.begin(), C->Nodes.end()); 1170 } 1171 1172 // Track the number of nodes in this RefSCC so that we can quickly recognize 1173 // an important special case of the edge removal not breaking the cycle of 1174 // this RefSCC. 1175 const int NumRefSCCNodes = Worklist.size(); 1176 1177 SmallVector<std::pair<Node *, EdgeSequence::iterator>, 4> DFSStack; 1178 SmallVector<Node *, 4> PendingRefSCCStack; 1179 do { 1180 assert(DFSStack.empty() && 1181 "Cannot begin a new root with a non-empty DFS stack!"); 1182 assert(PendingRefSCCStack.empty() && 1183 "Cannot begin a new root with pending nodes for an SCC!"); 1184 1185 Node *RootN = Worklist.pop_back_val(); 1186 // Skip any nodes we've already reached in the DFS. 1187 if (RootN->DFSNumber != 0) { 1188 assert(RootN->DFSNumber == -1 && 1189 "Shouldn't have any mid-DFS root nodes!"); 1190 continue; 1191 } 1192 1193 RootN->DFSNumber = RootN->LowLink = 1; 1194 int NextDFSNumber = 2; 1195 1196 DFSStack.push_back({RootN, (*RootN)->begin()}); 1197 do { 1198 Node *N; 1199 EdgeSequence::iterator I; 1200 std::tie(N, I) = DFSStack.pop_back_val(); 1201 auto E = (*N)->end(); 1202 1203 assert(N->DFSNumber != 0 && "We should always assign a DFS number " 1204 "before processing a node."); 1205 1206 while (I != E) { 1207 Node &ChildN = I->getNode(); 1208 if (ChildN.DFSNumber == 0) { 1209 // Mark that we should start at this child when next this node is the 1210 // top of the stack. We don't start at the next child to ensure this 1211 // child's lowlink is reflected. 1212 DFSStack.push_back({N, I}); 1213 1214 // Continue, resetting to the child node. 1215 ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++; 1216 N = &ChildN; 1217 I = ChildN->begin(); 1218 E = ChildN->end(); 1219 continue; 1220 } 1221 if (ChildN.DFSNumber == -1) { 1222 // If this child isn't currently in this RefSCC, no need to process 1223 // it. 1224 ++I; 1225 continue; 1226 } 1227 1228 // Track the lowest link of the children, if any are still in the stack. 1229 // Any child not on the stack will have a LowLink of -1. 1230 assert(ChildN.LowLink != 0 && 1231 "Low-link must not be zero with a non-zero DFS number."); 1232 if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink) 1233 N->LowLink = ChildN.LowLink; 1234 ++I; 1235 } 1236 1237 // We've finished processing N and its descendents, put it on our pending 1238 // stack to eventually get merged into a RefSCC. 1239 PendingRefSCCStack.push_back(N); 1240 1241 // If this node is linked to some lower entry, continue walking up the 1242 // stack. 1243 if (N->LowLink != N->DFSNumber) { 1244 assert(!DFSStack.empty() && 1245 "We never found a viable root for a RefSCC to pop off!"); 1246 continue; 1247 } 1248 1249 // Otherwise, form a new RefSCC from the top of the pending node stack. 1250 int RefSCCNumber = PostOrderNumber++; 1251 int RootDFSNumber = N->DFSNumber; 1252 1253 // Find the range of the node stack by walking down until we pass the 1254 // root DFS number. Update the DFS numbers and low link numbers in the 1255 // process to avoid re-walking this list where possible. 1256 auto StackRI = find_if(reverse(PendingRefSCCStack), [&](Node *N) { 1257 if (N->DFSNumber < RootDFSNumber) 1258 // We've found the bottom. 1259 return true; 1260 1261 // Update this node and keep scanning. 1262 N->DFSNumber = -1; 1263 // Save the post-order number in the lowlink field so that we can use 1264 // it to map SCCs into new RefSCCs after we finish the DFS. 1265 N->LowLink = RefSCCNumber; 1266 return false; 1267 }); 1268 auto RefSCCNodes = make_range(StackRI.base(), PendingRefSCCStack.end()); 1269 1270 // If we find a cycle containing all nodes originally in this RefSCC then 1271 // the removal hasn't changed the structure at all. This is an important 1272 // special case and we can directly exit the entire routine more 1273 // efficiently as soon as we discover it. 1274 if (std::distance(RefSCCNodes.begin(), RefSCCNodes.end()) == 1275 NumRefSCCNodes) { 1276 // Clear out the low link field as we won't need it. 1277 for (Node *N : RefSCCNodes) 1278 N->LowLink = -1; 1279 // Return the empty result immediately. 1280 return Result; 1281 } 1282 1283 // We've already marked the nodes internally with the RefSCC number so 1284 // just clear them off the stack and continue. 1285 PendingRefSCCStack.erase(RefSCCNodes.begin(), PendingRefSCCStack.end()); 1286 } while (!DFSStack.empty()); 1287 1288 assert(DFSStack.empty() && "Didn't flush the entire DFS stack!"); 1289 assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!"); 1290 } while (!Worklist.empty()); 1291 1292 assert(PostOrderNumber > 1 && 1293 "Should never finish the DFS when the existing RefSCC remains valid!"); 1294 1295 // Otherwise we create a collection of new RefSCC nodes and build 1296 // a radix-sort style map from postorder number to these new RefSCCs. We then 1297 // append SCCs to each of these RefSCCs in the order they occured in the 1298 // original SCCs container. 1299 for (int i = 0; i < PostOrderNumber; ++i) 1300 Result.push_back(G->createRefSCC(*G)); 1301 1302 // Insert the resulting postorder sequence into the global graph postorder 1303 // sequence before the current RefSCC in that sequence, and then remove the 1304 // current one. 1305 // 1306 // FIXME: It'd be nice to change the APIs so that we returned an iterator 1307 // range over the global postorder sequence and generally use that sequence 1308 // rather than building a separate result vector here. 1309 int Idx = G->getRefSCCIndex(*this); 1310 G->PostOrderRefSCCs.erase(G->PostOrderRefSCCs.begin() + Idx); 1311 G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx, Result.begin(), 1312 Result.end()); 1313 for (int i : seq<int>(Idx, G->PostOrderRefSCCs.size())) 1314 G->RefSCCIndices[G->PostOrderRefSCCs[i]] = i; 1315 1316 for (SCC *C : SCCs) { 1317 // We store the SCC number in the node's low-link field above. 1318 int SCCNumber = C->begin()->LowLink; 1319 // Clear out all of the SCC's node's low-link fields now that we're done 1320 // using them as side-storage. 1321 for (Node &N : *C) { 1322 assert(N.LowLink == SCCNumber && 1323 "Cannot have different numbers for nodes in the same SCC!"); 1324 N.LowLink = -1; 1325 } 1326 1327 RefSCC &RC = *Result[SCCNumber]; 1328 int SCCIndex = RC.SCCs.size(); 1329 RC.SCCs.push_back(C); 1330 RC.SCCIndices[C] = SCCIndex; 1331 C->OuterRefSCC = &RC; 1332 } 1333 1334 // Now that we've moved things into the new RefSCCs, clear out our current 1335 // one. 1336 G = nullptr; 1337 SCCs.clear(); 1338 SCCIndices.clear(); 1339 1340 #ifndef NDEBUG 1341 // Verify the new RefSCCs we've built. 1342 for (RefSCC *RC : Result) 1343 RC->verify(); 1344 #endif 1345 1346 // Return the new list of SCCs. 1347 return Result; 1348 } 1349 1350 void LazyCallGraph::RefSCC::handleTrivialEdgeInsertion(Node &SourceN, 1351 Node &TargetN) { 1352 // The only trivial case that requires any graph updates is when we add new 1353 // ref edge and may connect different RefSCCs along that path. This is only 1354 // because of the parents set. Every other part of the graph remains constant 1355 // after this edge insertion. 1356 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 1357 RefSCC &TargetRC = *G->lookupRefSCC(TargetN); 1358 if (&TargetRC == this) 1359 return; 1360 1361 #ifdef EXPENSIVE_CHECKS 1362 assert(TargetRC.isDescendantOf(*this) && 1363 "Target must be a descendant of the Source."); 1364 #endif 1365 } 1366 1367 void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN, 1368 Node &TargetN) { 1369 #ifndef NDEBUG 1370 // Check that the RefSCC is still valid when we finish. 1371 auto ExitVerifier = make_scope_exit([this] { verify(); }); 1372 1373 #ifdef EXPENSIVE_CHECKS 1374 // Check that we aren't breaking some invariants of the SCC graph. Note that 1375 // this is quadratic in the number of edges in the call graph! 1376 SCC &SourceC = *G->lookupSCC(SourceN); 1377 SCC &TargetC = *G->lookupSCC(TargetN); 1378 if (&SourceC != &TargetC) 1379 assert(SourceC.isAncestorOf(TargetC) && 1380 "Call edge is not trivial in the SCC graph!"); 1381 #endif // EXPENSIVE_CHECKS 1382 #endif // NDEBUG 1383 1384 // First insert it into the source or find the existing edge. 1385 auto InsertResult = 1386 SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()}); 1387 if (!InsertResult.second) { 1388 // Already an edge, just update it. 1389 Edge &E = SourceN->Edges[InsertResult.first->second]; 1390 if (E.isCall()) 1391 return; // Nothing to do! 1392 E.setKind(Edge::Call); 1393 } else { 1394 // Create the new edge. 1395 SourceN->Edges.emplace_back(TargetN, Edge::Call); 1396 } 1397 1398 // Now that we have the edge, handle the graph fallout. 1399 handleTrivialEdgeInsertion(SourceN, TargetN); 1400 } 1401 1402 void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) { 1403 #ifndef NDEBUG 1404 // Check that the RefSCC is still valid when we finish. 1405 auto ExitVerifier = make_scope_exit([this] { verify(); }); 1406 1407 #ifdef EXPENSIVE_CHECKS 1408 // Check that we aren't breaking some invariants of the RefSCC graph. 1409 RefSCC &SourceRC = *G->lookupRefSCC(SourceN); 1410 RefSCC &TargetRC = *G->lookupRefSCC(TargetN); 1411 if (&SourceRC != &TargetRC) 1412 assert(SourceRC.isAncestorOf(TargetRC) && 1413 "Ref edge is not trivial in the RefSCC graph!"); 1414 #endif // EXPENSIVE_CHECKS 1415 #endif // NDEBUG 1416 1417 // First insert it into the source or find the existing edge. 1418 auto InsertResult = 1419 SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()}); 1420 if (!InsertResult.second) 1421 // Already an edge, we're done. 1422 return; 1423 1424 // Create the new edge. 1425 SourceN->Edges.emplace_back(TargetN, Edge::Ref); 1426 1427 // Now that we have the edge, handle the graph fallout. 1428 handleTrivialEdgeInsertion(SourceN, TargetN); 1429 } 1430 1431 void LazyCallGraph::RefSCC::replaceNodeFunction(Node &N, Function &NewF) { 1432 Function &OldF = N.getFunction(); 1433 1434 #ifndef NDEBUG 1435 // Check that the RefSCC is still valid when we finish. 1436 auto ExitVerifier = make_scope_exit([this] { verify(); }); 1437 1438 assert(G->lookupRefSCC(N) == this && 1439 "Cannot replace the function of a node outside this RefSCC."); 1440 1441 assert(G->NodeMap.find(&NewF) == G->NodeMap.end() && 1442 "Must not have already walked the new function!'"); 1443 1444 // It is important that this replacement not introduce graph changes so we 1445 // insist that the caller has already removed every use of the original 1446 // function and that all uses of the new function correspond to existing 1447 // edges in the graph. The common and expected way to use this is when 1448 // replacing the function itself in the IR without changing the call graph 1449 // shape and just updating the analysis based on that. 1450 assert(&OldF != &NewF && "Cannot replace a function with itself!"); 1451 assert(OldF.use_empty() && 1452 "Must have moved all uses from the old function to the new!"); 1453 #endif 1454 1455 N.replaceFunction(NewF); 1456 1457 // Update various call graph maps. 1458 G->NodeMap.erase(&OldF); 1459 G->NodeMap[&NewF] = &N; 1460 } 1461 1462 void LazyCallGraph::insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK) { 1463 assert(SCCMap.empty() && 1464 "This method cannot be called after SCCs have been formed!"); 1465 1466 return SourceN->insertEdgeInternal(TargetN, EK); 1467 } 1468 1469 void LazyCallGraph::removeEdge(Node &SourceN, Node &TargetN) { 1470 assert(SCCMap.empty() && 1471 "This method cannot be called after SCCs have been formed!"); 1472 1473 bool Removed = SourceN->removeEdgeInternal(TargetN); 1474 (void)Removed; 1475 assert(Removed && "Target not in the edge set for this caller?"); 1476 } 1477 1478 void LazyCallGraph::removeDeadFunction(Function &F) { 1479 // FIXME: This is unnecessarily restrictive. We should be able to remove 1480 // functions which recursively call themselves. 1481 assert(F.use_empty() && 1482 "This routine should only be called on trivially dead functions!"); 1483 1484 // We shouldn't remove library functions as they are never really dead while 1485 // the call graph is in use -- every function definition refers to them. 1486 assert(!isLibFunction(F) && 1487 "Must not remove lib functions from the call graph!"); 1488 1489 auto NI = NodeMap.find(&F); 1490 if (NI == NodeMap.end()) 1491 // Not in the graph at all! 1492 return; 1493 1494 Node &N = *NI->second; 1495 NodeMap.erase(NI); 1496 1497 // Remove this from the entry edges if present. 1498 EntryEdges.removeEdgeInternal(N); 1499 1500 if (SCCMap.empty()) { 1501 // No SCCs have been formed, so removing this is fine and there is nothing 1502 // else necessary at this point but clearing out the node. 1503 N.clear(); 1504 return; 1505 } 1506 1507 // Cannot remove a function which has yet to be visited in the DFS walk, so 1508 // if we have a node at all then we must have an SCC and RefSCC. 1509 auto CI = SCCMap.find(&N); 1510 assert(CI != SCCMap.end() && 1511 "Tried to remove a node without an SCC after DFS walk started!"); 1512 SCC &C = *CI->second; 1513 SCCMap.erase(CI); 1514 RefSCC &RC = C.getOuterRefSCC(); 1515 1516 // This node must be the only member of its SCC as it has no callers, and 1517 // that SCC must be the only member of a RefSCC as it has no references. 1518 // Validate these properties first. 1519 assert(C.size() == 1 && "Dead functions must be in a singular SCC"); 1520 assert(RC.size() == 1 && "Dead functions must be in a singular RefSCC"); 1521 1522 auto RCIndexI = RefSCCIndices.find(&RC); 1523 int RCIndex = RCIndexI->second; 1524 PostOrderRefSCCs.erase(PostOrderRefSCCs.begin() + RCIndex); 1525 RefSCCIndices.erase(RCIndexI); 1526 for (int i = RCIndex, Size = PostOrderRefSCCs.size(); i < Size; ++i) 1527 RefSCCIndices[PostOrderRefSCCs[i]] = i; 1528 1529 // Finally clear out all the data structures from the node down through the 1530 // components. 1531 N.clear(); 1532 N.G = nullptr; 1533 N.F = nullptr; 1534 C.clear(); 1535 RC.clear(); 1536 RC.G = nullptr; 1537 1538 // Nothing to delete as all the objects are allocated in stable bump pointer 1539 // allocators. 1540 } 1541 1542 LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) { 1543 return *new (MappedN = BPA.Allocate()) Node(*this, F); 1544 } 1545 1546 void LazyCallGraph::updateGraphPtrs() { 1547 // Walk the node map to update their graph pointers. While this iterates in 1548 // an unstable order, the order has no effect so it remains correct. 1549 for (auto &FunctionNodePair : NodeMap) 1550 FunctionNodePair.second->G = this; 1551 1552 for (auto *RC : PostOrderRefSCCs) 1553 RC->G = this; 1554 } 1555 1556 template <typename RootsT, typename GetBeginT, typename GetEndT, 1557 typename GetNodeT, typename FormSCCCallbackT> 1558 void LazyCallGraph::buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin, 1559 GetEndT &&GetEnd, GetNodeT &&GetNode, 1560 FormSCCCallbackT &&FormSCC) { 1561 using EdgeItT = decltype(GetBegin(std::declval<Node &>())); 1562 1563 SmallVector<std::pair<Node *, EdgeItT>, 16> DFSStack; 1564 SmallVector<Node *, 16> PendingSCCStack; 1565 1566 // Scan down the stack and DFS across the call edges. 1567 for (Node *RootN : Roots) { 1568 assert(DFSStack.empty() && 1569 "Cannot begin a new root with a non-empty DFS stack!"); 1570 assert(PendingSCCStack.empty() && 1571 "Cannot begin a new root with pending nodes for an SCC!"); 1572 1573 // Skip any nodes we've already reached in the DFS. 1574 if (RootN->DFSNumber != 0) { 1575 assert(RootN->DFSNumber == -1 && 1576 "Shouldn't have any mid-DFS root nodes!"); 1577 continue; 1578 } 1579 1580 RootN->DFSNumber = RootN->LowLink = 1; 1581 int NextDFSNumber = 2; 1582 1583 DFSStack.push_back({RootN, GetBegin(*RootN)}); 1584 do { 1585 Node *N; 1586 EdgeItT I; 1587 std::tie(N, I) = DFSStack.pop_back_val(); 1588 auto E = GetEnd(*N); 1589 while (I != E) { 1590 Node &ChildN = GetNode(I); 1591 if (ChildN.DFSNumber == 0) { 1592 // We haven't yet visited this child, so descend, pushing the current 1593 // node onto the stack. 1594 DFSStack.push_back({N, I}); 1595 1596 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++; 1597 N = &ChildN; 1598 I = GetBegin(*N); 1599 E = GetEnd(*N); 1600 continue; 1601 } 1602 1603 // If the child has already been added to some child component, it 1604 // couldn't impact the low-link of this parent because it isn't 1605 // connected, and thus its low-link isn't relevant so skip it. 1606 if (ChildN.DFSNumber == -1) { 1607 ++I; 1608 continue; 1609 } 1610 1611 // Track the lowest linked child as the lowest link for this node. 1612 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); 1613 if (ChildN.LowLink < N->LowLink) 1614 N->LowLink = ChildN.LowLink; 1615 1616 // Move to the next edge. 1617 ++I; 1618 } 1619 1620 // We've finished processing N and its descendents, put it on our pending 1621 // SCC stack to eventually get merged into an SCC of nodes. 1622 PendingSCCStack.push_back(N); 1623 1624 // If this node is linked to some lower entry, continue walking up the 1625 // stack. 1626 if (N->LowLink != N->DFSNumber) 1627 continue; 1628 1629 // Otherwise, we've completed an SCC. Append it to our post order list of 1630 // SCCs. 1631 int RootDFSNumber = N->DFSNumber; 1632 // Find the range of the node stack by walking down until we pass the 1633 // root DFS number. 1634 auto SCCNodes = make_range( 1635 PendingSCCStack.rbegin(), 1636 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) { 1637 return N->DFSNumber < RootDFSNumber; 1638 })); 1639 // Form a new SCC out of these nodes and then clear them off our pending 1640 // stack. 1641 FormSCC(SCCNodes); 1642 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end()); 1643 } while (!DFSStack.empty()); 1644 } 1645 } 1646 1647 /// Build the internal SCCs for a RefSCC from a sequence of nodes. 1648 /// 1649 /// Appends the SCCs to the provided vector and updates the map with their 1650 /// indices. Both the vector and map must be empty when passed into this 1651 /// routine. 1652 void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) { 1653 assert(RC.SCCs.empty() && "Already built SCCs!"); 1654 assert(RC.SCCIndices.empty() && "Already mapped SCC indices!"); 1655 1656 for (Node *N : Nodes) { 1657 assert(N->LowLink >= (*Nodes.begin())->LowLink && 1658 "We cannot have a low link in an SCC lower than its root on the " 1659 "stack!"); 1660 1661 // This node will go into the next RefSCC, clear out its DFS and low link 1662 // as we scan. 1663 N->DFSNumber = N->LowLink = 0; 1664 } 1665 1666 // Each RefSCC contains a DAG of the call SCCs. To build these, we do 1667 // a direct walk of the call edges using Tarjan's algorithm. We reuse the 1668 // internal storage as we won't need it for the outer graph's DFS any longer. 1669 buildGenericSCCs( 1670 Nodes, [](Node &N) { return N->call_begin(); }, 1671 [](Node &N) { return N->call_end(); }, 1672 [](EdgeSequence::call_iterator I) -> Node & { return I->getNode(); }, 1673 [this, &RC](node_stack_range Nodes) { 1674 RC.SCCs.push_back(createSCC(RC, Nodes)); 1675 for (Node &N : *RC.SCCs.back()) { 1676 N.DFSNumber = N.LowLink = -1; 1677 SCCMap[&N] = RC.SCCs.back(); 1678 } 1679 }); 1680 1681 // Wire up the SCC indices. 1682 for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i) 1683 RC.SCCIndices[RC.SCCs[i]] = i; 1684 } 1685 1686 void LazyCallGraph::buildRefSCCs() { 1687 if (EntryEdges.empty() || !PostOrderRefSCCs.empty()) 1688 // RefSCCs are either non-existent or already built! 1689 return; 1690 1691 assert(RefSCCIndices.empty() && "Already mapped RefSCC indices!"); 1692 1693 SmallVector<Node *, 16> Roots; 1694 for (Edge &E : *this) 1695 Roots.push_back(&E.getNode()); 1696 1697 // The roots will be popped of a stack, so use reverse to get a less 1698 // surprising order. This doesn't change any of the semantics anywhere. 1699 std::reverse(Roots.begin(), Roots.end()); 1700 1701 buildGenericSCCs( 1702 Roots, 1703 [](Node &N) { 1704 // We need to populate each node as we begin to walk its edges. 1705 N.populate(); 1706 return N->begin(); 1707 }, 1708 [](Node &N) { return N->end(); }, 1709 [](EdgeSequence::iterator I) -> Node & { return I->getNode(); }, 1710 [this](node_stack_range Nodes) { 1711 RefSCC *NewRC = createRefSCC(*this); 1712 buildSCCs(*NewRC, Nodes); 1713 1714 // Push the new node into the postorder list and remember its position 1715 // in the index map. 1716 bool Inserted = 1717 RefSCCIndices.insert({NewRC, PostOrderRefSCCs.size()}).second; 1718 (void)Inserted; 1719 assert(Inserted && "Cannot already have this RefSCC in the index map!"); 1720 PostOrderRefSCCs.push_back(NewRC); 1721 #ifndef NDEBUG 1722 NewRC->verify(); 1723 #endif 1724 }); 1725 } 1726 1727 AnalysisKey LazyCallGraphAnalysis::Key; 1728 1729 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {} 1730 1731 static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) { 1732 OS << " Edges in function: " << N.getFunction().getName() << "\n"; 1733 for (LazyCallGraph::Edge &E : N.populate()) 1734 OS << " " << (E.isCall() ? "call" : "ref ") << " -> " 1735 << E.getFunction().getName() << "\n"; 1736 1737 OS << "\n"; 1738 } 1739 1740 static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) { 1741 ptrdiff_t Size = std::distance(C.begin(), C.end()); 1742 OS << " SCC with " << Size << " functions:\n"; 1743 1744 for (LazyCallGraph::Node &N : C) 1745 OS << " " << N.getFunction().getName() << "\n"; 1746 } 1747 1748 static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) { 1749 ptrdiff_t Size = std::distance(C.begin(), C.end()); 1750 OS << " RefSCC with " << Size << " call SCCs:\n"; 1751 1752 for (LazyCallGraph::SCC &InnerC : C) 1753 printSCC(OS, InnerC); 1754 1755 OS << "\n"; 1756 } 1757 1758 PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M, 1759 ModuleAnalysisManager &AM) { 1760 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M); 1761 1762 OS << "Printing the call graph for module: " << M.getModuleIdentifier() 1763 << "\n\n"; 1764 1765 for (Function &F : M) 1766 printNode(OS, G.get(F)); 1767 1768 G.buildRefSCCs(); 1769 for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs()) 1770 printRefSCC(OS, C); 1771 1772 return PreservedAnalyses::all(); 1773 } 1774 1775 LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS) 1776 : OS(OS) {} 1777 1778 static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) { 1779 std::string Name = "\"" + DOT::EscapeString(N.getFunction().getName()) + "\""; 1780 1781 for (LazyCallGraph::Edge &E : N.populate()) { 1782 OS << " " << Name << " -> \"" 1783 << DOT::EscapeString(E.getFunction().getName()) << "\""; 1784 if (!E.isCall()) // It is a ref edge. 1785 OS << " [style=dashed,label=\"ref\"]"; 1786 OS << ";\n"; 1787 } 1788 1789 OS << "\n"; 1790 } 1791 1792 PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M, 1793 ModuleAnalysisManager &AM) { 1794 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M); 1795 1796 OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n"; 1797 1798 for (Function &F : M) 1799 printNodeDOT(OS, G.get(F)); 1800 1801 OS << "}\n"; 1802 1803 return PreservedAnalyses::all(); 1804 } 1805