1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Analysis/LazyCallGraph.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/IR/CallSite.h"
13 #include "llvm/IR/InstVisitor.h"
14 #include "llvm/IR/Instructions.h"
15 #include "llvm/IR/PassManager.h"
16 #include "llvm/Support/Debug.h"
17 #include "llvm/Support/GraphWriter.h"
18 #include "llvm/Support/raw_ostream.h"
19 
20 using namespace llvm;
21 
22 #define DEBUG_TYPE "lcg"
23 
24 static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges,
25                     DenseMap<Function *, int> &EdgeIndexMap, Function &F,
26                     LazyCallGraph::Edge::Kind EK) {
27   // Note that we consider *any* function with a definition to be a viable
28   // edge. Even if the function's definition is subject to replacement by
29   // some other module (say, a weak definition) there may still be
30   // optimizations which essentially speculate based on the definition and
31   // a way to check that the specific definition is in fact the one being
32   // used. For example, this could be done by moving the weak definition to
33   // a strong (internal) definition and making the weak definition be an
34   // alias. Then a test of the address of the weak function against the new
35   // strong definition's address would be an effective way to determine the
36   // safety of optimizing a direct call edge.
37   if (!F.isDeclaration() &&
38       EdgeIndexMap.insert({&F, Edges.size()}).second) {
39     DEBUG(dbgs() << "    Added callable function: " << F.getName() << "\n");
40     Edges.emplace_back(LazyCallGraph::Edge(F, EK));
41   }
42 }
43 
44 static void findReferences(SmallVectorImpl<Constant *> &Worklist,
45                            SmallPtrSetImpl<Constant *> &Visited,
46                            SmallVectorImpl<LazyCallGraph::Edge> &Edges,
47                            DenseMap<Function *, int> &EdgeIndexMap) {
48   while (!Worklist.empty()) {
49     Constant *C = Worklist.pop_back_val();
50 
51     if (Function *F = dyn_cast<Function>(C)) {
52       addEdge(Edges, EdgeIndexMap, *F, LazyCallGraph::Edge::Ref);
53       continue;
54     }
55 
56     for (Value *Op : C->operand_values())
57       if (Visited.insert(cast<Constant>(Op)).second)
58         Worklist.push_back(cast<Constant>(Op));
59   }
60 }
61 
62 LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F)
63     : G(&G), F(F), DFSNumber(0), LowLink(0) {
64   DEBUG(dbgs() << "  Adding functions called by '" << F.getName()
65                << "' to the graph.\n");
66 
67   SmallVector<Constant *, 16> Worklist;
68   SmallPtrSet<Function *, 4> Callees;
69   SmallPtrSet<Constant *, 16> Visited;
70 
71   // Find all the potential call graph edges in this function. We track both
72   // actual call edges and indirect references to functions. The direct calls
73   // are trivially added, but to accumulate the latter we walk the instructions
74   // and add every operand which is a constant to the worklist to process
75   // afterward.
76   for (BasicBlock &BB : F)
77     for (Instruction &I : BB) {
78       if (auto CS = CallSite(&I))
79         if (Function *Callee = CS.getCalledFunction())
80           if (Callees.insert(Callee).second) {
81             Visited.insert(Callee);
82             addEdge(Edges, EdgeIndexMap, *Callee, LazyCallGraph::Edge::Call);
83           }
84 
85       for (Value *Op : I.operand_values())
86         if (Constant *C = dyn_cast<Constant>(Op))
87           if (Visited.insert(C).second)
88             Worklist.push_back(C);
89     }
90 
91   // We've collected all the constant (and thus potentially function or
92   // function containing) operands to all of the instructions in the function.
93   // Process them (recursively) collecting every function found.
94   findReferences(Worklist, Visited, Edges, EdgeIndexMap);
95 }
96 
97 void LazyCallGraph::Node::insertEdgeInternal(Function &Target, Edge::Kind EK) {
98   if (Node *N = G->lookup(Target))
99     return insertEdgeInternal(*N, EK);
100 
101   EdgeIndexMap.insert({&Target, Edges.size()});
102   Edges.emplace_back(Target, EK);
103 }
104 
105 void LazyCallGraph::Node::insertEdgeInternal(Node &TargetN, Edge::Kind EK) {
106   EdgeIndexMap.insert({&TargetN.getFunction(), Edges.size()});
107   Edges.emplace_back(TargetN, EK);
108 }
109 
110 void LazyCallGraph::Node::setEdgeKind(Function &TargetF, Edge::Kind EK) {
111   Edges[EdgeIndexMap.find(&TargetF)->second].setKind(EK);
112 }
113 
114 void LazyCallGraph::Node::removeEdgeInternal(Function &Target) {
115   auto IndexMapI = EdgeIndexMap.find(&Target);
116   assert(IndexMapI != EdgeIndexMap.end() &&
117          "Target not in the edge set for this caller?");
118 
119   Edges[IndexMapI->second] = Edge();
120   EdgeIndexMap.erase(IndexMapI);
121 }
122 
123 raw_ostream &llvm::operator<<(raw_ostream &OS, const LazyCallGraph::Node &N) {
124   return OS << N.F.getName();
125 }
126 
127 void LazyCallGraph::Node::dump() const {
128   dbgs() << *this << '\n';
129 }
130 
131 LazyCallGraph::LazyCallGraph(Module &M) : NextDFSNumber(0) {
132   DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
133                << "\n");
134   for (Function &F : M)
135     if (!F.isDeclaration() && !F.hasLocalLinkage())
136       if (EntryIndexMap.insert({&F, EntryEdges.size()}).second) {
137         DEBUG(dbgs() << "  Adding '" << F.getName()
138                      << "' to entry set of the graph.\n");
139         EntryEdges.emplace_back(F, Edge::Ref);
140       }
141 
142   // Now add entry nodes for functions reachable via initializers to globals.
143   SmallVector<Constant *, 16> Worklist;
144   SmallPtrSet<Constant *, 16> Visited;
145   for (GlobalVariable &GV : M.globals())
146     if (GV.hasInitializer())
147       if (Visited.insert(GV.getInitializer()).second)
148         Worklist.push_back(GV.getInitializer());
149 
150   DEBUG(dbgs() << "  Adding functions referenced by global initializers to the "
151                   "entry set.\n");
152   findReferences(Worklist, Visited, EntryEdges, EntryIndexMap);
153 
154   for (const Edge &E : EntryEdges)
155     RefSCCEntryNodes.push_back(&E.getFunction());
156 }
157 
158 LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
159     : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
160       EntryEdges(std::move(G.EntryEdges)),
161       EntryIndexMap(std::move(G.EntryIndexMap)), SCCBPA(std::move(G.SCCBPA)),
162       SCCMap(std::move(G.SCCMap)), LeafRefSCCs(std::move(G.LeafRefSCCs)),
163       DFSStack(std::move(G.DFSStack)),
164       RefSCCEntryNodes(std::move(G.RefSCCEntryNodes)),
165       NextDFSNumber(G.NextDFSNumber) {
166   updateGraphPtrs();
167 }
168 
169 LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
170   BPA = std::move(G.BPA);
171   NodeMap = std::move(G.NodeMap);
172   EntryEdges = std::move(G.EntryEdges);
173   EntryIndexMap = std::move(G.EntryIndexMap);
174   SCCBPA = std::move(G.SCCBPA);
175   SCCMap = std::move(G.SCCMap);
176   LeafRefSCCs = std::move(G.LeafRefSCCs);
177   DFSStack = std::move(G.DFSStack);
178   RefSCCEntryNodes = std::move(G.RefSCCEntryNodes);
179   NextDFSNumber = G.NextDFSNumber;
180   updateGraphPtrs();
181   return *this;
182 }
183 
184 raw_ostream &llvm::operator<<(raw_ostream &OS, const LazyCallGraph::SCC &C) {
185   OS << '(';
186   int i = 0;
187   for (LazyCallGraph::Node &N : C) {
188     if (i > 0)
189       OS << ", ";
190     // Elide the inner elements if there are too many.
191     if (i > 8) {
192       OS << "..., " << *C.Nodes.back();
193       break;
194     }
195     OS << N;
196     ++i;
197   }
198   OS << ')';
199   return OS;
200 }
201 
202 void LazyCallGraph::SCC::dump() const {
203   dbgs() << *this << '\n';
204 }
205 
206 #ifndef NDEBUG
207 void LazyCallGraph::SCC::verify() {
208   assert(OuterRefSCC && "Can't have a null RefSCC!");
209   assert(!Nodes.empty() && "Can't have an empty SCC!");
210 
211   for (Node *N : Nodes) {
212     assert(N && "Can't have a null node!");
213     assert(OuterRefSCC->G->lookupSCC(*N) == this &&
214            "Node does not map to this SCC!");
215     assert(N->DFSNumber == -1 &&
216            "Must set DFS numbers to -1 when adding a node to an SCC!");
217     assert(N->LowLink == -1 &&
218            "Must set low link to -1 when adding a node to an SCC!");
219     for (Edge &E : *N)
220       assert(E.getNode() && "Can't have an edge to a raw function!");
221   }
222 }
223 #endif
224 
225 LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {}
226 
227 raw_ostream &llvm::operator<<(raw_ostream &OS,
228                               const LazyCallGraph::RefSCC &RC) {
229   OS << '[';
230   int i = 0;
231   for (LazyCallGraph::SCC &C : RC) {
232     if (i > 0)
233       OS << ", ";
234     // Elide the inner elements if there are too many.
235     if (i > 4) {
236       OS << "..., " << *RC.SCCs.back();
237       break;
238     }
239     OS << C;
240     ++i;
241   }
242   OS << ']';
243   return OS;
244 }
245 
246 void LazyCallGraph::RefSCC::dump() const {
247   dbgs() << *this << '\n';
248 }
249 
250 #ifndef NDEBUG
251 void LazyCallGraph::RefSCC::verify() {
252   assert(G && "Can't have a null graph!");
253   assert(!SCCs.empty() && "Can't have an empty SCC!");
254 
255   // Verify basic properties of the SCCs.
256   for (SCC *C : SCCs) {
257     assert(C && "Can't have a null SCC!");
258     C->verify();
259     assert(&C->getOuterRefSCC() == this &&
260            "SCC doesn't think it is inside this RefSCC!");
261   }
262 
263   // Check that our indices map correctly.
264   for (auto &SCCIndexPair : SCCIndices) {
265     SCC *C = SCCIndexPair.first;
266     int i = SCCIndexPair.second;
267     assert(C && "Can't have a null SCC in the indices!");
268     assert(SCCs[i] == C && "Index doesn't point to SCC!");
269   }
270 
271   // Check that the SCCs are in fact in post-order.
272   for (int i = 0, Size = SCCs.size(); i < Size; ++i) {
273     SCC &SourceSCC = *SCCs[i];
274     for (Node &N : SourceSCC)
275       for (Edge &E : N) {
276         if (!E.isCall())
277           continue;
278         SCC &TargetSCC = *G->lookupSCC(*E.getNode());
279         if (&TargetSCC.getOuterRefSCC() == this) {
280           assert(SCCIndices.find(&TargetSCC)->second <= i &&
281                  "Edge between SCCs violates post-order relationship.");
282           continue;
283         }
284         assert(TargetSCC.getOuterRefSCC().Parents.count(this) &&
285                "Edge to a RefSCC missing us in its parent set.");
286       }
287   }
288 }
289 #endif
290 
291 bool LazyCallGraph::RefSCC::isDescendantOf(const RefSCC &C) const {
292   // Walk up the parents of this SCC and verify that we eventually find C.
293   SmallVector<const RefSCC *, 4> AncestorWorklist;
294   AncestorWorklist.push_back(this);
295   do {
296     const RefSCC *AncestorC = AncestorWorklist.pop_back_val();
297     if (AncestorC->isChildOf(C))
298       return true;
299     for (const RefSCC *ParentC : AncestorC->Parents)
300       AncestorWorklist.push_back(ParentC);
301   } while (!AncestorWorklist.empty());
302 
303   return false;
304 }
305 
306 SmallVector<LazyCallGraph::SCC *, 1>
307 LazyCallGraph::RefSCC::switchInternalEdgeToCall(Node &SourceN, Node &TargetN) {
308   assert(!SourceN[TargetN].isCall() && "Must start with a ref edge!");
309 
310   SmallVector<SCC *, 1> DeletedSCCs;
311 
312   SCC &SourceSCC = *G->lookupSCC(SourceN);
313   SCC &TargetSCC = *G->lookupSCC(TargetN);
314 
315   // If the two nodes are already part of the same SCC, we're also done as
316   // we've just added more connectivity.
317   if (&SourceSCC == &TargetSCC) {
318     SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
319 #ifndef NDEBUG
320     // Check that the RefSCC is still valid.
321     verify();
322 #endif
323     return DeletedSCCs;
324   }
325 
326   // At this point we leverage the postorder list of SCCs to detect when the
327   // insertion of an edge changes the SCC structure in any way.
328   //
329   // First and foremost, we can eliminate the need for any changes when the
330   // edge is toward the beginning of the postorder sequence because all edges
331   // flow in that direction already. Thus adding a new one cannot form a cycle.
332   int SourceIdx = SCCIndices[&SourceSCC];
333   int TargetIdx = SCCIndices[&TargetSCC];
334   if (TargetIdx < SourceIdx) {
335     SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
336 #ifndef NDEBUG
337     // Check that the RefSCC is still valid.
338     verify();
339 #endif
340     return DeletedSCCs;
341   }
342 
343   // When we do have an edge from an earlier SCC to a later SCC in the
344   // postorder sequence, all of the SCCs which may be impacted are in the
345   // closed range of those two within the postorder sequence. The algorithm to
346   // restore the state is as follows:
347   //
348   // 1) Starting from the source SCC, construct a set of SCCs which reach the
349   //    source SCC consisting of just the source SCC. Then scan toward the
350   //    target SCC in postorder and for each SCC, if it has an edge to an SCC
351   //    in the set, add it to the set. Otherwise, the source SCC is not
352   //    a successor, move it in the postorder sequence to immediately before
353   //    the source SCC, shifting the source SCC and all SCCs in the set one
354   //    position toward the target SCC. Stop scanning after processing the
355   //    target SCC.
356   // 2) If the source SCC is now past the target SCC in the postorder sequence,
357   //    and thus the new edge will flow toward the start, we are done.
358   // 3) Otherwise, starting from the target SCC, walk all edges which reach an
359   //    SCC between the source and the target, and add them to the set of
360   //    connected SCCs, then recurse through them. Once a complete set of the
361   //    SCCs the target connects to is known, hoist the remaining SCCs between
362   //    the source and the target to be above the target. Note that there is no
363   //    need to process the source SCC, it is already known to connect.
364   // 4) At this point, all of the SCCs in the closed range between the source
365   //    SCC and the target SCC in the postorder sequence are connected,
366   //    including the target SCC and the source SCC. Inserting the edge from
367   //    the source SCC to the target SCC will form a cycle out of precisely
368   //    these SCCs. Thus we can merge all of the SCCs in this closed range into
369   //    a single SCC.
370   //
371   // This process has various important properties:
372   // - Only mutates the SCCs when adding the edge actually changes the SCC
373   //   structure.
374   // - Never mutates SCCs which are unaffected by the change.
375   // - Updates the postorder sequence to correctly satisfy the postorder
376   //   constraint after the edge is inserted.
377   // - Only reorders SCCs in the closed postorder sequence from the source to
378   //   the target, so easy to bound how much has changed even in the ordering.
379   // - Big-O is the number of edges in the closed postorder range of SCCs from
380   //   source to target.
381 
382   assert(SourceIdx < TargetIdx && "Cannot have equal indices here!");
383   SmallPtrSet<SCC *, 4> ConnectedSet;
384 
385   // Compute the SCCs which (transitively) reach the source.
386   ConnectedSet.insert(&SourceSCC);
387   auto IsConnected = [&](SCC &C) {
388     for (Node &N : C)
389       for (Edge &E : N.calls()) {
390         assert(E.getNode() && "Must have formed a node within an SCC!");
391         if (ConnectedSet.count(G->lookupSCC(*E.getNode())))
392           return true;
393       }
394 
395     return false;
396   };
397 
398   for (SCC *C :
399        make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1))
400     if (IsConnected(*C))
401       ConnectedSet.insert(C);
402 
403   // Partition the SCCs in this part of the port-order sequence so only SCCs
404   // connecting to the source remain between it and the target. This is
405   // a benign partition as it preserves postorder.
406   auto SourceI = std::stable_partition(
407       SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1,
408       [&ConnectedSet](SCC *C) { return !ConnectedSet.count(C); });
409   for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i)
410     SCCIndices.find(SCCs[i])->second = i;
411 
412   // If the target doesn't connect to the source, then we've corrected the
413   // post-order and there are no cycles formed.
414   if (!ConnectedSet.count(&TargetSCC)) {
415     assert(SourceI > (SCCs.begin() + SourceIdx) &&
416            "Must have moved the source to fix the post-order.");
417     assert(*std::prev(SourceI) == &TargetSCC &&
418            "Last SCC to move should have bene the target.");
419     SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
420 #ifndef NDEBUG
421     verify();
422 #endif
423     return DeletedSCCs;
424   }
425 
426   assert(SCCs[TargetIdx] == &TargetSCC &&
427          "Should not have moved target if connected!");
428   SourceIdx = SourceI - SCCs.begin();
429 
430 #ifndef NDEBUG
431   // Check that the RefSCC is still valid.
432   verify();
433 #endif
434 
435   // See whether there are any remaining intervening SCCs between the source
436   // and target. If so we need to make sure they all are reachable form the
437   // target.
438   if (SourceIdx + 1 < TargetIdx) {
439     // Use a normal worklist to find which SCCs the target connects to. We still
440     // bound the search based on the range in the postorder list we care about,
441     // but because this is forward connectivity we just "recurse" through the
442     // edges.
443     ConnectedSet.clear();
444     ConnectedSet.insert(&TargetSCC);
445     SmallVector<SCC *, 4> Worklist;
446     Worklist.push_back(&TargetSCC);
447     do {
448       SCC &C = *Worklist.pop_back_val();
449       for (Node &N : C)
450         for (Edge &E : N) {
451           assert(E.getNode() && "Must have formed a node within an SCC!");
452           if (!E.isCall())
453             continue;
454           SCC &EdgeC = *G->lookupSCC(*E.getNode());
455           if (&EdgeC.getOuterRefSCC() != this)
456             // Not in this RefSCC...
457             continue;
458           if (SCCIndices.find(&EdgeC)->second <= SourceIdx)
459             // Not in the postorder sequence between source and target.
460             continue;
461 
462           if (ConnectedSet.insert(&EdgeC).second)
463             Worklist.push_back(&EdgeC);
464         }
465     } while (!Worklist.empty());
466 
467     // Partition SCCs so that only SCCs reached from the target remain between
468     // the source and the target. This preserves postorder.
469     auto TargetI = std::stable_partition(
470         SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1,
471         [&ConnectedSet](SCC *C) { return ConnectedSet.count(C); });
472     for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i)
473       SCCIndices.find(SCCs[i])->second = i;
474     TargetIdx = std::prev(TargetI) - SCCs.begin();
475     assert(SCCs[TargetIdx] == &TargetSCC &&
476            "Should always end with the target!");
477 
478 #ifndef NDEBUG
479     // Check that the RefSCC is still valid.
480     verify();
481 #endif
482   }
483 
484   // At this point, we know that connecting source to target forms a cycle
485   // because target connects back to source, and we know that all of the SCCs
486   // between the source and target in the postorder sequence participate in that
487   // cycle. This means that we need to merge all of these SCCs into a single
488   // result SCC.
489   //
490   // NB: We merge into the target because all of these functions were already
491   // reachable from the target, meaning any SCC-wide properties deduced about it
492   // other than the set of functions within it will not have changed.
493   auto MergeRange =
494       make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx);
495   for (SCC *C : MergeRange) {
496     assert(C != &TargetSCC &&
497            "We merge *into* the target and shouldn't process it here!");
498     SCCIndices.erase(C);
499     TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end());
500     for (Node *N : C->Nodes)
501       G->SCCMap[N] = &TargetSCC;
502     C->clear();
503     DeletedSCCs.push_back(C);
504   }
505 
506   // Erase the merged SCCs from the list and update the indices of the
507   // remaining SCCs.
508   int IndexOffset = MergeRange.end() - MergeRange.begin();
509   auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end());
510   for (SCC *C : make_range(EraseEnd, SCCs.end()))
511     SCCIndices[C] -= IndexOffset;
512 
513   // Now that the SCC structure is finalized, flip the kind to call.
514   SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
515 
516 #ifndef NDEBUG
517   // And we're done! Verify in debug builds that the RefSCC is coherent.
518   verify();
519 #endif
520   return DeletedSCCs;
521 }
522 
523 void LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN,
524                                                     Node &TargetN) {
525   assert(SourceN[TargetN].isCall() && "Must start with a call edge!");
526 
527   SCC &SourceSCC = *G->lookupSCC(SourceN);
528   SCC &TargetSCC = *G->lookupSCC(TargetN);
529 
530   assert(&SourceSCC.getOuterRefSCC() == this &&
531          "Source must be in this RefSCC.");
532   assert(&TargetSCC.getOuterRefSCC() == this &&
533          "Target must be in this RefSCC.");
534 
535   // Set the edge kind.
536   SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref);
537 
538   // If this call edge is just connecting two separate SCCs within this RefSCC,
539   // there is nothing to do.
540   if (&SourceSCC != &TargetSCC) {
541 #ifndef NDEBUG
542     // Check that the RefSCC is still valid.
543     verify();
544 #endif
545     return;
546   }
547 
548   // Otherwise we are removing a call edge from a single SCC. This may break
549   // the cycle. In order to compute the new set of SCCs, we need to do a small
550   // DFS over the nodes within the SCC to form any sub-cycles that remain as
551   // distinct SCCs and compute a postorder over the resulting SCCs.
552   //
553   // However, we specially handle the target node. The target node is known to
554   // reach all other nodes in the original SCC by definition. This means that
555   // we want the old SCC to be replaced with an SCC contaning that node as it
556   // will be the root of whatever SCC DAG results from the DFS. Assumptions
557   // about an SCC such as the set of functions called will continue to hold,
558   // etc.
559 
560   SCC &OldSCC = TargetSCC;
561   SmallVector<std::pair<Node *, call_edge_iterator>, 16> DFSStack;
562   SmallVector<Node *, 16> PendingSCCStack;
563   SmallVector<SCC *, 4> NewSCCs;
564 
565   // Prepare the nodes for a fresh DFS.
566   SmallVector<Node *, 16> Worklist;
567   Worklist.swap(OldSCC.Nodes);
568   for (Node *N : Worklist) {
569     N->DFSNumber = N->LowLink = 0;
570     G->SCCMap.erase(N);
571   }
572 
573   // Force the target node to be in the old SCC. This also enables us to take
574   // a very significant short-cut in the standard Tarjan walk to re-form SCCs
575   // below: whenever we build an edge that reaches the target node, we know
576   // that the target node eventually connects back to all other nodes in our
577   // walk. As a consequence, we can detect and handle participants in that
578   // cycle without walking all the edges that form this connection, and instead
579   // by relying on the fundamental guarantee coming into this operation (all
580   // nodes are reachable from the target due to previously forming an SCC).
581   TargetN.DFSNumber = TargetN.LowLink = -1;
582   OldSCC.Nodes.push_back(&TargetN);
583   G->SCCMap[&TargetN] = &OldSCC;
584 
585   // Scan down the stack and DFS across the call edges.
586   for (Node *RootN : Worklist) {
587     assert(DFSStack.empty() &&
588            "Cannot begin a new root with a non-empty DFS stack!");
589     assert(PendingSCCStack.empty() &&
590            "Cannot begin a new root with pending nodes for an SCC!");
591 
592     // Skip any nodes we've already reached in the DFS.
593     if (RootN->DFSNumber != 0) {
594       assert(RootN->DFSNumber == -1 &&
595              "Shouldn't have any mid-DFS root nodes!");
596       continue;
597     }
598 
599     RootN->DFSNumber = RootN->LowLink = 1;
600     int NextDFSNumber = 2;
601 
602     DFSStack.push_back({RootN, RootN->call_begin()});
603     do {
604       Node *N;
605       call_edge_iterator I;
606       std::tie(N, I) = DFSStack.pop_back_val();
607       auto E = N->call_end();
608       while (I != E) {
609         Node &ChildN = *I->getNode();
610         if (ChildN.DFSNumber == 0) {
611           // We haven't yet visited this child, so descend, pushing the current
612           // node onto the stack.
613           DFSStack.push_back({N, I});
614 
615           assert(!G->SCCMap.count(&ChildN) &&
616                  "Found a node with 0 DFS number but already in an SCC!");
617           ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
618           N = &ChildN;
619           I = N->call_begin();
620           E = N->call_end();
621           continue;
622         }
623 
624         // Check for the child already being part of some component.
625         if (ChildN.DFSNumber == -1) {
626           if (G->lookupSCC(ChildN) == &OldSCC) {
627             // If the child is part of the old SCC, we know that it can reach
628             // every other node, so we have formed a cycle. Pull the entire DFS
629             // and pending stacks into it. See the comment above about setting
630             // up the old SCC for why we do this.
631             int OldSize = OldSCC.size();
632             OldSCC.Nodes.push_back(N);
633             OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end());
634             PendingSCCStack.clear();
635             while (!DFSStack.empty())
636               OldSCC.Nodes.push_back(DFSStack.pop_back_val().first);
637             for (Node &N : make_range(OldSCC.begin() + OldSize, OldSCC.end())) {
638               N.DFSNumber = N.LowLink = -1;
639               G->SCCMap[&N] = &OldSCC;
640             }
641             N = nullptr;
642             break;
643           }
644 
645           // If the child has already been added to some child component, it
646           // couldn't impact the low-link of this parent because it isn't
647           // connected, and thus its low-link isn't relevant so skip it.
648           ++I;
649           continue;
650         }
651 
652         // Track the lowest linked child as the lowest link for this node.
653         assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
654         if (ChildN.LowLink < N->LowLink)
655           N->LowLink = ChildN.LowLink;
656 
657         // Move to the next edge.
658         ++I;
659       }
660       if (!N)
661         // Cleared the DFS early, start another round.
662         break;
663 
664       // We've finished processing N and its descendents, put it on our pending
665       // SCC stack to eventually get merged into an SCC of nodes.
666       PendingSCCStack.push_back(N);
667 
668       // If this node is linked to some lower entry, continue walking up the
669       // stack.
670       if (N->LowLink != N->DFSNumber)
671         continue;
672 
673       // Otherwise, we've completed an SCC. Append it to our post order list of
674       // SCCs.
675       int RootDFSNumber = N->DFSNumber;
676       // Find the range of the node stack by walking down until we pass the
677       // root DFS number.
678       auto SCCNodes = make_range(
679           PendingSCCStack.rbegin(),
680           std::find_if(PendingSCCStack.rbegin(), PendingSCCStack.rend(),
681                        [RootDFSNumber](Node *N) {
682                          return N->DFSNumber < RootDFSNumber;
683                        }));
684 
685       // Form a new SCC out of these nodes and then clear them off our pending
686       // stack.
687       NewSCCs.push_back(G->createSCC(*this, SCCNodes));
688       for (Node &N : *NewSCCs.back()) {
689         N.DFSNumber = N.LowLink = -1;
690         G->SCCMap[&N] = NewSCCs.back();
691       }
692       PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
693     } while (!DFSStack.empty());
694   }
695 
696   // Insert the remaining SCCs before the old one. The old SCC can reach all
697   // other SCCs we form because it contains the target node of the removed edge
698   // of the old SCC. This means that we will have edges into all of the new
699   // SCCs, which means the old one must come last for postorder.
700   int OldIdx = SCCIndices[&OldSCC];
701   SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end());
702 
703   // Update the mapping from SCC* to index to use the new SCC*s, and remove the
704   // old SCC from the mapping.
705   for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx)
706     SCCIndices[SCCs[Idx]] = Idx;
707 
708 #ifndef NDEBUG
709   // We're done. Check the validity on our way out.
710   verify();
711 #endif
712 }
713 
714 void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN,
715                                                      Node &TargetN) {
716   assert(!SourceN[TargetN].isCall() && "Must start with a ref edge!");
717 
718   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
719   assert(G->lookupRefSCC(TargetN) != this &&
720          "Target must not be in this RefSCC.");
721   assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
722          "Target must be a descendant of the Source.");
723 
724   // Edges between RefSCCs are the same regardless of call or ref, so we can
725   // just flip the edge here.
726   SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
727 
728 #ifndef NDEBUG
729   // Check that the RefSCC is still valid.
730   verify();
731 #endif
732 }
733 
734 void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN,
735                                                     Node &TargetN) {
736   assert(SourceN[TargetN].isCall() && "Must start with a call edge!");
737 
738   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
739   assert(G->lookupRefSCC(TargetN) != this &&
740          "Target must not be in this RefSCC.");
741   assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
742          "Target must be a descendant of the Source.");
743 
744   // Edges between RefSCCs are the same regardless of call or ref, so we can
745   // just flip the edge here.
746   SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref);
747 
748 #ifndef NDEBUG
749   // Check that the RefSCC is still valid.
750   verify();
751 #endif
752 }
753 
754 void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN,
755                                                   Node &TargetN) {
756   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
757   assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
758 
759   SourceN.insertEdgeInternal(TargetN, Edge::Ref);
760 
761 #ifndef NDEBUG
762   // Check that the RefSCC is still valid.
763   verify();
764 #endif
765 }
766 
767 void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN,
768                                                Edge::Kind EK) {
769   // First insert it into the caller.
770   SourceN.insertEdgeInternal(TargetN, EK);
771 
772   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
773 
774   RefSCC &TargetC = *G->lookupRefSCC(TargetN);
775   assert(&TargetC != this && "Target must not be in this RefSCC.");
776   assert(TargetC.isDescendantOf(*this) &&
777          "Target must be a descendant of the Source.");
778 
779   // The only change required is to add this SCC to the parent set of the
780   // callee.
781   TargetC.Parents.insert(this);
782 
783 #ifndef NDEBUG
784   // Check that the RefSCC is still valid.
785   verify();
786 #endif
787 }
788 
789 SmallVector<LazyCallGraph::RefSCC *, 1>
790 LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) {
791   assert(G->lookupRefSCC(TargetN) == this && "Target must be in this SCC.");
792 
793   // We store the RefSCCs found to be connected in postorder so that we can use
794   // that when merging. We also return this to the caller to allow them to
795   // invalidate information pertaining to these RefSCCs.
796   SmallVector<RefSCC *, 1> Connected;
797 
798   RefSCC &SourceC = *G->lookupRefSCC(SourceN);
799   assert(&SourceC != this && "Source must not be in this SCC.");
800   assert(SourceC.isDescendantOf(*this) &&
801          "Source must be a descendant of the Target.");
802 
803   // The algorithm we use for merging SCCs based on the cycle introduced here
804   // is to walk the RefSCC inverted DAG formed by the parent sets. The inverse
805   // graph has the same cycle properties as the actual DAG of the RefSCCs, and
806   // when forming RefSCCs lazily by a DFS, the bottom of the graph won't exist
807   // in many cases which should prune the search space.
808   //
809   // FIXME: We can get this pruning behavior even after the incremental RefSCC
810   // formation by leaving behind (conservative) DFS numberings in the nodes,
811   // and pruning the search with them. These would need to be cleverly updated
812   // during the removal of intra-SCC edges, but could be preserved
813   // conservatively.
814   //
815   // FIXME: This operation currently creates ordering stability problems
816   // because we don't use stably ordered containers for the parent SCCs.
817 
818   // The set of RefSCCs that are connected to the parent, and thus will
819   // participate in the merged connected component.
820   SmallPtrSet<RefSCC *, 8> ConnectedSet;
821   ConnectedSet.insert(this);
822 
823   // We build up a DFS stack of the parents chains.
824   SmallVector<std::pair<RefSCC *, parent_iterator>, 8> DFSStack;
825   SmallPtrSet<RefSCC *, 8> Visited;
826   int ConnectedDepth = -1;
827   DFSStack.push_back({&SourceC, SourceC.parent_begin()});
828   do {
829     auto DFSPair = DFSStack.pop_back_val();
830     RefSCC *C = DFSPair.first;
831     parent_iterator I = DFSPair.second;
832     auto E = C->parent_end();
833 
834     while (I != E) {
835       RefSCC &Parent = *I++;
836 
837       // If we have already processed this parent SCC, skip it, and remember
838       // whether it was connected so we don't have to check the rest of the
839       // stack. This also handles when we reach a child of the 'this' SCC (the
840       // callee) which terminates the search.
841       if (ConnectedSet.count(&Parent)) {
842         assert(ConnectedDepth < (int)DFSStack.size() &&
843                "Cannot have a connected depth greater than the DFS depth!");
844         ConnectedDepth = DFSStack.size();
845         continue;
846       }
847       if (Visited.count(&Parent))
848         continue;
849 
850       // We fully explore the depth-first space, adding nodes to the connected
851       // set only as we pop them off, so "recurse" by rotating to the parent.
852       DFSStack.push_back({C, I});
853       C = &Parent;
854       I = C->parent_begin();
855       E = C->parent_end();
856     }
857 
858     // If we've found a connection anywhere below this point on the stack (and
859     // thus up the parent graph from the caller), the current node needs to be
860     // added to the connected set now that we've processed all of its parents.
861     if ((int)DFSStack.size() == ConnectedDepth) {
862       --ConnectedDepth; // We're finished with this connection.
863       bool Inserted = ConnectedSet.insert(C).second;
864       (void)Inserted;
865       assert(Inserted && "Cannot insert a refSCC multiple times!");
866       Connected.push_back(C);
867     } else {
868       // Otherwise remember that its parents don't ever connect.
869       assert(ConnectedDepth < (int)DFSStack.size() &&
870              "Cannot have a connected depth greater than the DFS depth!");
871       Visited.insert(C);
872     }
873   } while (!DFSStack.empty());
874 
875   // Now that we have identified all of the SCCs which need to be merged into
876   // a connected set with the inserted edge, merge all of them into this SCC.
877   // We walk the newly connected RefSCCs in the reverse postorder of the parent
878   // DAG walk above and merge in each of their SCC postorder lists. This
879   // ensures a merged postorder SCC list.
880   SmallVector<SCC *, 16> MergedSCCs;
881   int SCCIndex = 0;
882   for (RefSCC *C : reverse(Connected)) {
883     assert(C != this &&
884            "This RefSCC should terminate the DFS without being reached.");
885 
886     // Merge the parents which aren't part of the merge into the our parents.
887     for (RefSCC *ParentC : C->Parents)
888       if (!ConnectedSet.count(ParentC))
889         Parents.insert(ParentC);
890     C->Parents.clear();
891 
892     // Walk the inner SCCs to update their up-pointer and walk all the edges to
893     // update any parent sets.
894     // FIXME: We should try to find a way to avoid this (rather expensive) edge
895     // walk by updating the parent sets in some other manner.
896     for (SCC &InnerC : *C) {
897       InnerC.OuterRefSCC = this;
898       SCCIndices[&InnerC] = SCCIndex++;
899       for (Node &N : InnerC) {
900         G->SCCMap[&N] = &InnerC;
901         for (Edge &E : N) {
902           assert(E.getNode() &&
903                  "Cannot have a null node within a visited SCC!");
904           RefSCC &ChildRC = *G->lookupRefSCC(*E.getNode());
905           if (ConnectedSet.count(&ChildRC))
906             continue;
907           ChildRC.Parents.erase(C);
908           ChildRC.Parents.insert(this);
909         }
910       }
911     }
912 
913     // Now merge in the SCCs. We can actually move here so try to reuse storage
914     // the first time through.
915     if (MergedSCCs.empty())
916       MergedSCCs = std::move(C->SCCs);
917     else
918       MergedSCCs.append(C->SCCs.begin(), C->SCCs.end());
919     C->SCCs.clear();
920   }
921 
922   // Finally append our original SCCs to the merged list and move it into
923   // place.
924   for (SCC &InnerC : *this)
925     SCCIndices[&InnerC] = SCCIndex++;
926   MergedSCCs.append(SCCs.begin(), SCCs.end());
927   SCCs = std::move(MergedSCCs);
928 
929   // At this point we have a merged RefSCC with a post-order SCCs list, just
930   // connect the nodes to form the new edge.
931   SourceN.insertEdgeInternal(TargetN, Edge::Ref);
932 
933 #ifndef NDEBUG
934   // Check that the RefSCC is still valid.
935   verify();
936 #endif
937 
938   // We return the list of SCCs which were merged so that callers can
939   // invalidate any data they have associated with those SCCs. Note that these
940   // SCCs are no longer in an interesting state (they are totally empty) but
941   // the pointers will remain stable for the life of the graph itself.
942   return Connected;
943 }
944 
945 void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) {
946   assert(G->lookupRefSCC(SourceN) == this &&
947          "The source must be a member of this RefSCC.");
948 
949   RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
950   assert(&TargetRC != this && "The target must not be a member of this RefSCC");
951 
952   assert(std::find(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(), this) ==
953              G->LeafRefSCCs.end() &&
954          "Cannot have a leaf RefSCC source.");
955 
956   // First remove it from the node.
957   SourceN.removeEdgeInternal(TargetN.getFunction());
958 
959   bool HasOtherEdgeToChildRC = false;
960   bool HasOtherChildRC = false;
961   for (SCC *InnerC : SCCs) {
962     for (Node &N : *InnerC) {
963       for (Edge &E : N) {
964         assert(E.getNode() && "Cannot have a missing node in a visited SCC!");
965         RefSCC &OtherChildRC = *G->lookupRefSCC(*E.getNode());
966         if (&OtherChildRC == &TargetRC) {
967           HasOtherEdgeToChildRC = true;
968           break;
969         }
970         if (&OtherChildRC != this)
971           HasOtherChildRC = true;
972       }
973       if (HasOtherEdgeToChildRC)
974         break;
975     }
976     if (HasOtherEdgeToChildRC)
977       break;
978   }
979   // Because the SCCs form a DAG, deleting such an edge cannot change the set
980   // of SCCs in the graph. However, it may cut an edge of the SCC DAG, making
981   // the source SCC no longer connected to the target SCC. If so, we need to
982   // update the target SCC's map of its parents.
983   if (!HasOtherEdgeToChildRC) {
984     bool Removed = TargetRC.Parents.erase(this);
985     (void)Removed;
986     assert(Removed &&
987            "Did not find the source SCC in the target SCC's parent list!");
988 
989     // It may orphan an SCC if it is the last edge reaching it, but that does
990     // not violate any invariants of the graph.
991     if (TargetRC.Parents.empty())
992       DEBUG(dbgs() << "LCG: Update removing " << SourceN.getFunction().getName()
993                    << " -> " << TargetN.getFunction().getName()
994                    << " edge orphaned the callee's SCC!\n");
995 
996     // It may make the Source SCC a leaf SCC.
997     if (!HasOtherChildRC)
998       G->LeafRefSCCs.push_back(this);
999   }
1000 }
1001 
1002 SmallVector<LazyCallGraph::RefSCC *, 1>
1003 LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN, Node &TargetN) {
1004   assert(!SourceN[TargetN].isCall() &&
1005          "Cannot remove a call edge, it must first be made a ref edge");
1006 
1007   // First remove the actual edge.
1008   SourceN.removeEdgeInternal(TargetN.getFunction());
1009 
1010   // We return a list of the resulting *new* RefSCCs in post-order.
1011   SmallVector<RefSCC *, 1> Result;
1012 
1013   // Direct recursion doesn't impact the SCC graph at all.
1014   if (&SourceN == &TargetN)
1015     return Result;
1016 
1017   // We build somewhat synthetic new RefSCCs by providing a postorder mapping
1018   // for each inner SCC. We also store these associated with *nodes* rather
1019   // than SCCs because this saves a round-trip through the node->SCC map and in
1020   // the common case, SCCs are small. We will verify that we always give the
1021   // same number to every node in the SCC such that these are equivalent.
1022   const int RootPostOrderNumber = 0;
1023   int PostOrderNumber = RootPostOrderNumber + 1;
1024   SmallDenseMap<Node *, int> PostOrderMapping;
1025 
1026   // Every node in the target SCC can already reach every node in this RefSCC
1027   // (by definition). It is the only node we know will stay inside this RefSCC.
1028   // Everything which transitively reaches Target will also remain in the
1029   // RefSCC. We handle this by pre-marking that the nodes in the target SCC map
1030   // back to the root post order number.
1031   //
1032   // This also enables us to take a very significant short-cut in the standard
1033   // Tarjan walk to re-form RefSCCs below: whenever we build an edge that
1034   // references the target node, we know that the target node eventually
1035   // references all other nodes in our walk. As a consequence, we can detect
1036   // and handle participants in that cycle without walking all the edges that
1037   // form the connections, and instead by relying on the fundamental guarantee
1038   // coming into this operation.
1039   SCC &TargetC = *G->lookupSCC(TargetN);
1040   for (Node &N : TargetC)
1041     PostOrderMapping[&N] = RootPostOrderNumber;
1042 
1043   // Reset all the other nodes to prepare for a DFS over them, and add them to
1044   // our worklist.
1045   SmallVector<Node *, 8> Worklist;
1046   for (SCC *C : SCCs) {
1047     if (C == &TargetC)
1048       continue;
1049 
1050     for (Node &N : *C)
1051       N.DFSNumber = N.LowLink = 0;
1052 
1053     Worklist.append(C->Nodes.begin(), C->Nodes.end());
1054   }
1055 
1056   auto MarkNodeForSCCNumber = [&PostOrderMapping](Node &N, int Number) {
1057     N.DFSNumber = N.LowLink = -1;
1058     PostOrderMapping[&N] = Number;
1059   };
1060 
1061   SmallVector<std::pair<Node *, edge_iterator>, 4> DFSStack;
1062   SmallVector<Node *, 4> PendingRefSCCStack;
1063   do {
1064     assert(DFSStack.empty() &&
1065            "Cannot begin a new root with a non-empty DFS stack!");
1066     assert(PendingRefSCCStack.empty() &&
1067            "Cannot begin a new root with pending nodes for an SCC!");
1068 
1069     Node *RootN = Worklist.pop_back_val();
1070     // Skip any nodes we've already reached in the DFS.
1071     if (RootN->DFSNumber != 0) {
1072       assert(RootN->DFSNumber == -1 &&
1073              "Shouldn't have any mid-DFS root nodes!");
1074       continue;
1075     }
1076 
1077     RootN->DFSNumber = RootN->LowLink = 1;
1078     int NextDFSNumber = 2;
1079 
1080     DFSStack.push_back({RootN, RootN->begin()});
1081     do {
1082       Node *N;
1083       edge_iterator I;
1084       std::tie(N, I) = DFSStack.pop_back_val();
1085       auto E = N->end();
1086 
1087       assert(N->DFSNumber != 0 && "We should always assign a DFS number "
1088                                   "before processing a node.");
1089 
1090       while (I != E) {
1091         Node &ChildN = I->getNode(*G);
1092         if (ChildN.DFSNumber == 0) {
1093           // Mark that we should start at this child when next this node is the
1094           // top of the stack. We don't start at the next child to ensure this
1095           // child's lowlink is reflected.
1096           DFSStack.push_back({N, I});
1097 
1098           // Continue, resetting to the child node.
1099           ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
1100           N = &ChildN;
1101           I = ChildN.begin();
1102           E = ChildN.end();
1103           continue;
1104         }
1105         if (ChildN.DFSNumber == -1) {
1106           // Check if this edge's target node connects to the deleted edge's
1107           // target node. If so, we know that every node connected will end up
1108           // in this RefSCC, so collapse the entire current stack into the root
1109           // slot in our SCC numbering. See above for the motivation of
1110           // optimizing the target connected nodes in this way.
1111           auto PostOrderI = PostOrderMapping.find(&ChildN);
1112           if (PostOrderI != PostOrderMapping.end() &&
1113               PostOrderI->second == RootPostOrderNumber) {
1114             MarkNodeForSCCNumber(*N, RootPostOrderNumber);
1115             while (!PendingRefSCCStack.empty())
1116               MarkNodeForSCCNumber(*PendingRefSCCStack.pop_back_val(),
1117                                    RootPostOrderNumber);
1118             while (!DFSStack.empty())
1119               MarkNodeForSCCNumber(*DFSStack.pop_back_val().first,
1120                                    RootPostOrderNumber);
1121             // Ensure we break all the way out of the enclosing loop.
1122             N = nullptr;
1123             break;
1124           }
1125 
1126           // If this child isn't currently in this RefSCC, no need to process
1127           // it.
1128           // However, we do need to remove this RefSCC from its RefSCC's parent
1129           // set.
1130           RefSCC &ChildRC = *G->lookupRefSCC(ChildN);
1131           ChildRC.Parents.erase(this);
1132           ++I;
1133           continue;
1134         }
1135 
1136         // Track the lowest link of the children, if any are still in the stack.
1137         // Any child not on the stack will have a LowLink of -1.
1138         assert(ChildN.LowLink != 0 &&
1139                "Low-link must not be zero with a non-zero DFS number.");
1140         if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
1141           N->LowLink = ChildN.LowLink;
1142         ++I;
1143       }
1144       if (!N)
1145         // We short-circuited this node.
1146         break;
1147 
1148       // We've finished processing N and its descendents, put it on our pending
1149       // stack to eventually get merged into a RefSCC.
1150       PendingRefSCCStack.push_back(N);
1151 
1152       // If this node is linked to some lower entry, continue walking up the
1153       // stack.
1154       if (N->LowLink != N->DFSNumber) {
1155         assert(!DFSStack.empty() &&
1156                "We never found a viable root for a RefSCC to pop off!");
1157         continue;
1158       }
1159 
1160       // Otherwise, form a new RefSCC from the top of the pending node stack.
1161       int RootDFSNumber = N->DFSNumber;
1162       // Find the range of the node stack by walking down until we pass the
1163       // root DFS number.
1164       auto RefSCCNodes = make_range(
1165           PendingRefSCCStack.rbegin(),
1166           std::find_if(PendingRefSCCStack.rbegin(), PendingRefSCCStack.rend(),
1167                        [RootDFSNumber](Node *N) {
1168                          return N->DFSNumber < RootDFSNumber;
1169                        }));
1170 
1171       // Mark the postorder number for these nodes and clear them off the
1172       // stack. We'll use the postorder number to pull them into RefSCCs at the
1173       // end. FIXME: Fuse with the loop above.
1174       int RefSCCNumber = PostOrderNumber++;
1175       for (Node *N : RefSCCNodes)
1176         MarkNodeForSCCNumber(*N, RefSCCNumber);
1177 
1178       PendingRefSCCStack.erase(RefSCCNodes.end().base(),
1179                                PendingRefSCCStack.end());
1180     } while (!DFSStack.empty());
1181 
1182     assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
1183     assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!");
1184   } while (!Worklist.empty());
1185 
1186   // We now have a post-order numbering for RefSCCs and a mapping from each
1187   // node in this RefSCC to its final RefSCC. We create each new RefSCC node
1188   // (re-using this RefSCC node for the root) and build a radix-sort style map
1189   // from postorder number to the RefSCC. We then append SCCs to each of these
1190   // RefSCCs in the order they occured in the original SCCs container.
1191   for (int i = 1; i < PostOrderNumber; ++i)
1192     Result.push_back(G->createRefSCC(*G));
1193 
1194   for (SCC *C : SCCs) {
1195     auto PostOrderI = PostOrderMapping.find(&*C->begin());
1196     assert(PostOrderI != PostOrderMapping.end() &&
1197            "Cannot have missing mappings for nodes!");
1198     int SCCNumber = PostOrderI->second;
1199 #ifndef NDEBUG
1200     for (Node &N : *C)
1201       assert(PostOrderMapping.find(&N)->second == SCCNumber &&
1202              "Cannot have different numbers for nodes in the same SCC!");
1203 #endif
1204     if (SCCNumber == 0)
1205       // The root node is handled separately by removing the SCCs.
1206       continue;
1207 
1208     RefSCC &RC = *Result[SCCNumber - 1];
1209     int SCCIndex = RC.SCCs.size();
1210     RC.SCCs.push_back(C);
1211     SCCIndices[C] = SCCIndex;
1212     C->OuterRefSCC = &RC;
1213   }
1214 
1215   // FIXME: We re-walk the edges in each RefSCC to establish whether it is
1216   // a leaf and connect it to the rest of the graph's parents lists. This is
1217   // really wasteful. We should instead do this during the DFS to avoid yet
1218   // another edge walk.
1219   for (RefSCC *RC : Result)
1220     G->connectRefSCC(*RC);
1221 
1222   // Now erase all but the root's SCCs.
1223   SCCs.erase(std::remove_if(SCCs.begin(), SCCs.end(),
1224                             [&](SCC *C) {
1225                               return PostOrderMapping.lookup(&*C->begin()) !=
1226                                      RootPostOrderNumber;
1227                             }),
1228              SCCs.end());
1229 
1230 #ifndef NDEBUG
1231   // Now we need to reconnect the current (root) SCC to the graph. We do this
1232   // manually because we can special case our leaf handling and detect errors.
1233   bool IsLeaf = true;
1234 #endif
1235   for (SCC *C : SCCs)
1236     for (Node &N : *C) {
1237       for (Edge &E : N) {
1238         assert(E.getNode() && "Cannot have a missing node in a visited SCC!");
1239         RefSCC &ChildRC = *G->lookupRefSCC(*E.getNode());
1240         if (&ChildRC == this)
1241           continue;
1242         ChildRC.Parents.insert(this);
1243 #ifndef NDEBUG
1244         IsLeaf = false;
1245 #endif
1246       }
1247     }
1248 #ifndef NDEBUG
1249   if (!Result.empty())
1250     assert(!IsLeaf && "This SCC cannot be a leaf as we have split out new "
1251                       "SCCs by removing this edge.");
1252   if (!std::any_of(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(),
1253                    [&](RefSCC *C) { return C == this; }))
1254     assert(!IsLeaf && "This SCC cannot be a leaf as it already had child "
1255                       "SCCs before we removed this edge.");
1256 #endif
1257   // If this SCC stopped being a leaf through this edge removal, remove it from
1258   // the leaf SCC list. Note that this DTRT in the case where this was never
1259   // a leaf.
1260   // FIXME: As LeafRefSCCs could be very large, we might want to not walk the
1261   // entire list if this RefSCC wasn't a leaf before the edge removal.
1262   if (!Result.empty())
1263     G->LeafRefSCCs.erase(
1264         std::remove(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(), this),
1265         G->LeafRefSCCs.end());
1266 
1267   // Return the new list of SCCs.
1268   return Result;
1269 }
1270 
1271 void LazyCallGraph::insertEdge(Node &SourceN, Function &Target, Edge::Kind EK) {
1272   assert(SCCMap.empty() && DFSStack.empty() &&
1273          "This method cannot be called after SCCs have been formed!");
1274 
1275   return SourceN.insertEdgeInternal(Target, EK);
1276 }
1277 
1278 void LazyCallGraph::removeEdge(Node &SourceN, Function &Target) {
1279   assert(SCCMap.empty() && DFSStack.empty() &&
1280          "This method cannot be called after SCCs have been formed!");
1281 
1282   return SourceN.removeEdgeInternal(Target);
1283 }
1284 
1285 LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
1286   return *new (MappedN = BPA.Allocate()) Node(*this, F);
1287 }
1288 
1289 void LazyCallGraph::updateGraphPtrs() {
1290   // Process all nodes updating the graph pointers.
1291   {
1292     SmallVector<Node *, 16> Worklist;
1293     for (Edge &E : EntryEdges)
1294       if (Node *EntryN = E.getNode())
1295         Worklist.push_back(EntryN);
1296 
1297     while (!Worklist.empty()) {
1298       Node *N = Worklist.pop_back_val();
1299       N->G = this;
1300       for (Edge &E : N->Edges)
1301         if (Node *TargetN = E.getNode())
1302           Worklist.push_back(TargetN);
1303     }
1304   }
1305 
1306   // Process all SCCs updating the graph pointers.
1307   {
1308     SmallVector<RefSCC *, 16> Worklist(LeafRefSCCs.begin(), LeafRefSCCs.end());
1309 
1310     while (!Worklist.empty()) {
1311       RefSCC &C = *Worklist.pop_back_val();
1312       C.G = this;
1313       for (RefSCC &ParentC : C.parents())
1314         Worklist.push_back(&ParentC);
1315     }
1316   }
1317 }
1318 
1319 /// Build the internal SCCs for a RefSCC from a sequence of nodes.
1320 ///
1321 /// Appends the SCCs to the provided vector and updates the map with their
1322 /// indices. Both the vector and map must be empty when passed into this
1323 /// routine.
1324 void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
1325   assert(RC.SCCs.empty() && "Already built SCCs!");
1326   assert(RC.SCCIndices.empty() && "Already mapped SCC indices!");
1327 
1328   for (Node *N : Nodes) {
1329     assert(N->LowLink >= (*Nodes.begin())->LowLink &&
1330            "We cannot have a low link in an SCC lower than its root on the "
1331            "stack!");
1332 
1333     // This node will go into the next RefSCC, clear out its DFS and low link
1334     // as we scan.
1335     N->DFSNumber = N->LowLink = 0;
1336   }
1337 
1338   // Each RefSCC contains a DAG of the call SCCs. To build these, we do
1339   // a direct walk of the call edges using Tarjan's algorithm. We reuse the
1340   // internal storage as we won't need it for the outer graph's DFS any longer.
1341 
1342   SmallVector<std::pair<Node *, call_edge_iterator>, 16> DFSStack;
1343   SmallVector<Node *, 16> PendingSCCStack;
1344 
1345   // Scan down the stack and DFS across the call edges.
1346   for (Node *RootN : Nodes) {
1347     assert(DFSStack.empty() &&
1348            "Cannot begin a new root with a non-empty DFS stack!");
1349     assert(PendingSCCStack.empty() &&
1350            "Cannot begin a new root with pending nodes for an SCC!");
1351 
1352     // Skip any nodes we've already reached in the DFS.
1353     if (RootN->DFSNumber != 0) {
1354       assert(RootN->DFSNumber == -1 &&
1355              "Shouldn't have any mid-DFS root nodes!");
1356       continue;
1357     }
1358 
1359     RootN->DFSNumber = RootN->LowLink = 1;
1360     int NextDFSNumber = 2;
1361 
1362     DFSStack.push_back({RootN, RootN->call_begin()});
1363     do {
1364       Node *N;
1365       call_edge_iterator I;
1366       std::tie(N, I) = DFSStack.pop_back_val();
1367       auto E = N->call_end();
1368       while (I != E) {
1369         Node &ChildN = *I->getNode();
1370         if (ChildN.DFSNumber == 0) {
1371           // We haven't yet visited this child, so descend, pushing the current
1372           // node onto the stack.
1373           DFSStack.push_back({N, I});
1374 
1375           assert(!lookupSCC(ChildN) &&
1376                  "Found a node with 0 DFS number but already in an SCC!");
1377           ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
1378           N = &ChildN;
1379           I = N->call_begin();
1380           E = N->call_end();
1381           continue;
1382         }
1383 
1384         // If the child has already been added to some child component, it
1385         // couldn't impact the low-link of this parent because it isn't
1386         // connected, and thus its low-link isn't relevant so skip it.
1387         if (ChildN.DFSNumber == -1) {
1388           ++I;
1389           continue;
1390         }
1391 
1392         // Track the lowest linked child as the lowest link for this node.
1393         assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
1394         if (ChildN.LowLink < N->LowLink)
1395           N->LowLink = ChildN.LowLink;
1396 
1397         // Move to the next edge.
1398         ++I;
1399       }
1400 
1401       // We've finished processing N and its descendents, put it on our pending
1402       // SCC stack to eventually get merged into an SCC of nodes.
1403       PendingSCCStack.push_back(N);
1404 
1405       // If this node is linked to some lower entry, continue walking up the
1406       // stack.
1407       if (N->LowLink != N->DFSNumber)
1408         continue;
1409 
1410       // Otherwise, we've completed an SCC. Append it to our post order list of
1411       // SCCs.
1412       int RootDFSNumber = N->DFSNumber;
1413       // Find the range of the node stack by walking down until we pass the
1414       // root DFS number.
1415       auto SCCNodes = make_range(
1416           PendingSCCStack.rbegin(),
1417           std::find_if(PendingSCCStack.rbegin(), PendingSCCStack.rend(),
1418                        [RootDFSNumber](Node *N) {
1419                          return N->DFSNumber < RootDFSNumber;
1420                        }));
1421       // Form a new SCC out of these nodes and then clear them off our pending
1422       // stack.
1423       RC.SCCs.push_back(createSCC(RC, SCCNodes));
1424       for (Node &N : *RC.SCCs.back()) {
1425         N.DFSNumber = N.LowLink = -1;
1426         SCCMap[&N] = RC.SCCs.back();
1427       }
1428       PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
1429     } while (!DFSStack.empty());
1430   }
1431 
1432   // Wire up the SCC indices.
1433   for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i)
1434     RC.SCCIndices[RC.SCCs[i]] = i;
1435 }
1436 
1437 // FIXME: We should move callers of this to embed the parent linking and leaf
1438 // tracking into their DFS in order to remove a full walk of all edges.
1439 void LazyCallGraph::connectRefSCC(RefSCC &RC) {
1440   // Walk all edges in the RefSCC (this remains linear as we only do this once
1441   // when we build the RefSCC) to connect it to the parent sets of its
1442   // children.
1443   bool IsLeaf = true;
1444   for (SCC &C : RC)
1445     for (Node &N : C)
1446       for (Edge &E : N) {
1447         assert(E.getNode() &&
1448                "Cannot have a missing node in a visited part of the graph!");
1449         RefSCC &ChildRC = *lookupRefSCC(*E.getNode());
1450         if (&ChildRC == &RC)
1451           continue;
1452         ChildRC.Parents.insert(&RC);
1453         IsLeaf = false;
1454       }
1455 
1456   // For the SCCs where we fine no child SCCs, add them to the leaf list.
1457   if (IsLeaf)
1458     LeafRefSCCs.push_back(&RC);
1459 }
1460 
1461 LazyCallGraph::RefSCC *LazyCallGraph::getNextRefSCCInPostOrder() {
1462   if (DFSStack.empty()) {
1463     Node *N;
1464     do {
1465       // If we've handled all candidate entry nodes to the SCC forest, we're
1466       // done.
1467       if (RefSCCEntryNodes.empty())
1468         return nullptr;
1469 
1470       N = &get(*RefSCCEntryNodes.pop_back_val());
1471     } while (N->DFSNumber != 0);
1472 
1473     // Found a new root, begin the DFS here.
1474     N->LowLink = N->DFSNumber = 1;
1475     NextDFSNumber = 2;
1476     DFSStack.push_back({N, N->begin()});
1477   }
1478 
1479   for (;;) {
1480     Node *N;
1481     edge_iterator I;
1482     std::tie(N, I) = DFSStack.pop_back_val();
1483 
1484     assert(N->DFSNumber > 0 && "We should always assign a DFS number "
1485                                "before placing a node onto the stack.");
1486 
1487     auto E = N->end();
1488     while (I != E) {
1489       Node &ChildN = I->getNode(*this);
1490       if (ChildN.DFSNumber == 0) {
1491         // We haven't yet visited this child, so descend, pushing the current
1492         // node onto the stack.
1493         DFSStack.push_back({N, N->begin()});
1494 
1495         assert(!SCCMap.count(&ChildN) &&
1496                "Found a node with 0 DFS number but already in an SCC!");
1497         ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
1498         N = &ChildN;
1499         I = N->begin();
1500         E = N->end();
1501         continue;
1502       }
1503 
1504       // If the child has already been added to some child component, it
1505       // couldn't impact the low-link of this parent because it isn't
1506       // connected, and thus its low-link isn't relevant so skip it.
1507       if (ChildN.DFSNumber == -1) {
1508         ++I;
1509         continue;
1510       }
1511 
1512       // Track the lowest linked child as the lowest link for this node.
1513       assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
1514       if (ChildN.LowLink < N->LowLink)
1515         N->LowLink = ChildN.LowLink;
1516 
1517       // Move to the next edge.
1518       ++I;
1519     }
1520 
1521     // We've finished processing N and its descendents, put it on our pending
1522     // SCC stack to eventually get merged into an SCC of nodes.
1523     PendingRefSCCStack.push_back(N);
1524 
1525     // If this node is linked to some lower entry, continue walking up the
1526     // stack.
1527     if (N->LowLink != N->DFSNumber) {
1528       assert(!DFSStack.empty() &&
1529              "We never found a viable root for an SCC to pop off!");
1530       continue;
1531     }
1532 
1533     // Otherwise, form a new RefSCC from the top of the pending node stack.
1534     int RootDFSNumber = N->DFSNumber;
1535     // Find the range of the node stack by walking down until we pass the
1536     // root DFS number.
1537     auto RefSCCNodes = node_stack_range(
1538         PendingRefSCCStack.rbegin(),
1539         std::find_if(
1540             PendingRefSCCStack.rbegin(), PendingRefSCCStack.rend(),
1541             [RootDFSNumber](Node *N) { return N->DFSNumber < RootDFSNumber; }));
1542     // Form a new RefSCC out of these nodes and then clear them off our pending
1543     // stack.
1544     RefSCC *NewRC = createRefSCC(*this);
1545     buildSCCs(*NewRC, RefSCCNodes);
1546     connectRefSCC(*NewRC);
1547     PendingRefSCCStack.erase(RefSCCNodes.end().base(),
1548                              PendingRefSCCStack.end());
1549 
1550     // We return the new node here. This essentially suspends the DFS walk
1551     // until another RefSCC is requested.
1552     return NewRC;
1553   }
1554 }
1555 
1556 char LazyCallGraphAnalysis::PassID;
1557 
1558 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
1559 
1560 static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) {
1561   OS << "  Edges in function: " << N.getFunction().getName() << "\n";
1562   for (const LazyCallGraph::Edge &E : N)
1563     OS << "    " << (E.isCall() ? "call" : "ref ") << " -> "
1564        << E.getFunction().getName() << "\n";
1565 
1566   OS << "\n";
1567 }
1568 
1569 static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) {
1570   ptrdiff_t Size = std::distance(C.begin(), C.end());
1571   OS << "    SCC with " << Size << " functions:\n";
1572 
1573   for (LazyCallGraph::Node &N : C)
1574     OS << "      " << N.getFunction().getName() << "\n";
1575 }
1576 
1577 static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) {
1578   ptrdiff_t Size = std::distance(C.begin(), C.end());
1579   OS << "  RefSCC with " << Size << " call SCCs:\n";
1580 
1581   for (LazyCallGraph::SCC &InnerC : C)
1582     printSCC(OS, InnerC);
1583 
1584   OS << "\n";
1585 }
1586 
1587 PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
1588                                                 ModuleAnalysisManager &AM) {
1589   LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
1590 
1591   OS << "Printing the call graph for module: " << M.getModuleIdentifier()
1592      << "\n\n";
1593 
1594   for (Function &F : M)
1595     printNode(OS, G.get(F));
1596 
1597   for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs())
1598     printRefSCC(OS, C);
1599 
1600   return PreservedAnalyses::all();
1601 }
1602 
1603 LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS)
1604     : OS(OS) {}
1605 
1606 static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) {
1607   std::string Name = "\"" + DOT::EscapeString(N.getFunction().getName()) + "\"";
1608 
1609   for (const LazyCallGraph::Edge &E : N) {
1610     OS << "  " << Name << " -> \""
1611        << DOT::EscapeString(E.getFunction().getName()) << "\"";
1612     if (!E.isCall()) // It is a ref edge.
1613       OS << " [style=dashed,label=\"ref\"]";
1614     OS << ";\n";
1615   }
1616 
1617   OS << "\n";
1618 }
1619 
1620 PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M,
1621                                                    ModuleAnalysisManager &AM) {
1622   LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
1623 
1624   OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n";
1625 
1626   for (Function &F : M)
1627     printNodeDOT(OS, G.get(F));
1628 
1629   OS << "}\n";
1630 
1631   return PreservedAnalyses::all();
1632 }
1633