1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Analysis/LazyCallGraph.h" 11 #include "llvm/ADT/ScopeExit.h" 12 #include "llvm/ADT/Sequence.h" 13 #include "llvm/ADT/STLExtras.h" 14 #include "llvm/IR/CallSite.h" 15 #include "llvm/IR/InstVisitor.h" 16 #include "llvm/IR/Instructions.h" 17 #include "llvm/IR/PassManager.h" 18 #include "llvm/Support/Debug.h" 19 #include "llvm/Support/GraphWriter.h" 20 21 using namespace llvm; 22 23 #define DEBUG_TYPE "lcg" 24 25 static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges, 26 DenseMap<Function *, int> &EdgeIndexMap, Function &F, 27 LazyCallGraph::Edge::Kind EK) { 28 // Note that we consider *any* function with a definition to be a viable 29 // edge. Even if the function's definition is subject to replacement by 30 // some other module (say, a weak definition) there may still be 31 // optimizations which essentially speculate based on the definition and 32 // a way to check that the specific definition is in fact the one being 33 // used. For example, this could be done by moving the weak definition to 34 // a strong (internal) definition and making the weak definition be an 35 // alias. Then a test of the address of the weak function against the new 36 // strong definition's address would be an effective way to determine the 37 // safety of optimizing a direct call edge. 38 if (!F.isDeclaration() && 39 EdgeIndexMap.insert({&F, Edges.size()}).second) { 40 DEBUG(dbgs() << " Added callable function: " << F.getName() << "\n"); 41 Edges.emplace_back(LazyCallGraph::Edge(F, EK)); 42 } 43 } 44 45 LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F) 46 : G(&G), F(F), DFSNumber(0), LowLink(0) { 47 DEBUG(dbgs() << " Adding functions called by '" << F.getName() 48 << "' to the graph.\n"); 49 50 SmallVector<Constant *, 16> Worklist; 51 SmallPtrSet<Function *, 4> Callees; 52 SmallPtrSet<Constant *, 16> Visited; 53 54 // Find all the potential call graph edges in this function. We track both 55 // actual call edges and indirect references to functions. The direct calls 56 // are trivially added, but to accumulate the latter we walk the instructions 57 // and add every operand which is a constant to the worklist to process 58 // afterward. 59 for (BasicBlock &BB : F) 60 for (Instruction &I : BB) { 61 if (auto CS = CallSite(&I)) 62 if (Function *Callee = CS.getCalledFunction()) 63 if (Callees.insert(Callee).second) { 64 Visited.insert(Callee); 65 addEdge(Edges, EdgeIndexMap, *Callee, LazyCallGraph::Edge::Call); 66 } 67 68 for (Value *Op : I.operand_values()) 69 if (Constant *C = dyn_cast<Constant>(Op)) 70 if (Visited.insert(C).second) 71 Worklist.push_back(C); 72 } 73 74 // We've collected all the constant (and thus potentially function or 75 // function containing) operands to all of the instructions in the function. 76 // Process them (recursively) collecting every function found. 77 visitReferences(Worklist, Visited, [&](Function &F) { 78 addEdge(Edges, EdgeIndexMap, F, LazyCallGraph::Edge::Ref); 79 }); 80 } 81 82 void LazyCallGraph::Node::insertEdgeInternal(Function &Target, Edge::Kind EK) { 83 if (Node *N = G->lookup(Target)) 84 return insertEdgeInternal(*N, EK); 85 86 EdgeIndexMap.insert({&Target, Edges.size()}); 87 Edges.emplace_back(Target, EK); 88 } 89 90 void LazyCallGraph::Node::insertEdgeInternal(Node &TargetN, Edge::Kind EK) { 91 EdgeIndexMap.insert({&TargetN.getFunction(), Edges.size()}); 92 Edges.emplace_back(TargetN, EK); 93 } 94 95 void LazyCallGraph::Node::setEdgeKind(Function &TargetF, Edge::Kind EK) { 96 Edges[EdgeIndexMap.find(&TargetF)->second].setKind(EK); 97 } 98 99 void LazyCallGraph::Node::removeEdgeInternal(Function &Target) { 100 auto IndexMapI = EdgeIndexMap.find(&Target); 101 assert(IndexMapI != EdgeIndexMap.end() && 102 "Target not in the edge set for this caller?"); 103 104 Edges[IndexMapI->second] = Edge(); 105 EdgeIndexMap.erase(IndexMapI); 106 } 107 108 void LazyCallGraph::Node::dump() const { 109 dbgs() << *this << '\n'; 110 } 111 112 LazyCallGraph::LazyCallGraph(Module &M) : NextDFSNumber(0) { 113 DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier() 114 << "\n"); 115 for (Function &F : M) 116 if (!F.isDeclaration() && !F.hasLocalLinkage()) 117 if (EntryIndexMap.insert({&F, EntryEdges.size()}).second) { 118 DEBUG(dbgs() << " Adding '" << F.getName() 119 << "' to entry set of the graph.\n"); 120 EntryEdges.emplace_back(F, Edge::Ref); 121 } 122 123 // Now add entry nodes for functions reachable via initializers to globals. 124 SmallVector<Constant *, 16> Worklist; 125 SmallPtrSet<Constant *, 16> Visited; 126 for (GlobalVariable &GV : M.globals()) 127 if (GV.hasInitializer()) 128 if (Visited.insert(GV.getInitializer()).second) 129 Worklist.push_back(GV.getInitializer()); 130 131 DEBUG(dbgs() << " Adding functions referenced by global initializers to the " 132 "entry set.\n"); 133 visitReferences(Worklist, Visited, [&](Function &F) { 134 addEdge(EntryEdges, EntryIndexMap, F, LazyCallGraph::Edge::Ref); 135 }); 136 137 for (const Edge &E : EntryEdges) 138 RefSCCEntryNodes.push_back(&E.getFunction()); 139 } 140 141 LazyCallGraph::LazyCallGraph(LazyCallGraph &&G) 142 : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)), 143 EntryEdges(std::move(G.EntryEdges)), 144 EntryIndexMap(std::move(G.EntryIndexMap)), SCCBPA(std::move(G.SCCBPA)), 145 SCCMap(std::move(G.SCCMap)), LeafRefSCCs(std::move(G.LeafRefSCCs)), 146 DFSStack(std::move(G.DFSStack)), 147 RefSCCEntryNodes(std::move(G.RefSCCEntryNodes)), 148 NextDFSNumber(G.NextDFSNumber) { 149 updateGraphPtrs(); 150 } 151 152 LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) { 153 BPA = std::move(G.BPA); 154 NodeMap = std::move(G.NodeMap); 155 EntryEdges = std::move(G.EntryEdges); 156 EntryIndexMap = std::move(G.EntryIndexMap); 157 SCCBPA = std::move(G.SCCBPA); 158 SCCMap = std::move(G.SCCMap); 159 LeafRefSCCs = std::move(G.LeafRefSCCs); 160 DFSStack = std::move(G.DFSStack); 161 RefSCCEntryNodes = std::move(G.RefSCCEntryNodes); 162 NextDFSNumber = G.NextDFSNumber; 163 updateGraphPtrs(); 164 return *this; 165 } 166 167 void LazyCallGraph::SCC::dump() const { 168 dbgs() << *this << '\n'; 169 } 170 171 #ifndef NDEBUG 172 void LazyCallGraph::SCC::verify() { 173 assert(OuterRefSCC && "Can't have a null RefSCC!"); 174 assert(!Nodes.empty() && "Can't have an empty SCC!"); 175 176 for (Node *N : Nodes) { 177 assert(N && "Can't have a null node!"); 178 assert(OuterRefSCC->G->lookupSCC(*N) == this && 179 "Node does not map to this SCC!"); 180 assert(N->DFSNumber == -1 && 181 "Must set DFS numbers to -1 when adding a node to an SCC!"); 182 assert(N->LowLink == -1 && 183 "Must set low link to -1 when adding a node to an SCC!"); 184 for (Edge &E : *N) 185 assert(E.getNode() && "Can't have an edge to a raw function!"); 186 } 187 } 188 #endif 189 190 bool LazyCallGraph::SCC::isParentOf(const SCC &C) const { 191 if (this == &C) 192 return false; 193 194 for (Node &N : *this) 195 for (Edge &E : N.calls()) 196 if (Node *CalleeN = E.getNode()) 197 if (OuterRefSCC->G->lookupSCC(*CalleeN) == &C) 198 return true; 199 200 // No edges found. 201 return false; 202 } 203 204 bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const { 205 if (this == &TargetC) 206 return false; 207 208 LazyCallGraph &G = *OuterRefSCC->G; 209 210 // Start with this SCC. 211 SmallPtrSet<const SCC *, 16> Visited = {this}; 212 SmallVector<const SCC *, 16> Worklist = {this}; 213 214 // Walk down the graph until we run out of edges or find a path to TargetC. 215 do { 216 const SCC &C = *Worklist.pop_back_val(); 217 for (Node &N : C) 218 for (Edge &E : N.calls()) { 219 Node *CalleeN = E.getNode(); 220 if (!CalleeN) 221 continue; 222 SCC *CalleeC = G.lookupSCC(*CalleeN); 223 if (!CalleeC) 224 continue; 225 226 // If the callee's SCC is the TargetC, we're done. 227 if (CalleeC == &TargetC) 228 return true; 229 230 // If this is the first time we've reached this SCC, put it on the 231 // worklist to recurse through. 232 if (Visited.insert(CalleeC).second) 233 Worklist.push_back(CalleeC); 234 } 235 } while (!Worklist.empty()); 236 237 // No paths found. 238 return false; 239 } 240 241 LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {} 242 243 void LazyCallGraph::RefSCC::dump() const { 244 dbgs() << *this << '\n'; 245 } 246 247 #ifndef NDEBUG 248 void LazyCallGraph::RefSCC::verify() { 249 assert(G && "Can't have a null graph!"); 250 assert(!SCCs.empty() && "Can't have an empty SCC!"); 251 252 // Verify basic properties of the SCCs. 253 SmallPtrSet<SCC *, 4> SCCSet; 254 for (SCC *C : SCCs) { 255 assert(C && "Can't have a null SCC!"); 256 C->verify(); 257 assert(&C->getOuterRefSCC() == this && 258 "SCC doesn't think it is inside this RefSCC!"); 259 bool Inserted = SCCSet.insert(C).second; 260 assert(Inserted && "Found a duplicate SCC!"); 261 } 262 263 // Check that our indices map correctly. 264 for (auto &SCCIndexPair : SCCIndices) { 265 SCC *C = SCCIndexPair.first; 266 int i = SCCIndexPair.second; 267 assert(C && "Can't have a null SCC in the indices!"); 268 assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!"); 269 assert(SCCs[i] == C && "Index doesn't point to SCC!"); 270 } 271 272 // Check that the SCCs are in fact in post-order. 273 for (int i = 0, Size = SCCs.size(); i < Size; ++i) { 274 SCC &SourceSCC = *SCCs[i]; 275 for (Node &N : SourceSCC) 276 for (Edge &E : N) { 277 if (!E.isCall()) 278 continue; 279 SCC &TargetSCC = *G->lookupSCC(*E.getNode()); 280 if (&TargetSCC.getOuterRefSCC() == this) { 281 assert(SCCIndices.find(&TargetSCC)->second <= i && 282 "Edge between SCCs violates post-order relationship."); 283 continue; 284 } 285 assert(TargetSCC.getOuterRefSCC().Parents.count(this) && 286 "Edge to a RefSCC missing us in its parent set."); 287 } 288 } 289 } 290 #endif 291 292 bool LazyCallGraph::RefSCC::isDescendantOf(const RefSCC &C) const { 293 // Walk up the parents of this SCC and verify that we eventually find C. 294 SmallVector<const RefSCC *, 4> AncestorWorklist; 295 AncestorWorklist.push_back(this); 296 do { 297 const RefSCC *AncestorC = AncestorWorklist.pop_back_val(); 298 if (AncestorC->isChildOf(C)) 299 return true; 300 for (const RefSCC *ParentC : AncestorC->Parents) 301 AncestorWorklist.push_back(ParentC); 302 } while (!AncestorWorklist.empty()); 303 304 return false; 305 } 306 307 /// Generic helper that updates a postorder sequence of SCCs for a potentially 308 /// cycle-introducing edge insertion. 309 /// 310 /// A postorder sequence of SCCs of a directed graph has one fundamental 311 /// property: all deges in the DAG of SCCs point "up" the sequence. That is, 312 /// all edges in the SCC DAG point to prior SCCs in the sequence. 313 /// 314 /// This routine both updates a postorder sequence and uses that sequence to 315 /// compute the set of SCCs connected into a cycle. It should only be called to 316 /// insert a "downward" edge which will require changing the sequence to 317 /// restore it to a postorder. 318 /// 319 /// When inserting an edge from an earlier SCC to a later SCC in some postorder 320 /// sequence, all of the SCCs which may be impacted are in the closed range of 321 /// those two within the postorder sequence. The algorithm used here to restore 322 /// the state is as follows: 323 /// 324 /// 1) Starting from the source SCC, construct a set of SCCs which reach the 325 /// source SCC consisting of just the source SCC. Then scan toward the 326 /// target SCC in postorder and for each SCC, if it has an edge to an SCC 327 /// in the set, add it to the set. Otherwise, the source SCC is not 328 /// a successor, move it in the postorder sequence to immediately before 329 /// the source SCC, shifting the source SCC and all SCCs in the set one 330 /// position toward the target SCC. Stop scanning after processing the 331 /// target SCC. 332 /// 2) If the source SCC is now past the target SCC in the postorder sequence, 333 /// and thus the new edge will flow toward the start, we are done. 334 /// 3) Otherwise, starting from the target SCC, walk all edges which reach an 335 /// SCC between the source and the target, and add them to the set of 336 /// connected SCCs, then recurse through them. Once a complete set of the 337 /// SCCs the target connects to is known, hoist the remaining SCCs between 338 /// the source and the target to be above the target. Note that there is no 339 /// need to process the source SCC, it is already known to connect. 340 /// 4) At this point, all of the SCCs in the closed range between the source 341 /// SCC and the target SCC in the postorder sequence are connected, 342 /// including the target SCC and the source SCC. Inserting the edge from 343 /// the source SCC to the target SCC will form a cycle out of precisely 344 /// these SCCs. Thus we can merge all of the SCCs in this closed range into 345 /// a single SCC. 346 /// 347 /// This process has various important properties: 348 /// - Only mutates the SCCs when adding the edge actually changes the SCC 349 /// structure. 350 /// - Never mutates SCCs which are unaffected by the change. 351 /// - Updates the postorder sequence to correctly satisfy the postorder 352 /// constraint after the edge is inserted. 353 /// - Only reorders SCCs in the closed postorder sequence from the source to 354 /// the target, so easy to bound how much has changed even in the ordering. 355 /// - Big-O is the number of edges in the closed postorder range of SCCs from 356 /// source to target. 357 /// 358 /// This helper routine, in addition to updating the postorder sequence itself 359 /// will also update a map from SCCs to indices within that sequecne. 360 /// 361 /// The sequence and the map must operate on pointers to the SCC type. 362 /// 363 /// Two callbacks must be provided. The first computes the subset of SCCs in 364 /// the postorder closed range from the source to the target which connect to 365 /// the source SCC via some (transitive) set of edges. The second computes the 366 /// subset of the same range which the target SCC connects to via some 367 /// (transitive) set of edges. Both callbacks should populate the set argument 368 /// provided. 369 template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT, 370 typename ComputeSourceConnectedSetCallableT, 371 typename ComputeTargetConnectedSetCallableT> 372 static iterator_range<typename PostorderSequenceT::iterator> 373 updatePostorderSequenceForEdgeInsertion( 374 SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs, 375 SCCIndexMapT &SCCIndices, 376 ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet, 377 ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) { 378 int SourceIdx = SCCIndices[&SourceSCC]; 379 int TargetIdx = SCCIndices[&TargetSCC]; 380 assert(SourceIdx < TargetIdx && "Cannot have equal indices here!"); 381 382 SmallPtrSet<SCCT *, 4> ConnectedSet; 383 384 // Compute the SCCs which (transitively) reach the source. 385 ComputeSourceConnectedSet(ConnectedSet); 386 387 // Partition the SCCs in this part of the port-order sequence so only SCCs 388 // connecting to the source remain between it and the target. This is 389 // a benign partition as it preserves postorder. 390 auto SourceI = std::stable_partition( 391 SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1, 392 [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); }); 393 for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i) 394 SCCIndices.find(SCCs[i])->second = i; 395 396 // If the target doesn't connect to the source, then we've corrected the 397 // post-order and there are no cycles formed. 398 if (!ConnectedSet.count(&TargetSCC)) { 399 assert(SourceI > (SCCs.begin() + SourceIdx) && 400 "Must have moved the source to fix the post-order."); 401 assert(*std::prev(SourceI) == &TargetSCC && 402 "Last SCC to move should have bene the target."); 403 404 // Return an empty range at the target SCC indicating there is nothing to 405 // merge. 406 return make_range(std::prev(SourceI), std::prev(SourceI)); 407 } 408 409 assert(SCCs[TargetIdx] == &TargetSCC && 410 "Should not have moved target if connected!"); 411 SourceIdx = SourceI - SCCs.begin(); 412 assert(SCCs[SourceIdx] == &SourceSCC && 413 "Bad updated index computation for the source SCC!"); 414 415 416 // See whether there are any remaining intervening SCCs between the source 417 // and target. If so we need to make sure they all are reachable form the 418 // target. 419 if (SourceIdx + 1 < TargetIdx) { 420 ConnectedSet.clear(); 421 ComputeTargetConnectedSet(ConnectedSet); 422 423 // Partition SCCs so that only SCCs reached from the target remain between 424 // the source and the target. This preserves postorder. 425 auto TargetI = std::stable_partition( 426 SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1, 427 [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); }); 428 for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i) 429 SCCIndices.find(SCCs[i])->second = i; 430 TargetIdx = std::prev(TargetI) - SCCs.begin(); 431 assert(SCCs[TargetIdx] == &TargetSCC && 432 "Should always end with the target!"); 433 } 434 435 // At this point, we know that connecting source to target forms a cycle 436 // because target connects back to source, and we know that all of the SCCs 437 // between the source and target in the postorder sequence participate in that 438 // cycle. 439 return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx); 440 } 441 442 SmallVector<LazyCallGraph::SCC *, 1> 443 LazyCallGraph::RefSCC::switchInternalEdgeToCall(Node &SourceN, Node &TargetN) { 444 assert(!SourceN[TargetN].isCall() && "Must start with a ref edge!"); 445 SmallVector<SCC *, 1> DeletedSCCs; 446 447 #ifndef NDEBUG 448 // In a debug build, verify the RefSCC is valid to start with and when this 449 // routine finishes. 450 verify(); 451 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 452 #endif 453 454 SCC &SourceSCC = *G->lookupSCC(SourceN); 455 SCC &TargetSCC = *G->lookupSCC(TargetN); 456 457 // If the two nodes are already part of the same SCC, we're also done as 458 // we've just added more connectivity. 459 if (&SourceSCC == &TargetSCC) { 460 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call); 461 return DeletedSCCs; 462 } 463 464 // At this point we leverage the postorder list of SCCs to detect when the 465 // insertion of an edge changes the SCC structure in any way. 466 // 467 // First and foremost, we can eliminate the need for any changes when the 468 // edge is toward the beginning of the postorder sequence because all edges 469 // flow in that direction already. Thus adding a new one cannot form a cycle. 470 int SourceIdx = SCCIndices[&SourceSCC]; 471 int TargetIdx = SCCIndices[&TargetSCC]; 472 if (TargetIdx < SourceIdx) { 473 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call); 474 return DeletedSCCs; 475 } 476 477 // Compute the SCCs which (transitively) reach the source. 478 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) { 479 #ifndef NDEBUG 480 // Check that the RefSCC is still valid before computing this as the 481 // results will be nonsensical of we've broken its invariants. 482 verify(); 483 #endif 484 ConnectedSet.insert(&SourceSCC); 485 auto IsConnected = [&](SCC &C) { 486 for (Node &N : C) 487 for (Edge &E : N.calls()) { 488 assert(E.getNode() && "Must have formed a node within an SCC!"); 489 if (ConnectedSet.count(G->lookupSCC(*E.getNode()))) 490 return true; 491 } 492 493 return false; 494 }; 495 496 for (SCC *C : 497 make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1)) 498 if (IsConnected(*C)) 499 ConnectedSet.insert(C); 500 }; 501 502 // Use a normal worklist to find which SCCs the target connects to. We still 503 // bound the search based on the range in the postorder list we care about, 504 // but because this is forward connectivity we just "recurse" through the 505 // edges. 506 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) { 507 #ifndef NDEBUG 508 // Check that the RefSCC is still valid before computing this as the 509 // results will be nonsensical of we've broken its invariants. 510 verify(); 511 #endif 512 ConnectedSet.insert(&TargetSCC); 513 SmallVector<SCC *, 4> Worklist; 514 Worklist.push_back(&TargetSCC); 515 do { 516 SCC &C = *Worklist.pop_back_val(); 517 for (Node &N : C) 518 for (Edge &E : N) { 519 assert(E.getNode() && "Must have formed a node within an SCC!"); 520 if (!E.isCall()) 521 continue; 522 SCC &EdgeC = *G->lookupSCC(*E.getNode()); 523 if (&EdgeC.getOuterRefSCC() != this) 524 // Not in this RefSCC... 525 continue; 526 if (SCCIndices.find(&EdgeC)->second <= SourceIdx) 527 // Not in the postorder sequence between source and target. 528 continue; 529 530 if (ConnectedSet.insert(&EdgeC).second) 531 Worklist.push_back(&EdgeC); 532 } 533 } while (!Worklist.empty()); 534 }; 535 536 // Use a generic helper to update the postorder sequence of SCCs and return 537 // a range of any SCCs connected into a cycle by inserting this edge. This 538 // routine will also take care of updating the indices into the postorder 539 // sequence. 540 auto MergeRange = updatePostorderSequenceForEdgeInsertion( 541 SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet, 542 ComputeTargetConnectedSet); 543 544 // If the merge range is empty, then adding the edge didn't actually form any 545 // new cycles. We're done. 546 if (MergeRange.begin() == MergeRange.end()) { 547 // Now that the SCC structure is finalized, flip the kind to call. 548 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call); 549 return DeletedSCCs; 550 } 551 552 #ifndef NDEBUG 553 // Before merging, check that the RefSCC remains valid after all the 554 // postorder updates. 555 verify(); 556 #endif 557 558 // Otherwise we need to merge all of the SCCs in the cycle into a single 559 // result SCC. 560 // 561 // NB: We merge into the target because all of these functions were already 562 // reachable from the target, meaning any SCC-wide properties deduced about it 563 // other than the set of functions within it will not have changed. 564 for (SCC *C : MergeRange) { 565 assert(C != &TargetSCC && 566 "We merge *into* the target and shouldn't process it here!"); 567 SCCIndices.erase(C); 568 TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end()); 569 for (Node *N : C->Nodes) 570 G->SCCMap[N] = &TargetSCC; 571 C->clear(); 572 DeletedSCCs.push_back(C); 573 } 574 575 // Erase the merged SCCs from the list and update the indices of the 576 // remaining SCCs. 577 int IndexOffset = MergeRange.end() - MergeRange.begin(); 578 auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end()); 579 for (SCC *C : make_range(EraseEnd, SCCs.end())) 580 SCCIndices[C] -= IndexOffset; 581 582 // Now that the SCC structure is finalized, flip the kind to call. 583 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call); 584 585 // And we're done! 586 return DeletedSCCs; 587 } 588 589 iterator_range<LazyCallGraph::RefSCC::iterator> 590 LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) { 591 assert(SourceN[TargetN].isCall() && "Must start with a call edge!"); 592 593 #ifndef NDEBUG 594 // In a debug build, verify the RefSCC is valid to start with and when this 595 // routine finishes. 596 verify(); 597 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 598 #endif 599 600 SCC &SourceSCC = *G->lookupSCC(SourceN); 601 SCC &TargetSCC = *G->lookupSCC(TargetN); 602 603 assert(&SourceSCC.getOuterRefSCC() == this && 604 "Source must be in this RefSCC."); 605 assert(&TargetSCC.getOuterRefSCC() == this && 606 "Target must be in this RefSCC."); 607 608 // Set the edge kind. 609 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref); 610 611 // If this call edge is just connecting two separate SCCs within this RefSCC, 612 // there is nothing to do. 613 if (&SourceSCC != &TargetSCC) 614 return make_range(SCCs.end(), SCCs.end()); 615 616 // Otherwise we are removing a call edge from a single SCC. This may break 617 // the cycle. In order to compute the new set of SCCs, we need to do a small 618 // DFS over the nodes within the SCC to form any sub-cycles that remain as 619 // distinct SCCs and compute a postorder over the resulting SCCs. 620 // 621 // However, we specially handle the target node. The target node is known to 622 // reach all other nodes in the original SCC by definition. This means that 623 // we want the old SCC to be replaced with an SCC contaning that node as it 624 // will be the root of whatever SCC DAG results from the DFS. Assumptions 625 // about an SCC such as the set of functions called will continue to hold, 626 // etc. 627 628 SCC &OldSCC = TargetSCC; 629 SmallVector<std::pair<Node *, call_edge_iterator>, 16> DFSStack; 630 SmallVector<Node *, 16> PendingSCCStack; 631 SmallVector<SCC *, 4> NewSCCs; 632 633 // Prepare the nodes for a fresh DFS. 634 SmallVector<Node *, 16> Worklist; 635 Worklist.swap(OldSCC.Nodes); 636 for (Node *N : Worklist) { 637 N->DFSNumber = N->LowLink = 0; 638 G->SCCMap.erase(N); 639 } 640 641 // Force the target node to be in the old SCC. This also enables us to take 642 // a very significant short-cut in the standard Tarjan walk to re-form SCCs 643 // below: whenever we build an edge that reaches the target node, we know 644 // that the target node eventually connects back to all other nodes in our 645 // walk. As a consequence, we can detect and handle participants in that 646 // cycle without walking all the edges that form this connection, and instead 647 // by relying on the fundamental guarantee coming into this operation (all 648 // nodes are reachable from the target due to previously forming an SCC). 649 TargetN.DFSNumber = TargetN.LowLink = -1; 650 OldSCC.Nodes.push_back(&TargetN); 651 G->SCCMap[&TargetN] = &OldSCC; 652 653 // Scan down the stack and DFS across the call edges. 654 for (Node *RootN : Worklist) { 655 assert(DFSStack.empty() && 656 "Cannot begin a new root with a non-empty DFS stack!"); 657 assert(PendingSCCStack.empty() && 658 "Cannot begin a new root with pending nodes for an SCC!"); 659 660 // Skip any nodes we've already reached in the DFS. 661 if (RootN->DFSNumber != 0) { 662 assert(RootN->DFSNumber == -1 && 663 "Shouldn't have any mid-DFS root nodes!"); 664 continue; 665 } 666 667 RootN->DFSNumber = RootN->LowLink = 1; 668 int NextDFSNumber = 2; 669 670 DFSStack.push_back({RootN, RootN->call_begin()}); 671 do { 672 Node *N; 673 call_edge_iterator I; 674 std::tie(N, I) = DFSStack.pop_back_val(); 675 auto E = N->call_end(); 676 while (I != E) { 677 Node &ChildN = *I->getNode(); 678 if (ChildN.DFSNumber == 0) { 679 // We haven't yet visited this child, so descend, pushing the current 680 // node onto the stack. 681 DFSStack.push_back({N, I}); 682 683 assert(!G->SCCMap.count(&ChildN) && 684 "Found a node with 0 DFS number but already in an SCC!"); 685 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++; 686 N = &ChildN; 687 I = N->call_begin(); 688 E = N->call_end(); 689 continue; 690 } 691 692 // Check for the child already being part of some component. 693 if (ChildN.DFSNumber == -1) { 694 if (G->lookupSCC(ChildN) == &OldSCC) { 695 // If the child is part of the old SCC, we know that it can reach 696 // every other node, so we have formed a cycle. Pull the entire DFS 697 // and pending stacks into it. See the comment above about setting 698 // up the old SCC for why we do this. 699 int OldSize = OldSCC.size(); 700 OldSCC.Nodes.push_back(N); 701 OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end()); 702 PendingSCCStack.clear(); 703 while (!DFSStack.empty()) 704 OldSCC.Nodes.push_back(DFSStack.pop_back_val().first); 705 for (Node &N : make_range(OldSCC.begin() + OldSize, OldSCC.end())) { 706 N.DFSNumber = N.LowLink = -1; 707 G->SCCMap[&N] = &OldSCC; 708 } 709 N = nullptr; 710 break; 711 } 712 713 // If the child has already been added to some child component, it 714 // couldn't impact the low-link of this parent because it isn't 715 // connected, and thus its low-link isn't relevant so skip it. 716 ++I; 717 continue; 718 } 719 720 // Track the lowest linked child as the lowest link for this node. 721 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); 722 if (ChildN.LowLink < N->LowLink) 723 N->LowLink = ChildN.LowLink; 724 725 // Move to the next edge. 726 ++I; 727 } 728 if (!N) 729 // Cleared the DFS early, start another round. 730 break; 731 732 // We've finished processing N and its descendents, put it on our pending 733 // SCC stack to eventually get merged into an SCC of nodes. 734 PendingSCCStack.push_back(N); 735 736 // If this node is linked to some lower entry, continue walking up the 737 // stack. 738 if (N->LowLink != N->DFSNumber) 739 continue; 740 741 // Otherwise, we've completed an SCC. Append it to our post order list of 742 // SCCs. 743 int RootDFSNumber = N->DFSNumber; 744 // Find the range of the node stack by walking down until we pass the 745 // root DFS number. 746 auto SCCNodes = make_range( 747 PendingSCCStack.rbegin(), 748 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) { 749 return N->DFSNumber < RootDFSNumber; 750 })); 751 752 // Form a new SCC out of these nodes and then clear them off our pending 753 // stack. 754 NewSCCs.push_back(G->createSCC(*this, SCCNodes)); 755 for (Node &N : *NewSCCs.back()) { 756 N.DFSNumber = N.LowLink = -1; 757 G->SCCMap[&N] = NewSCCs.back(); 758 } 759 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end()); 760 } while (!DFSStack.empty()); 761 } 762 763 // Insert the remaining SCCs before the old one. The old SCC can reach all 764 // other SCCs we form because it contains the target node of the removed edge 765 // of the old SCC. This means that we will have edges into all of the new 766 // SCCs, which means the old one must come last for postorder. 767 int OldIdx = SCCIndices[&OldSCC]; 768 SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end()); 769 770 // Update the mapping from SCC* to index to use the new SCC*s, and remove the 771 // old SCC from the mapping. 772 for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx) 773 SCCIndices[SCCs[Idx]] = Idx; 774 775 return make_range(SCCs.begin() + OldIdx, 776 SCCs.begin() + OldIdx + NewSCCs.size()); 777 } 778 779 void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN, 780 Node &TargetN) { 781 assert(!SourceN[TargetN].isCall() && "Must start with a ref edge!"); 782 783 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 784 assert(G->lookupRefSCC(TargetN) != this && 785 "Target must not be in this RefSCC."); 786 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && 787 "Target must be a descendant of the Source."); 788 789 // Edges between RefSCCs are the same regardless of call or ref, so we can 790 // just flip the edge here. 791 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call); 792 793 #ifndef NDEBUG 794 // Check that the RefSCC is still valid. 795 verify(); 796 #endif 797 } 798 799 void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN, 800 Node &TargetN) { 801 assert(SourceN[TargetN].isCall() && "Must start with a call edge!"); 802 803 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 804 assert(G->lookupRefSCC(TargetN) != this && 805 "Target must not be in this RefSCC."); 806 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && 807 "Target must be a descendant of the Source."); 808 809 // Edges between RefSCCs are the same regardless of call or ref, so we can 810 // just flip the edge here. 811 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref); 812 813 #ifndef NDEBUG 814 // Check that the RefSCC is still valid. 815 verify(); 816 #endif 817 } 818 819 void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN, 820 Node &TargetN) { 821 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 822 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC."); 823 824 SourceN.insertEdgeInternal(TargetN, Edge::Ref); 825 826 #ifndef NDEBUG 827 // Check that the RefSCC is still valid. 828 verify(); 829 #endif 830 } 831 832 void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN, 833 Edge::Kind EK) { 834 // First insert it into the caller. 835 SourceN.insertEdgeInternal(TargetN, EK); 836 837 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 838 839 RefSCC &TargetC = *G->lookupRefSCC(TargetN); 840 assert(&TargetC != this && "Target must not be in this RefSCC."); 841 assert(TargetC.isDescendantOf(*this) && 842 "Target must be a descendant of the Source."); 843 844 // The only change required is to add this SCC to the parent set of the 845 // callee. 846 TargetC.Parents.insert(this); 847 848 #ifndef NDEBUG 849 // Check that the RefSCC is still valid. 850 verify(); 851 #endif 852 } 853 854 SmallVector<LazyCallGraph::RefSCC *, 1> 855 LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) { 856 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC."); 857 RefSCC &SourceC = *G->lookupRefSCC(SourceN); 858 assert(&SourceC != this && "Source must not be in this RefSCC."); 859 assert(SourceC.isDescendantOf(*this) && 860 "Source must be a descendant of the Target."); 861 862 SmallVector<RefSCC *, 1> DeletedRefSCCs; 863 864 #ifndef NDEBUG 865 // In a debug build, verify the RefSCC is valid to start with and when this 866 // routine finishes. 867 verify(); 868 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 869 #endif 870 871 int SourceIdx = G->RefSCCIndices[&SourceC]; 872 int TargetIdx = G->RefSCCIndices[this]; 873 assert(SourceIdx < TargetIdx && 874 "Postorder list doesn't see edge as incoming!"); 875 876 // Compute the RefSCCs which (transitively) reach the source. We do this by 877 // working backwards from the source using the parent set in each RefSCC, 878 // skipping any RefSCCs that don't fall in the postorder range. This has the 879 // advantage of walking the sparser parent edge (in high fan-out graphs) but 880 // more importantly this removes examining all forward edges in all RefSCCs 881 // within the postorder range which aren't in fact connected. Only connected 882 // RefSCCs (and their edges) are visited here. 883 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) { 884 Set.insert(&SourceC); 885 SmallVector<RefSCC *, 4> Worklist; 886 Worklist.push_back(&SourceC); 887 do { 888 RefSCC &RC = *Worklist.pop_back_val(); 889 for (RefSCC &ParentRC : RC.parents()) { 890 // Skip any RefSCCs outside the range of source to target in the 891 // postorder sequence. 892 int ParentIdx = G->getRefSCCIndex(ParentRC); 893 assert(ParentIdx > SourceIdx && "Parent cannot precede source in postorder!"); 894 if (ParentIdx > TargetIdx) 895 continue; 896 if (Set.insert(&ParentRC).second) 897 // First edge connecting to this parent, add it to our worklist. 898 Worklist.push_back(&ParentRC); 899 } 900 } while (!Worklist.empty()); 901 }; 902 903 // Use a normal worklist to find which SCCs the target connects to. We still 904 // bound the search based on the range in the postorder list we care about, 905 // but because this is forward connectivity we just "recurse" through the 906 // edges. 907 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) { 908 Set.insert(this); 909 SmallVector<RefSCC *, 4> Worklist; 910 Worklist.push_back(this); 911 do { 912 RefSCC &RC = *Worklist.pop_back_val(); 913 for (SCC &C : RC) 914 for (Node &N : C) 915 for (Edge &E : N) { 916 assert(E.getNode() && "Must have formed a node!"); 917 RefSCC &EdgeRC = *G->lookupRefSCC(*E.getNode()); 918 if (G->getRefSCCIndex(EdgeRC) <= SourceIdx) 919 // Not in the postorder sequence between source and target. 920 continue; 921 922 if (Set.insert(&EdgeRC).second) 923 Worklist.push_back(&EdgeRC); 924 } 925 } while (!Worklist.empty()); 926 }; 927 928 // Use a generic helper to update the postorder sequence of RefSCCs and return 929 // a range of any RefSCCs connected into a cycle by inserting this edge. This 930 // routine will also take care of updating the indices into the postorder 931 // sequence. 932 iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange = 933 updatePostorderSequenceForEdgeInsertion( 934 SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices, 935 ComputeSourceConnectedSet, ComputeTargetConnectedSet); 936 937 // Build a set so we can do fast tests for whether a merge is occuring. 938 SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end()); 939 940 // Now that we have identified all of the SCCs which need to be merged into 941 // a connected set with the inserted edge, merge all of them into this SCC. 942 SmallVector<SCC *, 16> MergedSCCs; 943 int SCCIndex = 0; 944 for (RefSCC *RC : MergeRange) { 945 assert(RC != this && "We're merging into the target RefSCC, so it " 946 "shouldn't be in the range."); 947 948 // Merge the parents which aren't part of the merge into the our parents. 949 for (RefSCC *ParentRC : RC->Parents) 950 if (!MergeSet.count(ParentRC)) 951 Parents.insert(ParentRC); 952 RC->Parents.clear(); 953 954 // Walk the inner SCCs to update their up-pointer and walk all the edges to 955 // update any parent sets. 956 // FIXME: We should try to find a way to avoid this (rather expensive) edge 957 // walk by updating the parent sets in some other manner. 958 for (SCC &InnerC : *RC) { 959 InnerC.OuterRefSCC = this; 960 SCCIndices[&InnerC] = SCCIndex++; 961 for (Node &N : InnerC) { 962 G->SCCMap[&N] = &InnerC; 963 for (Edge &E : N) { 964 assert(E.getNode() && 965 "Cannot have a null node within a visited SCC!"); 966 RefSCC &ChildRC = *G->lookupRefSCC(*E.getNode()); 967 if (MergeSet.count(&ChildRC)) 968 continue; 969 ChildRC.Parents.erase(RC); 970 ChildRC.Parents.insert(this); 971 } 972 } 973 } 974 975 // Now merge in the SCCs. We can actually move here so try to reuse storage 976 // the first time through. 977 if (MergedSCCs.empty()) 978 MergedSCCs = std::move(RC->SCCs); 979 else 980 MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end()); 981 RC->SCCs.clear(); 982 DeletedRefSCCs.push_back(RC); 983 } 984 985 // Append our original SCCs to the merged list and move it into place. 986 for (SCC &InnerC : *this) 987 SCCIndices[&InnerC] = SCCIndex++; 988 MergedSCCs.append(SCCs.begin(), SCCs.end()); 989 SCCs = std::move(MergedSCCs); 990 991 // Remove the merged away RefSCCs from the post order sequence. 992 for (RefSCC *RC : MergeRange) 993 G->RefSCCIndices.erase(RC); 994 int IndexOffset = MergeRange.end() - MergeRange.begin(); 995 auto EraseEnd = 996 G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end()); 997 for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end())) 998 G->RefSCCIndices[RC] -= IndexOffset; 999 1000 // At this point we have a merged RefSCC with a post-order SCCs list, just 1001 // connect the nodes to form the new edge. 1002 SourceN.insertEdgeInternal(TargetN, Edge::Ref); 1003 1004 // We return the list of SCCs which were merged so that callers can 1005 // invalidate any data they have associated with those SCCs. Note that these 1006 // SCCs are no longer in an interesting state (they are totally empty) but 1007 // the pointers will remain stable for the life of the graph itself. 1008 return DeletedRefSCCs; 1009 } 1010 1011 void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) { 1012 assert(G->lookupRefSCC(SourceN) == this && 1013 "The source must be a member of this RefSCC."); 1014 1015 RefSCC &TargetRC = *G->lookupRefSCC(TargetN); 1016 assert(&TargetRC != this && "The target must not be a member of this RefSCC"); 1017 1018 assert(!is_contained(G->LeafRefSCCs, this) && 1019 "Cannot have a leaf RefSCC source."); 1020 1021 #ifndef NDEBUG 1022 // In a debug build, verify the RefSCC is valid to start with and when this 1023 // routine finishes. 1024 verify(); 1025 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 1026 #endif 1027 1028 // First remove it from the node. 1029 SourceN.removeEdgeInternal(TargetN.getFunction()); 1030 1031 bool HasOtherEdgeToChildRC = false; 1032 bool HasOtherChildRC = false; 1033 for (SCC *InnerC : SCCs) { 1034 for (Node &N : *InnerC) { 1035 for (Edge &E : N) { 1036 assert(E.getNode() && "Cannot have a missing node in a visited SCC!"); 1037 RefSCC &OtherChildRC = *G->lookupRefSCC(*E.getNode()); 1038 if (&OtherChildRC == &TargetRC) { 1039 HasOtherEdgeToChildRC = true; 1040 break; 1041 } 1042 if (&OtherChildRC != this) 1043 HasOtherChildRC = true; 1044 } 1045 if (HasOtherEdgeToChildRC) 1046 break; 1047 } 1048 if (HasOtherEdgeToChildRC) 1049 break; 1050 } 1051 // Because the SCCs form a DAG, deleting such an edge cannot change the set 1052 // of SCCs in the graph. However, it may cut an edge of the SCC DAG, making 1053 // the source SCC no longer connected to the target SCC. If so, we need to 1054 // update the target SCC's map of its parents. 1055 if (!HasOtherEdgeToChildRC) { 1056 bool Removed = TargetRC.Parents.erase(this); 1057 (void)Removed; 1058 assert(Removed && 1059 "Did not find the source SCC in the target SCC's parent list!"); 1060 1061 // It may orphan an SCC if it is the last edge reaching it, but that does 1062 // not violate any invariants of the graph. 1063 if (TargetRC.Parents.empty()) 1064 DEBUG(dbgs() << "LCG: Update removing " << SourceN.getFunction().getName() 1065 << " -> " << TargetN.getFunction().getName() 1066 << " edge orphaned the callee's SCC!\n"); 1067 1068 // It may make the Source SCC a leaf SCC. 1069 if (!HasOtherChildRC) 1070 G->LeafRefSCCs.push_back(this); 1071 } 1072 } 1073 1074 SmallVector<LazyCallGraph::RefSCC *, 1> 1075 LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN, Node &TargetN) { 1076 assert(!SourceN[TargetN].isCall() && 1077 "Cannot remove a call edge, it must first be made a ref edge"); 1078 1079 #ifndef NDEBUG 1080 // In a debug build, verify the RefSCC is valid to start with and when this 1081 // routine finishes. 1082 verify(); 1083 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 1084 #endif 1085 1086 // First remove the actual edge. 1087 SourceN.removeEdgeInternal(TargetN.getFunction()); 1088 1089 // We return a list of the resulting *new* RefSCCs in post-order. 1090 SmallVector<RefSCC *, 1> Result; 1091 1092 // Direct recursion doesn't impact the SCC graph at all. 1093 if (&SourceN == &TargetN) 1094 return Result; 1095 1096 // We build somewhat synthetic new RefSCCs by providing a postorder mapping 1097 // for each inner SCC. We also store these associated with *nodes* rather 1098 // than SCCs because this saves a round-trip through the node->SCC map and in 1099 // the common case, SCCs are small. We will verify that we always give the 1100 // same number to every node in the SCC such that these are equivalent. 1101 const int RootPostOrderNumber = 0; 1102 int PostOrderNumber = RootPostOrderNumber + 1; 1103 SmallDenseMap<Node *, int> PostOrderMapping; 1104 1105 // Every node in the target SCC can already reach every node in this RefSCC 1106 // (by definition). It is the only node we know will stay inside this RefSCC. 1107 // Everything which transitively reaches Target will also remain in the 1108 // RefSCC. We handle this by pre-marking that the nodes in the target SCC map 1109 // back to the root post order number. 1110 // 1111 // This also enables us to take a very significant short-cut in the standard 1112 // Tarjan walk to re-form RefSCCs below: whenever we build an edge that 1113 // references the target node, we know that the target node eventually 1114 // references all other nodes in our walk. As a consequence, we can detect 1115 // and handle participants in that cycle without walking all the edges that 1116 // form the connections, and instead by relying on the fundamental guarantee 1117 // coming into this operation. 1118 SCC &TargetC = *G->lookupSCC(TargetN); 1119 for (Node &N : TargetC) 1120 PostOrderMapping[&N] = RootPostOrderNumber; 1121 1122 // Reset all the other nodes to prepare for a DFS over them, and add them to 1123 // our worklist. 1124 SmallVector<Node *, 8> Worklist; 1125 for (SCC *C : SCCs) { 1126 if (C == &TargetC) 1127 continue; 1128 1129 for (Node &N : *C) 1130 N.DFSNumber = N.LowLink = 0; 1131 1132 Worklist.append(C->Nodes.begin(), C->Nodes.end()); 1133 } 1134 1135 auto MarkNodeForSCCNumber = [&PostOrderMapping](Node &N, int Number) { 1136 N.DFSNumber = N.LowLink = -1; 1137 PostOrderMapping[&N] = Number; 1138 }; 1139 1140 SmallVector<std::pair<Node *, edge_iterator>, 4> DFSStack; 1141 SmallVector<Node *, 4> PendingRefSCCStack; 1142 do { 1143 assert(DFSStack.empty() && 1144 "Cannot begin a new root with a non-empty DFS stack!"); 1145 assert(PendingRefSCCStack.empty() && 1146 "Cannot begin a new root with pending nodes for an SCC!"); 1147 1148 Node *RootN = Worklist.pop_back_val(); 1149 // Skip any nodes we've already reached in the DFS. 1150 if (RootN->DFSNumber != 0) { 1151 assert(RootN->DFSNumber == -1 && 1152 "Shouldn't have any mid-DFS root nodes!"); 1153 continue; 1154 } 1155 1156 RootN->DFSNumber = RootN->LowLink = 1; 1157 int NextDFSNumber = 2; 1158 1159 DFSStack.push_back({RootN, RootN->begin()}); 1160 do { 1161 Node *N; 1162 edge_iterator I; 1163 std::tie(N, I) = DFSStack.pop_back_val(); 1164 auto E = N->end(); 1165 1166 assert(N->DFSNumber != 0 && "We should always assign a DFS number " 1167 "before processing a node."); 1168 1169 while (I != E) { 1170 Node &ChildN = I->getNode(*G); 1171 if (ChildN.DFSNumber == 0) { 1172 // Mark that we should start at this child when next this node is the 1173 // top of the stack. We don't start at the next child to ensure this 1174 // child's lowlink is reflected. 1175 DFSStack.push_back({N, I}); 1176 1177 // Continue, resetting to the child node. 1178 ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++; 1179 N = &ChildN; 1180 I = ChildN.begin(); 1181 E = ChildN.end(); 1182 continue; 1183 } 1184 if (ChildN.DFSNumber == -1) { 1185 // Check if this edge's target node connects to the deleted edge's 1186 // target node. If so, we know that every node connected will end up 1187 // in this RefSCC, so collapse the entire current stack into the root 1188 // slot in our SCC numbering. See above for the motivation of 1189 // optimizing the target connected nodes in this way. 1190 auto PostOrderI = PostOrderMapping.find(&ChildN); 1191 if (PostOrderI != PostOrderMapping.end() && 1192 PostOrderI->second == RootPostOrderNumber) { 1193 MarkNodeForSCCNumber(*N, RootPostOrderNumber); 1194 while (!PendingRefSCCStack.empty()) 1195 MarkNodeForSCCNumber(*PendingRefSCCStack.pop_back_val(), 1196 RootPostOrderNumber); 1197 while (!DFSStack.empty()) 1198 MarkNodeForSCCNumber(*DFSStack.pop_back_val().first, 1199 RootPostOrderNumber); 1200 // Ensure we break all the way out of the enclosing loop. 1201 N = nullptr; 1202 break; 1203 } 1204 1205 // If this child isn't currently in this RefSCC, no need to process 1206 // it. 1207 // However, we do need to remove this RefSCC from its RefSCC's parent 1208 // set. 1209 RefSCC &ChildRC = *G->lookupRefSCC(ChildN); 1210 ChildRC.Parents.erase(this); 1211 ++I; 1212 continue; 1213 } 1214 1215 // Track the lowest link of the children, if any are still in the stack. 1216 // Any child not on the stack will have a LowLink of -1. 1217 assert(ChildN.LowLink != 0 && 1218 "Low-link must not be zero with a non-zero DFS number."); 1219 if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink) 1220 N->LowLink = ChildN.LowLink; 1221 ++I; 1222 } 1223 if (!N) 1224 // We short-circuited this node. 1225 break; 1226 1227 // We've finished processing N and its descendents, put it on our pending 1228 // stack to eventually get merged into a RefSCC. 1229 PendingRefSCCStack.push_back(N); 1230 1231 // If this node is linked to some lower entry, continue walking up the 1232 // stack. 1233 if (N->LowLink != N->DFSNumber) { 1234 assert(!DFSStack.empty() && 1235 "We never found a viable root for a RefSCC to pop off!"); 1236 continue; 1237 } 1238 1239 // Otherwise, form a new RefSCC from the top of the pending node stack. 1240 int RootDFSNumber = N->DFSNumber; 1241 // Find the range of the node stack by walking down until we pass the 1242 // root DFS number. 1243 auto RefSCCNodes = make_range( 1244 PendingRefSCCStack.rbegin(), 1245 find_if(reverse(PendingRefSCCStack), [RootDFSNumber](const Node *N) { 1246 return N->DFSNumber < RootDFSNumber; 1247 })); 1248 1249 // Mark the postorder number for these nodes and clear them off the 1250 // stack. We'll use the postorder number to pull them into RefSCCs at the 1251 // end. FIXME: Fuse with the loop above. 1252 int RefSCCNumber = PostOrderNumber++; 1253 for (Node *N : RefSCCNodes) 1254 MarkNodeForSCCNumber(*N, RefSCCNumber); 1255 1256 PendingRefSCCStack.erase(RefSCCNodes.end().base(), 1257 PendingRefSCCStack.end()); 1258 } while (!DFSStack.empty()); 1259 1260 assert(DFSStack.empty() && "Didn't flush the entire DFS stack!"); 1261 assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!"); 1262 } while (!Worklist.empty()); 1263 1264 // We now have a post-order numbering for RefSCCs and a mapping from each 1265 // node in this RefSCC to its final RefSCC. We create each new RefSCC node 1266 // (re-using this RefSCC node for the root) and build a radix-sort style map 1267 // from postorder number to the RefSCC. We then append SCCs to each of these 1268 // RefSCCs in the order they occured in the original SCCs container. 1269 for (int i = 1; i < PostOrderNumber; ++i) 1270 Result.push_back(G->createRefSCC(*G)); 1271 1272 // Insert the resulting postorder sequence into the global graph postorder 1273 // sequence before the current RefSCC in that sequence. The idea being that 1274 // this RefSCC is the target of the reference edge removed, and thus has 1275 // a direct or indirect edge to every other RefSCC formed and so must be at 1276 // the end of any postorder traversal. 1277 // 1278 // FIXME: It'd be nice to change the APIs so that we returned an iterator 1279 // range over the global postorder sequence and generally use that sequence 1280 // rather than building a separate result vector here. 1281 if (!Result.empty()) { 1282 int Idx = G->getRefSCCIndex(*this); 1283 G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx, 1284 Result.begin(), Result.end()); 1285 for (int i : seq<int>(Idx, G->PostOrderRefSCCs.size())) 1286 G->RefSCCIndices[G->PostOrderRefSCCs[i]] = i; 1287 assert(G->PostOrderRefSCCs[G->getRefSCCIndex(*this)] == this && 1288 "Failed to update this RefSCC's index after insertion!"); 1289 } 1290 1291 for (SCC *C : SCCs) { 1292 auto PostOrderI = PostOrderMapping.find(&*C->begin()); 1293 assert(PostOrderI != PostOrderMapping.end() && 1294 "Cannot have missing mappings for nodes!"); 1295 int SCCNumber = PostOrderI->second; 1296 #ifndef NDEBUG 1297 for (Node &N : *C) 1298 assert(PostOrderMapping.find(&N)->second == SCCNumber && 1299 "Cannot have different numbers for nodes in the same SCC!"); 1300 #endif 1301 if (SCCNumber == 0) 1302 // The root node is handled separately by removing the SCCs. 1303 continue; 1304 1305 RefSCC &RC = *Result[SCCNumber - 1]; 1306 int SCCIndex = RC.SCCs.size(); 1307 RC.SCCs.push_back(C); 1308 SCCIndices[C] = SCCIndex; 1309 C->OuterRefSCC = &RC; 1310 } 1311 1312 // FIXME: We re-walk the edges in each RefSCC to establish whether it is 1313 // a leaf and connect it to the rest of the graph's parents lists. This is 1314 // really wasteful. We should instead do this during the DFS to avoid yet 1315 // another edge walk. 1316 for (RefSCC *RC : Result) 1317 G->connectRefSCC(*RC); 1318 1319 // Now erase all but the root's SCCs. 1320 SCCs.erase(remove_if(SCCs, 1321 [&](SCC *C) { 1322 return PostOrderMapping.lookup(&*C->begin()) != 1323 RootPostOrderNumber; 1324 }), 1325 SCCs.end()); 1326 SCCIndices.clear(); 1327 for (int i = 0, Size = SCCs.size(); i < Size; ++i) 1328 SCCIndices[SCCs[i]] = i; 1329 1330 #ifndef NDEBUG 1331 // Now we need to reconnect the current (root) SCC to the graph. We do this 1332 // manually because we can special case our leaf handling and detect errors. 1333 bool IsLeaf = true; 1334 #endif 1335 for (SCC *C : SCCs) 1336 for (Node &N : *C) { 1337 for (Edge &E : N) { 1338 assert(E.getNode() && "Cannot have a missing node in a visited SCC!"); 1339 RefSCC &ChildRC = *G->lookupRefSCC(*E.getNode()); 1340 if (&ChildRC == this) 1341 continue; 1342 ChildRC.Parents.insert(this); 1343 #ifndef NDEBUG 1344 IsLeaf = false; 1345 #endif 1346 } 1347 } 1348 #ifndef NDEBUG 1349 if (!Result.empty()) 1350 assert(!IsLeaf && "This SCC cannot be a leaf as we have split out new " 1351 "SCCs by removing this edge."); 1352 if (none_of(G->LeafRefSCCs, [&](RefSCC *C) { return C == this; })) 1353 assert(!IsLeaf && "This SCC cannot be a leaf as it already had child " 1354 "SCCs before we removed this edge."); 1355 #endif 1356 // And connect both this RefSCC and all the new ones to the correct parents. 1357 // The easiest way to do this is just to re-analyze the old parent set. 1358 SmallVector<RefSCC *, 4> OldParents(Parents.begin(), Parents.end()); 1359 Parents.clear(); 1360 for (RefSCC *ParentRC : OldParents) 1361 for (SCC *ParentC : ParentRC->SCCs) 1362 for (Node &ParentN : *ParentC) 1363 for (Edge &E : ParentN) { 1364 assert(E.getNode() && "Cannot have a missing node in a visited SCC!"); 1365 RefSCC &RC = *G->lookupRefSCC(*E.getNode()); 1366 RC.Parents.insert(ParentRC); 1367 } 1368 1369 // If this SCC stopped being a leaf through this edge removal, remove it from 1370 // the leaf SCC list. Note that this DTRT in the case where this was never 1371 // a leaf. 1372 // FIXME: As LeafRefSCCs could be very large, we might want to not walk the 1373 // entire list if this RefSCC wasn't a leaf before the edge removal. 1374 if (!Result.empty()) 1375 G->LeafRefSCCs.erase( 1376 std::remove(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(), this), 1377 G->LeafRefSCCs.end()); 1378 1379 // Return the new list of SCCs. 1380 return Result; 1381 } 1382 1383 void LazyCallGraph::RefSCC::handleTrivialEdgeInsertion(Node &SourceN, 1384 Node &TargetN) { 1385 // The only trivial case that requires any graph updates is when we add new 1386 // ref edge and may connect different RefSCCs along that path. This is only 1387 // because of the parents set. Every other part of the graph remains constant 1388 // after this edge insertion. 1389 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 1390 RefSCC &TargetRC = *G->lookupRefSCC(TargetN); 1391 if (&TargetRC == this) { 1392 1393 return; 1394 } 1395 1396 assert(TargetRC.isDescendantOf(*this) && 1397 "Target must be a descendant of the Source."); 1398 // The only change required is to add this RefSCC to the parent set of the 1399 // target. This is a set and so idempotent if the edge already existed. 1400 TargetRC.Parents.insert(this); 1401 } 1402 1403 void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN, 1404 Node &TargetN) { 1405 #ifndef NDEBUG 1406 // Check that the RefSCC is still valid when we finish. 1407 auto ExitVerifier = make_scope_exit([this] { verify(); }); 1408 1409 // Check that we aren't breaking some invariants of the SCC graph. 1410 SCC &SourceC = *G->lookupSCC(SourceN); 1411 SCC &TargetC = *G->lookupSCC(TargetN); 1412 if (&SourceC != &TargetC) 1413 assert(SourceC.isAncestorOf(TargetC) && 1414 "Call edge is not trivial in the SCC graph!"); 1415 #endif 1416 // First insert it into the source or find the existing edge. 1417 auto InsertResult = SourceN.EdgeIndexMap.insert( 1418 {&TargetN.getFunction(), SourceN.Edges.size()}); 1419 if (!InsertResult.second) { 1420 // Already an edge, just update it. 1421 Edge &E = SourceN.Edges[InsertResult.first->second]; 1422 if (E.isCall()) 1423 return; // Nothing to do! 1424 E.setKind(Edge::Call); 1425 } else { 1426 // Create the new edge. 1427 SourceN.Edges.emplace_back(TargetN, Edge::Call); 1428 } 1429 1430 // Now that we have the edge, handle the graph fallout. 1431 handleTrivialEdgeInsertion(SourceN, TargetN); 1432 } 1433 1434 void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) { 1435 #ifndef NDEBUG 1436 // Check that the RefSCC is still valid when we finish. 1437 auto ExitVerifier = make_scope_exit([this] { verify(); }); 1438 1439 // Check that we aren't breaking some invariants of the RefSCC graph. 1440 RefSCC &SourceRC = *G->lookupRefSCC(SourceN); 1441 RefSCC &TargetRC = *G->lookupRefSCC(TargetN); 1442 if (&SourceRC != &TargetRC) 1443 assert(SourceRC.isAncestorOf(TargetRC) && 1444 "Ref edge is not trivial in the RefSCC graph!"); 1445 #endif 1446 // First insert it into the source or find the existing edge. 1447 auto InsertResult = SourceN.EdgeIndexMap.insert( 1448 {&TargetN.getFunction(), SourceN.Edges.size()}); 1449 if (!InsertResult.second) 1450 // Already an edge, we're done. 1451 return; 1452 1453 // Create the new edge. 1454 SourceN.Edges.emplace_back(TargetN, Edge::Ref); 1455 1456 // Now that we have the edge, handle the graph fallout. 1457 handleTrivialEdgeInsertion(SourceN, TargetN); 1458 } 1459 1460 void LazyCallGraph::insertEdge(Node &SourceN, Function &Target, Edge::Kind EK) { 1461 assert(SCCMap.empty() && DFSStack.empty() && 1462 "This method cannot be called after SCCs have been formed!"); 1463 1464 return SourceN.insertEdgeInternal(Target, EK); 1465 } 1466 1467 void LazyCallGraph::removeEdge(Node &SourceN, Function &Target) { 1468 assert(SCCMap.empty() && DFSStack.empty() && 1469 "This method cannot be called after SCCs have been formed!"); 1470 1471 return SourceN.removeEdgeInternal(Target); 1472 } 1473 1474 void LazyCallGraph::removeDeadFunction(Function &F) { 1475 // FIXME: This is unnecessarily restrictive. We should be able to remove 1476 // functions which recursively call themselves. 1477 assert(F.use_empty() && 1478 "This routine should only be called on trivially dead functions!"); 1479 1480 auto EII = EntryIndexMap.find(&F); 1481 if (EII != EntryIndexMap.end()) { 1482 EntryEdges[EII->second] = Edge(); 1483 EntryIndexMap.erase(EII); 1484 } 1485 1486 // It's safe to just remove un-visited functions from the RefSCC entry list. 1487 // FIXME: This is a linear operation which could become hot and benefit from 1488 // an index map. 1489 auto RENI = find(RefSCCEntryNodes, &F); 1490 if (RENI != RefSCCEntryNodes.end()) 1491 RefSCCEntryNodes.erase(RENI); 1492 1493 auto NI = NodeMap.find(&F); 1494 if (NI == NodeMap.end()) 1495 // Not in the graph at all! 1496 return; 1497 1498 Node &N = *NI->second; 1499 NodeMap.erase(NI); 1500 1501 if (SCCMap.empty() && DFSStack.empty()) { 1502 // No SCC walk has begun, so removing this is fine and there is nothing 1503 // else necessary at this point but clearing out the node. 1504 N.clear(); 1505 return; 1506 } 1507 1508 // Check that we aren't going to break the DFS walk. 1509 assert(all_of(DFSStack, 1510 [&N](const std::pair<Node *, edge_iterator> &Element) { 1511 return Element.first != &N; 1512 }) && 1513 "Tried to remove a function currently in the DFS stack!"); 1514 assert(find(PendingRefSCCStack, &N) == PendingRefSCCStack.end() && 1515 "Tried to remove a function currently pending to add to a RefSCC!"); 1516 1517 // Cannot remove a function which has yet to be visited in the DFS walk, so 1518 // if we have a node at all then we must have an SCC and RefSCC. 1519 auto CI = SCCMap.find(&N); 1520 assert(CI != SCCMap.end() && 1521 "Tried to remove a node without an SCC after DFS walk started!"); 1522 SCC &C = *CI->second; 1523 SCCMap.erase(CI); 1524 RefSCC &RC = C.getOuterRefSCC(); 1525 1526 // This node must be the only member of its SCC as it has no callers, and 1527 // that SCC must be the only member of a RefSCC as it has no references. 1528 // Validate these properties first. 1529 assert(C.size() == 1 && "Dead functions must be in a singular SCC"); 1530 assert(RC.size() == 1 && "Dead functions must be in a singular RefSCC"); 1531 assert(RC.Parents.empty() && "Cannot have parents of a dead RefSCC!"); 1532 1533 // Now remove this RefSCC from any parents sets and the leaf list. 1534 for (Edge &E : N) 1535 if (Node *TargetN = E.getNode()) 1536 if (RefSCC *TargetRC = lookupRefSCC(*TargetN)) 1537 TargetRC->Parents.erase(&RC); 1538 // FIXME: This is a linear operation which could become hot and benefit from 1539 // an index map. 1540 auto LRI = find(LeafRefSCCs, &RC); 1541 if (LRI != LeafRefSCCs.end()) 1542 LeafRefSCCs.erase(LRI); 1543 1544 auto RCIndexI = RefSCCIndices.find(&RC); 1545 int RCIndex = RCIndexI->second; 1546 PostOrderRefSCCs.erase(PostOrderRefSCCs.begin() + RCIndex); 1547 RefSCCIndices.erase(RCIndexI); 1548 for (int i = RCIndex, Size = PostOrderRefSCCs.size(); i < Size; ++i) 1549 RefSCCIndices[PostOrderRefSCCs[i]] = i; 1550 1551 // Finally clear out all the data structures from the node down through the 1552 // components. 1553 N.clear(); 1554 C.clear(); 1555 RC.clear(); 1556 1557 // Nothing to delete as all the objects are allocated in stable bump pointer 1558 // allocators. 1559 } 1560 1561 LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) { 1562 return *new (MappedN = BPA.Allocate()) Node(*this, F); 1563 } 1564 1565 void LazyCallGraph::updateGraphPtrs() { 1566 // Process all nodes updating the graph pointers. 1567 { 1568 SmallVector<Node *, 16> Worklist; 1569 for (Edge &E : EntryEdges) 1570 if (Node *EntryN = E.getNode()) 1571 Worklist.push_back(EntryN); 1572 1573 while (!Worklist.empty()) { 1574 Node *N = Worklist.pop_back_val(); 1575 N->G = this; 1576 for (Edge &E : N->Edges) 1577 if (Node *TargetN = E.getNode()) 1578 Worklist.push_back(TargetN); 1579 } 1580 } 1581 1582 // Process all SCCs updating the graph pointers. 1583 { 1584 SmallVector<RefSCC *, 16> Worklist(LeafRefSCCs.begin(), LeafRefSCCs.end()); 1585 1586 while (!Worklist.empty()) { 1587 RefSCC &C = *Worklist.pop_back_val(); 1588 C.G = this; 1589 for (RefSCC &ParentC : C.parents()) 1590 Worklist.push_back(&ParentC); 1591 } 1592 } 1593 } 1594 1595 /// Build the internal SCCs for a RefSCC from a sequence of nodes. 1596 /// 1597 /// Appends the SCCs to the provided vector and updates the map with their 1598 /// indices. Both the vector and map must be empty when passed into this 1599 /// routine. 1600 void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) { 1601 assert(RC.SCCs.empty() && "Already built SCCs!"); 1602 assert(RC.SCCIndices.empty() && "Already mapped SCC indices!"); 1603 1604 for (Node *N : Nodes) { 1605 assert(N->LowLink >= (*Nodes.begin())->LowLink && 1606 "We cannot have a low link in an SCC lower than its root on the " 1607 "stack!"); 1608 1609 // This node will go into the next RefSCC, clear out its DFS and low link 1610 // as we scan. 1611 N->DFSNumber = N->LowLink = 0; 1612 } 1613 1614 // Each RefSCC contains a DAG of the call SCCs. To build these, we do 1615 // a direct walk of the call edges using Tarjan's algorithm. We reuse the 1616 // internal storage as we won't need it for the outer graph's DFS any longer. 1617 1618 SmallVector<std::pair<Node *, call_edge_iterator>, 16> DFSStack; 1619 SmallVector<Node *, 16> PendingSCCStack; 1620 1621 // Scan down the stack and DFS across the call edges. 1622 for (Node *RootN : Nodes) { 1623 assert(DFSStack.empty() && 1624 "Cannot begin a new root with a non-empty DFS stack!"); 1625 assert(PendingSCCStack.empty() && 1626 "Cannot begin a new root with pending nodes for an SCC!"); 1627 1628 // Skip any nodes we've already reached in the DFS. 1629 if (RootN->DFSNumber != 0) { 1630 assert(RootN->DFSNumber == -1 && 1631 "Shouldn't have any mid-DFS root nodes!"); 1632 continue; 1633 } 1634 1635 RootN->DFSNumber = RootN->LowLink = 1; 1636 int NextDFSNumber = 2; 1637 1638 DFSStack.push_back({RootN, RootN->call_begin()}); 1639 do { 1640 Node *N; 1641 call_edge_iterator I; 1642 std::tie(N, I) = DFSStack.pop_back_val(); 1643 auto E = N->call_end(); 1644 while (I != E) { 1645 Node &ChildN = *I->getNode(); 1646 if (ChildN.DFSNumber == 0) { 1647 // We haven't yet visited this child, so descend, pushing the current 1648 // node onto the stack. 1649 DFSStack.push_back({N, I}); 1650 1651 assert(!lookupSCC(ChildN) && 1652 "Found a node with 0 DFS number but already in an SCC!"); 1653 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++; 1654 N = &ChildN; 1655 I = N->call_begin(); 1656 E = N->call_end(); 1657 continue; 1658 } 1659 1660 // If the child has already been added to some child component, it 1661 // couldn't impact the low-link of this parent because it isn't 1662 // connected, and thus its low-link isn't relevant so skip it. 1663 if (ChildN.DFSNumber == -1) { 1664 ++I; 1665 continue; 1666 } 1667 1668 // Track the lowest linked child as the lowest link for this node. 1669 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); 1670 if (ChildN.LowLink < N->LowLink) 1671 N->LowLink = ChildN.LowLink; 1672 1673 // Move to the next edge. 1674 ++I; 1675 } 1676 1677 // We've finished processing N and its descendents, put it on our pending 1678 // SCC stack to eventually get merged into an SCC of nodes. 1679 PendingSCCStack.push_back(N); 1680 1681 // If this node is linked to some lower entry, continue walking up the 1682 // stack. 1683 if (N->LowLink != N->DFSNumber) 1684 continue; 1685 1686 // Otherwise, we've completed an SCC. Append it to our post order list of 1687 // SCCs. 1688 int RootDFSNumber = N->DFSNumber; 1689 // Find the range of the node stack by walking down until we pass the 1690 // root DFS number. 1691 auto SCCNodes = make_range( 1692 PendingSCCStack.rbegin(), 1693 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) { 1694 return N->DFSNumber < RootDFSNumber; 1695 })); 1696 // Form a new SCC out of these nodes and then clear them off our pending 1697 // stack. 1698 RC.SCCs.push_back(createSCC(RC, SCCNodes)); 1699 for (Node &N : *RC.SCCs.back()) { 1700 N.DFSNumber = N.LowLink = -1; 1701 SCCMap[&N] = RC.SCCs.back(); 1702 } 1703 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end()); 1704 } while (!DFSStack.empty()); 1705 } 1706 1707 // Wire up the SCC indices. 1708 for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i) 1709 RC.SCCIndices[RC.SCCs[i]] = i; 1710 } 1711 1712 // FIXME: We should move callers of this to embed the parent linking and leaf 1713 // tracking into their DFS in order to remove a full walk of all edges. 1714 void LazyCallGraph::connectRefSCC(RefSCC &RC) { 1715 // Walk all edges in the RefSCC (this remains linear as we only do this once 1716 // when we build the RefSCC) to connect it to the parent sets of its 1717 // children. 1718 bool IsLeaf = true; 1719 for (SCC &C : RC) 1720 for (Node &N : C) 1721 for (Edge &E : N) { 1722 assert(E.getNode() && 1723 "Cannot have a missing node in a visited part of the graph!"); 1724 RefSCC &ChildRC = *lookupRefSCC(*E.getNode()); 1725 if (&ChildRC == &RC) 1726 continue; 1727 ChildRC.Parents.insert(&RC); 1728 IsLeaf = false; 1729 } 1730 1731 // For the SCCs where we find no child SCCs, add them to the leaf list. 1732 if (IsLeaf) 1733 LeafRefSCCs.push_back(&RC); 1734 } 1735 1736 bool LazyCallGraph::buildNextRefSCCInPostOrder() { 1737 if (DFSStack.empty()) { 1738 Node *N; 1739 do { 1740 // If we've handled all candidate entry nodes to the SCC forest, we're 1741 // done. 1742 if (RefSCCEntryNodes.empty()) 1743 return false; 1744 1745 N = &get(*RefSCCEntryNodes.pop_back_val()); 1746 } while (N->DFSNumber != 0); 1747 1748 // Found a new root, begin the DFS here. 1749 N->LowLink = N->DFSNumber = 1; 1750 NextDFSNumber = 2; 1751 DFSStack.push_back({N, N->begin()}); 1752 } 1753 1754 for (;;) { 1755 Node *N; 1756 edge_iterator I; 1757 std::tie(N, I) = DFSStack.pop_back_val(); 1758 1759 assert(N->DFSNumber > 0 && "We should always assign a DFS number " 1760 "before placing a node onto the stack."); 1761 1762 auto E = N->end(); 1763 while (I != E) { 1764 Node &ChildN = I->getNode(*this); 1765 if (ChildN.DFSNumber == 0) { 1766 // We haven't yet visited this child, so descend, pushing the current 1767 // node onto the stack. 1768 DFSStack.push_back({N, N->begin()}); 1769 1770 assert(!SCCMap.count(&ChildN) && 1771 "Found a node with 0 DFS number but already in an SCC!"); 1772 ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++; 1773 N = &ChildN; 1774 I = N->begin(); 1775 E = N->end(); 1776 continue; 1777 } 1778 1779 // If the child has already been added to some child component, it 1780 // couldn't impact the low-link of this parent because it isn't 1781 // connected, and thus its low-link isn't relevant so skip it. 1782 if (ChildN.DFSNumber == -1) { 1783 ++I; 1784 continue; 1785 } 1786 1787 // Track the lowest linked child as the lowest link for this node. 1788 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); 1789 if (ChildN.LowLink < N->LowLink) 1790 N->LowLink = ChildN.LowLink; 1791 1792 // Move to the next edge. 1793 ++I; 1794 } 1795 1796 // We've finished processing N and its descendents, put it on our pending 1797 // SCC stack to eventually get merged into an SCC of nodes. 1798 PendingRefSCCStack.push_back(N); 1799 1800 // If this node is linked to some lower entry, continue walking up the 1801 // stack. 1802 if (N->LowLink != N->DFSNumber) { 1803 assert(!DFSStack.empty() && 1804 "We never found a viable root for an SCC to pop off!"); 1805 continue; 1806 } 1807 1808 // Otherwise, form a new RefSCC from the top of the pending node stack. 1809 int RootDFSNumber = N->DFSNumber; 1810 // Find the range of the node stack by walking down until we pass the 1811 // root DFS number. 1812 auto RefSCCNodes = node_stack_range( 1813 PendingRefSCCStack.rbegin(), 1814 find_if(reverse(PendingRefSCCStack), [RootDFSNumber](const Node *N) { 1815 return N->DFSNumber < RootDFSNumber; 1816 })); 1817 // Form a new RefSCC out of these nodes and then clear them off our pending 1818 // stack. 1819 RefSCC *NewRC = createRefSCC(*this); 1820 buildSCCs(*NewRC, RefSCCNodes); 1821 connectRefSCC(*NewRC); 1822 PendingRefSCCStack.erase(RefSCCNodes.end().base(), 1823 PendingRefSCCStack.end()); 1824 1825 // Push the new node into the postorder list and return true indicating we 1826 // successfully grew the postorder sequence by one. 1827 bool Inserted = 1828 RefSCCIndices.insert({NewRC, PostOrderRefSCCs.size()}).second; 1829 (void)Inserted; 1830 assert(Inserted && "Cannot already have this RefSCC in the index map!"); 1831 PostOrderRefSCCs.push_back(NewRC); 1832 return true; 1833 } 1834 } 1835 1836 AnalysisKey LazyCallGraphAnalysis::Key; 1837 1838 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {} 1839 1840 static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) { 1841 OS << " Edges in function: " << N.getFunction().getName() << "\n"; 1842 for (const LazyCallGraph::Edge &E : N) 1843 OS << " " << (E.isCall() ? "call" : "ref ") << " -> " 1844 << E.getFunction().getName() << "\n"; 1845 1846 OS << "\n"; 1847 } 1848 1849 static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) { 1850 ptrdiff_t Size = std::distance(C.begin(), C.end()); 1851 OS << " SCC with " << Size << " functions:\n"; 1852 1853 for (LazyCallGraph::Node &N : C) 1854 OS << " " << N.getFunction().getName() << "\n"; 1855 } 1856 1857 static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) { 1858 ptrdiff_t Size = std::distance(C.begin(), C.end()); 1859 OS << " RefSCC with " << Size << " call SCCs:\n"; 1860 1861 for (LazyCallGraph::SCC &InnerC : C) 1862 printSCC(OS, InnerC); 1863 1864 OS << "\n"; 1865 } 1866 1867 PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M, 1868 ModuleAnalysisManager &AM) { 1869 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M); 1870 1871 OS << "Printing the call graph for module: " << M.getModuleIdentifier() 1872 << "\n\n"; 1873 1874 for (Function &F : M) 1875 printNode(OS, G.get(F)); 1876 1877 for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs()) 1878 printRefSCC(OS, C); 1879 1880 return PreservedAnalyses::all(); 1881 } 1882 1883 LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS) 1884 : OS(OS) {} 1885 1886 static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) { 1887 std::string Name = "\"" + DOT::EscapeString(N.getFunction().getName()) + "\""; 1888 1889 for (const LazyCallGraph::Edge &E : N) { 1890 OS << " " << Name << " -> \"" 1891 << DOT::EscapeString(E.getFunction().getName()) << "\""; 1892 if (!E.isCall()) // It is a ref edge. 1893 OS << " [style=dashed,label=\"ref\"]"; 1894 OS << ";\n"; 1895 } 1896 1897 OS << "\n"; 1898 } 1899 1900 PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M, 1901 ModuleAnalysisManager &AM) { 1902 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M); 1903 1904 OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n"; 1905 1906 for (Function &F : M) 1907 printNodeDOT(OS, G.get(F)); 1908 1909 OS << "}\n"; 1910 1911 return PreservedAnalyses::all(); 1912 } 1913