1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Analysis/LazyCallGraph.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/IR/CallSite.h" 13 #include "llvm/IR/InstVisitor.h" 14 #include "llvm/IR/Instructions.h" 15 #include "llvm/IR/PassManager.h" 16 #include "llvm/Support/Debug.h" 17 #include "llvm/Support/GraphWriter.h" 18 #include "llvm/Support/raw_ostream.h" 19 20 using namespace llvm; 21 22 #define DEBUG_TYPE "lcg" 23 24 static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges, 25 DenseMap<Function *, int> &EdgeIndexMap, Function &F, 26 LazyCallGraph::Edge::Kind EK) { 27 // Note that we consider *any* function with a definition to be a viable 28 // edge. Even if the function's definition is subject to replacement by 29 // some other module (say, a weak definition) there may still be 30 // optimizations which essentially speculate based on the definition and 31 // a way to check that the specific definition is in fact the one being 32 // used. For example, this could be done by moving the weak definition to 33 // a strong (internal) definition and making the weak definition be an 34 // alias. Then a test of the address of the weak function against the new 35 // strong definition's address would be an effective way to determine the 36 // safety of optimizing a direct call edge. 37 if (!F.isDeclaration() && 38 EdgeIndexMap.insert({&F, Edges.size()}).second) { 39 DEBUG(dbgs() << " Added callable function: " << F.getName() << "\n"); 40 Edges.emplace_back(LazyCallGraph::Edge(F, EK)); 41 } 42 } 43 44 static void findReferences(SmallVectorImpl<Constant *> &Worklist, 45 SmallPtrSetImpl<Constant *> &Visited, 46 SmallVectorImpl<LazyCallGraph::Edge> &Edges, 47 DenseMap<Function *, int> &EdgeIndexMap) { 48 while (!Worklist.empty()) { 49 Constant *C = Worklist.pop_back_val(); 50 51 if (Function *F = dyn_cast<Function>(C)) { 52 addEdge(Edges, EdgeIndexMap, *F, LazyCallGraph::Edge::Ref); 53 continue; 54 } 55 56 for (Value *Op : C->operand_values()) 57 if (Visited.insert(cast<Constant>(Op)).second) 58 Worklist.push_back(cast<Constant>(Op)); 59 } 60 } 61 62 LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F) 63 : G(&G), F(F), DFSNumber(0), LowLink(0) { 64 DEBUG(dbgs() << " Adding functions called by '" << F.getName() 65 << "' to the graph.\n"); 66 67 SmallVector<Constant *, 16> Worklist; 68 SmallPtrSet<Function *, 4> Callees; 69 SmallPtrSet<Constant *, 16> Visited; 70 71 // Find all the potential call graph edges in this function. We track both 72 // actual call edges and indirect references to functions. The direct calls 73 // are trivially added, but to accumulate the latter we walk the instructions 74 // and add every operand which is a constant to the worklist to process 75 // afterward. 76 for (BasicBlock &BB : F) 77 for (Instruction &I : BB) { 78 if (auto CS = CallSite(&I)) 79 if (Function *Callee = CS.getCalledFunction()) 80 if (Callees.insert(Callee).second) { 81 Visited.insert(Callee); 82 addEdge(Edges, EdgeIndexMap, *Callee, LazyCallGraph::Edge::Call); 83 } 84 85 for (Value *Op : I.operand_values()) 86 if (Constant *C = dyn_cast<Constant>(Op)) 87 if (Visited.insert(C).second) 88 Worklist.push_back(C); 89 } 90 91 // We've collected all the constant (and thus potentially function or 92 // function containing) operands to all of the instructions in the function. 93 // Process them (recursively) collecting every function found. 94 findReferences(Worklist, Visited, Edges, EdgeIndexMap); 95 } 96 97 void LazyCallGraph::Node::insertEdgeInternal(Function &Target, Edge::Kind EK) { 98 if (Node *N = G->lookup(Target)) 99 return insertEdgeInternal(*N, EK); 100 101 EdgeIndexMap.insert({&Target, Edges.size()}); 102 Edges.emplace_back(Target, EK); 103 } 104 105 void LazyCallGraph::Node::insertEdgeInternal(Node &TargetN, Edge::Kind EK) { 106 EdgeIndexMap.insert({&TargetN.getFunction(), Edges.size()}); 107 Edges.emplace_back(TargetN, EK); 108 } 109 110 void LazyCallGraph::Node::setEdgeKind(Function &TargetF, Edge::Kind EK) { 111 Edges[EdgeIndexMap.find(&TargetF)->second].setKind(EK); 112 } 113 114 void LazyCallGraph::Node::removeEdgeInternal(Function &Target) { 115 auto IndexMapI = EdgeIndexMap.find(&Target); 116 assert(IndexMapI != EdgeIndexMap.end() && 117 "Target not in the edge set for this caller?"); 118 119 Edges[IndexMapI->second] = Edge(); 120 EdgeIndexMap.erase(IndexMapI); 121 } 122 123 LazyCallGraph::LazyCallGraph(Module &M) : NextDFSNumber(0) { 124 DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier() 125 << "\n"); 126 for (Function &F : M) 127 if (!F.isDeclaration() && !F.hasLocalLinkage()) 128 if (EntryIndexMap.insert({&F, EntryEdges.size()}).second) { 129 DEBUG(dbgs() << " Adding '" << F.getName() 130 << "' to entry set of the graph.\n"); 131 EntryEdges.emplace_back(F, Edge::Ref); 132 } 133 134 // Now add entry nodes for functions reachable via initializers to globals. 135 SmallVector<Constant *, 16> Worklist; 136 SmallPtrSet<Constant *, 16> Visited; 137 for (GlobalVariable &GV : M.globals()) 138 if (GV.hasInitializer()) 139 if (Visited.insert(GV.getInitializer()).second) 140 Worklist.push_back(GV.getInitializer()); 141 142 DEBUG(dbgs() << " Adding functions referenced by global initializers to the " 143 "entry set.\n"); 144 findReferences(Worklist, Visited, EntryEdges, EntryIndexMap); 145 146 for (const Edge &E : EntryEdges) 147 RefSCCEntryNodes.push_back(&E.getFunction()); 148 } 149 150 LazyCallGraph::LazyCallGraph(LazyCallGraph &&G) 151 : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)), 152 EntryEdges(std::move(G.EntryEdges)), 153 EntryIndexMap(std::move(G.EntryIndexMap)), SCCBPA(std::move(G.SCCBPA)), 154 SCCMap(std::move(G.SCCMap)), LeafRefSCCs(std::move(G.LeafRefSCCs)), 155 DFSStack(std::move(G.DFSStack)), 156 RefSCCEntryNodes(std::move(G.RefSCCEntryNodes)), 157 NextDFSNumber(G.NextDFSNumber) { 158 updateGraphPtrs(); 159 } 160 161 LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) { 162 BPA = std::move(G.BPA); 163 NodeMap = std::move(G.NodeMap); 164 EntryEdges = std::move(G.EntryEdges); 165 EntryIndexMap = std::move(G.EntryIndexMap); 166 SCCBPA = std::move(G.SCCBPA); 167 SCCMap = std::move(G.SCCMap); 168 LeafRefSCCs = std::move(G.LeafRefSCCs); 169 DFSStack = std::move(G.DFSStack); 170 RefSCCEntryNodes = std::move(G.RefSCCEntryNodes); 171 NextDFSNumber = G.NextDFSNumber; 172 updateGraphPtrs(); 173 return *this; 174 } 175 176 #ifndef NDEBUG 177 void LazyCallGraph::SCC::verify() { 178 assert(OuterRefSCC && "Can't have a null RefSCC!"); 179 assert(!Nodes.empty() && "Can't have an empty SCC!"); 180 181 for (Node *N : Nodes) { 182 assert(N && "Can't have a null node!"); 183 assert(OuterRefSCC->G->lookupSCC(*N) == this && 184 "Node does not map to this SCC!"); 185 assert(N->DFSNumber == -1 && 186 "Must set DFS numbers to -1 when adding a node to an SCC!"); 187 assert(N->LowLink == -1 && 188 "Must set low link to -1 when adding a node to an SCC!"); 189 for (Edge &E : *N) 190 assert(E.getNode() && "Can't have an edge to a raw function!"); 191 } 192 } 193 #endif 194 195 LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {} 196 197 #ifndef NDEBUG 198 void LazyCallGraph::RefSCC::verify() { 199 assert(G && "Can't have a null graph!"); 200 assert(!SCCs.empty() && "Can't have an empty SCC!"); 201 202 // Verify basic properties of the SCCs. 203 for (SCC *C : SCCs) { 204 assert(C && "Can't have a null SCC!"); 205 C->verify(); 206 assert(&C->getOuterRefSCC() == this && 207 "SCC doesn't think it is inside this RefSCC!"); 208 } 209 210 // Check that our indices map correctly. 211 for (auto &SCCIndexPair : SCCIndices) { 212 SCC *C = SCCIndexPair.first; 213 int i = SCCIndexPair.second; 214 assert(C && "Can't have a null SCC in the indices!"); 215 assert(SCCs[i] == C && "Index doesn't point to SCC!"); 216 } 217 218 // Check that the SCCs are in fact in post-order. 219 for (int i = 0, Size = SCCs.size(); i < Size; ++i) { 220 SCC &SourceSCC = *SCCs[i]; 221 for (Node &N : SourceSCC) 222 for (Edge &E : N) { 223 if (!E.isCall()) 224 continue; 225 SCC &TargetSCC = *G->lookupSCC(*E.getNode()); 226 if (&TargetSCC.getOuterRefSCC() == this) { 227 assert(SCCIndices.find(&TargetSCC)->second <= i && 228 "Edge between SCCs violates post-order relationship."); 229 continue; 230 } 231 assert(TargetSCC.getOuterRefSCC().Parents.count(this) && 232 "Edge to a RefSCC missing us in its parent set."); 233 } 234 } 235 } 236 #endif 237 238 bool LazyCallGraph::RefSCC::isDescendantOf(const RefSCC &C) const { 239 // Walk up the parents of this SCC and verify that we eventually find C. 240 SmallVector<const RefSCC *, 4> AncestorWorklist; 241 AncestorWorklist.push_back(this); 242 do { 243 const RefSCC *AncestorC = AncestorWorklist.pop_back_val(); 244 if (AncestorC->isChildOf(C)) 245 return true; 246 for (const RefSCC *ParentC : AncestorC->Parents) 247 AncestorWorklist.push_back(ParentC); 248 } while (!AncestorWorklist.empty()); 249 250 return false; 251 } 252 253 SmallVector<LazyCallGraph::SCC *, 1> 254 LazyCallGraph::RefSCC::switchInternalEdgeToCall(Node &SourceN, Node &TargetN) { 255 assert(!SourceN[TargetN].isCall() && "Must start with a ref edge!"); 256 257 SmallVector<SCC *, 1> DeletedSCCs; 258 259 SCC &SourceSCC = *G->lookupSCC(SourceN); 260 SCC &TargetSCC = *G->lookupSCC(TargetN); 261 262 // If the two nodes are already part of the same SCC, we're also done as 263 // we've just added more connectivity. 264 if (&SourceSCC == &TargetSCC) { 265 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call); 266 #ifndef NDEBUG 267 // Check that the RefSCC is still valid. 268 verify(); 269 #endif 270 return DeletedSCCs; 271 } 272 273 // At this point we leverage the postorder list of SCCs to detect when the 274 // insertion of an edge changes the SCC structure in any way. 275 // 276 // First and foremost, we can eliminate the need for any changes when the 277 // edge is toward the beginning of the postorder sequence because all edges 278 // flow in that direction already. Thus adding a new one cannot form a cycle. 279 int SourceIdx = SCCIndices[&SourceSCC]; 280 int TargetIdx = SCCIndices[&TargetSCC]; 281 if (TargetIdx < SourceIdx) { 282 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call); 283 #ifndef NDEBUG 284 // Check that the RefSCC is still valid. 285 verify(); 286 #endif 287 return DeletedSCCs; 288 } 289 290 // When we do have an edge from an earlier SCC to a later SCC in the 291 // postorder sequence, all of the SCCs which may be impacted are in the 292 // closed range of those two within the postorder sequence. The algorithm to 293 // restore the state is as follows: 294 // 295 // 1) Starting from the source SCC, construct a set of SCCs which reach the 296 // source SCC consisting of just the source SCC. Then scan toward the 297 // target SCC in postorder and for each SCC, if it has an edge to an SCC 298 // in the set, add it to the set. Otherwise, the source SCC is not 299 // a successor, move it in the postorder sequence to immediately before 300 // the source SCC, shifting the source SCC and all SCCs in the set one 301 // position toward the target SCC. Stop scanning after processing the 302 // target SCC. 303 // 2) If the source SCC is now past the target SCC in the postorder sequence, 304 // and thus the new edge will flow toward the start, we are done. 305 // 3) Otherwise, starting from the target SCC, walk all edges which reach an 306 // SCC between the source and the target, and add them to the set of 307 // connected SCCs, then recurse through them. Once a complete set of the 308 // SCCs the target connects to is known, hoist the remaining SCCs between 309 // the source and the target to be above the target. Note that there is no 310 // need to process the source SCC, it is already known to connect. 311 // 4) At this point, all of the SCCs in the closed range between the source 312 // SCC and the target SCC in the postorder sequence are connected, 313 // including the target SCC and the source SCC. Inserting the edge from 314 // the source SCC to the target SCC will form a cycle out of precisely 315 // these SCCs. Thus we can merge all of the SCCs in this closed range into 316 // a single SCC. 317 // 318 // This process has various important properties: 319 // - Only mutates the SCCs when adding the edge actually changes the SCC 320 // structure. 321 // - Never mutates SCCs which are unaffected by the change. 322 // - Updates the postorder sequence to correctly satisfy the postorder 323 // constraint after the edge is inserted. 324 // - Only reorders SCCs in the closed postorder sequence from the source to 325 // the target, so easy to bound how much has changed even in the ordering. 326 // - Big-O is the number of edges in the closed postorder range of SCCs from 327 // source to target. 328 329 assert(SourceIdx < TargetIdx && "Cannot have equal indices here!"); 330 SmallPtrSet<SCC *, 4> ConnectedSet; 331 332 // Compute the SCCs which (transitively) reach the source. 333 ConnectedSet.insert(&SourceSCC); 334 auto IsConnected = [&](SCC &C) { 335 for (Node &N : C) 336 for (Edge &E : N.calls()) { 337 assert(E.getNode() && "Must have formed a node within an SCC!"); 338 if (ConnectedSet.count(G->lookupSCC(*E.getNode()))) 339 return true; 340 } 341 342 return false; 343 }; 344 345 for (SCC *C : 346 make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1)) 347 if (IsConnected(*C)) 348 ConnectedSet.insert(C); 349 350 // Partition the SCCs in this part of the port-order sequence so only SCCs 351 // connecting to the source remain between it and the target. This is 352 // a benign partition as it preserves postorder. 353 auto SourceI = std::stable_partition( 354 SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1, 355 [&ConnectedSet](SCC *C) { return !ConnectedSet.count(C); }); 356 for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i) 357 SCCIndices.find(SCCs[i])->second = i; 358 359 // If the target doesn't connect to the source, then we've corrected the 360 // post-order and there are no cycles formed. 361 if (!ConnectedSet.count(&TargetSCC)) { 362 assert(SourceI > (SCCs.begin() + SourceIdx) && 363 "Must have moved the source to fix the post-order."); 364 assert(*std::prev(SourceI) == &TargetSCC && 365 "Last SCC to move should have bene the target."); 366 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call); 367 #ifndef NDEBUG 368 verify(); 369 #endif 370 return DeletedSCCs; 371 } 372 373 assert(SCCs[TargetIdx] == &TargetSCC && 374 "Should not have moved target if connected!"); 375 SourceIdx = SourceI - SCCs.begin(); 376 377 #ifndef NDEBUG 378 // Check that the RefSCC is still valid. 379 verify(); 380 #endif 381 382 // See whether there are any remaining intervening SCCs between the source 383 // and target. If so we need to make sure they all are reachable form the 384 // target. 385 if (SourceIdx + 1 < TargetIdx) { 386 // Use a normal worklist to find which SCCs the target connects to. We still 387 // bound the search based on the range in the postorder list we care about, 388 // but because this is forward connectivity we just "recurse" through the 389 // edges. 390 ConnectedSet.clear(); 391 ConnectedSet.insert(&TargetSCC); 392 SmallVector<SCC *, 4> Worklist; 393 Worklist.push_back(&TargetSCC); 394 do { 395 SCC &C = *Worklist.pop_back_val(); 396 for (Node &N : C) 397 for (Edge &E : N) { 398 assert(E.getNode() && "Must have formed a node within an SCC!"); 399 if (!E.isCall()) 400 continue; 401 SCC &EdgeC = *G->lookupSCC(*E.getNode()); 402 if (&EdgeC.getOuterRefSCC() != this) 403 // Not in this RefSCC... 404 continue; 405 if (SCCIndices.find(&EdgeC)->second <= SourceIdx) 406 // Not in the postorder sequence between source and target. 407 continue; 408 409 if (ConnectedSet.insert(&EdgeC).second) 410 Worklist.push_back(&EdgeC); 411 } 412 } while (!Worklist.empty()); 413 414 // Partition SCCs so that only SCCs reached from the target remain between 415 // the source and the target. This preserves postorder. 416 auto TargetI = std::stable_partition( 417 SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1, 418 [&ConnectedSet](SCC *C) { return ConnectedSet.count(C); }); 419 for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i) 420 SCCIndices.find(SCCs[i])->second = i; 421 TargetIdx = std::prev(TargetI) - SCCs.begin(); 422 assert(SCCs[TargetIdx] == &TargetSCC && 423 "Should always end with the target!"); 424 425 #ifndef NDEBUG 426 // Check that the RefSCC is still valid. 427 verify(); 428 #endif 429 } 430 431 // At this point, we know that connecting source to target forms a cycle 432 // because target connects back to source, and we know that all of the SCCs 433 // between the source and target in the postorder sequence participate in that 434 // cycle. This means that we need to merge all of these SCCs into a single 435 // result SCC. 436 // 437 // NB: We merge into the target because all of these functions were already 438 // reachable from the target, meaning any SCC-wide properties deduced about it 439 // other than the set of functions within it will not have changed. 440 auto MergeRange = 441 make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx); 442 for (SCC *C : MergeRange) { 443 assert(C != &TargetSCC && 444 "We merge *into* the target and shouldn't process it here!"); 445 SCCIndices.erase(C); 446 TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end()); 447 for (Node *N : C->Nodes) 448 G->SCCMap[N] = &TargetSCC; 449 C->clear(); 450 DeletedSCCs.push_back(C); 451 } 452 453 // Erase the merged SCCs from the list and update the indices of the 454 // remaining SCCs. 455 int IndexOffset = MergeRange.end() - MergeRange.begin(); 456 auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end()); 457 for (SCC *C : make_range(EraseEnd, SCCs.end())) 458 SCCIndices[C] -= IndexOffset; 459 460 // Now that the SCC structure is finalized, flip the kind to call. 461 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call); 462 463 #ifndef NDEBUG 464 // And we're done! Verify in debug builds that the RefSCC is coherent. 465 verify(); 466 #endif 467 return DeletedSCCs; 468 } 469 470 void LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, 471 Node &TargetN) { 472 assert(SourceN[TargetN].isCall() && "Must start with a call edge!"); 473 474 SCC &SourceSCC = *G->lookupSCC(SourceN); 475 SCC &TargetSCC = *G->lookupSCC(TargetN); 476 477 assert(&SourceSCC.getOuterRefSCC() == this && 478 "Source must be in this RefSCC."); 479 assert(&TargetSCC.getOuterRefSCC() == this && 480 "Target must be in this RefSCC."); 481 482 // Set the edge kind. 483 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref); 484 485 // If this call edge is just connecting two separate SCCs within this RefSCC, 486 // there is nothing to do. 487 if (&SourceSCC != &TargetSCC) { 488 #ifndef NDEBUG 489 // Check that the RefSCC is still valid. 490 verify(); 491 #endif 492 return; 493 } 494 495 // Otherwise we are removing a call edge from a single SCC. This may break 496 // the cycle. In order to compute the new set of SCCs, we need to do a small 497 // DFS over the nodes within the SCC to form any sub-cycles that remain as 498 // distinct SCCs and compute a postorder over the resulting SCCs. 499 // 500 // However, we specially handle the target node. The target node is known to 501 // reach all other nodes in the original SCC by definition. This means that 502 // we want the old SCC to be replaced with an SCC contaning that node as it 503 // will be the root of whatever SCC DAG results from the DFS. Assumptions 504 // about an SCC such as the set of functions called will continue to hold, 505 // etc. 506 507 SCC &OldSCC = TargetSCC; 508 SmallVector<std::pair<Node *, call_edge_iterator>, 16> DFSStack; 509 SmallVector<Node *, 16> PendingSCCStack; 510 SmallVector<SCC *, 4> NewSCCs; 511 512 // Prepare the nodes for a fresh DFS. 513 SmallVector<Node *, 16> Worklist; 514 Worklist.swap(OldSCC.Nodes); 515 for (Node *N : Worklist) { 516 N->DFSNumber = N->LowLink = 0; 517 G->SCCMap.erase(N); 518 } 519 520 // Force the target node to be in the old SCC. This also enables us to take 521 // a very significant short-cut in the standard Tarjan walk to re-form SCCs 522 // below: whenever we build an edge that reaches the target node, we know 523 // that the target node eventually connects back to all other nodes in our 524 // walk. As a consequence, we can detect and handle participants in that 525 // cycle without walking all the edges that form this connection, and instead 526 // by relying on the fundamental guarantee coming into this operation (all 527 // nodes are reachable from the target due to previously forming an SCC). 528 TargetN.DFSNumber = TargetN.LowLink = -1; 529 OldSCC.Nodes.push_back(&TargetN); 530 G->SCCMap[&TargetN] = &OldSCC; 531 532 // Scan down the stack and DFS across the call edges. 533 for (Node *RootN : Worklist) { 534 assert(DFSStack.empty() && 535 "Cannot begin a new root with a non-empty DFS stack!"); 536 assert(PendingSCCStack.empty() && 537 "Cannot begin a new root with pending nodes for an SCC!"); 538 539 // Skip any nodes we've already reached in the DFS. 540 if (RootN->DFSNumber != 0) { 541 assert(RootN->DFSNumber == -1 && 542 "Shouldn't have any mid-DFS root nodes!"); 543 continue; 544 } 545 546 RootN->DFSNumber = RootN->LowLink = 1; 547 int NextDFSNumber = 2; 548 549 DFSStack.push_back({RootN, RootN->call_begin()}); 550 do { 551 Node *N; 552 call_edge_iterator I; 553 std::tie(N, I) = DFSStack.pop_back_val(); 554 auto E = N->call_end(); 555 while (I != E) { 556 Node &ChildN = *I->getNode(); 557 if (ChildN.DFSNumber == 0) { 558 // We haven't yet visited this child, so descend, pushing the current 559 // node onto the stack. 560 DFSStack.push_back({N, I}); 561 562 assert(!G->SCCMap.count(&ChildN) && 563 "Found a node with 0 DFS number but already in an SCC!"); 564 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++; 565 N = &ChildN; 566 I = N->call_begin(); 567 E = N->call_end(); 568 continue; 569 } 570 571 // Check for the child already being part of some component. 572 if (ChildN.DFSNumber == -1) { 573 if (G->lookupSCC(ChildN) == &OldSCC) { 574 // If the child is part of the old SCC, we know that it can reach 575 // every other node, so we have formed a cycle. Pull the entire DFS 576 // and pending stacks into it. See the comment above about setting 577 // up the old SCC for why we do this. 578 int OldSize = OldSCC.size(); 579 OldSCC.Nodes.push_back(N); 580 OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end()); 581 PendingSCCStack.clear(); 582 while (!DFSStack.empty()) 583 OldSCC.Nodes.push_back(DFSStack.pop_back_val().first); 584 for (Node &N : make_range(OldSCC.begin() + OldSize, OldSCC.end())) { 585 N.DFSNumber = N.LowLink = -1; 586 G->SCCMap[&N] = &OldSCC; 587 } 588 N = nullptr; 589 break; 590 } 591 592 // If the child has already been added to some child component, it 593 // couldn't impact the low-link of this parent because it isn't 594 // connected, and thus its low-link isn't relevant so skip it. 595 ++I; 596 continue; 597 } 598 599 // Track the lowest linked child as the lowest link for this node. 600 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); 601 if (ChildN.LowLink < N->LowLink) 602 N->LowLink = ChildN.LowLink; 603 604 // Move to the next edge. 605 ++I; 606 } 607 if (!N) 608 // Cleared the DFS early, start another round. 609 break; 610 611 // We've finished processing N and its descendents, put it on our pending 612 // SCC stack to eventually get merged into an SCC of nodes. 613 PendingSCCStack.push_back(N); 614 615 // If this node is linked to some lower entry, continue walking up the 616 // stack. 617 if (N->LowLink != N->DFSNumber) 618 continue; 619 620 // Otherwise, we've completed an SCC. Append it to our post order list of 621 // SCCs. 622 int RootDFSNumber = N->DFSNumber; 623 // Find the range of the node stack by walking down until we pass the 624 // root DFS number. 625 auto SCCNodes = make_range( 626 PendingSCCStack.rbegin(), 627 std::find_if(PendingSCCStack.rbegin(), PendingSCCStack.rend(), 628 [RootDFSNumber](Node *N) { 629 return N->DFSNumber < RootDFSNumber; 630 })); 631 632 // Form a new SCC out of these nodes and then clear them off our pending 633 // stack. 634 NewSCCs.push_back(G->createSCC(*this, SCCNodes)); 635 for (Node &N : *NewSCCs.back()) { 636 N.DFSNumber = N.LowLink = -1; 637 G->SCCMap[&N] = NewSCCs.back(); 638 } 639 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end()); 640 } while (!DFSStack.empty()); 641 } 642 643 // Insert the remaining SCCs before the old one. The old SCC can reach all 644 // other SCCs we form because it contains the target node of the removed edge 645 // of the old SCC. This means that we will have edges into all of the new 646 // SCCs, which means the old one must come last for postorder. 647 int OldIdx = SCCIndices[&OldSCC]; 648 SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end()); 649 650 // Update the mapping from SCC* to index to use the new SCC*s, and remove the 651 // old SCC from the mapping. 652 for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx) 653 SCCIndices[SCCs[Idx]] = Idx; 654 655 #ifndef NDEBUG 656 // We're done. Check the validity on our way out. 657 verify(); 658 #endif 659 } 660 661 void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN, 662 Node &TargetN) { 663 assert(!SourceN[TargetN].isCall() && "Must start with a ref edge!"); 664 665 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 666 assert(G->lookupRefSCC(TargetN) != this && 667 "Target must not be in this RefSCC."); 668 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && 669 "Target must be a descendant of the Source."); 670 671 // Edges between RefSCCs are the same regardless of call or ref, so we can 672 // just flip the edge here. 673 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call); 674 675 #ifndef NDEBUG 676 // Check that the RefSCC is still valid. 677 verify(); 678 #endif 679 } 680 681 void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN, 682 Node &TargetN) { 683 assert(SourceN[TargetN].isCall() && "Must start with a call edge!"); 684 685 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 686 assert(G->lookupRefSCC(TargetN) != this && 687 "Target must not be in this RefSCC."); 688 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && 689 "Target must be a descendant of the Source."); 690 691 // Edges between RefSCCs are the same regardless of call or ref, so we can 692 // just flip the edge here. 693 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref); 694 695 #ifndef NDEBUG 696 // Check that the RefSCC is still valid. 697 verify(); 698 #endif 699 } 700 701 void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN, 702 Node &TargetN) { 703 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 704 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC."); 705 706 SourceN.insertEdgeInternal(TargetN, Edge::Ref); 707 708 #ifndef NDEBUG 709 // Check that the RefSCC is still valid. 710 verify(); 711 #endif 712 } 713 714 void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN, 715 Edge::Kind EK) { 716 // First insert it into the caller. 717 SourceN.insertEdgeInternal(TargetN, EK); 718 719 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 720 721 RefSCC &TargetC = *G->lookupRefSCC(TargetN); 722 assert(&TargetC != this && "Target must not be in this RefSCC."); 723 assert(TargetC.isDescendantOf(*this) && 724 "Target must be a descendant of the Source."); 725 726 // The only change required is to add this SCC to the parent set of the 727 // callee. 728 TargetC.Parents.insert(this); 729 730 #ifndef NDEBUG 731 // Check that the RefSCC is still valid. 732 verify(); 733 #endif 734 } 735 736 SmallVector<LazyCallGraph::RefSCC *, 1> 737 LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) { 738 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this SCC."); 739 740 // We store the RefSCCs found to be connected in postorder so that we can use 741 // that when merging. We also return this to the caller to allow them to 742 // invalidate information pertaining to these RefSCCs. 743 SmallVector<RefSCC *, 1> Connected; 744 745 RefSCC &SourceC = *G->lookupRefSCC(SourceN); 746 assert(&SourceC != this && "Source must not be in this SCC."); 747 assert(SourceC.isDescendantOf(*this) && 748 "Source must be a descendant of the Target."); 749 750 // The algorithm we use for merging SCCs based on the cycle introduced here 751 // is to walk the RefSCC inverted DAG formed by the parent sets. The inverse 752 // graph has the same cycle properties as the actual DAG of the RefSCCs, and 753 // when forming RefSCCs lazily by a DFS, the bottom of the graph won't exist 754 // in many cases which should prune the search space. 755 // 756 // FIXME: We can get this pruning behavior even after the incremental RefSCC 757 // formation by leaving behind (conservative) DFS numberings in the nodes, 758 // and pruning the search with them. These would need to be cleverly updated 759 // during the removal of intra-SCC edges, but could be preserved 760 // conservatively. 761 // 762 // FIXME: This operation currently creates ordering stability problems 763 // because we don't use stably ordered containers for the parent SCCs. 764 765 // The set of RefSCCs that are connected to the parent, and thus will 766 // participate in the merged connected component. 767 SmallPtrSet<RefSCC *, 8> ConnectedSet; 768 ConnectedSet.insert(this); 769 770 // We build up a DFS stack of the parents chains. 771 SmallVector<std::pair<RefSCC *, parent_iterator>, 8> DFSStack; 772 SmallPtrSet<RefSCC *, 8> Visited; 773 int ConnectedDepth = -1; 774 DFSStack.push_back({&SourceC, SourceC.parent_begin()}); 775 do { 776 auto DFSPair = DFSStack.pop_back_val(); 777 RefSCC *C = DFSPair.first; 778 parent_iterator I = DFSPair.second; 779 auto E = C->parent_end(); 780 781 while (I != E) { 782 RefSCC &Parent = *I++; 783 784 // If we have already processed this parent SCC, skip it, and remember 785 // whether it was connected so we don't have to check the rest of the 786 // stack. This also handles when we reach a child of the 'this' SCC (the 787 // callee) which terminates the search. 788 if (ConnectedSet.count(&Parent)) { 789 assert(ConnectedDepth < (int)DFSStack.size() && 790 "Cannot have a connected depth greater than the DFS depth!"); 791 ConnectedDepth = DFSStack.size(); 792 continue; 793 } 794 if (Visited.count(&Parent)) 795 continue; 796 797 // We fully explore the depth-first space, adding nodes to the connected 798 // set only as we pop them off, so "recurse" by rotating to the parent. 799 DFSStack.push_back({C, I}); 800 C = &Parent; 801 I = C->parent_begin(); 802 E = C->parent_end(); 803 } 804 805 // If we've found a connection anywhere below this point on the stack (and 806 // thus up the parent graph from the caller), the current node needs to be 807 // added to the connected set now that we've processed all of its parents. 808 if ((int)DFSStack.size() == ConnectedDepth) { 809 --ConnectedDepth; // We're finished with this connection. 810 bool Inserted = ConnectedSet.insert(C).second; 811 (void)Inserted; 812 assert(Inserted && "Cannot insert a refSCC multiple times!"); 813 Connected.push_back(C); 814 } else { 815 // Otherwise remember that its parents don't ever connect. 816 assert(ConnectedDepth < (int)DFSStack.size() && 817 "Cannot have a connected depth greater than the DFS depth!"); 818 Visited.insert(C); 819 } 820 } while (!DFSStack.empty()); 821 822 // Now that we have identified all of the SCCs which need to be merged into 823 // a connected set with the inserted edge, merge all of them into this SCC. 824 // We walk the newly connected RefSCCs in the reverse postorder of the parent 825 // DAG walk above and merge in each of their SCC postorder lists. This 826 // ensures a merged postorder SCC list. 827 SmallVector<SCC *, 16> MergedSCCs; 828 int SCCIndex = 0; 829 for (RefSCC *C : reverse(Connected)) { 830 assert(C != this && 831 "This RefSCC should terminate the DFS without being reached."); 832 833 // Merge the parents which aren't part of the merge into the our parents. 834 for (RefSCC *ParentC : C->Parents) 835 if (!ConnectedSet.count(ParentC)) 836 Parents.insert(ParentC); 837 C->Parents.clear(); 838 839 // Walk the inner SCCs to update their up-pointer and walk all the edges to 840 // update any parent sets. 841 // FIXME: We should try to find a way to avoid this (rather expensive) edge 842 // walk by updating the parent sets in some other manner. 843 for (SCC &InnerC : *C) { 844 InnerC.OuterRefSCC = this; 845 SCCIndices[&InnerC] = SCCIndex++; 846 for (Node &N : InnerC) { 847 G->SCCMap[&N] = &InnerC; 848 for (Edge &E : N) { 849 assert(E.getNode() && 850 "Cannot have a null node within a visited SCC!"); 851 RefSCC &ChildRC = *G->lookupRefSCC(*E.getNode()); 852 if (ConnectedSet.count(&ChildRC)) 853 continue; 854 ChildRC.Parents.erase(C); 855 ChildRC.Parents.insert(this); 856 } 857 } 858 } 859 860 // Now merge in the SCCs. We can actually move here so try to reuse storage 861 // the first time through. 862 if (MergedSCCs.empty()) 863 MergedSCCs = std::move(C->SCCs); 864 else 865 MergedSCCs.append(C->SCCs.begin(), C->SCCs.end()); 866 C->SCCs.clear(); 867 } 868 869 // Finally append our original SCCs to the merged list and move it into 870 // place. 871 for (SCC &InnerC : *this) 872 SCCIndices[&InnerC] = SCCIndex++; 873 MergedSCCs.append(SCCs.begin(), SCCs.end()); 874 SCCs = std::move(MergedSCCs); 875 876 // At this point we have a merged RefSCC with a post-order SCCs list, just 877 // connect the nodes to form the new edge. 878 SourceN.insertEdgeInternal(TargetN, Edge::Ref); 879 880 #ifndef NDEBUG 881 // Check that the RefSCC is still valid. 882 verify(); 883 #endif 884 885 // We return the list of SCCs which were merged so that callers can 886 // invalidate any data they have associated with those SCCs. Note that these 887 // SCCs are no longer in an interesting state (they are totally empty) but 888 // the pointers will remain stable for the life of the graph itself. 889 return Connected; 890 } 891 892 void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) { 893 assert(G->lookupRefSCC(SourceN) == this && 894 "The source must be a member of this RefSCC."); 895 896 RefSCC &TargetRC = *G->lookupRefSCC(TargetN); 897 assert(&TargetRC != this && "The target must not be a member of this RefSCC"); 898 899 assert(std::find(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(), this) == 900 G->LeafRefSCCs.end() && 901 "Cannot have a leaf RefSCC source."); 902 903 // First remove it from the node. 904 SourceN.removeEdgeInternal(TargetN.getFunction()); 905 906 bool HasOtherEdgeToChildRC = false; 907 bool HasOtherChildRC = false; 908 for (SCC *InnerC : SCCs) { 909 for (Node &N : *InnerC) { 910 for (Edge &E : N) { 911 assert(E.getNode() && "Cannot have a missing node in a visited SCC!"); 912 RefSCC &OtherChildRC = *G->lookupRefSCC(*E.getNode()); 913 if (&OtherChildRC == &TargetRC) { 914 HasOtherEdgeToChildRC = true; 915 break; 916 } 917 if (&OtherChildRC != this) 918 HasOtherChildRC = true; 919 } 920 if (HasOtherEdgeToChildRC) 921 break; 922 } 923 if (HasOtherEdgeToChildRC) 924 break; 925 } 926 // Because the SCCs form a DAG, deleting such an edge cannot change the set 927 // of SCCs in the graph. However, it may cut an edge of the SCC DAG, making 928 // the source SCC no longer connected to the target SCC. If so, we need to 929 // update the target SCC's map of its parents. 930 if (!HasOtherEdgeToChildRC) { 931 bool Removed = TargetRC.Parents.erase(this); 932 (void)Removed; 933 assert(Removed && 934 "Did not find the source SCC in the target SCC's parent list!"); 935 936 // It may orphan an SCC if it is the last edge reaching it, but that does 937 // not violate any invariants of the graph. 938 if (TargetRC.Parents.empty()) 939 DEBUG(dbgs() << "LCG: Update removing " << SourceN.getFunction().getName() 940 << " -> " << TargetN.getFunction().getName() 941 << " edge orphaned the callee's SCC!\n"); 942 943 // It may make the Source SCC a leaf SCC. 944 if (!HasOtherChildRC) 945 G->LeafRefSCCs.push_back(this); 946 } 947 } 948 949 SmallVector<LazyCallGraph::RefSCC *, 1> 950 LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN, Node &TargetN) { 951 assert(!SourceN[TargetN].isCall() && 952 "Cannot remove a call edge, it must first be made a ref edge"); 953 954 // First remove the actual edge. 955 SourceN.removeEdgeInternal(TargetN.getFunction()); 956 957 // We return a list of the resulting *new* RefSCCs in post-order. 958 SmallVector<RefSCC *, 1> Result; 959 960 // Direct recursion doesn't impact the SCC graph at all. 961 if (&SourceN == &TargetN) 962 return Result; 963 964 // We build somewhat synthetic new RefSCCs by providing a postorder mapping 965 // for each inner SCC. We also store these associated with *nodes* rather 966 // than SCCs because this saves a round-trip through the node->SCC map and in 967 // the common case, SCCs are small. We will verify that we always give the 968 // same number to every node in the SCC such that these are equivalent. 969 const int RootPostOrderNumber = 0; 970 int PostOrderNumber = RootPostOrderNumber + 1; 971 SmallDenseMap<Node *, int> PostOrderMapping; 972 973 // Every node in the target SCC can already reach every node in this RefSCC 974 // (by definition). It is the only node we know will stay inside this RefSCC. 975 // Everything which transitively reaches Target will also remain in the 976 // RefSCC. We handle this by pre-marking that the nodes in the target SCC map 977 // back to the root post order number. 978 // 979 // This also enables us to take a very significant short-cut in the standard 980 // Tarjan walk to re-form RefSCCs below: whenever we build an edge that 981 // references the target node, we know that the target node eventually 982 // references all other nodes in our walk. As a consequence, we can detect 983 // and handle participants in that cycle without walking all the edges that 984 // form the connections, and instead by relying on the fundamental guarantee 985 // coming into this operation. 986 SCC &TargetC = *G->lookupSCC(TargetN); 987 for (Node &N : TargetC) 988 PostOrderMapping[&N] = RootPostOrderNumber; 989 990 // Reset all the other nodes to prepare for a DFS over them, and add them to 991 // our worklist. 992 SmallVector<Node *, 8> Worklist; 993 for (SCC *C : SCCs) { 994 if (C == &TargetC) 995 continue; 996 997 for (Node &N : *C) 998 N.DFSNumber = N.LowLink = 0; 999 1000 Worklist.append(C->Nodes.begin(), C->Nodes.end()); 1001 } 1002 1003 auto MarkNodeForSCCNumber = [&PostOrderMapping](Node &N, int Number) { 1004 N.DFSNumber = N.LowLink = -1; 1005 PostOrderMapping[&N] = Number; 1006 }; 1007 1008 SmallVector<std::pair<Node *, edge_iterator>, 4> DFSStack; 1009 SmallVector<Node *, 4> PendingRefSCCStack; 1010 do { 1011 assert(DFSStack.empty() && 1012 "Cannot begin a new root with a non-empty DFS stack!"); 1013 assert(PendingRefSCCStack.empty() && 1014 "Cannot begin a new root with pending nodes for an SCC!"); 1015 1016 Node *RootN = Worklist.pop_back_val(); 1017 // Skip any nodes we've already reached in the DFS. 1018 if (RootN->DFSNumber != 0) { 1019 assert(RootN->DFSNumber == -1 && 1020 "Shouldn't have any mid-DFS root nodes!"); 1021 continue; 1022 } 1023 1024 RootN->DFSNumber = RootN->LowLink = 1; 1025 int NextDFSNumber = 2; 1026 1027 DFSStack.push_back({RootN, RootN->begin()}); 1028 do { 1029 Node *N; 1030 edge_iterator I; 1031 std::tie(N, I) = DFSStack.pop_back_val(); 1032 auto E = N->end(); 1033 1034 assert(N->DFSNumber != 0 && "We should always assign a DFS number " 1035 "before processing a node."); 1036 1037 while (I != E) { 1038 Node &ChildN = I->getNode(*G); 1039 if (ChildN.DFSNumber == 0) { 1040 // Mark that we should start at this child when next this node is the 1041 // top of the stack. We don't start at the next child to ensure this 1042 // child's lowlink is reflected. 1043 DFSStack.push_back({N, I}); 1044 1045 // Continue, resetting to the child node. 1046 ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++; 1047 N = &ChildN; 1048 I = ChildN.begin(); 1049 E = ChildN.end(); 1050 continue; 1051 } 1052 if (ChildN.DFSNumber == -1) { 1053 // Check if this edge's target node connects to the deleted edge's 1054 // target node. If so, we know that every node connected will end up 1055 // in this RefSCC, so collapse the entire current stack into the root 1056 // slot in our SCC numbering. See above for the motivation of 1057 // optimizing the target connected nodes in this way. 1058 auto PostOrderI = PostOrderMapping.find(&ChildN); 1059 if (PostOrderI != PostOrderMapping.end() && 1060 PostOrderI->second == RootPostOrderNumber) { 1061 MarkNodeForSCCNumber(*N, RootPostOrderNumber); 1062 while (!PendingRefSCCStack.empty()) 1063 MarkNodeForSCCNumber(*PendingRefSCCStack.pop_back_val(), 1064 RootPostOrderNumber); 1065 while (!DFSStack.empty()) 1066 MarkNodeForSCCNumber(*DFSStack.pop_back_val().first, 1067 RootPostOrderNumber); 1068 // Ensure we break all the way out of the enclosing loop. 1069 N = nullptr; 1070 break; 1071 } 1072 1073 // If this child isn't currently in this RefSCC, no need to process 1074 // it. 1075 // However, we do need to remove this RefSCC from its RefSCC's parent 1076 // set. 1077 RefSCC &ChildRC = *G->lookupRefSCC(ChildN); 1078 ChildRC.Parents.erase(this); 1079 ++I; 1080 continue; 1081 } 1082 1083 // Track the lowest link of the children, if any are still in the stack. 1084 // Any child not on the stack will have a LowLink of -1. 1085 assert(ChildN.LowLink != 0 && 1086 "Low-link must not be zero with a non-zero DFS number."); 1087 if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink) 1088 N->LowLink = ChildN.LowLink; 1089 ++I; 1090 } 1091 if (!N) 1092 // We short-circuited this node. 1093 break; 1094 1095 // We've finished processing N and its descendents, put it on our pending 1096 // stack to eventually get merged into a RefSCC. 1097 PendingRefSCCStack.push_back(N); 1098 1099 // If this node is linked to some lower entry, continue walking up the 1100 // stack. 1101 if (N->LowLink != N->DFSNumber) { 1102 assert(!DFSStack.empty() && 1103 "We never found a viable root for a RefSCC to pop off!"); 1104 continue; 1105 } 1106 1107 // Otherwise, form a new RefSCC from the top of the pending node stack. 1108 int RootDFSNumber = N->DFSNumber; 1109 // Find the range of the node stack by walking down until we pass the 1110 // root DFS number. 1111 auto RefSCCNodes = make_range( 1112 PendingRefSCCStack.rbegin(), 1113 std::find_if(PendingRefSCCStack.rbegin(), PendingRefSCCStack.rend(), 1114 [RootDFSNumber](Node *N) { 1115 return N->DFSNumber < RootDFSNumber; 1116 })); 1117 1118 // Mark the postorder number for these nodes and clear them off the 1119 // stack. We'll use the postorder number to pull them into RefSCCs at the 1120 // end. FIXME: Fuse with the loop above. 1121 int RefSCCNumber = PostOrderNumber++; 1122 for (Node *N : RefSCCNodes) 1123 MarkNodeForSCCNumber(*N, RefSCCNumber); 1124 1125 PendingRefSCCStack.erase(RefSCCNodes.end().base(), 1126 PendingRefSCCStack.end()); 1127 } while (!DFSStack.empty()); 1128 1129 assert(DFSStack.empty() && "Didn't flush the entire DFS stack!"); 1130 assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!"); 1131 } while (!Worklist.empty()); 1132 1133 // We now have a post-order numbering for RefSCCs and a mapping from each 1134 // node in this RefSCC to its final RefSCC. We create each new RefSCC node 1135 // (re-using this RefSCC node for the root) and build a radix-sort style map 1136 // from postorder number to the RefSCC. We then append SCCs to each of these 1137 // RefSCCs in the order they occured in the original SCCs container. 1138 for (int i = 1; i < PostOrderNumber; ++i) 1139 Result.push_back(G->createRefSCC(*G)); 1140 1141 for (SCC *C : SCCs) { 1142 auto PostOrderI = PostOrderMapping.find(&*C->begin()); 1143 assert(PostOrderI != PostOrderMapping.end() && 1144 "Cannot have missing mappings for nodes!"); 1145 int SCCNumber = PostOrderI->second; 1146 #ifndef NDEBUG 1147 for (Node &N : *C) 1148 assert(PostOrderMapping.find(&N)->second == SCCNumber && 1149 "Cannot have different numbers for nodes in the same SCC!"); 1150 #endif 1151 if (SCCNumber == 0) 1152 // The root node is handled separately by removing the SCCs. 1153 continue; 1154 1155 RefSCC &RC = *Result[SCCNumber - 1]; 1156 int SCCIndex = RC.SCCs.size(); 1157 RC.SCCs.push_back(C); 1158 SCCIndices[C] = SCCIndex; 1159 C->OuterRefSCC = &RC; 1160 } 1161 1162 // FIXME: We re-walk the edges in each RefSCC to establish whether it is 1163 // a leaf and connect it to the rest of the graph's parents lists. This is 1164 // really wasteful. We should instead do this during the DFS to avoid yet 1165 // another edge walk. 1166 for (RefSCC *RC : Result) 1167 G->connectRefSCC(*RC); 1168 1169 // Now erase all but the root's SCCs. 1170 SCCs.erase(std::remove_if(SCCs.begin(), SCCs.end(), 1171 [&](SCC *C) { 1172 return PostOrderMapping.lookup(&*C->begin()) != 1173 RootPostOrderNumber; 1174 }), 1175 SCCs.end()); 1176 1177 #ifndef NDEBUG 1178 // Now we need to reconnect the current (root) SCC to the graph. We do this 1179 // manually because we can special case our leaf handling and detect errors. 1180 bool IsLeaf = true; 1181 #endif 1182 for (SCC *C : SCCs) 1183 for (Node &N : *C) { 1184 for (Edge &E : N) { 1185 assert(E.getNode() && "Cannot have a missing node in a visited SCC!"); 1186 RefSCC &ChildRC = *G->lookupRefSCC(*E.getNode()); 1187 if (&ChildRC == this) 1188 continue; 1189 ChildRC.Parents.insert(this); 1190 #ifndef NDEBUG 1191 IsLeaf = false; 1192 #endif 1193 } 1194 } 1195 #ifndef NDEBUG 1196 if (!Result.empty()) 1197 assert(!IsLeaf && "This SCC cannot be a leaf as we have split out new " 1198 "SCCs by removing this edge."); 1199 if (!std::any_of(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(), 1200 [&](RefSCC *C) { return C == this; })) 1201 assert(!IsLeaf && "This SCC cannot be a leaf as it already had child " 1202 "SCCs before we removed this edge."); 1203 #endif 1204 // If this SCC stopped being a leaf through this edge removal, remove it from 1205 // the leaf SCC list. Note that this DTRT in the case where this was never 1206 // a leaf. 1207 // FIXME: As LeafRefSCCs could be very large, we might want to not walk the 1208 // entire list if this RefSCC wasn't a leaf before the edge removal. 1209 if (!Result.empty()) 1210 G->LeafRefSCCs.erase( 1211 std::remove(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(), this), 1212 G->LeafRefSCCs.end()); 1213 1214 // Return the new list of SCCs. 1215 return Result; 1216 } 1217 1218 void LazyCallGraph::insertEdge(Node &SourceN, Function &Target, Edge::Kind EK) { 1219 assert(SCCMap.empty() && DFSStack.empty() && 1220 "This method cannot be called after SCCs have been formed!"); 1221 1222 return SourceN.insertEdgeInternal(Target, EK); 1223 } 1224 1225 void LazyCallGraph::removeEdge(Node &SourceN, Function &Target) { 1226 assert(SCCMap.empty() && DFSStack.empty() && 1227 "This method cannot be called after SCCs have been formed!"); 1228 1229 return SourceN.removeEdgeInternal(Target); 1230 } 1231 1232 LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) { 1233 return *new (MappedN = BPA.Allocate()) Node(*this, F); 1234 } 1235 1236 void LazyCallGraph::updateGraphPtrs() { 1237 // Process all nodes updating the graph pointers. 1238 { 1239 SmallVector<Node *, 16> Worklist; 1240 for (Edge &E : EntryEdges) 1241 if (Node *EntryN = E.getNode()) 1242 Worklist.push_back(EntryN); 1243 1244 while (!Worklist.empty()) { 1245 Node *N = Worklist.pop_back_val(); 1246 N->G = this; 1247 for (Edge &E : N->Edges) 1248 if (Node *TargetN = E.getNode()) 1249 Worklist.push_back(TargetN); 1250 } 1251 } 1252 1253 // Process all SCCs updating the graph pointers. 1254 { 1255 SmallVector<RefSCC *, 16> Worklist(LeafRefSCCs.begin(), LeafRefSCCs.end()); 1256 1257 while (!Worklist.empty()) { 1258 RefSCC &C = *Worklist.pop_back_val(); 1259 C.G = this; 1260 for (RefSCC &ParentC : C.parents()) 1261 Worklist.push_back(&ParentC); 1262 } 1263 } 1264 } 1265 1266 /// Build the internal SCCs for a RefSCC from a sequence of nodes. 1267 /// 1268 /// Appends the SCCs to the provided vector and updates the map with their 1269 /// indices. Both the vector and map must be empty when passed into this 1270 /// routine. 1271 void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) { 1272 assert(RC.SCCs.empty() && "Already built SCCs!"); 1273 assert(RC.SCCIndices.empty() && "Already mapped SCC indices!"); 1274 1275 for (Node *N : Nodes) { 1276 assert(N->LowLink >= (*Nodes.begin())->LowLink && 1277 "We cannot have a low link in an SCC lower than its root on the " 1278 "stack!"); 1279 1280 // This node will go into the next RefSCC, clear out its DFS and low link 1281 // as we scan. 1282 N->DFSNumber = N->LowLink = 0; 1283 } 1284 1285 // Each RefSCC contains a DAG of the call SCCs. To build these, we do 1286 // a direct walk of the call edges using Tarjan's algorithm. We reuse the 1287 // internal storage as we won't need it for the outer graph's DFS any longer. 1288 1289 SmallVector<std::pair<Node *, call_edge_iterator>, 16> DFSStack; 1290 SmallVector<Node *, 16> PendingSCCStack; 1291 1292 // Scan down the stack and DFS across the call edges. 1293 for (Node *RootN : Nodes) { 1294 assert(DFSStack.empty() && 1295 "Cannot begin a new root with a non-empty DFS stack!"); 1296 assert(PendingSCCStack.empty() && 1297 "Cannot begin a new root with pending nodes for an SCC!"); 1298 1299 // Skip any nodes we've already reached in the DFS. 1300 if (RootN->DFSNumber != 0) { 1301 assert(RootN->DFSNumber == -1 && 1302 "Shouldn't have any mid-DFS root nodes!"); 1303 continue; 1304 } 1305 1306 RootN->DFSNumber = RootN->LowLink = 1; 1307 int NextDFSNumber = 2; 1308 1309 DFSStack.push_back({RootN, RootN->call_begin()}); 1310 do { 1311 Node *N; 1312 call_edge_iterator I; 1313 std::tie(N, I) = DFSStack.pop_back_val(); 1314 auto E = N->call_end(); 1315 while (I != E) { 1316 Node &ChildN = *I->getNode(); 1317 if (ChildN.DFSNumber == 0) { 1318 // We haven't yet visited this child, so descend, pushing the current 1319 // node onto the stack. 1320 DFSStack.push_back({N, I}); 1321 1322 assert(!lookupSCC(ChildN) && 1323 "Found a node with 0 DFS number but already in an SCC!"); 1324 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++; 1325 N = &ChildN; 1326 I = N->call_begin(); 1327 E = N->call_end(); 1328 continue; 1329 } 1330 1331 // If the child has already been added to some child component, it 1332 // couldn't impact the low-link of this parent because it isn't 1333 // connected, and thus its low-link isn't relevant so skip it. 1334 if (ChildN.DFSNumber == -1) { 1335 ++I; 1336 continue; 1337 } 1338 1339 // Track the lowest linked child as the lowest link for this node. 1340 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); 1341 if (ChildN.LowLink < N->LowLink) 1342 N->LowLink = ChildN.LowLink; 1343 1344 // Move to the next edge. 1345 ++I; 1346 } 1347 1348 // We've finished processing N and its descendents, put it on our pending 1349 // SCC stack to eventually get merged into an SCC of nodes. 1350 PendingSCCStack.push_back(N); 1351 1352 // If this node is linked to some lower entry, continue walking up the 1353 // stack. 1354 if (N->LowLink != N->DFSNumber) 1355 continue; 1356 1357 // Otherwise, we've completed an SCC. Append it to our post order list of 1358 // SCCs. 1359 int RootDFSNumber = N->DFSNumber; 1360 // Find the range of the node stack by walking down until we pass the 1361 // root DFS number. 1362 auto SCCNodes = make_range( 1363 PendingSCCStack.rbegin(), 1364 std::find_if(PendingSCCStack.rbegin(), PendingSCCStack.rend(), 1365 [RootDFSNumber](Node *N) { 1366 return N->DFSNumber < RootDFSNumber; 1367 })); 1368 // Form a new SCC out of these nodes and then clear them off our pending 1369 // stack. 1370 RC.SCCs.push_back(createSCC(RC, SCCNodes)); 1371 for (Node &N : *RC.SCCs.back()) { 1372 N.DFSNumber = N.LowLink = -1; 1373 SCCMap[&N] = RC.SCCs.back(); 1374 } 1375 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end()); 1376 } while (!DFSStack.empty()); 1377 } 1378 1379 // Wire up the SCC indices. 1380 for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i) 1381 RC.SCCIndices[RC.SCCs[i]] = i; 1382 } 1383 1384 // FIXME: We should move callers of this to embed the parent linking and leaf 1385 // tracking into their DFS in order to remove a full walk of all edges. 1386 void LazyCallGraph::connectRefSCC(RefSCC &RC) { 1387 // Walk all edges in the RefSCC (this remains linear as we only do this once 1388 // when we build the RefSCC) to connect it to the parent sets of its 1389 // children. 1390 bool IsLeaf = true; 1391 for (SCC &C : RC) 1392 for (Node &N : C) 1393 for (Edge &E : N) { 1394 assert(E.getNode() && 1395 "Cannot have a missing node in a visited part of the graph!"); 1396 RefSCC &ChildRC = *lookupRefSCC(*E.getNode()); 1397 if (&ChildRC == &RC) 1398 continue; 1399 ChildRC.Parents.insert(&RC); 1400 IsLeaf = false; 1401 } 1402 1403 // For the SCCs where we fine no child SCCs, add them to the leaf list. 1404 if (IsLeaf) 1405 LeafRefSCCs.push_back(&RC); 1406 } 1407 1408 LazyCallGraph::RefSCC *LazyCallGraph::getNextRefSCCInPostOrder() { 1409 if (DFSStack.empty()) { 1410 Node *N; 1411 do { 1412 // If we've handled all candidate entry nodes to the SCC forest, we're 1413 // done. 1414 if (RefSCCEntryNodes.empty()) 1415 return nullptr; 1416 1417 N = &get(*RefSCCEntryNodes.pop_back_val()); 1418 } while (N->DFSNumber != 0); 1419 1420 // Found a new root, begin the DFS here. 1421 N->LowLink = N->DFSNumber = 1; 1422 NextDFSNumber = 2; 1423 DFSStack.push_back({N, N->begin()}); 1424 } 1425 1426 for (;;) { 1427 Node *N; 1428 edge_iterator I; 1429 std::tie(N, I) = DFSStack.pop_back_val(); 1430 1431 assert(N->DFSNumber > 0 && "We should always assign a DFS number " 1432 "before placing a node onto the stack."); 1433 1434 auto E = N->end(); 1435 while (I != E) { 1436 Node &ChildN = I->getNode(*this); 1437 if (ChildN.DFSNumber == 0) { 1438 // We haven't yet visited this child, so descend, pushing the current 1439 // node onto the stack. 1440 DFSStack.push_back({N, N->begin()}); 1441 1442 assert(!SCCMap.count(&ChildN) && 1443 "Found a node with 0 DFS number but already in an SCC!"); 1444 ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++; 1445 N = &ChildN; 1446 I = N->begin(); 1447 E = N->end(); 1448 continue; 1449 } 1450 1451 // If the child has already been added to some child component, it 1452 // couldn't impact the low-link of this parent because it isn't 1453 // connected, and thus its low-link isn't relevant so skip it. 1454 if (ChildN.DFSNumber == -1) { 1455 ++I; 1456 continue; 1457 } 1458 1459 // Track the lowest linked child as the lowest link for this node. 1460 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); 1461 if (ChildN.LowLink < N->LowLink) 1462 N->LowLink = ChildN.LowLink; 1463 1464 // Move to the next edge. 1465 ++I; 1466 } 1467 1468 // We've finished processing N and its descendents, put it on our pending 1469 // SCC stack to eventually get merged into an SCC of nodes. 1470 PendingRefSCCStack.push_back(N); 1471 1472 // If this node is linked to some lower entry, continue walking up the 1473 // stack. 1474 if (N->LowLink != N->DFSNumber) { 1475 assert(!DFSStack.empty() && 1476 "We never found a viable root for an SCC to pop off!"); 1477 continue; 1478 } 1479 1480 // Otherwise, form a new RefSCC from the top of the pending node stack. 1481 int RootDFSNumber = N->DFSNumber; 1482 // Find the range of the node stack by walking down until we pass the 1483 // root DFS number. 1484 auto RefSCCNodes = node_stack_range( 1485 PendingRefSCCStack.rbegin(), 1486 std::find_if( 1487 PendingRefSCCStack.rbegin(), PendingRefSCCStack.rend(), 1488 [RootDFSNumber](Node *N) { return N->DFSNumber < RootDFSNumber; })); 1489 // Form a new RefSCC out of these nodes and then clear them off our pending 1490 // stack. 1491 RefSCC *NewRC = createRefSCC(*this); 1492 buildSCCs(*NewRC, RefSCCNodes); 1493 connectRefSCC(*NewRC); 1494 PendingRefSCCStack.erase(RefSCCNodes.end().base(), 1495 PendingRefSCCStack.end()); 1496 1497 // We return the new node here. This essentially suspends the DFS walk 1498 // until another RefSCC is requested. 1499 return NewRC; 1500 } 1501 } 1502 1503 char LazyCallGraphAnalysis::PassID; 1504 1505 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {} 1506 1507 static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) { 1508 OS << " Edges in function: " << N.getFunction().getName() << "\n"; 1509 for (const LazyCallGraph::Edge &E : N) 1510 OS << " " << (E.isCall() ? "call" : "ref ") << " -> " 1511 << E.getFunction().getName() << "\n"; 1512 1513 OS << "\n"; 1514 } 1515 1516 static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) { 1517 ptrdiff_t Size = std::distance(C.begin(), C.end()); 1518 OS << " SCC with " << Size << " functions:\n"; 1519 1520 for (LazyCallGraph::Node &N : C) 1521 OS << " " << N.getFunction().getName() << "\n"; 1522 } 1523 1524 static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) { 1525 ptrdiff_t Size = std::distance(C.begin(), C.end()); 1526 OS << " RefSCC with " << Size << " call SCCs:\n"; 1527 1528 for (LazyCallGraph::SCC &InnerC : C) 1529 printSCC(OS, InnerC); 1530 1531 OS << "\n"; 1532 } 1533 1534 PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M, 1535 ModuleAnalysisManager &AM) { 1536 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M); 1537 1538 OS << "Printing the call graph for module: " << M.getModuleIdentifier() 1539 << "\n\n"; 1540 1541 for (Function &F : M) 1542 printNode(OS, G.get(F)); 1543 1544 for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs()) 1545 printRefSCC(OS, C); 1546 1547 return PreservedAnalyses::all(); 1548 } 1549 1550 LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS) 1551 : OS(OS) {} 1552 1553 static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) { 1554 std::string Name = "\"" + DOT::EscapeString(N.getFunction().getName()) + "\""; 1555 1556 for (const LazyCallGraph::Edge &E : N) { 1557 OS << " " << Name << " -> \"" 1558 << DOT::EscapeString(E.getFunction().getName()) << "\""; 1559 if (!E.isCall()) // It is a ref edge. 1560 OS << " [style=dashed,label=\"ref\"]"; 1561 OS << ";\n"; 1562 } 1563 1564 OS << "\n"; 1565 } 1566 1567 PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M, 1568 ModuleAnalysisManager &AM) { 1569 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M); 1570 1571 OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n"; 1572 1573 for (Function &F : M) 1574 printNodeDOT(OS, G.get(F)); 1575 1576 OS << "}\n"; 1577 1578 return PreservedAnalyses::all(); 1579 } 1580