1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/LazyCallGraph.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/ScopeExit.h" 13 #include "llvm/ADT/Sequence.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/iterator_range.h" 17 #include "llvm/Analysis/TargetLibraryInfo.h" 18 #include "llvm/Analysis/VectorUtils.h" 19 #include "llvm/Config/llvm-config.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Function.h" 22 #include "llvm/IR/GlobalVariable.h" 23 #include "llvm/IR/Instruction.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/PassManager.h" 26 #include "llvm/Support/Casting.h" 27 #include "llvm/Support/Compiler.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/GraphWriter.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <algorithm> 32 #include <cassert> 33 #include <cstddef> 34 #include <iterator> 35 #include <string> 36 #include <tuple> 37 #include <utility> 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "lcg" 42 43 void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node &TargetN, 44 Edge::Kind EK) { 45 EdgeIndexMap.insert({&TargetN, Edges.size()}); 46 Edges.emplace_back(TargetN, EK); 47 } 48 49 void LazyCallGraph::EdgeSequence::setEdgeKind(Node &TargetN, Edge::Kind EK) { 50 Edges[EdgeIndexMap.find(&TargetN)->second].setKind(EK); 51 } 52 53 bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node &TargetN) { 54 auto IndexMapI = EdgeIndexMap.find(&TargetN); 55 if (IndexMapI == EdgeIndexMap.end()) 56 return false; 57 58 Edges[IndexMapI->second] = Edge(); 59 EdgeIndexMap.erase(IndexMapI); 60 return true; 61 } 62 63 static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges, 64 DenseMap<LazyCallGraph::Node *, int> &EdgeIndexMap, 65 LazyCallGraph::Node &N, LazyCallGraph::Edge::Kind EK) { 66 if (!EdgeIndexMap.insert({&N, Edges.size()}).second) 67 return; 68 69 LLVM_DEBUG(dbgs() << " Added callable function: " << N.getName() << "\n"); 70 Edges.emplace_back(LazyCallGraph::Edge(N, EK)); 71 } 72 73 LazyCallGraph::EdgeSequence &LazyCallGraph::Node::populateSlow() { 74 assert(!Edges && "Must not have already populated the edges for this node!"); 75 76 LLVM_DEBUG(dbgs() << " Adding functions called by '" << getName() 77 << "' to the graph.\n"); 78 79 Edges = EdgeSequence(); 80 81 SmallVector<Constant *, 16> Worklist; 82 SmallPtrSet<Function *, 4> Callees; 83 SmallPtrSet<Constant *, 16> Visited; 84 85 // Find all the potential call graph edges in this function. We track both 86 // actual call edges and indirect references to functions. The direct calls 87 // are trivially added, but to accumulate the latter we walk the instructions 88 // and add every operand which is a constant to the worklist to process 89 // afterward. 90 // 91 // Note that we consider *any* function with a definition to be a viable 92 // edge. Even if the function's definition is subject to replacement by 93 // some other module (say, a weak definition) there may still be 94 // optimizations which essentially speculate based on the definition and 95 // a way to check that the specific definition is in fact the one being 96 // used. For example, this could be done by moving the weak definition to 97 // a strong (internal) definition and making the weak definition be an 98 // alias. Then a test of the address of the weak function against the new 99 // strong definition's address would be an effective way to determine the 100 // safety of optimizing a direct call edge. 101 for (BasicBlock &BB : *F) 102 for (Instruction &I : BB) { 103 if (auto CS = CallSite(&I)) 104 if (Function *Callee = CS.getCalledFunction()) 105 if (!Callee->isDeclaration()) 106 if (Callees.insert(Callee).second) { 107 Visited.insert(Callee); 108 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*Callee), 109 LazyCallGraph::Edge::Call); 110 } 111 112 for (Value *Op : I.operand_values()) 113 if (Constant *C = dyn_cast<Constant>(Op)) 114 if (Visited.insert(C).second) 115 Worklist.push_back(C); 116 } 117 118 // We've collected all the constant (and thus potentially function or 119 // function containing) operands to all of the instructions in the function. 120 // Process them (recursively) collecting every function found. 121 visitReferences(Worklist, Visited, [&](Function &F) { 122 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(F), 123 LazyCallGraph::Edge::Ref); 124 }); 125 126 // Add implicit reference edges to any defined libcall functions (if we 127 // haven't found an explicit edge). 128 for (auto *F : G->LibFunctions) 129 if (!Visited.count(F)) 130 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*F), 131 LazyCallGraph::Edge::Ref); 132 133 return *Edges; 134 } 135 136 void LazyCallGraph::Node::replaceFunction(Function &NewF) { 137 assert(F != &NewF && "Must not replace a function with itself!"); 138 F = &NewF; 139 } 140 141 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 142 LLVM_DUMP_METHOD void LazyCallGraph::Node::dump() const { 143 dbgs() << *this << '\n'; 144 } 145 #endif 146 147 static bool isKnownLibFunction(Function &F, TargetLibraryInfo &TLI) { 148 LibFunc LF; 149 150 // Either this is a normal library function or a "vectorizable" 151 // function. Not using the VFDatabase here because this query 152 // is related only to libraries handled via the TLI. 153 return TLI.getLibFunc(F, LF) || 154 TLI.isKnownVectorFunctionInLibrary(F.getName()); 155 } 156 157 LazyCallGraph::LazyCallGraph( 158 Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 159 LLVM_DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier() 160 << "\n"); 161 for (Function &F : M) { 162 if (F.isDeclaration()) 163 continue; 164 // If this function is a known lib function to LLVM then we want to 165 // synthesize reference edges to it to model the fact that LLVM can turn 166 // arbitrary code into a library function call. 167 if (isKnownLibFunction(F, GetTLI(F))) 168 LibFunctions.insert(&F); 169 170 if (F.hasLocalLinkage()) 171 continue; 172 173 // External linkage defined functions have edges to them from other 174 // modules. 175 LLVM_DEBUG(dbgs() << " Adding '" << F.getName() 176 << "' to entry set of the graph.\n"); 177 addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), Edge::Ref); 178 } 179 180 // Externally visible aliases of internal functions are also viable entry 181 // edges to the module. 182 for (auto &A : M.aliases()) { 183 if (A.hasLocalLinkage()) 184 continue; 185 if (Function* F = dyn_cast<Function>(A.getAliasee())) { 186 LLVM_DEBUG(dbgs() << " Adding '" << F->getName() 187 << "' with alias '" << A.getName() 188 << "' to entry set of the graph.\n"); 189 addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(*F), Edge::Ref); 190 } 191 } 192 193 // Now add entry nodes for functions reachable via initializers to globals. 194 SmallVector<Constant *, 16> Worklist; 195 SmallPtrSet<Constant *, 16> Visited; 196 for (GlobalVariable &GV : M.globals()) 197 if (GV.hasInitializer()) 198 if (Visited.insert(GV.getInitializer()).second) 199 Worklist.push_back(GV.getInitializer()); 200 201 LLVM_DEBUG( 202 dbgs() << " Adding functions referenced by global initializers to the " 203 "entry set.\n"); 204 visitReferences(Worklist, Visited, [&](Function &F) { 205 addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), 206 LazyCallGraph::Edge::Ref); 207 }); 208 } 209 210 LazyCallGraph::LazyCallGraph(LazyCallGraph &&G) 211 : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)), 212 EntryEdges(std::move(G.EntryEdges)), SCCBPA(std::move(G.SCCBPA)), 213 SCCMap(std::move(G.SCCMap)), 214 LibFunctions(std::move(G.LibFunctions)) { 215 updateGraphPtrs(); 216 } 217 218 LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) { 219 BPA = std::move(G.BPA); 220 NodeMap = std::move(G.NodeMap); 221 EntryEdges = std::move(G.EntryEdges); 222 SCCBPA = std::move(G.SCCBPA); 223 SCCMap = std::move(G.SCCMap); 224 LibFunctions = std::move(G.LibFunctions); 225 updateGraphPtrs(); 226 return *this; 227 } 228 229 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 230 LLVM_DUMP_METHOD void LazyCallGraph::SCC::dump() const { 231 dbgs() << *this << '\n'; 232 } 233 #endif 234 235 #ifndef NDEBUG 236 void LazyCallGraph::SCC::verify() { 237 assert(OuterRefSCC && "Can't have a null RefSCC!"); 238 assert(!Nodes.empty() && "Can't have an empty SCC!"); 239 240 for (Node *N : Nodes) { 241 assert(N && "Can't have a null node!"); 242 assert(OuterRefSCC->G->lookupSCC(*N) == this && 243 "Node does not map to this SCC!"); 244 assert(N->DFSNumber == -1 && 245 "Must set DFS numbers to -1 when adding a node to an SCC!"); 246 assert(N->LowLink == -1 && 247 "Must set low link to -1 when adding a node to an SCC!"); 248 for (Edge &E : **N) 249 assert(E.getNode().isPopulated() && "Can't have an unpopulated node!"); 250 } 251 } 252 #endif 253 254 bool LazyCallGraph::SCC::isParentOf(const SCC &C) const { 255 if (this == &C) 256 return false; 257 258 for (Node &N : *this) 259 for (Edge &E : N->calls()) 260 if (OuterRefSCC->G->lookupSCC(E.getNode()) == &C) 261 return true; 262 263 // No edges found. 264 return false; 265 } 266 267 bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const { 268 if (this == &TargetC) 269 return false; 270 271 LazyCallGraph &G = *OuterRefSCC->G; 272 273 // Start with this SCC. 274 SmallPtrSet<const SCC *, 16> Visited = {this}; 275 SmallVector<const SCC *, 16> Worklist = {this}; 276 277 // Walk down the graph until we run out of edges or find a path to TargetC. 278 do { 279 const SCC &C = *Worklist.pop_back_val(); 280 for (Node &N : C) 281 for (Edge &E : N->calls()) { 282 SCC *CalleeC = G.lookupSCC(E.getNode()); 283 if (!CalleeC) 284 continue; 285 286 // If the callee's SCC is the TargetC, we're done. 287 if (CalleeC == &TargetC) 288 return true; 289 290 // If this is the first time we've reached this SCC, put it on the 291 // worklist to recurse through. 292 if (Visited.insert(CalleeC).second) 293 Worklist.push_back(CalleeC); 294 } 295 } while (!Worklist.empty()); 296 297 // No paths found. 298 return false; 299 } 300 301 LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {} 302 303 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 304 LLVM_DUMP_METHOD void LazyCallGraph::RefSCC::dump() const { 305 dbgs() << *this << '\n'; 306 } 307 #endif 308 309 #ifndef NDEBUG 310 void LazyCallGraph::RefSCC::verify() { 311 assert(G && "Can't have a null graph!"); 312 assert(!SCCs.empty() && "Can't have an empty SCC!"); 313 314 // Verify basic properties of the SCCs. 315 SmallPtrSet<SCC *, 4> SCCSet; 316 for (SCC *C : SCCs) { 317 assert(C && "Can't have a null SCC!"); 318 C->verify(); 319 assert(&C->getOuterRefSCC() == this && 320 "SCC doesn't think it is inside this RefSCC!"); 321 bool Inserted = SCCSet.insert(C).second; 322 assert(Inserted && "Found a duplicate SCC!"); 323 auto IndexIt = SCCIndices.find(C); 324 assert(IndexIt != SCCIndices.end() && 325 "Found an SCC that doesn't have an index!"); 326 } 327 328 // Check that our indices map correctly. 329 for (auto &SCCIndexPair : SCCIndices) { 330 SCC *C = SCCIndexPair.first; 331 int i = SCCIndexPair.second; 332 assert(C && "Can't have a null SCC in the indices!"); 333 assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!"); 334 assert(SCCs[i] == C && "Index doesn't point to SCC!"); 335 } 336 337 // Check that the SCCs are in fact in post-order. 338 for (int i = 0, Size = SCCs.size(); i < Size; ++i) { 339 SCC &SourceSCC = *SCCs[i]; 340 for (Node &N : SourceSCC) 341 for (Edge &E : *N) { 342 if (!E.isCall()) 343 continue; 344 SCC &TargetSCC = *G->lookupSCC(E.getNode()); 345 if (&TargetSCC.getOuterRefSCC() == this) { 346 assert(SCCIndices.find(&TargetSCC)->second <= i && 347 "Edge between SCCs violates post-order relationship."); 348 continue; 349 } 350 } 351 } 352 } 353 #endif 354 355 bool LazyCallGraph::RefSCC::isParentOf(const RefSCC &RC) const { 356 if (&RC == this) 357 return false; 358 359 // Search all edges to see if this is a parent. 360 for (SCC &C : *this) 361 for (Node &N : C) 362 for (Edge &E : *N) 363 if (G->lookupRefSCC(E.getNode()) == &RC) 364 return true; 365 366 return false; 367 } 368 369 bool LazyCallGraph::RefSCC::isAncestorOf(const RefSCC &RC) const { 370 if (&RC == this) 371 return false; 372 373 // For each descendant of this RefSCC, see if one of its children is the 374 // argument. If not, add that descendant to the worklist and continue 375 // searching. 376 SmallVector<const RefSCC *, 4> Worklist; 377 SmallPtrSet<const RefSCC *, 4> Visited; 378 Worklist.push_back(this); 379 Visited.insert(this); 380 do { 381 const RefSCC &DescendantRC = *Worklist.pop_back_val(); 382 for (SCC &C : DescendantRC) 383 for (Node &N : C) 384 for (Edge &E : *N) { 385 auto *ChildRC = G->lookupRefSCC(E.getNode()); 386 if (ChildRC == &RC) 387 return true; 388 if (!ChildRC || !Visited.insert(ChildRC).second) 389 continue; 390 Worklist.push_back(ChildRC); 391 } 392 } while (!Worklist.empty()); 393 394 return false; 395 } 396 397 /// Generic helper that updates a postorder sequence of SCCs for a potentially 398 /// cycle-introducing edge insertion. 399 /// 400 /// A postorder sequence of SCCs of a directed graph has one fundamental 401 /// property: all deges in the DAG of SCCs point "up" the sequence. That is, 402 /// all edges in the SCC DAG point to prior SCCs in the sequence. 403 /// 404 /// This routine both updates a postorder sequence and uses that sequence to 405 /// compute the set of SCCs connected into a cycle. It should only be called to 406 /// insert a "downward" edge which will require changing the sequence to 407 /// restore it to a postorder. 408 /// 409 /// When inserting an edge from an earlier SCC to a later SCC in some postorder 410 /// sequence, all of the SCCs which may be impacted are in the closed range of 411 /// those two within the postorder sequence. The algorithm used here to restore 412 /// the state is as follows: 413 /// 414 /// 1) Starting from the source SCC, construct a set of SCCs which reach the 415 /// source SCC consisting of just the source SCC. Then scan toward the 416 /// target SCC in postorder and for each SCC, if it has an edge to an SCC 417 /// in the set, add it to the set. Otherwise, the source SCC is not 418 /// a successor, move it in the postorder sequence to immediately before 419 /// the source SCC, shifting the source SCC and all SCCs in the set one 420 /// position toward the target SCC. Stop scanning after processing the 421 /// target SCC. 422 /// 2) If the source SCC is now past the target SCC in the postorder sequence, 423 /// and thus the new edge will flow toward the start, we are done. 424 /// 3) Otherwise, starting from the target SCC, walk all edges which reach an 425 /// SCC between the source and the target, and add them to the set of 426 /// connected SCCs, then recurse through them. Once a complete set of the 427 /// SCCs the target connects to is known, hoist the remaining SCCs between 428 /// the source and the target to be above the target. Note that there is no 429 /// need to process the source SCC, it is already known to connect. 430 /// 4) At this point, all of the SCCs in the closed range between the source 431 /// SCC and the target SCC in the postorder sequence are connected, 432 /// including the target SCC and the source SCC. Inserting the edge from 433 /// the source SCC to the target SCC will form a cycle out of precisely 434 /// these SCCs. Thus we can merge all of the SCCs in this closed range into 435 /// a single SCC. 436 /// 437 /// This process has various important properties: 438 /// - Only mutates the SCCs when adding the edge actually changes the SCC 439 /// structure. 440 /// - Never mutates SCCs which are unaffected by the change. 441 /// - Updates the postorder sequence to correctly satisfy the postorder 442 /// constraint after the edge is inserted. 443 /// - Only reorders SCCs in the closed postorder sequence from the source to 444 /// the target, so easy to bound how much has changed even in the ordering. 445 /// - Big-O is the number of edges in the closed postorder range of SCCs from 446 /// source to target. 447 /// 448 /// This helper routine, in addition to updating the postorder sequence itself 449 /// will also update a map from SCCs to indices within that sequence. 450 /// 451 /// The sequence and the map must operate on pointers to the SCC type. 452 /// 453 /// Two callbacks must be provided. The first computes the subset of SCCs in 454 /// the postorder closed range from the source to the target which connect to 455 /// the source SCC via some (transitive) set of edges. The second computes the 456 /// subset of the same range which the target SCC connects to via some 457 /// (transitive) set of edges. Both callbacks should populate the set argument 458 /// provided. 459 template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT, 460 typename ComputeSourceConnectedSetCallableT, 461 typename ComputeTargetConnectedSetCallableT> 462 static iterator_range<typename PostorderSequenceT::iterator> 463 updatePostorderSequenceForEdgeInsertion( 464 SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs, 465 SCCIndexMapT &SCCIndices, 466 ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet, 467 ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) { 468 int SourceIdx = SCCIndices[&SourceSCC]; 469 int TargetIdx = SCCIndices[&TargetSCC]; 470 assert(SourceIdx < TargetIdx && "Cannot have equal indices here!"); 471 472 SmallPtrSet<SCCT *, 4> ConnectedSet; 473 474 // Compute the SCCs which (transitively) reach the source. 475 ComputeSourceConnectedSet(ConnectedSet); 476 477 // Partition the SCCs in this part of the port-order sequence so only SCCs 478 // connecting to the source remain between it and the target. This is 479 // a benign partition as it preserves postorder. 480 auto SourceI = std::stable_partition( 481 SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1, 482 [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); }); 483 for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i) 484 SCCIndices.find(SCCs[i])->second = i; 485 486 // If the target doesn't connect to the source, then we've corrected the 487 // post-order and there are no cycles formed. 488 if (!ConnectedSet.count(&TargetSCC)) { 489 assert(SourceI > (SCCs.begin() + SourceIdx) && 490 "Must have moved the source to fix the post-order."); 491 assert(*std::prev(SourceI) == &TargetSCC && 492 "Last SCC to move should have bene the target."); 493 494 // Return an empty range at the target SCC indicating there is nothing to 495 // merge. 496 return make_range(std::prev(SourceI), std::prev(SourceI)); 497 } 498 499 assert(SCCs[TargetIdx] == &TargetSCC && 500 "Should not have moved target if connected!"); 501 SourceIdx = SourceI - SCCs.begin(); 502 assert(SCCs[SourceIdx] == &SourceSCC && 503 "Bad updated index computation for the source SCC!"); 504 505 506 // See whether there are any remaining intervening SCCs between the source 507 // and target. If so we need to make sure they all are reachable form the 508 // target. 509 if (SourceIdx + 1 < TargetIdx) { 510 ConnectedSet.clear(); 511 ComputeTargetConnectedSet(ConnectedSet); 512 513 // Partition SCCs so that only SCCs reached from the target remain between 514 // the source and the target. This preserves postorder. 515 auto TargetI = std::stable_partition( 516 SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1, 517 [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); }); 518 for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i) 519 SCCIndices.find(SCCs[i])->second = i; 520 TargetIdx = std::prev(TargetI) - SCCs.begin(); 521 assert(SCCs[TargetIdx] == &TargetSCC && 522 "Should always end with the target!"); 523 } 524 525 // At this point, we know that connecting source to target forms a cycle 526 // because target connects back to source, and we know that all of the SCCs 527 // between the source and target in the postorder sequence participate in that 528 // cycle. 529 return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx); 530 } 531 532 bool 533 LazyCallGraph::RefSCC::switchInternalEdgeToCall( 534 Node &SourceN, Node &TargetN, 535 function_ref<void(ArrayRef<SCC *> MergeSCCs)> MergeCB) { 536 assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!"); 537 SmallVector<SCC *, 1> DeletedSCCs; 538 539 #ifndef NDEBUG 540 // In a debug build, verify the RefSCC is valid to start with and when this 541 // routine finishes. 542 verify(); 543 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 544 #endif 545 546 SCC &SourceSCC = *G->lookupSCC(SourceN); 547 SCC &TargetSCC = *G->lookupSCC(TargetN); 548 549 // If the two nodes are already part of the same SCC, we're also done as 550 // we've just added more connectivity. 551 if (&SourceSCC == &TargetSCC) { 552 SourceN->setEdgeKind(TargetN, Edge::Call); 553 return false; // No new cycle. 554 } 555 556 // At this point we leverage the postorder list of SCCs to detect when the 557 // insertion of an edge changes the SCC structure in any way. 558 // 559 // First and foremost, we can eliminate the need for any changes when the 560 // edge is toward the beginning of the postorder sequence because all edges 561 // flow in that direction already. Thus adding a new one cannot form a cycle. 562 int SourceIdx = SCCIndices[&SourceSCC]; 563 int TargetIdx = SCCIndices[&TargetSCC]; 564 if (TargetIdx < SourceIdx) { 565 SourceN->setEdgeKind(TargetN, Edge::Call); 566 return false; // No new cycle. 567 } 568 569 // Compute the SCCs which (transitively) reach the source. 570 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) { 571 #ifndef NDEBUG 572 // Check that the RefSCC is still valid before computing this as the 573 // results will be nonsensical of we've broken its invariants. 574 verify(); 575 #endif 576 ConnectedSet.insert(&SourceSCC); 577 auto IsConnected = [&](SCC &C) { 578 for (Node &N : C) 579 for (Edge &E : N->calls()) 580 if (ConnectedSet.count(G->lookupSCC(E.getNode()))) 581 return true; 582 583 return false; 584 }; 585 586 for (SCC *C : 587 make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1)) 588 if (IsConnected(*C)) 589 ConnectedSet.insert(C); 590 }; 591 592 // Use a normal worklist to find which SCCs the target connects to. We still 593 // bound the search based on the range in the postorder list we care about, 594 // but because this is forward connectivity we just "recurse" through the 595 // edges. 596 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) { 597 #ifndef NDEBUG 598 // Check that the RefSCC is still valid before computing this as the 599 // results will be nonsensical of we've broken its invariants. 600 verify(); 601 #endif 602 ConnectedSet.insert(&TargetSCC); 603 SmallVector<SCC *, 4> Worklist; 604 Worklist.push_back(&TargetSCC); 605 do { 606 SCC &C = *Worklist.pop_back_val(); 607 for (Node &N : C) 608 for (Edge &E : *N) { 609 if (!E.isCall()) 610 continue; 611 SCC &EdgeC = *G->lookupSCC(E.getNode()); 612 if (&EdgeC.getOuterRefSCC() != this) 613 // Not in this RefSCC... 614 continue; 615 if (SCCIndices.find(&EdgeC)->second <= SourceIdx) 616 // Not in the postorder sequence between source and target. 617 continue; 618 619 if (ConnectedSet.insert(&EdgeC).second) 620 Worklist.push_back(&EdgeC); 621 } 622 } while (!Worklist.empty()); 623 }; 624 625 // Use a generic helper to update the postorder sequence of SCCs and return 626 // a range of any SCCs connected into a cycle by inserting this edge. This 627 // routine will also take care of updating the indices into the postorder 628 // sequence. 629 auto MergeRange = updatePostorderSequenceForEdgeInsertion( 630 SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet, 631 ComputeTargetConnectedSet); 632 633 // Run the user's callback on the merged SCCs before we actually merge them. 634 if (MergeCB) 635 MergeCB(makeArrayRef(MergeRange.begin(), MergeRange.end())); 636 637 // If the merge range is empty, then adding the edge didn't actually form any 638 // new cycles. We're done. 639 if (MergeRange.empty()) { 640 // Now that the SCC structure is finalized, flip the kind to call. 641 SourceN->setEdgeKind(TargetN, Edge::Call); 642 return false; // No new cycle. 643 } 644 645 #ifndef NDEBUG 646 // Before merging, check that the RefSCC remains valid after all the 647 // postorder updates. 648 verify(); 649 #endif 650 651 // Otherwise we need to merge all of the SCCs in the cycle into a single 652 // result SCC. 653 // 654 // NB: We merge into the target because all of these functions were already 655 // reachable from the target, meaning any SCC-wide properties deduced about it 656 // other than the set of functions within it will not have changed. 657 for (SCC *C : MergeRange) { 658 assert(C != &TargetSCC && 659 "We merge *into* the target and shouldn't process it here!"); 660 SCCIndices.erase(C); 661 TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end()); 662 for (Node *N : C->Nodes) 663 G->SCCMap[N] = &TargetSCC; 664 C->clear(); 665 DeletedSCCs.push_back(C); 666 } 667 668 // Erase the merged SCCs from the list and update the indices of the 669 // remaining SCCs. 670 int IndexOffset = MergeRange.end() - MergeRange.begin(); 671 auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end()); 672 for (SCC *C : make_range(EraseEnd, SCCs.end())) 673 SCCIndices[C] -= IndexOffset; 674 675 // Now that the SCC structure is finalized, flip the kind to call. 676 SourceN->setEdgeKind(TargetN, Edge::Call); 677 678 // And we're done, but we did form a new cycle. 679 return true; 680 } 681 682 void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node &SourceN, 683 Node &TargetN) { 684 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!"); 685 686 #ifndef NDEBUG 687 // In a debug build, verify the RefSCC is valid to start with and when this 688 // routine finishes. 689 verify(); 690 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 691 #endif 692 693 assert(G->lookupRefSCC(SourceN) == this && 694 "Source must be in this RefSCC."); 695 assert(G->lookupRefSCC(TargetN) == this && 696 "Target must be in this RefSCC."); 697 assert(G->lookupSCC(SourceN) != G->lookupSCC(TargetN) && 698 "Source and Target must be in separate SCCs for this to be trivial!"); 699 700 // Set the edge kind. 701 SourceN->setEdgeKind(TargetN, Edge::Ref); 702 } 703 704 iterator_range<LazyCallGraph::RefSCC::iterator> 705 LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) { 706 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!"); 707 708 #ifndef NDEBUG 709 // In a debug build, verify the RefSCC is valid to start with and when this 710 // routine finishes. 711 verify(); 712 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 713 #endif 714 715 assert(G->lookupRefSCC(SourceN) == this && 716 "Source must be in this RefSCC."); 717 assert(G->lookupRefSCC(TargetN) == this && 718 "Target must be in this RefSCC."); 719 720 SCC &TargetSCC = *G->lookupSCC(TargetN); 721 assert(G->lookupSCC(SourceN) == &TargetSCC && "Source and Target must be in " 722 "the same SCC to require the " 723 "full CG update."); 724 725 // Set the edge kind. 726 SourceN->setEdgeKind(TargetN, Edge::Ref); 727 728 // Otherwise we are removing a call edge from a single SCC. This may break 729 // the cycle. In order to compute the new set of SCCs, we need to do a small 730 // DFS over the nodes within the SCC to form any sub-cycles that remain as 731 // distinct SCCs and compute a postorder over the resulting SCCs. 732 // 733 // However, we specially handle the target node. The target node is known to 734 // reach all other nodes in the original SCC by definition. This means that 735 // we want the old SCC to be replaced with an SCC containing that node as it 736 // will be the root of whatever SCC DAG results from the DFS. Assumptions 737 // about an SCC such as the set of functions called will continue to hold, 738 // etc. 739 740 SCC &OldSCC = TargetSCC; 741 SmallVector<std::pair<Node *, EdgeSequence::call_iterator>, 16> DFSStack; 742 SmallVector<Node *, 16> PendingSCCStack; 743 SmallVector<SCC *, 4> NewSCCs; 744 745 // Prepare the nodes for a fresh DFS. 746 SmallVector<Node *, 16> Worklist; 747 Worklist.swap(OldSCC.Nodes); 748 for (Node *N : Worklist) { 749 N->DFSNumber = N->LowLink = 0; 750 G->SCCMap.erase(N); 751 } 752 753 // Force the target node to be in the old SCC. This also enables us to take 754 // a very significant short-cut in the standard Tarjan walk to re-form SCCs 755 // below: whenever we build an edge that reaches the target node, we know 756 // that the target node eventually connects back to all other nodes in our 757 // walk. As a consequence, we can detect and handle participants in that 758 // cycle without walking all the edges that form this connection, and instead 759 // by relying on the fundamental guarantee coming into this operation (all 760 // nodes are reachable from the target due to previously forming an SCC). 761 TargetN.DFSNumber = TargetN.LowLink = -1; 762 OldSCC.Nodes.push_back(&TargetN); 763 G->SCCMap[&TargetN] = &OldSCC; 764 765 // Scan down the stack and DFS across the call edges. 766 for (Node *RootN : Worklist) { 767 assert(DFSStack.empty() && 768 "Cannot begin a new root with a non-empty DFS stack!"); 769 assert(PendingSCCStack.empty() && 770 "Cannot begin a new root with pending nodes for an SCC!"); 771 772 // Skip any nodes we've already reached in the DFS. 773 if (RootN->DFSNumber != 0) { 774 assert(RootN->DFSNumber == -1 && 775 "Shouldn't have any mid-DFS root nodes!"); 776 continue; 777 } 778 779 RootN->DFSNumber = RootN->LowLink = 1; 780 int NextDFSNumber = 2; 781 782 DFSStack.push_back({RootN, (*RootN)->call_begin()}); 783 do { 784 Node *N; 785 EdgeSequence::call_iterator I; 786 std::tie(N, I) = DFSStack.pop_back_val(); 787 auto E = (*N)->call_end(); 788 while (I != E) { 789 Node &ChildN = I->getNode(); 790 if (ChildN.DFSNumber == 0) { 791 // We haven't yet visited this child, so descend, pushing the current 792 // node onto the stack. 793 DFSStack.push_back({N, I}); 794 795 assert(!G->SCCMap.count(&ChildN) && 796 "Found a node with 0 DFS number but already in an SCC!"); 797 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++; 798 N = &ChildN; 799 I = (*N)->call_begin(); 800 E = (*N)->call_end(); 801 continue; 802 } 803 804 // Check for the child already being part of some component. 805 if (ChildN.DFSNumber == -1) { 806 if (G->lookupSCC(ChildN) == &OldSCC) { 807 // If the child is part of the old SCC, we know that it can reach 808 // every other node, so we have formed a cycle. Pull the entire DFS 809 // and pending stacks into it. See the comment above about setting 810 // up the old SCC for why we do this. 811 int OldSize = OldSCC.size(); 812 OldSCC.Nodes.push_back(N); 813 OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end()); 814 PendingSCCStack.clear(); 815 while (!DFSStack.empty()) 816 OldSCC.Nodes.push_back(DFSStack.pop_back_val().first); 817 for (Node &N : make_range(OldSCC.begin() + OldSize, OldSCC.end())) { 818 N.DFSNumber = N.LowLink = -1; 819 G->SCCMap[&N] = &OldSCC; 820 } 821 N = nullptr; 822 break; 823 } 824 825 // If the child has already been added to some child component, it 826 // couldn't impact the low-link of this parent because it isn't 827 // connected, and thus its low-link isn't relevant so skip it. 828 ++I; 829 continue; 830 } 831 832 // Track the lowest linked child as the lowest link for this node. 833 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); 834 if (ChildN.LowLink < N->LowLink) 835 N->LowLink = ChildN.LowLink; 836 837 // Move to the next edge. 838 ++I; 839 } 840 if (!N) 841 // Cleared the DFS early, start another round. 842 break; 843 844 // We've finished processing N and its descendants, put it on our pending 845 // SCC stack to eventually get merged into an SCC of nodes. 846 PendingSCCStack.push_back(N); 847 848 // If this node is linked to some lower entry, continue walking up the 849 // stack. 850 if (N->LowLink != N->DFSNumber) 851 continue; 852 853 // Otherwise, we've completed an SCC. Append it to our post order list of 854 // SCCs. 855 int RootDFSNumber = N->DFSNumber; 856 // Find the range of the node stack by walking down until we pass the 857 // root DFS number. 858 auto SCCNodes = make_range( 859 PendingSCCStack.rbegin(), 860 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) { 861 return N->DFSNumber < RootDFSNumber; 862 })); 863 864 // Form a new SCC out of these nodes and then clear them off our pending 865 // stack. 866 NewSCCs.push_back(G->createSCC(*this, SCCNodes)); 867 for (Node &N : *NewSCCs.back()) { 868 N.DFSNumber = N.LowLink = -1; 869 G->SCCMap[&N] = NewSCCs.back(); 870 } 871 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end()); 872 } while (!DFSStack.empty()); 873 } 874 875 // Insert the remaining SCCs before the old one. The old SCC can reach all 876 // other SCCs we form because it contains the target node of the removed edge 877 // of the old SCC. This means that we will have edges into all of the new 878 // SCCs, which means the old one must come last for postorder. 879 int OldIdx = SCCIndices[&OldSCC]; 880 SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end()); 881 882 // Update the mapping from SCC* to index to use the new SCC*s, and remove the 883 // old SCC from the mapping. 884 for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx) 885 SCCIndices[SCCs[Idx]] = Idx; 886 887 return make_range(SCCs.begin() + OldIdx, 888 SCCs.begin() + OldIdx + NewSCCs.size()); 889 } 890 891 void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN, 892 Node &TargetN) { 893 assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!"); 894 895 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 896 assert(G->lookupRefSCC(TargetN) != this && 897 "Target must not be in this RefSCC."); 898 #ifdef EXPENSIVE_CHECKS 899 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && 900 "Target must be a descendant of the Source."); 901 #endif 902 903 // Edges between RefSCCs are the same regardless of call or ref, so we can 904 // just flip the edge here. 905 SourceN->setEdgeKind(TargetN, Edge::Call); 906 907 #ifndef NDEBUG 908 // Check that the RefSCC is still valid. 909 verify(); 910 #endif 911 } 912 913 void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN, 914 Node &TargetN) { 915 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!"); 916 917 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 918 assert(G->lookupRefSCC(TargetN) != this && 919 "Target must not be in this RefSCC."); 920 #ifdef EXPENSIVE_CHECKS 921 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && 922 "Target must be a descendant of the Source."); 923 #endif 924 925 // Edges between RefSCCs are the same regardless of call or ref, so we can 926 // just flip the edge here. 927 SourceN->setEdgeKind(TargetN, Edge::Ref); 928 929 #ifndef NDEBUG 930 // Check that the RefSCC is still valid. 931 verify(); 932 #endif 933 } 934 935 void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN, 936 Node &TargetN) { 937 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 938 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC."); 939 940 SourceN->insertEdgeInternal(TargetN, Edge::Ref); 941 942 #ifndef NDEBUG 943 // Check that the RefSCC is still valid. 944 verify(); 945 #endif 946 } 947 948 void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN, 949 Edge::Kind EK) { 950 // First insert it into the caller. 951 SourceN->insertEdgeInternal(TargetN, EK); 952 953 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 954 955 assert(G->lookupRefSCC(TargetN) != this && 956 "Target must not be in this RefSCC."); 957 #ifdef EXPENSIVE_CHECKS 958 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && 959 "Target must be a descendant of the Source."); 960 #endif 961 962 #ifndef NDEBUG 963 // Check that the RefSCC is still valid. 964 verify(); 965 #endif 966 } 967 968 SmallVector<LazyCallGraph::RefSCC *, 1> 969 LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) { 970 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC."); 971 RefSCC &SourceC = *G->lookupRefSCC(SourceN); 972 assert(&SourceC != this && "Source must not be in this RefSCC."); 973 #ifdef EXPENSIVE_CHECKS 974 assert(SourceC.isDescendantOf(*this) && 975 "Source must be a descendant of the Target."); 976 #endif 977 978 SmallVector<RefSCC *, 1> DeletedRefSCCs; 979 980 #ifndef NDEBUG 981 // In a debug build, verify the RefSCC is valid to start with and when this 982 // routine finishes. 983 verify(); 984 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 985 #endif 986 987 int SourceIdx = G->RefSCCIndices[&SourceC]; 988 int TargetIdx = G->RefSCCIndices[this]; 989 assert(SourceIdx < TargetIdx && 990 "Postorder list doesn't see edge as incoming!"); 991 992 // Compute the RefSCCs which (transitively) reach the source. We do this by 993 // working backwards from the source using the parent set in each RefSCC, 994 // skipping any RefSCCs that don't fall in the postorder range. This has the 995 // advantage of walking the sparser parent edge (in high fan-out graphs) but 996 // more importantly this removes examining all forward edges in all RefSCCs 997 // within the postorder range which aren't in fact connected. Only connected 998 // RefSCCs (and their edges) are visited here. 999 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) { 1000 Set.insert(&SourceC); 1001 auto IsConnected = [&](RefSCC &RC) { 1002 for (SCC &C : RC) 1003 for (Node &N : C) 1004 for (Edge &E : *N) 1005 if (Set.count(G->lookupRefSCC(E.getNode()))) 1006 return true; 1007 1008 return false; 1009 }; 1010 1011 for (RefSCC *C : make_range(G->PostOrderRefSCCs.begin() + SourceIdx + 1, 1012 G->PostOrderRefSCCs.begin() + TargetIdx + 1)) 1013 if (IsConnected(*C)) 1014 Set.insert(C); 1015 }; 1016 1017 // Use a normal worklist to find which SCCs the target connects to. We still 1018 // bound the search based on the range in the postorder list we care about, 1019 // but because this is forward connectivity we just "recurse" through the 1020 // edges. 1021 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) { 1022 Set.insert(this); 1023 SmallVector<RefSCC *, 4> Worklist; 1024 Worklist.push_back(this); 1025 do { 1026 RefSCC &RC = *Worklist.pop_back_val(); 1027 for (SCC &C : RC) 1028 for (Node &N : C) 1029 for (Edge &E : *N) { 1030 RefSCC &EdgeRC = *G->lookupRefSCC(E.getNode()); 1031 if (G->getRefSCCIndex(EdgeRC) <= SourceIdx) 1032 // Not in the postorder sequence between source and target. 1033 continue; 1034 1035 if (Set.insert(&EdgeRC).second) 1036 Worklist.push_back(&EdgeRC); 1037 } 1038 } while (!Worklist.empty()); 1039 }; 1040 1041 // Use a generic helper to update the postorder sequence of RefSCCs and return 1042 // a range of any RefSCCs connected into a cycle by inserting this edge. This 1043 // routine will also take care of updating the indices into the postorder 1044 // sequence. 1045 iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange = 1046 updatePostorderSequenceForEdgeInsertion( 1047 SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices, 1048 ComputeSourceConnectedSet, ComputeTargetConnectedSet); 1049 1050 // Build a set so we can do fast tests for whether a RefSCC will end up as 1051 // part of the merged RefSCC. 1052 SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end()); 1053 1054 // This RefSCC will always be part of that set, so just insert it here. 1055 MergeSet.insert(this); 1056 1057 // Now that we have identified all of the SCCs which need to be merged into 1058 // a connected set with the inserted edge, merge all of them into this SCC. 1059 SmallVector<SCC *, 16> MergedSCCs; 1060 int SCCIndex = 0; 1061 for (RefSCC *RC : MergeRange) { 1062 assert(RC != this && "We're merging into the target RefSCC, so it " 1063 "shouldn't be in the range."); 1064 1065 // Walk the inner SCCs to update their up-pointer and walk all the edges to 1066 // update any parent sets. 1067 // FIXME: We should try to find a way to avoid this (rather expensive) edge 1068 // walk by updating the parent sets in some other manner. 1069 for (SCC &InnerC : *RC) { 1070 InnerC.OuterRefSCC = this; 1071 SCCIndices[&InnerC] = SCCIndex++; 1072 for (Node &N : InnerC) 1073 G->SCCMap[&N] = &InnerC; 1074 } 1075 1076 // Now merge in the SCCs. We can actually move here so try to reuse storage 1077 // the first time through. 1078 if (MergedSCCs.empty()) 1079 MergedSCCs = std::move(RC->SCCs); 1080 else 1081 MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end()); 1082 RC->SCCs.clear(); 1083 DeletedRefSCCs.push_back(RC); 1084 } 1085 1086 // Append our original SCCs to the merged list and move it into place. 1087 for (SCC &InnerC : *this) 1088 SCCIndices[&InnerC] = SCCIndex++; 1089 MergedSCCs.append(SCCs.begin(), SCCs.end()); 1090 SCCs = std::move(MergedSCCs); 1091 1092 // Remove the merged away RefSCCs from the post order sequence. 1093 for (RefSCC *RC : MergeRange) 1094 G->RefSCCIndices.erase(RC); 1095 int IndexOffset = MergeRange.end() - MergeRange.begin(); 1096 auto EraseEnd = 1097 G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end()); 1098 for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end())) 1099 G->RefSCCIndices[RC] -= IndexOffset; 1100 1101 // At this point we have a merged RefSCC with a post-order SCCs list, just 1102 // connect the nodes to form the new edge. 1103 SourceN->insertEdgeInternal(TargetN, Edge::Ref); 1104 1105 // We return the list of SCCs which were merged so that callers can 1106 // invalidate any data they have associated with those SCCs. Note that these 1107 // SCCs are no longer in an interesting state (they are totally empty) but 1108 // the pointers will remain stable for the life of the graph itself. 1109 return DeletedRefSCCs; 1110 } 1111 1112 void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) { 1113 assert(G->lookupRefSCC(SourceN) == this && 1114 "The source must be a member of this RefSCC."); 1115 assert(G->lookupRefSCC(TargetN) != this && 1116 "The target must not be a member of this RefSCC"); 1117 1118 #ifndef NDEBUG 1119 // In a debug build, verify the RefSCC is valid to start with and when this 1120 // routine finishes. 1121 verify(); 1122 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 1123 #endif 1124 1125 // First remove it from the node. 1126 bool Removed = SourceN->removeEdgeInternal(TargetN); 1127 (void)Removed; 1128 assert(Removed && "Target not in the edge set for this caller?"); 1129 } 1130 1131 SmallVector<LazyCallGraph::RefSCC *, 1> 1132 LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN, 1133 ArrayRef<Node *> TargetNs) { 1134 // We return a list of the resulting *new* RefSCCs in post-order. 1135 SmallVector<RefSCC *, 1> Result; 1136 1137 #ifndef NDEBUG 1138 // In a debug build, verify the RefSCC is valid to start with and that either 1139 // we return an empty list of result RefSCCs and this RefSCC remains valid, 1140 // or we return new RefSCCs and this RefSCC is dead. 1141 verify(); 1142 auto VerifyOnExit = make_scope_exit([&]() { 1143 // If we didn't replace our RefSCC with new ones, check that this one 1144 // remains valid. 1145 if (G) 1146 verify(); 1147 }); 1148 #endif 1149 1150 // First remove the actual edges. 1151 for (Node *TargetN : TargetNs) { 1152 assert(!(*SourceN)[*TargetN].isCall() && 1153 "Cannot remove a call edge, it must first be made a ref edge"); 1154 1155 bool Removed = SourceN->removeEdgeInternal(*TargetN); 1156 (void)Removed; 1157 assert(Removed && "Target not in the edge set for this caller?"); 1158 } 1159 1160 // Direct self references don't impact the ref graph at all. 1161 if (llvm::all_of(TargetNs, 1162 [&](Node *TargetN) { return &SourceN == TargetN; })) 1163 return Result; 1164 1165 // If all targets are in the same SCC as the source, because no call edges 1166 // were removed there is no RefSCC structure change. 1167 SCC &SourceC = *G->lookupSCC(SourceN); 1168 if (llvm::all_of(TargetNs, [&](Node *TargetN) { 1169 return G->lookupSCC(*TargetN) == &SourceC; 1170 })) 1171 return Result; 1172 1173 // We build somewhat synthetic new RefSCCs by providing a postorder mapping 1174 // for each inner SCC. We store these inside the low-link field of the nodes 1175 // rather than associated with SCCs because this saves a round-trip through 1176 // the node->SCC map and in the common case, SCCs are small. We will verify 1177 // that we always give the same number to every node in the SCC such that 1178 // these are equivalent. 1179 int PostOrderNumber = 0; 1180 1181 // Reset all the other nodes to prepare for a DFS over them, and add them to 1182 // our worklist. 1183 SmallVector<Node *, 8> Worklist; 1184 for (SCC *C : SCCs) { 1185 for (Node &N : *C) 1186 N.DFSNumber = N.LowLink = 0; 1187 1188 Worklist.append(C->Nodes.begin(), C->Nodes.end()); 1189 } 1190 1191 // Track the number of nodes in this RefSCC so that we can quickly recognize 1192 // an important special case of the edge removal not breaking the cycle of 1193 // this RefSCC. 1194 const int NumRefSCCNodes = Worklist.size(); 1195 1196 SmallVector<std::pair<Node *, EdgeSequence::iterator>, 4> DFSStack; 1197 SmallVector<Node *, 4> PendingRefSCCStack; 1198 do { 1199 assert(DFSStack.empty() && 1200 "Cannot begin a new root with a non-empty DFS stack!"); 1201 assert(PendingRefSCCStack.empty() && 1202 "Cannot begin a new root with pending nodes for an SCC!"); 1203 1204 Node *RootN = Worklist.pop_back_val(); 1205 // Skip any nodes we've already reached in the DFS. 1206 if (RootN->DFSNumber != 0) { 1207 assert(RootN->DFSNumber == -1 && 1208 "Shouldn't have any mid-DFS root nodes!"); 1209 continue; 1210 } 1211 1212 RootN->DFSNumber = RootN->LowLink = 1; 1213 int NextDFSNumber = 2; 1214 1215 DFSStack.push_back({RootN, (*RootN)->begin()}); 1216 do { 1217 Node *N; 1218 EdgeSequence::iterator I; 1219 std::tie(N, I) = DFSStack.pop_back_val(); 1220 auto E = (*N)->end(); 1221 1222 assert(N->DFSNumber != 0 && "We should always assign a DFS number " 1223 "before processing a node."); 1224 1225 while (I != E) { 1226 Node &ChildN = I->getNode(); 1227 if (ChildN.DFSNumber == 0) { 1228 // Mark that we should start at this child when next this node is the 1229 // top of the stack. We don't start at the next child to ensure this 1230 // child's lowlink is reflected. 1231 DFSStack.push_back({N, I}); 1232 1233 // Continue, resetting to the child node. 1234 ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++; 1235 N = &ChildN; 1236 I = ChildN->begin(); 1237 E = ChildN->end(); 1238 continue; 1239 } 1240 if (ChildN.DFSNumber == -1) { 1241 // If this child isn't currently in this RefSCC, no need to process 1242 // it. 1243 ++I; 1244 continue; 1245 } 1246 1247 // Track the lowest link of the children, if any are still in the stack. 1248 // Any child not on the stack will have a LowLink of -1. 1249 assert(ChildN.LowLink != 0 && 1250 "Low-link must not be zero with a non-zero DFS number."); 1251 if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink) 1252 N->LowLink = ChildN.LowLink; 1253 ++I; 1254 } 1255 1256 // We've finished processing N and its descendants, put it on our pending 1257 // stack to eventually get merged into a RefSCC. 1258 PendingRefSCCStack.push_back(N); 1259 1260 // If this node is linked to some lower entry, continue walking up the 1261 // stack. 1262 if (N->LowLink != N->DFSNumber) { 1263 assert(!DFSStack.empty() && 1264 "We never found a viable root for a RefSCC to pop off!"); 1265 continue; 1266 } 1267 1268 // Otherwise, form a new RefSCC from the top of the pending node stack. 1269 int RefSCCNumber = PostOrderNumber++; 1270 int RootDFSNumber = N->DFSNumber; 1271 1272 // Find the range of the node stack by walking down until we pass the 1273 // root DFS number. Update the DFS numbers and low link numbers in the 1274 // process to avoid re-walking this list where possible. 1275 auto StackRI = find_if(reverse(PendingRefSCCStack), [&](Node *N) { 1276 if (N->DFSNumber < RootDFSNumber) 1277 // We've found the bottom. 1278 return true; 1279 1280 // Update this node and keep scanning. 1281 N->DFSNumber = -1; 1282 // Save the post-order number in the lowlink field so that we can use 1283 // it to map SCCs into new RefSCCs after we finish the DFS. 1284 N->LowLink = RefSCCNumber; 1285 return false; 1286 }); 1287 auto RefSCCNodes = make_range(StackRI.base(), PendingRefSCCStack.end()); 1288 1289 // If we find a cycle containing all nodes originally in this RefSCC then 1290 // the removal hasn't changed the structure at all. This is an important 1291 // special case and we can directly exit the entire routine more 1292 // efficiently as soon as we discover it. 1293 if (llvm::size(RefSCCNodes) == NumRefSCCNodes) { 1294 // Clear out the low link field as we won't need it. 1295 for (Node *N : RefSCCNodes) 1296 N->LowLink = -1; 1297 // Return the empty result immediately. 1298 return Result; 1299 } 1300 1301 // We've already marked the nodes internally with the RefSCC number so 1302 // just clear them off the stack and continue. 1303 PendingRefSCCStack.erase(RefSCCNodes.begin(), PendingRefSCCStack.end()); 1304 } while (!DFSStack.empty()); 1305 1306 assert(DFSStack.empty() && "Didn't flush the entire DFS stack!"); 1307 assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!"); 1308 } while (!Worklist.empty()); 1309 1310 assert(PostOrderNumber > 1 && 1311 "Should never finish the DFS when the existing RefSCC remains valid!"); 1312 1313 // Otherwise we create a collection of new RefSCC nodes and build 1314 // a radix-sort style map from postorder number to these new RefSCCs. We then 1315 // append SCCs to each of these RefSCCs in the order they occurred in the 1316 // original SCCs container. 1317 for (int i = 0; i < PostOrderNumber; ++i) 1318 Result.push_back(G->createRefSCC(*G)); 1319 1320 // Insert the resulting postorder sequence into the global graph postorder 1321 // sequence before the current RefSCC in that sequence, and then remove the 1322 // current one. 1323 // 1324 // FIXME: It'd be nice to change the APIs so that we returned an iterator 1325 // range over the global postorder sequence and generally use that sequence 1326 // rather than building a separate result vector here. 1327 int Idx = G->getRefSCCIndex(*this); 1328 G->PostOrderRefSCCs.erase(G->PostOrderRefSCCs.begin() + Idx); 1329 G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx, Result.begin(), 1330 Result.end()); 1331 for (int i : seq<int>(Idx, G->PostOrderRefSCCs.size())) 1332 G->RefSCCIndices[G->PostOrderRefSCCs[i]] = i; 1333 1334 for (SCC *C : SCCs) { 1335 // We store the SCC number in the node's low-link field above. 1336 int SCCNumber = C->begin()->LowLink; 1337 // Clear out all of the SCC's node's low-link fields now that we're done 1338 // using them as side-storage. 1339 for (Node &N : *C) { 1340 assert(N.LowLink == SCCNumber && 1341 "Cannot have different numbers for nodes in the same SCC!"); 1342 N.LowLink = -1; 1343 } 1344 1345 RefSCC &RC = *Result[SCCNumber]; 1346 int SCCIndex = RC.SCCs.size(); 1347 RC.SCCs.push_back(C); 1348 RC.SCCIndices[C] = SCCIndex; 1349 C->OuterRefSCC = &RC; 1350 } 1351 1352 // Now that we've moved things into the new RefSCCs, clear out our current 1353 // one. 1354 G = nullptr; 1355 SCCs.clear(); 1356 SCCIndices.clear(); 1357 1358 #ifndef NDEBUG 1359 // Verify the new RefSCCs we've built. 1360 for (RefSCC *RC : Result) 1361 RC->verify(); 1362 #endif 1363 1364 // Return the new list of SCCs. 1365 return Result; 1366 } 1367 1368 void LazyCallGraph::RefSCC::handleTrivialEdgeInsertion(Node &SourceN, 1369 Node &TargetN) { 1370 // The only trivial case that requires any graph updates is when we add new 1371 // ref edge and may connect different RefSCCs along that path. This is only 1372 // because of the parents set. Every other part of the graph remains constant 1373 // after this edge insertion. 1374 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 1375 RefSCC &TargetRC = *G->lookupRefSCC(TargetN); 1376 if (&TargetRC == this) 1377 return; 1378 1379 #ifdef EXPENSIVE_CHECKS 1380 assert(TargetRC.isDescendantOf(*this) && 1381 "Target must be a descendant of the Source."); 1382 #endif 1383 } 1384 1385 void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN, 1386 Node &TargetN) { 1387 #ifndef NDEBUG 1388 // Check that the RefSCC is still valid when we finish. 1389 auto ExitVerifier = make_scope_exit([this] { verify(); }); 1390 1391 #ifdef EXPENSIVE_CHECKS 1392 // Check that we aren't breaking some invariants of the SCC graph. Note that 1393 // this is quadratic in the number of edges in the call graph! 1394 SCC &SourceC = *G->lookupSCC(SourceN); 1395 SCC &TargetC = *G->lookupSCC(TargetN); 1396 if (&SourceC != &TargetC) 1397 assert(SourceC.isAncestorOf(TargetC) && 1398 "Call edge is not trivial in the SCC graph!"); 1399 #endif // EXPENSIVE_CHECKS 1400 #endif // NDEBUG 1401 1402 // First insert it into the source or find the existing edge. 1403 auto InsertResult = 1404 SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()}); 1405 if (!InsertResult.second) { 1406 // Already an edge, just update it. 1407 Edge &E = SourceN->Edges[InsertResult.first->second]; 1408 if (E.isCall()) 1409 return; // Nothing to do! 1410 E.setKind(Edge::Call); 1411 } else { 1412 // Create the new edge. 1413 SourceN->Edges.emplace_back(TargetN, Edge::Call); 1414 } 1415 1416 // Now that we have the edge, handle the graph fallout. 1417 handleTrivialEdgeInsertion(SourceN, TargetN); 1418 } 1419 1420 void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) { 1421 #ifndef NDEBUG 1422 // Check that the RefSCC is still valid when we finish. 1423 auto ExitVerifier = make_scope_exit([this] { verify(); }); 1424 1425 #ifdef EXPENSIVE_CHECKS 1426 // Check that we aren't breaking some invariants of the RefSCC graph. 1427 RefSCC &SourceRC = *G->lookupRefSCC(SourceN); 1428 RefSCC &TargetRC = *G->lookupRefSCC(TargetN); 1429 if (&SourceRC != &TargetRC) 1430 assert(SourceRC.isAncestorOf(TargetRC) && 1431 "Ref edge is not trivial in the RefSCC graph!"); 1432 #endif // EXPENSIVE_CHECKS 1433 #endif // NDEBUG 1434 1435 // First insert it into the source or find the existing edge. 1436 auto InsertResult = 1437 SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()}); 1438 if (!InsertResult.second) 1439 // Already an edge, we're done. 1440 return; 1441 1442 // Create the new edge. 1443 SourceN->Edges.emplace_back(TargetN, Edge::Ref); 1444 1445 // Now that we have the edge, handle the graph fallout. 1446 handleTrivialEdgeInsertion(SourceN, TargetN); 1447 } 1448 1449 void LazyCallGraph::RefSCC::replaceNodeFunction(Node &N, Function &NewF) { 1450 Function &OldF = N.getFunction(); 1451 1452 #ifndef NDEBUG 1453 // Check that the RefSCC is still valid when we finish. 1454 auto ExitVerifier = make_scope_exit([this] { verify(); }); 1455 1456 assert(G->lookupRefSCC(N) == this && 1457 "Cannot replace the function of a node outside this RefSCC."); 1458 1459 assert(G->NodeMap.find(&NewF) == G->NodeMap.end() && 1460 "Must not have already walked the new function!'"); 1461 1462 // It is important that this replacement not introduce graph changes so we 1463 // insist that the caller has already removed every use of the original 1464 // function and that all uses of the new function correspond to existing 1465 // edges in the graph. The common and expected way to use this is when 1466 // replacing the function itself in the IR without changing the call graph 1467 // shape and just updating the analysis based on that. 1468 assert(&OldF != &NewF && "Cannot replace a function with itself!"); 1469 assert(OldF.use_empty() && 1470 "Must have moved all uses from the old function to the new!"); 1471 #endif 1472 1473 N.replaceFunction(NewF); 1474 1475 // Update various call graph maps. 1476 G->NodeMap.erase(&OldF); 1477 G->NodeMap[&NewF] = &N; 1478 } 1479 1480 void LazyCallGraph::insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK) { 1481 assert(SCCMap.empty() && 1482 "This method cannot be called after SCCs have been formed!"); 1483 1484 return SourceN->insertEdgeInternal(TargetN, EK); 1485 } 1486 1487 void LazyCallGraph::removeEdge(Node &SourceN, Node &TargetN) { 1488 assert(SCCMap.empty() && 1489 "This method cannot be called after SCCs have been formed!"); 1490 1491 bool Removed = SourceN->removeEdgeInternal(TargetN); 1492 (void)Removed; 1493 assert(Removed && "Target not in the edge set for this caller?"); 1494 } 1495 1496 void LazyCallGraph::removeDeadFunction(Function &F) { 1497 // FIXME: This is unnecessarily restrictive. We should be able to remove 1498 // functions which recursively call themselves. 1499 assert(F.use_empty() && 1500 "This routine should only be called on trivially dead functions!"); 1501 1502 // We shouldn't remove library functions as they are never really dead while 1503 // the call graph is in use -- every function definition refers to them. 1504 assert(!isLibFunction(F) && 1505 "Must not remove lib functions from the call graph!"); 1506 1507 auto NI = NodeMap.find(&F); 1508 if (NI == NodeMap.end()) 1509 // Not in the graph at all! 1510 return; 1511 1512 Node &N = *NI->second; 1513 NodeMap.erase(NI); 1514 1515 // Remove this from the entry edges if present. 1516 EntryEdges.removeEdgeInternal(N); 1517 1518 if (SCCMap.empty()) { 1519 // No SCCs have been formed, so removing this is fine and there is nothing 1520 // else necessary at this point but clearing out the node. 1521 N.clear(); 1522 return; 1523 } 1524 1525 // Cannot remove a function which has yet to be visited in the DFS walk, so 1526 // if we have a node at all then we must have an SCC and RefSCC. 1527 auto CI = SCCMap.find(&N); 1528 assert(CI != SCCMap.end() && 1529 "Tried to remove a node without an SCC after DFS walk started!"); 1530 SCC &C = *CI->second; 1531 SCCMap.erase(CI); 1532 RefSCC &RC = C.getOuterRefSCC(); 1533 1534 // This node must be the only member of its SCC as it has no callers, and 1535 // that SCC must be the only member of a RefSCC as it has no references. 1536 // Validate these properties first. 1537 assert(C.size() == 1 && "Dead functions must be in a singular SCC"); 1538 assert(RC.size() == 1 && "Dead functions must be in a singular RefSCC"); 1539 1540 auto RCIndexI = RefSCCIndices.find(&RC); 1541 int RCIndex = RCIndexI->second; 1542 PostOrderRefSCCs.erase(PostOrderRefSCCs.begin() + RCIndex); 1543 RefSCCIndices.erase(RCIndexI); 1544 for (int i = RCIndex, Size = PostOrderRefSCCs.size(); i < Size; ++i) 1545 RefSCCIndices[PostOrderRefSCCs[i]] = i; 1546 1547 // Finally clear out all the data structures from the node down through the 1548 // components. 1549 N.clear(); 1550 N.G = nullptr; 1551 N.F = nullptr; 1552 C.clear(); 1553 RC.clear(); 1554 RC.G = nullptr; 1555 1556 // Nothing to delete as all the objects are allocated in stable bump pointer 1557 // allocators. 1558 } 1559 1560 LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) { 1561 return *new (MappedN = BPA.Allocate()) Node(*this, F); 1562 } 1563 1564 void LazyCallGraph::updateGraphPtrs() { 1565 // Walk the node map to update their graph pointers. While this iterates in 1566 // an unstable order, the order has no effect so it remains correct. 1567 for (auto &FunctionNodePair : NodeMap) 1568 FunctionNodePair.second->G = this; 1569 1570 for (auto *RC : PostOrderRefSCCs) 1571 RC->G = this; 1572 } 1573 1574 template <typename RootsT, typename GetBeginT, typename GetEndT, 1575 typename GetNodeT, typename FormSCCCallbackT> 1576 void LazyCallGraph::buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin, 1577 GetEndT &&GetEnd, GetNodeT &&GetNode, 1578 FormSCCCallbackT &&FormSCC) { 1579 using EdgeItT = decltype(GetBegin(std::declval<Node &>())); 1580 1581 SmallVector<std::pair<Node *, EdgeItT>, 16> DFSStack; 1582 SmallVector<Node *, 16> PendingSCCStack; 1583 1584 // Scan down the stack and DFS across the call edges. 1585 for (Node *RootN : Roots) { 1586 assert(DFSStack.empty() && 1587 "Cannot begin a new root with a non-empty DFS stack!"); 1588 assert(PendingSCCStack.empty() && 1589 "Cannot begin a new root with pending nodes for an SCC!"); 1590 1591 // Skip any nodes we've already reached in the DFS. 1592 if (RootN->DFSNumber != 0) { 1593 assert(RootN->DFSNumber == -1 && 1594 "Shouldn't have any mid-DFS root nodes!"); 1595 continue; 1596 } 1597 1598 RootN->DFSNumber = RootN->LowLink = 1; 1599 int NextDFSNumber = 2; 1600 1601 DFSStack.push_back({RootN, GetBegin(*RootN)}); 1602 do { 1603 Node *N; 1604 EdgeItT I; 1605 std::tie(N, I) = DFSStack.pop_back_val(); 1606 auto E = GetEnd(*N); 1607 while (I != E) { 1608 Node &ChildN = GetNode(I); 1609 if (ChildN.DFSNumber == 0) { 1610 // We haven't yet visited this child, so descend, pushing the current 1611 // node onto the stack. 1612 DFSStack.push_back({N, I}); 1613 1614 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++; 1615 N = &ChildN; 1616 I = GetBegin(*N); 1617 E = GetEnd(*N); 1618 continue; 1619 } 1620 1621 // If the child has already been added to some child component, it 1622 // couldn't impact the low-link of this parent because it isn't 1623 // connected, and thus its low-link isn't relevant so skip it. 1624 if (ChildN.DFSNumber == -1) { 1625 ++I; 1626 continue; 1627 } 1628 1629 // Track the lowest linked child as the lowest link for this node. 1630 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); 1631 if (ChildN.LowLink < N->LowLink) 1632 N->LowLink = ChildN.LowLink; 1633 1634 // Move to the next edge. 1635 ++I; 1636 } 1637 1638 // We've finished processing N and its descendants, put it on our pending 1639 // SCC stack to eventually get merged into an SCC of nodes. 1640 PendingSCCStack.push_back(N); 1641 1642 // If this node is linked to some lower entry, continue walking up the 1643 // stack. 1644 if (N->LowLink != N->DFSNumber) 1645 continue; 1646 1647 // Otherwise, we've completed an SCC. Append it to our post order list of 1648 // SCCs. 1649 int RootDFSNumber = N->DFSNumber; 1650 // Find the range of the node stack by walking down until we pass the 1651 // root DFS number. 1652 auto SCCNodes = make_range( 1653 PendingSCCStack.rbegin(), 1654 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) { 1655 return N->DFSNumber < RootDFSNumber; 1656 })); 1657 // Form a new SCC out of these nodes and then clear them off our pending 1658 // stack. 1659 FormSCC(SCCNodes); 1660 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end()); 1661 } while (!DFSStack.empty()); 1662 } 1663 } 1664 1665 /// Build the internal SCCs for a RefSCC from a sequence of nodes. 1666 /// 1667 /// Appends the SCCs to the provided vector and updates the map with their 1668 /// indices. Both the vector and map must be empty when passed into this 1669 /// routine. 1670 void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) { 1671 assert(RC.SCCs.empty() && "Already built SCCs!"); 1672 assert(RC.SCCIndices.empty() && "Already mapped SCC indices!"); 1673 1674 for (Node *N : Nodes) { 1675 assert(N->LowLink >= (*Nodes.begin())->LowLink && 1676 "We cannot have a low link in an SCC lower than its root on the " 1677 "stack!"); 1678 1679 // This node will go into the next RefSCC, clear out its DFS and low link 1680 // as we scan. 1681 N->DFSNumber = N->LowLink = 0; 1682 } 1683 1684 // Each RefSCC contains a DAG of the call SCCs. To build these, we do 1685 // a direct walk of the call edges using Tarjan's algorithm. We reuse the 1686 // internal storage as we won't need it for the outer graph's DFS any longer. 1687 buildGenericSCCs( 1688 Nodes, [](Node &N) { return N->call_begin(); }, 1689 [](Node &N) { return N->call_end(); }, 1690 [](EdgeSequence::call_iterator I) -> Node & { return I->getNode(); }, 1691 [this, &RC](node_stack_range Nodes) { 1692 RC.SCCs.push_back(createSCC(RC, Nodes)); 1693 for (Node &N : *RC.SCCs.back()) { 1694 N.DFSNumber = N.LowLink = -1; 1695 SCCMap[&N] = RC.SCCs.back(); 1696 } 1697 }); 1698 1699 // Wire up the SCC indices. 1700 for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i) 1701 RC.SCCIndices[RC.SCCs[i]] = i; 1702 } 1703 1704 void LazyCallGraph::buildRefSCCs() { 1705 if (EntryEdges.empty() || !PostOrderRefSCCs.empty()) 1706 // RefSCCs are either non-existent or already built! 1707 return; 1708 1709 assert(RefSCCIndices.empty() && "Already mapped RefSCC indices!"); 1710 1711 SmallVector<Node *, 16> Roots; 1712 for (Edge &E : *this) 1713 Roots.push_back(&E.getNode()); 1714 1715 // The roots will be popped of a stack, so use reverse to get a less 1716 // surprising order. This doesn't change any of the semantics anywhere. 1717 std::reverse(Roots.begin(), Roots.end()); 1718 1719 buildGenericSCCs( 1720 Roots, 1721 [](Node &N) { 1722 // We need to populate each node as we begin to walk its edges. 1723 N.populate(); 1724 return N->begin(); 1725 }, 1726 [](Node &N) { return N->end(); }, 1727 [](EdgeSequence::iterator I) -> Node & { return I->getNode(); }, 1728 [this](node_stack_range Nodes) { 1729 RefSCC *NewRC = createRefSCC(*this); 1730 buildSCCs(*NewRC, Nodes); 1731 1732 // Push the new node into the postorder list and remember its position 1733 // in the index map. 1734 bool Inserted = 1735 RefSCCIndices.insert({NewRC, PostOrderRefSCCs.size()}).second; 1736 (void)Inserted; 1737 assert(Inserted && "Cannot already have this RefSCC in the index map!"); 1738 PostOrderRefSCCs.push_back(NewRC); 1739 #ifndef NDEBUG 1740 NewRC->verify(); 1741 #endif 1742 }); 1743 } 1744 1745 AnalysisKey LazyCallGraphAnalysis::Key; 1746 1747 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {} 1748 1749 static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) { 1750 OS << " Edges in function: " << N.getFunction().getName() << "\n"; 1751 for (LazyCallGraph::Edge &E : N.populate()) 1752 OS << " " << (E.isCall() ? "call" : "ref ") << " -> " 1753 << E.getFunction().getName() << "\n"; 1754 1755 OS << "\n"; 1756 } 1757 1758 static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) { 1759 OS << " SCC with " << C.size() << " functions:\n"; 1760 1761 for (LazyCallGraph::Node &N : C) 1762 OS << " " << N.getFunction().getName() << "\n"; 1763 } 1764 1765 static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) { 1766 OS << " RefSCC with " << C.size() << " call SCCs:\n"; 1767 1768 for (LazyCallGraph::SCC &InnerC : C) 1769 printSCC(OS, InnerC); 1770 1771 OS << "\n"; 1772 } 1773 1774 PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M, 1775 ModuleAnalysisManager &AM) { 1776 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M); 1777 1778 OS << "Printing the call graph for module: " << M.getModuleIdentifier() 1779 << "\n\n"; 1780 1781 for (Function &F : M) 1782 printNode(OS, G.get(F)); 1783 1784 G.buildRefSCCs(); 1785 for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs()) 1786 printRefSCC(OS, C); 1787 1788 return PreservedAnalyses::all(); 1789 } 1790 1791 LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS) 1792 : OS(OS) {} 1793 1794 static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) { 1795 std::string Name = "\"" + DOT::EscapeString(N.getFunction().getName()) + "\""; 1796 1797 for (LazyCallGraph::Edge &E : N.populate()) { 1798 OS << " " << Name << " -> \"" 1799 << DOT::EscapeString(E.getFunction().getName()) << "\""; 1800 if (!E.isCall()) // It is a ref edge. 1801 OS << " [style=dashed,label=\"ref\"]"; 1802 OS << ";\n"; 1803 } 1804 1805 OS << "\n"; 1806 } 1807 1808 PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M, 1809 ModuleAnalysisManager &AM) { 1810 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M); 1811 1812 OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n"; 1813 1814 for (Function &F : M) 1815 printNodeDOT(OS, G.get(F)); 1816 1817 OS << "}\n"; 1818 1819 return PreservedAnalyses::all(); 1820 } 1821