1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/LazyCallGraph.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/Sequence.h"
13 #include "llvm/ADT/SmallPtrSet.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/iterator_range.h"
16 #include "llvm/Analysis/TargetLibraryInfo.h"
17 #include "llvm/Config/llvm-config.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/Function.h"
20 #include "llvm/IR/GlobalVariable.h"
21 #include "llvm/IR/InstIterator.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/PassManager.h"
25 #include "llvm/Support/Casting.h"
26 #include "llvm/Support/Compiler.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/GraphWriter.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <iterator>
33 #include <string>
34 #include <tuple>
35 #include <utility>
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "lcg"
40 
41 void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node &TargetN,
42                                                      Edge::Kind EK) {
43   EdgeIndexMap.insert({&TargetN, Edges.size()});
44   Edges.emplace_back(TargetN, EK);
45 }
46 
47 void LazyCallGraph::EdgeSequence::setEdgeKind(Node &TargetN, Edge::Kind EK) {
48   Edges[EdgeIndexMap.find(&TargetN)->second].setKind(EK);
49 }
50 
51 bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node &TargetN) {
52   auto IndexMapI = EdgeIndexMap.find(&TargetN);
53   if (IndexMapI == EdgeIndexMap.end())
54     return false;
55 
56   Edges[IndexMapI->second] = Edge();
57   EdgeIndexMap.erase(IndexMapI);
58   return true;
59 }
60 
61 static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges,
62                     DenseMap<LazyCallGraph::Node *, int> &EdgeIndexMap,
63                     LazyCallGraph::Node &N, LazyCallGraph::Edge::Kind EK) {
64   if (!EdgeIndexMap.insert({&N, Edges.size()}).second)
65     return;
66 
67   LLVM_DEBUG(dbgs() << "    Added callable function: " << N.getName() << "\n");
68   Edges.emplace_back(LazyCallGraph::Edge(N, EK));
69 }
70 
71 LazyCallGraph::EdgeSequence &LazyCallGraph::Node::populateSlow() {
72   assert(!Edges && "Must not have already populated the edges for this node!");
73 
74   LLVM_DEBUG(dbgs() << "  Adding functions called by '" << getName()
75                     << "' to the graph.\n");
76 
77   Edges = EdgeSequence();
78 
79   SmallVector<Constant *, 16> Worklist;
80   SmallPtrSet<Function *, 4> Callees;
81   SmallPtrSet<Constant *, 16> Visited;
82 
83   // Find all the potential call graph edges in this function. We track both
84   // actual call edges and indirect references to functions. The direct calls
85   // are trivially added, but to accumulate the latter we walk the instructions
86   // and add every operand which is a constant to the worklist to process
87   // afterward.
88   //
89   // Note that we consider *any* function with a definition to be a viable
90   // edge. Even if the function's definition is subject to replacement by
91   // some other module (say, a weak definition) there may still be
92   // optimizations which essentially speculate based on the definition and
93   // a way to check that the specific definition is in fact the one being
94   // used. For example, this could be done by moving the weak definition to
95   // a strong (internal) definition and making the weak definition be an
96   // alias. Then a test of the address of the weak function against the new
97   // strong definition's address would be an effective way to determine the
98   // safety of optimizing a direct call edge.
99   for (BasicBlock &BB : *F)
100     for (Instruction &I : BB) {
101       if (auto *CB = dyn_cast<CallBase>(&I))
102         if (Function *Callee = CB->getCalledFunction())
103           if (!Callee->isDeclaration())
104             if (Callees.insert(Callee).second) {
105               Visited.insert(Callee);
106               addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*Callee),
107                       LazyCallGraph::Edge::Call);
108             }
109 
110       for (Value *Op : I.operand_values())
111         if (Constant *C = dyn_cast<Constant>(Op))
112           if (Visited.insert(C).second)
113             Worklist.push_back(C);
114     }
115 
116   // We've collected all the constant (and thus potentially function or
117   // function containing) operands to all of the instructions in the function.
118   // Process them (recursively) collecting every function found.
119   visitReferences(Worklist, Visited, [&](Function &F) {
120     addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(F),
121             LazyCallGraph::Edge::Ref);
122   });
123 
124   // Add implicit reference edges to any defined libcall functions (if we
125   // haven't found an explicit edge).
126   for (auto *F : G->LibFunctions)
127     if (!Visited.count(F))
128       addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*F),
129               LazyCallGraph::Edge::Ref);
130 
131   return *Edges;
132 }
133 
134 void LazyCallGraph::Node::replaceFunction(Function &NewF) {
135   assert(F != &NewF && "Must not replace a function with itself!");
136   F = &NewF;
137 }
138 
139 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
140 LLVM_DUMP_METHOD void LazyCallGraph::Node::dump() const {
141   dbgs() << *this << '\n';
142 }
143 #endif
144 
145 static bool isKnownLibFunction(Function &F, TargetLibraryInfo &TLI) {
146   LibFunc LF;
147 
148   // Either this is a normal library function or a "vectorizable"
149   // function.  Not using the VFDatabase here because this query
150   // is related only to libraries handled via the TLI.
151   return TLI.getLibFunc(F, LF) ||
152          TLI.isKnownVectorFunctionInLibrary(F.getName());
153 }
154 
155 LazyCallGraph::LazyCallGraph(
156     Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
157   LLVM_DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
158                     << "\n");
159   for (Function &F : M) {
160     if (F.isDeclaration())
161       continue;
162     // If this function is a known lib function to LLVM then we want to
163     // synthesize reference edges to it to model the fact that LLVM can turn
164     // arbitrary code into a library function call.
165     if (isKnownLibFunction(F, GetTLI(F)))
166       LibFunctions.insert(&F);
167 
168     if (F.hasLocalLinkage())
169       continue;
170 
171     // External linkage defined functions have edges to them from other
172     // modules.
173     LLVM_DEBUG(dbgs() << "  Adding '" << F.getName()
174                       << "' to entry set of the graph.\n");
175     addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), Edge::Ref);
176   }
177 
178   // Externally visible aliases of internal functions are also viable entry
179   // edges to the module.
180   for (auto &A : M.aliases()) {
181     if (A.hasLocalLinkage())
182       continue;
183     if (Function* F = dyn_cast<Function>(A.getAliasee())) {
184       LLVM_DEBUG(dbgs() << "  Adding '" << F->getName()
185                         << "' with alias '" << A.getName()
186                         << "' to entry set of the graph.\n");
187       addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(*F), Edge::Ref);
188     }
189   }
190 
191   // Now add entry nodes for functions reachable via initializers to globals.
192   SmallVector<Constant *, 16> Worklist;
193   SmallPtrSet<Constant *, 16> Visited;
194   for (GlobalVariable &GV : M.globals())
195     if (GV.hasInitializer())
196       if (Visited.insert(GV.getInitializer()).second)
197         Worklist.push_back(GV.getInitializer());
198 
199   LLVM_DEBUG(
200       dbgs() << "  Adding functions referenced by global initializers to the "
201                 "entry set.\n");
202   visitReferences(Worklist, Visited, [&](Function &F) {
203     addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F),
204             LazyCallGraph::Edge::Ref);
205   });
206 }
207 
208 LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
209     : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
210       EntryEdges(std::move(G.EntryEdges)), SCCBPA(std::move(G.SCCBPA)),
211       SCCMap(std::move(G.SCCMap)),
212       LibFunctions(std::move(G.LibFunctions)) {
213   updateGraphPtrs();
214 }
215 
216 bool LazyCallGraph::invalidate(Module &, const PreservedAnalyses &PA,
217                                ModuleAnalysisManager::Invalidator &) {
218   // Check whether the analysis, all analyses on functions, or the function's
219   // CFG have been preserved.
220   auto PAC = PA.getChecker<llvm::LazyCallGraphAnalysis>();
221   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>());
222 }
223 
224 LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
225   BPA = std::move(G.BPA);
226   NodeMap = std::move(G.NodeMap);
227   EntryEdges = std::move(G.EntryEdges);
228   SCCBPA = std::move(G.SCCBPA);
229   SCCMap = std::move(G.SCCMap);
230   LibFunctions = std::move(G.LibFunctions);
231   updateGraphPtrs();
232   return *this;
233 }
234 
235 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
236 LLVM_DUMP_METHOD void LazyCallGraph::SCC::dump() const {
237   dbgs() << *this << '\n';
238 }
239 #endif
240 
241 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
242 void LazyCallGraph::SCC::verify() {
243   assert(OuterRefSCC && "Can't have a null RefSCC!");
244   assert(!Nodes.empty() && "Can't have an empty SCC!");
245 
246   for (Node *N : Nodes) {
247     assert(N && "Can't have a null node!");
248     assert(OuterRefSCC->G->lookupSCC(*N) == this &&
249            "Node does not map to this SCC!");
250     assert(N->DFSNumber == -1 &&
251            "Must set DFS numbers to -1 when adding a node to an SCC!");
252     assert(N->LowLink == -1 &&
253            "Must set low link to -1 when adding a node to an SCC!");
254     for (Edge &E : **N)
255       assert(E.getNode().isPopulated() && "Can't have an unpopulated node!");
256 
257 #ifdef EXPENSIVE_CHECKS
258     // Verify that all nodes in this SCC can reach all other nodes.
259     SmallVector<Node *, 4> Worklist;
260     SmallPtrSet<Node *, 4> Visited;
261     Worklist.push_back(N);
262     while (!Worklist.empty()) {
263       Node *VisitingNode = Worklist.pop_back_val();
264       if (!Visited.insert(VisitingNode).second)
265         continue;
266       for (Edge &E : (*VisitingNode)->calls())
267         Worklist.push_back(&E.getNode());
268     }
269     for (Node *NodeToVisit : Nodes) {
270       assert(Visited.contains(NodeToVisit) &&
271              "Cannot reach all nodes within SCC");
272     }
273 #endif
274   }
275 }
276 #endif
277 
278 bool LazyCallGraph::SCC::isParentOf(const SCC &C) const {
279   if (this == &C)
280     return false;
281 
282   for (Node &N : *this)
283     for (Edge &E : N->calls())
284       if (OuterRefSCC->G->lookupSCC(E.getNode()) == &C)
285         return true;
286 
287   // No edges found.
288   return false;
289 }
290 
291 bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const {
292   if (this == &TargetC)
293     return false;
294 
295   LazyCallGraph &G = *OuterRefSCC->G;
296 
297   // Start with this SCC.
298   SmallPtrSet<const SCC *, 16> Visited = {this};
299   SmallVector<const SCC *, 16> Worklist = {this};
300 
301   // Walk down the graph until we run out of edges or find a path to TargetC.
302   do {
303     const SCC &C = *Worklist.pop_back_val();
304     for (Node &N : C)
305       for (Edge &E : N->calls()) {
306         SCC *CalleeC = G.lookupSCC(E.getNode());
307         if (!CalleeC)
308           continue;
309 
310         // If the callee's SCC is the TargetC, we're done.
311         if (CalleeC == &TargetC)
312           return true;
313 
314         // If this is the first time we've reached this SCC, put it on the
315         // worklist to recurse through.
316         if (Visited.insert(CalleeC).second)
317           Worklist.push_back(CalleeC);
318       }
319   } while (!Worklist.empty());
320 
321   // No paths found.
322   return false;
323 }
324 
325 LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {}
326 
327 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
328 LLVM_DUMP_METHOD void LazyCallGraph::RefSCC::dump() const {
329   dbgs() << *this << '\n';
330 }
331 #endif
332 
333 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
334 void LazyCallGraph::RefSCC::verify() {
335   assert(G && "Can't have a null graph!");
336   assert(!SCCs.empty() && "Can't have an empty SCC!");
337 
338   // Verify basic properties of the SCCs.
339   SmallPtrSet<SCC *, 4> SCCSet;
340   for (SCC *C : SCCs) {
341     assert(C && "Can't have a null SCC!");
342     C->verify();
343     assert(&C->getOuterRefSCC() == this &&
344            "SCC doesn't think it is inside this RefSCC!");
345     bool Inserted = SCCSet.insert(C).second;
346     assert(Inserted && "Found a duplicate SCC!");
347     auto IndexIt = SCCIndices.find(C);
348     assert(IndexIt != SCCIndices.end() &&
349            "Found an SCC that doesn't have an index!");
350   }
351 
352   // Check that our indices map correctly.
353   for (auto &SCCIndexPair : SCCIndices) {
354     SCC *C = SCCIndexPair.first;
355     int i = SCCIndexPair.second;
356     assert(C && "Can't have a null SCC in the indices!");
357     assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!");
358     assert(SCCs[i] == C && "Index doesn't point to SCC!");
359   }
360 
361   // Check that the SCCs are in fact in post-order.
362   for (int i = 0, Size = SCCs.size(); i < Size; ++i) {
363     SCC &SourceSCC = *SCCs[i];
364     for (Node &N : SourceSCC)
365       for (Edge &E : *N) {
366         if (!E.isCall())
367           continue;
368         SCC &TargetSCC = *G->lookupSCC(E.getNode());
369         if (&TargetSCC.getOuterRefSCC() == this) {
370           assert(SCCIndices.find(&TargetSCC)->second <= i &&
371                  "Edge between SCCs violates post-order relationship.");
372           continue;
373         }
374       }
375   }
376 
377 #ifdef EXPENSIVE_CHECKS
378   // Verify that all nodes in this RefSCC can reach all other nodes.
379   SmallVector<Node *> Nodes;
380   for (SCC *C : SCCs) {
381     for (Node &N : *C)
382       Nodes.push_back(&N);
383   }
384   for (Node *N : Nodes) {
385     SmallVector<Node *, 4> Worklist;
386     SmallPtrSet<Node *, 4> Visited;
387     Worklist.push_back(N);
388     while (!Worklist.empty()) {
389       Node *VisitingNode = Worklist.pop_back_val();
390       if (!Visited.insert(VisitingNode).second)
391         continue;
392       for (Edge &E : **VisitingNode)
393         Worklist.push_back(&E.getNode());
394     }
395     for (Node *NodeToVisit : Nodes) {
396       assert(Visited.contains(NodeToVisit) &&
397              "Cannot reach all nodes within RefSCC");
398     }
399   }
400 #endif
401 }
402 #endif
403 
404 bool LazyCallGraph::RefSCC::isParentOf(const RefSCC &RC) const {
405   if (&RC == this)
406     return false;
407 
408   // Search all edges to see if this is a parent.
409   for (SCC &C : *this)
410     for (Node &N : C)
411       for (Edge &E : *N)
412         if (G->lookupRefSCC(E.getNode()) == &RC)
413           return true;
414 
415   return false;
416 }
417 
418 bool LazyCallGraph::RefSCC::isAncestorOf(const RefSCC &RC) const {
419   if (&RC == this)
420     return false;
421 
422   // For each descendant of this RefSCC, see if one of its children is the
423   // argument. If not, add that descendant to the worklist and continue
424   // searching.
425   SmallVector<const RefSCC *, 4> Worklist;
426   SmallPtrSet<const RefSCC *, 4> Visited;
427   Worklist.push_back(this);
428   Visited.insert(this);
429   do {
430     const RefSCC &DescendantRC = *Worklist.pop_back_val();
431     for (SCC &C : DescendantRC)
432       for (Node &N : C)
433         for (Edge &E : *N) {
434           auto *ChildRC = G->lookupRefSCC(E.getNode());
435           if (ChildRC == &RC)
436             return true;
437           if (!ChildRC || !Visited.insert(ChildRC).second)
438             continue;
439           Worklist.push_back(ChildRC);
440         }
441   } while (!Worklist.empty());
442 
443   return false;
444 }
445 
446 /// Generic helper that updates a postorder sequence of SCCs for a potentially
447 /// cycle-introducing edge insertion.
448 ///
449 /// A postorder sequence of SCCs of a directed graph has one fundamental
450 /// property: all deges in the DAG of SCCs point "up" the sequence. That is,
451 /// all edges in the SCC DAG point to prior SCCs in the sequence.
452 ///
453 /// This routine both updates a postorder sequence and uses that sequence to
454 /// compute the set of SCCs connected into a cycle. It should only be called to
455 /// insert a "downward" edge which will require changing the sequence to
456 /// restore it to a postorder.
457 ///
458 /// When inserting an edge from an earlier SCC to a later SCC in some postorder
459 /// sequence, all of the SCCs which may be impacted are in the closed range of
460 /// those two within the postorder sequence. The algorithm used here to restore
461 /// the state is as follows:
462 ///
463 /// 1) Starting from the source SCC, construct a set of SCCs which reach the
464 ///    source SCC consisting of just the source SCC. Then scan toward the
465 ///    target SCC in postorder and for each SCC, if it has an edge to an SCC
466 ///    in the set, add it to the set. Otherwise, the source SCC is not
467 ///    a successor, move it in the postorder sequence to immediately before
468 ///    the source SCC, shifting the source SCC and all SCCs in the set one
469 ///    position toward the target SCC. Stop scanning after processing the
470 ///    target SCC.
471 /// 2) If the source SCC is now past the target SCC in the postorder sequence,
472 ///    and thus the new edge will flow toward the start, we are done.
473 /// 3) Otherwise, starting from the target SCC, walk all edges which reach an
474 ///    SCC between the source and the target, and add them to the set of
475 ///    connected SCCs, then recurse through them. Once a complete set of the
476 ///    SCCs the target connects to is known, hoist the remaining SCCs between
477 ///    the source and the target to be above the target. Note that there is no
478 ///    need to process the source SCC, it is already known to connect.
479 /// 4) At this point, all of the SCCs in the closed range between the source
480 ///    SCC and the target SCC in the postorder sequence are connected,
481 ///    including the target SCC and the source SCC. Inserting the edge from
482 ///    the source SCC to the target SCC will form a cycle out of precisely
483 ///    these SCCs. Thus we can merge all of the SCCs in this closed range into
484 ///    a single SCC.
485 ///
486 /// This process has various important properties:
487 /// - Only mutates the SCCs when adding the edge actually changes the SCC
488 ///   structure.
489 /// - Never mutates SCCs which are unaffected by the change.
490 /// - Updates the postorder sequence to correctly satisfy the postorder
491 ///   constraint after the edge is inserted.
492 /// - Only reorders SCCs in the closed postorder sequence from the source to
493 ///   the target, so easy to bound how much has changed even in the ordering.
494 /// - Big-O is the number of edges in the closed postorder range of SCCs from
495 ///   source to target.
496 ///
497 /// This helper routine, in addition to updating the postorder sequence itself
498 /// will also update a map from SCCs to indices within that sequence.
499 ///
500 /// The sequence and the map must operate on pointers to the SCC type.
501 ///
502 /// Two callbacks must be provided. The first computes the subset of SCCs in
503 /// the postorder closed range from the source to the target which connect to
504 /// the source SCC via some (transitive) set of edges. The second computes the
505 /// subset of the same range which the target SCC connects to via some
506 /// (transitive) set of edges. Both callbacks should populate the set argument
507 /// provided.
508 template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT,
509           typename ComputeSourceConnectedSetCallableT,
510           typename ComputeTargetConnectedSetCallableT>
511 static iterator_range<typename PostorderSequenceT::iterator>
512 updatePostorderSequenceForEdgeInsertion(
513     SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs,
514     SCCIndexMapT &SCCIndices,
515     ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet,
516     ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) {
517   int SourceIdx = SCCIndices[&SourceSCC];
518   int TargetIdx = SCCIndices[&TargetSCC];
519   assert(SourceIdx < TargetIdx && "Cannot have equal indices here!");
520 
521   SmallPtrSet<SCCT *, 4> ConnectedSet;
522 
523   // Compute the SCCs which (transitively) reach the source.
524   ComputeSourceConnectedSet(ConnectedSet);
525 
526   // Partition the SCCs in this part of the port-order sequence so only SCCs
527   // connecting to the source remain between it and the target. This is
528   // a benign partition as it preserves postorder.
529   auto SourceI = std::stable_partition(
530       SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1,
531       [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); });
532   for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i)
533     SCCIndices.find(SCCs[i])->second = i;
534 
535   // If the target doesn't connect to the source, then we've corrected the
536   // post-order and there are no cycles formed.
537   if (!ConnectedSet.count(&TargetSCC)) {
538     assert(SourceI > (SCCs.begin() + SourceIdx) &&
539            "Must have moved the source to fix the post-order.");
540     assert(*std::prev(SourceI) == &TargetSCC &&
541            "Last SCC to move should have bene the target.");
542 
543     // Return an empty range at the target SCC indicating there is nothing to
544     // merge.
545     return make_range(std::prev(SourceI), std::prev(SourceI));
546   }
547 
548   assert(SCCs[TargetIdx] == &TargetSCC &&
549          "Should not have moved target if connected!");
550   SourceIdx = SourceI - SCCs.begin();
551   assert(SCCs[SourceIdx] == &SourceSCC &&
552          "Bad updated index computation for the source SCC!");
553 
554 
555   // See whether there are any remaining intervening SCCs between the source
556   // and target. If so we need to make sure they all are reachable form the
557   // target.
558   if (SourceIdx + 1 < TargetIdx) {
559     ConnectedSet.clear();
560     ComputeTargetConnectedSet(ConnectedSet);
561 
562     // Partition SCCs so that only SCCs reached from the target remain between
563     // the source and the target. This preserves postorder.
564     auto TargetI = std::stable_partition(
565         SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1,
566         [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); });
567     for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i)
568       SCCIndices.find(SCCs[i])->second = i;
569     TargetIdx = std::prev(TargetI) - SCCs.begin();
570     assert(SCCs[TargetIdx] == &TargetSCC &&
571            "Should always end with the target!");
572   }
573 
574   // At this point, we know that connecting source to target forms a cycle
575   // because target connects back to source, and we know that all of the SCCs
576   // between the source and target in the postorder sequence participate in that
577   // cycle.
578   return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx);
579 }
580 
581 bool
582 LazyCallGraph::RefSCC::switchInternalEdgeToCall(
583     Node &SourceN, Node &TargetN,
584     function_ref<void(ArrayRef<SCC *> MergeSCCs)> MergeCB) {
585   assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
586   SmallVector<SCC *, 1> DeletedSCCs;
587 
588 #ifdef EXPENSIVE_CHECKS
589   verify();
590   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
591 #endif
592 
593   SCC &SourceSCC = *G->lookupSCC(SourceN);
594   SCC &TargetSCC = *G->lookupSCC(TargetN);
595 
596   // If the two nodes are already part of the same SCC, we're also done as
597   // we've just added more connectivity.
598   if (&SourceSCC == &TargetSCC) {
599     SourceN->setEdgeKind(TargetN, Edge::Call);
600     return false; // No new cycle.
601   }
602 
603   // At this point we leverage the postorder list of SCCs to detect when the
604   // insertion of an edge changes the SCC structure in any way.
605   //
606   // First and foremost, we can eliminate the need for any changes when the
607   // edge is toward the beginning of the postorder sequence because all edges
608   // flow in that direction already. Thus adding a new one cannot form a cycle.
609   int SourceIdx = SCCIndices[&SourceSCC];
610   int TargetIdx = SCCIndices[&TargetSCC];
611   if (TargetIdx < SourceIdx) {
612     SourceN->setEdgeKind(TargetN, Edge::Call);
613     return false; // No new cycle.
614   }
615 
616   // Compute the SCCs which (transitively) reach the source.
617   auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
618 #ifdef EXPENSIVE_CHECKS
619     // Check that the RefSCC is still valid before computing this as the
620     // results will be nonsensical of we've broken its invariants.
621     verify();
622 #endif
623     ConnectedSet.insert(&SourceSCC);
624     auto IsConnected = [&](SCC &C) {
625       for (Node &N : C)
626         for (Edge &E : N->calls())
627           if (ConnectedSet.count(G->lookupSCC(E.getNode())))
628             return true;
629 
630       return false;
631     };
632 
633     for (SCC *C :
634          make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1))
635       if (IsConnected(*C))
636         ConnectedSet.insert(C);
637   };
638 
639   // Use a normal worklist to find which SCCs the target connects to. We still
640   // bound the search based on the range in the postorder list we care about,
641   // but because this is forward connectivity we just "recurse" through the
642   // edges.
643   auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
644 #ifdef EXPENSIVE_CHECKS
645     // Check that the RefSCC is still valid before computing this as the
646     // results will be nonsensical of we've broken its invariants.
647     verify();
648 #endif
649     ConnectedSet.insert(&TargetSCC);
650     SmallVector<SCC *, 4> Worklist;
651     Worklist.push_back(&TargetSCC);
652     do {
653       SCC &C = *Worklist.pop_back_val();
654       for (Node &N : C)
655         for (Edge &E : *N) {
656           if (!E.isCall())
657             continue;
658           SCC &EdgeC = *G->lookupSCC(E.getNode());
659           if (&EdgeC.getOuterRefSCC() != this)
660             // Not in this RefSCC...
661             continue;
662           if (SCCIndices.find(&EdgeC)->second <= SourceIdx)
663             // Not in the postorder sequence between source and target.
664             continue;
665 
666           if (ConnectedSet.insert(&EdgeC).second)
667             Worklist.push_back(&EdgeC);
668         }
669     } while (!Worklist.empty());
670   };
671 
672   // Use a generic helper to update the postorder sequence of SCCs and return
673   // a range of any SCCs connected into a cycle by inserting this edge. This
674   // routine will also take care of updating the indices into the postorder
675   // sequence.
676   auto MergeRange = updatePostorderSequenceForEdgeInsertion(
677       SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet,
678       ComputeTargetConnectedSet);
679 
680   // Run the user's callback on the merged SCCs before we actually merge them.
681   if (MergeCB)
682     MergeCB(makeArrayRef(MergeRange.begin(), MergeRange.end()));
683 
684   // If the merge range is empty, then adding the edge didn't actually form any
685   // new cycles. We're done.
686   if (MergeRange.empty()) {
687     // Now that the SCC structure is finalized, flip the kind to call.
688     SourceN->setEdgeKind(TargetN, Edge::Call);
689     return false; // No new cycle.
690   }
691 
692 #ifdef EXPENSIVE_CHECKS
693   // Before merging, check that the RefSCC remains valid after all the
694   // postorder updates.
695   verify();
696 #endif
697 
698   // Otherwise we need to merge all of the SCCs in the cycle into a single
699   // result SCC.
700   //
701   // NB: We merge into the target because all of these functions were already
702   // reachable from the target, meaning any SCC-wide properties deduced about it
703   // other than the set of functions within it will not have changed.
704   for (SCC *C : MergeRange) {
705     assert(C != &TargetSCC &&
706            "We merge *into* the target and shouldn't process it here!");
707     SCCIndices.erase(C);
708     TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end());
709     for (Node *N : C->Nodes)
710       G->SCCMap[N] = &TargetSCC;
711     C->clear();
712     DeletedSCCs.push_back(C);
713   }
714 
715   // Erase the merged SCCs from the list and update the indices of the
716   // remaining SCCs.
717   int IndexOffset = MergeRange.end() - MergeRange.begin();
718   auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end());
719   for (SCC *C : make_range(EraseEnd, SCCs.end()))
720     SCCIndices[C] -= IndexOffset;
721 
722   // Now that the SCC structure is finalized, flip the kind to call.
723   SourceN->setEdgeKind(TargetN, Edge::Call);
724 
725   // And we're done, but we did form a new cycle.
726   return true;
727 }
728 
729 void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node &SourceN,
730                                                            Node &TargetN) {
731   assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
732 
733 #ifdef EXPENSIVE_CHECKS
734   verify();
735   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
736 #endif
737 
738   assert(G->lookupRefSCC(SourceN) == this &&
739          "Source must be in this RefSCC.");
740   assert(G->lookupRefSCC(TargetN) == this &&
741          "Target must be in this RefSCC.");
742   assert(G->lookupSCC(SourceN) != G->lookupSCC(TargetN) &&
743          "Source and Target must be in separate SCCs for this to be trivial!");
744 
745   // Set the edge kind.
746   SourceN->setEdgeKind(TargetN, Edge::Ref);
747 }
748 
749 iterator_range<LazyCallGraph::RefSCC::iterator>
750 LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) {
751   assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
752 
753 #ifdef EXPENSIVE_CHECKS
754   verify();
755   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
756 #endif
757 
758   assert(G->lookupRefSCC(SourceN) == this &&
759          "Source must be in this RefSCC.");
760   assert(G->lookupRefSCC(TargetN) == this &&
761          "Target must be in this RefSCC.");
762 
763   SCC &TargetSCC = *G->lookupSCC(TargetN);
764   assert(G->lookupSCC(SourceN) == &TargetSCC && "Source and Target must be in "
765                                                 "the same SCC to require the "
766                                                 "full CG update.");
767 
768   // Set the edge kind.
769   SourceN->setEdgeKind(TargetN, Edge::Ref);
770 
771   // Otherwise we are removing a call edge from a single SCC. This may break
772   // the cycle. In order to compute the new set of SCCs, we need to do a small
773   // DFS over the nodes within the SCC to form any sub-cycles that remain as
774   // distinct SCCs and compute a postorder over the resulting SCCs.
775   //
776   // However, we specially handle the target node. The target node is known to
777   // reach all other nodes in the original SCC by definition. This means that
778   // we want the old SCC to be replaced with an SCC containing that node as it
779   // will be the root of whatever SCC DAG results from the DFS. Assumptions
780   // about an SCC such as the set of functions called will continue to hold,
781   // etc.
782 
783   SCC &OldSCC = TargetSCC;
784   SmallVector<std::pair<Node *, EdgeSequence::call_iterator>, 16> DFSStack;
785   SmallVector<Node *, 16> PendingSCCStack;
786   SmallVector<SCC *, 4> NewSCCs;
787 
788   // Prepare the nodes for a fresh DFS.
789   SmallVector<Node *, 16> Worklist;
790   Worklist.swap(OldSCC.Nodes);
791   for (Node *N : Worklist) {
792     N->DFSNumber = N->LowLink = 0;
793     G->SCCMap.erase(N);
794   }
795 
796   // Force the target node to be in the old SCC. This also enables us to take
797   // a very significant short-cut in the standard Tarjan walk to re-form SCCs
798   // below: whenever we build an edge that reaches the target node, we know
799   // that the target node eventually connects back to all other nodes in our
800   // walk. As a consequence, we can detect and handle participants in that
801   // cycle without walking all the edges that form this connection, and instead
802   // by relying on the fundamental guarantee coming into this operation (all
803   // nodes are reachable from the target due to previously forming an SCC).
804   TargetN.DFSNumber = TargetN.LowLink = -1;
805   OldSCC.Nodes.push_back(&TargetN);
806   G->SCCMap[&TargetN] = &OldSCC;
807 
808   // Scan down the stack and DFS across the call edges.
809   for (Node *RootN : Worklist) {
810     assert(DFSStack.empty() &&
811            "Cannot begin a new root with a non-empty DFS stack!");
812     assert(PendingSCCStack.empty() &&
813            "Cannot begin a new root with pending nodes for an SCC!");
814 
815     // Skip any nodes we've already reached in the DFS.
816     if (RootN->DFSNumber != 0) {
817       assert(RootN->DFSNumber == -1 &&
818              "Shouldn't have any mid-DFS root nodes!");
819       continue;
820     }
821 
822     RootN->DFSNumber = RootN->LowLink = 1;
823     int NextDFSNumber = 2;
824 
825     DFSStack.push_back({RootN, (*RootN)->call_begin()});
826     do {
827       Node *N;
828       EdgeSequence::call_iterator I;
829       std::tie(N, I) = DFSStack.pop_back_val();
830       auto E = (*N)->call_end();
831       while (I != E) {
832         Node &ChildN = I->getNode();
833         if (ChildN.DFSNumber == 0) {
834           // We haven't yet visited this child, so descend, pushing the current
835           // node onto the stack.
836           DFSStack.push_back({N, I});
837 
838           assert(!G->SCCMap.count(&ChildN) &&
839                  "Found a node with 0 DFS number but already in an SCC!");
840           ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
841           N = &ChildN;
842           I = (*N)->call_begin();
843           E = (*N)->call_end();
844           continue;
845         }
846 
847         // Check for the child already being part of some component.
848         if (ChildN.DFSNumber == -1) {
849           if (G->lookupSCC(ChildN) == &OldSCC) {
850             // If the child is part of the old SCC, we know that it can reach
851             // every other node, so we have formed a cycle. Pull the entire DFS
852             // and pending stacks into it. See the comment above about setting
853             // up the old SCC for why we do this.
854             int OldSize = OldSCC.size();
855             OldSCC.Nodes.push_back(N);
856             OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end());
857             PendingSCCStack.clear();
858             while (!DFSStack.empty())
859               OldSCC.Nodes.push_back(DFSStack.pop_back_val().first);
860             for (Node &N : drop_begin(OldSCC, OldSize)) {
861               N.DFSNumber = N.LowLink = -1;
862               G->SCCMap[&N] = &OldSCC;
863             }
864             N = nullptr;
865             break;
866           }
867 
868           // If the child has already been added to some child component, it
869           // couldn't impact the low-link of this parent because it isn't
870           // connected, and thus its low-link isn't relevant so skip it.
871           ++I;
872           continue;
873         }
874 
875         // Track the lowest linked child as the lowest link for this node.
876         assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
877         if (ChildN.LowLink < N->LowLink)
878           N->LowLink = ChildN.LowLink;
879 
880         // Move to the next edge.
881         ++I;
882       }
883       if (!N)
884         // Cleared the DFS early, start another round.
885         break;
886 
887       // We've finished processing N and its descendants, put it on our pending
888       // SCC stack to eventually get merged into an SCC of nodes.
889       PendingSCCStack.push_back(N);
890 
891       // If this node is linked to some lower entry, continue walking up the
892       // stack.
893       if (N->LowLink != N->DFSNumber)
894         continue;
895 
896       // Otherwise, we've completed an SCC. Append it to our post order list of
897       // SCCs.
898       int RootDFSNumber = N->DFSNumber;
899       // Find the range of the node stack by walking down until we pass the
900       // root DFS number.
901       auto SCCNodes = make_range(
902           PendingSCCStack.rbegin(),
903           find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
904             return N->DFSNumber < RootDFSNumber;
905           }));
906 
907       // Form a new SCC out of these nodes and then clear them off our pending
908       // stack.
909       NewSCCs.push_back(G->createSCC(*this, SCCNodes));
910       for (Node &N : *NewSCCs.back()) {
911         N.DFSNumber = N.LowLink = -1;
912         G->SCCMap[&N] = NewSCCs.back();
913       }
914       PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
915     } while (!DFSStack.empty());
916   }
917 
918   // Insert the remaining SCCs before the old one. The old SCC can reach all
919   // other SCCs we form because it contains the target node of the removed edge
920   // of the old SCC. This means that we will have edges into all of the new
921   // SCCs, which means the old one must come last for postorder.
922   int OldIdx = SCCIndices[&OldSCC];
923   SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end());
924 
925   // Update the mapping from SCC* to index to use the new SCC*s, and remove the
926   // old SCC from the mapping.
927   for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx)
928     SCCIndices[SCCs[Idx]] = Idx;
929 
930   return make_range(SCCs.begin() + OldIdx,
931                     SCCs.begin() + OldIdx + NewSCCs.size());
932 }
933 
934 void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN,
935                                                      Node &TargetN) {
936   assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
937 
938   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
939   assert(G->lookupRefSCC(TargetN) != this &&
940          "Target must not be in this RefSCC.");
941 #ifdef EXPENSIVE_CHECKS
942   assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
943          "Target must be a descendant of the Source.");
944 #endif
945 
946   // Edges between RefSCCs are the same regardless of call or ref, so we can
947   // just flip the edge here.
948   SourceN->setEdgeKind(TargetN, Edge::Call);
949 
950 #ifdef EXPENSIVE_CHECKS
951   verify();
952 #endif
953 }
954 
955 void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN,
956                                                     Node &TargetN) {
957   assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
958 
959   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
960   assert(G->lookupRefSCC(TargetN) != this &&
961          "Target must not be in this RefSCC.");
962 #ifdef EXPENSIVE_CHECKS
963   assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
964          "Target must be a descendant of the Source.");
965 #endif
966 
967   // Edges between RefSCCs are the same regardless of call or ref, so we can
968   // just flip the edge here.
969   SourceN->setEdgeKind(TargetN, Edge::Ref);
970 
971 #ifdef EXPENSIVE_CHECKS
972   verify();
973 #endif
974 }
975 
976 void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN,
977                                                   Node &TargetN) {
978   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
979   assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
980 
981   SourceN->insertEdgeInternal(TargetN, Edge::Ref);
982 
983 #ifdef EXPENSIVE_CHECKS
984   verify();
985 #endif
986 }
987 
988 void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN,
989                                                Edge::Kind EK) {
990   // First insert it into the caller.
991   SourceN->insertEdgeInternal(TargetN, EK);
992 
993   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
994 
995   assert(G->lookupRefSCC(TargetN) != this &&
996          "Target must not be in this RefSCC.");
997 #ifdef EXPENSIVE_CHECKS
998   assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
999          "Target must be a descendant of the Source.");
1000 #endif
1001 
1002 #ifdef EXPENSIVE_CHECKS
1003   verify();
1004 #endif
1005 }
1006 
1007 SmallVector<LazyCallGraph::RefSCC *, 1>
1008 LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) {
1009   assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
1010   RefSCC &SourceC = *G->lookupRefSCC(SourceN);
1011   assert(&SourceC != this && "Source must not be in this RefSCC.");
1012 #ifdef EXPENSIVE_CHECKS
1013   assert(SourceC.isDescendantOf(*this) &&
1014          "Source must be a descendant of the Target.");
1015 #endif
1016 
1017   SmallVector<RefSCC *, 1> DeletedRefSCCs;
1018 
1019 #ifdef EXPENSIVE_CHECKS
1020   verify();
1021   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
1022 #endif
1023 
1024   int SourceIdx = G->RefSCCIndices[&SourceC];
1025   int TargetIdx = G->RefSCCIndices[this];
1026   assert(SourceIdx < TargetIdx &&
1027          "Postorder list doesn't see edge as incoming!");
1028 
1029   // Compute the RefSCCs which (transitively) reach the source. We do this by
1030   // working backwards from the source using the parent set in each RefSCC,
1031   // skipping any RefSCCs that don't fall in the postorder range. This has the
1032   // advantage of walking the sparser parent edge (in high fan-out graphs) but
1033   // more importantly this removes examining all forward edges in all RefSCCs
1034   // within the postorder range which aren't in fact connected. Only connected
1035   // RefSCCs (and their edges) are visited here.
1036   auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
1037     Set.insert(&SourceC);
1038     auto IsConnected = [&](RefSCC &RC) {
1039       for (SCC &C : RC)
1040         for (Node &N : C)
1041           for (Edge &E : *N)
1042             if (Set.count(G->lookupRefSCC(E.getNode())))
1043               return true;
1044 
1045       return false;
1046     };
1047 
1048     for (RefSCC *C : make_range(G->PostOrderRefSCCs.begin() + SourceIdx + 1,
1049                                 G->PostOrderRefSCCs.begin() + TargetIdx + 1))
1050       if (IsConnected(*C))
1051         Set.insert(C);
1052   };
1053 
1054   // Use a normal worklist to find which SCCs the target connects to. We still
1055   // bound the search based on the range in the postorder list we care about,
1056   // but because this is forward connectivity we just "recurse" through the
1057   // edges.
1058   auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
1059     Set.insert(this);
1060     SmallVector<RefSCC *, 4> Worklist;
1061     Worklist.push_back(this);
1062     do {
1063       RefSCC &RC = *Worklist.pop_back_val();
1064       for (SCC &C : RC)
1065         for (Node &N : C)
1066           for (Edge &E : *N) {
1067             RefSCC &EdgeRC = *G->lookupRefSCC(E.getNode());
1068             if (G->getRefSCCIndex(EdgeRC) <= SourceIdx)
1069               // Not in the postorder sequence between source and target.
1070               continue;
1071 
1072             if (Set.insert(&EdgeRC).second)
1073               Worklist.push_back(&EdgeRC);
1074           }
1075     } while (!Worklist.empty());
1076   };
1077 
1078   // Use a generic helper to update the postorder sequence of RefSCCs and return
1079   // a range of any RefSCCs connected into a cycle by inserting this edge. This
1080   // routine will also take care of updating the indices into the postorder
1081   // sequence.
1082   iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange =
1083       updatePostorderSequenceForEdgeInsertion(
1084           SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices,
1085           ComputeSourceConnectedSet, ComputeTargetConnectedSet);
1086 
1087   // Build a set so we can do fast tests for whether a RefSCC will end up as
1088   // part of the merged RefSCC.
1089   SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end());
1090 
1091   // This RefSCC will always be part of that set, so just insert it here.
1092   MergeSet.insert(this);
1093 
1094   // Now that we have identified all of the SCCs which need to be merged into
1095   // a connected set with the inserted edge, merge all of them into this SCC.
1096   SmallVector<SCC *, 16> MergedSCCs;
1097   int SCCIndex = 0;
1098   for (RefSCC *RC : MergeRange) {
1099     assert(RC != this && "We're merging into the target RefSCC, so it "
1100                          "shouldn't be in the range.");
1101 
1102     // Walk the inner SCCs to update their up-pointer and walk all the edges to
1103     // update any parent sets.
1104     // FIXME: We should try to find a way to avoid this (rather expensive) edge
1105     // walk by updating the parent sets in some other manner.
1106     for (SCC &InnerC : *RC) {
1107       InnerC.OuterRefSCC = this;
1108       SCCIndices[&InnerC] = SCCIndex++;
1109       for (Node &N : InnerC)
1110         G->SCCMap[&N] = &InnerC;
1111     }
1112 
1113     // Now merge in the SCCs. We can actually move here so try to reuse storage
1114     // the first time through.
1115     if (MergedSCCs.empty())
1116       MergedSCCs = std::move(RC->SCCs);
1117     else
1118       MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end());
1119     RC->SCCs.clear();
1120     DeletedRefSCCs.push_back(RC);
1121   }
1122 
1123   // Append our original SCCs to the merged list and move it into place.
1124   for (SCC &InnerC : *this)
1125     SCCIndices[&InnerC] = SCCIndex++;
1126   MergedSCCs.append(SCCs.begin(), SCCs.end());
1127   SCCs = std::move(MergedSCCs);
1128 
1129   // Remove the merged away RefSCCs from the post order sequence.
1130   for (RefSCC *RC : MergeRange)
1131     G->RefSCCIndices.erase(RC);
1132   int IndexOffset = MergeRange.end() - MergeRange.begin();
1133   auto EraseEnd =
1134       G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end());
1135   for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end()))
1136     G->RefSCCIndices[RC] -= IndexOffset;
1137 
1138   // At this point we have a merged RefSCC with a post-order SCCs list, just
1139   // connect the nodes to form the new edge.
1140   SourceN->insertEdgeInternal(TargetN, Edge::Ref);
1141 
1142   // We return the list of SCCs which were merged so that callers can
1143   // invalidate any data they have associated with those SCCs. Note that these
1144   // SCCs are no longer in an interesting state (they are totally empty) but
1145   // the pointers will remain stable for the life of the graph itself.
1146   return DeletedRefSCCs;
1147 }
1148 
1149 void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) {
1150   assert(G->lookupRefSCC(SourceN) == this &&
1151          "The source must be a member of this RefSCC.");
1152   assert(G->lookupRefSCC(TargetN) != this &&
1153          "The target must not be a member of this RefSCC");
1154 
1155 #ifdef EXPENSIVE_CHECKS
1156   verify();
1157   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
1158 #endif
1159 
1160   // First remove it from the node.
1161   bool Removed = SourceN->removeEdgeInternal(TargetN);
1162   (void)Removed;
1163   assert(Removed && "Target not in the edge set for this caller?");
1164 }
1165 
1166 SmallVector<LazyCallGraph::RefSCC *, 1>
1167 LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN,
1168                                              ArrayRef<Node *> TargetNs) {
1169   // We return a list of the resulting *new* RefSCCs in post-order.
1170   SmallVector<RefSCC *, 1> Result;
1171 
1172 #ifdef EXPENSIVE_CHECKS
1173   // Verify the RefSCC is valid to start with and that either we return an empty
1174   // list of result RefSCCs and this RefSCC remains valid, or we return new
1175   // RefSCCs and this RefSCC is dead.
1176   verify();
1177   auto VerifyOnExit = make_scope_exit([&]() {
1178     // If we didn't replace our RefSCC with new ones, check that this one
1179     // remains valid.
1180     if (G)
1181       verify();
1182   });
1183 #endif
1184 
1185   // First remove the actual edges.
1186   for (Node *TargetN : TargetNs) {
1187     assert(!(*SourceN)[*TargetN].isCall() &&
1188            "Cannot remove a call edge, it must first be made a ref edge");
1189 
1190     bool Removed = SourceN->removeEdgeInternal(*TargetN);
1191     (void)Removed;
1192     assert(Removed && "Target not in the edge set for this caller?");
1193   }
1194 
1195   // Direct self references don't impact the ref graph at all.
1196   if (llvm::all_of(TargetNs,
1197                    [&](Node *TargetN) { return &SourceN == TargetN; }))
1198     return Result;
1199 
1200   // If all targets are in the same SCC as the source, because no call edges
1201   // were removed there is no RefSCC structure change.
1202   SCC &SourceC = *G->lookupSCC(SourceN);
1203   if (llvm::all_of(TargetNs, [&](Node *TargetN) {
1204         return G->lookupSCC(*TargetN) == &SourceC;
1205       }))
1206     return Result;
1207 
1208   // We build somewhat synthetic new RefSCCs by providing a postorder mapping
1209   // for each inner SCC. We store these inside the low-link field of the nodes
1210   // rather than associated with SCCs because this saves a round-trip through
1211   // the node->SCC map and in the common case, SCCs are small. We will verify
1212   // that we always give the same number to every node in the SCC such that
1213   // these are equivalent.
1214   int PostOrderNumber = 0;
1215 
1216   // Reset all the other nodes to prepare for a DFS over them, and add them to
1217   // our worklist.
1218   SmallVector<Node *, 8> Worklist;
1219   for (SCC *C : SCCs) {
1220     for (Node &N : *C)
1221       N.DFSNumber = N.LowLink = 0;
1222 
1223     Worklist.append(C->Nodes.begin(), C->Nodes.end());
1224   }
1225 
1226   // Track the number of nodes in this RefSCC so that we can quickly recognize
1227   // an important special case of the edge removal not breaking the cycle of
1228   // this RefSCC.
1229   const int NumRefSCCNodes = Worklist.size();
1230 
1231   SmallVector<std::pair<Node *, EdgeSequence::iterator>, 4> DFSStack;
1232   SmallVector<Node *, 4> PendingRefSCCStack;
1233   do {
1234     assert(DFSStack.empty() &&
1235            "Cannot begin a new root with a non-empty DFS stack!");
1236     assert(PendingRefSCCStack.empty() &&
1237            "Cannot begin a new root with pending nodes for an SCC!");
1238 
1239     Node *RootN = Worklist.pop_back_val();
1240     // Skip any nodes we've already reached in the DFS.
1241     if (RootN->DFSNumber != 0) {
1242       assert(RootN->DFSNumber == -1 &&
1243              "Shouldn't have any mid-DFS root nodes!");
1244       continue;
1245     }
1246 
1247     RootN->DFSNumber = RootN->LowLink = 1;
1248     int NextDFSNumber = 2;
1249 
1250     DFSStack.push_back({RootN, (*RootN)->begin()});
1251     do {
1252       Node *N;
1253       EdgeSequence::iterator I;
1254       std::tie(N, I) = DFSStack.pop_back_val();
1255       auto E = (*N)->end();
1256 
1257       assert(N->DFSNumber != 0 && "We should always assign a DFS number "
1258                                   "before processing a node.");
1259 
1260       while (I != E) {
1261         Node &ChildN = I->getNode();
1262         if (ChildN.DFSNumber == 0) {
1263           // Mark that we should start at this child when next this node is the
1264           // top of the stack. We don't start at the next child to ensure this
1265           // child's lowlink is reflected.
1266           DFSStack.push_back({N, I});
1267 
1268           // Continue, resetting to the child node.
1269           ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
1270           N = &ChildN;
1271           I = ChildN->begin();
1272           E = ChildN->end();
1273           continue;
1274         }
1275         if (ChildN.DFSNumber == -1) {
1276           // If this child isn't currently in this RefSCC, no need to process
1277           // it.
1278           ++I;
1279           continue;
1280         }
1281 
1282         // Track the lowest link of the children, if any are still in the stack.
1283         // Any child not on the stack will have a LowLink of -1.
1284         assert(ChildN.LowLink != 0 &&
1285                "Low-link must not be zero with a non-zero DFS number.");
1286         if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
1287           N->LowLink = ChildN.LowLink;
1288         ++I;
1289       }
1290 
1291       // We've finished processing N and its descendants, put it on our pending
1292       // stack to eventually get merged into a RefSCC.
1293       PendingRefSCCStack.push_back(N);
1294 
1295       // If this node is linked to some lower entry, continue walking up the
1296       // stack.
1297       if (N->LowLink != N->DFSNumber) {
1298         assert(!DFSStack.empty() &&
1299                "We never found a viable root for a RefSCC to pop off!");
1300         continue;
1301       }
1302 
1303       // Otherwise, form a new RefSCC from the top of the pending node stack.
1304       int RefSCCNumber = PostOrderNumber++;
1305       int RootDFSNumber = N->DFSNumber;
1306 
1307       // Find the range of the node stack by walking down until we pass the
1308       // root DFS number. Update the DFS numbers and low link numbers in the
1309       // process to avoid re-walking this list where possible.
1310       auto StackRI = find_if(reverse(PendingRefSCCStack), [&](Node *N) {
1311         if (N->DFSNumber < RootDFSNumber)
1312           // We've found the bottom.
1313           return true;
1314 
1315         // Update this node and keep scanning.
1316         N->DFSNumber = -1;
1317         // Save the post-order number in the lowlink field so that we can use
1318         // it to map SCCs into new RefSCCs after we finish the DFS.
1319         N->LowLink = RefSCCNumber;
1320         return false;
1321       });
1322       auto RefSCCNodes = make_range(StackRI.base(), PendingRefSCCStack.end());
1323 
1324       // If we find a cycle containing all nodes originally in this RefSCC then
1325       // the removal hasn't changed the structure at all. This is an important
1326       // special case and we can directly exit the entire routine more
1327       // efficiently as soon as we discover it.
1328       if (llvm::size(RefSCCNodes) == NumRefSCCNodes) {
1329         // Clear out the low link field as we won't need it.
1330         for (Node *N : RefSCCNodes)
1331           N->LowLink = -1;
1332         // Return the empty result immediately.
1333         return Result;
1334       }
1335 
1336       // We've already marked the nodes internally with the RefSCC number so
1337       // just clear them off the stack and continue.
1338       PendingRefSCCStack.erase(RefSCCNodes.begin(), PendingRefSCCStack.end());
1339     } while (!DFSStack.empty());
1340 
1341     assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
1342     assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!");
1343   } while (!Worklist.empty());
1344 
1345   assert(PostOrderNumber > 1 &&
1346          "Should never finish the DFS when the existing RefSCC remains valid!");
1347 
1348   // Otherwise we create a collection of new RefSCC nodes and build
1349   // a radix-sort style map from postorder number to these new RefSCCs. We then
1350   // append SCCs to each of these RefSCCs in the order they occurred in the
1351   // original SCCs container.
1352   for (int i = 0; i < PostOrderNumber; ++i)
1353     Result.push_back(G->createRefSCC(*G));
1354 
1355   // Insert the resulting postorder sequence into the global graph postorder
1356   // sequence before the current RefSCC in that sequence, and then remove the
1357   // current one.
1358   //
1359   // FIXME: It'd be nice to change the APIs so that we returned an iterator
1360   // range over the global postorder sequence and generally use that sequence
1361   // rather than building a separate result vector here.
1362   int Idx = G->getRefSCCIndex(*this);
1363   G->PostOrderRefSCCs.erase(G->PostOrderRefSCCs.begin() + Idx);
1364   G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx, Result.begin(),
1365                              Result.end());
1366   for (int i : seq<int>(Idx, G->PostOrderRefSCCs.size()))
1367     G->RefSCCIndices[G->PostOrderRefSCCs[i]] = i;
1368 
1369   for (SCC *C : SCCs) {
1370     // We store the SCC number in the node's low-link field above.
1371     int SCCNumber = C->begin()->LowLink;
1372     // Clear out all of the SCC's node's low-link fields now that we're done
1373     // using them as side-storage.
1374     for (Node &N : *C) {
1375       assert(N.LowLink == SCCNumber &&
1376              "Cannot have different numbers for nodes in the same SCC!");
1377       N.LowLink = -1;
1378     }
1379 
1380     RefSCC &RC = *Result[SCCNumber];
1381     int SCCIndex = RC.SCCs.size();
1382     RC.SCCs.push_back(C);
1383     RC.SCCIndices[C] = SCCIndex;
1384     C->OuterRefSCC = &RC;
1385   }
1386 
1387   // Now that we've moved things into the new RefSCCs, clear out our current
1388   // one.
1389   G = nullptr;
1390   SCCs.clear();
1391   SCCIndices.clear();
1392 
1393 #ifdef EXPENSIVE_CHECKS
1394   // Verify the new RefSCCs we've built.
1395   for (RefSCC *RC : Result)
1396     RC->verify();
1397 #endif
1398 
1399   // Return the new list of SCCs.
1400   return Result;
1401 }
1402 
1403 void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN,
1404                                                   Node &TargetN) {
1405 #ifdef EXPENSIVE_CHECKS
1406   auto ExitVerifier = make_scope_exit([this] { verify(); });
1407 
1408   // Check that we aren't breaking some invariants of the SCC graph. Note that
1409   // this is quadratic in the number of edges in the call graph!
1410   SCC &SourceC = *G->lookupSCC(SourceN);
1411   SCC &TargetC = *G->lookupSCC(TargetN);
1412   if (&SourceC != &TargetC)
1413     assert(SourceC.isAncestorOf(TargetC) &&
1414            "Call edge is not trivial in the SCC graph!");
1415 #endif
1416 
1417   // First insert it into the source or find the existing edge.
1418   auto InsertResult =
1419       SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()});
1420   if (!InsertResult.second) {
1421     // Already an edge, just update it.
1422     Edge &E = SourceN->Edges[InsertResult.first->second];
1423     if (E.isCall())
1424       return; // Nothing to do!
1425     E.setKind(Edge::Call);
1426   } else {
1427     // Create the new edge.
1428     SourceN->Edges.emplace_back(TargetN, Edge::Call);
1429   }
1430 }
1431 
1432 void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) {
1433 #ifdef EXPENSIVE_CHECKS
1434   auto ExitVerifier = make_scope_exit([this] { verify(); });
1435 
1436   // Check that we aren't breaking some invariants of the RefSCC graph.
1437   RefSCC &SourceRC = *G->lookupRefSCC(SourceN);
1438   RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
1439   if (&SourceRC != &TargetRC)
1440     assert(SourceRC.isAncestorOf(TargetRC) &&
1441            "Ref edge is not trivial in the RefSCC graph!");
1442 #endif
1443 
1444   // First insert it into the source or find the existing edge.
1445   auto InsertResult =
1446       SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()});
1447   if (!InsertResult.second)
1448     // Already an edge, we're done.
1449     return;
1450 
1451   // Create the new edge.
1452   SourceN->Edges.emplace_back(TargetN, Edge::Ref);
1453 }
1454 
1455 void LazyCallGraph::RefSCC::replaceNodeFunction(Node &N, Function &NewF) {
1456   Function &OldF = N.getFunction();
1457 
1458 #ifdef EXPENSIVE_CHECKS
1459   auto ExitVerifier = make_scope_exit([this] { verify(); });
1460 
1461   assert(G->lookupRefSCC(N) == this &&
1462          "Cannot replace the function of a node outside this RefSCC.");
1463 
1464   assert(G->NodeMap.find(&NewF) == G->NodeMap.end() &&
1465          "Must not have already walked the new function!'");
1466 
1467   // It is important that this replacement not introduce graph changes so we
1468   // insist that the caller has already removed every use of the original
1469   // function and that all uses of the new function correspond to existing
1470   // edges in the graph. The common and expected way to use this is when
1471   // replacing the function itself in the IR without changing the call graph
1472   // shape and just updating the analysis based on that.
1473   assert(&OldF != &NewF && "Cannot replace a function with itself!");
1474   assert(OldF.use_empty() &&
1475          "Must have moved all uses from the old function to the new!");
1476 #endif
1477 
1478   N.replaceFunction(NewF);
1479 
1480   // Update various call graph maps.
1481   G->NodeMap.erase(&OldF);
1482   G->NodeMap[&NewF] = &N;
1483 }
1484 
1485 void LazyCallGraph::insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK) {
1486   assert(SCCMap.empty() &&
1487          "This method cannot be called after SCCs have been formed!");
1488 
1489   return SourceN->insertEdgeInternal(TargetN, EK);
1490 }
1491 
1492 void LazyCallGraph::removeEdge(Node &SourceN, Node &TargetN) {
1493   assert(SCCMap.empty() &&
1494          "This method cannot be called after SCCs have been formed!");
1495 
1496   bool Removed = SourceN->removeEdgeInternal(TargetN);
1497   (void)Removed;
1498   assert(Removed && "Target not in the edge set for this caller?");
1499 }
1500 
1501 void LazyCallGraph::removeDeadFunction(Function &F) {
1502   // FIXME: This is unnecessarily restrictive. We should be able to remove
1503   // functions which recursively call themselves.
1504   assert(F.hasZeroLiveUses() &&
1505          "This routine should only be called on trivially dead functions!");
1506 
1507   // We shouldn't remove library functions as they are never really dead while
1508   // the call graph is in use -- every function definition refers to them.
1509   assert(!isLibFunction(F) &&
1510          "Must not remove lib functions from the call graph!");
1511 
1512   auto NI = NodeMap.find(&F);
1513   if (NI == NodeMap.end())
1514     // Not in the graph at all!
1515     return;
1516 
1517   Node &N = *NI->second;
1518   NodeMap.erase(NI);
1519 
1520   // Remove this from the entry edges if present.
1521   EntryEdges.removeEdgeInternal(N);
1522 
1523   // Cannot remove a function which has yet to be visited in the DFS walk, so
1524   // if we have a node at all then we must have an SCC and RefSCC.
1525   auto CI = SCCMap.find(&N);
1526   assert(CI != SCCMap.end() &&
1527          "Tried to remove a node without an SCC after DFS walk started!");
1528   SCC &C = *CI->second;
1529   SCCMap.erase(CI);
1530   RefSCC &RC = C.getOuterRefSCC();
1531 
1532   // This node must be the only member of its SCC as it has no callers, and
1533   // that SCC must be the only member of a RefSCC as it has no references.
1534   // Validate these properties first.
1535   assert(C.size() == 1 && "Dead functions must be in a singular SCC");
1536   assert(RC.size() == 1 && "Dead functions must be in a singular RefSCC");
1537 
1538   // Finally clear out all the data structures from the node down through the
1539   // components. postorder_ref_scc_iterator will skip empty RefSCCs, so no need
1540   // to adjust LazyCallGraph data structures.
1541   N.clear();
1542   N.G = nullptr;
1543   N.F = nullptr;
1544   C.clear();
1545   RC.clear();
1546   RC.G = nullptr;
1547 
1548   // Nothing to delete as all the objects are allocated in stable bump pointer
1549   // allocators.
1550 }
1551 
1552 // Gets the Edge::Kind from one function to another by looking at the function's
1553 // instructions. Asserts if there is no edge.
1554 // Useful for determining what type of edge should exist between functions when
1555 // the edge hasn't been created yet.
1556 static LazyCallGraph::Edge::Kind getEdgeKind(Function &OriginalFunction,
1557                                              Function &NewFunction) {
1558   // In release builds, assume that if there are no direct calls to the new
1559   // function, then there is a ref edge. In debug builds, keep track of
1560   // references to assert that there is actually a ref edge if there is no call
1561   // edge.
1562 #ifndef NDEBUG
1563   SmallVector<Constant *, 16> Worklist;
1564   SmallPtrSet<Constant *, 16> Visited;
1565 #endif
1566 
1567   for (Instruction &I : instructions(OriginalFunction)) {
1568     if (auto *CB = dyn_cast<CallBase>(&I)) {
1569       if (Function *Callee = CB->getCalledFunction()) {
1570         if (Callee == &NewFunction)
1571           return LazyCallGraph::Edge::Kind::Call;
1572       }
1573     }
1574 #ifndef NDEBUG
1575     for (Value *Op : I.operand_values()) {
1576       if (Constant *C = dyn_cast<Constant>(Op)) {
1577         if (Visited.insert(C).second)
1578           Worklist.push_back(C);
1579       }
1580     }
1581 #endif
1582   }
1583 
1584 #ifndef NDEBUG
1585   bool FoundNewFunction = false;
1586   LazyCallGraph::visitReferences(Worklist, Visited, [&](Function &F) {
1587     if (&F == &NewFunction)
1588       FoundNewFunction = true;
1589   });
1590   assert(FoundNewFunction && "No edge from original function to new function");
1591 #endif
1592 
1593   return LazyCallGraph::Edge::Kind::Ref;
1594 }
1595 
1596 void LazyCallGraph::addSplitFunction(Function &OriginalFunction,
1597                                      Function &NewFunction) {
1598   assert(lookup(OriginalFunction) &&
1599          "Original function's node should already exist");
1600   Node &OriginalN = get(OriginalFunction);
1601   SCC *OriginalC = lookupSCC(OriginalN);
1602   RefSCC *OriginalRC = lookupRefSCC(OriginalN);
1603 
1604 #ifdef EXPENSIVE_CHECKS
1605   OriginalRC->verify();
1606   auto VerifyOnExit = make_scope_exit([&]() { OriginalRC->verify(); });
1607 #endif
1608 
1609   assert(!lookup(NewFunction) &&
1610          "New function's node should not already exist");
1611   Node &NewN = initNode(NewFunction);
1612 
1613   Edge::Kind EK = getEdgeKind(OriginalFunction, NewFunction);
1614 
1615   SCC *NewC = nullptr;
1616   for (Edge &E : *NewN) {
1617     Node &EN = E.getNode();
1618     if (EK == Edge::Kind::Call && E.isCall() && lookupSCC(EN) == OriginalC) {
1619       // If the edge to the new function is a call edge and there is a call edge
1620       // from the new function to any function in the original function's SCC,
1621       // it is in the same SCC (and RefSCC) as the original function.
1622       NewC = OriginalC;
1623       NewC->Nodes.push_back(&NewN);
1624       break;
1625     }
1626   }
1627 
1628   if (!NewC) {
1629     for (Edge &E : *NewN) {
1630       Node &EN = E.getNode();
1631       if (lookupRefSCC(EN) == OriginalRC) {
1632         // If there is any edge from the new function to any function in the
1633         // original function's RefSCC, it is in the same RefSCC as the original
1634         // function but a new SCC.
1635         RefSCC *NewRC = OriginalRC;
1636         NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN}));
1637 
1638         // The new function's SCC is not the same as the original function's
1639         // SCC, since that case was handled earlier. If the edge from the
1640         // original function to the new function was a call edge, then we need
1641         // to insert the newly created function's SCC before the original
1642         // function's SCC. Otherwise either the new SCC comes after the original
1643         // function's SCC, or it doesn't matter, and in both cases we can add it
1644         // to the very end.
1645         int InsertIndex = EK == Edge::Kind::Call ? NewRC->SCCIndices[OriginalC]
1646                                                  : NewRC->SCCIndices.size();
1647         NewRC->SCCs.insert(NewRC->SCCs.begin() + InsertIndex, NewC);
1648         for (int I = InsertIndex, Size = NewRC->SCCs.size(); I < Size; ++I)
1649           NewRC->SCCIndices[NewRC->SCCs[I]] = I;
1650 
1651         break;
1652       }
1653     }
1654   }
1655 
1656   if (!NewC) {
1657     // We didn't find any edges back to the original function's RefSCC, so the
1658     // new function belongs in a new RefSCC. The new RefSCC goes before the
1659     // original function's RefSCC.
1660     RefSCC *NewRC = createRefSCC(*this);
1661     NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN}));
1662     NewRC->SCCIndices[NewC] = 0;
1663     NewRC->SCCs.push_back(NewC);
1664     auto OriginalRCIndex = RefSCCIndices.find(OriginalRC)->second;
1665     PostOrderRefSCCs.insert(PostOrderRefSCCs.begin() + OriginalRCIndex, NewRC);
1666     for (int I = OriginalRCIndex, Size = PostOrderRefSCCs.size(); I < Size; ++I)
1667       RefSCCIndices[PostOrderRefSCCs[I]] = I;
1668   }
1669 
1670   SCCMap[&NewN] = NewC;
1671 
1672   OriginalN->insertEdgeInternal(NewN, EK);
1673 }
1674 
1675 void LazyCallGraph::addSplitRefRecursiveFunctions(
1676     Function &OriginalFunction, ArrayRef<Function *> NewFunctions) {
1677   assert(!NewFunctions.empty() && "Can't add zero functions");
1678   assert(lookup(OriginalFunction) &&
1679          "Original function's node should already exist");
1680   Node &OriginalN = get(OriginalFunction);
1681   RefSCC *OriginalRC = lookupRefSCC(OriginalN);
1682 
1683 #ifdef EXPENSIVE_CHECKS
1684   OriginalRC->verify();
1685   auto VerifyOnExit = make_scope_exit([&]() {
1686     OriginalRC->verify();
1687     for (Function *NewFunction : NewFunctions)
1688       lookupRefSCC(get(*NewFunction))->verify();
1689   });
1690 #endif
1691 
1692   bool ExistsRefToOriginalRefSCC = false;
1693 
1694   for (Function *NewFunction : NewFunctions) {
1695     Node &NewN = initNode(*NewFunction);
1696 
1697     OriginalN->insertEdgeInternal(NewN, Edge::Kind::Ref);
1698 
1699     // Check if there is any edge from any new function back to any function in
1700     // the original function's RefSCC.
1701     for (Edge &E : *NewN) {
1702       if (lookupRefSCC(E.getNode()) == OriginalRC) {
1703         ExistsRefToOriginalRefSCC = true;
1704         break;
1705       }
1706     }
1707   }
1708 
1709   RefSCC *NewRC;
1710   if (ExistsRefToOriginalRefSCC) {
1711     // If there is any edge from any new function to any function in the
1712     // original function's RefSCC, all new functions will be in the same RefSCC
1713     // as the original function.
1714     NewRC = OriginalRC;
1715   } else {
1716     // Otherwise the new functions are in their own RefSCC.
1717     NewRC = createRefSCC(*this);
1718     // The new RefSCC goes before the original function's RefSCC in postorder
1719     // since there are only edges from the original function's RefSCC to the new
1720     // RefSCC.
1721     auto OriginalRCIndex = RefSCCIndices.find(OriginalRC)->second;
1722     PostOrderRefSCCs.insert(PostOrderRefSCCs.begin() + OriginalRCIndex, NewRC);
1723     for (int I = OriginalRCIndex, Size = PostOrderRefSCCs.size(); I < Size; ++I)
1724       RefSCCIndices[PostOrderRefSCCs[I]] = I;
1725   }
1726 
1727   for (Function *NewFunction : NewFunctions) {
1728     Node &NewN = get(*NewFunction);
1729     // Each new function is in its own new SCC. The original function can only
1730     // have a ref edge to new functions, and no other existing functions can
1731     // have references to new functions. Each new function only has a ref edge
1732     // to the other new functions.
1733     SCC *NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN}));
1734     // The new SCCs are either sibling SCCs or parent SCCs to all other existing
1735     // SCCs in the RefSCC. Either way, they can go at the back of the postorder
1736     // SCC list.
1737     auto Index = NewRC->SCCIndices.size();
1738     NewRC->SCCIndices[NewC] = Index;
1739     NewRC->SCCs.push_back(NewC);
1740     SCCMap[&NewN] = NewC;
1741   }
1742 
1743 #ifndef NDEBUG
1744   for (Function *F1 : NewFunctions) {
1745     assert(getEdgeKind(OriginalFunction, *F1) == Edge::Kind::Ref &&
1746            "Expected ref edges from original function to every new function");
1747     Node &N1 = get(*F1);
1748     for (Function *F2 : NewFunctions) {
1749       if (F1 == F2)
1750         continue;
1751       Node &N2 = get(*F2);
1752       assert(!N1->lookup(N2)->isCall() &&
1753              "Edges between new functions must be ref edges");
1754     }
1755   }
1756 #endif
1757 }
1758 
1759 LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
1760   return *new (MappedN = BPA.Allocate()) Node(*this, F);
1761 }
1762 
1763 void LazyCallGraph::updateGraphPtrs() {
1764   // Walk the node map to update their graph pointers. While this iterates in
1765   // an unstable order, the order has no effect so it remains correct.
1766   for (auto &FunctionNodePair : NodeMap)
1767     FunctionNodePair.second->G = this;
1768 
1769   for (auto *RC : PostOrderRefSCCs)
1770     RC->G = this;
1771 }
1772 
1773 LazyCallGraph::Node &LazyCallGraph::initNode(Function &F) {
1774   Node &N = get(F);
1775   N.DFSNumber = N.LowLink = -1;
1776   N.populate();
1777   NodeMap[&F] = &N;
1778   return N;
1779 }
1780 
1781 template <typename RootsT, typename GetBeginT, typename GetEndT,
1782           typename GetNodeT, typename FormSCCCallbackT>
1783 void LazyCallGraph::buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin,
1784                                      GetEndT &&GetEnd, GetNodeT &&GetNode,
1785                                      FormSCCCallbackT &&FormSCC) {
1786   using EdgeItT = decltype(GetBegin(std::declval<Node &>()));
1787 
1788   SmallVector<std::pair<Node *, EdgeItT>, 16> DFSStack;
1789   SmallVector<Node *, 16> PendingSCCStack;
1790 
1791   // Scan down the stack and DFS across the call edges.
1792   for (Node *RootN : Roots) {
1793     assert(DFSStack.empty() &&
1794            "Cannot begin a new root with a non-empty DFS stack!");
1795     assert(PendingSCCStack.empty() &&
1796            "Cannot begin a new root with pending nodes for an SCC!");
1797 
1798     // Skip any nodes we've already reached in the DFS.
1799     if (RootN->DFSNumber != 0) {
1800       assert(RootN->DFSNumber == -1 &&
1801              "Shouldn't have any mid-DFS root nodes!");
1802       continue;
1803     }
1804 
1805     RootN->DFSNumber = RootN->LowLink = 1;
1806     int NextDFSNumber = 2;
1807 
1808     DFSStack.push_back({RootN, GetBegin(*RootN)});
1809     do {
1810       Node *N;
1811       EdgeItT I;
1812       std::tie(N, I) = DFSStack.pop_back_val();
1813       auto E = GetEnd(*N);
1814       while (I != E) {
1815         Node &ChildN = GetNode(I);
1816         if (ChildN.DFSNumber == 0) {
1817           // We haven't yet visited this child, so descend, pushing the current
1818           // node onto the stack.
1819           DFSStack.push_back({N, I});
1820 
1821           ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
1822           N = &ChildN;
1823           I = GetBegin(*N);
1824           E = GetEnd(*N);
1825           continue;
1826         }
1827 
1828         // If the child has already been added to some child component, it
1829         // couldn't impact the low-link of this parent because it isn't
1830         // connected, and thus its low-link isn't relevant so skip it.
1831         if (ChildN.DFSNumber == -1) {
1832           ++I;
1833           continue;
1834         }
1835 
1836         // Track the lowest linked child as the lowest link for this node.
1837         assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
1838         if (ChildN.LowLink < N->LowLink)
1839           N->LowLink = ChildN.LowLink;
1840 
1841         // Move to the next edge.
1842         ++I;
1843       }
1844 
1845       // We've finished processing N and its descendants, put it on our pending
1846       // SCC stack to eventually get merged into an SCC of nodes.
1847       PendingSCCStack.push_back(N);
1848 
1849       // If this node is linked to some lower entry, continue walking up the
1850       // stack.
1851       if (N->LowLink != N->DFSNumber)
1852         continue;
1853 
1854       // Otherwise, we've completed an SCC. Append it to our post order list of
1855       // SCCs.
1856       int RootDFSNumber = N->DFSNumber;
1857       // Find the range of the node stack by walking down until we pass the
1858       // root DFS number.
1859       auto SCCNodes = make_range(
1860           PendingSCCStack.rbegin(),
1861           find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
1862             return N->DFSNumber < RootDFSNumber;
1863           }));
1864       // Form a new SCC out of these nodes and then clear them off our pending
1865       // stack.
1866       FormSCC(SCCNodes);
1867       PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
1868     } while (!DFSStack.empty());
1869   }
1870 }
1871 
1872 /// Build the internal SCCs for a RefSCC from a sequence of nodes.
1873 ///
1874 /// Appends the SCCs to the provided vector and updates the map with their
1875 /// indices. Both the vector and map must be empty when passed into this
1876 /// routine.
1877 void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
1878   assert(RC.SCCs.empty() && "Already built SCCs!");
1879   assert(RC.SCCIndices.empty() && "Already mapped SCC indices!");
1880 
1881   for (Node *N : Nodes) {
1882     assert(N->LowLink >= (*Nodes.begin())->LowLink &&
1883            "We cannot have a low link in an SCC lower than its root on the "
1884            "stack!");
1885 
1886     // This node will go into the next RefSCC, clear out its DFS and low link
1887     // as we scan.
1888     N->DFSNumber = N->LowLink = 0;
1889   }
1890 
1891   // Each RefSCC contains a DAG of the call SCCs. To build these, we do
1892   // a direct walk of the call edges using Tarjan's algorithm. We reuse the
1893   // internal storage as we won't need it for the outer graph's DFS any longer.
1894   buildGenericSCCs(
1895       Nodes, [](Node &N) { return N->call_begin(); },
1896       [](Node &N) { return N->call_end(); },
1897       [](EdgeSequence::call_iterator I) -> Node & { return I->getNode(); },
1898       [this, &RC](node_stack_range Nodes) {
1899         RC.SCCs.push_back(createSCC(RC, Nodes));
1900         for (Node &N : *RC.SCCs.back()) {
1901           N.DFSNumber = N.LowLink = -1;
1902           SCCMap[&N] = RC.SCCs.back();
1903         }
1904       });
1905 
1906   // Wire up the SCC indices.
1907   for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i)
1908     RC.SCCIndices[RC.SCCs[i]] = i;
1909 }
1910 
1911 void LazyCallGraph::buildRefSCCs() {
1912   if (EntryEdges.empty() || !PostOrderRefSCCs.empty())
1913     // RefSCCs are either non-existent or already built!
1914     return;
1915 
1916   assert(RefSCCIndices.empty() && "Already mapped RefSCC indices!");
1917 
1918   SmallVector<Node *, 16> Roots;
1919   for (Edge &E : *this)
1920     Roots.push_back(&E.getNode());
1921 
1922   // The roots will be iterated in order.
1923   buildGenericSCCs(
1924       Roots,
1925       [](Node &N) {
1926         // We need to populate each node as we begin to walk its edges.
1927         N.populate();
1928         return N->begin();
1929       },
1930       [](Node &N) { return N->end(); },
1931       [](EdgeSequence::iterator I) -> Node & { return I->getNode(); },
1932       [this](node_stack_range Nodes) {
1933         RefSCC *NewRC = createRefSCC(*this);
1934         buildSCCs(*NewRC, Nodes);
1935 
1936         // Push the new node into the postorder list and remember its position
1937         // in the index map.
1938         bool Inserted =
1939             RefSCCIndices.insert({NewRC, PostOrderRefSCCs.size()}).second;
1940         (void)Inserted;
1941         assert(Inserted && "Cannot already have this RefSCC in the index map!");
1942         PostOrderRefSCCs.push_back(NewRC);
1943 #ifdef EXPENSIVE_CHECKS
1944         NewRC->verify();
1945 #endif
1946       });
1947 }
1948 
1949 void LazyCallGraph::visitReferences(SmallVectorImpl<Constant *> &Worklist,
1950                                     SmallPtrSetImpl<Constant *> &Visited,
1951                                     function_ref<void(Function &)> Callback) {
1952   while (!Worklist.empty()) {
1953     Constant *C = Worklist.pop_back_val();
1954 
1955     if (Function *F = dyn_cast<Function>(C)) {
1956       if (!F->isDeclaration())
1957         Callback(*F);
1958       continue;
1959     }
1960 
1961     // blockaddresses are weird and don't participate in the call graph anyway,
1962     // skip them.
1963     if (isa<BlockAddress>(C))
1964       continue;
1965 
1966     for (Value *Op : C->operand_values())
1967       if (Visited.insert(cast<Constant>(Op)).second)
1968         Worklist.push_back(cast<Constant>(Op));
1969   }
1970 }
1971 
1972 AnalysisKey LazyCallGraphAnalysis::Key;
1973 
1974 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
1975 
1976 static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) {
1977   OS << "  Edges in function: " << N.getFunction().getName() << "\n";
1978   for (LazyCallGraph::Edge &E : N.populate())
1979     OS << "    " << (E.isCall() ? "call" : "ref ") << " -> "
1980        << E.getFunction().getName() << "\n";
1981 
1982   OS << "\n";
1983 }
1984 
1985 static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) {
1986   OS << "    SCC with " << C.size() << " functions:\n";
1987 
1988   for (LazyCallGraph::Node &N : C)
1989     OS << "      " << N.getFunction().getName() << "\n";
1990 }
1991 
1992 static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) {
1993   OS << "  RefSCC with " << C.size() << " call SCCs:\n";
1994 
1995   for (LazyCallGraph::SCC &InnerC : C)
1996     printSCC(OS, InnerC);
1997 
1998   OS << "\n";
1999 }
2000 
2001 PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
2002                                                 ModuleAnalysisManager &AM) {
2003   LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
2004 
2005   OS << "Printing the call graph for module: " << M.getModuleIdentifier()
2006      << "\n\n";
2007 
2008   for (Function &F : M)
2009     printNode(OS, G.get(F));
2010 
2011   G.buildRefSCCs();
2012   for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs())
2013     printRefSCC(OS, C);
2014 
2015   return PreservedAnalyses::all();
2016 }
2017 
2018 LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS)
2019     : OS(OS) {}
2020 
2021 static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) {
2022   std::string Name =
2023       "\"" + DOT::EscapeString(std::string(N.getFunction().getName())) + "\"";
2024 
2025   for (LazyCallGraph::Edge &E : N.populate()) {
2026     OS << "  " << Name << " -> \""
2027        << DOT::EscapeString(std::string(E.getFunction().getName())) << "\"";
2028     if (!E.isCall()) // It is a ref edge.
2029       OS << " [style=dashed,label=\"ref\"]";
2030     OS << ";\n";
2031   }
2032 
2033   OS << "\n";
2034 }
2035 
2036 PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M,
2037                                                    ModuleAnalysisManager &AM) {
2038   LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
2039 
2040   OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n";
2041 
2042   for (Function &F : M)
2043     printNodeDOT(OS, G.get(F));
2044 
2045   OS << "}\n";
2046 
2047   return PreservedAnalyses::all();
2048 }
2049