1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Analysis/LazyCallGraph.h" 11 #include "llvm/ADT/ScopeExit.h" 12 #include "llvm/ADT/Sequence.h" 13 #include "llvm/ADT/STLExtras.h" 14 #include "llvm/ADT/ScopeExit.h" 15 #include "llvm/IR/CallSite.h" 16 #include "llvm/IR/InstVisitor.h" 17 #include "llvm/IR/Instructions.h" 18 #include "llvm/IR/PassManager.h" 19 #include "llvm/Support/Debug.h" 20 #include "llvm/Support/GraphWriter.h" 21 22 using namespace llvm; 23 24 #define DEBUG_TYPE "lcg" 25 26 static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges, 27 DenseMap<Function *, int> &EdgeIndexMap, Function &F, 28 LazyCallGraph::Edge::Kind EK) { 29 if (!EdgeIndexMap.insert({&F, Edges.size()}).second) 30 return; 31 32 DEBUG(dbgs() << " Added callable function: " << F.getName() << "\n"); 33 Edges.emplace_back(LazyCallGraph::Edge(F, EK)); 34 } 35 36 LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F) 37 : G(&G), F(F), DFSNumber(0), LowLink(0) { 38 DEBUG(dbgs() << " Adding functions called by '" << F.getName() 39 << "' to the graph.\n"); 40 41 SmallVector<Constant *, 16> Worklist; 42 SmallPtrSet<Function *, 4> Callees; 43 SmallPtrSet<Constant *, 16> Visited; 44 45 // Find all the potential call graph edges in this function. We track both 46 // actual call edges and indirect references to functions. The direct calls 47 // are trivially added, but to accumulate the latter we walk the instructions 48 // and add every operand which is a constant to the worklist to process 49 // afterward. 50 // 51 // Note that we consider *any* function with a definition to be a viable 52 // edge. Even if the function's definition is subject to replacement by 53 // some other module (say, a weak definition) there may still be 54 // optimizations which essentially speculate based on the definition and 55 // a way to check that the specific definition is in fact the one being 56 // used. For example, this could be done by moving the weak definition to 57 // a strong (internal) definition and making the weak definition be an 58 // alias. Then a test of the address of the weak function against the new 59 // strong definition's address would be an effective way to determine the 60 // safety of optimizing a direct call edge. 61 for (BasicBlock &BB : F) 62 for (Instruction &I : BB) { 63 if (auto CS = CallSite(&I)) 64 if (Function *Callee = CS.getCalledFunction()) 65 if (!Callee->isDeclaration()) 66 if (Callees.insert(Callee).second) { 67 Visited.insert(Callee); 68 addEdge(Edges, EdgeIndexMap, *Callee, LazyCallGraph::Edge::Call); 69 } 70 71 for (Value *Op : I.operand_values()) 72 if (Constant *C = dyn_cast<Constant>(Op)) 73 if (Visited.insert(C).second) 74 Worklist.push_back(C); 75 } 76 77 // We've collected all the constant (and thus potentially function or 78 // function containing) operands to all of the instructions in the function. 79 // Process them (recursively) collecting every function found. 80 visitReferences(Worklist, Visited, [&](Function &F) { 81 addEdge(Edges, EdgeIndexMap, F, LazyCallGraph::Edge::Ref); 82 }); 83 } 84 85 void LazyCallGraph::Node::insertEdgeInternal(Function &Target, Edge::Kind EK) { 86 if (Node *N = G->lookup(Target)) 87 return insertEdgeInternal(*N, EK); 88 89 EdgeIndexMap.insert({&Target, Edges.size()}); 90 Edges.emplace_back(Target, EK); 91 } 92 93 void LazyCallGraph::Node::insertEdgeInternal(Node &TargetN, Edge::Kind EK) { 94 EdgeIndexMap.insert({&TargetN.getFunction(), Edges.size()}); 95 Edges.emplace_back(TargetN, EK); 96 } 97 98 void LazyCallGraph::Node::setEdgeKind(Function &TargetF, Edge::Kind EK) { 99 Edges[EdgeIndexMap.find(&TargetF)->second].setKind(EK); 100 } 101 102 void LazyCallGraph::Node::removeEdgeInternal(Function &Target) { 103 auto IndexMapI = EdgeIndexMap.find(&Target); 104 assert(IndexMapI != EdgeIndexMap.end() && 105 "Target not in the edge set for this caller?"); 106 107 Edges[IndexMapI->second] = Edge(); 108 EdgeIndexMap.erase(IndexMapI); 109 } 110 111 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 112 LLVM_DUMP_METHOD void LazyCallGraph::Node::dump() const { 113 dbgs() << *this << '\n'; 114 } 115 #endif 116 117 LazyCallGraph::LazyCallGraph(Module &M) : NextDFSNumber(0) { 118 DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier() 119 << "\n"); 120 for (Function &F : M) 121 if (!F.isDeclaration() && !F.hasLocalLinkage()) 122 if (EntryIndexMap.insert({&F, EntryEdges.size()}).second) { 123 DEBUG(dbgs() << " Adding '" << F.getName() 124 << "' to entry set of the graph.\n"); 125 EntryEdges.emplace_back(F, Edge::Ref); 126 } 127 128 // Now add entry nodes for functions reachable via initializers to globals. 129 SmallVector<Constant *, 16> Worklist; 130 SmallPtrSet<Constant *, 16> Visited; 131 for (GlobalVariable &GV : M.globals()) 132 if (GV.hasInitializer()) 133 if (Visited.insert(GV.getInitializer()).second) 134 Worklist.push_back(GV.getInitializer()); 135 136 DEBUG(dbgs() << " Adding functions referenced by global initializers to the " 137 "entry set.\n"); 138 visitReferences(Worklist, Visited, [&](Function &F) { 139 addEdge(EntryEdges, EntryIndexMap, F, LazyCallGraph::Edge::Ref); 140 }); 141 142 for (const Edge &E : EntryEdges) 143 RefSCCEntryNodes.push_back(&E.getFunction()); 144 } 145 146 LazyCallGraph::LazyCallGraph(LazyCallGraph &&G) 147 : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)), 148 EntryEdges(std::move(G.EntryEdges)), 149 EntryIndexMap(std::move(G.EntryIndexMap)), SCCBPA(std::move(G.SCCBPA)), 150 SCCMap(std::move(G.SCCMap)), LeafRefSCCs(std::move(G.LeafRefSCCs)), 151 DFSStack(std::move(G.DFSStack)), 152 RefSCCEntryNodes(std::move(G.RefSCCEntryNodes)), 153 NextDFSNumber(G.NextDFSNumber) { 154 updateGraphPtrs(); 155 } 156 157 LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) { 158 BPA = std::move(G.BPA); 159 NodeMap = std::move(G.NodeMap); 160 EntryEdges = std::move(G.EntryEdges); 161 EntryIndexMap = std::move(G.EntryIndexMap); 162 SCCBPA = std::move(G.SCCBPA); 163 SCCMap = std::move(G.SCCMap); 164 LeafRefSCCs = std::move(G.LeafRefSCCs); 165 DFSStack = std::move(G.DFSStack); 166 RefSCCEntryNodes = std::move(G.RefSCCEntryNodes); 167 NextDFSNumber = G.NextDFSNumber; 168 updateGraphPtrs(); 169 return *this; 170 } 171 172 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 173 LLVM_DUMP_METHOD void LazyCallGraph::SCC::dump() const { 174 dbgs() << *this << '\n'; 175 } 176 #endif 177 178 #ifndef NDEBUG 179 void LazyCallGraph::SCC::verify() { 180 assert(OuterRefSCC && "Can't have a null RefSCC!"); 181 assert(!Nodes.empty() && "Can't have an empty SCC!"); 182 183 for (Node *N : Nodes) { 184 assert(N && "Can't have a null node!"); 185 assert(OuterRefSCC->G->lookupSCC(*N) == this && 186 "Node does not map to this SCC!"); 187 assert(N->DFSNumber == -1 && 188 "Must set DFS numbers to -1 when adding a node to an SCC!"); 189 assert(N->LowLink == -1 && 190 "Must set low link to -1 when adding a node to an SCC!"); 191 for (Edge &E : *N) 192 assert(E.getNode() && "Can't have an edge to a raw function!"); 193 } 194 } 195 #endif 196 197 bool LazyCallGraph::SCC::isParentOf(const SCC &C) const { 198 if (this == &C) 199 return false; 200 201 for (Node &N : *this) 202 for (Edge &E : N.calls()) 203 if (Node *CalleeN = E.getNode()) 204 if (OuterRefSCC->G->lookupSCC(*CalleeN) == &C) 205 return true; 206 207 // No edges found. 208 return false; 209 } 210 211 bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const { 212 if (this == &TargetC) 213 return false; 214 215 LazyCallGraph &G = *OuterRefSCC->G; 216 217 // Start with this SCC. 218 SmallPtrSet<const SCC *, 16> Visited = {this}; 219 SmallVector<const SCC *, 16> Worklist = {this}; 220 221 // Walk down the graph until we run out of edges or find a path to TargetC. 222 do { 223 const SCC &C = *Worklist.pop_back_val(); 224 for (Node &N : C) 225 for (Edge &E : N.calls()) { 226 Node *CalleeN = E.getNode(); 227 if (!CalleeN) 228 continue; 229 SCC *CalleeC = G.lookupSCC(*CalleeN); 230 if (!CalleeC) 231 continue; 232 233 // If the callee's SCC is the TargetC, we're done. 234 if (CalleeC == &TargetC) 235 return true; 236 237 // If this is the first time we've reached this SCC, put it on the 238 // worklist to recurse through. 239 if (Visited.insert(CalleeC).second) 240 Worklist.push_back(CalleeC); 241 } 242 } while (!Worklist.empty()); 243 244 // No paths found. 245 return false; 246 } 247 248 LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {} 249 250 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 251 LLVM_DUMP_METHOD void LazyCallGraph::RefSCC::dump() const { 252 dbgs() << *this << '\n'; 253 } 254 #endif 255 256 #ifndef NDEBUG 257 void LazyCallGraph::RefSCC::verify() { 258 assert(G && "Can't have a null graph!"); 259 assert(!SCCs.empty() && "Can't have an empty SCC!"); 260 261 // Verify basic properties of the SCCs. 262 SmallPtrSet<SCC *, 4> SCCSet; 263 for (SCC *C : SCCs) { 264 assert(C && "Can't have a null SCC!"); 265 C->verify(); 266 assert(&C->getOuterRefSCC() == this && 267 "SCC doesn't think it is inside this RefSCC!"); 268 bool Inserted = SCCSet.insert(C).second; 269 assert(Inserted && "Found a duplicate SCC!"); 270 auto IndexIt = SCCIndices.find(C); 271 assert(IndexIt != SCCIndices.end() && 272 "Found an SCC that doesn't have an index!"); 273 } 274 275 // Check that our indices map correctly. 276 for (auto &SCCIndexPair : SCCIndices) { 277 SCC *C = SCCIndexPair.first; 278 int i = SCCIndexPair.second; 279 assert(C && "Can't have a null SCC in the indices!"); 280 assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!"); 281 assert(SCCs[i] == C && "Index doesn't point to SCC!"); 282 } 283 284 // Check that the SCCs are in fact in post-order. 285 for (int i = 0, Size = SCCs.size(); i < Size; ++i) { 286 SCC &SourceSCC = *SCCs[i]; 287 for (Node &N : SourceSCC) 288 for (Edge &E : N) { 289 if (!E.isCall()) 290 continue; 291 SCC &TargetSCC = *G->lookupSCC(*E.getNode()); 292 if (&TargetSCC.getOuterRefSCC() == this) { 293 assert(SCCIndices.find(&TargetSCC)->second <= i && 294 "Edge between SCCs violates post-order relationship."); 295 continue; 296 } 297 assert(TargetSCC.getOuterRefSCC().Parents.count(this) && 298 "Edge to a RefSCC missing us in its parent set."); 299 } 300 } 301 302 // Check that our parents are actually parents. 303 for (RefSCC *ParentRC : Parents) { 304 assert(ParentRC != this && "Cannot be our own parent!"); 305 auto HasConnectingEdge = [&] { 306 for (SCC &C : *ParentRC) 307 for (Node &N : C) 308 for (Edge &E : N) 309 if (G->lookupRefSCC(*E.getNode()) == this) 310 return true; 311 return false; 312 }; 313 assert(HasConnectingEdge() && "No edge connects the parent to us!"); 314 } 315 } 316 #endif 317 318 bool LazyCallGraph::RefSCC::isDescendantOf(const RefSCC &C) const { 319 // Walk up the parents of this SCC and verify that we eventually find C. 320 SmallVector<const RefSCC *, 4> AncestorWorklist; 321 AncestorWorklist.push_back(this); 322 do { 323 const RefSCC *AncestorC = AncestorWorklist.pop_back_val(); 324 if (AncestorC->isChildOf(C)) 325 return true; 326 for (const RefSCC *ParentC : AncestorC->Parents) 327 AncestorWorklist.push_back(ParentC); 328 } while (!AncestorWorklist.empty()); 329 330 return false; 331 } 332 333 /// Generic helper that updates a postorder sequence of SCCs for a potentially 334 /// cycle-introducing edge insertion. 335 /// 336 /// A postorder sequence of SCCs of a directed graph has one fundamental 337 /// property: all deges in the DAG of SCCs point "up" the sequence. That is, 338 /// all edges in the SCC DAG point to prior SCCs in the sequence. 339 /// 340 /// This routine both updates a postorder sequence and uses that sequence to 341 /// compute the set of SCCs connected into a cycle. It should only be called to 342 /// insert a "downward" edge which will require changing the sequence to 343 /// restore it to a postorder. 344 /// 345 /// When inserting an edge from an earlier SCC to a later SCC in some postorder 346 /// sequence, all of the SCCs which may be impacted are in the closed range of 347 /// those two within the postorder sequence. The algorithm used here to restore 348 /// the state is as follows: 349 /// 350 /// 1) Starting from the source SCC, construct a set of SCCs which reach the 351 /// source SCC consisting of just the source SCC. Then scan toward the 352 /// target SCC in postorder and for each SCC, if it has an edge to an SCC 353 /// in the set, add it to the set. Otherwise, the source SCC is not 354 /// a successor, move it in the postorder sequence to immediately before 355 /// the source SCC, shifting the source SCC and all SCCs in the set one 356 /// position toward the target SCC. Stop scanning after processing the 357 /// target SCC. 358 /// 2) If the source SCC is now past the target SCC in the postorder sequence, 359 /// and thus the new edge will flow toward the start, we are done. 360 /// 3) Otherwise, starting from the target SCC, walk all edges which reach an 361 /// SCC between the source and the target, and add them to the set of 362 /// connected SCCs, then recurse through them. Once a complete set of the 363 /// SCCs the target connects to is known, hoist the remaining SCCs between 364 /// the source and the target to be above the target. Note that there is no 365 /// need to process the source SCC, it is already known to connect. 366 /// 4) At this point, all of the SCCs in the closed range between the source 367 /// SCC and the target SCC in the postorder sequence are connected, 368 /// including the target SCC and the source SCC. Inserting the edge from 369 /// the source SCC to the target SCC will form a cycle out of precisely 370 /// these SCCs. Thus we can merge all of the SCCs in this closed range into 371 /// a single SCC. 372 /// 373 /// This process has various important properties: 374 /// - Only mutates the SCCs when adding the edge actually changes the SCC 375 /// structure. 376 /// - Never mutates SCCs which are unaffected by the change. 377 /// - Updates the postorder sequence to correctly satisfy the postorder 378 /// constraint after the edge is inserted. 379 /// - Only reorders SCCs in the closed postorder sequence from the source to 380 /// the target, so easy to bound how much has changed even in the ordering. 381 /// - Big-O is the number of edges in the closed postorder range of SCCs from 382 /// source to target. 383 /// 384 /// This helper routine, in addition to updating the postorder sequence itself 385 /// will also update a map from SCCs to indices within that sequecne. 386 /// 387 /// The sequence and the map must operate on pointers to the SCC type. 388 /// 389 /// Two callbacks must be provided. The first computes the subset of SCCs in 390 /// the postorder closed range from the source to the target which connect to 391 /// the source SCC via some (transitive) set of edges. The second computes the 392 /// subset of the same range which the target SCC connects to via some 393 /// (transitive) set of edges. Both callbacks should populate the set argument 394 /// provided. 395 template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT, 396 typename ComputeSourceConnectedSetCallableT, 397 typename ComputeTargetConnectedSetCallableT> 398 static iterator_range<typename PostorderSequenceT::iterator> 399 updatePostorderSequenceForEdgeInsertion( 400 SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs, 401 SCCIndexMapT &SCCIndices, 402 ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet, 403 ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) { 404 int SourceIdx = SCCIndices[&SourceSCC]; 405 int TargetIdx = SCCIndices[&TargetSCC]; 406 assert(SourceIdx < TargetIdx && "Cannot have equal indices here!"); 407 408 SmallPtrSet<SCCT *, 4> ConnectedSet; 409 410 // Compute the SCCs which (transitively) reach the source. 411 ComputeSourceConnectedSet(ConnectedSet); 412 413 // Partition the SCCs in this part of the port-order sequence so only SCCs 414 // connecting to the source remain between it and the target. This is 415 // a benign partition as it preserves postorder. 416 auto SourceI = std::stable_partition( 417 SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1, 418 [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); }); 419 for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i) 420 SCCIndices.find(SCCs[i])->second = i; 421 422 // If the target doesn't connect to the source, then we've corrected the 423 // post-order and there are no cycles formed. 424 if (!ConnectedSet.count(&TargetSCC)) { 425 assert(SourceI > (SCCs.begin() + SourceIdx) && 426 "Must have moved the source to fix the post-order."); 427 assert(*std::prev(SourceI) == &TargetSCC && 428 "Last SCC to move should have bene the target."); 429 430 // Return an empty range at the target SCC indicating there is nothing to 431 // merge. 432 return make_range(std::prev(SourceI), std::prev(SourceI)); 433 } 434 435 assert(SCCs[TargetIdx] == &TargetSCC && 436 "Should not have moved target if connected!"); 437 SourceIdx = SourceI - SCCs.begin(); 438 assert(SCCs[SourceIdx] == &SourceSCC && 439 "Bad updated index computation for the source SCC!"); 440 441 442 // See whether there are any remaining intervening SCCs between the source 443 // and target. If so we need to make sure they all are reachable form the 444 // target. 445 if (SourceIdx + 1 < TargetIdx) { 446 ConnectedSet.clear(); 447 ComputeTargetConnectedSet(ConnectedSet); 448 449 // Partition SCCs so that only SCCs reached from the target remain between 450 // the source and the target. This preserves postorder. 451 auto TargetI = std::stable_partition( 452 SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1, 453 [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); }); 454 for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i) 455 SCCIndices.find(SCCs[i])->second = i; 456 TargetIdx = std::prev(TargetI) - SCCs.begin(); 457 assert(SCCs[TargetIdx] == &TargetSCC && 458 "Should always end with the target!"); 459 } 460 461 // At this point, we know that connecting source to target forms a cycle 462 // because target connects back to source, and we know that all of the SCCs 463 // between the source and target in the postorder sequence participate in that 464 // cycle. 465 return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx); 466 } 467 468 SmallVector<LazyCallGraph::SCC *, 1> 469 LazyCallGraph::RefSCC::switchInternalEdgeToCall(Node &SourceN, Node &TargetN) { 470 assert(!SourceN[TargetN].isCall() && "Must start with a ref edge!"); 471 SmallVector<SCC *, 1> DeletedSCCs; 472 473 #ifndef NDEBUG 474 // In a debug build, verify the RefSCC is valid to start with and when this 475 // routine finishes. 476 verify(); 477 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 478 #endif 479 480 SCC &SourceSCC = *G->lookupSCC(SourceN); 481 SCC &TargetSCC = *G->lookupSCC(TargetN); 482 483 // If the two nodes are already part of the same SCC, we're also done as 484 // we've just added more connectivity. 485 if (&SourceSCC == &TargetSCC) { 486 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call); 487 return DeletedSCCs; 488 } 489 490 // At this point we leverage the postorder list of SCCs to detect when the 491 // insertion of an edge changes the SCC structure in any way. 492 // 493 // First and foremost, we can eliminate the need for any changes when the 494 // edge is toward the beginning of the postorder sequence because all edges 495 // flow in that direction already. Thus adding a new one cannot form a cycle. 496 int SourceIdx = SCCIndices[&SourceSCC]; 497 int TargetIdx = SCCIndices[&TargetSCC]; 498 if (TargetIdx < SourceIdx) { 499 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call); 500 return DeletedSCCs; 501 } 502 503 // Compute the SCCs which (transitively) reach the source. 504 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) { 505 #ifndef NDEBUG 506 // Check that the RefSCC is still valid before computing this as the 507 // results will be nonsensical of we've broken its invariants. 508 verify(); 509 #endif 510 ConnectedSet.insert(&SourceSCC); 511 auto IsConnected = [&](SCC &C) { 512 for (Node &N : C) 513 for (Edge &E : N.calls()) { 514 assert(E.getNode() && "Must have formed a node within an SCC!"); 515 if (ConnectedSet.count(G->lookupSCC(*E.getNode()))) 516 return true; 517 } 518 519 return false; 520 }; 521 522 for (SCC *C : 523 make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1)) 524 if (IsConnected(*C)) 525 ConnectedSet.insert(C); 526 }; 527 528 // Use a normal worklist to find which SCCs the target connects to. We still 529 // bound the search based on the range in the postorder list we care about, 530 // but because this is forward connectivity we just "recurse" through the 531 // edges. 532 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) { 533 #ifndef NDEBUG 534 // Check that the RefSCC is still valid before computing this as the 535 // results will be nonsensical of we've broken its invariants. 536 verify(); 537 #endif 538 ConnectedSet.insert(&TargetSCC); 539 SmallVector<SCC *, 4> Worklist; 540 Worklist.push_back(&TargetSCC); 541 do { 542 SCC &C = *Worklist.pop_back_val(); 543 for (Node &N : C) 544 for (Edge &E : N) { 545 assert(E.getNode() && "Must have formed a node within an SCC!"); 546 if (!E.isCall()) 547 continue; 548 SCC &EdgeC = *G->lookupSCC(*E.getNode()); 549 if (&EdgeC.getOuterRefSCC() != this) 550 // Not in this RefSCC... 551 continue; 552 if (SCCIndices.find(&EdgeC)->second <= SourceIdx) 553 // Not in the postorder sequence between source and target. 554 continue; 555 556 if (ConnectedSet.insert(&EdgeC).second) 557 Worklist.push_back(&EdgeC); 558 } 559 } while (!Worklist.empty()); 560 }; 561 562 // Use a generic helper to update the postorder sequence of SCCs and return 563 // a range of any SCCs connected into a cycle by inserting this edge. This 564 // routine will also take care of updating the indices into the postorder 565 // sequence. 566 auto MergeRange = updatePostorderSequenceForEdgeInsertion( 567 SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet, 568 ComputeTargetConnectedSet); 569 570 // If the merge range is empty, then adding the edge didn't actually form any 571 // new cycles. We're done. 572 if (MergeRange.begin() == MergeRange.end()) { 573 // Now that the SCC structure is finalized, flip the kind to call. 574 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call); 575 return DeletedSCCs; 576 } 577 578 #ifndef NDEBUG 579 // Before merging, check that the RefSCC remains valid after all the 580 // postorder updates. 581 verify(); 582 #endif 583 584 // Otherwise we need to merge all of the SCCs in the cycle into a single 585 // result SCC. 586 // 587 // NB: We merge into the target because all of these functions were already 588 // reachable from the target, meaning any SCC-wide properties deduced about it 589 // other than the set of functions within it will not have changed. 590 for (SCC *C : MergeRange) { 591 assert(C != &TargetSCC && 592 "We merge *into* the target and shouldn't process it here!"); 593 SCCIndices.erase(C); 594 TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end()); 595 for (Node *N : C->Nodes) 596 G->SCCMap[N] = &TargetSCC; 597 C->clear(); 598 DeletedSCCs.push_back(C); 599 } 600 601 // Erase the merged SCCs from the list and update the indices of the 602 // remaining SCCs. 603 int IndexOffset = MergeRange.end() - MergeRange.begin(); 604 auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end()); 605 for (SCC *C : make_range(EraseEnd, SCCs.end())) 606 SCCIndices[C] -= IndexOffset; 607 608 // Now that the SCC structure is finalized, flip the kind to call. 609 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call); 610 611 // And we're done! 612 return DeletedSCCs; 613 } 614 615 void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node &SourceN, 616 Node &TargetN) { 617 assert(SourceN[TargetN].isCall() && "Must start with a call edge!"); 618 619 #ifndef NDEBUG 620 // In a debug build, verify the RefSCC is valid to start with and when this 621 // routine finishes. 622 verify(); 623 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 624 #endif 625 626 assert(G->lookupRefSCC(SourceN) == this && 627 "Source must be in this RefSCC."); 628 assert(G->lookupRefSCC(TargetN) == this && 629 "Target must be in this RefSCC."); 630 assert(G->lookupSCC(SourceN) != G->lookupSCC(TargetN) && 631 "Source and Target must be in separate SCCs for this to be trivial!"); 632 633 // Set the edge kind. 634 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref); 635 } 636 637 iterator_range<LazyCallGraph::RefSCC::iterator> 638 LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) { 639 assert(SourceN[TargetN].isCall() && "Must start with a call edge!"); 640 641 #ifndef NDEBUG 642 // In a debug build, verify the RefSCC is valid to start with and when this 643 // routine finishes. 644 verify(); 645 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 646 #endif 647 648 assert(G->lookupRefSCC(SourceN) == this && 649 "Source must be in this RefSCC."); 650 assert(G->lookupRefSCC(TargetN) == this && 651 "Target must be in this RefSCC."); 652 653 SCC &TargetSCC = *G->lookupSCC(TargetN); 654 assert(G->lookupSCC(SourceN) == &TargetSCC && "Source and Target must be in " 655 "the same SCC to require the " 656 "full CG update."); 657 658 // Set the edge kind. 659 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref); 660 661 // Otherwise we are removing a call edge from a single SCC. This may break 662 // the cycle. In order to compute the new set of SCCs, we need to do a small 663 // DFS over the nodes within the SCC to form any sub-cycles that remain as 664 // distinct SCCs and compute a postorder over the resulting SCCs. 665 // 666 // However, we specially handle the target node. The target node is known to 667 // reach all other nodes in the original SCC by definition. This means that 668 // we want the old SCC to be replaced with an SCC contaning that node as it 669 // will be the root of whatever SCC DAG results from the DFS. Assumptions 670 // about an SCC such as the set of functions called will continue to hold, 671 // etc. 672 673 SCC &OldSCC = TargetSCC; 674 SmallVector<std::pair<Node *, call_edge_iterator>, 16> DFSStack; 675 SmallVector<Node *, 16> PendingSCCStack; 676 SmallVector<SCC *, 4> NewSCCs; 677 678 // Prepare the nodes for a fresh DFS. 679 SmallVector<Node *, 16> Worklist; 680 Worklist.swap(OldSCC.Nodes); 681 for (Node *N : Worklist) { 682 N->DFSNumber = N->LowLink = 0; 683 G->SCCMap.erase(N); 684 } 685 686 // Force the target node to be in the old SCC. This also enables us to take 687 // a very significant short-cut in the standard Tarjan walk to re-form SCCs 688 // below: whenever we build an edge that reaches the target node, we know 689 // that the target node eventually connects back to all other nodes in our 690 // walk. As a consequence, we can detect and handle participants in that 691 // cycle without walking all the edges that form this connection, and instead 692 // by relying on the fundamental guarantee coming into this operation (all 693 // nodes are reachable from the target due to previously forming an SCC). 694 TargetN.DFSNumber = TargetN.LowLink = -1; 695 OldSCC.Nodes.push_back(&TargetN); 696 G->SCCMap[&TargetN] = &OldSCC; 697 698 // Scan down the stack and DFS across the call edges. 699 for (Node *RootN : Worklist) { 700 assert(DFSStack.empty() && 701 "Cannot begin a new root with a non-empty DFS stack!"); 702 assert(PendingSCCStack.empty() && 703 "Cannot begin a new root with pending nodes for an SCC!"); 704 705 // Skip any nodes we've already reached in the DFS. 706 if (RootN->DFSNumber != 0) { 707 assert(RootN->DFSNumber == -1 && 708 "Shouldn't have any mid-DFS root nodes!"); 709 continue; 710 } 711 712 RootN->DFSNumber = RootN->LowLink = 1; 713 int NextDFSNumber = 2; 714 715 DFSStack.push_back({RootN, RootN->call_begin()}); 716 do { 717 Node *N; 718 call_edge_iterator I; 719 std::tie(N, I) = DFSStack.pop_back_val(); 720 auto E = N->call_end(); 721 while (I != E) { 722 Node &ChildN = *I->getNode(); 723 if (ChildN.DFSNumber == 0) { 724 // We haven't yet visited this child, so descend, pushing the current 725 // node onto the stack. 726 DFSStack.push_back({N, I}); 727 728 assert(!G->SCCMap.count(&ChildN) && 729 "Found a node with 0 DFS number but already in an SCC!"); 730 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++; 731 N = &ChildN; 732 I = N->call_begin(); 733 E = N->call_end(); 734 continue; 735 } 736 737 // Check for the child already being part of some component. 738 if (ChildN.DFSNumber == -1) { 739 if (G->lookupSCC(ChildN) == &OldSCC) { 740 // If the child is part of the old SCC, we know that it can reach 741 // every other node, so we have formed a cycle. Pull the entire DFS 742 // and pending stacks into it. See the comment above about setting 743 // up the old SCC for why we do this. 744 int OldSize = OldSCC.size(); 745 OldSCC.Nodes.push_back(N); 746 OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end()); 747 PendingSCCStack.clear(); 748 while (!DFSStack.empty()) 749 OldSCC.Nodes.push_back(DFSStack.pop_back_val().first); 750 for (Node &N : make_range(OldSCC.begin() + OldSize, OldSCC.end())) { 751 N.DFSNumber = N.LowLink = -1; 752 G->SCCMap[&N] = &OldSCC; 753 } 754 N = nullptr; 755 break; 756 } 757 758 // If the child has already been added to some child component, it 759 // couldn't impact the low-link of this parent because it isn't 760 // connected, and thus its low-link isn't relevant so skip it. 761 ++I; 762 continue; 763 } 764 765 // Track the lowest linked child as the lowest link for this node. 766 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); 767 if (ChildN.LowLink < N->LowLink) 768 N->LowLink = ChildN.LowLink; 769 770 // Move to the next edge. 771 ++I; 772 } 773 if (!N) 774 // Cleared the DFS early, start another round. 775 break; 776 777 // We've finished processing N and its descendents, put it on our pending 778 // SCC stack to eventually get merged into an SCC of nodes. 779 PendingSCCStack.push_back(N); 780 781 // If this node is linked to some lower entry, continue walking up the 782 // stack. 783 if (N->LowLink != N->DFSNumber) 784 continue; 785 786 // Otherwise, we've completed an SCC. Append it to our post order list of 787 // SCCs. 788 int RootDFSNumber = N->DFSNumber; 789 // Find the range of the node stack by walking down until we pass the 790 // root DFS number. 791 auto SCCNodes = make_range( 792 PendingSCCStack.rbegin(), 793 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) { 794 return N->DFSNumber < RootDFSNumber; 795 })); 796 797 // Form a new SCC out of these nodes and then clear them off our pending 798 // stack. 799 NewSCCs.push_back(G->createSCC(*this, SCCNodes)); 800 for (Node &N : *NewSCCs.back()) { 801 N.DFSNumber = N.LowLink = -1; 802 G->SCCMap[&N] = NewSCCs.back(); 803 } 804 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end()); 805 } while (!DFSStack.empty()); 806 } 807 808 // Insert the remaining SCCs before the old one. The old SCC can reach all 809 // other SCCs we form because it contains the target node of the removed edge 810 // of the old SCC. This means that we will have edges into all of the new 811 // SCCs, which means the old one must come last for postorder. 812 int OldIdx = SCCIndices[&OldSCC]; 813 SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end()); 814 815 // Update the mapping from SCC* to index to use the new SCC*s, and remove the 816 // old SCC from the mapping. 817 for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx) 818 SCCIndices[SCCs[Idx]] = Idx; 819 820 return make_range(SCCs.begin() + OldIdx, 821 SCCs.begin() + OldIdx + NewSCCs.size()); 822 } 823 824 void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN, 825 Node &TargetN) { 826 assert(!SourceN[TargetN].isCall() && "Must start with a ref edge!"); 827 828 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 829 assert(G->lookupRefSCC(TargetN) != this && 830 "Target must not be in this RefSCC."); 831 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && 832 "Target must be a descendant of the Source."); 833 834 // Edges between RefSCCs are the same regardless of call or ref, so we can 835 // just flip the edge here. 836 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call); 837 838 #ifndef NDEBUG 839 // Check that the RefSCC is still valid. 840 verify(); 841 #endif 842 } 843 844 void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN, 845 Node &TargetN) { 846 assert(SourceN[TargetN].isCall() && "Must start with a call edge!"); 847 848 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 849 assert(G->lookupRefSCC(TargetN) != this && 850 "Target must not be in this RefSCC."); 851 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && 852 "Target must be a descendant of the Source."); 853 854 // Edges between RefSCCs are the same regardless of call or ref, so we can 855 // just flip the edge here. 856 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref); 857 858 #ifndef NDEBUG 859 // Check that the RefSCC is still valid. 860 verify(); 861 #endif 862 } 863 864 void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN, 865 Node &TargetN) { 866 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 867 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC."); 868 869 SourceN.insertEdgeInternal(TargetN, Edge::Ref); 870 871 #ifndef NDEBUG 872 // Check that the RefSCC is still valid. 873 verify(); 874 #endif 875 } 876 877 void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN, 878 Edge::Kind EK) { 879 // First insert it into the caller. 880 SourceN.insertEdgeInternal(TargetN, EK); 881 882 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 883 884 RefSCC &TargetC = *G->lookupRefSCC(TargetN); 885 assert(&TargetC != this && "Target must not be in this RefSCC."); 886 assert(TargetC.isDescendantOf(*this) && 887 "Target must be a descendant of the Source."); 888 889 // The only change required is to add this SCC to the parent set of the 890 // callee. 891 TargetC.Parents.insert(this); 892 893 #ifndef NDEBUG 894 // Check that the RefSCC is still valid. 895 verify(); 896 #endif 897 } 898 899 SmallVector<LazyCallGraph::RefSCC *, 1> 900 LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) { 901 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC."); 902 RefSCC &SourceC = *G->lookupRefSCC(SourceN); 903 assert(&SourceC != this && "Source must not be in this RefSCC."); 904 assert(SourceC.isDescendantOf(*this) && 905 "Source must be a descendant of the Target."); 906 907 SmallVector<RefSCC *, 1> DeletedRefSCCs; 908 909 #ifndef NDEBUG 910 // In a debug build, verify the RefSCC is valid to start with and when this 911 // routine finishes. 912 verify(); 913 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 914 #endif 915 916 int SourceIdx = G->RefSCCIndices[&SourceC]; 917 int TargetIdx = G->RefSCCIndices[this]; 918 assert(SourceIdx < TargetIdx && 919 "Postorder list doesn't see edge as incoming!"); 920 921 // Compute the RefSCCs which (transitively) reach the source. We do this by 922 // working backwards from the source using the parent set in each RefSCC, 923 // skipping any RefSCCs that don't fall in the postorder range. This has the 924 // advantage of walking the sparser parent edge (in high fan-out graphs) but 925 // more importantly this removes examining all forward edges in all RefSCCs 926 // within the postorder range which aren't in fact connected. Only connected 927 // RefSCCs (and their edges) are visited here. 928 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) { 929 Set.insert(&SourceC); 930 SmallVector<RefSCC *, 4> Worklist; 931 Worklist.push_back(&SourceC); 932 do { 933 RefSCC &RC = *Worklist.pop_back_val(); 934 for (RefSCC &ParentRC : RC.parents()) { 935 // Skip any RefSCCs outside the range of source to target in the 936 // postorder sequence. 937 int ParentIdx = G->getRefSCCIndex(ParentRC); 938 assert(ParentIdx > SourceIdx && "Parent cannot precede source in postorder!"); 939 if (ParentIdx > TargetIdx) 940 continue; 941 if (Set.insert(&ParentRC).second) 942 // First edge connecting to this parent, add it to our worklist. 943 Worklist.push_back(&ParentRC); 944 } 945 } while (!Worklist.empty()); 946 }; 947 948 // Use a normal worklist to find which SCCs the target connects to. We still 949 // bound the search based on the range in the postorder list we care about, 950 // but because this is forward connectivity we just "recurse" through the 951 // edges. 952 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) { 953 Set.insert(this); 954 SmallVector<RefSCC *, 4> Worklist; 955 Worklist.push_back(this); 956 do { 957 RefSCC &RC = *Worklist.pop_back_val(); 958 for (SCC &C : RC) 959 for (Node &N : C) 960 for (Edge &E : N) { 961 assert(E.getNode() && "Must have formed a node!"); 962 RefSCC &EdgeRC = *G->lookupRefSCC(*E.getNode()); 963 if (G->getRefSCCIndex(EdgeRC) <= SourceIdx) 964 // Not in the postorder sequence between source and target. 965 continue; 966 967 if (Set.insert(&EdgeRC).second) 968 Worklist.push_back(&EdgeRC); 969 } 970 } while (!Worklist.empty()); 971 }; 972 973 // Use a generic helper to update the postorder sequence of RefSCCs and return 974 // a range of any RefSCCs connected into a cycle by inserting this edge. This 975 // routine will also take care of updating the indices into the postorder 976 // sequence. 977 iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange = 978 updatePostorderSequenceForEdgeInsertion( 979 SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices, 980 ComputeSourceConnectedSet, ComputeTargetConnectedSet); 981 982 // Build a set so we can do fast tests for whether a RefSCC will end up as 983 // part of the merged RefSCC. 984 SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end()); 985 986 // This RefSCC will always be part of that set, so just insert it here. 987 MergeSet.insert(this); 988 989 // Now that we have identified all of the SCCs which need to be merged into 990 // a connected set with the inserted edge, merge all of them into this SCC. 991 SmallVector<SCC *, 16> MergedSCCs; 992 int SCCIndex = 0; 993 for (RefSCC *RC : MergeRange) { 994 assert(RC != this && "We're merging into the target RefSCC, so it " 995 "shouldn't be in the range."); 996 997 // Merge the parents which aren't part of the merge into the our parents. 998 for (RefSCC *ParentRC : RC->Parents) 999 if (!MergeSet.count(ParentRC)) 1000 Parents.insert(ParentRC); 1001 RC->Parents.clear(); 1002 1003 // Walk the inner SCCs to update their up-pointer and walk all the edges to 1004 // update any parent sets. 1005 // FIXME: We should try to find a way to avoid this (rather expensive) edge 1006 // walk by updating the parent sets in some other manner. 1007 for (SCC &InnerC : *RC) { 1008 InnerC.OuterRefSCC = this; 1009 SCCIndices[&InnerC] = SCCIndex++; 1010 for (Node &N : InnerC) { 1011 G->SCCMap[&N] = &InnerC; 1012 for (Edge &E : N) { 1013 assert(E.getNode() && 1014 "Cannot have a null node within a visited SCC!"); 1015 RefSCC &ChildRC = *G->lookupRefSCC(*E.getNode()); 1016 if (MergeSet.count(&ChildRC)) 1017 continue; 1018 ChildRC.Parents.erase(RC); 1019 ChildRC.Parents.insert(this); 1020 } 1021 } 1022 } 1023 1024 // Now merge in the SCCs. We can actually move here so try to reuse storage 1025 // the first time through. 1026 if (MergedSCCs.empty()) 1027 MergedSCCs = std::move(RC->SCCs); 1028 else 1029 MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end()); 1030 RC->SCCs.clear(); 1031 DeletedRefSCCs.push_back(RC); 1032 } 1033 1034 // Append our original SCCs to the merged list and move it into place. 1035 for (SCC &InnerC : *this) 1036 SCCIndices[&InnerC] = SCCIndex++; 1037 MergedSCCs.append(SCCs.begin(), SCCs.end()); 1038 SCCs = std::move(MergedSCCs); 1039 1040 // Remove the merged away RefSCCs from the post order sequence. 1041 for (RefSCC *RC : MergeRange) 1042 G->RefSCCIndices.erase(RC); 1043 int IndexOffset = MergeRange.end() - MergeRange.begin(); 1044 auto EraseEnd = 1045 G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end()); 1046 for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end())) 1047 G->RefSCCIndices[RC] -= IndexOffset; 1048 1049 // At this point we have a merged RefSCC with a post-order SCCs list, just 1050 // connect the nodes to form the new edge. 1051 SourceN.insertEdgeInternal(TargetN, Edge::Ref); 1052 1053 // We return the list of SCCs which were merged so that callers can 1054 // invalidate any data they have associated with those SCCs. Note that these 1055 // SCCs are no longer in an interesting state (they are totally empty) but 1056 // the pointers will remain stable for the life of the graph itself. 1057 return DeletedRefSCCs; 1058 } 1059 1060 void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) { 1061 assert(G->lookupRefSCC(SourceN) == this && 1062 "The source must be a member of this RefSCC."); 1063 1064 RefSCC &TargetRC = *G->lookupRefSCC(TargetN); 1065 assert(&TargetRC != this && "The target must not be a member of this RefSCC"); 1066 1067 assert(!is_contained(G->LeafRefSCCs, this) && 1068 "Cannot have a leaf RefSCC source."); 1069 1070 #ifndef NDEBUG 1071 // In a debug build, verify the RefSCC is valid to start with and when this 1072 // routine finishes. 1073 verify(); 1074 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 1075 #endif 1076 1077 // First remove it from the node. 1078 SourceN.removeEdgeInternal(TargetN.getFunction()); 1079 1080 bool HasOtherEdgeToChildRC = false; 1081 bool HasOtherChildRC = false; 1082 for (SCC *InnerC : SCCs) { 1083 for (Node &N : *InnerC) { 1084 for (Edge &E : N) { 1085 assert(E.getNode() && "Cannot have a missing node in a visited SCC!"); 1086 RefSCC &OtherChildRC = *G->lookupRefSCC(*E.getNode()); 1087 if (&OtherChildRC == &TargetRC) { 1088 HasOtherEdgeToChildRC = true; 1089 break; 1090 } 1091 if (&OtherChildRC != this) 1092 HasOtherChildRC = true; 1093 } 1094 if (HasOtherEdgeToChildRC) 1095 break; 1096 } 1097 if (HasOtherEdgeToChildRC) 1098 break; 1099 } 1100 // Because the SCCs form a DAG, deleting such an edge cannot change the set 1101 // of SCCs in the graph. However, it may cut an edge of the SCC DAG, making 1102 // the source SCC no longer connected to the target SCC. If so, we need to 1103 // update the target SCC's map of its parents. 1104 if (!HasOtherEdgeToChildRC) { 1105 bool Removed = TargetRC.Parents.erase(this); 1106 (void)Removed; 1107 assert(Removed && 1108 "Did not find the source SCC in the target SCC's parent list!"); 1109 1110 // It may orphan an SCC if it is the last edge reaching it, but that does 1111 // not violate any invariants of the graph. 1112 if (TargetRC.Parents.empty()) 1113 DEBUG(dbgs() << "LCG: Update removing " << SourceN.getFunction().getName() 1114 << " -> " << TargetN.getFunction().getName() 1115 << " edge orphaned the callee's SCC!\n"); 1116 1117 // It may make the Source SCC a leaf SCC. 1118 if (!HasOtherChildRC) 1119 G->LeafRefSCCs.push_back(this); 1120 } 1121 } 1122 1123 SmallVector<LazyCallGraph::RefSCC *, 1> 1124 LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN, Node &TargetN) { 1125 assert(!SourceN[TargetN].isCall() && 1126 "Cannot remove a call edge, it must first be made a ref edge"); 1127 1128 #ifndef NDEBUG 1129 // In a debug build, verify the RefSCC is valid to start with and when this 1130 // routine finishes. 1131 verify(); 1132 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 1133 #endif 1134 1135 // First remove the actual edge. 1136 SourceN.removeEdgeInternal(TargetN.getFunction()); 1137 1138 // We return a list of the resulting *new* RefSCCs in post-order. 1139 SmallVector<RefSCC *, 1> Result; 1140 1141 // Direct recursion doesn't impact the SCC graph at all. 1142 if (&SourceN == &TargetN) 1143 return Result; 1144 1145 // If this ref edge is within an SCC then there are sufficient other edges to 1146 // form a cycle without this edge so removing it is a no-op. 1147 SCC &SourceC = *G->lookupSCC(SourceN); 1148 SCC &TargetC = *G->lookupSCC(TargetN); 1149 if (&SourceC == &TargetC) 1150 return Result; 1151 1152 // We build somewhat synthetic new RefSCCs by providing a postorder mapping 1153 // for each inner SCC. We also store these associated with *nodes* rather 1154 // than SCCs because this saves a round-trip through the node->SCC map and in 1155 // the common case, SCCs are small. We will verify that we always give the 1156 // same number to every node in the SCC such that these are equivalent. 1157 const int RootPostOrderNumber = 0; 1158 int PostOrderNumber = RootPostOrderNumber + 1; 1159 SmallDenseMap<Node *, int> PostOrderMapping; 1160 1161 // Every node in the target SCC can already reach every node in this RefSCC 1162 // (by definition). It is the only node we know will stay inside this RefSCC. 1163 // Everything which transitively reaches Target will also remain in the 1164 // RefSCC. We handle this by pre-marking that the nodes in the target SCC map 1165 // back to the root post order number. 1166 // 1167 // This also enables us to take a very significant short-cut in the standard 1168 // Tarjan walk to re-form RefSCCs below: whenever we build an edge that 1169 // references the target node, we know that the target node eventually 1170 // references all other nodes in our walk. As a consequence, we can detect 1171 // and handle participants in that cycle without walking all the edges that 1172 // form the connections, and instead by relying on the fundamental guarantee 1173 // coming into this operation. 1174 for (Node &N : TargetC) 1175 PostOrderMapping[&N] = RootPostOrderNumber; 1176 1177 // Reset all the other nodes to prepare for a DFS over them, and add them to 1178 // our worklist. 1179 SmallVector<Node *, 8> Worklist; 1180 for (SCC *C : SCCs) { 1181 if (C == &TargetC) 1182 continue; 1183 1184 for (Node &N : *C) 1185 N.DFSNumber = N.LowLink = 0; 1186 1187 Worklist.append(C->Nodes.begin(), C->Nodes.end()); 1188 } 1189 1190 auto MarkNodeForSCCNumber = [&PostOrderMapping](Node &N, int Number) { 1191 N.DFSNumber = N.LowLink = -1; 1192 PostOrderMapping[&N] = Number; 1193 }; 1194 1195 SmallVector<std::pair<Node *, edge_iterator>, 4> DFSStack; 1196 SmallVector<Node *, 4> PendingRefSCCStack; 1197 do { 1198 assert(DFSStack.empty() && 1199 "Cannot begin a new root with a non-empty DFS stack!"); 1200 assert(PendingRefSCCStack.empty() && 1201 "Cannot begin a new root with pending nodes for an SCC!"); 1202 1203 Node *RootN = Worklist.pop_back_val(); 1204 // Skip any nodes we've already reached in the DFS. 1205 if (RootN->DFSNumber != 0) { 1206 assert(RootN->DFSNumber == -1 && 1207 "Shouldn't have any mid-DFS root nodes!"); 1208 continue; 1209 } 1210 1211 RootN->DFSNumber = RootN->LowLink = 1; 1212 int NextDFSNumber = 2; 1213 1214 DFSStack.push_back({RootN, RootN->begin()}); 1215 do { 1216 Node *N; 1217 edge_iterator I; 1218 std::tie(N, I) = DFSStack.pop_back_val(); 1219 auto E = N->end(); 1220 1221 assert(N->DFSNumber != 0 && "We should always assign a DFS number " 1222 "before processing a node."); 1223 1224 while (I != E) { 1225 Node &ChildN = I->getNode(*G); 1226 if (ChildN.DFSNumber == 0) { 1227 // Mark that we should start at this child when next this node is the 1228 // top of the stack. We don't start at the next child to ensure this 1229 // child's lowlink is reflected. 1230 DFSStack.push_back({N, I}); 1231 1232 // Continue, resetting to the child node. 1233 ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++; 1234 N = &ChildN; 1235 I = ChildN.begin(); 1236 E = ChildN.end(); 1237 continue; 1238 } 1239 if (ChildN.DFSNumber == -1) { 1240 // Check if this edge's target node connects to the deleted edge's 1241 // target node. If so, we know that every node connected will end up 1242 // in this RefSCC, so collapse the entire current stack into the root 1243 // slot in our SCC numbering. See above for the motivation of 1244 // optimizing the target connected nodes in this way. 1245 auto PostOrderI = PostOrderMapping.find(&ChildN); 1246 if (PostOrderI != PostOrderMapping.end() && 1247 PostOrderI->second == RootPostOrderNumber) { 1248 MarkNodeForSCCNumber(*N, RootPostOrderNumber); 1249 while (!PendingRefSCCStack.empty()) 1250 MarkNodeForSCCNumber(*PendingRefSCCStack.pop_back_val(), 1251 RootPostOrderNumber); 1252 while (!DFSStack.empty()) 1253 MarkNodeForSCCNumber(*DFSStack.pop_back_val().first, 1254 RootPostOrderNumber); 1255 // Ensure we break all the way out of the enclosing loop. 1256 N = nullptr; 1257 break; 1258 } 1259 1260 // If this child isn't currently in this RefSCC, no need to process 1261 // it. However, we do need to remove this RefSCC from its RefSCC's 1262 // parent set. 1263 RefSCC &ChildRC = *G->lookupRefSCC(ChildN); 1264 ChildRC.Parents.erase(this); 1265 ++I; 1266 continue; 1267 } 1268 1269 // Track the lowest link of the children, if any are still in the stack. 1270 // Any child not on the stack will have a LowLink of -1. 1271 assert(ChildN.LowLink != 0 && 1272 "Low-link must not be zero with a non-zero DFS number."); 1273 if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink) 1274 N->LowLink = ChildN.LowLink; 1275 ++I; 1276 } 1277 if (!N) 1278 // We short-circuited this node. 1279 break; 1280 1281 // We've finished processing N and its descendents, put it on our pending 1282 // stack to eventually get merged into a RefSCC. 1283 PendingRefSCCStack.push_back(N); 1284 1285 // If this node is linked to some lower entry, continue walking up the 1286 // stack. 1287 if (N->LowLink != N->DFSNumber) { 1288 assert(!DFSStack.empty() && 1289 "We never found a viable root for a RefSCC to pop off!"); 1290 continue; 1291 } 1292 1293 // Otherwise, form a new RefSCC from the top of the pending node stack. 1294 int RootDFSNumber = N->DFSNumber; 1295 // Find the range of the node stack by walking down until we pass the 1296 // root DFS number. 1297 auto RefSCCNodes = make_range( 1298 PendingRefSCCStack.rbegin(), 1299 find_if(reverse(PendingRefSCCStack), [RootDFSNumber](const Node *N) { 1300 return N->DFSNumber < RootDFSNumber; 1301 })); 1302 1303 // Mark the postorder number for these nodes and clear them off the 1304 // stack. We'll use the postorder number to pull them into RefSCCs at the 1305 // end. FIXME: Fuse with the loop above. 1306 int RefSCCNumber = PostOrderNumber++; 1307 for (Node *N : RefSCCNodes) 1308 MarkNodeForSCCNumber(*N, RefSCCNumber); 1309 1310 PendingRefSCCStack.erase(RefSCCNodes.end().base(), 1311 PendingRefSCCStack.end()); 1312 } while (!DFSStack.empty()); 1313 1314 assert(DFSStack.empty() && "Didn't flush the entire DFS stack!"); 1315 assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!"); 1316 } while (!Worklist.empty()); 1317 1318 // We now have a post-order numbering for RefSCCs and a mapping from each 1319 // node in this RefSCC to its final RefSCC. We create each new RefSCC node 1320 // (re-using this RefSCC node for the root) and build a radix-sort style map 1321 // from postorder number to the RefSCC. We then append SCCs to each of these 1322 // RefSCCs in the order they occured in the original SCCs container. 1323 for (int i = 1; i < PostOrderNumber; ++i) 1324 Result.push_back(G->createRefSCC(*G)); 1325 1326 // Insert the resulting postorder sequence into the global graph postorder 1327 // sequence before the current RefSCC in that sequence. The idea being that 1328 // this RefSCC is the target of the reference edge removed, and thus has 1329 // a direct or indirect edge to every other RefSCC formed and so must be at 1330 // the end of any postorder traversal. 1331 // 1332 // FIXME: It'd be nice to change the APIs so that we returned an iterator 1333 // range over the global postorder sequence and generally use that sequence 1334 // rather than building a separate result vector here. 1335 if (!Result.empty()) { 1336 int Idx = G->getRefSCCIndex(*this); 1337 G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx, 1338 Result.begin(), Result.end()); 1339 for (int i : seq<int>(Idx, G->PostOrderRefSCCs.size())) 1340 G->RefSCCIndices[G->PostOrderRefSCCs[i]] = i; 1341 assert(G->PostOrderRefSCCs[G->getRefSCCIndex(*this)] == this && 1342 "Failed to update this RefSCC's index after insertion!"); 1343 } 1344 1345 for (SCC *C : SCCs) { 1346 auto PostOrderI = PostOrderMapping.find(&*C->begin()); 1347 assert(PostOrderI != PostOrderMapping.end() && 1348 "Cannot have missing mappings for nodes!"); 1349 int SCCNumber = PostOrderI->second; 1350 #ifndef NDEBUG 1351 for (Node &N : *C) 1352 assert(PostOrderMapping.find(&N)->second == SCCNumber && 1353 "Cannot have different numbers for nodes in the same SCC!"); 1354 #endif 1355 if (SCCNumber == 0) 1356 // The root node is handled separately by removing the SCCs. 1357 continue; 1358 1359 RefSCC &RC = *Result[SCCNumber - 1]; 1360 int SCCIndex = RC.SCCs.size(); 1361 RC.SCCs.push_back(C); 1362 RC.SCCIndices[C] = SCCIndex; 1363 C->OuterRefSCC = &RC; 1364 } 1365 1366 // FIXME: We re-walk the edges in each RefSCC to establish whether it is 1367 // a leaf and connect it to the rest of the graph's parents lists. This is 1368 // really wasteful. We should instead do this during the DFS to avoid yet 1369 // another edge walk. 1370 for (RefSCC *RC : Result) 1371 G->connectRefSCC(*RC); 1372 1373 // Now erase all but the root's SCCs. 1374 SCCs.erase(remove_if(SCCs, 1375 [&](SCC *C) { 1376 return PostOrderMapping.lookup(&*C->begin()) != 1377 RootPostOrderNumber; 1378 }), 1379 SCCs.end()); 1380 SCCIndices.clear(); 1381 for (int i = 0, Size = SCCs.size(); i < Size; ++i) 1382 SCCIndices[SCCs[i]] = i; 1383 1384 #ifndef NDEBUG 1385 // Now we need to reconnect the current (root) SCC to the graph. We do this 1386 // manually because we can special case our leaf handling and detect errors. 1387 bool IsLeaf = true; 1388 #endif 1389 for (SCC *C : SCCs) 1390 for (Node &N : *C) { 1391 for (Edge &E : N) { 1392 assert(E.getNode() && "Cannot have a missing node in a visited SCC!"); 1393 RefSCC &ChildRC = *G->lookupRefSCC(*E.getNode()); 1394 if (&ChildRC == this) 1395 continue; 1396 ChildRC.Parents.insert(this); 1397 #ifndef NDEBUG 1398 IsLeaf = false; 1399 #endif 1400 } 1401 } 1402 #ifndef NDEBUG 1403 if (!Result.empty()) 1404 assert(!IsLeaf && "This SCC cannot be a leaf as we have split out new " 1405 "SCCs by removing this edge."); 1406 if (none_of(G->LeafRefSCCs, [&](RefSCC *C) { return C == this; })) 1407 assert(!IsLeaf && "This SCC cannot be a leaf as it already had child " 1408 "SCCs before we removed this edge."); 1409 #endif 1410 // And connect both this RefSCC and all the new ones to the correct parents. 1411 // The easiest way to do this is just to re-analyze the old parent set. 1412 SmallVector<RefSCC *, 4> OldParents(Parents.begin(), Parents.end()); 1413 Parents.clear(); 1414 for (RefSCC *ParentRC : OldParents) 1415 for (SCC &ParentC : *ParentRC) 1416 for (Node &ParentN : ParentC) 1417 for (Edge &E : ParentN) { 1418 assert(E.getNode() && "Cannot have a missing node in a visited SCC!"); 1419 RefSCC &RC = *G->lookupRefSCC(*E.getNode()); 1420 if (&RC != ParentRC) 1421 RC.Parents.insert(ParentRC); 1422 } 1423 1424 // If this SCC stopped being a leaf through this edge removal, remove it from 1425 // the leaf SCC list. Note that this DTRT in the case where this was never 1426 // a leaf. 1427 // FIXME: As LeafRefSCCs could be very large, we might want to not walk the 1428 // entire list if this RefSCC wasn't a leaf before the edge removal. 1429 if (!Result.empty()) 1430 G->LeafRefSCCs.erase( 1431 std::remove(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(), this), 1432 G->LeafRefSCCs.end()); 1433 1434 #ifndef NDEBUG 1435 // Verify all of the new RefSCCs. 1436 for (RefSCC *RC : Result) 1437 RC->verify(); 1438 #endif 1439 1440 // Return the new list of SCCs. 1441 return Result; 1442 } 1443 1444 void LazyCallGraph::RefSCC::handleTrivialEdgeInsertion(Node &SourceN, 1445 Node &TargetN) { 1446 // The only trivial case that requires any graph updates is when we add new 1447 // ref edge and may connect different RefSCCs along that path. This is only 1448 // because of the parents set. Every other part of the graph remains constant 1449 // after this edge insertion. 1450 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 1451 RefSCC &TargetRC = *G->lookupRefSCC(TargetN); 1452 if (&TargetRC == this) { 1453 1454 return; 1455 } 1456 1457 assert(TargetRC.isDescendantOf(*this) && 1458 "Target must be a descendant of the Source."); 1459 // The only change required is to add this RefSCC to the parent set of the 1460 // target. This is a set and so idempotent if the edge already existed. 1461 TargetRC.Parents.insert(this); 1462 } 1463 1464 void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN, 1465 Node &TargetN) { 1466 #ifndef NDEBUG 1467 // Check that the RefSCC is still valid when we finish. 1468 auto ExitVerifier = make_scope_exit([this] { verify(); }); 1469 1470 // Check that we aren't breaking some invariants of the SCC graph. 1471 SCC &SourceC = *G->lookupSCC(SourceN); 1472 SCC &TargetC = *G->lookupSCC(TargetN); 1473 if (&SourceC != &TargetC) 1474 assert(SourceC.isAncestorOf(TargetC) && 1475 "Call edge is not trivial in the SCC graph!"); 1476 #endif 1477 // First insert it into the source or find the existing edge. 1478 auto InsertResult = SourceN.EdgeIndexMap.insert( 1479 {&TargetN.getFunction(), SourceN.Edges.size()}); 1480 if (!InsertResult.second) { 1481 // Already an edge, just update it. 1482 Edge &E = SourceN.Edges[InsertResult.first->second]; 1483 if (E.isCall()) 1484 return; // Nothing to do! 1485 E.setKind(Edge::Call); 1486 } else { 1487 // Create the new edge. 1488 SourceN.Edges.emplace_back(TargetN, Edge::Call); 1489 } 1490 1491 // Now that we have the edge, handle the graph fallout. 1492 handleTrivialEdgeInsertion(SourceN, TargetN); 1493 } 1494 1495 void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) { 1496 #ifndef NDEBUG 1497 // Check that the RefSCC is still valid when we finish. 1498 auto ExitVerifier = make_scope_exit([this] { verify(); }); 1499 1500 // Check that we aren't breaking some invariants of the RefSCC graph. 1501 RefSCC &SourceRC = *G->lookupRefSCC(SourceN); 1502 RefSCC &TargetRC = *G->lookupRefSCC(TargetN); 1503 if (&SourceRC != &TargetRC) 1504 assert(SourceRC.isAncestorOf(TargetRC) && 1505 "Ref edge is not trivial in the RefSCC graph!"); 1506 #endif 1507 // First insert it into the source or find the existing edge. 1508 auto InsertResult = SourceN.EdgeIndexMap.insert( 1509 {&TargetN.getFunction(), SourceN.Edges.size()}); 1510 if (!InsertResult.second) 1511 // Already an edge, we're done. 1512 return; 1513 1514 // Create the new edge. 1515 SourceN.Edges.emplace_back(TargetN, Edge::Ref); 1516 1517 // Now that we have the edge, handle the graph fallout. 1518 handleTrivialEdgeInsertion(SourceN, TargetN); 1519 } 1520 1521 void LazyCallGraph::insertEdge(Node &SourceN, Function &Target, Edge::Kind EK) { 1522 assert(SCCMap.empty() && DFSStack.empty() && 1523 "This method cannot be called after SCCs have been formed!"); 1524 1525 return SourceN.insertEdgeInternal(Target, EK); 1526 } 1527 1528 void LazyCallGraph::removeEdge(Node &SourceN, Function &Target) { 1529 assert(SCCMap.empty() && DFSStack.empty() && 1530 "This method cannot be called after SCCs have been formed!"); 1531 1532 return SourceN.removeEdgeInternal(Target); 1533 } 1534 1535 void LazyCallGraph::removeDeadFunction(Function &F) { 1536 // FIXME: This is unnecessarily restrictive. We should be able to remove 1537 // functions which recursively call themselves. 1538 assert(F.use_empty() && 1539 "This routine should only be called on trivially dead functions!"); 1540 1541 auto EII = EntryIndexMap.find(&F); 1542 if (EII != EntryIndexMap.end()) { 1543 EntryEdges[EII->second] = Edge(); 1544 EntryIndexMap.erase(EII); 1545 } 1546 1547 // It's safe to just remove un-visited functions from the RefSCC entry list. 1548 // FIXME: This is a linear operation which could become hot and benefit from 1549 // an index map. 1550 auto RENI = find(RefSCCEntryNodes, &F); 1551 if (RENI != RefSCCEntryNodes.end()) 1552 RefSCCEntryNodes.erase(RENI); 1553 1554 auto NI = NodeMap.find(&F); 1555 if (NI == NodeMap.end()) 1556 // Not in the graph at all! 1557 return; 1558 1559 Node &N = *NI->second; 1560 NodeMap.erase(NI); 1561 1562 if (SCCMap.empty() && DFSStack.empty()) { 1563 // No SCC walk has begun, so removing this is fine and there is nothing 1564 // else necessary at this point but clearing out the node. 1565 N.clear(); 1566 return; 1567 } 1568 1569 // Check that we aren't going to break the DFS walk. 1570 assert(all_of(DFSStack, 1571 [&N](const std::pair<Node *, edge_iterator> &Element) { 1572 return Element.first != &N; 1573 }) && 1574 "Tried to remove a function currently in the DFS stack!"); 1575 assert(find(PendingRefSCCStack, &N) == PendingRefSCCStack.end() && 1576 "Tried to remove a function currently pending to add to a RefSCC!"); 1577 1578 // Cannot remove a function which has yet to be visited in the DFS walk, so 1579 // if we have a node at all then we must have an SCC and RefSCC. 1580 auto CI = SCCMap.find(&N); 1581 assert(CI != SCCMap.end() && 1582 "Tried to remove a node without an SCC after DFS walk started!"); 1583 SCC &C = *CI->second; 1584 SCCMap.erase(CI); 1585 RefSCC &RC = C.getOuterRefSCC(); 1586 1587 // This node must be the only member of its SCC as it has no callers, and 1588 // that SCC must be the only member of a RefSCC as it has no references. 1589 // Validate these properties first. 1590 assert(C.size() == 1 && "Dead functions must be in a singular SCC"); 1591 assert(RC.size() == 1 && "Dead functions must be in a singular RefSCC"); 1592 assert(RC.Parents.empty() && "Cannot have parents of a dead RefSCC!"); 1593 1594 // Now remove this RefSCC from any parents sets and the leaf list. 1595 for (Edge &E : N) 1596 if (Node *TargetN = E.getNode()) 1597 if (RefSCC *TargetRC = lookupRefSCC(*TargetN)) 1598 TargetRC->Parents.erase(&RC); 1599 // FIXME: This is a linear operation which could become hot and benefit from 1600 // an index map. 1601 auto LRI = find(LeafRefSCCs, &RC); 1602 if (LRI != LeafRefSCCs.end()) 1603 LeafRefSCCs.erase(LRI); 1604 1605 auto RCIndexI = RefSCCIndices.find(&RC); 1606 int RCIndex = RCIndexI->second; 1607 PostOrderRefSCCs.erase(PostOrderRefSCCs.begin() + RCIndex); 1608 RefSCCIndices.erase(RCIndexI); 1609 for (int i = RCIndex, Size = PostOrderRefSCCs.size(); i < Size; ++i) 1610 RefSCCIndices[PostOrderRefSCCs[i]] = i; 1611 1612 // Finally clear out all the data structures from the node down through the 1613 // components. 1614 N.clear(); 1615 C.clear(); 1616 RC.clear(); 1617 1618 // Nothing to delete as all the objects are allocated in stable bump pointer 1619 // allocators. 1620 } 1621 1622 LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) { 1623 return *new (MappedN = BPA.Allocate()) Node(*this, F); 1624 } 1625 1626 void LazyCallGraph::updateGraphPtrs() { 1627 // Process all nodes updating the graph pointers. 1628 { 1629 SmallVector<Node *, 16> Worklist; 1630 for (Edge &E : EntryEdges) 1631 if (Node *EntryN = E.getNode()) 1632 Worklist.push_back(EntryN); 1633 1634 while (!Worklist.empty()) { 1635 Node *N = Worklist.pop_back_val(); 1636 N->G = this; 1637 for (Edge &E : N->Edges) 1638 if (Node *TargetN = E.getNode()) 1639 Worklist.push_back(TargetN); 1640 } 1641 } 1642 1643 // Process all SCCs updating the graph pointers. 1644 { 1645 SmallVector<RefSCC *, 16> Worklist(LeafRefSCCs.begin(), LeafRefSCCs.end()); 1646 1647 while (!Worklist.empty()) { 1648 RefSCC &C = *Worklist.pop_back_val(); 1649 C.G = this; 1650 for (RefSCC &ParentC : C.parents()) 1651 Worklist.push_back(&ParentC); 1652 } 1653 } 1654 } 1655 1656 /// Build the internal SCCs for a RefSCC from a sequence of nodes. 1657 /// 1658 /// Appends the SCCs to the provided vector and updates the map with their 1659 /// indices. Both the vector and map must be empty when passed into this 1660 /// routine. 1661 void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) { 1662 assert(RC.SCCs.empty() && "Already built SCCs!"); 1663 assert(RC.SCCIndices.empty() && "Already mapped SCC indices!"); 1664 1665 for (Node *N : Nodes) { 1666 assert(N->LowLink >= (*Nodes.begin())->LowLink && 1667 "We cannot have a low link in an SCC lower than its root on the " 1668 "stack!"); 1669 1670 // This node will go into the next RefSCC, clear out its DFS and low link 1671 // as we scan. 1672 N->DFSNumber = N->LowLink = 0; 1673 } 1674 1675 // Each RefSCC contains a DAG of the call SCCs. To build these, we do 1676 // a direct walk of the call edges using Tarjan's algorithm. We reuse the 1677 // internal storage as we won't need it for the outer graph's DFS any longer. 1678 1679 SmallVector<std::pair<Node *, call_edge_iterator>, 16> DFSStack; 1680 SmallVector<Node *, 16> PendingSCCStack; 1681 1682 // Scan down the stack and DFS across the call edges. 1683 for (Node *RootN : Nodes) { 1684 assert(DFSStack.empty() && 1685 "Cannot begin a new root with a non-empty DFS stack!"); 1686 assert(PendingSCCStack.empty() && 1687 "Cannot begin a new root with pending nodes for an SCC!"); 1688 1689 // Skip any nodes we've already reached in the DFS. 1690 if (RootN->DFSNumber != 0) { 1691 assert(RootN->DFSNumber == -1 && 1692 "Shouldn't have any mid-DFS root nodes!"); 1693 continue; 1694 } 1695 1696 RootN->DFSNumber = RootN->LowLink = 1; 1697 int NextDFSNumber = 2; 1698 1699 DFSStack.push_back({RootN, RootN->call_begin()}); 1700 do { 1701 Node *N; 1702 call_edge_iterator I; 1703 std::tie(N, I) = DFSStack.pop_back_val(); 1704 auto E = N->call_end(); 1705 while (I != E) { 1706 Node &ChildN = *I->getNode(); 1707 if (ChildN.DFSNumber == 0) { 1708 // We haven't yet visited this child, so descend, pushing the current 1709 // node onto the stack. 1710 DFSStack.push_back({N, I}); 1711 1712 assert(!lookupSCC(ChildN) && 1713 "Found a node with 0 DFS number but already in an SCC!"); 1714 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++; 1715 N = &ChildN; 1716 I = N->call_begin(); 1717 E = N->call_end(); 1718 continue; 1719 } 1720 1721 // If the child has already been added to some child component, it 1722 // couldn't impact the low-link of this parent because it isn't 1723 // connected, and thus its low-link isn't relevant so skip it. 1724 if (ChildN.DFSNumber == -1) { 1725 ++I; 1726 continue; 1727 } 1728 1729 // Track the lowest linked child as the lowest link for this node. 1730 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); 1731 if (ChildN.LowLink < N->LowLink) 1732 N->LowLink = ChildN.LowLink; 1733 1734 // Move to the next edge. 1735 ++I; 1736 } 1737 1738 // We've finished processing N and its descendents, put it on our pending 1739 // SCC stack to eventually get merged into an SCC of nodes. 1740 PendingSCCStack.push_back(N); 1741 1742 // If this node is linked to some lower entry, continue walking up the 1743 // stack. 1744 if (N->LowLink != N->DFSNumber) 1745 continue; 1746 1747 // Otherwise, we've completed an SCC. Append it to our post order list of 1748 // SCCs. 1749 int RootDFSNumber = N->DFSNumber; 1750 // Find the range of the node stack by walking down until we pass the 1751 // root DFS number. 1752 auto SCCNodes = make_range( 1753 PendingSCCStack.rbegin(), 1754 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) { 1755 return N->DFSNumber < RootDFSNumber; 1756 })); 1757 // Form a new SCC out of these nodes and then clear them off our pending 1758 // stack. 1759 RC.SCCs.push_back(createSCC(RC, SCCNodes)); 1760 for (Node &N : *RC.SCCs.back()) { 1761 N.DFSNumber = N.LowLink = -1; 1762 SCCMap[&N] = RC.SCCs.back(); 1763 } 1764 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end()); 1765 } while (!DFSStack.empty()); 1766 } 1767 1768 // Wire up the SCC indices. 1769 for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i) 1770 RC.SCCIndices[RC.SCCs[i]] = i; 1771 } 1772 1773 // FIXME: We should move callers of this to embed the parent linking and leaf 1774 // tracking into their DFS in order to remove a full walk of all edges. 1775 void LazyCallGraph::connectRefSCC(RefSCC &RC) { 1776 // Walk all edges in the RefSCC (this remains linear as we only do this once 1777 // when we build the RefSCC) to connect it to the parent sets of its 1778 // children. 1779 bool IsLeaf = true; 1780 for (SCC &C : RC) 1781 for (Node &N : C) 1782 for (Edge &E : N) { 1783 assert(E.getNode() && 1784 "Cannot have a missing node in a visited part of the graph!"); 1785 RefSCC &ChildRC = *lookupRefSCC(*E.getNode()); 1786 if (&ChildRC == &RC) 1787 continue; 1788 ChildRC.Parents.insert(&RC); 1789 IsLeaf = false; 1790 } 1791 1792 // For the SCCs where we find no child SCCs, add them to the leaf list. 1793 if (IsLeaf) 1794 LeafRefSCCs.push_back(&RC); 1795 } 1796 1797 bool LazyCallGraph::buildNextRefSCCInPostOrder() { 1798 if (DFSStack.empty()) { 1799 Node *N; 1800 do { 1801 // If we've handled all candidate entry nodes to the SCC forest, we're 1802 // done. 1803 if (RefSCCEntryNodes.empty()) 1804 return false; 1805 1806 N = &get(*RefSCCEntryNodes.pop_back_val()); 1807 } while (N->DFSNumber != 0); 1808 1809 // Found a new root, begin the DFS here. 1810 N->LowLink = N->DFSNumber = 1; 1811 NextDFSNumber = 2; 1812 DFSStack.push_back({N, N->begin()}); 1813 } 1814 1815 for (;;) { 1816 Node *N; 1817 edge_iterator I; 1818 std::tie(N, I) = DFSStack.pop_back_val(); 1819 1820 assert(N->DFSNumber > 0 && "We should always assign a DFS number " 1821 "before placing a node onto the stack."); 1822 1823 auto E = N->end(); 1824 while (I != E) { 1825 Node &ChildN = I->getNode(*this); 1826 if (ChildN.DFSNumber == 0) { 1827 // We haven't yet visited this child, so descend, pushing the current 1828 // node onto the stack. 1829 DFSStack.push_back({N, N->begin()}); 1830 1831 assert(!SCCMap.count(&ChildN) && 1832 "Found a node with 0 DFS number but already in an SCC!"); 1833 ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++; 1834 N = &ChildN; 1835 I = N->begin(); 1836 E = N->end(); 1837 continue; 1838 } 1839 1840 // If the child has already been added to some child component, it 1841 // couldn't impact the low-link of this parent because it isn't 1842 // connected, and thus its low-link isn't relevant so skip it. 1843 if (ChildN.DFSNumber == -1) { 1844 ++I; 1845 continue; 1846 } 1847 1848 // Track the lowest linked child as the lowest link for this node. 1849 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); 1850 if (ChildN.LowLink < N->LowLink) 1851 N->LowLink = ChildN.LowLink; 1852 1853 // Move to the next edge. 1854 ++I; 1855 } 1856 1857 // We've finished processing N and its descendents, put it on our pending 1858 // SCC stack to eventually get merged into an SCC of nodes. 1859 PendingRefSCCStack.push_back(N); 1860 1861 // If this node is linked to some lower entry, continue walking up the 1862 // stack. 1863 if (N->LowLink != N->DFSNumber) { 1864 assert(!DFSStack.empty() && 1865 "We never found a viable root for an SCC to pop off!"); 1866 continue; 1867 } 1868 1869 // Otherwise, form a new RefSCC from the top of the pending node stack. 1870 int RootDFSNumber = N->DFSNumber; 1871 // Find the range of the node stack by walking down until we pass the 1872 // root DFS number. 1873 auto RefSCCNodes = node_stack_range( 1874 PendingRefSCCStack.rbegin(), 1875 find_if(reverse(PendingRefSCCStack), [RootDFSNumber](const Node *N) { 1876 return N->DFSNumber < RootDFSNumber; 1877 })); 1878 // Form a new RefSCC out of these nodes and then clear them off our pending 1879 // stack. 1880 RefSCC *NewRC = createRefSCC(*this); 1881 buildSCCs(*NewRC, RefSCCNodes); 1882 connectRefSCC(*NewRC); 1883 PendingRefSCCStack.erase(RefSCCNodes.end().base(), 1884 PendingRefSCCStack.end()); 1885 1886 // Push the new node into the postorder list and return true indicating we 1887 // successfully grew the postorder sequence by one. 1888 bool Inserted = 1889 RefSCCIndices.insert({NewRC, PostOrderRefSCCs.size()}).second; 1890 (void)Inserted; 1891 assert(Inserted && "Cannot already have this RefSCC in the index map!"); 1892 PostOrderRefSCCs.push_back(NewRC); 1893 return true; 1894 } 1895 } 1896 1897 AnalysisKey LazyCallGraphAnalysis::Key; 1898 1899 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {} 1900 1901 static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) { 1902 OS << " Edges in function: " << N.getFunction().getName() << "\n"; 1903 for (const LazyCallGraph::Edge &E : N) 1904 OS << " " << (E.isCall() ? "call" : "ref ") << " -> " 1905 << E.getFunction().getName() << "\n"; 1906 1907 OS << "\n"; 1908 } 1909 1910 static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) { 1911 ptrdiff_t Size = std::distance(C.begin(), C.end()); 1912 OS << " SCC with " << Size << " functions:\n"; 1913 1914 for (LazyCallGraph::Node &N : C) 1915 OS << " " << N.getFunction().getName() << "\n"; 1916 } 1917 1918 static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) { 1919 ptrdiff_t Size = std::distance(C.begin(), C.end()); 1920 OS << " RefSCC with " << Size << " call SCCs:\n"; 1921 1922 for (LazyCallGraph::SCC &InnerC : C) 1923 printSCC(OS, InnerC); 1924 1925 OS << "\n"; 1926 } 1927 1928 PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M, 1929 ModuleAnalysisManager &AM) { 1930 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M); 1931 1932 OS << "Printing the call graph for module: " << M.getModuleIdentifier() 1933 << "\n\n"; 1934 1935 for (Function &F : M) 1936 printNode(OS, G.get(F)); 1937 1938 for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs()) 1939 printRefSCC(OS, C); 1940 1941 return PreservedAnalyses::all(); 1942 } 1943 1944 LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS) 1945 : OS(OS) {} 1946 1947 static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) { 1948 std::string Name = "\"" + DOT::EscapeString(N.getFunction().getName()) + "\""; 1949 1950 for (const LazyCallGraph::Edge &E : N) { 1951 OS << " " << Name << " -> \"" 1952 << DOT::EscapeString(E.getFunction().getName()) << "\""; 1953 if (!E.isCall()) // It is a ref edge. 1954 OS << " [style=dashed,label=\"ref\"]"; 1955 OS << ";\n"; 1956 } 1957 1958 OS << "\n"; 1959 } 1960 1961 PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M, 1962 ModuleAnalysisManager &AM) { 1963 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M); 1964 1965 OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n"; 1966 1967 for (Function &F : M) 1968 printNodeDOT(OS, G.get(F)); 1969 1970 OS << "}\n"; 1971 1972 return PreservedAnalyses::all(); 1973 } 1974