1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Analysis/LazyCallGraph.h"
11 #include "llvm/ADT/ScopeExit.h"
12 #include "llvm/ADT/Sequence.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/IR/CallSite.h"
15 #include "llvm/IR/InstVisitor.h"
16 #include "llvm/IR/Instructions.h"
17 #include "llvm/IR/PassManager.h"
18 #include "llvm/Support/Debug.h"
19 #include "llvm/Support/GraphWriter.h"
20 
21 using namespace llvm;
22 
23 #define DEBUG_TYPE "lcg"
24 
25 static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges,
26                     DenseMap<Function *, int> &EdgeIndexMap, Function &F,
27                     LazyCallGraph::Edge::Kind EK) {
28   // Note that we consider *any* function with a definition to be a viable
29   // edge. Even if the function's definition is subject to replacement by
30   // some other module (say, a weak definition) there may still be
31   // optimizations which essentially speculate based on the definition and
32   // a way to check that the specific definition is in fact the one being
33   // used. For example, this could be done by moving the weak definition to
34   // a strong (internal) definition and making the weak definition be an
35   // alias. Then a test of the address of the weak function against the new
36   // strong definition's address would be an effective way to determine the
37   // safety of optimizing a direct call edge.
38   if (!F.isDeclaration() &&
39       EdgeIndexMap.insert({&F, Edges.size()}).second) {
40     DEBUG(dbgs() << "    Added callable function: " << F.getName() << "\n");
41     Edges.emplace_back(LazyCallGraph::Edge(F, EK));
42   }
43 }
44 
45 LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F)
46     : G(&G), F(F), DFSNumber(0), LowLink(0) {
47   DEBUG(dbgs() << "  Adding functions called by '" << F.getName()
48                << "' to the graph.\n");
49 
50   SmallVector<Constant *, 16> Worklist;
51   SmallPtrSet<Function *, 4> Callees;
52   SmallPtrSet<Constant *, 16> Visited;
53 
54   // Find all the potential call graph edges in this function. We track both
55   // actual call edges and indirect references to functions. The direct calls
56   // are trivially added, but to accumulate the latter we walk the instructions
57   // and add every operand which is a constant to the worklist to process
58   // afterward.
59   for (BasicBlock &BB : F)
60     for (Instruction &I : BB) {
61       if (auto CS = CallSite(&I))
62         if (Function *Callee = CS.getCalledFunction())
63           if (Callees.insert(Callee).second) {
64             Visited.insert(Callee);
65             addEdge(Edges, EdgeIndexMap, *Callee, LazyCallGraph::Edge::Call);
66           }
67 
68       for (Value *Op : I.operand_values())
69         if (Constant *C = dyn_cast<Constant>(Op))
70           if (Visited.insert(C).second)
71             Worklist.push_back(C);
72     }
73 
74   // We've collected all the constant (and thus potentially function or
75   // function containing) operands to all of the instructions in the function.
76   // Process them (recursively) collecting every function found.
77   visitReferences(Worklist, Visited, [&](Function &F) {
78     addEdge(Edges, EdgeIndexMap, F, LazyCallGraph::Edge::Ref);
79   });
80 }
81 
82 void LazyCallGraph::Node::insertEdgeInternal(Function &Target, Edge::Kind EK) {
83   if (Node *N = G->lookup(Target))
84     return insertEdgeInternal(*N, EK);
85 
86   EdgeIndexMap.insert({&Target, Edges.size()});
87   Edges.emplace_back(Target, EK);
88 }
89 
90 void LazyCallGraph::Node::insertEdgeInternal(Node &TargetN, Edge::Kind EK) {
91   EdgeIndexMap.insert({&TargetN.getFunction(), Edges.size()});
92   Edges.emplace_back(TargetN, EK);
93 }
94 
95 void LazyCallGraph::Node::setEdgeKind(Function &TargetF, Edge::Kind EK) {
96   Edges[EdgeIndexMap.find(&TargetF)->second].setKind(EK);
97 }
98 
99 void LazyCallGraph::Node::removeEdgeInternal(Function &Target) {
100   auto IndexMapI = EdgeIndexMap.find(&Target);
101   assert(IndexMapI != EdgeIndexMap.end() &&
102          "Target not in the edge set for this caller?");
103 
104   Edges[IndexMapI->second] = Edge();
105   EdgeIndexMap.erase(IndexMapI);
106 }
107 
108 void LazyCallGraph::Node::dump() const {
109   dbgs() << *this << '\n';
110 }
111 
112 LazyCallGraph::LazyCallGraph(Module &M) : NextDFSNumber(0) {
113   DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
114                << "\n");
115   for (Function &F : M)
116     if (!F.isDeclaration() && !F.hasLocalLinkage())
117       if (EntryIndexMap.insert({&F, EntryEdges.size()}).second) {
118         DEBUG(dbgs() << "  Adding '" << F.getName()
119                      << "' to entry set of the graph.\n");
120         EntryEdges.emplace_back(F, Edge::Ref);
121       }
122 
123   // Now add entry nodes for functions reachable via initializers to globals.
124   SmallVector<Constant *, 16> Worklist;
125   SmallPtrSet<Constant *, 16> Visited;
126   for (GlobalVariable &GV : M.globals())
127     if (GV.hasInitializer())
128       if (Visited.insert(GV.getInitializer()).second)
129         Worklist.push_back(GV.getInitializer());
130 
131   DEBUG(dbgs() << "  Adding functions referenced by global initializers to the "
132                   "entry set.\n");
133   visitReferences(Worklist, Visited, [&](Function &F) {
134     addEdge(EntryEdges, EntryIndexMap, F, LazyCallGraph::Edge::Ref);
135   });
136 
137   for (const Edge &E : EntryEdges)
138     RefSCCEntryNodes.push_back(&E.getFunction());
139 }
140 
141 LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
142     : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
143       EntryEdges(std::move(G.EntryEdges)),
144       EntryIndexMap(std::move(G.EntryIndexMap)), SCCBPA(std::move(G.SCCBPA)),
145       SCCMap(std::move(G.SCCMap)), LeafRefSCCs(std::move(G.LeafRefSCCs)),
146       DFSStack(std::move(G.DFSStack)),
147       RefSCCEntryNodes(std::move(G.RefSCCEntryNodes)),
148       NextDFSNumber(G.NextDFSNumber) {
149   updateGraphPtrs();
150 }
151 
152 LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
153   BPA = std::move(G.BPA);
154   NodeMap = std::move(G.NodeMap);
155   EntryEdges = std::move(G.EntryEdges);
156   EntryIndexMap = std::move(G.EntryIndexMap);
157   SCCBPA = std::move(G.SCCBPA);
158   SCCMap = std::move(G.SCCMap);
159   LeafRefSCCs = std::move(G.LeafRefSCCs);
160   DFSStack = std::move(G.DFSStack);
161   RefSCCEntryNodes = std::move(G.RefSCCEntryNodes);
162   NextDFSNumber = G.NextDFSNumber;
163   updateGraphPtrs();
164   return *this;
165 }
166 
167 void LazyCallGraph::SCC::dump() const {
168   dbgs() << *this << '\n';
169 }
170 
171 #ifndef NDEBUG
172 void LazyCallGraph::SCC::verify() {
173   assert(OuterRefSCC && "Can't have a null RefSCC!");
174   assert(!Nodes.empty() && "Can't have an empty SCC!");
175 
176   for (Node *N : Nodes) {
177     assert(N && "Can't have a null node!");
178     assert(OuterRefSCC->G->lookupSCC(*N) == this &&
179            "Node does not map to this SCC!");
180     assert(N->DFSNumber == -1 &&
181            "Must set DFS numbers to -1 when adding a node to an SCC!");
182     assert(N->LowLink == -1 &&
183            "Must set low link to -1 when adding a node to an SCC!");
184     for (Edge &E : *N)
185       assert(E.getNode() && "Can't have an edge to a raw function!");
186   }
187 }
188 #endif
189 
190 LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {}
191 
192 void LazyCallGraph::RefSCC::dump() const {
193   dbgs() << *this << '\n';
194 }
195 
196 #ifndef NDEBUG
197 void LazyCallGraph::RefSCC::verify() {
198   assert(G && "Can't have a null graph!");
199   assert(!SCCs.empty() && "Can't have an empty SCC!");
200 
201   // Verify basic properties of the SCCs.
202   SmallPtrSet<SCC *, 4> SCCSet;
203   for (SCC *C : SCCs) {
204     assert(C && "Can't have a null SCC!");
205     C->verify();
206     assert(&C->getOuterRefSCC() == this &&
207            "SCC doesn't think it is inside this RefSCC!");
208     bool Inserted = SCCSet.insert(C).second;
209     assert(Inserted && "Found a duplicate SCC!");
210   }
211 
212   // Check that our indices map correctly.
213   for (auto &SCCIndexPair : SCCIndices) {
214     SCC *C = SCCIndexPair.first;
215     int i = SCCIndexPair.second;
216     assert(C && "Can't have a null SCC in the indices!");
217     assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!");
218     assert(SCCs[i] == C && "Index doesn't point to SCC!");
219   }
220 
221   // Check that the SCCs are in fact in post-order.
222   for (int i = 0, Size = SCCs.size(); i < Size; ++i) {
223     SCC &SourceSCC = *SCCs[i];
224     for (Node &N : SourceSCC)
225       for (Edge &E : N) {
226         if (!E.isCall())
227           continue;
228         SCC &TargetSCC = *G->lookupSCC(*E.getNode());
229         if (&TargetSCC.getOuterRefSCC() == this) {
230           assert(SCCIndices.find(&TargetSCC)->second <= i &&
231                  "Edge between SCCs violates post-order relationship.");
232           continue;
233         }
234         assert(TargetSCC.getOuterRefSCC().Parents.count(this) &&
235                "Edge to a RefSCC missing us in its parent set.");
236       }
237   }
238 }
239 #endif
240 
241 bool LazyCallGraph::RefSCC::isDescendantOf(const RefSCC &C) const {
242   // Walk up the parents of this SCC and verify that we eventually find C.
243   SmallVector<const RefSCC *, 4> AncestorWorklist;
244   AncestorWorklist.push_back(this);
245   do {
246     const RefSCC *AncestorC = AncestorWorklist.pop_back_val();
247     if (AncestorC->isChildOf(C))
248       return true;
249     for (const RefSCC *ParentC : AncestorC->Parents)
250       AncestorWorklist.push_back(ParentC);
251   } while (!AncestorWorklist.empty());
252 
253   return false;
254 }
255 
256 /// Generic helper that updates a postorder sequence of SCCs for a potentially
257 /// cycle-introducing edge insertion.
258 ///
259 /// A postorder sequence of SCCs of a directed graph has one fundamental
260 /// property: all deges in the DAG of SCCs point "up" the sequence. That is,
261 /// all edges in the SCC DAG point to prior SCCs in the sequence.
262 ///
263 /// This routine both updates a postorder sequence and uses that sequence to
264 /// compute the set of SCCs connected into a cycle. It should only be called to
265 /// insert a "downward" edge which will require changing the sequence to
266 /// restore it to a postorder.
267 ///
268 /// When inserting an edge from an earlier SCC to a later SCC in some postorder
269 /// sequence, all of the SCCs which may be impacted are in the closed range of
270 /// those two within the postorder sequence. The algorithm used here to restore
271 /// the state is as follows:
272 ///
273 /// 1) Starting from the source SCC, construct a set of SCCs which reach the
274 ///    source SCC consisting of just the source SCC. Then scan toward the
275 ///    target SCC in postorder and for each SCC, if it has an edge to an SCC
276 ///    in the set, add it to the set. Otherwise, the source SCC is not
277 ///    a successor, move it in the postorder sequence to immediately before
278 ///    the source SCC, shifting the source SCC and all SCCs in the set one
279 ///    position toward the target SCC. Stop scanning after processing the
280 ///    target SCC.
281 /// 2) If the source SCC is now past the target SCC in the postorder sequence,
282 ///    and thus the new edge will flow toward the start, we are done.
283 /// 3) Otherwise, starting from the target SCC, walk all edges which reach an
284 ///    SCC between the source and the target, and add them to the set of
285 ///    connected SCCs, then recurse through them. Once a complete set of the
286 ///    SCCs the target connects to is known, hoist the remaining SCCs between
287 ///    the source and the target to be above the target. Note that there is no
288 ///    need to process the source SCC, it is already known to connect.
289 /// 4) At this point, all of the SCCs in the closed range between the source
290 ///    SCC and the target SCC in the postorder sequence are connected,
291 ///    including the target SCC and the source SCC. Inserting the edge from
292 ///    the source SCC to the target SCC will form a cycle out of precisely
293 ///    these SCCs. Thus we can merge all of the SCCs in this closed range into
294 ///    a single SCC.
295 ///
296 /// This process has various important properties:
297 /// - Only mutates the SCCs when adding the edge actually changes the SCC
298 ///   structure.
299 /// - Never mutates SCCs which are unaffected by the change.
300 /// - Updates the postorder sequence to correctly satisfy the postorder
301 ///   constraint after the edge is inserted.
302 /// - Only reorders SCCs in the closed postorder sequence from the source to
303 ///   the target, so easy to bound how much has changed even in the ordering.
304 /// - Big-O is the number of edges in the closed postorder range of SCCs from
305 ///   source to target.
306 ///
307 /// This helper routine, in addition to updating the postorder sequence itself
308 /// will also update a map from SCCs to indices within that sequecne.
309 ///
310 /// The sequence and the map must operate on pointers to the SCC type.
311 ///
312 /// Two callbacks must be provided. The first computes the subset of SCCs in
313 /// the postorder closed range from the source to the target which connect to
314 /// the source SCC via some (transitive) set of edges. The second computes the
315 /// subset of the same range which the target SCC connects to via some
316 /// (transitive) set of edges. Both callbacks should populate the set argument
317 /// provided.
318 template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT,
319           typename ComputeSourceConnectedSetCallableT,
320           typename ComputeTargetConnectedSetCallableT>
321 static iterator_range<typename PostorderSequenceT::iterator>
322 updatePostorderSequenceForEdgeInsertion(
323     SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs,
324     SCCIndexMapT &SCCIndices,
325     ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet,
326     ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) {
327   int SourceIdx = SCCIndices[&SourceSCC];
328   int TargetIdx = SCCIndices[&TargetSCC];
329   assert(SourceIdx < TargetIdx && "Cannot have equal indices here!");
330 
331   SmallPtrSet<SCCT *, 4> ConnectedSet;
332 
333   // Compute the SCCs which (transitively) reach the source.
334   ComputeSourceConnectedSet(ConnectedSet);
335 
336   // Partition the SCCs in this part of the port-order sequence so only SCCs
337   // connecting to the source remain between it and the target. This is
338   // a benign partition as it preserves postorder.
339   auto SourceI = std::stable_partition(
340       SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1,
341       [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); });
342   for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i)
343     SCCIndices.find(SCCs[i])->second = i;
344 
345   // If the target doesn't connect to the source, then we've corrected the
346   // post-order and there are no cycles formed.
347   if (!ConnectedSet.count(&TargetSCC)) {
348     assert(SourceI > (SCCs.begin() + SourceIdx) &&
349            "Must have moved the source to fix the post-order.");
350     assert(*std::prev(SourceI) == &TargetSCC &&
351            "Last SCC to move should have bene the target.");
352 
353     // Return an empty range at the target SCC indicating there is nothing to
354     // merge.
355     return make_range(std::prev(SourceI), std::prev(SourceI));
356   }
357 
358   assert(SCCs[TargetIdx] == &TargetSCC &&
359          "Should not have moved target if connected!");
360   SourceIdx = SourceI - SCCs.begin();
361   assert(SCCs[SourceIdx] == &SourceSCC &&
362          "Bad updated index computation for the source SCC!");
363 
364 
365   // See whether there are any remaining intervening SCCs between the source
366   // and target. If so we need to make sure they all are reachable form the
367   // target.
368   if (SourceIdx + 1 < TargetIdx) {
369     ConnectedSet.clear();
370     ComputeTargetConnectedSet(ConnectedSet);
371 
372     // Partition SCCs so that only SCCs reached from the target remain between
373     // the source and the target. This preserves postorder.
374     auto TargetI = std::stable_partition(
375         SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1,
376         [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); });
377     for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i)
378       SCCIndices.find(SCCs[i])->second = i;
379     TargetIdx = std::prev(TargetI) - SCCs.begin();
380     assert(SCCs[TargetIdx] == &TargetSCC &&
381            "Should always end with the target!");
382   }
383 
384   // At this point, we know that connecting source to target forms a cycle
385   // because target connects back to source, and we know that all of the SCCs
386   // between the source and target in the postorder sequence participate in that
387   // cycle.
388   return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx);
389 }
390 
391 SmallVector<LazyCallGraph::SCC *, 1>
392 LazyCallGraph::RefSCC::switchInternalEdgeToCall(Node &SourceN, Node &TargetN) {
393   assert(!SourceN[TargetN].isCall() && "Must start with a ref edge!");
394   SmallVector<SCC *, 1> DeletedSCCs;
395 
396 #ifndef NDEBUG
397   // In a debug build, verify the RefSCC is valid to start with and when this
398   // routine finishes.
399   verify();
400   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
401 #endif
402 
403   SCC &SourceSCC = *G->lookupSCC(SourceN);
404   SCC &TargetSCC = *G->lookupSCC(TargetN);
405 
406   // If the two nodes are already part of the same SCC, we're also done as
407   // we've just added more connectivity.
408   if (&SourceSCC == &TargetSCC) {
409     SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
410     return DeletedSCCs;
411   }
412 
413   // At this point we leverage the postorder list of SCCs to detect when the
414   // insertion of an edge changes the SCC structure in any way.
415   //
416   // First and foremost, we can eliminate the need for any changes when the
417   // edge is toward the beginning of the postorder sequence because all edges
418   // flow in that direction already. Thus adding a new one cannot form a cycle.
419   int SourceIdx = SCCIndices[&SourceSCC];
420   int TargetIdx = SCCIndices[&TargetSCC];
421   if (TargetIdx < SourceIdx) {
422     SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
423     return DeletedSCCs;
424   }
425 
426   // Compute the SCCs which (transitively) reach the source.
427   auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
428 #ifndef NDEBUG
429     // Check that the RefSCC is still valid before computing this as the
430     // results will be nonsensical of we've broken its invariants.
431     verify();
432 #endif
433     ConnectedSet.insert(&SourceSCC);
434     auto IsConnected = [&](SCC &C) {
435       for (Node &N : C)
436         for (Edge &E : N.calls()) {
437           assert(E.getNode() && "Must have formed a node within an SCC!");
438           if (ConnectedSet.count(G->lookupSCC(*E.getNode())))
439             return true;
440         }
441 
442       return false;
443     };
444 
445     for (SCC *C :
446          make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1))
447       if (IsConnected(*C))
448         ConnectedSet.insert(C);
449   };
450 
451   // Use a normal worklist to find which SCCs the target connects to. We still
452   // bound the search based on the range in the postorder list we care about,
453   // but because this is forward connectivity we just "recurse" through the
454   // edges.
455   auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
456 #ifndef NDEBUG
457     // Check that the RefSCC is still valid before computing this as the
458     // results will be nonsensical of we've broken its invariants.
459     verify();
460 #endif
461     ConnectedSet.insert(&TargetSCC);
462     SmallVector<SCC *, 4> Worklist;
463     Worklist.push_back(&TargetSCC);
464     do {
465       SCC &C = *Worklist.pop_back_val();
466       for (Node &N : C)
467         for (Edge &E : N) {
468           assert(E.getNode() && "Must have formed a node within an SCC!");
469           if (!E.isCall())
470             continue;
471           SCC &EdgeC = *G->lookupSCC(*E.getNode());
472           if (&EdgeC.getOuterRefSCC() != this)
473             // Not in this RefSCC...
474             continue;
475           if (SCCIndices.find(&EdgeC)->second <= SourceIdx)
476             // Not in the postorder sequence between source and target.
477             continue;
478 
479           if (ConnectedSet.insert(&EdgeC).second)
480             Worklist.push_back(&EdgeC);
481         }
482     } while (!Worklist.empty());
483   };
484 
485   // Use a generic helper to update the postorder sequence of SCCs and return
486   // a range of any SCCs connected into a cycle by inserting this edge. This
487   // routine will also take care of updating the indices into the postorder
488   // sequence.
489   auto MergeRange = updatePostorderSequenceForEdgeInsertion(
490       SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet,
491       ComputeTargetConnectedSet);
492 
493   // If the merge range is empty, then adding the edge didn't actually form any
494   // new cycles. We're done.
495   if (MergeRange.begin() == MergeRange.end()) {
496     // Now that the SCC structure is finalized, flip the kind to call.
497     SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
498     return DeletedSCCs;
499   }
500 
501 #ifndef NDEBUG
502   // Before merging, check that the RefSCC remains valid after all the
503   // postorder updates.
504   verify();
505 #endif
506 
507   // Otherwise we need to merge all of the SCCs in the cycle into a single
508   // result SCC.
509   //
510   // NB: We merge into the target because all of these functions were already
511   // reachable from the target, meaning any SCC-wide properties deduced about it
512   // other than the set of functions within it will not have changed.
513   for (SCC *C : MergeRange) {
514     assert(C != &TargetSCC &&
515            "We merge *into* the target and shouldn't process it here!");
516     SCCIndices.erase(C);
517     TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end());
518     for (Node *N : C->Nodes)
519       G->SCCMap[N] = &TargetSCC;
520     C->clear();
521     DeletedSCCs.push_back(C);
522   }
523 
524   // Erase the merged SCCs from the list and update the indices of the
525   // remaining SCCs.
526   int IndexOffset = MergeRange.end() - MergeRange.begin();
527   auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end());
528   for (SCC *C : make_range(EraseEnd, SCCs.end()))
529     SCCIndices[C] -= IndexOffset;
530 
531   // Now that the SCC structure is finalized, flip the kind to call.
532   SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
533 
534   // And we're done!
535   return DeletedSCCs;
536 }
537 
538 iterator_range<LazyCallGraph::RefSCC::iterator>
539 LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) {
540   assert(SourceN[TargetN].isCall() && "Must start with a call edge!");
541 
542 #ifndef NDEBUG
543   // In a debug build, verify the RefSCC is valid to start with and when this
544   // routine finishes.
545   verify();
546   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
547 #endif
548 
549   SCC &SourceSCC = *G->lookupSCC(SourceN);
550   SCC &TargetSCC = *G->lookupSCC(TargetN);
551 
552   assert(&SourceSCC.getOuterRefSCC() == this &&
553          "Source must be in this RefSCC.");
554   assert(&TargetSCC.getOuterRefSCC() == this &&
555          "Target must be in this RefSCC.");
556 
557   // Set the edge kind.
558   SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref);
559 
560   // If this call edge is just connecting two separate SCCs within this RefSCC,
561   // there is nothing to do.
562   if (&SourceSCC != &TargetSCC)
563     return make_range(SCCs.end(), SCCs.end());
564 
565   // Otherwise we are removing a call edge from a single SCC. This may break
566   // the cycle. In order to compute the new set of SCCs, we need to do a small
567   // DFS over the nodes within the SCC to form any sub-cycles that remain as
568   // distinct SCCs and compute a postorder over the resulting SCCs.
569   //
570   // However, we specially handle the target node. The target node is known to
571   // reach all other nodes in the original SCC by definition. This means that
572   // we want the old SCC to be replaced with an SCC contaning that node as it
573   // will be the root of whatever SCC DAG results from the DFS. Assumptions
574   // about an SCC such as the set of functions called will continue to hold,
575   // etc.
576 
577   SCC &OldSCC = TargetSCC;
578   SmallVector<std::pair<Node *, call_edge_iterator>, 16> DFSStack;
579   SmallVector<Node *, 16> PendingSCCStack;
580   SmallVector<SCC *, 4> NewSCCs;
581 
582   // Prepare the nodes for a fresh DFS.
583   SmallVector<Node *, 16> Worklist;
584   Worklist.swap(OldSCC.Nodes);
585   for (Node *N : Worklist) {
586     N->DFSNumber = N->LowLink = 0;
587     G->SCCMap.erase(N);
588   }
589 
590   // Force the target node to be in the old SCC. This also enables us to take
591   // a very significant short-cut in the standard Tarjan walk to re-form SCCs
592   // below: whenever we build an edge that reaches the target node, we know
593   // that the target node eventually connects back to all other nodes in our
594   // walk. As a consequence, we can detect and handle participants in that
595   // cycle without walking all the edges that form this connection, and instead
596   // by relying on the fundamental guarantee coming into this operation (all
597   // nodes are reachable from the target due to previously forming an SCC).
598   TargetN.DFSNumber = TargetN.LowLink = -1;
599   OldSCC.Nodes.push_back(&TargetN);
600   G->SCCMap[&TargetN] = &OldSCC;
601 
602   // Scan down the stack and DFS across the call edges.
603   for (Node *RootN : Worklist) {
604     assert(DFSStack.empty() &&
605            "Cannot begin a new root with a non-empty DFS stack!");
606     assert(PendingSCCStack.empty() &&
607            "Cannot begin a new root with pending nodes for an SCC!");
608 
609     // Skip any nodes we've already reached in the DFS.
610     if (RootN->DFSNumber != 0) {
611       assert(RootN->DFSNumber == -1 &&
612              "Shouldn't have any mid-DFS root nodes!");
613       continue;
614     }
615 
616     RootN->DFSNumber = RootN->LowLink = 1;
617     int NextDFSNumber = 2;
618 
619     DFSStack.push_back({RootN, RootN->call_begin()});
620     do {
621       Node *N;
622       call_edge_iterator I;
623       std::tie(N, I) = DFSStack.pop_back_val();
624       auto E = N->call_end();
625       while (I != E) {
626         Node &ChildN = *I->getNode();
627         if (ChildN.DFSNumber == 0) {
628           // We haven't yet visited this child, so descend, pushing the current
629           // node onto the stack.
630           DFSStack.push_back({N, I});
631 
632           assert(!G->SCCMap.count(&ChildN) &&
633                  "Found a node with 0 DFS number but already in an SCC!");
634           ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
635           N = &ChildN;
636           I = N->call_begin();
637           E = N->call_end();
638           continue;
639         }
640 
641         // Check for the child already being part of some component.
642         if (ChildN.DFSNumber == -1) {
643           if (G->lookupSCC(ChildN) == &OldSCC) {
644             // If the child is part of the old SCC, we know that it can reach
645             // every other node, so we have formed a cycle. Pull the entire DFS
646             // and pending stacks into it. See the comment above about setting
647             // up the old SCC for why we do this.
648             int OldSize = OldSCC.size();
649             OldSCC.Nodes.push_back(N);
650             OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end());
651             PendingSCCStack.clear();
652             while (!DFSStack.empty())
653               OldSCC.Nodes.push_back(DFSStack.pop_back_val().first);
654             for (Node &N : make_range(OldSCC.begin() + OldSize, OldSCC.end())) {
655               N.DFSNumber = N.LowLink = -1;
656               G->SCCMap[&N] = &OldSCC;
657             }
658             N = nullptr;
659             break;
660           }
661 
662           // If the child has already been added to some child component, it
663           // couldn't impact the low-link of this parent because it isn't
664           // connected, and thus its low-link isn't relevant so skip it.
665           ++I;
666           continue;
667         }
668 
669         // Track the lowest linked child as the lowest link for this node.
670         assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
671         if (ChildN.LowLink < N->LowLink)
672           N->LowLink = ChildN.LowLink;
673 
674         // Move to the next edge.
675         ++I;
676       }
677       if (!N)
678         // Cleared the DFS early, start another round.
679         break;
680 
681       // We've finished processing N and its descendents, put it on our pending
682       // SCC stack to eventually get merged into an SCC of nodes.
683       PendingSCCStack.push_back(N);
684 
685       // If this node is linked to some lower entry, continue walking up the
686       // stack.
687       if (N->LowLink != N->DFSNumber)
688         continue;
689 
690       // Otherwise, we've completed an SCC. Append it to our post order list of
691       // SCCs.
692       int RootDFSNumber = N->DFSNumber;
693       // Find the range of the node stack by walking down until we pass the
694       // root DFS number.
695       auto SCCNodes = make_range(
696           PendingSCCStack.rbegin(),
697           find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
698             return N->DFSNumber < RootDFSNumber;
699           }));
700 
701       // Form a new SCC out of these nodes and then clear them off our pending
702       // stack.
703       NewSCCs.push_back(G->createSCC(*this, SCCNodes));
704       for (Node &N : *NewSCCs.back()) {
705         N.DFSNumber = N.LowLink = -1;
706         G->SCCMap[&N] = NewSCCs.back();
707       }
708       PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
709     } while (!DFSStack.empty());
710   }
711 
712   // Insert the remaining SCCs before the old one. The old SCC can reach all
713   // other SCCs we form because it contains the target node of the removed edge
714   // of the old SCC. This means that we will have edges into all of the new
715   // SCCs, which means the old one must come last for postorder.
716   int OldIdx = SCCIndices[&OldSCC];
717   SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end());
718 
719   // Update the mapping from SCC* to index to use the new SCC*s, and remove the
720   // old SCC from the mapping.
721   for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx)
722     SCCIndices[SCCs[Idx]] = Idx;
723 
724   return make_range(SCCs.begin() + OldIdx,
725                     SCCs.begin() + OldIdx + NewSCCs.size());
726 }
727 
728 void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN,
729                                                      Node &TargetN) {
730   assert(!SourceN[TargetN].isCall() && "Must start with a ref edge!");
731 
732   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
733   assert(G->lookupRefSCC(TargetN) != this &&
734          "Target must not be in this RefSCC.");
735   assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
736          "Target must be a descendant of the Source.");
737 
738   // Edges between RefSCCs are the same regardless of call or ref, so we can
739   // just flip the edge here.
740   SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
741 
742 #ifndef NDEBUG
743   // Check that the RefSCC is still valid.
744   verify();
745 #endif
746 }
747 
748 void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN,
749                                                     Node &TargetN) {
750   assert(SourceN[TargetN].isCall() && "Must start with a call edge!");
751 
752   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
753   assert(G->lookupRefSCC(TargetN) != this &&
754          "Target must not be in this RefSCC.");
755   assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
756          "Target must be a descendant of the Source.");
757 
758   // Edges between RefSCCs are the same regardless of call or ref, so we can
759   // just flip the edge here.
760   SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref);
761 
762 #ifndef NDEBUG
763   // Check that the RefSCC is still valid.
764   verify();
765 #endif
766 }
767 
768 void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN,
769                                                   Node &TargetN) {
770   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
771   assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
772 
773   SourceN.insertEdgeInternal(TargetN, Edge::Ref);
774 
775 #ifndef NDEBUG
776   // Check that the RefSCC is still valid.
777   verify();
778 #endif
779 }
780 
781 void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN,
782                                                Edge::Kind EK) {
783   // First insert it into the caller.
784   SourceN.insertEdgeInternal(TargetN, EK);
785 
786   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
787 
788   RefSCC &TargetC = *G->lookupRefSCC(TargetN);
789   assert(&TargetC != this && "Target must not be in this RefSCC.");
790   assert(TargetC.isDescendantOf(*this) &&
791          "Target must be a descendant of the Source.");
792 
793   // The only change required is to add this SCC to the parent set of the
794   // callee.
795   TargetC.Parents.insert(this);
796 
797 #ifndef NDEBUG
798   // Check that the RefSCC is still valid.
799   verify();
800 #endif
801 }
802 
803 SmallVector<LazyCallGraph::RefSCC *, 1>
804 LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) {
805   assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
806   RefSCC &SourceC = *G->lookupRefSCC(SourceN);
807   assert(&SourceC != this && "Source must not be in this RefSCC.");
808   assert(SourceC.isDescendantOf(*this) &&
809          "Source must be a descendant of the Target.");
810 
811   SmallVector<RefSCC *, 1> DeletedRefSCCs;
812 
813 #ifndef NDEBUG
814   // In a debug build, verify the RefSCC is valid to start with and when this
815   // routine finishes.
816   verify();
817   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
818 #endif
819 
820   int SourceIdx = G->RefSCCIndices[&SourceC];
821   int TargetIdx = G->RefSCCIndices[this];
822   assert(SourceIdx < TargetIdx &&
823          "Postorder list doesn't see edge as incoming!");
824 
825   // Compute the RefSCCs which (transitively) reach the source. We do this by
826   // working backwards from the source using the parent set in each RefSCC,
827   // skipping any RefSCCs that don't fall in the postorder range. This has the
828   // advantage of walking the sparser parent edge (in high fan-out graphs) but
829   // more importantly this removes examining all forward edges in all RefSCCs
830   // within the postorder range which aren't in fact connected. Only connected
831   // RefSCCs (and their edges) are visited here.
832   auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
833     Set.insert(&SourceC);
834     SmallVector<RefSCC *, 4> Worklist;
835     Worklist.push_back(&SourceC);
836     do {
837       RefSCC &RC = *Worklist.pop_back_val();
838       for (RefSCC &ParentRC : RC.parents()) {
839         // Skip any RefSCCs outside the range of source to target in the
840         // postorder sequence.
841         int ParentIdx = G->getRefSCCIndex(ParentRC);
842         assert(ParentIdx > SourceIdx && "Parent cannot precede source in postorder!");
843         if (ParentIdx > TargetIdx)
844           continue;
845         if (Set.insert(&ParentRC).second)
846           // First edge connecting to this parent, add it to our worklist.
847           Worklist.push_back(&ParentRC);
848       }
849     } while (!Worklist.empty());
850   };
851 
852   // Use a normal worklist to find which SCCs the target connects to. We still
853   // bound the search based on the range in the postorder list we care about,
854   // but because this is forward connectivity we just "recurse" through the
855   // edges.
856   auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
857     Set.insert(this);
858     SmallVector<RefSCC *, 4> Worklist;
859     Worklist.push_back(this);
860     do {
861       RefSCC &RC = *Worklist.pop_back_val();
862       for (SCC &C : RC)
863         for (Node &N : C)
864           for (Edge &E : N) {
865             assert(E.getNode() && "Must have formed a node!");
866             RefSCC &EdgeRC = *G->lookupRefSCC(*E.getNode());
867             if (G->getRefSCCIndex(EdgeRC) <= SourceIdx)
868               // Not in the postorder sequence between source and target.
869               continue;
870 
871             if (Set.insert(&EdgeRC).second)
872               Worklist.push_back(&EdgeRC);
873           }
874     } while (!Worklist.empty());
875   };
876 
877   // Use a generic helper to update the postorder sequence of RefSCCs and return
878   // a range of any RefSCCs connected into a cycle by inserting this edge. This
879   // routine will also take care of updating the indices into the postorder
880   // sequence.
881   iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange =
882       updatePostorderSequenceForEdgeInsertion(
883           SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices,
884           ComputeSourceConnectedSet, ComputeTargetConnectedSet);
885 
886   // Build a set so we can do fast tests for whether a merge is occuring.
887   SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end());
888 
889   // Now that we have identified all of the SCCs which need to be merged into
890   // a connected set with the inserted edge, merge all of them into this SCC.
891   SmallVector<SCC *, 16> MergedSCCs;
892   int SCCIndex = 0;
893   for (RefSCC *RC : MergeRange) {
894     assert(RC != this && "We're merging into the target RefSCC, so it "
895                          "shouldn't be in the range.");
896 
897     // Merge the parents which aren't part of the merge into the our parents.
898     for (RefSCC *ParentRC : RC->Parents)
899       if (!MergeSet.count(ParentRC))
900         Parents.insert(ParentRC);
901     RC->Parents.clear();
902 
903     // Walk the inner SCCs to update their up-pointer and walk all the edges to
904     // update any parent sets.
905     // FIXME: We should try to find a way to avoid this (rather expensive) edge
906     // walk by updating the parent sets in some other manner.
907     for (SCC &InnerC : *RC) {
908       InnerC.OuterRefSCC = this;
909       SCCIndices[&InnerC] = SCCIndex++;
910       for (Node &N : InnerC) {
911         G->SCCMap[&N] = &InnerC;
912         for (Edge &E : N) {
913           assert(E.getNode() &&
914                  "Cannot have a null node within a visited SCC!");
915           RefSCC &ChildRC = *G->lookupRefSCC(*E.getNode());
916           if (MergeSet.count(&ChildRC))
917             continue;
918           ChildRC.Parents.erase(RC);
919           ChildRC.Parents.insert(this);
920         }
921       }
922     }
923 
924     // Now merge in the SCCs. We can actually move here so try to reuse storage
925     // the first time through.
926     if (MergedSCCs.empty())
927       MergedSCCs = std::move(RC->SCCs);
928     else
929       MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end());
930     RC->SCCs.clear();
931     DeletedRefSCCs.push_back(RC);
932   }
933 
934   // Append our original SCCs to the merged list and move it into place.
935   for (SCC &InnerC : *this)
936     SCCIndices[&InnerC] = SCCIndex++;
937   MergedSCCs.append(SCCs.begin(), SCCs.end());
938   SCCs = std::move(MergedSCCs);
939 
940   // Remove the merged away RefSCCs from the post order sequence.
941   for (RefSCC *RC : MergeRange)
942     G->RefSCCIndices.erase(RC);
943   int IndexOffset = MergeRange.end() - MergeRange.begin();
944   auto EraseEnd =
945       G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end());
946   for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end()))
947     G->RefSCCIndices[RC] -= IndexOffset;
948 
949   // At this point we have a merged RefSCC with a post-order SCCs list, just
950   // connect the nodes to form the new edge.
951   SourceN.insertEdgeInternal(TargetN, Edge::Ref);
952 
953   // We return the list of SCCs which were merged so that callers can
954   // invalidate any data they have associated with those SCCs. Note that these
955   // SCCs are no longer in an interesting state (they are totally empty) but
956   // the pointers will remain stable for the life of the graph itself.
957   return DeletedRefSCCs;
958 }
959 
960 void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) {
961   assert(G->lookupRefSCC(SourceN) == this &&
962          "The source must be a member of this RefSCC.");
963 
964   RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
965   assert(&TargetRC != this && "The target must not be a member of this RefSCC");
966 
967   assert(!is_contained(G->LeafRefSCCs, this) &&
968          "Cannot have a leaf RefSCC source.");
969 
970 #ifndef NDEBUG
971   // In a debug build, verify the RefSCC is valid to start with and when this
972   // routine finishes.
973   verify();
974   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
975 #endif
976 
977   // First remove it from the node.
978   SourceN.removeEdgeInternal(TargetN.getFunction());
979 
980   bool HasOtherEdgeToChildRC = false;
981   bool HasOtherChildRC = false;
982   for (SCC *InnerC : SCCs) {
983     for (Node &N : *InnerC) {
984       for (Edge &E : N) {
985         assert(E.getNode() && "Cannot have a missing node in a visited SCC!");
986         RefSCC &OtherChildRC = *G->lookupRefSCC(*E.getNode());
987         if (&OtherChildRC == &TargetRC) {
988           HasOtherEdgeToChildRC = true;
989           break;
990         }
991         if (&OtherChildRC != this)
992           HasOtherChildRC = true;
993       }
994       if (HasOtherEdgeToChildRC)
995         break;
996     }
997     if (HasOtherEdgeToChildRC)
998       break;
999   }
1000   // Because the SCCs form a DAG, deleting such an edge cannot change the set
1001   // of SCCs in the graph. However, it may cut an edge of the SCC DAG, making
1002   // the source SCC no longer connected to the target SCC. If so, we need to
1003   // update the target SCC's map of its parents.
1004   if (!HasOtherEdgeToChildRC) {
1005     bool Removed = TargetRC.Parents.erase(this);
1006     (void)Removed;
1007     assert(Removed &&
1008            "Did not find the source SCC in the target SCC's parent list!");
1009 
1010     // It may orphan an SCC if it is the last edge reaching it, but that does
1011     // not violate any invariants of the graph.
1012     if (TargetRC.Parents.empty())
1013       DEBUG(dbgs() << "LCG: Update removing " << SourceN.getFunction().getName()
1014                    << " -> " << TargetN.getFunction().getName()
1015                    << " edge orphaned the callee's SCC!\n");
1016 
1017     // It may make the Source SCC a leaf SCC.
1018     if (!HasOtherChildRC)
1019       G->LeafRefSCCs.push_back(this);
1020   }
1021 }
1022 
1023 SmallVector<LazyCallGraph::RefSCC *, 1>
1024 LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN, Node &TargetN) {
1025   assert(!SourceN[TargetN].isCall() &&
1026          "Cannot remove a call edge, it must first be made a ref edge");
1027 
1028 #ifndef NDEBUG
1029   // In a debug build, verify the RefSCC is valid to start with and when this
1030   // routine finishes.
1031   verify();
1032   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
1033 #endif
1034 
1035   // First remove the actual edge.
1036   SourceN.removeEdgeInternal(TargetN.getFunction());
1037 
1038   // We return a list of the resulting *new* RefSCCs in post-order.
1039   SmallVector<RefSCC *, 1> Result;
1040 
1041   // Direct recursion doesn't impact the SCC graph at all.
1042   if (&SourceN == &TargetN)
1043     return Result;
1044 
1045   // We build somewhat synthetic new RefSCCs by providing a postorder mapping
1046   // for each inner SCC. We also store these associated with *nodes* rather
1047   // than SCCs because this saves a round-trip through the node->SCC map and in
1048   // the common case, SCCs are small. We will verify that we always give the
1049   // same number to every node in the SCC such that these are equivalent.
1050   const int RootPostOrderNumber = 0;
1051   int PostOrderNumber = RootPostOrderNumber + 1;
1052   SmallDenseMap<Node *, int> PostOrderMapping;
1053 
1054   // Every node in the target SCC can already reach every node in this RefSCC
1055   // (by definition). It is the only node we know will stay inside this RefSCC.
1056   // Everything which transitively reaches Target will also remain in the
1057   // RefSCC. We handle this by pre-marking that the nodes in the target SCC map
1058   // back to the root post order number.
1059   //
1060   // This also enables us to take a very significant short-cut in the standard
1061   // Tarjan walk to re-form RefSCCs below: whenever we build an edge that
1062   // references the target node, we know that the target node eventually
1063   // references all other nodes in our walk. As a consequence, we can detect
1064   // and handle participants in that cycle without walking all the edges that
1065   // form the connections, and instead by relying on the fundamental guarantee
1066   // coming into this operation.
1067   SCC &TargetC = *G->lookupSCC(TargetN);
1068   for (Node &N : TargetC)
1069     PostOrderMapping[&N] = RootPostOrderNumber;
1070 
1071   // Reset all the other nodes to prepare for a DFS over them, and add them to
1072   // our worklist.
1073   SmallVector<Node *, 8> Worklist;
1074   for (SCC *C : SCCs) {
1075     if (C == &TargetC)
1076       continue;
1077 
1078     for (Node &N : *C)
1079       N.DFSNumber = N.LowLink = 0;
1080 
1081     Worklist.append(C->Nodes.begin(), C->Nodes.end());
1082   }
1083 
1084   auto MarkNodeForSCCNumber = [&PostOrderMapping](Node &N, int Number) {
1085     N.DFSNumber = N.LowLink = -1;
1086     PostOrderMapping[&N] = Number;
1087   };
1088 
1089   SmallVector<std::pair<Node *, edge_iterator>, 4> DFSStack;
1090   SmallVector<Node *, 4> PendingRefSCCStack;
1091   do {
1092     assert(DFSStack.empty() &&
1093            "Cannot begin a new root with a non-empty DFS stack!");
1094     assert(PendingRefSCCStack.empty() &&
1095            "Cannot begin a new root with pending nodes for an SCC!");
1096 
1097     Node *RootN = Worklist.pop_back_val();
1098     // Skip any nodes we've already reached in the DFS.
1099     if (RootN->DFSNumber != 0) {
1100       assert(RootN->DFSNumber == -1 &&
1101              "Shouldn't have any mid-DFS root nodes!");
1102       continue;
1103     }
1104 
1105     RootN->DFSNumber = RootN->LowLink = 1;
1106     int NextDFSNumber = 2;
1107 
1108     DFSStack.push_back({RootN, RootN->begin()});
1109     do {
1110       Node *N;
1111       edge_iterator I;
1112       std::tie(N, I) = DFSStack.pop_back_val();
1113       auto E = N->end();
1114 
1115       assert(N->DFSNumber != 0 && "We should always assign a DFS number "
1116                                   "before processing a node.");
1117 
1118       while (I != E) {
1119         Node &ChildN = I->getNode(*G);
1120         if (ChildN.DFSNumber == 0) {
1121           // Mark that we should start at this child when next this node is the
1122           // top of the stack. We don't start at the next child to ensure this
1123           // child's lowlink is reflected.
1124           DFSStack.push_back({N, I});
1125 
1126           // Continue, resetting to the child node.
1127           ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
1128           N = &ChildN;
1129           I = ChildN.begin();
1130           E = ChildN.end();
1131           continue;
1132         }
1133         if (ChildN.DFSNumber == -1) {
1134           // Check if this edge's target node connects to the deleted edge's
1135           // target node. If so, we know that every node connected will end up
1136           // in this RefSCC, so collapse the entire current stack into the root
1137           // slot in our SCC numbering. See above for the motivation of
1138           // optimizing the target connected nodes in this way.
1139           auto PostOrderI = PostOrderMapping.find(&ChildN);
1140           if (PostOrderI != PostOrderMapping.end() &&
1141               PostOrderI->second == RootPostOrderNumber) {
1142             MarkNodeForSCCNumber(*N, RootPostOrderNumber);
1143             while (!PendingRefSCCStack.empty())
1144               MarkNodeForSCCNumber(*PendingRefSCCStack.pop_back_val(),
1145                                    RootPostOrderNumber);
1146             while (!DFSStack.empty())
1147               MarkNodeForSCCNumber(*DFSStack.pop_back_val().first,
1148                                    RootPostOrderNumber);
1149             // Ensure we break all the way out of the enclosing loop.
1150             N = nullptr;
1151             break;
1152           }
1153 
1154           // If this child isn't currently in this RefSCC, no need to process
1155           // it.
1156           // However, we do need to remove this RefSCC from its RefSCC's parent
1157           // set.
1158           RefSCC &ChildRC = *G->lookupRefSCC(ChildN);
1159           ChildRC.Parents.erase(this);
1160           ++I;
1161           continue;
1162         }
1163 
1164         // Track the lowest link of the children, if any are still in the stack.
1165         // Any child not on the stack will have a LowLink of -1.
1166         assert(ChildN.LowLink != 0 &&
1167                "Low-link must not be zero with a non-zero DFS number.");
1168         if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
1169           N->LowLink = ChildN.LowLink;
1170         ++I;
1171       }
1172       if (!N)
1173         // We short-circuited this node.
1174         break;
1175 
1176       // We've finished processing N and its descendents, put it on our pending
1177       // stack to eventually get merged into a RefSCC.
1178       PendingRefSCCStack.push_back(N);
1179 
1180       // If this node is linked to some lower entry, continue walking up the
1181       // stack.
1182       if (N->LowLink != N->DFSNumber) {
1183         assert(!DFSStack.empty() &&
1184                "We never found a viable root for a RefSCC to pop off!");
1185         continue;
1186       }
1187 
1188       // Otherwise, form a new RefSCC from the top of the pending node stack.
1189       int RootDFSNumber = N->DFSNumber;
1190       // Find the range of the node stack by walking down until we pass the
1191       // root DFS number.
1192       auto RefSCCNodes = make_range(
1193           PendingRefSCCStack.rbegin(),
1194           find_if(reverse(PendingRefSCCStack), [RootDFSNumber](const Node *N) {
1195             return N->DFSNumber < RootDFSNumber;
1196           }));
1197 
1198       // Mark the postorder number for these nodes and clear them off the
1199       // stack. We'll use the postorder number to pull them into RefSCCs at the
1200       // end. FIXME: Fuse with the loop above.
1201       int RefSCCNumber = PostOrderNumber++;
1202       for (Node *N : RefSCCNodes)
1203         MarkNodeForSCCNumber(*N, RefSCCNumber);
1204 
1205       PendingRefSCCStack.erase(RefSCCNodes.end().base(),
1206                                PendingRefSCCStack.end());
1207     } while (!DFSStack.empty());
1208 
1209     assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
1210     assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!");
1211   } while (!Worklist.empty());
1212 
1213   // We now have a post-order numbering for RefSCCs and a mapping from each
1214   // node in this RefSCC to its final RefSCC. We create each new RefSCC node
1215   // (re-using this RefSCC node for the root) and build a radix-sort style map
1216   // from postorder number to the RefSCC. We then append SCCs to each of these
1217   // RefSCCs in the order they occured in the original SCCs container.
1218   for (int i = 1; i < PostOrderNumber; ++i)
1219     Result.push_back(G->createRefSCC(*G));
1220 
1221   // Insert the resulting postorder sequence into the global graph postorder
1222   // sequence before the current RefSCC in that sequence. The idea being that
1223   // this RefSCC is the target of the reference edge removed, and thus has
1224   // a direct or indirect edge to every other RefSCC formed and so must be at
1225   // the end of any postorder traversal.
1226   //
1227   // FIXME: It'd be nice to change the APIs so that we returned an iterator
1228   // range over the global postorder sequence and generally use that sequence
1229   // rather than building a separate result vector here.
1230   if (!Result.empty()) {
1231     int Idx = G->getRefSCCIndex(*this);
1232     G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx,
1233                                Result.begin(), Result.end());
1234     for (int i : seq<int>(Idx, G->PostOrderRefSCCs.size()))
1235       G->RefSCCIndices[G->PostOrderRefSCCs[i]] = i;
1236     assert(G->PostOrderRefSCCs[G->getRefSCCIndex(*this)] == this &&
1237            "Failed to update this RefSCC's index after insertion!");
1238   }
1239 
1240   for (SCC *C : SCCs) {
1241     auto PostOrderI = PostOrderMapping.find(&*C->begin());
1242     assert(PostOrderI != PostOrderMapping.end() &&
1243            "Cannot have missing mappings for nodes!");
1244     int SCCNumber = PostOrderI->second;
1245 #ifndef NDEBUG
1246     for (Node &N : *C)
1247       assert(PostOrderMapping.find(&N)->second == SCCNumber &&
1248              "Cannot have different numbers for nodes in the same SCC!");
1249 #endif
1250     if (SCCNumber == 0)
1251       // The root node is handled separately by removing the SCCs.
1252       continue;
1253 
1254     RefSCC &RC = *Result[SCCNumber - 1];
1255     int SCCIndex = RC.SCCs.size();
1256     RC.SCCs.push_back(C);
1257     SCCIndices[C] = SCCIndex;
1258     C->OuterRefSCC = &RC;
1259   }
1260 
1261   // FIXME: We re-walk the edges in each RefSCC to establish whether it is
1262   // a leaf and connect it to the rest of the graph's parents lists. This is
1263   // really wasteful. We should instead do this during the DFS to avoid yet
1264   // another edge walk.
1265   for (RefSCC *RC : Result)
1266     G->connectRefSCC(*RC);
1267 
1268   // Now erase all but the root's SCCs.
1269   SCCs.erase(remove_if(SCCs,
1270                        [&](SCC *C) {
1271                          return PostOrderMapping.lookup(&*C->begin()) !=
1272                                 RootPostOrderNumber;
1273                        }),
1274              SCCs.end());
1275   SCCIndices.clear();
1276   for (int i = 0, Size = SCCs.size(); i < Size; ++i)
1277     SCCIndices[SCCs[i]] = i;
1278 
1279 #ifndef NDEBUG
1280   // Now we need to reconnect the current (root) SCC to the graph. We do this
1281   // manually because we can special case our leaf handling and detect errors.
1282   bool IsLeaf = true;
1283 #endif
1284   for (SCC *C : SCCs)
1285     for (Node &N : *C) {
1286       for (Edge &E : N) {
1287         assert(E.getNode() && "Cannot have a missing node in a visited SCC!");
1288         RefSCC &ChildRC = *G->lookupRefSCC(*E.getNode());
1289         if (&ChildRC == this)
1290           continue;
1291         ChildRC.Parents.insert(this);
1292 #ifndef NDEBUG
1293         IsLeaf = false;
1294 #endif
1295       }
1296     }
1297 #ifndef NDEBUG
1298   if (!Result.empty())
1299     assert(!IsLeaf && "This SCC cannot be a leaf as we have split out new "
1300                       "SCCs by removing this edge.");
1301   if (none_of(G->LeafRefSCCs, [&](RefSCC *C) { return C == this; }))
1302     assert(!IsLeaf && "This SCC cannot be a leaf as it already had child "
1303                       "SCCs before we removed this edge.");
1304 #endif
1305   // And connect both this RefSCC and all the new ones to the correct parents.
1306   // The easiest way to do this is just to re-analyze the old parent set.
1307   SmallVector<RefSCC *, 4> OldParents(Parents.begin(), Parents.end());
1308   Parents.clear();
1309   for (RefSCC *ParentRC : OldParents)
1310     for (SCC *ParentC : ParentRC->SCCs)
1311       for (Node &ParentN : *ParentC)
1312         for (Edge &E : ParentN) {
1313           assert(E.getNode() && "Cannot have a missing node in a visited SCC!");
1314           RefSCC &RC = *G->lookupRefSCC(*E.getNode());
1315           RC.Parents.insert(ParentRC);
1316         }
1317 
1318   // If this SCC stopped being a leaf through this edge removal, remove it from
1319   // the leaf SCC list. Note that this DTRT in the case where this was never
1320   // a leaf.
1321   // FIXME: As LeafRefSCCs could be very large, we might want to not walk the
1322   // entire list if this RefSCC wasn't a leaf before the edge removal.
1323   if (!Result.empty())
1324     G->LeafRefSCCs.erase(
1325         std::remove(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(), this),
1326         G->LeafRefSCCs.end());
1327 
1328   // Return the new list of SCCs.
1329   return Result;
1330 }
1331 
1332 void LazyCallGraph::RefSCC::handleTrivialEdgeInsertion(Node &SourceN,
1333                                                        Node &TargetN) {
1334   // The only trivial case that requires any graph updates is when we add new
1335   // ref edge and may connect different RefSCCs along that path. This is only
1336   // because of the parents set. Every other part of the graph remains constant
1337   // after this edge insertion.
1338   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
1339   RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
1340   if (&TargetRC == this) {
1341 
1342     return;
1343   }
1344 
1345   assert(TargetRC.isDescendantOf(*this) &&
1346          "Target must be a descendant of the Source.");
1347   // The only change required is to add this RefSCC to the parent set of the
1348   // target. This is a set and so idempotent if the edge already existed.
1349   TargetRC.Parents.insert(this);
1350 }
1351 
1352 void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN,
1353                                                   Node &TargetN) {
1354 #ifndef NDEBUG
1355   // Check that the RefSCC is still valid when we finish.
1356   auto ExitVerifier = make_scope_exit([this] { verify(); });
1357 #endif
1358   // First insert it into the source or find the existing edge.
1359   auto InsertResult = SourceN.EdgeIndexMap.insert(
1360       {&TargetN.getFunction(), SourceN.Edges.size()});
1361   if (!InsertResult.second) {
1362     // Already an edge, just update it.
1363     Edge &E = SourceN.Edges[InsertResult.first->second];
1364     if (E.isCall())
1365       return; // Nothing to do!
1366     E.setKind(Edge::Call);
1367   } else {
1368     // Create the new edge.
1369     SourceN.Edges.emplace_back(TargetN, Edge::Call);
1370   }
1371 
1372   // Now that we have the edge, handle the graph fallout.
1373   handleTrivialEdgeInsertion(SourceN, TargetN);
1374 }
1375 
1376 void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) {
1377 #ifndef NDEBUG
1378   // Check that the RefSCC is still valid when we finish.
1379   auto ExitVerifier = make_scope_exit([this] { verify(); });
1380 #endif
1381   // First insert it into the source or find the existing edge.
1382   auto InsertResult = SourceN.EdgeIndexMap.insert(
1383       {&TargetN.getFunction(), SourceN.Edges.size()});
1384   if (!InsertResult.second)
1385     // Already an edge, we're done.
1386     return;
1387 
1388   // Create the new edge.
1389   SourceN.Edges.emplace_back(TargetN, Edge::Ref);
1390 
1391   // Now that we have the edge, handle the graph fallout.
1392   handleTrivialEdgeInsertion(SourceN, TargetN);
1393 }
1394 
1395 void LazyCallGraph::insertEdge(Node &SourceN, Function &Target, Edge::Kind EK) {
1396   assert(SCCMap.empty() && DFSStack.empty() &&
1397          "This method cannot be called after SCCs have been formed!");
1398 
1399   return SourceN.insertEdgeInternal(Target, EK);
1400 }
1401 
1402 void LazyCallGraph::removeEdge(Node &SourceN, Function &Target) {
1403   assert(SCCMap.empty() && DFSStack.empty() &&
1404          "This method cannot be called after SCCs have been formed!");
1405 
1406   return SourceN.removeEdgeInternal(Target);
1407 }
1408 
1409 void LazyCallGraph::removeDeadFunction(Function &F) {
1410   // FIXME: This is unnecessarily restrictive. We should be able to remove
1411   // functions which recursively call themselves.
1412   assert(F.use_empty() &&
1413          "This routine should only be called on trivially dead functions!");
1414 
1415   auto EII = EntryIndexMap.find(&F);
1416   if (EII != EntryIndexMap.end()) {
1417     EntryEdges[EII->second] = Edge();
1418     EntryIndexMap.erase(EII);
1419   }
1420 
1421   // It's safe to just remove un-visited functions from the RefSCC entry list.
1422   // FIXME: This is a linear operation which could become hot and benefit from
1423   // an index map.
1424   auto RENI = find(RefSCCEntryNodes, &F);
1425   if (RENI != RefSCCEntryNodes.end())
1426     RefSCCEntryNodes.erase(RENI);
1427 
1428   auto NI = NodeMap.find(&F);
1429   if (NI == NodeMap.end())
1430     // Not in the graph at all!
1431     return;
1432 
1433   Node &N = *NI->second;
1434   NodeMap.erase(NI);
1435 
1436   if (SCCMap.empty() && DFSStack.empty()) {
1437     // No SCC walk has begun, so removing this is fine and there is nothing
1438     // else necessary at this point but clearing out the node.
1439     N.clear();
1440     return;
1441   }
1442 
1443   // Check that we aren't going to break the DFS walk.
1444   assert(all_of(DFSStack,
1445                 [&N](const std::pair<Node *, edge_iterator> &Element) {
1446                   return Element.first != &N;
1447                 }) &&
1448          "Tried to remove a function currently in the DFS stack!");
1449   assert(find(PendingRefSCCStack, &N) == PendingRefSCCStack.end() &&
1450          "Tried to remove a function currently pending to add to a RefSCC!");
1451 
1452   // Cannot remove a function which has yet to be visited in the DFS walk, so
1453   // if we have a node at all then we must have an SCC and RefSCC.
1454   auto CI = SCCMap.find(&N);
1455   assert(CI != SCCMap.end() &&
1456          "Tried to remove a node without an SCC after DFS walk started!");
1457   SCC &C = *CI->second;
1458   SCCMap.erase(CI);
1459   RefSCC &RC = C.getOuterRefSCC();
1460 
1461   // This node must be the only member of its SCC as it has no callers, and
1462   // that SCC must be the only member of a RefSCC as it has no references.
1463   // Validate these properties first.
1464   assert(C.size() == 1 && "Dead functions must be in a singular SCC");
1465   assert(RC.size() == 1 && "Dead functions must be in a singular RefSCC");
1466   assert(RC.Parents.empty() && "Cannot have parents of a dead RefSCC!");
1467 
1468   // Now remove this RefSCC from any parents sets and the leaf list.
1469   for (Edge &E : N)
1470     if (Node *TargetN = E.getNode())
1471       if (RefSCC *TargetRC = lookupRefSCC(*TargetN))
1472         TargetRC->Parents.erase(&RC);
1473   // FIXME: This is a linear operation which could become hot and benefit from
1474   // an index map.
1475   auto LRI = find(LeafRefSCCs, &RC);
1476   if (LRI != LeafRefSCCs.end())
1477     LeafRefSCCs.erase(LRI);
1478 
1479   auto RCIndexI = RefSCCIndices.find(&RC);
1480   int RCIndex = RCIndexI->second;
1481   PostOrderRefSCCs.erase(PostOrderRefSCCs.begin() + RCIndex);
1482   RefSCCIndices.erase(RCIndexI);
1483   for (int i = RCIndex, Size = PostOrderRefSCCs.size(); i < Size; ++i)
1484     RefSCCIndices[PostOrderRefSCCs[i]] = i;
1485 
1486   // Finally clear out all the data structures from the node down through the
1487   // components.
1488   N.clear();
1489   C.clear();
1490   RC.clear();
1491 
1492   // Nothing to delete as all the objects are allocated in stable bump pointer
1493   // allocators.
1494 }
1495 
1496 LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
1497   return *new (MappedN = BPA.Allocate()) Node(*this, F);
1498 }
1499 
1500 void LazyCallGraph::updateGraphPtrs() {
1501   // Process all nodes updating the graph pointers.
1502   {
1503     SmallVector<Node *, 16> Worklist;
1504     for (Edge &E : EntryEdges)
1505       if (Node *EntryN = E.getNode())
1506         Worklist.push_back(EntryN);
1507 
1508     while (!Worklist.empty()) {
1509       Node *N = Worklist.pop_back_val();
1510       N->G = this;
1511       for (Edge &E : N->Edges)
1512         if (Node *TargetN = E.getNode())
1513           Worklist.push_back(TargetN);
1514     }
1515   }
1516 
1517   // Process all SCCs updating the graph pointers.
1518   {
1519     SmallVector<RefSCC *, 16> Worklist(LeafRefSCCs.begin(), LeafRefSCCs.end());
1520 
1521     while (!Worklist.empty()) {
1522       RefSCC &C = *Worklist.pop_back_val();
1523       C.G = this;
1524       for (RefSCC &ParentC : C.parents())
1525         Worklist.push_back(&ParentC);
1526     }
1527   }
1528 }
1529 
1530 /// Build the internal SCCs for a RefSCC from a sequence of nodes.
1531 ///
1532 /// Appends the SCCs to the provided vector and updates the map with their
1533 /// indices. Both the vector and map must be empty when passed into this
1534 /// routine.
1535 void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
1536   assert(RC.SCCs.empty() && "Already built SCCs!");
1537   assert(RC.SCCIndices.empty() && "Already mapped SCC indices!");
1538 
1539   for (Node *N : Nodes) {
1540     assert(N->LowLink >= (*Nodes.begin())->LowLink &&
1541            "We cannot have a low link in an SCC lower than its root on the "
1542            "stack!");
1543 
1544     // This node will go into the next RefSCC, clear out its DFS and low link
1545     // as we scan.
1546     N->DFSNumber = N->LowLink = 0;
1547   }
1548 
1549   // Each RefSCC contains a DAG of the call SCCs. To build these, we do
1550   // a direct walk of the call edges using Tarjan's algorithm. We reuse the
1551   // internal storage as we won't need it for the outer graph's DFS any longer.
1552 
1553   SmallVector<std::pair<Node *, call_edge_iterator>, 16> DFSStack;
1554   SmallVector<Node *, 16> PendingSCCStack;
1555 
1556   // Scan down the stack and DFS across the call edges.
1557   for (Node *RootN : Nodes) {
1558     assert(DFSStack.empty() &&
1559            "Cannot begin a new root with a non-empty DFS stack!");
1560     assert(PendingSCCStack.empty() &&
1561            "Cannot begin a new root with pending nodes for an SCC!");
1562 
1563     // Skip any nodes we've already reached in the DFS.
1564     if (RootN->DFSNumber != 0) {
1565       assert(RootN->DFSNumber == -1 &&
1566              "Shouldn't have any mid-DFS root nodes!");
1567       continue;
1568     }
1569 
1570     RootN->DFSNumber = RootN->LowLink = 1;
1571     int NextDFSNumber = 2;
1572 
1573     DFSStack.push_back({RootN, RootN->call_begin()});
1574     do {
1575       Node *N;
1576       call_edge_iterator I;
1577       std::tie(N, I) = DFSStack.pop_back_val();
1578       auto E = N->call_end();
1579       while (I != E) {
1580         Node &ChildN = *I->getNode();
1581         if (ChildN.DFSNumber == 0) {
1582           // We haven't yet visited this child, so descend, pushing the current
1583           // node onto the stack.
1584           DFSStack.push_back({N, I});
1585 
1586           assert(!lookupSCC(ChildN) &&
1587                  "Found a node with 0 DFS number but already in an SCC!");
1588           ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
1589           N = &ChildN;
1590           I = N->call_begin();
1591           E = N->call_end();
1592           continue;
1593         }
1594 
1595         // If the child has already been added to some child component, it
1596         // couldn't impact the low-link of this parent because it isn't
1597         // connected, and thus its low-link isn't relevant so skip it.
1598         if (ChildN.DFSNumber == -1) {
1599           ++I;
1600           continue;
1601         }
1602 
1603         // Track the lowest linked child as the lowest link for this node.
1604         assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
1605         if (ChildN.LowLink < N->LowLink)
1606           N->LowLink = ChildN.LowLink;
1607 
1608         // Move to the next edge.
1609         ++I;
1610       }
1611 
1612       // We've finished processing N and its descendents, put it on our pending
1613       // SCC stack to eventually get merged into an SCC of nodes.
1614       PendingSCCStack.push_back(N);
1615 
1616       // If this node is linked to some lower entry, continue walking up the
1617       // stack.
1618       if (N->LowLink != N->DFSNumber)
1619         continue;
1620 
1621       // Otherwise, we've completed an SCC. Append it to our post order list of
1622       // SCCs.
1623       int RootDFSNumber = N->DFSNumber;
1624       // Find the range of the node stack by walking down until we pass the
1625       // root DFS number.
1626       auto SCCNodes = make_range(
1627           PendingSCCStack.rbegin(),
1628           find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
1629             return N->DFSNumber < RootDFSNumber;
1630           }));
1631       // Form a new SCC out of these nodes and then clear them off our pending
1632       // stack.
1633       RC.SCCs.push_back(createSCC(RC, SCCNodes));
1634       for (Node &N : *RC.SCCs.back()) {
1635         N.DFSNumber = N.LowLink = -1;
1636         SCCMap[&N] = RC.SCCs.back();
1637       }
1638       PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
1639     } while (!DFSStack.empty());
1640   }
1641 
1642   // Wire up the SCC indices.
1643   for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i)
1644     RC.SCCIndices[RC.SCCs[i]] = i;
1645 }
1646 
1647 // FIXME: We should move callers of this to embed the parent linking and leaf
1648 // tracking into their DFS in order to remove a full walk of all edges.
1649 void LazyCallGraph::connectRefSCC(RefSCC &RC) {
1650   // Walk all edges in the RefSCC (this remains linear as we only do this once
1651   // when we build the RefSCC) to connect it to the parent sets of its
1652   // children.
1653   bool IsLeaf = true;
1654   for (SCC &C : RC)
1655     for (Node &N : C)
1656       for (Edge &E : N) {
1657         assert(E.getNode() &&
1658                "Cannot have a missing node in a visited part of the graph!");
1659         RefSCC &ChildRC = *lookupRefSCC(*E.getNode());
1660         if (&ChildRC == &RC)
1661           continue;
1662         ChildRC.Parents.insert(&RC);
1663         IsLeaf = false;
1664       }
1665 
1666   // For the SCCs where we find no child SCCs, add them to the leaf list.
1667   if (IsLeaf)
1668     LeafRefSCCs.push_back(&RC);
1669 }
1670 
1671 bool LazyCallGraph::buildNextRefSCCInPostOrder() {
1672   if (DFSStack.empty()) {
1673     Node *N;
1674     do {
1675       // If we've handled all candidate entry nodes to the SCC forest, we're
1676       // done.
1677       if (RefSCCEntryNodes.empty())
1678         return false;
1679 
1680       N = &get(*RefSCCEntryNodes.pop_back_val());
1681     } while (N->DFSNumber != 0);
1682 
1683     // Found a new root, begin the DFS here.
1684     N->LowLink = N->DFSNumber = 1;
1685     NextDFSNumber = 2;
1686     DFSStack.push_back({N, N->begin()});
1687   }
1688 
1689   for (;;) {
1690     Node *N;
1691     edge_iterator I;
1692     std::tie(N, I) = DFSStack.pop_back_val();
1693 
1694     assert(N->DFSNumber > 0 && "We should always assign a DFS number "
1695                                "before placing a node onto the stack.");
1696 
1697     auto E = N->end();
1698     while (I != E) {
1699       Node &ChildN = I->getNode(*this);
1700       if (ChildN.DFSNumber == 0) {
1701         // We haven't yet visited this child, so descend, pushing the current
1702         // node onto the stack.
1703         DFSStack.push_back({N, N->begin()});
1704 
1705         assert(!SCCMap.count(&ChildN) &&
1706                "Found a node with 0 DFS number but already in an SCC!");
1707         ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
1708         N = &ChildN;
1709         I = N->begin();
1710         E = N->end();
1711         continue;
1712       }
1713 
1714       // If the child has already been added to some child component, it
1715       // couldn't impact the low-link of this parent because it isn't
1716       // connected, and thus its low-link isn't relevant so skip it.
1717       if (ChildN.DFSNumber == -1) {
1718         ++I;
1719         continue;
1720       }
1721 
1722       // Track the lowest linked child as the lowest link for this node.
1723       assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
1724       if (ChildN.LowLink < N->LowLink)
1725         N->LowLink = ChildN.LowLink;
1726 
1727       // Move to the next edge.
1728       ++I;
1729     }
1730 
1731     // We've finished processing N and its descendents, put it on our pending
1732     // SCC stack to eventually get merged into an SCC of nodes.
1733     PendingRefSCCStack.push_back(N);
1734 
1735     // If this node is linked to some lower entry, continue walking up the
1736     // stack.
1737     if (N->LowLink != N->DFSNumber) {
1738       assert(!DFSStack.empty() &&
1739              "We never found a viable root for an SCC to pop off!");
1740       continue;
1741     }
1742 
1743     // Otherwise, form a new RefSCC from the top of the pending node stack.
1744     int RootDFSNumber = N->DFSNumber;
1745     // Find the range of the node stack by walking down until we pass the
1746     // root DFS number.
1747     auto RefSCCNodes = node_stack_range(
1748         PendingRefSCCStack.rbegin(),
1749         find_if(reverse(PendingRefSCCStack), [RootDFSNumber](const Node *N) {
1750           return N->DFSNumber < RootDFSNumber;
1751         }));
1752     // Form a new RefSCC out of these nodes and then clear them off our pending
1753     // stack.
1754     RefSCC *NewRC = createRefSCC(*this);
1755     buildSCCs(*NewRC, RefSCCNodes);
1756     connectRefSCC(*NewRC);
1757     PendingRefSCCStack.erase(RefSCCNodes.end().base(),
1758                              PendingRefSCCStack.end());
1759 
1760     // Push the new node into the postorder list and return true indicating we
1761     // successfully grew the postorder sequence by one.
1762     bool Inserted =
1763         RefSCCIndices.insert({NewRC, PostOrderRefSCCs.size()}).second;
1764     (void)Inserted;
1765     assert(Inserted && "Cannot already have this RefSCC in the index map!");
1766     PostOrderRefSCCs.push_back(NewRC);
1767     return true;
1768   }
1769 }
1770 
1771 char LazyCallGraphAnalysis::PassID;
1772 
1773 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
1774 
1775 static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) {
1776   OS << "  Edges in function: " << N.getFunction().getName() << "\n";
1777   for (const LazyCallGraph::Edge &E : N)
1778     OS << "    " << (E.isCall() ? "call" : "ref ") << " -> "
1779        << E.getFunction().getName() << "\n";
1780 
1781   OS << "\n";
1782 }
1783 
1784 static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) {
1785   ptrdiff_t Size = std::distance(C.begin(), C.end());
1786   OS << "    SCC with " << Size << " functions:\n";
1787 
1788   for (LazyCallGraph::Node &N : C)
1789     OS << "      " << N.getFunction().getName() << "\n";
1790 }
1791 
1792 static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) {
1793   ptrdiff_t Size = std::distance(C.begin(), C.end());
1794   OS << "  RefSCC with " << Size << " call SCCs:\n";
1795 
1796   for (LazyCallGraph::SCC &InnerC : C)
1797     printSCC(OS, InnerC);
1798 
1799   OS << "\n";
1800 }
1801 
1802 PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
1803                                                 ModuleAnalysisManager &AM) {
1804   LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
1805 
1806   OS << "Printing the call graph for module: " << M.getModuleIdentifier()
1807      << "\n\n";
1808 
1809   for (Function &F : M)
1810     printNode(OS, G.get(F));
1811 
1812   for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs())
1813     printRefSCC(OS, C);
1814 
1815   return PreservedAnalyses::all();
1816 }
1817 
1818 LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS)
1819     : OS(OS) {}
1820 
1821 static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) {
1822   std::string Name = "\"" + DOT::EscapeString(N.getFunction().getName()) + "\"";
1823 
1824   for (const LazyCallGraph::Edge &E : N) {
1825     OS << "  " << Name << " -> \""
1826        << DOT::EscapeString(E.getFunction().getName()) << "\"";
1827     if (!E.isCall()) // It is a ref edge.
1828       OS << " [style=dashed,label=\"ref\"]";
1829     OS << ";\n";
1830   }
1831 
1832   OS << "\n";
1833 }
1834 
1835 PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M,
1836                                                    ModuleAnalysisManager &AM) {
1837   LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
1838 
1839   OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n";
1840 
1841   for (Function &F : M)
1842     printNodeDOT(OS, G.get(F));
1843 
1844   OS << "}\n";
1845 
1846   return PreservedAnalyses::all();
1847 }
1848