1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Analysis/LazyCallGraph.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/ScopeExit.h" 13 #include "llvm/ADT/Sequence.h" 14 #include "llvm/IR/CallSite.h" 15 #include "llvm/IR/InstVisitor.h" 16 #include "llvm/IR/Instructions.h" 17 #include "llvm/IR/PassManager.h" 18 #include "llvm/Support/Debug.h" 19 #include "llvm/Support/GraphWriter.h" 20 #include <utility> 21 22 using namespace llvm; 23 24 #define DEBUG_TYPE "lcg" 25 26 void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node &TargetN, 27 Edge::Kind EK) { 28 EdgeIndexMap.insert({&TargetN, Edges.size()}); 29 Edges.emplace_back(TargetN, EK); 30 } 31 32 void LazyCallGraph::EdgeSequence::setEdgeKind(Node &TargetN, Edge::Kind EK) { 33 Edges[EdgeIndexMap.find(&TargetN)->second].setKind(EK); 34 } 35 36 bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node &TargetN) { 37 auto IndexMapI = EdgeIndexMap.find(&TargetN); 38 if (IndexMapI == EdgeIndexMap.end()) 39 return false; 40 41 Edges[IndexMapI->second] = Edge(); 42 EdgeIndexMap.erase(IndexMapI); 43 return true; 44 } 45 46 static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges, 47 DenseMap<LazyCallGraph::Node *, int> &EdgeIndexMap, 48 LazyCallGraph::Node &N, LazyCallGraph::Edge::Kind EK) { 49 if (!EdgeIndexMap.insert({&N, Edges.size()}).second) 50 return; 51 52 DEBUG(dbgs() << " Added callable function: " << N.getName() << "\n"); 53 Edges.emplace_back(LazyCallGraph::Edge(N, EK)); 54 } 55 56 LazyCallGraph::EdgeSequence &LazyCallGraph::Node::populateSlow() { 57 assert(!Edges && "Must not have already populated the edges for this node!"); 58 59 DEBUG(dbgs() << " Adding functions called by '" << getName() 60 << "' to the graph.\n"); 61 62 Edges = EdgeSequence(); 63 64 SmallVector<Constant *, 16> Worklist; 65 SmallPtrSet<Function *, 4> Callees; 66 SmallPtrSet<Constant *, 16> Visited; 67 68 // Find all the potential call graph edges in this function. We track both 69 // actual call edges and indirect references to functions. The direct calls 70 // are trivially added, but to accumulate the latter we walk the instructions 71 // and add every operand which is a constant to the worklist to process 72 // afterward. 73 // 74 // Note that we consider *any* function with a definition to be a viable 75 // edge. Even if the function's definition is subject to replacement by 76 // some other module (say, a weak definition) there may still be 77 // optimizations which essentially speculate based on the definition and 78 // a way to check that the specific definition is in fact the one being 79 // used. For example, this could be done by moving the weak definition to 80 // a strong (internal) definition and making the weak definition be an 81 // alias. Then a test of the address of the weak function against the new 82 // strong definition's address would be an effective way to determine the 83 // safety of optimizing a direct call edge. 84 for (BasicBlock &BB : *F) 85 for (Instruction &I : BB) { 86 if (auto CS = CallSite(&I)) 87 if (Function *Callee = CS.getCalledFunction()) 88 if (!Callee->isDeclaration()) 89 if (Callees.insert(Callee).second) { 90 Visited.insert(Callee); 91 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*Callee), 92 LazyCallGraph::Edge::Call); 93 } 94 95 for (Value *Op : I.operand_values()) 96 if (Constant *C = dyn_cast<Constant>(Op)) 97 if (Visited.insert(C).second) 98 Worklist.push_back(C); 99 } 100 101 // We've collected all the constant (and thus potentially function or 102 // function containing) operands to all of the instructions in the function. 103 // Process them (recursively) collecting every function found. 104 visitReferences(Worklist, Visited, [&](Function &F) { 105 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(F), 106 LazyCallGraph::Edge::Ref); 107 }); 108 109 // Add implicit reference edges to any defined libcall functions (if we 110 // haven't found an explicit edge). 111 for (auto *F : G->LibFunctions) 112 if (!Visited.count(F)) 113 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*F), 114 LazyCallGraph::Edge::Ref); 115 116 return *Edges; 117 } 118 119 void LazyCallGraph::Node::replaceFunction(Function &NewF) { 120 assert(F != &NewF && "Must not replace a function with itself!"); 121 F = &NewF; 122 } 123 124 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 125 LLVM_DUMP_METHOD void LazyCallGraph::Node::dump() const { 126 dbgs() << *this << '\n'; 127 } 128 #endif 129 130 static bool isKnownLibFunction(Function &F, TargetLibraryInfo &TLI) { 131 LibFunc LF; 132 133 // Either this is a normal library function or a "vectorizable" function. 134 return TLI.getLibFunc(F, LF) || TLI.isFunctionVectorizable(F.getName()); 135 } 136 137 LazyCallGraph::LazyCallGraph(Module &M, TargetLibraryInfo &TLI) { 138 DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier() 139 << "\n"); 140 for (Function &F : M) { 141 if (F.isDeclaration()) 142 continue; 143 // If this function is a known lib function to LLVM then we want to 144 // synthesize reference edges to it to model the fact that LLVM can turn 145 // arbitrary code into a library function call. 146 if (isKnownLibFunction(F, TLI)) 147 LibFunctions.insert(&F); 148 149 if (F.hasLocalLinkage()) 150 continue; 151 152 // External linkage defined functions have edges to them from other 153 // modules. 154 DEBUG(dbgs() << " Adding '" << F.getName() 155 << "' to entry set of the graph.\n"); 156 addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), Edge::Ref); 157 } 158 159 // Now add entry nodes for functions reachable via initializers to globals. 160 SmallVector<Constant *, 16> Worklist; 161 SmallPtrSet<Constant *, 16> Visited; 162 for (GlobalVariable &GV : M.globals()) 163 if (GV.hasInitializer()) 164 if (Visited.insert(GV.getInitializer()).second) 165 Worklist.push_back(GV.getInitializer()); 166 167 DEBUG(dbgs() << " Adding functions referenced by global initializers to the " 168 "entry set.\n"); 169 visitReferences(Worklist, Visited, [&](Function &F) { 170 addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), 171 LazyCallGraph::Edge::Ref); 172 }); 173 } 174 175 LazyCallGraph::LazyCallGraph(LazyCallGraph &&G) 176 : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)), 177 EntryEdges(std::move(G.EntryEdges)), SCCBPA(std::move(G.SCCBPA)), 178 SCCMap(std::move(G.SCCMap)), LeafRefSCCs(std::move(G.LeafRefSCCs)), 179 LibFunctions(std::move(G.LibFunctions)) { 180 updateGraphPtrs(); 181 } 182 183 LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) { 184 BPA = std::move(G.BPA); 185 NodeMap = std::move(G.NodeMap); 186 EntryEdges = std::move(G.EntryEdges); 187 SCCBPA = std::move(G.SCCBPA); 188 SCCMap = std::move(G.SCCMap); 189 LeafRefSCCs = std::move(G.LeafRefSCCs); 190 LibFunctions = std::move(G.LibFunctions); 191 updateGraphPtrs(); 192 return *this; 193 } 194 195 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 196 LLVM_DUMP_METHOD void LazyCallGraph::SCC::dump() const { 197 dbgs() << *this << '\n'; 198 } 199 #endif 200 201 #ifndef NDEBUG 202 void LazyCallGraph::SCC::verify() { 203 assert(OuterRefSCC && "Can't have a null RefSCC!"); 204 assert(!Nodes.empty() && "Can't have an empty SCC!"); 205 206 for (Node *N : Nodes) { 207 assert(N && "Can't have a null node!"); 208 assert(OuterRefSCC->G->lookupSCC(*N) == this && 209 "Node does not map to this SCC!"); 210 assert(N->DFSNumber == -1 && 211 "Must set DFS numbers to -1 when adding a node to an SCC!"); 212 assert(N->LowLink == -1 && 213 "Must set low link to -1 when adding a node to an SCC!"); 214 for (Edge &E : **N) 215 assert(E.getNode() && "Can't have an unpopulated node!"); 216 } 217 } 218 #endif 219 220 bool LazyCallGraph::SCC::isParentOf(const SCC &C) const { 221 if (this == &C) 222 return false; 223 224 for (Node &N : *this) 225 for (Edge &E : N->calls()) 226 if (OuterRefSCC->G->lookupSCC(E.getNode()) == &C) 227 return true; 228 229 // No edges found. 230 return false; 231 } 232 233 bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const { 234 if (this == &TargetC) 235 return false; 236 237 LazyCallGraph &G = *OuterRefSCC->G; 238 239 // Start with this SCC. 240 SmallPtrSet<const SCC *, 16> Visited = {this}; 241 SmallVector<const SCC *, 16> Worklist = {this}; 242 243 // Walk down the graph until we run out of edges or find a path to TargetC. 244 do { 245 const SCC &C = *Worklist.pop_back_val(); 246 for (Node &N : C) 247 for (Edge &E : N->calls()) { 248 SCC *CalleeC = G.lookupSCC(E.getNode()); 249 if (!CalleeC) 250 continue; 251 252 // If the callee's SCC is the TargetC, we're done. 253 if (CalleeC == &TargetC) 254 return true; 255 256 // If this is the first time we've reached this SCC, put it on the 257 // worklist to recurse through. 258 if (Visited.insert(CalleeC).second) 259 Worklist.push_back(CalleeC); 260 } 261 } while (!Worklist.empty()); 262 263 // No paths found. 264 return false; 265 } 266 267 LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {} 268 269 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 270 LLVM_DUMP_METHOD void LazyCallGraph::RefSCC::dump() const { 271 dbgs() << *this << '\n'; 272 } 273 #endif 274 275 #ifndef NDEBUG 276 void LazyCallGraph::RefSCC::verify() { 277 assert(G && "Can't have a null graph!"); 278 assert(!SCCs.empty() && "Can't have an empty SCC!"); 279 280 // Verify basic properties of the SCCs. 281 SmallPtrSet<SCC *, 4> SCCSet; 282 for (SCC *C : SCCs) { 283 assert(C && "Can't have a null SCC!"); 284 C->verify(); 285 assert(&C->getOuterRefSCC() == this && 286 "SCC doesn't think it is inside this RefSCC!"); 287 bool Inserted = SCCSet.insert(C).second; 288 assert(Inserted && "Found a duplicate SCC!"); 289 auto IndexIt = SCCIndices.find(C); 290 assert(IndexIt != SCCIndices.end() && 291 "Found an SCC that doesn't have an index!"); 292 } 293 294 // Check that our indices map correctly. 295 for (auto &SCCIndexPair : SCCIndices) { 296 SCC *C = SCCIndexPair.first; 297 int i = SCCIndexPair.second; 298 assert(C && "Can't have a null SCC in the indices!"); 299 assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!"); 300 assert(SCCs[i] == C && "Index doesn't point to SCC!"); 301 } 302 303 // Check that the SCCs are in fact in post-order. 304 for (int i = 0, Size = SCCs.size(); i < Size; ++i) { 305 SCC &SourceSCC = *SCCs[i]; 306 for (Node &N : SourceSCC) 307 for (Edge &E : *N) { 308 if (!E.isCall()) 309 continue; 310 SCC &TargetSCC = *G->lookupSCC(E.getNode()); 311 if (&TargetSCC.getOuterRefSCC() == this) { 312 assert(SCCIndices.find(&TargetSCC)->second <= i && 313 "Edge between SCCs violates post-order relationship."); 314 continue; 315 } 316 assert(TargetSCC.getOuterRefSCC().Parents.count(this) && 317 "Edge to a RefSCC missing us in its parent set."); 318 } 319 } 320 321 // Check that our parents are actually parents. 322 for (RefSCC *ParentRC : Parents) { 323 assert(ParentRC != this && "Cannot be our own parent!"); 324 auto HasConnectingEdge = [&] { 325 for (SCC &C : *ParentRC) 326 for (Node &N : C) 327 for (Edge &E : *N) 328 if (G->lookupRefSCC(E.getNode()) == this) 329 return true; 330 return false; 331 }; 332 assert(HasConnectingEdge() && "No edge connects the parent to us!"); 333 } 334 } 335 #endif 336 337 bool LazyCallGraph::RefSCC::isDescendantOf(const RefSCC &C) const { 338 // Walk up the parents of this SCC and verify that we eventually find C. 339 SmallVector<const RefSCC *, 4> AncestorWorklist; 340 AncestorWorklist.push_back(this); 341 do { 342 const RefSCC *AncestorC = AncestorWorklist.pop_back_val(); 343 if (AncestorC->isChildOf(C)) 344 return true; 345 for (const RefSCC *ParentC : AncestorC->Parents) 346 AncestorWorklist.push_back(ParentC); 347 } while (!AncestorWorklist.empty()); 348 349 return false; 350 } 351 352 /// Generic helper that updates a postorder sequence of SCCs for a potentially 353 /// cycle-introducing edge insertion. 354 /// 355 /// A postorder sequence of SCCs of a directed graph has one fundamental 356 /// property: all deges in the DAG of SCCs point "up" the sequence. That is, 357 /// all edges in the SCC DAG point to prior SCCs in the sequence. 358 /// 359 /// This routine both updates a postorder sequence and uses that sequence to 360 /// compute the set of SCCs connected into a cycle. It should only be called to 361 /// insert a "downward" edge which will require changing the sequence to 362 /// restore it to a postorder. 363 /// 364 /// When inserting an edge from an earlier SCC to a later SCC in some postorder 365 /// sequence, all of the SCCs which may be impacted are in the closed range of 366 /// those two within the postorder sequence. The algorithm used here to restore 367 /// the state is as follows: 368 /// 369 /// 1) Starting from the source SCC, construct a set of SCCs which reach the 370 /// source SCC consisting of just the source SCC. Then scan toward the 371 /// target SCC in postorder and for each SCC, if it has an edge to an SCC 372 /// in the set, add it to the set. Otherwise, the source SCC is not 373 /// a successor, move it in the postorder sequence to immediately before 374 /// the source SCC, shifting the source SCC and all SCCs in the set one 375 /// position toward the target SCC. Stop scanning after processing the 376 /// target SCC. 377 /// 2) If the source SCC is now past the target SCC in the postorder sequence, 378 /// and thus the new edge will flow toward the start, we are done. 379 /// 3) Otherwise, starting from the target SCC, walk all edges which reach an 380 /// SCC between the source and the target, and add them to the set of 381 /// connected SCCs, then recurse through them. Once a complete set of the 382 /// SCCs the target connects to is known, hoist the remaining SCCs between 383 /// the source and the target to be above the target. Note that there is no 384 /// need to process the source SCC, it is already known to connect. 385 /// 4) At this point, all of the SCCs in the closed range between the source 386 /// SCC and the target SCC in the postorder sequence are connected, 387 /// including the target SCC and the source SCC. Inserting the edge from 388 /// the source SCC to the target SCC will form a cycle out of precisely 389 /// these SCCs. Thus we can merge all of the SCCs in this closed range into 390 /// a single SCC. 391 /// 392 /// This process has various important properties: 393 /// - Only mutates the SCCs when adding the edge actually changes the SCC 394 /// structure. 395 /// - Never mutates SCCs which are unaffected by the change. 396 /// - Updates the postorder sequence to correctly satisfy the postorder 397 /// constraint after the edge is inserted. 398 /// - Only reorders SCCs in the closed postorder sequence from the source to 399 /// the target, so easy to bound how much has changed even in the ordering. 400 /// - Big-O is the number of edges in the closed postorder range of SCCs from 401 /// source to target. 402 /// 403 /// This helper routine, in addition to updating the postorder sequence itself 404 /// will also update a map from SCCs to indices within that sequecne. 405 /// 406 /// The sequence and the map must operate on pointers to the SCC type. 407 /// 408 /// Two callbacks must be provided. The first computes the subset of SCCs in 409 /// the postorder closed range from the source to the target which connect to 410 /// the source SCC via some (transitive) set of edges. The second computes the 411 /// subset of the same range which the target SCC connects to via some 412 /// (transitive) set of edges. Both callbacks should populate the set argument 413 /// provided. 414 template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT, 415 typename ComputeSourceConnectedSetCallableT, 416 typename ComputeTargetConnectedSetCallableT> 417 static iterator_range<typename PostorderSequenceT::iterator> 418 updatePostorderSequenceForEdgeInsertion( 419 SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs, 420 SCCIndexMapT &SCCIndices, 421 ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet, 422 ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) { 423 int SourceIdx = SCCIndices[&SourceSCC]; 424 int TargetIdx = SCCIndices[&TargetSCC]; 425 assert(SourceIdx < TargetIdx && "Cannot have equal indices here!"); 426 427 SmallPtrSet<SCCT *, 4> ConnectedSet; 428 429 // Compute the SCCs which (transitively) reach the source. 430 ComputeSourceConnectedSet(ConnectedSet); 431 432 // Partition the SCCs in this part of the port-order sequence so only SCCs 433 // connecting to the source remain between it and the target. This is 434 // a benign partition as it preserves postorder. 435 auto SourceI = std::stable_partition( 436 SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1, 437 [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); }); 438 for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i) 439 SCCIndices.find(SCCs[i])->second = i; 440 441 // If the target doesn't connect to the source, then we've corrected the 442 // post-order and there are no cycles formed. 443 if (!ConnectedSet.count(&TargetSCC)) { 444 assert(SourceI > (SCCs.begin() + SourceIdx) && 445 "Must have moved the source to fix the post-order."); 446 assert(*std::prev(SourceI) == &TargetSCC && 447 "Last SCC to move should have bene the target."); 448 449 // Return an empty range at the target SCC indicating there is nothing to 450 // merge. 451 return make_range(std::prev(SourceI), std::prev(SourceI)); 452 } 453 454 assert(SCCs[TargetIdx] == &TargetSCC && 455 "Should not have moved target if connected!"); 456 SourceIdx = SourceI - SCCs.begin(); 457 assert(SCCs[SourceIdx] == &SourceSCC && 458 "Bad updated index computation for the source SCC!"); 459 460 461 // See whether there are any remaining intervening SCCs between the source 462 // and target. If so we need to make sure they all are reachable form the 463 // target. 464 if (SourceIdx + 1 < TargetIdx) { 465 ConnectedSet.clear(); 466 ComputeTargetConnectedSet(ConnectedSet); 467 468 // Partition SCCs so that only SCCs reached from the target remain between 469 // the source and the target. This preserves postorder. 470 auto TargetI = std::stable_partition( 471 SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1, 472 [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); }); 473 for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i) 474 SCCIndices.find(SCCs[i])->second = i; 475 TargetIdx = std::prev(TargetI) - SCCs.begin(); 476 assert(SCCs[TargetIdx] == &TargetSCC && 477 "Should always end with the target!"); 478 } 479 480 // At this point, we know that connecting source to target forms a cycle 481 // because target connects back to source, and we know that all of the SCCs 482 // between the source and target in the postorder sequence participate in that 483 // cycle. 484 return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx); 485 } 486 487 bool 488 LazyCallGraph::RefSCC::switchInternalEdgeToCall( 489 Node &SourceN, Node &TargetN, 490 function_ref<void(ArrayRef<SCC *> MergeSCCs)> MergeCB) { 491 assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!"); 492 SmallVector<SCC *, 1> DeletedSCCs; 493 494 #ifndef NDEBUG 495 // In a debug build, verify the RefSCC is valid to start with and when this 496 // routine finishes. 497 verify(); 498 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 499 #endif 500 501 SCC &SourceSCC = *G->lookupSCC(SourceN); 502 SCC &TargetSCC = *G->lookupSCC(TargetN); 503 504 // If the two nodes are already part of the same SCC, we're also done as 505 // we've just added more connectivity. 506 if (&SourceSCC == &TargetSCC) { 507 SourceN->setEdgeKind(TargetN, Edge::Call); 508 return false; // No new cycle. 509 } 510 511 // At this point we leverage the postorder list of SCCs to detect when the 512 // insertion of an edge changes the SCC structure in any way. 513 // 514 // First and foremost, we can eliminate the need for any changes when the 515 // edge is toward the beginning of the postorder sequence because all edges 516 // flow in that direction already. Thus adding a new one cannot form a cycle. 517 int SourceIdx = SCCIndices[&SourceSCC]; 518 int TargetIdx = SCCIndices[&TargetSCC]; 519 if (TargetIdx < SourceIdx) { 520 SourceN->setEdgeKind(TargetN, Edge::Call); 521 return false; // No new cycle. 522 } 523 524 // Compute the SCCs which (transitively) reach the source. 525 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) { 526 #ifndef NDEBUG 527 // Check that the RefSCC is still valid before computing this as the 528 // results will be nonsensical of we've broken its invariants. 529 verify(); 530 #endif 531 ConnectedSet.insert(&SourceSCC); 532 auto IsConnected = [&](SCC &C) { 533 for (Node &N : C) 534 for (Edge &E : N->calls()) 535 if (ConnectedSet.count(G->lookupSCC(E.getNode()))) 536 return true; 537 538 return false; 539 }; 540 541 for (SCC *C : 542 make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1)) 543 if (IsConnected(*C)) 544 ConnectedSet.insert(C); 545 }; 546 547 // Use a normal worklist to find which SCCs the target connects to. We still 548 // bound the search based on the range in the postorder list we care about, 549 // but because this is forward connectivity we just "recurse" through the 550 // edges. 551 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) { 552 #ifndef NDEBUG 553 // Check that the RefSCC is still valid before computing this as the 554 // results will be nonsensical of we've broken its invariants. 555 verify(); 556 #endif 557 ConnectedSet.insert(&TargetSCC); 558 SmallVector<SCC *, 4> Worklist; 559 Worklist.push_back(&TargetSCC); 560 do { 561 SCC &C = *Worklist.pop_back_val(); 562 for (Node &N : C) 563 for (Edge &E : *N) { 564 if (!E.isCall()) 565 continue; 566 SCC &EdgeC = *G->lookupSCC(E.getNode()); 567 if (&EdgeC.getOuterRefSCC() != this) 568 // Not in this RefSCC... 569 continue; 570 if (SCCIndices.find(&EdgeC)->second <= SourceIdx) 571 // Not in the postorder sequence between source and target. 572 continue; 573 574 if (ConnectedSet.insert(&EdgeC).second) 575 Worklist.push_back(&EdgeC); 576 } 577 } while (!Worklist.empty()); 578 }; 579 580 // Use a generic helper to update the postorder sequence of SCCs and return 581 // a range of any SCCs connected into a cycle by inserting this edge. This 582 // routine will also take care of updating the indices into the postorder 583 // sequence. 584 auto MergeRange = updatePostorderSequenceForEdgeInsertion( 585 SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet, 586 ComputeTargetConnectedSet); 587 588 // Run the user's callback on the merged SCCs before we actually merge them. 589 if (MergeCB) 590 MergeCB(makeArrayRef(MergeRange.begin(), MergeRange.end())); 591 592 // If the merge range is empty, then adding the edge didn't actually form any 593 // new cycles. We're done. 594 if (MergeRange.begin() == MergeRange.end()) { 595 // Now that the SCC structure is finalized, flip the kind to call. 596 SourceN->setEdgeKind(TargetN, Edge::Call); 597 return false; // No new cycle. 598 } 599 600 #ifndef NDEBUG 601 // Before merging, check that the RefSCC remains valid after all the 602 // postorder updates. 603 verify(); 604 #endif 605 606 // Otherwise we need to merge all of the SCCs in the cycle into a single 607 // result SCC. 608 // 609 // NB: We merge into the target because all of these functions were already 610 // reachable from the target, meaning any SCC-wide properties deduced about it 611 // other than the set of functions within it will not have changed. 612 for (SCC *C : MergeRange) { 613 assert(C != &TargetSCC && 614 "We merge *into* the target and shouldn't process it here!"); 615 SCCIndices.erase(C); 616 TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end()); 617 for (Node *N : C->Nodes) 618 G->SCCMap[N] = &TargetSCC; 619 C->clear(); 620 DeletedSCCs.push_back(C); 621 } 622 623 // Erase the merged SCCs from the list and update the indices of the 624 // remaining SCCs. 625 int IndexOffset = MergeRange.end() - MergeRange.begin(); 626 auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end()); 627 for (SCC *C : make_range(EraseEnd, SCCs.end())) 628 SCCIndices[C] -= IndexOffset; 629 630 // Now that the SCC structure is finalized, flip the kind to call. 631 SourceN->setEdgeKind(TargetN, Edge::Call); 632 633 // And we're done, but we did form a new cycle. 634 return true; 635 } 636 637 void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node &SourceN, 638 Node &TargetN) { 639 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!"); 640 641 #ifndef NDEBUG 642 // In a debug build, verify the RefSCC is valid to start with and when this 643 // routine finishes. 644 verify(); 645 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 646 #endif 647 648 assert(G->lookupRefSCC(SourceN) == this && 649 "Source must be in this RefSCC."); 650 assert(G->lookupRefSCC(TargetN) == this && 651 "Target must be in this RefSCC."); 652 assert(G->lookupSCC(SourceN) != G->lookupSCC(TargetN) && 653 "Source and Target must be in separate SCCs for this to be trivial!"); 654 655 // Set the edge kind. 656 SourceN->setEdgeKind(TargetN, Edge::Ref); 657 } 658 659 iterator_range<LazyCallGraph::RefSCC::iterator> 660 LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) { 661 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!"); 662 663 #ifndef NDEBUG 664 // In a debug build, verify the RefSCC is valid to start with and when this 665 // routine finishes. 666 verify(); 667 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 668 #endif 669 670 assert(G->lookupRefSCC(SourceN) == this && 671 "Source must be in this RefSCC."); 672 assert(G->lookupRefSCC(TargetN) == this && 673 "Target must be in this RefSCC."); 674 675 SCC &TargetSCC = *G->lookupSCC(TargetN); 676 assert(G->lookupSCC(SourceN) == &TargetSCC && "Source and Target must be in " 677 "the same SCC to require the " 678 "full CG update."); 679 680 // Set the edge kind. 681 SourceN->setEdgeKind(TargetN, Edge::Ref); 682 683 // Otherwise we are removing a call edge from a single SCC. This may break 684 // the cycle. In order to compute the new set of SCCs, we need to do a small 685 // DFS over the nodes within the SCC to form any sub-cycles that remain as 686 // distinct SCCs and compute a postorder over the resulting SCCs. 687 // 688 // However, we specially handle the target node. The target node is known to 689 // reach all other nodes in the original SCC by definition. This means that 690 // we want the old SCC to be replaced with an SCC contaning that node as it 691 // will be the root of whatever SCC DAG results from the DFS. Assumptions 692 // about an SCC such as the set of functions called will continue to hold, 693 // etc. 694 695 SCC &OldSCC = TargetSCC; 696 SmallVector<std::pair<Node *, EdgeSequence::call_iterator>, 16> DFSStack; 697 SmallVector<Node *, 16> PendingSCCStack; 698 SmallVector<SCC *, 4> NewSCCs; 699 700 // Prepare the nodes for a fresh DFS. 701 SmallVector<Node *, 16> Worklist; 702 Worklist.swap(OldSCC.Nodes); 703 for (Node *N : Worklist) { 704 N->DFSNumber = N->LowLink = 0; 705 G->SCCMap.erase(N); 706 } 707 708 // Force the target node to be in the old SCC. This also enables us to take 709 // a very significant short-cut in the standard Tarjan walk to re-form SCCs 710 // below: whenever we build an edge that reaches the target node, we know 711 // that the target node eventually connects back to all other nodes in our 712 // walk. As a consequence, we can detect and handle participants in that 713 // cycle without walking all the edges that form this connection, and instead 714 // by relying on the fundamental guarantee coming into this operation (all 715 // nodes are reachable from the target due to previously forming an SCC). 716 TargetN.DFSNumber = TargetN.LowLink = -1; 717 OldSCC.Nodes.push_back(&TargetN); 718 G->SCCMap[&TargetN] = &OldSCC; 719 720 // Scan down the stack and DFS across the call edges. 721 for (Node *RootN : Worklist) { 722 assert(DFSStack.empty() && 723 "Cannot begin a new root with a non-empty DFS stack!"); 724 assert(PendingSCCStack.empty() && 725 "Cannot begin a new root with pending nodes for an SCC!"); 726 727 // Skip any nodes we've already reached in the DFS. 728 if (RootN->DFSNumber != 0) { 729 assert(RootN->DFSNumber == -1 && 730 "Shouldn't have any mid-DFS root nodes!"); 731 continue; 732 } 733 734 RootN->DFSNumber = RootN->LowLink = 1; 735 int NextDFSNumber = 2; 736 737 DFSStack.push_back({RootN, (*RootN)->call_begin()}); 738 do { 739 Node *N; 740 EdgeSequence::call_iterator I; 741 std::tie(N, I) = DFSStack.pop_back_val(); 742 auto E = (*N)->call_end(); 743 while (I != E) { 744 Node &ChildN = I->getNode(); 745 if (ChildN.DFSNumber == 0) { 746 // We haven't yet visited this child, so descend, pushing the current 747 // node onto the stack. 748 DFSStack.push_back({N, I}); 749 750 assert(!G->SCCMap.count(&ChildN) && 751 "Found a node with 0 DFS number but already in an SCC!"); 752 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++; 753 N = &ChildN; 754 I = (*N)->call_begin(); 755 E = (*N)->call_end(); 756 continue; 757 } 758 759 // Check for the child already being part of some component. 760 if (ChildN.DFSNumber == -1) { 761 if (G->lookupSCC(ChildN) == &OldSCC) { 762 // If the child is part of the old SCC, we know that it can reach 763 // every other node, so we have formed a cycle. Pull the entire DFS 764 // and pending stacks into it. See the comment above about setting 765 // up the old SCC for why we do this. 766 int OldSize = OldSCC.size(); 767 OldSCC.Nodes.push_back(N); 768 OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end()); 769 PendingSCCStack.clear(); 770 while (!DFSStack.empty()) 771 OldSCC.Nodes.push_back(DFSStack.pop_back_val().first); 772 for (Node &N : make_range(OldSCC.begin() + OldSize, OldSCC.end())) { 773 N.DFSNumber = N.LowLink = -1; 774 G->SCCMap[&N] = &OldSCC; 775 } 776 N = nullptr; 777 break; 778 } 779 780 // If the child has already been added to some child component, it 781 // couldn't impact the low-link of this parent because it isn't 782 // connected, and thus its low-link isn't relevant so skip it. 783 ++I; 784 continue; 785 } 786 787 // Track the lowest linked child as the lowest link for this node. 788 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); 789 if (ChildN.LowLink < N->LowLink) 790 N->LowLink = ChildN.LowLink; 791 792 // Move to the next edge. 793 ++I; 794 } 795 if (!N) 796 // Cleared the DFS early, start another round. 797 break; 798 799 // We've finished processing N and its descendents, put it on our pending 800 // SCC stack to eventually get merged into an SCC of nodes. 801 PendingSCCStack.push_back(N); 802 803 // If this node is linked to some lower entry, continue walking up the 804 // stack. 805 if (N->LowLink != N->DFSNumber) 806 continue; 807 808 // Otherwise, we've completed an SCC. Append it to our post order list of 809 // SCCs. 810 int RootDFSNumber = N->DFSNumber; 811 // Find the range of the node stack by walking down until we pass the 812 // root DFS number. 813 auto SCCNodes = make_range( 814 PendingSCCStack.rbegin(), 815 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) { 816 return N->DFSNumber < RootDFSNumber; 817 })); 818 819 // Form a new SCC out of these nodes and then clear them off our pending 820 // stack. 821 NewSCCs.push_back(G->createSCC(*this, SCCNodes)); 822 for (Node &N : *NewSCCs.back()) { 823 N.DFSNumber = N.LowLink = -1; 824 G->SCCMap[&N] = NewSCCs.back(); 825 } 826 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end()); 827 } while (!DFSStack.empty()); 828 } 829 830 // Insert the remaining SCCs before the old one. The old SCC can reach all 831 // other SCCs we form because it contains the target node of the removed edge 832 // of the old SCC. This means that we will have edges into all of the new 833 // SCCs, which means the old one must come last for postorder. 834 int OldIdx = SCCIndices[&OldSCC]; 835 SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end()); 836 837 // Update the mapping from SCC* to index to use the new SCC*s, and remove the 838 // old SCC from the mapping. 839 for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx) 840 SCCIndices[SCCs[Idx]] = Idx; 841 842 return make_range(SCCs.begin() + OldIdx, 843 SCCs.begin() + OldIdx + NewSCCs.size()); 844 } 845 846 void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN, 847 Node &TargetN) { 848 assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!"); 849 850 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 851 assert(G->lookupRefSCC(TargetN) != this && 852 "Target must not be in this RefSCC."); 853 #ifdef EXPENSIVE_CHECKS 854 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && 855 "Target must be a descendant of the Source."); 856 #endif 857 858 // Edges between RefSCCs are the same regardless of call or ref, so we can 859 // just flip the edge here. 860 SourceN->setEdgeKind(TargetN, Edge::Call); 861 862 #ifndef NDEBUG 863 // Check that the RefSCC is still valid. 864 verify(); 865 #endif 866 } 867 868 void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN, 869 Node &TargetN) { 870 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!"); 871 872 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 873 assert(G->lookupRefSCC(TargetN) != this && 874 "Target must not be in this RefSCC."); 875 #ifdef EXPENSIVE_CHECKS 876 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && 877 "Target must be a descendant of the Source."); 878 #endif 879 880 // Edges between RefSCCs are the same regardless of call or ref, so we can 881 // just flip the edge here. 882 SourceN->setEdgeKind(TargetN, Edge::Ref); 883 884 #ifndef NDEBUG 885 // Check that the RefSCC is still valid. 886 verify(); 887 #endif 888 } 889 890 void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN, 891 Node &TargetN) { 892 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 893 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC."); 894 895 SourceN->insertEdgeInternal(TargetN, Edge::Ref); 896 897 #ifndef NDEBUG 898 // Check that the RefSCC is still valid. 899 verify(); 900 #endif 901 } 902 903 void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN, 904 Edge::Kind EK) { 905 // First insert it into the caller. 906 SourceN->insertEdgeInternal(TargetN, EK); 907 908 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 909 910 RefSCC &TargetC = *G->lookupRefSCC(TargetN); 911 assert(&TargetC != this && "Target must not be in this RefSCC."); 912 #ifdef EXPENSIVE_CHECKS 913 assert(TargetC.isDescendantOf(*this) && 914 "Target must be a descendant of the Source."); 915 #endif 916 917 // The only change required is to add this SCC to the parent set of the 918 // callee. 919 TargetC.Parents.insert(this); 920 921 #ifndef NDEBUG 922 // Check that the RefSCC is still valid. 923 verify(); 924 #endif 925 } 926 927 SmallVector<LazyCallGraph::RefSCC *, 1> 928 LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) { 929 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC."); 930 RefSCC &SourceC = *G->lookupRefSCC(SourceN); 931 assert(&SourceC != this && "Source must not be in this RefSCC."); 932 #ifdef EXPENSIVE_CHECKS 933 assert(SourceC.isDescendantOf(*this) && 934 "Source must be a descendant of the Target."); 935 #endif 936 937 SmallVector<RefSCC *, 1> DeletedRefSCCs; 938 939 #ifndef NDEBUG 940 // In a debug build, verify the RefSCC is valid to start with and when this 941 // routine finishes. 942 verify(); 943 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 944 #endif 945 946 int SourceIdx = G->RefSCCIndices[&SourceC]; 947 int TargetIdx = G->RefSCCIndices[this]; 948 assert(SourceIdx < TargetIdx && 949 "Postorder list doesn't see edge as incoming!"); 950 951 // Compute the RefSCCs which (transitively) reach the source. We do this by 952 // working backwards from the source using the parent set in each RefSCC, 953 // skipping any RefSCCs that don't fall in the postorder range. This has the 954 // advantage of walking the sparser parent edge (in high fan-out graphs) but 955 // more importantly this removes examining all forward edges in all RefSCCs 956 // within the postorder range which aren't in fact connected. Only connected 957 // RefSCCs (and their edges) are visited here. 958 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) { 959 Set.insert(&SourceC); 960 SmallVector<RefSCC *, 4> Worklist; 961 Worklist.push_back(&SourceC); 962 do { 963 RefSCC &RC = *Worklist.pop_back_val(); 964 for (RefSCC &ParentRC : RC.parents()) { 965 // Skip any RefSCCs outside the range of source to target in the 966 // postorder sequence. 967 int ParentIdx = G->getRefSCCIndex(ParentRC); 968 assert(ParentIdx > SourceIdx && "Parent cannot precede source in postorder!"); 969 if (ParentIdx > TargetIdx) 970 continue; 971 if (Set.insert(&ParentRC).second) 972 // First edge connecting to this parent, add it to our worklist. 973 Worklist.push_back(&ParentRC); 974 } 975 } while (!Worklist.empty()); 976 }; 977 978 // Use a normal worklist to find which SCCs the target connects to. We still 979 // bound the search based on the range in the postorder list we care about, 980 // but because this is forward connectivity we just "recurse" through the 981 // edges. 982 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) { 983 Set.insert(this); 984 SmallVector<RefSCC *, 4> Worklist; 985 Worklist.push_back(this); 986 do { 987 RefSCC &RC = *Worklist.pop_back_val(); 988 for (SCC &C : RC) 989 for (Node &N : C) 990 for (Edge &E : *N) { 991 RefSCC &EdgeRC = *G->lookupRefSCC(E.getNode()); 992 if (G->getRefSCCIndex(EdgeRC) <= SourceIdx) 993 // Not in the postorder sequence between source and target. 994 continue; 995 996 if (Set.insert(&EdgeRC).second) 997 Worklist.push_back(&EdgeRC); 998 } 999 } while (!Worklist.empty()); 1000 }; 1001 1002 // Use a generic helper to update the postorder sequence of RefSCCs and return 1003 // a range of any RefSCCs connected into a cycle by inserting this edge. This 1004 // routine will also take care of updating the indices into the postorder 1005 // sequence. 1006 iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange = 1007 updatePostorderSequenceForEdgeInsertion( 1008 SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices, 1009 ComputeSourceConnectedSet, ComputeTargetConnectedSet); 1010 1011 // Build a set so we can do fast tests for whether a RefSCC will end up as 1012 // part of the merged RefSCC. 1013 SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end()); 1014 1015 // This RefSCC will always be part of that set, so just insert it here. 1016 MergeSet.insert(this); 1017 1018 // Now that we have identified all of the SCCs which need to be merged into 1019 // a connected set with the inserted edge, merge all of them into this SCC. 1020 SmallVector<SCC *, 16> MergedSCCs; 1021 int SCCIndex = 0; 1022 for (RefSCC *RC : MergeRange) { 1023 assert(RC != this && "We're merging into the target RefSCC, so it " 1024 "shouldn't be in the range."); 1025 1026 // Merge the parents which aren't part of the merge into the our parents. 1027 for (RefSCC *ParentRC : RC->Parents) 1028 if (!MergeSet.count(ParentRC)) 1029 Parents.insert(ParentRC); 1030 RC->Parents.clear(); 1031 1032 // Walk the inner SCCs to update their up-pointer and walk all the edges to 1033 // update any parent sets. 1034 // FIXME: We should try to find a way to avoid this (rather expensive) edge 1035 // walk by updating the parent sets in some other manner. 1036 for (SCC &InnerC : *RC) { 1037 InnerC.OuterRefSCC = this; 1038 SCCIndices[&InnerC] = SCCIndex++; 1039 for (Node &N : InnerC) { 1040 G->SCCMap[&N] = &InnerC; 1041 for (Edge &E : *N) { 1042 RefSCC &ChildRC = *G->lookupRefSCC(E.getNode()); 1043 if (MergeSet.count(&ChildRC)) 1044 continue; 1045 ChildRC.Parents.erase(RC); 1046 ChildRC.Parents.insert(this); 1047 } 1048 } 1049 } 1050 1051 // Now merge in the SCCs. We can actually move here so try to reuse storage 1052 // the first time through. 1053 if (MergedSCCs.empty()) 1054 MergedSCCs = std::move(RC->SCCs); 1055 else 1056 MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end()); 1057 RC->SCCs.clear(); 1058 DeletedRefSCCs.push_back(RC); 1059 } 1060 1061 // Append our original SCCs to the merged list and move it into place. 1062 for (SCC &InnerC : *this) 1063 SCCIndices[&InnerC] = SCCIndex++; 1064 MergedSCCs.append(SCCs.begin(), SCCs.end()); 1065 SCCs = std::move(MergedSCCs); 1066 1067 // Remove the merged away RefSCCs from the post order sequence. 1068 for (RefSCC *RC : MergeRange) 1069 G->RefSCCIndices.erase(RC); 1070 int IndexOffset = MergeRange.end() - MergeRange.begin(); 1071 auto EraseEnd = 1072 G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end()); 1073 for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end())) 1074 G->RefSCCIndices[RC] -= IndexOffset; 1075 1076 // At this point we have a merged RefSCC with a post-order SCCs list, just 1077 // connect the nodes to form the new edge. 1078 SourceN->insertEdgeInternal(TargetN, Edge::Ref); 1079 1080 // We return the list of SCCs which were merged so that callers can 1081 // invalidate any data they have associated with those SCCs. Note that these 1082 // SCCs are no longer in an interesting state (they are totally empty) but 1083 // the pointers will remain stable for the life of the graph itself. 1084 return DeletedRefSCCs; 1085 } 1086 1087 void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) { 1088 assert(G->lookupRefSCC(SourceN) == this && 1089 "The source must be a member of this RefSCC."); 1090 1091 RefSCC &TargetRC = *G->lookupRefSCC(TargetN); 1092 assert(&TargetRC != this && "The target must not be a member of this RefSCC"); 1093 1094 assert(!is_contained(G->LeafRefSCCs, this) && 1095 "Cannot have a leaf RefSCC source."); 1096 1097 #ifndef NDEBUG 1098 // In a debug build, verify the RefSCC is valid to start with and when this 1099 // routine finishes. 1100 verify(); 1101 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 1102 #endif 1103 1104 // First remove it from the node. 1105 bool Removed = SourceN->removeEdgeInternal(TargetN); 1106 (void)Removed; 1107 assert(Removed && "Target not in the edge set for this caller?"); 1108 1109 bool HasOtherEdgeToChildRC = false; 1110 bool HasOtherChildRC = false; 1111 for (SCC *InnerC : SCCs) { 1112 for (Node &N : *InnerC) { 1113 for (Edge &E : *N) { 1114 RefSCC &OtherChildRC = *G->lookupRefSCC(E.getNode()); 1115 if (&OtherChildRC == &TargetRC) { 1116 HasOtherEdgeToChildRC = true; 1117 break; 1118 } 1119 if (&OtherChildRC != this) 1120 HasOtherChildRC = true; 1121 } 1122 if (HasOtherEdgeToChildRC) 1123 break; 1124 } 1125 if (HasOtherEdgeToChildRC) 1126 break; 1127 } 1128 // Because the SCCs form a DAG, deleting such an edge cannot change the set 1129 // of SCCs in the graph. However, it may cut an edge of the SCC DAG, making 1130 // the source SCC no longer connected to the target SCC. If so, we need to 1131 // update the target SCC's map of its parents. 1132 if (!HasOtherEdgeToChildRC) { 1133 bool Removed = TargetRC.Parents.erase(this); 1134 (void)Removed; 1135 assert(Removed && 1136 "Did not find the source SCC in the target SCC's parent list!"); 1137 1138 // It may orphan an SCC if it is the last edge reaching it, but that does 1139 // not violate any invariants of the graph. 1140 if (TargetRC.Parents.empty()) 1141 DEBUG(dbgs() << "LCG: Update removing " << SourceN.getFunction().getName() 1142 << " -> " << TargetN.getFunction().getName() 1143 << " edge orphaned the callee's SCC!\n"); 1144 1145 // It may make the Source SCC a leaf SCC. 1146 if (!HasOtherChildRC) 1147 G->LeafRefSCCs.push_back(this); 1148 } 1149 } 1150 1151 SmallVector<LazyCallGraph::RefSCC *, 1> 1152 LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN, Node &TargetN) { 1153 assert(!(*SourceN)[TargetN].isCall() && 1154 "Cannot remove a call edge, it must first be made a ref edge"); 1155 1156 #ifndef NDEBUG 1157 // In a debug build, verify the RefSCC is valid to start with and when this 1158 // routine finishes. 1159 verify(); 1160 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 1161 #endif 1162 1163 // First remove the actual edge. 1164 bool Removed = SourceN->removeEdgeInternal(TargetN); 1165 (void)Removed; 1166 assert(Removed && "Target not in the edge set for this caller?"); 1167 1168 // We return a list of the resulting *new* RefSCCs in post-order. 1169 SmallVector<RefSCC *, 1> Result; 1170 1171 // Direct recursion doesn't impact the SCC graph at all. 1172 if (&SourceN == &TargetN) 1173 return Result; 1174 1175 // If this ref edge is within an SCC then there are sufficient other edges to 1176 // form a cycle without this edge so removing it is a no-op. 1177 SCC &SourceC = *G->lookupSCC(SourceN); 1178 SCC &TargetC = *G->lookupSCC(TargetN); 1179 if (&SourceC == &TargetC) 1180 return Result; 1181 1182 // We build somewhat synthetic new RefSCCs by providing a postorder mapping 1183 // for each inner SCC. We also store these associated with *nodes* rather 1184 // than SCCs because this saves a round-trip through the node->SCC map and in 1185 // the common case, SCCs are small. We will verify that we always give the 1186 // same number to every node in the SCC such that these are equivalent. 1187 const int RootPostOrderNumber = 0; 1188 int PostOrderNumber = RootPostOrderNumber + 1; 1189 SmallDenseMap<Node *, int> PostOrderMapping; 1190 1191 // Every node in the target SCC can already reach every node in this RefSCC 1192 // (by definition). It is the only node we know will stay inside this RefSCC. 1193 // Everything which transitively reaches Target will also remain in the 1194 // RefSCC. We handle this by pre-marking that the nodes in the target SCC map 1195 // back to the root post order number. 1196 // 1197 // This also enables us to take a very significant short-cut in the standard 1198 // Tarjan walk to re-form RefSCCs below: whenever we build an edge that 1199 // references the target node, we know that the target node eventually 1200 // references all other nodes in our walk. As a consequence, we can detect 1201 // and handle participants in that cycle without walking all the edges that 1202 // form the connections, and instead by relying on the fundamental guarantee 1203 // coming into this operation. 1204 for (Node &N : TargetC) 1205 PostOrderMapping[&N] = RootPostOrderNumber; 1206 1207 // Reset all the other nodes to prepare for a DFS over them, and add them to 1208 // our worklist. 1209 SmallVector<Node *, 8> Worklist; 1210 for (SCC *C : SCCs) { 1211 if (C == &TargetC) 1212 continue; 1213 1214 for (Node &N : *C) 1215 N.DFSNumber = N.LowLink = 0; 1216 1217 Worklist.append(C->Nodes.begin(), C->Nodes.end()); 1218 } 1219 1220 auto MarkNodeForSCCNumber = [&PostOrderMapping](Node &N, int Number) { 1221 N.DFSNumber = N.LowLink = -1; 1222 PostOrderMapping[&N] = Number; 1223 }; 1224 1225 SmallVector<std::pair<Node *, EdgeSequence::iterator>, 4> DFSStack; 1226 SmallVector<Node *, 4> PendingRefSCCStack; 1227 do { 1228 assert(DFSStack.empty() && 1229 "Cannot begin a new root with a non-empty DFS stack!"); 1230 assert(PendingRefSCCStack.empty() && 1231 "Cannot begin a new root with pending nodes for an SCC!"); 1232 1233 Node *RootN = Worklist.pop_back_val(); 1234 // Skip any nodes we've already reached in the DFS. 1235 if (RootN->DFSNumber != 0) { 1236 assert(RootN->DFSNumber == -1 && 1237 "Shouldn't have any mid-DFS root nodes!"); 1238 continue; 1239 } 1240 1241 RootN->DFSNumber = RootN->LowLink = 1; 1242 int NextDFSNumber = 2; 1243 1244 DFSStack.push_back({RootN, (*RootN)->begin()}); 1245 do { 1246 Node *N; 1247 EdgeSequence::iterator I; 1248 std::tie(N, I) = DFSStack.pop_back_val(); 1249 auto E = (*N)->end(); 1250 1251 assert(N->DFSNumber != 0 && "We should always assign a DFS number " 1252 "before processing a node."); 1253 1254 while (I != E) { 1255 Node &ChildN = I->getNode(); 1256 if (ChildN.DFSNumber == 0) { 1257 // Mark that we should start at this child when next this node is the 1258 // top of the stack. We don't start at the next child to ensure this 1259 // child's lowlink is reflected. 1260 DFSStack.push_back({N, I}); 1261 1262 // Continue, resetting to the child node. 1263 ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++; 1264 N = &ChildN; 1265 I = ChildN->begin(); 1266 E = ChildN->end(); 1267 continue; 1268 } 1269 if (ChildN.DFSNumber == -1) { 1270 // Check if this edge's target node connects to the deleted edge's 1271 // target node. If so, we know that every node connected will end up 1272 // in this RefSCC, so collapse the entire current stack into the root 1273 // slot in our SCC numbering. See above for the motivation of 1274 // optimizing the target connected nodes in this way. 1275 auto PostOrderI = PostOrderMapping.find(&ChildN); 1276 if (PostOrderI != PostOrderMapping.end() && 1277 PostOrderI->second == RootPostOrderNumber) { 1278 MarkNodeForSCCNumber(*N, RootPostOrderNumber); 1279 while (!PendingRefSCCStack.empty()) 1280 MarkNodeForSCCNumber(*PendingRefSCCStack.pop_back_val(), 1281 RootPostOrderNumber); 1282 while (!DFSStack.empty()) 1283 MarkNodeForSCCNumber(*DFSStack.pop_back_val().first, 1284 RootPostOrderNumber); 1285 // Ensure we break all the way out of the enclosing loop. 1286 N = nullptr; 1287 break; 1288 } 1289 1290 // If this child isn't currently in this RefSCC, no need to process 1291 // it. However, we do need to remove this RefSCC from its RefSCC's 1292 // parent set. 1293 RefSCC &ChildRC = *G->lookupRefSCC(ChildN); 1294 ChildRC.Parents.erase(this); 1295 ++I; 1296 continue; 1297 } 1298 1299 // Track the lowest link of the children, if any are still in the stack. 1300 // Any child not on the stack will have a LowLink of -1. 1301 assert(ChildN.LowLink != 0 && 1302 "Low-link must not be zero with a non-zero DFS number."); 1303 if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink) 1304 N->LowLink = ChildN.LowLink; 1305 ++I; 1306 } 1307 if (!N) 1308 // We short-circuited this node. 1309 break; 1310 1311 // We've finished processing N and its descendents, put it on our pending 1312 // stack to eventually get merged into a RefSCC. 1313 PendingRefSCCStack.push_back(N); 1314 1315 // If this node is linked to some lower entry, continue walking up the 1316 // stack. 1317 if (N->LowLink != N->DFSNumber) { 1318 assert(!DFSStack.empty() && 1319 "We never found a viable root for a RefSCC to pop off!"); 1320 continue; 1321 } 1322 1323 // Otherwise, form a new RefSCC from the top of the pending node stack. 1324 int RootDFSNumber = N->DFSNumber; 1325 // Find the range of the node stack by walking down until we pass the 1326 // root DFS number. 1327 auto RefSCCNodes = make_range( 1328 PendingRefSCCStack.rbegin(), 1329 find_if(reverse(PendingRefSCCStack), [RootDFSNumber](const Node *N) { 1330 return N->DFSNumber < RootDFSNumber; 1331 })); 1332 1333 // Mark the postorder number for these nodes and clear them off the 1334 // stack. We'll use the postorder number to pull them into RefSCCs at the 1335 // end. FIXME: Fuse with the loop above. 1336 int RefSCCNumber = PostOrderNumber++; 1337 for (Node *N : RefSCCNodes) 1338 MarkNodeForSCCNumber(*N, RefSCCNumber); 1339 1340 PendingRefSCCStack.erase(RefSCCNodes.end().base(), 1341 PendingRefSCCStack.end()); 1342 } while (!DFSStack.empty()); 1343 1344 assert(DFSStack.empty() && "Didn't flush the entire DFS stack!"); 1345 assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!"); 1346 } while (!Worklist.empty()); 1347 1348 // We now have a post-order numbering for RefSCCs and a mapping from each 1349 // node in this RefSCC to its final RefSCC. We create each new RefSCC node 1350 // (re-using this RefSCC node for the root) and build a radix-sort style map 1351 // from postorder number to the RefSCC. We then append SCCs to each of these 1352 // RefSCCs in the order they occured in the original SCCs container. 1353 for (int i = 1; i < PostOrderNumber; ++i) 1354 Result.push_back(G->createRefSCC(*G)); 1355 1356 // Insert the resulting postorder sequence into the global graph postorder 1357 // sequence before the current RefSCC in that sequence. The idea being that 1358 // this RefSCC is the target of the reference edge removed, and thus has 1359 // a direct or indirect edge to every other RefSCC formed and so must be at 1360 // the end of any postorder traversal. 1361 // 1362 // FIXME: It'd be nice to change the APIs so that we returned an iterator 1363 // range over the global postorder sequence and generally use that sequence 1364 // rather than building a separate result vector here. 1365 if (!Result.empty()) { 1366 int Idx = G->getRefSCCIndex(*this); 1367 G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx, 1368 Result.begin(), Result.end()); 1369 for (int i : seq<int>(Idx, G->PostOrderRefSCCs.size())) 1370 G->RefSCCIndices[G->PostOrderRefSCCs[i]] = i; 1371 assert(G->PostOrderRefSCCs[G->getRefSCCIndex(*this)] == this && 1372 "Failed to update this RefSCC's index after insertion!"); 1373 } 1374 1375 for (SCC *C : SCCs) { 1376 auto PostOrderI = PostOrderMapping.find(&*C->begin()); 1377 assert(PostOrderI != PostOrderMapping.end() && 1378 "Cannot have missing mappings for nodes!"); 1379 int SCCNumber = PostOrderI->second; 1380 #ifndef NDEBUG 1381 for (Node &N : *C) 1382 assert(PostOrderMapping.find(&N)->second == SCCNumber && 1383 "Cannot have different numbers for nodes in the same SCC!"); 1384 #endif 1385 if (SCCNumber == 0) 1386 // The root node is handled separately by removing the SCCs. 1387 continue; 1388 1389 RefSCC &RC = *Result[SCCNumber - 1]; 1390 int SCCIndex = RC.SCCs.size(); 1391 RC.SCCs.push_back(C); 1392 RC.SCCIndices[C] = SCCIndex; 1393 C->OuterRefSCC = &RC; 1394 } 1395 1396 // FIXME: We re-walk the edges in each RefSCC to establish whether it is 1397 // a leaf and connect it to the rest of the graph's parents lists. This is 1398 // really wasteful. We should instead do this during the DFS to avoid yet 1399 // another edge walk. 1400 for (RefSCC *RC : Result) 1401 G->connectRefSCC(*RC); 1402 1403 // Now erase all but the root's SCCs. 1404 SCCs.erase(remove_if(SCCs, 1405 [&](SCC *C) { 1406 return PostOrderMapping.lookup(&*C->begin()) != 1407 RootPostOrderNumber; 1408 }), 1409 SCCs.end()); 1410 SCCIndices.clear(); 1411 for (int i = 0, Size = SCCs.size(); i < Size; ++i) 1412 SCCIndices[SCCs[i]] = i; 1413 1414 #ifndef NDEBUG 1415 // Now we need to reconnect the current (root) SCC to the graph. We do this 1416 // manually because we can special case our leaf handling and detect errors. 1417 bool IsLeaf = true; 1418 #endif 1419 for (SCC *C : SCCs) 1420 for (Node &N : *C) { 1421 for (Edge &E : *N) { 1422 RefSCC &ChildRC = *G->lookupRefSCC(E.getNode()); 1423 if (&ChildRC == this) 1424 continue; 1425 ChildRC.Parents.insert(this); 1426 #ifndef NDEBUG 1427 IsLeaf = false; 1428 #endif 1429 } 1430 } 1431 #ifndef NDEBUG 1432 if (!Result.empty()) 1433 assert(!IsLeaf && "This SCC cannot be a leaf as we have split out new " 1434 "SCCs by removing this edge."); 1435 if (none_of(G->LeafRefSCCs, [&](RefSCC *C) { return C == this; })) 1436 assert(!IsLeaf && "This SCC cannot be a leaf as it already had child " 1437 "SCCs before we removed this edge."); 1438 #endif 1439 // And connect both this RefSCC and all the new ones to the correct parents. 1440 // The easiest way to do this is just to re-analyze the old parent set. 1441 SmallVector<RefSCC *, 4> OldParents(Parents.begin(), Parents.end()); 1442 Parents.clear(); 1443 for (RefSCC *ParentRC : OldParents) 1444 for (SCC &ParentC : *ParentRC) 1445 for (Node &ParentN : ParentC) 1446 for (Edge &E : *ParentN) { 1447 RefSCC &RC = *G->lookupRefSCC(E.getNode()); 1448 if (&RC != ParentRC) 1449 RC.Parents.insert(ParentRC); 1450 } 1451 1452 // If this SCC stopped being a leaf through this edge removal, remove it from 1453 // the leaf SCC list. Note that this DTRT in the case where this was never 1454 // a leaf. 1455 // FIXME: As LeafRefSCCs could be very large, we might want to not walk the 1456 // entire list if this RefSCC wasn't a leaf before the edge removal. 1457 if (!Result.empty()) 1458 G->LeafRefSCCs.erase( 1459 std::remove(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(), this), 1460 G->LeafRefSCCs.end()); 1461 1462 #ifndef NDEBUG 1463 // Verify all of the new RefSCCs. 1464 for (RefSCC *RC : Result) 1465 RC->verify(); 1466 #endif 1467 1468 // Return the new list of SCCs. 1469 return Result; 1470 } 1471 1472 void LazyCallGraph::RefSCC::handleTrivialEdgeInsertion(Node &SourceN, 1473 Node &TargetN) { 1474 // The only trivial case that requires any graph updates is when we add new 1475 // ref edge and may connect different RefSCCs along that path. This is only 1476 // because of the parents set. Every other part of the graph remains constant 1477 // after this edge insertion. 1478 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 1479 RefSCC &TargetRC = *G->lookupRefSCC(TargetN); 1480 if (&TargetRC == this) { 1481 1482 return; 1483 } 1484 1485 #ifdef EXPENSIVE_CHECKS 1486 assert(TargetRC.isDescendantOf(*this) && 1487 "Target must be a descendant of the Source."); 1488 #endif 1489 // The only change required is to add this RefSCC to the parent set of the 1490 // target. This is a set and so idempotent if the edge already existed. 1491 TargetRC.Parents.insert(this); 1492 } 1493 1494 void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN, 1495 Node &TargetN) { 1496 #ifndef NDEBUG 1497 // Check that the RefSCC is still valid when we finish. 1498 auto ExitVerifier = make_scope_exit([this] { verify(); }); 1499 1500 #ifdef EXPENSIVE_CHECKS 1501 // Check that we aren't breaking some invariants of the SCC graph. Note that 1502 // this is quadratic in the number of edges in the call graph! 1503 SCC &SourceC = *G->lookupSCC(SourceN); 1504 SCC &TargetC = *G->lookupSCC(TargetN); 1505 if (&SourceC != &TargetC) 1506 assert(SourceC.isAncestorOf(TargetC) && 1507 "Call edge is not trivial in the SCC graph!"); 1508 #endif // EXPENSIVE_CHECKS 1509 #endif // NDEBUG 1510 1511 // First insert it into the source or find the existing edge. 1512 auto InsertResult = 1513 SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()}); 1514 if (!InsertResult.second) { 1515 // Already an edge, just update it. 1516 Edge &E = SourceN->Edges[InsertResult.first->second]; 1517 if (E.isCall()) 1518 return; // Nothing to do! 1519 E.setKind(Edge::Call); 1520 } else { 1521 // Create the new edge. 1522 SourceN->Edges.emplace_back(TargetN, Edge::Call); 1523 } 1524 1525 // Now that we have the edge, handle the graph fallout. 1526 handleTrivialEdgeInsertion(SourceN, TargetN); 1527 } 1528 1529 void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) { 1530 #ifndef NDEBUG 1531 // Check that the RefSCC is still valid when we finish. 1532 auto ExitVerifier = make_scope_exit([this] { verify(); }); 1533 1534 #ifdef EXPENSIVE_CHECKS 1535 // Check that we aren't breaking some invariants of the RefSCC graph. 1536 RefSCC &SourceRC = *G->lookupRefSCC(SourceN); 1537 RefSCC &TargetRC = *G->lookupRefSCC(TargetN); 1538 if (&SourceRC != &TargetRC) 1539 assert(SourceRC.isAncestorOf(TargetRC) && 1540 "Ref edge is not trivial in the RefSCC graph!"); 1541 #endif // EXPENSIVE_CHECKS 1542 #endif // NDEBUG 1543 1544 // First insert it into the source or find the existing edge. 1545 auto InsertResult = 1546 SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()}); 1547 if (!InsertResult.second) 1548 // Already an edge, we're done. 1549 return; 1550 1551 // Create the new edge. 1552 SourceN->Edges.emplace_back(TargetN, Edge::Ref); 1553 1554 // Now that we have the edge, handle the graph fallout. 1555 handleTrivialEdgeInsertion(SourceN, TargetN); 1556 } 1557 1558 void LazyCallGraph::RefSCC::replaceNodeFunction(Node &N, Function &NewF) { 1559 Function &OldF = N.getFunction(); 1560 1561 #ifndef NDEBUG 1562 // Check that the RefSCC is still valid when we finish. 1563 auto ExitVerifier = make_scope_exit([this] { verify(); }); 1564 1565 assert(G->lookupRefSCC(N) == this && 1566 "Cannot replace the function of a node outside this RefSCC."); 1567 1568 assert(G->NodeMap.find(&NewF) == G->NodeMap.end() && 1569 "Must not have already walked the new function!'"); 1570 1571 // It is important that this replacement not introduce graph changes so we 1572 // insist that the caller has already removed every use of the original 1573 // function and that all uses of the new function correspond to existing 1574 // edges in the graph. The common and expected way to use this is when 1575 // replacing the function itself in the IR without changing the call graph 1576 // shape and just updating the analysis based on that. 1577 assert(&OldF != &NewF && "Cannot replace a function with itself!"); 1578 assert(OldF.use_empty() && 1579 "Must have moved all uses from the old function to the new!"); 1580 #endif 1581 1582 N.replaceFunction(NewF); 1583 1584 // Update various call graph maps. 1585 G->NodeMap.erase(&OldF); 1586 G->NodeMap[&NewF] = &N; 1587 } 1588 1589 void LazyCallGraph::insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK) { 1590 assert(SCCMap.empty() && 1591 "This method cannot be called after SCCs have been formed!"); 1592 1593 return SourceN->insertEdgeInternal(TargetN, EK); 1594 } 1595 1596 void LazyCallGraph::removeEdge(Node &SourceN, Node &TargetN) { 1597 assert(SCCMap.empty() && 1598 "This method cannot be called after SCCs have been formed!"); 1599 1600 bool Removed = SourceN->removeEdgeInternal(TargetN); 1601 (void)Removed; 1602 assert(Removed && "Target not in the edge set for this caller?"); 1603 } 1604 1605 void LazyCallGraph::removeDeadFunction(Function &F) { 1606 // FIXME: This is unnecessarily restrictive. We should be able to remove 1607 // functions which recursively call themselves. 1608 assert(F.use_empty() && 1609 "This routine should only be called on trivially dead functions!"); 1610 1611 // We shouldn't remove library functions as they are never really dead while 1612 // the call graph is in use -- every function definition refers to them. 1613 assert(!isLibFunction(F) && 1614 "Must not remove lib functions from the call graph!"); 1615 1616 auto NI = NodeMap.find(&F); 1617 if (NI == NodeMap.end()) 1618 // Not in the graph at all! 1619 return; 1620 1621 Node &N = *NI->second; 1622 NodeMap.erase(NI); 1623 1624 // Remove this from the entry edges if present. 1625 EntryEdges.removeEdgeInternal(N); 1626 1627 if (SCCMap.empty()) { 1628 // No SCCs have been formed, so removing this is fine and there is nothing 1629 // else necessary at this point but clearing out the node. 1630 N.clear(); 1631 return; 1632 } 1633 1634 // Cannot remove a function which has yet to be visited in the DFS walk, so 1635 // if we have a node at all then we must have an SCC and RefSCC. 1636 auto CI = SCCMap.find(&N); 1637 assert(CI != SCCMap.end() && 1638 "Tried to remove a node without an SCC after DFS walk started!"); 1639 SCC &C = *CI->second; 1640 SCCMap.erase(CI); 1641 RefSCC &RC = C.getOuterRefSCC(); 1642 1643 // This node must be the only member of its SCC as it has no callers, and 1644 // that SCC must be the only member of a RefSCC as it has no references. 1645 // Validate these properties first. 1646 assert(C.size() == 1 && "Dead functions must be in a singular SCC"); 1647 assert(RC.size() == 1 && "Dead functions must be in a singular RefSCC"); 1648 1649 // Clean up any remaining reference edges. Note that we walk an unordered set 1650 // here but are just removing and so the order doesn't matter. 1651 for (RefSCC &ParentRC : RC.parents()) 1652 for (SCC &ParentC : ParentRC) 1653 for (Node &ParentN : ParentC) 1654 if (ParentN) 1655 ParentN->removeEdgeInternal(N); 1656 1657 // Now remove this RefSCC from any parents sets and the leaf list. 1658 for (Edge &E : *N) 1659 if (RefSCC *TargetRC = lookupRefSCC(E.getNode())) 1660 TargetRC->Parents.erase(&RC); 1661 // FIXME: This is a linear operation which could become hot and benefit from 1662 // an index map. 1663 auto LRI = find(LeafRefSCCs, &RC); 1664 if (LRI != LeafRefSCCs.end()) 1665 LeafRefSCCs.erase(LRI); 1666 1667 auto RCIndexI = RefSCCIndices.find(&RC); 1668 int RCIndex = RCIndexI->second; 1669 PostOrderRefSCCs.erase(PostOrderRefSCCs.begin() + RCIndex); 1670 RefSCCIndices.erase(RCIndexI); 1671 for (int i = RCIndex, Size = PostOrderRefSCCs.size(); i < Size; ++i) 1672 RefSCCIndices[PostOrderRefSCCs[i]] = i; 1673 1674 // Finally clear out all the data structures from the node down through the 1675 // components. 1676 N.clear(); 1677 C.clear(); 1678 RC.clear(); 1679 1680 // Nothing to delete as all the objects are allocated in stable bump pointer 1681 // allocators. 1682 } 1683 1684 LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) { 1685 return *new (MappedN = BPA.Allocate()) Node(*this, F); 1686 } 1687 1688 void LazyCallGraph::updateGraphPtrs() { 1689 // Process all nodes updating the graph pointers. 1690 { 1691 SmallVector<Node *, 16> Worklist; 1692 for (Edge &E : EntryEdges) 1693 Worklist.push_back(&E.getNode()); 1694 1695 while (!Worklist.empty()) { 1696 Node &N = *Worklist.pop_back_val(); 1697 N.G = this; 1698 if (N) 1699 for (Edge &E : *N) 1700 Worklist.push_back(&E.getNode()); 1701 } 1702 } 1703 1704 // Process all SCCs updating the graph pointers. 1705 { 1706 SmallVector<RefSCC *, 16> Worklist(LeafRefSCCs.begin(), LeafRefSCCs.end()); 1707 1708 while (!Worklist.empty()) { 1709 RefSCC &C = *Worklist.pop_back_val(); 1710 C.G = this; 1711 for (RefSCC &ParentC : C.parents()) 1712 Worklist.push_back(&ParentC); 1713 } 1714 } 1715 } 1716 1717 template <typename RootsT, typename GetBeginT, typename GetEndT, 1718 typename GetNodeT, typename FormSCCCallbackT> 1719 void LazyCallGraph::buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin, 1720 GetEndT &&GetEnd, GetNodeT &&GetNode, 1721 FormSCCCallbackT &&FormSCC) { 1722 typedef decltype(GetBegin(std::declval<Node &>())) EdgeItT; 1723 1724 SmallVector<std::pair<Node *, EdgeItT>, 16> DFSStack; 1725 SmallVector<Node *, 16> PendingSCCStack; 1726 1727 // Scan down the stack and DFS across the call edges. 1728 for (Node *RootN : Roots) { 1729 assert(DFSStack.empty() && 1730 "Cannot begin a new root with a non-empty DFS stack!"); 1731 assert(PendingSCCStack.empty() && 1732 "Cannot begin a new root with pending nodes for an SCC!"); 1733 1734 // Skip any nodes we've already reached in the DFS. 1735 if (RootN->DFSNumber != 0) { 1736 assert(RootN->DFSNumber == -1 && 1737 "Shouldn't have any mid-DFS root nodes!"); 1738 continue; 1739 } 1740 1741 RootN->DFSNumber = RootN->LowLink = 1; 1742 int NextDFSNumber = 2; 1743 1744 DFSStack.push_back({RootN, GetBegin(*RootN)}); 1745 do { 1746 Node *N; 1747 EdgeItT I; 1748 std::tie(N, I) = DFSStack.pop_back_val(); 1749 auto E = GetEnd(*N); 1750 while (I != E) { 1751 Node &ChildN = GetNode(I); 1752 if (ChildN.DFSNumber == 0) { 1753 // We haven't yet visited this child, so descend, pushing the current 1754 // node onto the stack. 1755 DFSStack.push_back({N, I}); 1756 1757 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++; 1758 N = &ChildN; 1759 I = GetBegin(*N); 1760 E = GetEnd(*N); 1761 continue; 1762 } 1763 1764 // If the child has already been added to some child component, it 1765 // couldn't impact the low-link of this parent because it isn't 1766 // connected, and thus its low-link isn't relevant so skip it. 1767 if (ChildN.DFSNumber == -1) { 1768 ++I; 1769 continue; 1770 } 1771 1772 // Track the lowest linked child as the lowest link for this node. 1773 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); 1774 if (ChildN.LowLink < N->LowLink) 1775 N->LowLink = ChildN.LowLink; 1776 1777 // Move to the next edge. 1778 ++I; 1779 } 1780 1781 // We've finished processing N and its descendents, put it on our pending 1782 // SCC stack to eventually get merged into an SCC of nodes. 1783 PendingSCCStack.push_back(N); 1784 1785 // If this node is linked to some lower entry, continue walking up the 1786 // stack. 1787 if (N->LowLink != N->DFSNumber) 1788 continue; 1789 1790 // Otherwise, we've completed an SCC. Append it to our post order list of 1791 // SCCs. 1792 int RootDFSNumber = N->DFSNumber; 1793 // Find the range of the node stack by walking down until we pass the 1794 // root DFS number. 1795 auto SCCNodes = make_range( 1796 PendingSCCStack.rbegin(), 1797 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) { 1798 return N->DFSNumber < RootDFSNumber; 1799 })); 1800 // Form a new SCC out of these nodes and then clear them off our pending 1801 // stack. 1802 FormSCC(SCCNodes); 1803 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end()); 1804 } while (!DFSStack.empty()); 1805 } 1806 } 1807 1808 /// Build the internal SCCs for a RefSCC from a sequence of nodes. 1809 /// 1810 /// Appends the SCCs to the provided vector and updates the map with their 1811 /// indices. Both the vector and map must be empty when passed into this 1812 /// routine. 1813 void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) { 1814 assert(RC.SCCs.empty() && "Already built SCCs!"); 1815 assert(RC.SCCIndices.empty() && "Already mapped SCC indices!"); 1816 1817 for (Node *N : Nodes) { 1818 assert(N->LowLink >= (*Nodes.begin())->LowLink && 1819 "We cannot have a low link in an SCC lower than its root on the " 1820 "stack!"); 1821 1822 // This node will go into the next RefSCC, clear out its DFS and low link 1823 // as we scan. 1824 N->DFSNumber = N->LowLink = 0; 1825 } 1826 1827 // Each RefSCC contains a DAG of the call SCCs. To build these, we do 1828 // a direct walk of the call edges using Tarjan's algorithm. We reuse the 1829 // internal storage as we won't need it for the outer graph's DFS any longer. 1830 buildGenericSCCs( 1831 Nodes, [](Node &N) { return N->call_begin(); }, 1832 [](Node &N) { return N->call_end(); }, 1833 [](EdgeSequence::call_iterator I) -> Node & { return I->getNode(); }, 1834 [this, &RC](node_stack_range Nodes) { 1835 RC.SCCs.push_back(createSCC(RC, Nodes)); 1836 for (Node &N : *RC.SCCs.back()) { 1837 N.DFSNumber = N.LowLink = -1; 1838 SCCMap[&N] = RC.SCCs.back(); 1839 } 1840 }); 1841 1842 // Wire up the SCC indices. 1843 for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i) 1844 RC.SCCIndices[RC.SCCs[i]] = i; 1845 } 1846 1847 void LazyCallGraph::buildRefSCCs() { 1848 if (EntryEdges.empty() || !PostOrderRefSCCs.empty()) 1849 // RefSCCs are either non-existent or already built! 1850 return; 1851 1852 assert(RefSCCIndices.empty() && "Already mapped RefSCC indices!"); 1853 1854 SmallVector<Node *, 16> Roots; 1855 for (Edge &E : *this) 1856 Roots.push_back(&E.getNode()); 1857 1858 // The roots will be popped of a stack, so use reverse to get a less 1859 // surprising order. This doesn't change any of the semantics anywhere. 1860 std::reverse(Roots.begin(), Roots.end()); 1861 1862 buildGenericSCCs( 1863 Roots, 1864 [](Node &N) { 1865 // We need to populate each node as we begin to walk its edges. 1866 N.populate(); 1867 return N->begin(); 1868 }, 1869 [](Node &N) { return N->end(); }, 1870 [](EdgeSequence::iterator I) -> Node & { return I->getNode(); }, 1871 [this](node_stack_range Nodes) { 1872 RefSCC *NewRC = createRefSCC(*this); 1873 buildSCCs(*NewRC, Nodes); 1874 connectRefSCC(*NewRC); 1875 1876 // Push the new node into the postorder list and remember its position 1877 // in the index map. 1878 bool Inserted = 1879 RefSCCIndices.insert({NewRC, PostOrderRefSCCs.size()}).second; 1880 (void)Inserted; 1881 assert(Inserted && "Cannot already have this RefSCC in the index map!"); 1882 PostOrderRefSCCs.push_back(NewRC); 1883 #ifndef NDEBUG 1884 NewRC->verify(); 1885 #endif 1886 }); 1887 } 1888 1889 // FIXME: We should move callers of this to embed the parent linking and leaf 1890 // tracking into their DFS in order to remove a full walk of all edges. 1891 void LazyCallGraph::connectRefSCC(RefSCC &RC) { 1892 // Walk all edges in the RefSCC (this remains linear as we only do this once 1893 // when we build the RefSCC) to connect it to the parent sets of its 1894 // children. 1895 bool IsLeaf = true; 1896 for (SCC &C : RC) 1897 for (Node &N : C) 1898 for (Edge &E : *N) { 1899 RefSCC &ChildRC = *lookupRefSCC(E.getNode()); 1900 if (&ChildRC == &RC) 1901 continue; 1902 ChildRC.Parents.insert(&RC); 1903 IsLeaf = false; 1904 } 1905 1906 // For the SCCs where we find no child SCCs, add them to the leaf list. 1907 if (IsLeaf) 1908 LeafRefSCCs.push_back(&RC); 1909 } 1910 1911 AnalysisKey LazyCallGraphAnalysis::Key; 1912 1913 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {} 1914 1915 static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) { 1916 OS << " Edges in function: " << N.getFunction().getName() << "\n"; 1917 for (LazyCallGraph::Edge &E : N.populate()) 1918 OS << " " << (E.isCall() ? "call" : "ref ") << " -> " 1919 << E.getFunction().getName() << "\n"; 1920 1921 OS << "\n"; 1922 } 1923 1924 static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) { 1925 ptrdiff_t Size = std::distance(C.begin(), C.end()); 1926 OS << " SCC with " << Size << " functions:\n"; 1927 1928 for (LazyCallGraph::Node &N : C) 1929 OS << " " << N.getFunction().getName() << "\n"; 1930 } 1931 1932 static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) { 1933 ptrdiff_t Size = std::distance(C.begin(), C.end()); 1934 OS << " RefSCC with " << Size << " call SCCs:\n"; 1935 1936 for (LazyCallGraph::SCC &InnerC : C) 1937 printSCC(OS, InnerC); 1938 1939 OS << "\n"; 1940 } 1941 1942 PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M, 1943 ModuleAnalysisManager &AM) { 1944 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M); 1945 1946 OS << "Printing the call graph for module: " << M.getModuleIdentifier() 1947 << "\n\n"; 1948 1949 for (Function &F : M) 1950 printNode(OS, G.get(F)); 1951 1952 G.buildRefSCCs(); 1953 for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs()) 1954 printRefSCC(OS, C); 1955 1956 return PreservedAnalyses::all(); 1957 } 1958 1959 LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS) 1960 : OS(OS) {} 1961 1962 static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) { 1963 std::string Name = "\"" + DOT::EscapeString(N.getFunction().getName()) + "\""; 1964 1965 for (LazyCallGraph::Edge &E : N.populate()) { 1966 OS << " " << Name << " -> \"" 1967 << DOT::EscapeString(E.getFunction().getName()) << "\""; 1968 if (!E.isCall()) // It is a ref edge. 1969 OS << " [style=dashed,label=\"ref\"]"; 1970 OS << ";\n"; 1971 } 1972 1973 OS << "\n"; 1974 } 1975 1976 PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M, 1977 ModuleAnalysisManager &AM) { 1978 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M); 1979 1980 OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n"; 1981 1982 for (Function &F : M) 1983 printNodeDOT(OS, G.get(F)); 1984 1985 OS << "}\n"; 1986 1987 return PreservedAnalyses::all(); 1988 } 1989