1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/LazyCallGraph.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/ScopeExit.h"
13 #include "llvm/ADT/Sequence.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/Analysis/TargetLibraryInfo.h"
18 #include "llvm/Config/llvm-config.h"
19 #include "llvm/IR/CallSite.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/GlobalVariable.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/PassManager.h"
25 #include "llvm/Support/Casting.h"
26 #include "llvm/Support/Compiler.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/GraphWriter.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <cstddef>
33 #include <iterator>
34 #include <string>
35 #include <tuple>
36 #include <utility>
37 
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "lcg"
41 
42 void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node &TargetN,
43                                                      Edge::Kind EK) {
44   EdgeIndexMap.insert({&TargetN, Edges.size()});
45   Edges.emplace_back(TargetN, EK);
46 }
47 
48 void LazyCallGraph::EdgeSequence::setEdgeKind(Node &TargetN, Edge::Kind EK) {
49   Edges[EdgeIndexMap.find(&TargetN)->second].setKind(EK);
50 }
51 
52 bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node &TargetN) {
53   auto IndexMapI = EdgeIndexMap.find(&TargetN);
54   if (IndexMapI == EdgeIndexMap.end())
55     return false;
56 
57   Edges[IndexMapI->second] = Edge();
58   EdgeIndexMap.erase(IndexMapI);
59   return true;
60 }
61 
62 static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges,
63                     DenseMap<LazyCallGraph::Node *, int> &EdgeIndexMap,
64                     LazyCallGraph::Node &N, LazyCallGraph::Edge::Kind EK) {
65   if (!EdgeIndexMap.insert({&N, Edges.size()}).second)
66     return;
67 
68   LLVM_DEBUG(dbgs() << "    Added callable function: " << N.getName() << "\n");
69   Edges.emplace_back(LazyCallGraph::Edge(N, EK));
70 }
71 
72 LazyCallGraph::EdgeSequence &LazyCallGraph::Node::populateSlow() {
73   assert(!Edges && "Must not have already populated the edges for this node!");
74 
75   LLVM_DEBUG(dbgs() << "  Adding functions called by '" << getName()
76                     << "' to the graph.\n");
77 
78   Edges = EdgeSequence();
79 
80   SmallVector<Constant *, 16> Worklist;
81   SmallPtrSet<Function *, 4> Callees;
82   SmallPtrSet<Constant *, 16> Visited;
83 
84   // Find all the potential call graph edges in this function. We track both
85   // actual call edges and indirect references to functions. The direct calls
86   // are trivially added, but to accumulate the latter we walk the instructions
87   // and add every operand which is a constant to the worklist to process
88   // afterward.
89   //
90   // Note that we consider *any* function with a definition to be a viable
91   // edge. Even if the function's definition is subject to replacement by
92   // some other module (say, a weak definition) there may still be
93   // optimizations which essentially speculate based on the definition and
94   // a way to check that the specific definition is in fact the one being
95   // used. For example, this could be done by moving the weak definition to
96   // a strong (internal) definition and making the weak definition be an
97   // alias. Then a test of the address of the weak function against the new
98   // strong definition's address would be an effective way to determine the
99   // safety of optimizing a direct call edge.
100   for (BasicBlock &BB : *F)
101     for (Instruction &I : BB) {
102       if (auto CS = CallSite(&I))
103         if (Function *Callee = CS.getCalledFunction())
104           if (!Callee->isDeclaration())
105             if (Callees.insert(Callee).second) {
106               Visited.insert(Callee);
107               addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*Callee),
108                       LazyCallGraph::Edge::Call);
109             }
110 
111       for (Value *Op : I.operand_values())
112         if (Constant *C = dyn_cast<Constant>(Op))
113           if (Visited.insert(C).second)
114             Worklist.push_back(C);
115     }
116 
117   // We've collected all the constant (and thus potentially function or
118   // function containing) operands to all of the instructions in the function.
119   // Process them (recursively) collecting every function found.
120   visitReferences(Worklist, Visited, [&](Function &F) {
121     addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(F),
122             LazyCallGraph::Edge::Ref);
123   });
124 
125   // Add implicit reference edges to any defined libcall functions (if we
126   // haven't found an explicit edge).
127   for (auto *F : G->LibFunctions)
128     if (!Visited.count(F))
129       addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*F),
130               LazyCallGraph::Edge::Ref);
131 
132   return *Edges;
133 }
134 
135 void LazyCallGraph::Node::replaceFunction(Function &NewF) {
136   assert(F != &NewF && "Must not replace a function with itself!");
137   F = &NewF;
138 }
139 
140 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
141 LLVM_DUMP_METHOD void LazyCallGraph::Node::dump() const {
142   dbgs() << *this << '\n';
143 }
144 #endif
145 
146 static bool isKnownLibFunction(Function &F, TargetLibraryInfo &TLI) {
147   LibFunc LF;
148 
149   // Either this is a normal library function or a "vectorizable" function.
150   return TLI.getLibFunc(F, LF) || TLI.isFunctionVectorizable(F.getName());
151 }
152 
153 LazyCallGraph::LazyCallGraph(Module &M, TargetLibraryInfo &TLI) {
154   LLVM_DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
155                     << "\n");
156   for (Function &F : M) {
157     if (F.isDeclaration())
158       continue;
159     // If this function is a known lib function to LLVM then we want to
160     // synthesize reference edges to it to model the fact that LLVM can turn
161     // arbitrary code into a library function call.
162     if (isKnownLibFunction(F, TLI))
163       LibFunctions.insert(&F);
164 
165     if (F.hasLocalLinkage())
166       continue;
167 
168     // External linkage defined functions have edges to them from other
169     // modules.
170     LLVM_DEBUG(dbgs() << "  Adding '" << F.getName()
171                       << "' to entry set of the graph.\n");
172     addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), Edge::Ref);
173   }
174 
175   // Now add entry nodes for functions reachable via initializers to globals.
176   SmallVector<Constant *, 16> Worklist;
177   SmallPtrSet<Constant *, 16> Visited;
178   for (GlobalVariable &GV : M.globals())
179     if (GV.hasInitializer())
180       if (Visited.insert(GV.getInitializer()).second)
181         Worklist.push_back(GV.getInitializer());
182 
183   LLVM_DEBUG(
184       dbgs() << "  Adding functions referenced by global initializers to the "
185                 "entry set.\n");
186   visitReferences(Worklist, Visited, [&](Function &F) {
187     addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F),
188             LazyCallGraph::Edge::Ref);
189   });
190 }
191 
192 LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
193     : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
194       EntryEdges(std::move(G.EntryEdges)), SCCBPA(std::move(G.SCCBPA)),
195       SCCMap(std::move(G.SCCMap)),
196       LibFunctions(std::move(G.LibFunctions)) {
197   updateGraphPtrs();
198 }
199 
200 LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
201   BPA = std::move(G.BPA);
202   NodeMap = std::move(G.NodeMap);
203   EntryEdges = std::move(G.EntryEdges);
204   SCCBPA = std::move(G.SCCBPA);
205   SCCMap = std::move(G.SCCMap);
206   LibFunctions = std::move(G.LibFunctions);
207   updateGraphPtrs();
208   return *this;
209 }
210 
211 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
212 LLVM_DUMP_METHOD void LazyCallGraph::SCC::dump() const {
213   dbgs() << *this << '\n';
214 }
215 #endif
216 
217 #ifndef NDEBUG
218 void LazyCallGraph::SCC::verify() {
219   assert(OuterRefSCC && "Can't have a null RefSCC!");
220   assert(!Nodes.empty() && "Can't have an empty SCC!");
221 
222   for (Node *N : Nodes) {
223     assert(N && "Can't have a null node!");
224     assert(OuterRefSCC->G->lookupSCC(*N) == this &&
225            "Node does not map to this SCC!");
226     assert(N->DFSNumber == -1 &&
227            "Must set DFS numbers to -1 when adding a node to an SCC!");
228     assert(N->LowLink == -1 &&
229            "Must set low link to -1 when adding a node to an SCC!");
230     for (Edge &E : **N)
231       assert(E.getNode().isPopulated() && "Can't have an unpopulated node!");
232   }
233 }
234 #endif
235 
236 bool LazyCallGraph::SCC::isParentOf(const SCC &C) const {
237   if (this == &C)
238     return false;
239 
240   for (Node &N : *this)
241     for (Edge &E : N->calls())
242       if (OuterRefSCC->G->lookupSCC(E.getNode()) == &C)
243         return true;
244 
245   // No edges found.
246   return false;
247 }
248 
249 bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const {
250   if (this == &TargetC)
251     return false;
252 
253   LazyCallGraph &G = *OuterRefSCC->G;
254 
255   // Start with this SCC.
256   SmallPtrSet<const SCC *, 16> Visited = {this};
257   SmallVector<const SCC *, 16> Worklist = {this};
258 
259   // Walk down the graph until we run out of edges or find a path to TargetC.
260   do {
261     const SCC &C = *Worklist.pop_back_val();
262     for (Node &N : C)
263       for (Edge &E : N->calls()) {
264         SCC *CalleeC = G.lookupSCC(E.getNode());
265         if (!CalleeC)
266           continue;
267 
268         // If the callee's SCC is the TargetC, we're done.
269         if (CalleeC == &TargetC)
270           return true;
271 
272         // If this is the first time we've reached this SCC, put it on the
273         // worklist to recurse through.
274         if (Visited.insert(CalleeC).second)
275           Worklist.push_back(CalleeC);
276       }
277   } while (!Worklist.empty());
278 
279   // No paths found.
280   return false;
281 }
282 
283 LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {}
284 
285 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
286 LLVM_DUMP_METHOD void LazyCallGraph::RefSCC::dump() const {
287   dbgs() << *this << '\n';
288 }
289 #endif
290 
291 #ifndef NDEBUG
292 void LazyCallGraph::RefSCC::verify() {
293   assert(G && "Can't have a null graph!");
294   assert(!SCCs.empty() && "Can't have an empty SCC!");
295 
296   // Verify basic properties of the SCCs.
297   SmallPtrSet<SCC *, 4> SCCSet;
298   for (SCC *C : SCCs) {
299     assert(C && "Can't have a null SCC!");
300     C->verify();
301     assert(&C->getOuterRefSCC() == this &&
302            "SCC doesn't think it is inside this RefSCC!");
303     bool Inserted = SCCSet.insert(C).second;
304     assert(Inserted && "Found a duplicate SCC!");
305     auto IndexIt = SCCIndices.find(C);
306     assert(IndexIt != SCCIndices.end() &&
307            "Found an SCC that doesn't have an index!");
308   }
309 
310   // Check that our indices map correctly.
311   for (auto &SCCIndexPair : SCCIndices) {
312     SCC *C = SCCIndexPair.first;
313     int i = SCCIndexPair.second;
314     assert(C && "Can't have a null SCC in the indices!");
315     assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!");
316     assert(SCCs[i] == C && "Index doesn't point to SCC!");
317   }
318 
319   // Check that the SCCs are in fact in post-order.
320   for (int i = 0, Size = SCCs.size(); i < Size; ++i) {
321     SCC &SourceSCC = *SCCs[i];
322     for (Node &N : SourceSCC)
323       for (Edge &E : *N) {
324         if (!E.isCall())
325           continue;
326         SCC &TargetSCC = *G->lookupSCC(E.getNode());
327         if (&TargetSCC.getOuterRefSCC() == this) {
328           assert(SCCIndices.find(&TargetSCC)->second <= i &&
329                  "Edge between SCCs violates post-order relationship.");
330           continue;
331         }
332       }
333   }
334 }
335 #endif
336 
337 bool LazyCallGraph::RefSCC::isParentOf(const RefSCC &RC) const {
338   if (&RC == this)
339     return false;
340 
341   // Search all edges to see if this is a parent.
342   for (SCC &C : *this)
343     for (Node &N : C)
344       for (Edge &E : *N)
345         if (G->lookupRefSCC(E.getNode()) == &RC)
346           return true;
347 
348   return false;
349 }
350 
351 bool LazyCallGraph::RefSCC::isAncestorOf(const RefSCC &RC) const {
352   if (&RC == this)
353     return false;
354 
355   // For each descendant of this RefSCC, see if one of its children is the
356   // argument. If not, add that descendant to the worklist and continue
357   // searching.
358   SmallVector<const RefSCC *, 4> Worklist;
359   SmallPtrSet<const RefSCC *, 4> Visited;
360   Worklist.push_back(this);
361   Visited.insert(this);
362   do {
363     const RefSCC &DescendantRC = *Worklist.pop_back_val();
364     for (SCC &C : DescendantRC)
365       for (Node &N : C)
366         for (Edge &E : *N) {
367           auto *ChildRC = G->lookupRefSCC(E.getNode());
368           if (ChildRC == &RC)
369             return true;
370           if (!ChildRC || !Visited.insert(ChildRC).second)
371             continue;
372           Worklist.push_back(ChildRC);
373         }
374   } while (!Worklist.empty());
375 
376   return false;
377 }
378 
379 /// Generic helper that updates a postorder sequence of SCCs for a potentially
380 /// cycle-introducing edge insertion.
381 ///
382 /// A postorder sequence of SCCs of a directed graph has one fundamental
383 /// property: all deges in the DAG of SCCs point "up" the sequence. That is,
384 /// all edges in the SCC DAG point to prior SCCs in the sequence.
385 ///
386 /// This routine both updates a postorder sequence and uses that sequence to
387 /// compute the set of SCCs connected into a cycle. It should only be called to
388 /// insert a "downward" edge which will require changing the sequence to
389 /// restore it to a postorder.
390 ///
391 /// When inserting an edge from an earlier SCC to a later SCC in some postorder
392 /// sequence, all of the SCCs which may be impacted are in the closed range of
393 /// those two within the postorder sequence. The algorithm used here to restore
394 /// the state is as follows:
395 ///
396 /// 1) Starting from the source SCC, construct a set of SCCs which reach the
397 ///    source SCC consisting of just the source SCC. Then scan toward the
398 ///    target SCC in postorder and for each SCC, if it has an edge to an SCC
399 ///    in the set, add it to the set. Otherwise, the source SCC is not
400 ///    a successor, move it in the postorder sequence to immediately before
401 ///    the source SCC, shifting the source SCC and all SCCs in the set one
402 ///    position toward the target SCC. Stop scanning after processing the
403 ///    target SCC.
404 /// 2) If the source SCC is now past the target SCC in the postorder sequence,
405 ///    and thus the new edge will flow toward the start, we are done.
406 /// 3) Otherwise, starting from the target SCC, walk all edges which reach an
407 ///    SCC between the source and the target, and add them to the set of
408 ///    connected SCCs, then recurse through them. Once a complete set of the
409 ///    SCCs the target connects to is known, hoist the remaining SCCs between
410 ///    the source and the target to be above the target. Note that there is no
411 ///    need to process the source SCC, it is already known to connect.
412 /// 4) At this point, all of the SCCs in the closed range between the source
413 ///    SCC and the target SCC in the postorder sequence are connected,
414 ///    including the target SCC and the source SCC. Inserting the edge from
415 ///    the source SCC to the target SCC will form a cycle out of precisely
416 ///    these SCCs. Thus we can merge all of the SCCs in this closed range into
417 ///    a single SCC.
418 ///
419 /// This process has various important properties:
420 /// - Only mutates the SCCs when adding the edge actually changes the SCC
421 ///   structure.
422 /// - Never mutates SCCs which are unaffected by the change.
423 /// - Updates the postorder sequence to correctly satisfy the postorder
424 ///   constraint after the edge is inserted.
425 /// - Only reorders SCCs in the closed postorder sequence from the source to
426 ///   the target, so easy to bound how much has changed even in the ordering.
427 /// - Big-O is the number of edges in the closed postorder range of SCCs from
428 ///   source to target.
429 ///
430 /// This helper routine, in addition to updating the postorder sequence itself
431 /// will also update a map from SCCs to indices within that sequence.
432 ///
433 /// The sequence and the map must operate on pointers to the SCC type.
434 ///
435 /// Two callbacks must be provided. The first computes the subset of SCCs in
436 /// the postorder closed range from the source to the target which connect to
437 /// the source SCC via some (transitive) set of edges. The second computes the
438 /// subset of the same range which the target SCC connects to via some
439 /// (transitive) set of edges. Both callbacks should populate the set argument
440 /// provided.
441 template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT,
442           typename ComputeSourceConnectedSetCallableT,
443           typename ComputeTargetConnectedSetCallableT>
444 static iterator_range<typename PostorderSequenceT::iterator>
445 updatePostorderSequenceForEdgeInsertion(
446     SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs,
447     SCCIndexMapT &SCCIndices,
448     ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet,
449     ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) {
450   int SourceIdx = SCCIndices[&SourceSCC];
451   int TargetIdx = SCCIndices[&TargetSCC];
452   assert(SourceIdx < TargetIdx && "Cannot have equal indices here!");
453 
454   SmallPtrSet<SCCT *, 4> ConnectedSet;
455 
456   // Compute the SCCs which (transitively) reach the source.
457   ComputeSourceConnectedSet(ConnectedSet);
458 
459   // Partition the SCCs in this part of the port-order sequence so only SCCs
460   // connecting to the source remain between it and the target. This is
461   // a benign partition as it preserves postorder.
462   auto SourceI = std::stable_partition(
463       SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1,
464       [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); });
465   for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i)
466     SCCIndices.find(SCCs[i])->second = i;
467 
468   // If the target doesn't connect to the source, then we've corrected the
469   // post-order and there are no cycles formed.
470   if (!ConnectedSet.count(&TargetSCC)) {
471     assert(SourceI > (SCCs.begin() + SourceIdx) &&
472            "Must have moved the source to fix the post-order.");
473     assert(*std::prev(SourceI) == &TargetSCC &&
474            "Last SCC to move should have bene the target.");
475 
476     // Return an empty range at the target SCC indicating there is nothing to
477     // merge.
478     return make_range(std::prev(SourceI), std::prev(SourceI));
479   }
480 
481   assert(SCCs[TargetIdx] == &TargetSCC &&
482          "Should not have moved target if connected!");
483   SourceIdx = SourceI - SCCs.begin();
484   assert(SCCs[SourceIdx] == &SourceSCC &&
485          "Bad updated index computation for the source SCC!");
486 
487 
488   // See whether there are any remaining intervening SCCs between the source
489   // and target. If so we need to make sure they all are reachable form the
490   // target.
491   if (SourceIdx + 1 < TargetIdx) {
492     ConnectedSet.clear();
493     ComputeTargetConnectedSet(ConnectedSet);
494 
495     // Partition SCCs so that only SCCs reached from the target remain between
496     // the source and the target. This preserves postorder.
497     auto TargetI = std::stable_partition(
498         SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1,
499         [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); });
500     for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i)
501       SCCIndices.find(SCCs[i])->second = i;
502     TargetIdx = std::prev(TargetI) - SCCs.begin();
503     assert(SCCs[TargetIdx] == &TargetSCC &&
504            "Should always end with the target!");
505   }
506 
507   // At this point, we know that connecting source to target forms a cycle
508   // because target connects back to source, and we know that all of the SCCs
509   // between the source and target in the postorder sequence participate in that
510   // cycle.
511   return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx);
512 }
513 
514 bool
515 LazyCallGraph::RefSCC::switchInternalEdgeToCall(
516     Node &SourceN, Node &TargetN,
517     function_ref<void(ArrayRef<SCC *> MergeSCCs)> MergeCB) {
518   assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
519   SmallVector<SCC *, 1> DeletedSCCs;
520 
521 #ifndef NDEBUG
522   // In a debug build, verify the RefSCC is valid to start with and when this
523   // routine finishes.
524   verify();
525   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
526 #endif
527 
528   SCC &SourceSCC = *G->lookupSCC(SourceN);
529   SCC &TargetSCC = *G->lookupSCC(TargetN);
530 
531   // If the two nodes are already part of the same SCC, we're also done as
532   // we've just added more connectivity.
533   if (&SourceSCC == &TargetSCC) {
534     SourceN->setEdgeKind(TargetN, Edge::Call);
535     return false; // No new cycle.
536   }
537 
538   // At this point we leverage the postorder list of SCCs to detect when the
539   // insertion of an edge changes the SCC structure in any way.
540   //
541   // First and foremost, we can eliminate the need for any changes when the
542   // edge is toward the beginning of the postorder sequence because all edges
543   // flow in that direction already. Thus adding a new one cannot form a cycle.
544   int SourceIdx = SCCIndices[&SourceSCC];
545   int TargetIdx = SCCIndices[&TargetSCC];
546   if (TargetIdx < SourceIdx) {
547     SourceN->setEdgeKind(TargetN, Edge::Call);
548     return false; // No new cycle.
549   }
550 
551   // Compute the SCCs which (transitively) reach the source.
552   auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
553 #ifndef NDEBUG
554     // Check that the RefSCC is still valid before computing this as the
555     // results will be nonsensical of we've broken its invariants.
556     verify();
557 #endif
558     ConnectedSet.insert(&SourceSCC);
559     auto IsConnected = [&](SCC &C) {
560       for (Node &N : C)
561         for (Edge &E : N->calls())
562           if (ConnectedSet.count(G->lookupSCC(E.getNode())))
563             return true;
564 
565       return false;
566     };
567 
568     for (SCC *C :
569          make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1))
570       if (IsConnected(*C))
571         ConnectedSet.insert(C);
572   };
573 
574   // Use a normal worklist to find which SCCs the target connects to. We still
575   // bound the search based on the range in the postorder list we care about,
576   // but because this is forward connectivity we just "recurse" through the
577   // edges.
578   auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
579 #ifndef NDEBUG
580     // Check that the RefSCC is still valid before computing this as the
581     // results will be nonsensical of we've broken its invariants.
582     verify();
583 #endif
584     ConnectedSet.insert(&TargetSCC);
585     SmallVector<SCC *, 4> Worklist;
586     Worklist.push_back(&TargetSCC);
587     do {
588       SCC &C = *Worklist.pop_back_val();
589       for (Node &N : C)
590         for (Edge &E : *N) {
591           if (!E.isCall())
592             continue;
593           SCC &EdgeC = *G->lookupSCC(E.getNode());
594           if (&EdgeC.getOuterRefSCC() != this)
595             // Not in this RefSCC...
596             continue;
597           if (SCCIndices.find(&EdgeC)->second <= SourceIdx)
598             // Not in the postorder sequence between source and target.
599             continue;
600 
601           if (ConnectedSet.insert(&EdgeC).second)
602             Worklist.push_back(&EdgeC);
603         }
604     } while (!Worklist.empty());
605   };
606 
607   // Use a generic helper to update the postorder sequence of SCCs and return
608   // a range of any SCCs connected into a cycle by inserting this edge. This
609   // routine will also take care of updating the indices into the postorder
610   // sequence.
611   auto MergeRange = updatePostorderSequenceForEdgeInsertion(
612       SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet,
613       ComputeTargetConnectedSet);
614 
615   // Run the user's callback on the merged SCCs before we actually merge them.
616   if (MergeCB)
617     MergeCB(makeArrayRef(MergeRange.begin(), MergeRange.end()));
618 
619   // If the merge range is empty, then adding the edge didn't actually form any
620   // new cycles. We're done.
621   if (empty(MergeRange)) {
622     // Now that the SCC structure is finalized, flip the kind to call.
623     SourceN->setEdgeKind(TargetN, Edge::Call);
624     return false; // No new cycle.
625   }
626 
627 #ifndef NDEBUG
628   // Before merging, check that the RefSCC remains valid after all the
629   // postorder updates.
630   verify();
631 #endif
632 
633   // Otherwise we need to merge all of the SCCs in the cycle into a single
634   // result SCC.
635   //
636   // NB: We merge into the target because all of these functions were already
637   // reachable from the target, meaning any SCC-wide properties deduced about it
638   // other than the set of functions within it will not have changed.
639   for (SCC *C : MergeRange) {
640     assert(C != &TargetSCC &&
641            "We merge *into* the target and shouldn't process it here!");
642     SCCIndices.erase(C);
643     TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end());
644     for (Node *N : C->Nodes)
645       G->SCCMap[N] = &TargetSCC;
646     C->clear();
647     DeletedSCCs.push_back(C);
648   }
649 
650   // Erase the merged SCCs from the list and update the indices of the
651   // remaining SCCs.
652   int IndexOffset = MergeRange.end() - MergeRange.begin();
653   auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end());
654   for (SCC *C : make_range(EraseEnd, SCCs.end()))
655     SCCIndices[C] -= IndexOffset;
656 
657   // Now that the SCC structure is finalized, flip the kind to call.
658   SourceN->setEdgeKind(TargetN, Edge::Call);
659 
660   // And we're done, but we did form a new cycle.
661   return true;
662 }
663 
664 void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node &SourceN,
665                                                            Node &TargetN) {
666   assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
667 
668 #ifndef NDEBUG
669   // In a debug build, verify the RefSCC is valid to start with and when this
670   // routine finishes.
671   verify();
672   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
673 #endif
674 
675   assert(G->lookupRefSCC(SourceN) == this &&
676          "Source must be in this RefSCC.");
677   assert(G->lookupRefSCC(TargetN) == this &&
678          "Target must be in this RefSCC.");
679   assert(G->lookupSCC(SourceN) != G->lookupSCC(TargetN) &&
680          "Source and Target must be in separate SCCs for this to be trivial!");
681 
682   // Set the edge kind.
683   SourceN->setEdgeKind(TargetN, Edge::Ref);
684 }
685 
686 iterator_range<LazyCallGraph::RefSCC::iterator>
687 LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) {
688   assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
689 
690 #ifndef NDEBUG
691   // In a debug build, verify the RefSCC is valid to start with and when this
692   // routine finishes.
693   verify();
694   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
695 #endif
696 
697   assert(G->lookupRefSCC(SourceN) == this &&
698          "Source must be in this RefSCC.");
699   assert(G->lookupRefSCC(TargetN) == this &&
700          "Target must be in this RefSCC.");
701 
702   SCC &TargetSCC = *G->lookupSCC(TargetN);
703   assert(G->lookupSCC(SourceN) == &TargetSCC && "Source and Target must be in "
704                                                 "the same SCC to require the "
705                                                 "full CG update.");
706 
707   // Set the edge kind.
708   SourceN->setEdgeKind(TargetN, Edge::Ref);
709 
710   // Otherwise we are removing a call edge from a single SCC. This may break
711   // the cycle. In order to compute the new set of SCCs, we need to do a small
712   // DFS over the nodes within the SCC to form any sub-cycles that remain as
713   // distinct SCCs and compute a postorder over the resulting SCCs.
714   //
715   // However, we specially handle the target node. The target node is known to
716   // reach all other nodes in the original SCC by definition. This means that
717   // we want the old SCC to be replaced with an SCC containing that node as it
718   // will be the root of whatever SCC DAG results from the DFS. Assumptions
719   // about an SCC such as the set of functions called will continue to hold,
720   // etc.
721 
722   SCC &OldSCC = TargetSCC;
723   SmallVector<std::pair<Node *, EdgeSequence::call_iterator>, 16> DFSStack;
724   SmallVector<Node *, 16> PendingSCCStack;
725   SmallVector<SCC *, 4> NewSCCs;
726 
727   // Prepare the nodes for a fresh DFS.
728   SmallVector<Node *, 16> Worklist;
729   Worklist.swap(OldSCC.Nodes);
730   for (Node *N : Worklist) {
731     N->DFSNumber = N->LowLink = 0;
732     G->SCCMap.erase(N);
733   }
734 
735   // Force the target node to be in the old SCC. This also enables us to take
736   // a very significant short-cut in the standard Tarjan walk to re-form SCCs
737   // below: whenever we build an edge that reaches the target node, we know
738   // that the target node eventually connects back to all other nodes in our
739   // walk. As a consequence, we can detect and handle participants in that
740   // cycle without walking all the edges that form this connection, and instead
741   // by relying on the fundamental guarantee coming into this operation (all
742   // nodes are reachable from the target due to previously forming an SCC).
743   TargetN.DFSNumber = TargetN.LowLink = -1;
744   OldSCC.Nodes.push_back(&TargetN);
745   G->SCCMap[&TargetN] = &OldSCC;
746 
747   // Scan down the stack and DFS across the call edges.
748   for (Node *RootN : Worklist) {
749     assert(DFSStack.empty() &&
750            "Cannot begin a new root with a non-empty DFS stack!");
751     assert(PendingSCCStack.empty() &&
752            "Cannot begin a new root with pending nodes for an SCC!");
753 
754     // Skip any nodes we've already reached in the DFS.
755     if (RootN->DFSNumber != 0) {
756       assert(RootN->DFSNumber == -1 &&
757              "Shouldn't have any mid-DFS root nodes!");
758       continue;
759     }
760 
761     RootN->DFSNumber = RootN->LowLink = 1;
762     int NextDFSNumber = 2;
763 
764     DFSStack.push_back({RootN, (*RootN)->call_begin()});
765     do {
766       Node *N;
767       EdgeSequence::call_iterator I;
768       std::tie(N, I) = DFSStack.pop_back_val();
769       auto E = (*N)->call_end();
770       while (I != E) {
771         Node &ChildN = I->getNode();
772         if (ChildN.DFSNumber == 0) {
773           // We haven't yet visited this child, so descend, pushing the current
774           // node onto the stack.
775           DFSStack.push_back({N, I});
776 
777           assert(!G->SCCMap.count(&ChildN) &&
778                  "Found a node with 0 DFS number but already in an SCC!");
779           ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
780           N = &ChildN;
781           I = (*N)->call_begin();
782           E = (*N)->call_end();
783           continue;
784         }
785 
786         // Check for the child already being part of some component.
787         if (ChildN.DFSNumber == -1) {
788           if (G->lookupSCC(ChildN) == &OldSCC) {
789             // If the child is part of the old SCC, we know that it can reach
790             // every other node, so we have formed a cycle. Pull the entire DFS
791             // and pending stacks into it. See the comment above about setting
792             // up the old SCC for why we do this.
793             int OldSize = OldSCC.size();
794             OldSCC.Nodes.push_back(N);
795             OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end());
796             PendingSCCStack.clear();
797             while (!DFSStack.empty())
798               OldSCC.Nodes.push_back(DFSStack.pop_back_val().first);
799             for (Node &N : make_range(OldSCC.begin() + OldSize, OldSCC.end())) {
800               N.DFSNumber = N.LowLink = -1;
801               G->SCCMap[&N] = &OldSCC;
802             }
803             N = nullptr;
804             break;
805           }
806 
807           // If the child has already been added to some child component, it
808           // couldn't impact the low-link of this parent because it isn't
809           // connected, and thus its low-link isn't relevant so skip it.
810           ++I;
811           continue;
812         }
813 
814         // Track the lowest linked child as the lowest link for this node.
815         assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
816         if (ChildN.LowLink < N->LowLink)
817           N->LowLink = ChildN.LowLink;
818 
819         // Move to the next edge.
820         ++I;
821       }
822       if (!N)
823         // Cleared the DFS early, start another round.
824         break;
825 
826       // We've finished processing N and its descendants, put it on our pending
827       // SCC stack to eventually get merged into an SCC of nodes.
828       PendingSCCStack.push_back(N);
829 
830       // If this node is linked to some lower entry, continue walking up the
831       // stack.
832       if (N->LowLink != N->DFSNumber)
833         continue;
834 
835       // Otherwise, we've completed an SCC. Append it to our post order list of
836       // SCCs.
837       int RootDFSNumber = N->DFSNumber;
838       // Find the range of the node stack by walking down until we pass the
839       // root DFS number.
840       auto SCCNodes = make_range(
841           PendingSCCStack.rbegin(),
842           find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
843             return N->DFSNumber < RootDFSNumber;
844           }));
845 
846       // Form a new SCC out of these nodes and then clear them off our pending
847       // stack.
848       NewSCCs.push_back(G->createSCC(*this, SCCNodes));
849       for (Node &N : *NewSCCs.back()) {
850         N.DFSNumber = N.LowLink = -1;
851         G->SCCMap[&N] = NewSCCs.back();
852       }
853       PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
854     } while (!DFSStack.empty());
855   }
856 
857   // Insert the remaining SCCs before the old one. The old SCC can reach all
858   // other SCCs we form because it contains the target node of the removed edge
859   // of the old SCC. This means that we will have edges into all of the new
860   // SCCs, which means the old one must come last for postorder.
861   int OldIdx = SCCIndices[&OldSCC];
862   SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end());
863 
864   // Update the mapping from SCC* to index to use the new SCC*s, and remove the
865   // old SCC from the mapping.
866   for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx)
867     SCCIndices[SCCs[Idx]] = Idx;
868 
869   return make_range(SCCs.begin() + OldIdx,
870                     SCCs.begin() + OldIdx + NewSCCs.size());
871 }
872 
873 void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN,
874                                                      Node &TargetN) {
875   assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
876 
877   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
878   assert(G->lookupRefSCC(TargetN) != this &&
879          "Target must not be in this RefSCC.");
880 #ifdef EXPENSIVE_CHECKS
881   assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
882          "Target must be a descendant of the Source.");
883 #endif
884 
885   // Edges between RefSCCs are the same regardless of call or ref, so we can
886   // just flip the edge here.
887   SourceN->setEdgeKind(TargetN, Edge::Call);
888 
889 #ifndef NDEBUG
890   // Check that the RefSCC is still valid.
891   verify();
892 #endif
893 }
894 
895 void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN,
896                                                     Node &TargetN) {
897   assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
898 
899   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
900   assert(G->lookupRefSCC(TargetN) != this &&
901          "Target must not be in this RefSCC.");
902 #ifdef EXPENSIVE_CHECKS
903   assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
904          "Target must be a descendant of the Source.");
905 #endif
906 
907   // Edges between RefSCCs are the same regardless of call or ref, so we can
908   // just flip the edge here.
909   SourceN->setEdgeKind(TargetN, Edge::Ref);
910 
911 #ifndef NDEBUG
912   // Check that the RefSCC is still valid.
913   verify();
914 #endif
915 }
916 
917 void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN,
918                                                   Node &TargetN) {
919   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
920   assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
921 
922   SourceN->insertEdgeInternal(TargetN, Edge::Ref);
923 
924 #ifndef NDEBUG
925   // Check that the RefSCC is still valid.
926   verify();
927 #endif
928 }
929 
930 void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN,
931                                                Edge::Kind EK) {
932   // First insert it into the caller.
933   SourceN->insertEdgeInternal(TargetN, EK);
934 
935   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
936 
937   assert(G->lookupRefSCC(TargetN) != this &&
938          "Target must not be in this RefSCC.");
939 #ifdef EXPENSIVE_CHECKS
940   assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
941          "Target must be a descendant of the Source.");
942 #endif
943 
944 #ifndef NDEBUG
945   // Check that the RefSCC is still valid.
946   verify();
947 #endif
948 }
949 
950 SmallVector<LazyCallGraph::RefSCC *, 1>
951 LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) {
952   assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
953   RefSCC &SourceC = *G->lookupRefSCC(SourceN);
954   assert(&SourceC != this && "Source must not be in this RefSCC.");
955 #ifdef EXPENSIVE_CHECKS
956   assert(SourceC.isDescendantOf(*this) &&
957          "Source must be a descendant of the Target.");
958 #endif
959 
960   SmallVector<RefSCC *, 1> DeletedRefSCCs;
961 
962 #ifndef NDEBUG
963   // In a debug build, verify the RefSCC is valid to start with and when this
964   // routine finishes.
965   verify();
966   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
967 #endif
968 
969   int SourceIdx = G->RefSCCIndices[&SourceC];
970   int TargetIdx = G->RefSCCIndices[this];
971   assert(SourceIdx < TargetIdx &&
972          "Postorder list doesn't see edge as incoming!");
973 
974   // Compute the RefSCCs which (transitively) reach the source. We do this by
975   // working backwards from the source using the parent set in each RefSCC,
976   // skipping any RefSCCs that don't fall in the postorder range. This has the
977   // advantage of walking the sparser parent edge (in high fan-out graphs) but
978   // more importantly this removes examining all forward edges in all RefSCCs
979   // within the postorder range which aren't in fact connected. Only connected
980   // RefSCCs (and their edges) are visited here.
981   auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
982     Set.insert(&SourceC);
983     auto IsConnected = [&](RefSCC &RC) {
984       for (SCC &C : RC)
985         for (Node &N : C)
986           for (Edge &E : *N)
987             if (Set.count(G->lookupRefSCC(E.getNode())))
988               return true;
989 
990       return false;
991     };
992 
993     for (RefSCC *C : make_range(G->PostOrderRefSCCs.begin() + SourceIdx + 1,
994                                 G->PostOrderRefSCCs.begin() + TargetIdx + 1))
995       if (IsConnected(*C))
996         Set.insert(C);
997   };
998 
999   // Use a normal worklist to find which SCCs the target connects to. We still
1000   // bound the search based on the range in the postorder list we care about,
1001   // but because this is forward connectivity we just "recurse" through the
1002   // edges.
1003   auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
1004     Set.insert(this);
1005     SmallVector<RefSCC *, 4> Worklist;
1006     Worklist.push_back(this);
1007     do {
1008       RefSCC &RC = *Worklist.pop_back_val();
1009       for (SCC &C : RC)
1010         for (Node &N : C)
1011           for (Edge &E : *N) {
1012             RefSCC &EdgeRC = *G->lookupRefSCC(E.getNode());
1013             if (G->getRefSCCIndex(EdgeRC) <= SourceIdx)
1014               // Not in the postorder sequence between source and target.
1015               continue;
1016 
1017             if (Set.insert(&EdgeRC).second)
1018               Worklist.push_back(&EdgeRC);
1019           }
1020     } while (!Worklist.empty());
1021   };
1022 
1023   // Use a generic helper to update the postorder sequence of RefSCCs and return
1024   // a range of any RefSCCs connected into a cycle by inserting this edge. This
1025   // routine will also take care of updating the indices into the postorder
1026   // sequence.
1027   iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange =
1028       updatePostorderSequenceForEdgeInsertion(
1029           SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices,
1030           ComputeSourceConnectedSet, ComputeTargetConnectedSet);
1031 
1032   // Build a set so we can do fast tests for whether a RefSCC will end up as
1033   // part of the merged RefSCC.
1034   SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end());
1035 
1036   // This RefSCC will always be part of that set, so just insert it here.
1037   MergeSet.insert(this);
1038 
1039   // Now that we have identified all of the SCCs which need to be merged into
1040   // a connected set with the inserted edge, merge all of them into this SCC.
1041   SmallVector<SCC *, 16> MergedSCCs;
1042   int SCCIndex = 0;
1043   for (RefSCC *RC : MergeRange) {
1044     assert(RC != this && "We're merging into the target RefSCC, so it "
1045                          "shouldn't be in the range.");
1046 
1047     // Walk the inner SCCs to update their up-pointer and walk all the edges to
1048     // update any parent sets.
1049     // FIXME: We should try to find a way to avoid this (rather expensive) edge
1050     // walk by updating the parent sets in some other manner.
1051     for (SCC &InnerC : *RC) {
1052       InnerC.OuterRefSCC = this;
1053       SCCIndices[&InnerC] = SCCIndex++;
1054       for (Node &N : InnerC)
1055         G->SCCMap[&N] = &InnerC;
1056     }
1057 
1058     // Now merge in the SCCs. We can actually move here so try to reuse storage
1059     // the first time through.
1060     if (MergedSCCs.empty())
1061       MergedSCCs = std::move(RC->SCCs);
1062     else
1063       MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end());
1064     RC->SCCs.clear();
1065     DeletedRefSCCs.push_back(RC);
1066   }
1067 
1068   // Append our original SCCs to the merged list and move it into place.
1069   for (SCC &InnerC : *this)
1070     SCCIndices[&InnerC] = SCCIndex++;
1071   MergedSCCs.append(SCCs.begin(), SCCs.end());
1072   SCCs = std::move(MergedSCCs);
1073 
1074   // Remove the merged away RefSCCs from the post order sequence.
1075   for (RefSCC *RC : MergeRange)
1076     G->RefSCCIndices.erase(RC);
1077   int IndexOffset = MergeRange.end() - MergeRange.begin();
1078   auto EraseEnd =
1079       G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end());
1080   for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end()))
1081     G->RefSCCIndices[RC] -= IndexOffset;
1082 
1083   // At this point we have a merged RefSCC with a post-order SCCs list, just
1084   // connect the nodes to form the new edge.
1085   SourceN->insertEdgeInternal(TargetN, Edge::Ref);
1086 
1087   // We return the list of SCCs which were merged so that callers can
1088   // invalidate any data they have associated with those SCCs. Note that these
1089   // SCCs are no longer in an interesting state (they are totally empty) but
1090   // the pointers will remain stable for the life of the graph itself.
1091   return DeletedRefSCCs;
1092 }
1093 
1094 void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) {
1095   assert(G->lookupRefSCC(SourceN) == this &&
1096          "The source must be a member of this RefSCC.");
1097   assert(G->lookupRefSCC(TargetN) != this &&
1098          "The target must not be a member of this RefSCC");
1099 
1100 #ifndef NDEBUG
1101   // In a debug build, verify the RefSCC is valid to start with and when this
1102   // routine finishes.
1103   verify();
1104   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
1105 #endif
1106 
1107   // First remove it from the node.
1108   bool Removed = SourceN->removeEdgeInternal(TargetN);
1109   (void)Removed;
1110   assert(Removed && "Target not in the edge set for this caller?");
1111 }
1112 
1113 SmallVector<LazyCallGraph::RefSCC *, 1>
1114 LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN,
1115                                              ArrayRef<Node *> TargetNs) {
1116   // We return a list of the resulting *new* RefSCCs in post-order.
1117   SmallVector<RefSCC *, 1> Result;
1118 
1119 #ifndef NDEBUG
1120   // In a debug build, verify the RefSCC is valid to start with and that either
1121   // we return an empty list of result RefSCCs and this RefSCC remains valid,
1122   // or we return new RefSCCs and this RefSCC is dead.
1123   verify();
1124   auto VerifyOnExit = make_scope_exit([&]() {
1125     // If we didn't replace our RefSCC with new ones, check that this one
1126     // remains valid.
1127     if (G)
1128       verify();
1129   });
1130 #endif
1131 
1132   // First remove the actual edges.
1133   for (Node *TargetN : TargetNs) {
1134     assert(!(*SourceN)[*TargetN].isCall() &&
1135            "Cannot remove a call edge, it must first be made a ref edge");
1136 
1137     bool Removed = SourceN->removeEdgeInternal(*TargetN);
1138     (void)Removed;
1139     assert(Removed && "Target not in the edge set for this caller?");
1140   }
1141 
1142   // Direct self references don't impact the ref graph at all.
1143   if (llvm::all_of(TargetNs,
1144                    [&](Node *TargetN) { return &SourceN == TargetN; }))
1145     return Result;
1146 
1147   // If all targets are in the same SCC as the source, because no call edges
1148   // were removed there is no RefSCC structure change.
1149   SCC &SourceC = *G->lookupSCC(SourceN);
1150   if (llvm::all_of(TargetNs, [&](Node *TargetN) {
1151         return G->lookupSCC(*TargetN) == &SourceC;
1152       }))
1153     return Result;
1154 
1155   // We build somewhat synthetic new RefSCCs by providing a postorder mapping
1156   // for each inner SCC. We store these inside the low-link field of the nodes
1157   // rather than associated with SCCs because this saves a round-trip through
1158   // the node->SCC map and in the common case, SCCs are small. We will verify
1159   // that we always give the same number to every node in the SCC such that
1160   // these are equivalent.
1161   int PostOrderNumber = 0;
1162 
1163   // Reset all the other nodes to prepare for a DFS over them, and add them to
1164   // our worklist.
1165   SmallVector<Node *, 8> Worklist;
1166   for (SCC *C : SCCs) {
1167     for (Node &N : *C)
1168       N.DFSNumber = N.LowLink = 0;
1169 
1170     Worklist.append(C->Nodes.begin(), C->Nodes.end());
1171   }
1172 
1173   // Track the number of nodes in this RefSCC so that we can quickly recognize
1174   // an important special case of the edge removal not breaking the cycle of
1175   // this RefSCC.
1176   const int NumRefSCCNodes = Worklist.size();
1177 
1178   SmallVector<std::pair<Node *, EdgeSequence::iterator>, 4> DFSStack;
1179   SmallVector<Node *, 4> PendingRefSCCStack;
1180   do {
1181     assert(DFSStack.empty() &&
1182            "Cannot begin a new root with a non-empty DFS stack!");
1183     assert(PendingRefSCCStack.empty() &&
1184            "Cannot begin a new root with pending nodes for an SCC!");
1185 
1186     Node *RootN = Worklist.pop_back_val();
1187     // Skip any nodes we've already reached in the DFS.
1188     if (RootN->DFSNumber != 0) {
1189       assert(RootN->DFSNumber == -1 &&
1190              "Shouldn't have any mid-DFS root nodes!");
1191       continue;
1192     }
1193 
1194     RootN->DFSNumber = RootN->LowLink = 1;
1195     int NextDFSNumber = 2;
1196 
1197     DFSStack.push_back({RootN, (*RootN)->begin()});
1198     do {
1199       Node *N;
1200       EdgeSequence::iterator I;
1201       std::tie(N, I) = DFSStack.pop_back_val();
1202       auto E = (*N)->end();
1203 
1204       assert(N->DFSNumber != 0 && "We should always assign a DFS number "
1205                                   "before processing a node.");
1206 
1207       while (I != E) {
1208         Node &ChildN = I->getNode();
1209         if (ChildN.DFSNumber == 0) {
1210           // Mark that we should start at this child when next this node is the
1211           // top of the stack. We don't start at the next child to ensure this
1212           // child's lowlink is reflected.
1213           DFSStack.push_back({N, I});
1214 
1215           // Continue, resetting to the child node.
1216           ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
1217           N = &ChildN;
1218           I = ChildN->begin();
1219           E = ChildN->end();
1220           continue;
1221         }
1222         if (ChildN.DFSNumber == -1) {
1223           // If this child isn't currently in this RefSCC, no need to process
1224           // it.
1225           ++I;
1226           continue;
1227         }
1228 
1229         // Track the lowest link of the children, if any are still in the stack.
1230         // Any child not on the stack will have a LowLink of -1.
1231         assert(ChildN.LowLink != 0 &&
1232                "Low-link must not be zero with a non-zero DFS number.");
1233         if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
1234           N->LowLink = ChildN.LowLink;
1235         ++I;
1236       }
1237 
1238       // We've finished processing N and its descendants, put it on our pending
1239       // stack to eventually get merged into a RefSCC.
1240       PendingRefSCCStack.push_back(N);
1241 
1242       // If this node is linked to some lower entry, continue walking up the
1243       // stack.
1244       if (N->LowLink != N->DFSNumber) {
1245         assert(!DFSStack.empty() &&
1246                "We never found a viable root for a RefSCC to pop off!");
1247         continue;
1248       }
1249 
1250       // Otherwise, form a new RefSCC from the top of the pending node stack.
1251       int RefSCCNumber = PostOrderNumber++;
1252       int RootDFSNumber = N->DFSNumber;
1253 
1254       // Find the range of the node stack by walking down until we pass the
1255       // root DFS number. Update the DFS numbers and low link numbers in the
1256       // process to avoid re-walking this list where possible.
1257       auto StackRI = find_if(reverse(PendingRefSCCStack), [&](Node *N) {
1258         if (N->DFSNumber < RootDFSNumber)
1259           // We've found the bottom.
1260           return true;
1261 
1262         // Update this node and keep scanning.
1263         N->DFSNumber = -1;
1264         // Save the post-order number in the lowlink field so that we can use
1265         // it to map SCCs into new RefSCCs after we finish the DFS.
1266         N->LowLink = RefSCCNumber;
1267         return false;
1268       });
1269       auto RefSCCNodes = make_range(StackRI.base(), PendingRefSCCStack.end());
1270 
1271       // If we find a cycle containing all nodes originally in this RefSCC then
1272       // the removal hasn't changed the structure at all. This is an important
1273       // special case and we can directly exit the entire routine more
1274       // efficiently as soon as we discover it.
1275       if (llvm::size(RefSCCNodes) == NumRefSCCNodes) {
1276         // Clear out the low link field as we won't need it.
1277         for (Node *N : RefSCCNodes)
1278           N->LowLink = -1;
1279         // Return the empty result immediately.
1280         return Result;
1281       }
1282 
1283       // We've already marked the nodes internally with the RefSCC number so
1284       // just clear them off the stack and continue.
1285       PendingRefSCCStack.erase(RefSCCNodes.begin(), PendingRefSCCStack.end());
1286     } while (!DFSStack.empty());
1287 
1288     assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
1289     assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!");
1290   } while (!Worklist.empty());
1291 
1292   assert(PostOrderNumber > 1 &&
1293          "Should never finish the DFS when the existing RefSCC remains valid!");
1294 
1295   // Otherwise we create a collection of new RefSCC nodes and build
1296   // a radix-sort style map from postorder number to these new RefSCCs. We then
1297   // append SCCs to each of these RefSCCs in the order they occurred in the
1298   // original SCCs container.
1299   for (int i = 0; i < PostOrderNumber; ++i)
1300     Result.push_back(G->createRefSCC(*G));
1301 
1302   // Insert the resulting postorder sequence into the global graph postorder
1303   // sequence before the current RefSCC in that sequence, and then remove the
1304   // current one.
1305   //
1306   // FIXME: It'd be nice to change the APIs so that we returned an iterator
1307   // range over the global postorder sequence and generally use that sequence
1308   // rather than building a separate result vector here.
1309   int Idx = G->getRefSCCIndex(*this);
1310   G->PostOrderRefSCCs.erase(G->PostOrderRefSCCs.begin() + Idx);
1311   G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx, Result.begin(),
1312                              Result.end());
1313   for (int i : seq<int>(Idx, G->PostOrderRefSCCs.size()))
1314     G->RefSCCIndices[G->PostOrderRefSCCs[i]] = i;
1315 
1316   for (SCC *C : SCCs) {
1317     // We store the SCC number in the node's low-link field above.
1318     int SCCNumber = C->begin()->LowLink;
1319     // Clear out all of the SCC's node's low-link fields now that we're done
1320     // using them as side-storage.
1321     for (Node &N : *C) {
1322       assert(N.LowLink == SCCNumber &&
1323              "Cannot have different numbers for nodes in the same SCC!");
1324       N.LowLink = -1;
1325     }
1326 
1327     RefSCC &RC = *Result[SCCNumber];
1328     int SCCIndex = RC.SCCs.size();
1329     RC.SCCs.push_back(C);
1330     RC.SCCIndices[C] = SCCIndex;
1331     C->OuterRefSCC = &RC;
1332   }
1333 
1334   // Now that we've moved things into the new RefSCCs, clear out our current
1335   // one.
1336   G = nullptr;
1337   SCCs.clear();
1338   SCCIndices.clear();
1339 
1340 #ifndef NDEBUG
1341   // Verify the new RefSCCs we've built.
1342   for (RefSCC *RC : Result)
1343     RC->verify();
1344 #endif
1345 
1346   // Return the new list of SCCs.
1347   return Result;
1348 }
1349 
1350 void LazyCallGraph::RefSCC::handleTrivialEdgeInsertion(Node &SourceN,
1351                                                        Node &TargetN) {
1352   // The only trivial case that requires any graph updates is when we add new
1353   // ref edge and may connect different RefSCCs along that path. This is only
1354   // because of the parents set. Every other part of the graph remains constant
1355   // after this edge insertion.
1356   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
1357   RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
1358   if (&TargetRC == this)
1359     return;
1360 
1361 #ifdef EXPENSIVE_CHECKS
1362   assert(TargetRC.isDescendantOf(*this) &&
1363          "Target must be a descendant of the Source.");
1364 #endif
1365 }
1366 
1367 void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN,
1368                                                   Node &TargetN) {
1369 #ifndef NDEBUG
1370   // Check that the RefSCC is still valid when we finish.
1371   auto ExitVerifier = make_scope_exit([this] { verify(); });
1372 
1373 #ifdef EXPENSIVE_CHECKS
1374   // Check that we aren't breaking some invariants of the SCC graph. Note that
1375   // this is quadratic in the number of edges in the call graph!
1376   SCC &SourceC = *G->lookupSCC(SourceN);
1377   SCC &TargetC = *G->lookupSCC(TargetN);
1378   if (&SourceC != &TargetC)
1379     assert(SourceC.isAncestorOf(TargetC) &&
1380            "Call edge is not trivial in the SCC graph!");
1381 #endif // EXPENSIVE_CHECKS
1382 #endif // NDEBUG
1383 
1384   // First insert it into the source or find the existing edge.
1385   auto InsertResult =
1386       SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()});
1387   if (!InsertResult.second) {
1388     // Already an edge, just update it.
1389     Edge &E = SourceN->Edges[InsertResult.first->second];
1390     if (E.isCall())
1391       return; // Nothing to do!
1392     E.setKind(Edge::Call);
1393   } else {
1394     // Create the new edge.
1395     SourceN->Edges.emplace_back(TargetN, Edge::Call);
1396   }
1397 
1398   // Now that we have the edge, handle the graph fallout.
1399   handleTrivialEdgeInsertion(SourceN, TargetN);
1400 }
1401 
1402 void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) {
1403 #ifndef NDEBUG
1404   // Check that the RefSCC is still valid when we finish.
1405   auto ExitVerifier = make_scope_exit([this] { verify(); });
1406 
1407 #ifdef EXPENSIVE_CHECKS
1408   // Check that we aren't breaking some invariants of the RefSCC graph.
1409   RefSCC &SourceRC = *G->lookupRefSCC(SourceN);
1410   RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
1411   if (&SourceRC != &TargetRC)
1412     assert(SourceRC.isAncestorOf(TargetRC) &&
1413            "Ref edge is not trivial in the RefSCC graph!");
1414 #endif // EXPENSIVE_CHECKS
1415 #endif // NDEBUG
1416 
1417   // First insert it into the source or find the existing edge.
1418   auto InsertResult =
1419       SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()});
1420   if (!InsertResult.second)
1421     // Already an edge, we're done.
1422     return;
1423 
1424   // Create the new edge.
1425   SourceN->Edges.emplace_back(TargetN, Edge::Ref);
1426 
1427   // Now that we have the edge, handle the graph fallout.
1428   handleTrivialEdgeInsertion(SourceN, TargetN);
1429 }
1430 
1431 void LazyCallGraph::RefSCC::replaceNodeFunction(Node &N, Function &NewF) {
1432   Function &OldF = N.getFunction();
1433 
1434 #ifndef NDEBUG
1435   // Check that the RefSCC is still valid when we finish.
1436   auto ExitVerifier = make_scope_exit([this] { verify(); });
1437 
1438   assert(G->lookupRefSCC(N) == this &&
1439          "Cannot replace the function of a node outside this RefSCC.");
1440 
1441   assert(G->NodeMap.find(&NewF) == G->NodeMap.end() &&
1442          "Must not have already walked the new function!'");
1443 
1444   // It is important that this replacement not introduce graph changes so we
1445   // insist that the caller has already removed every use of the original
1446   // function and that all uses of the new function correspond to existing
1447   // edges in the graph. The common and expected way to use this is when
1448   // replacing the function itself in the IR without changing the call graph
1449   // shape and just updating the analysis based on that.
1450   assert(&OldF != &NewF && "Cannot replace a function with itself!");
1451   assert(OldF.use_empty() &&
1452          "Must have moved all uses from the old function to the new!");
1453 #endif
1454 
1455   N.replaceFunction(NewF);
1456 
1457   // Update various call graph maps.
1458   G->NodeMap.erase(&OldF);
1459   G->NodeMap[&NewF] = &N;
1460 }
1461 
1462 void LazyCallGraph::insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK) {
1463   assert(SCCMap.empty() &&
1464          "This method cannot be called after SCCs have been formed!");
1465 
1466   return SourceN->insertEdgeInternal(TargetN, EK);
1467 }
1468 
1469 void LazyCallGraph::removeEdge(Node &SourceN, Node &TargetN) {
1470   assert(SCCMap.empty() &&
1471          "This method cannot be called after SCCs have been formed!");
1472 
1473   bool Removed = SourceN->removeEdgeInternal(TargetN);
1474   (void)Removed;
1475   assert(Removed && "Target not in the edge set for this caller?");
1476 }
1477 
1478 void LazyCallGraph::removeDeadFunction(Function &F) {
1479   // FIXME: This is unnecessarily restrictive. We should be able to remove
1480   // functions which recursively call themselves.
1481   assert(F.use_empty() &&
1482          "This routine should only be called on trivially dead functions!");
1483 
1484   // We shouldn't remove library functions as they are never really dead while
1485   // the call graph is in use -- every function definition refers to them.
1486   assert(!isLibFunction(F) &&
1487          "Must not remove lib functions from the call graph!");
1488 
1489   auto NI = NodeMap.find(&F);
1490   if (NI == NodeMap.end())
1491     // Not in the graph at all!
1492     return;
1493 
1494   Node &N = *NI->second;
1495   NodeMap.erase(NI);
1496 
1497   // Remove this from the entry edges if present.
1498   EntryEdges.removeEdgeInternal(N);
1499 
1500   if (SCCMap.empty()) {
1501     // No SCCs have been formed, so removing this is fine and there is nothing
1502     // else necessary at this point but clearing out the node.
1503     N.clear();
1504     return;
1505   }
1506 
1507   // Cannot remove a function which has yet to be visited in the DFS walk, so
1508   // if we have a node at all then we must have an SCC and RefSCC.
1509   auto CI = SCCMap.find(&N);
1510   assert(CI != SCCMap.end() &&
1511          "Tried to remove a node without an SCC after DFS walk started!");
1512   SCC &C = *CI->second;
1513   SCCMap.erase(CI);
1514   RefSCC &RC = C.getOuterRefSCC();
1515 
1516   // This node must be the only member of its SCC as it has no callers, and
1517   // that SCC must be the only member of a RefSCC as it has no references.
1518   // Validate these properties first.
1519   assert(C.size() == 1 && "Dead functions must be in a singular SCC");
1520   assert(RC.size() == 1 && "Dead functions must be in a singular RefSCC");
1521 
1522   auto RCIndexI = RefSCCIndices.find(&RC);
1523   int RCIndex = RCIndexI->second;
1524   PostOrderRefSCCs.erase(PostOrderRefSCCs.begin() + RCIndex);
1525   RefSCCIndices.erase(RCIndexI);
1526   for (int i = RCIndex, Size = PostOrderRefSCCs.size(); i < Size; ++i)
1527     RefSCCIndices[PostOrderRefSCCs[i]] = i;
1528 
1529   // Finally clear out all the data structures from the node down through the
1530   // components.
1531   N.clear();
1532   N.G = nullptr;
1533   N.F = nullptr;
1534   C.clear();
1535   RC.clear();
1536   RC.G = nullptr;
1537 
1538   // Nothing to delete as all the objects are allocated in stable bump pointer
1539   // allocators.
1540 }
1541 
1542 LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
1543   return *new (MappedN = BPA.Allocate()) Node(*this, F);
1544 }
1545 
1546 void LazyCallGraph::updateGraphPtrs() {
1547   // Walk the node map to update their graph pointers. While this iterates in
1548   // an unstable order, the order has no effect so it remains correct.
1549   for (auto &FunctionNodePair : NodeMap)
1550     FunctionNodePair.second->G = this;
1551 
1552   for (auto *RC : PostOrderRefSCCs)
1553     RC->G = this;
1554 }
1555 
1556 template <typename RootsT, typename GetBeginT, typename GetEndT,
1557           typename GetNodeT, typename FormSCCCallbackT>
1558 void LazyCallGraph::buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin,
1559                                      GetEndT &&GetEnd, GetNodeT &&GetNode,
1560                                      FormSCCCallbackT &&FormSCC) {
1561   using EdgeItT = decltype(GetBegin(std::declval<Node &>()));
1562 
1563   SmallVector<std::pair<Node *, EdgeItT>, 16> DFSStack;
1564   SmallVector<Node *, 16> PendingSCCStack;
1565 
1566   // Scan down the stack and DFS across the call edges.
1567   for (Node *RootN : Roots) {
1568     assert(DFSStack.empty() &&
1569            "Cannot begin a new root with a non-empty DFS stack!");
1570     assert(PendingSCCStack.empty() &&
1571            "Cannot begin a new root with pending nodes for an SCC!");
1572 
1573     // Skip any nodes we've already reached in the DFS.
1574     if (RootN->DFSNumber != 0) {
1575       assert(RootN->DFSNumber == -1 &&
1576              "Shouldn't have any mid-DFS root nodes!");
1577       continue;
1578     }
1579 
1580     RootN->DFSNumber = RootN->LowLink = 1;
1581     int NextDFSNumber = 2;
1582 
1583     DFSStack.push_back({RootN, GetBegin(*RootN)});
1584     do {
1585       Node *N;
1586       EdgeItT I;
1587       std::tie(N, I) = DFSStack.pop_back_val();
1588       auto E = GetEnd(*N);
1589       while (I != E) {
1590         Node &ChildN = GetNode(I);
1591         if (ChildN.DFSNumber == 0) {
1592           // We haven't yet visited this child, so descend, pushing the current
1593           // node onto the stack.
1594           DFSStack.push_back({N, I});
1595 
1596           ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
1597           N = &ChildN;
1598           I = GetBegin(*N);
1599           E = GetEnd(*N);
1600           continue;
1601         }
1602 
1603         // If the child has already been added to some child component, it
1604         // couldn't impact the low-link of this parent because it isn't
1605         // connected, and thus its low-link isn't relevant so skip it.
1606         if (ChildN.DFSNumber == -1) {
1607           ++I;
1608           continue;
1609         }
1610 
1611         // Track the lowest linked child as the lowest link for this node.
1612         assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
1613         if (ChildN.LowLink < N->LowLink)
1614           N->LowLink = ChildN.LowLink;
1615 
1616         // Move to the next edge.
1617         ++I;
1618       }
1619 
1620       // We've finished processing N and its descendants, put it on our pending
1621       // SCC stack to eventually get merged into an SCC of nodes.
1622       PendingSCCStack.push_back(N);
1623 
1624       // If this node is linked to some lower entry, continue walking up the
1625       // stack.
1626       if (N->LowLink != N->DFSNumber)
1627         continue;
1628 
1629       // Otherwise, we've completed an SCC. Append it to our post order list of
1630       // SCCs.
1631       int RootDFSNumber = N->DFSNumber;
1632       // Find the range of the node stack by walking down until we pass the
1633       // root DFS number.
1634       auto SCCNodes = make_range(
1635           PendingSCCStack.rbegin(),
1636           find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
1637             return N->DFSNumber < RootDFSNumber;
1638           }));
1639       // Form a new SCC out of these nodes and then clear them off our pending
1640       // stack.
1641       FormSCC(SCCNodes);
1642       PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
1643     } while (!DFSStack.empty());
1644   }
1645 }
1646 
1647 /// Build the internal SCCs for a RefSCC from a sequence of nodes.
1648 ///
1649 /// Appends the SCCs to the provided vector and updates the map with their
1650 /// indices. Both the vector and map must be empty when passed into this
1651 /// routine.
1652 void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
1653   assert(RC.SCCs.empty() && "Already built SCCs!");
1654   assert(RC.SCCIndices.empty() && "Already mapped SCC indices!");
1655 
1656   for (Node *N : Nodes) {
1657     assert(N->LowLink >= (*Nodes.begin())->LowLink &&
1658            "We cannot have a low link in an SCC lower than its root on the "
1659            "stack!");
1660 
1661     // This node will go into the next RefSCC, clear out its DFS and low link
1662     // as we scan.
1663     N->DFSNumber = N->LowLink = 0;
1664   }
1665 
1666   // Each RefSCC contains a DAG of the call SCCs. To build these, we do
1667   // a direct walk of the call edges using Tarjan's algorithm. We reuse the
1668   // internal storage as we won't need it for the outer graph's DFS any longer.
1669   buildGenericSCCs(
1670       Nodes, [](Node &N) { return N->call_begin(); },
1671       [](Node &N) { return N->call_end(); },
1672       [](EdgeSequence::call_iterator I) -> Node & { return I->getNode(); },
1673       [this, &RC](node_stack_range Nodes) {
1674         RC.SCCs.push_back(createSCC(RC, Nodes));
1675         for (Node &N : *RC.SCCs.back()) {
1676           N.DFSNumber = N.LowLink = -1;
1677           SCCMap[&N] = RC.SCCs.back();
1678         }
1679       });
1680 
1681   // Wire up the SCC indices.
1682   for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i)
1683     RC.SCCIndices[RC.SCCs[i]] = i;
1684 }
1685 
1686 void LazyCallGraph::buildRefSCCs() {
1687   if (EntryEdges.empty() || !PostOrderRefSCCs.empty())
1688     // RefSCCs are either non-existent or already built!
1689     return;
1690 
1691   assert(RefSCCIndices.empty() && "Already mapped RefSCC indices!");
1692 
1693   SmallVector<Node *, 16> Roots;
1694   for (Edge &E : *this)
1695     Roots.push_back(&E.getNode());
1696 
1697   // The roots will be popped of a stack, so use reverse to get a less
1698   // surprising order. This doesn't change any of the semantics anywhere.
1699   std::reverse(Roots.begin(), Roots.end());
1700 
1701   buildGenericSCCs(
1702       Roots,
1703       [](Node &N) {
1704         // We need to populate each node as we begin to walk its edges.
1705         N.populate();
1706         return N->begin();
1707       },
1708       [](Node &N) { return N->end(); },
1709       [](EdgeSequence::iterator I) -> Node & { return I->getNode(); },
1710       [this](node_stack_range Nodes) {
1711         RefSCC *NewRC = createRefSCC(*this);
1712         buildSCCs(*NewRC, Nodes);
1713 
1714         // Push the new node into the postorder list and remember its position
1715         // in the index map.
1716         bool Inserted =
1717             RefSCCIndices.insert({NewRC, PostOrderRefSCCs.size()}).second;
1718         (void)Inserted;
1719         assert(Inserted && "Cannot already have this RefSCC in the index map!");
1720         PostOrderRefSCCs.push_back(NewRC);
1721 #ifndef NDEBUG
1722         NewRC->verify();
1723 #endif
1724       });
1725 }
1726 
1727 AnalysisKey LazyCallGraphAnalysis::Key;
1728 
1729 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
1730 
1731 static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) {
1732   OS << "  Edges in function: " << N.getFunction().getName() << "\n";
1733   for (LazyCallGraph::Edge &E : N.populate())
1734     OS << "    " << (E.isCall() ? "call" : "ref ") << " -> "
1735        << E.getFunction().getName() << "\n";
1736 
1737   OS << "\n";
1738 }
1739 
1740 static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) {
1741   ptrdiff_t Size = size(C);
1742   OS << "    SCC with " << Size << " functions:\n";
1743 
1744   for (LazyCallGraph::Node &N : C)
1745     OS << "      " << N.getFunction().getName() << "\n";
1746 }
1747 
1748 static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) {
1749   ptrdiff_t Size = size(C);
1750   OS << "  RefSCC with " << Size << " call SCCs:\n";
1751 
1752   for (LazyCallGraph::SCC &InnerC : C)
1753     printSCC(OS, InnerC);
1754 
1755   OS << "\n";
1756 }
1757 
1758 PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
1759                                                 ModuleAnalysisManager &AM) {
1760   LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
1761 
1762   OS << "Printing the call graph for module: " << M.getModuleIdentifier()
1763      << "\n\n";
1764 
1765   for (Function &F : M)
1766     printNode(OS, G.get(F));
1767 
1768   G.buildRefSCCs();
1769   for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs())
1770     printRefSCC(OS, C);
1771 
1772   return PreservedAnalyses::all();
1773 }
1774 
1775 LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS)
1776     : OS(OS) {}
1777 
1778 static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) {
1779   std::string Name = "\"" + DOT::EscapeString(N.getFunction().getName()) + "\"";
1780 
1781   for (LazyCallGraph::Edge &E : N.populate()) {
1782     OS << "  " << Name << " -> \""
1783        << DOT::EscapeString(E.getFunction().getName()) << "\"";
1784     if (!E.isCall()) // It is a ref edge.
1785       OS << " [style=dashed,label=\"ref\"]";
1786     OS << ";\n";
1787   }
1788 
1789   OS << "\n";
1790 }
1791 
1792 PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M,
1793                                                    ModuleAnalysisManager &AM) {
1794   LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
1795 
1796   OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n";
1797 
1798   for (Function &F : M)
1799     printNodeDOT(OS, G.get(F));
1800 
1801   OS << "}\n";
1802 
1803   return PreservedAnalyses::all();
1804 }
1805