1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Analysis/LazyCallGraph.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/ScopeExit.h" 13 #include "llvm/ADT/Sequence.h" 14 #include "llvm/IR/CallSite.h" 15 #include "llvm/IR/InstVisitor.h" 16 #include "llvm/IR/Instructions.h" 17 #include "llvm/IR/PassManager.h" 18 #include "llvm/Support/Debug.h" 19 #include "llvm/Support/GraphWriter.h" 20 #include <utility> 21 22 using namespace llvm; 23 24 #define DEBUG_TYPE "lcg" 25 26 void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node &TargetN, 27 Edge::Kind EK) { 28 EdgeIndexMap.insert({&TargetN, Edges.size()}); 29 Edges.emplace_back(TargetN, EK); 30 } 31 32 void LazyCallGraph::EdgeSequence::setEdgeKind(Node &TargetN, Edge::Kind EK) { 33 Edges[EdgeIndexMap.find(&TargetN)->second].setKind(EK); 34 } 35 36 bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node &TargetN) { 37 auto IndexMapI = EdgeIndexMap.find(&TargetN); 38 if (IndexMapI == EdgeIndexMap.end()) 39 return false; 40 41 Edges[IndexMapI->second] = Edge(); 42 EdgeIndexMap.erase(IndexMapI); 43 return true; 44 } 45 46 static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges, 47 DenseMap<LazyCallGraph::Node *, int> &EdgeIndexMap, 48 LazyCallGraph::Node &N, LazyCallGraph::Edge::Kind EK) { 49 if (!EdgeIndexMap.insert({&N, Edges.size()}).second) 50 return; 51 52 DEBUG(dbgs() << " Added callable function: " << N.getName() << "\n"); 53 Edges.emplace_back(LazyCallGraph::Edge(N, EK)); 54 } 55 56 LazyCallGraph::EdgeSequence &LazyCallGraph::Node::populateSlow() { 57 assert(!Edges && "Must not have already populated the edges for this node!"); 58 59 DEBUG(dbgs() << " Adding functions called by '" << getName() 60 << "' to the graph.\n"); 61 62 Edges = EdgeSequence(); 63 64 SmallVector<Constant *, 16> Worklist; 65 SmallPtrSet<Function *, 4> Callees; 66 SmallPtrSet<Constant *, 16> Visited; 67 68 // Find all the potential call graph edges in this function. We track both 69 // actual call edges and indirect references to functions. The direct calls 70 // are trivially added, but to accumulate the latter we walk the instructions 71 // and add every operand which is a constant to the worklist to process 72 // afterward. 73 // 74 // Note that we consider *any* function with a definition to be a viable 75 // edge. Even if the function's definition is subject to replacement by 76 // some other module (say, a weak definition) there may still be 77 // optimizations which essentially speculate based on the definition and 78 // a way to check that the specific definition is in fact the one being 79 // used. For example, this could be done by moving the weak definition to 80 // a strong (internal) definition and making the weak definition be an 81 // alias. Then a test of the address of the weak function against the new 82 // strong definition's address would be an effective way to determine the 83 // safety of optimizing a direct call edge. 84 for (BasicBlock &BB : *F) 85 for (Instruction &I : BB) { 86 if (auto CS = CallSite(&I)) 87 if (Function *Callee = CS.getCalledFunction()) 88 if (!Callee->isDeclaration()) 89 if (Callees.insert(Callee).second) { 90 Visited.insert(Callee); 91 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*Callee), 92 LazyCallGraph::Edge::Call); 93 } 94 95 for (Value *Op : I.operand_values()) 96 if (Constant *C = dyn_cast<Constant>(Op)) 97 if (Visited.insert(C).second) 98 Worklist.push_back(C); 99 } 100 101 // We've collected all the constant (and thus potentially function or 102 // function containing) operands to all of the instructions in the function. 103 // Process them (recursively) collecting every function found. 104 visitReferences(Worklist, Visited, [&](Function &F) { 105 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(F), 106 LazyCallGraph::Edge::Ref); 107 }); 108 109 return *Edges; 110 } 111 112 void LazyCallGraph::Node::replaceFunction(Function &NewF) { 113 assert(F != &NewF && "Must not replace a function with itself!"); 114 F = &NewF; 115 } 116 117 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 118 LLVM_DUMP_METHOD void LazyCallGraph::Node::dump() const { 119 dbgs() << *this << '\n'; 120 } 121 #endif 122 123 LazyCallGraph::LazyCallGraph(Module &M) { 124 DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier() 125 << "\n"); 126 for (Function &F : M) 127 if (!F.isDeclaration() && !F.hasLocalLinkage()) { 128 DEBUG(dbgs() << " Adding '" << F.getName() 129 << "' to entry set of the graph.\n"); 130 addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), Edge::Ref); 131 } 132 133 // Now add entry nodes for functions reachable via initializers to globals. 134 SmallVector<Constant *, 16> Worklist; 135 SmallPtrSet<Constant *, 16> Visited; 136 for (GlobalVariable &GV : M.globals()) 137 if (GV.hasInitializer()) 138 if (Visited.insert(GV.getInitializer()).second) 139 Worklist.push_back(GV.getInitializer()); 140 141 DEBUG(dbgs() << " Adding functions referenced by global initializers to the " 142 "entry set.\n"); 143 visitReferences(Worklist, Visited, [&](Function &F) { 144 addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), 145 LazyCallGraph::Edge::Ref); 146 }); 147 } 148 149 LazyCallGraph::LazyCallGraph(LazyCallGraph &&G) 150 : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)), 151 EntryEdges(std::move(G.EntryEdges)), SCCBPA(std::move(G.SCCBPA)), 152 SCCMap(std::move(G.SCCMap)), LeafRefSCCs(std::move(G.LeafRefSCCs)) { 153 updateGraphPtrs(); 154 } 155 156 LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) { 157 BPA = std::move(G.BPA); 158 NodeMap = std::move(G.NodeMap); 159 EntryEdges = std::move(G.EntryEdges); 160 SCCBPA = std::move(G.SCCBPA); 161 SCCMap = std::move(G.SCCMap); 162 LeafRefSCCs = std::move(G.LeafRefSCCs); 163 updateGraphPtrs(); 164 return *this; 165 } 166 167 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 168 LLVM_DUMP_METHOD void LazyCallGraph::SCC::dump() const { 169 dbgs() << *this << '\n'; 170 } 171 #endif 172 173 #ifndef NDEBUG 174 void LazyCallGraph::SCC::verify() { 175 assert(OuterRefSCC && "Can't have a null RefSCC!"); 176 assert(!Nodes.empty() && "Can't have an empty SCC!"); 177 178 for (Node *N : Nodes) { 179 assert(N && "Can't have a null node!"); 180 assert(OuterRefSCC->G->lookupSCC(*N) == this && 181 "Node does not map to this SCC!"); 182 assert(N->DFSNumber == -1 && 183 "Must set DFS numbers to -1 when adding a node to an SCC!"); 184 assert(N->LowLink == -1 && 185 "Must set low link to -1 when adding a node to an SCC!"); 186 for (Edge &E : **N) 187 assert(E.getNode() && "Can't have an unpopulated node!"); 188 } 189 } 190 #endif 191 192 bool LazyCallGraph::SCC::isParentOf(const SCC &C) const { 193 if (this == &C) 194 return false; 195 196 for (Node &N : *this) 197 for (Edge &E : N->calls()) 198 if (OuterRefSCC->G->lookupSCC(E.getNode()) == &C) 199 return true; 200 201 // No edges found. 202 return false; 203 } 204 205 bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const { 206 if (this == &TargetC) 207 return false; 208 209 LazyCallGraph &G = *OuterRefSCC->G; 210 211 // Start with this SCC. 212 SmallPtrSet<const SCC *, 16> Visited = {this}; 213 SmallVector<const SCC *, 16> Worklist = {this}; 214 215 // Walk down the graph until we run out of edges or find a path to TargetC. 216 do { 217 const SCC &C = *Worklist.pop_back_val(); 218 for (Node &N : C) 219 for (Edge &E : N->calls()) { 220 SCC *CalleeC = G.lookupSCC(E.getNode()); 221 if (!CalleeC) 222 continue; 223 224 // If the callee's SCC is the TargetC, we're done. 225 if (CalleeC == &TargetC) 226 return true; 227 228 // If this is the first time we've reached this SCC, put it on the 229 // worklist to recurse through. 230 if (Visited.insert(CalleeC).second) 231 Worklist.push_back(CalleeC); 232 } 233 } while (!Worklist.empty()); 234 235 // No paths found. 236 return false; 237 } 238 239 LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {} 240 241 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 242 LLVM_DUMP_METHOD void LazyCallGraph::RefSCC::dump() const { 243 dbgs() << *this << '\n'; 244 } 245 #endif 246 247 #ifndef NDEBUG 248 void LazyCallGraph::RefSCC::verify() { 249 assert(G && "Can't have a null graph!"); 250 assert(!SCCs.empty() && "Can't have an empty SCC!"); 251 252 // Verify basic properties of the SCCs. 253 SmallPtrSet<SCC *, 4> SCCSet; 254 for (SCC *C : SCCs) { 255 assert(C && "Can't have a null SCC!"); 256 C->verify(); 257 assert(&C->getOuterRefSCC() == this && 258 "SCC doesn't think it is inside this RefSCC!"); 259 bool Inserted = SCCSet.insert(C).second; 260 assert(Inserted && "Found a duplicate SCC!"); 261 auto IndexIt = SCCIndices.find(C); 262 assert(IndexIt != SCCIndices.end() && 263 "Found an SCC that doesn't have an index!"); 264 } 265 266 // Check that our indices map correctly. 267 for (auto &SCCIndexPair : SCCIndices) { 268 SCC *C = SCCIndexPair.first; 269 int i = SCCIndexPair.second; 270 assert(C && "Can't have a null SCC in the indices!"); 271 assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!"); 272 assert(SCCs[i] == C && "Index doesn't point to SCC!"); 273 } 274 275 // Check that the SCCs are in fact in post-order. 276 for (int i = 0, Size = SCCs.size(); i < Size; ++i) { 277 SCC &SourceSCC = *SCCs[i]; 278 for (Node &N : SourceSCC) 279 for (Edge &E : *N) { 280 if (!E.isCall()) 281 continue; 282 SCC &TargetSCC = *G->lookupSCC(E.getNode()); 283 if (&TargetSCC.getOuterRefSCC() == this) { 284 assert(SCCIndices.find(&TargetSCC)->second <= i && 285 "Edge between SCCs violates post-order relationship."); 286 continue; 287 } 288 assert(TargetSCC.getOuterRefSCC().Parents.count(this) && 289 "Edge to a RefSCC missing us in its parent set."); 290 } 291 } 292 293 // Check that our parents are actually parents. 294 for (RefSCC *ParentRC : Parents) { 295 assert(ParentRC != this && "Cannot be our own parent!"); 296 auto HasConnectingEdge = [&] { 297 for (SCC &C : *ParentRC) 298 for (Node &N : C) 299 for (Edge &E : *N) 300 if (G->lookupRefSCC(E.getNode()) == this) 301 return true; 302 return false; 303 }; 304 assert(HasConnectingEdge() && "No edge connects the parent to us!"); 305 } 306 } 307 #endif 308 309 bool LazyCallGraph::RefSCC::isDescendantOf(const RefSCC &C) const { 310 // Walk up the parents of this SCC and verify that we eventually find C. 311 SmallVector<const RefSCC *, 4> AncestorWorklist; 312 AncestorWorklist.push_back(this); 313 do { 314 const RefSCC *AncestorC = AncestorWorklist.pop_back_val(); 315 if (AncestorC->isChildOf(C)) 316 return true; 317 for (const RefSCC *ParentC : AncestorC->Parents) 318 AncestorWorklist.push_back(ParentC); 319 } while (!AncestorWorklist.empty()); 320 321 return false; 322 } 323 324 /// Generic helper that updates a postorder sequence of SCCs for a potentially 325 /// cycle-introducing edge insertion. 326 /// 327 /// A postorder sequence of SCCs of a directed graph has one fundamental 328 /// property: all deges in the DAG of SCCs point "up" the sequence. That is, 329 /// all edges in the SCC DAG point to prior SCCs in the sequence. 330 /// 331 /// This routine both updates a postorder sequence and uses that sequence to 332 /// compute the set of SCCs connected into a cycle. It should only be called to 333 /// insert a "downward" edge which will require changing the sequence to 334 /// restore it to a postorder. 335 /// 336 /// When inserting an edge from an earlier SCC to a later SCC in some postorder 337 /// sequence, all of the SCCs which may be impacted are in the closed range of 338 /// those two within the postorder sequence. The algorithm used here to restore 339 /// the state is as follows: 340 /// 341 /// 1) Starting from the source SCC, construct a set of SCCs which reach the 342 /// source SCC consisting of just the source SCC. Then scan toward the 343 /// target SCC in postorder and for each SCC, if it has an edge to an SCC 344 /// in the set, add it to the set. Otherwise, the source SCC is not 345 /// a successor, move it in the postorder sequence to immediately before 346 /// the source SCC, shifting the source SCC and all SCCs in the set one 347 /// position toward the target SCC. Stop scanning after processing the 348 /// target SCC. 349 /// 2) If the source SCC is now past the target SCC in the postorder sequence, 350 /// and thus the new edge will flow toward the start, we are done. 351 /// 3) Otherwise, starting from the target SCC, walk all edges which reach an 352 /// SCC between the source and the target, and add them to the set of 353 /// connected SCCs, then recurse through them. Once a complete set of the 354 /// SCCs the target connects to is known, hoist the remaining SCCs between 355 /// the source and the target to be above the target. Note that there is no 356 /// need to process the source SCC, it is already known to connect. 357 /// 4) At this point, all of the SCCs in the closed range between the source 358 /// SCC and the target SCC in the postorder sequence are connected, 359 /// including the target SCC and the source SCC. Inserting the edge from 360 /// the source SCC to the target SCC will form a cycle out of precisely 361 /// these SCCs. Thus we can merge all of the SCCs in this closed range into 362 /// a single SCC. 363 /// 364 /// This process has various important properties: 365 /// - Only mutates the SCCs when adding the edge actually changes the SCC 366 /// structure. 367 /// - Never mutates SCCs which are unaffected by the change. 368 /// - Updates the postorder sequence to correctly satisfy the postorder 369 /// constraint after the edge is inserted. 370 /// - Only reorders SCCs in the closed postorder sequence from the source to 371 /// the target, so easy to bound how much has changed even in the ordering. 372 /// - Big-O is the number of edges in the closed postorder range of SCCs from 373 /// source to target. 374 /// 375 /// This helper routine, in addition to updating the postorder sequence itself 376 /// will also update a map from SCCs to indices within that sequecne. 377 /// 378 /// The sequence and the map must operate on pointers to the SCC type. 379 /// 380 /// Two callbacks must be provided. The first computes the subset of SCCs in 381 /// the postorder closed range from the source to the target which connect to 382 /// the source SCC via some (transitive) set of edges. The second computes the 383 /// subset of the same range which the target SCC connects to via some 384 /// (transitive) set of edges. Both callbacks should populate the set argument 385 /// provided. 386 template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT, 387 typename ComputeSourceConnectedSetCallableT, 388 typename ComputeTargetConnectedSetCallableT> 389 static iterator_range<typename PostorderSequenceT::iterator> 390 updatePostorderSequenceForEdgeInsertion( 391 SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs, 392 SCCIndexMapT &SCCIndices, 393 ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet, 394 ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) { 395 int SourceIdx = SCCIndices[&SourceSCC]; 396 int TargetIdx = SCCIndices[&TargetSCC]; 397 assert(SourceIdx < TargetIdx && "Cannot have equal indices here!"); 398 399 SmallPtrSet<SCCT *, 4> ConnectedSet; 400 401 // Compute the SCCs which (transitively) reach the source. 402 ComputeSourceConnectedSet(ConnectedSet); 403 404 // Partition the SCCs in this part of the port-order sequence so only SCCs 405 // connecting to the source remain between it and the target. This is 406 // a benign partition as it preserves postorder. 407 auto SourceI = std::stable_partition( 408 SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1, 409 [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); }); 410 for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i) 411 SCCIndices.find(SCCs[i])->second = i; 412 413 // If the target doesn't connect to the source, then we've corrected the 414 // post-order and there are no cycles formed. 415 if (!ConnectedSet.count(&TargetSCC)) { 416 assert(SourceI > (SCCs.begin() + SourceIdx) && 417 "Must have moved the source to fix the post-order."); 418 assert(*std::prev(SourceI) == &TargetSCC && 419 "Last SCC to move should have bene the target."); 420 421 // Return an empty range at the target SCC indicating there is nothing to 422 // merge. 423 return make_range(std::prev(SourceI), std::prev(SourceI)); 424 } 425 426 assert(SCCs[TargetIdx] == &TargetSCC && 427 "Should not have moved target if connected!"); 428 SourceIdx = SourceI - SCCs.begin(); 429 assert(SCCs[SourceIdx] == &SourceSCC && 430 "Bad updated index computation for the source SCC!"); 431 432 433 // See whether there are any remaining intervening SCCs between the source 434 // and target. If so we need to make sure they all are reachable form the 435 // target. 436 if (SourceIdx + 1 < TargetIdx) { 437 ConnectedSet.clear(); 438 ComputeTargetConnectedSet(ConnectedSet); 439 440 // Partition SCCs so that only SCCs reached from the target remain between 441 // the source and the target. This preserves postorder. 442 auto TargetI = std::stable_partition( 443 SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1, 444 [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); }); 445 for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i) 446 SCCIndices.find(SCCs[i])->second = i; 447 TargetIdx = std::prev(TargetI) - SCCs.begin(); 448 assert(SCCs[TargetIdx] == &TargetSCC && 449 "Should always end with the target!"); 450 } 451 452 // At this point, we know that connecting source to target forms a cycle 453 // because target connects back to source, and we know that all of the SCCs 454 // between the source and target in the postorder sequence participate in that 455 // cycle. 456 return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx); 457 } 458 459 SmallVector<LazyCallGraph::SCC *, 1> 460 LazyCallGraph::RefSCC::switchInternalEdgeToCall(Node &SourceN, Node &TargetN) { 461 assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!"); 462 SmallVector<SCC *, 1> DeletedSCCs; 463 464 #ifndef NDEBUG 465 // In a debug build, verify the RefSCC is valid to start with and when this 466 // routine finishes. 467 verify(); 468 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 469 #endif 470 471 SCC &SourceSCC = *G->lookupSCC(SourceN); 472 SCC &TargetSCC = *G->lookupSCC(TargetN); 473 474 // If the two nodes are already part of the same SCC, we're also done as 475 // we've just added more connectivity. 476 if (&SourceSCC == &TargetSCC) { 477 SourceN->setEdgeKind(TargetN, Edge::Call); 478 return DeletedSCCs; 479 } 480 481 // At this point we leverage the postorder list of SCCs to detect when the 482 // insertion of an edge changes the SCC structure in any way. 483 // 484 // First and foremost, we can eliminate the need for any changes when the 485 // edge is toward the beginning of the postorder sequence because all edges 486 // flow in that direction already. Thus adding a new one cannot form a cycle. 487 int SourceIdx = SCCIndices[&SourceSCC]; 488 int TargetIdx = SCCIndices[&TargetSCC]; 489 if (TargetIdx < SourceIdx) { 490 SourceN->setEdgeKind(TargetN, Edge::Call); 491 return DeletedSCCs; 492 } 493 494 // Compute the SCCs which (transitively) reach the source. 495 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) { 496 #ifndef NDEBUG 497 // Check that the RefSCC is still valid before computing this as the 498 // results will be nonsensical of we've broken its invariants. 499 verify(); 500 #endif 501 ConnectedSet.insert(&SourceSCC); 502 auto IsConnected = [&](SCC &C) { 503 for (Node &N : C) 504 for (Edge &E : N->calls()) 505 if (ConnectedSet.count(G->lookupSCC(E.getNode()))) 506 return true; 507 508 return false; 509 }; 510 511 for (SCC *C : 512 make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1)) 513 if (IsConnected(*C)) 514 ConnectedSet.insert(C); 515 }; 516 517 // Use a normal worklist to find which SCCs the target connects to. We still 518 // bound the search based on the range in the postorder list we care about, 519 // but because this is forward connectivity we just "recurse" through the 520 // edges. 521 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) { 522 #ifndef NDEBUG 523 // Check that the RefSCC is still valid before computing this as the 524 // results will be nonsensical of we've broken its invariants. 525 verify(); 526 #endif 527 ConnectedSet.insert(&TargetSCC); 528 SmallVector<SCC *, 4> Worklist; 529 Worklist.push_back(&TargetSCC); 530 do { 531 SCC &C = *Worklist.pop_back_val(); 532 for (Node &N : C) 533 for (Edge &E : *N) { 534 if (!E.isCall()) 535 continue; 536 SCC &EdgeC = *G->lookupSCC(E.getNode()); 537 if (&EdgeC.getOuterRefSCC() != this) 538 // Not in this RefSCC... 539 continue; 540 if (SCCIndices.find(&EdgeC)->second <= SourceIdx) 541 // Not in the postorder sequence between source and target. 542 continue; 543 544 if (ConnectedSet.insert(&EdgeC).second) 545 Worklist.push_back(&EdgeC); 546 } 547 } while (!Worklist.empty()); 548 }; 549 550 // Use a generic helper to update the postorder sequence of SCCs and return 551 // a range of any SCCs connected into a cycle by inserting this edge. This 552 // routine will also take care of updating the indices into the postorder 553 // sequence. 554 auto MergeRange = updatePostorderSequenceForEdgeInsertion( 555 SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet, 556 ComputeTargetConnectedSet); 557 558 // If the merge range is empty, then adding the edge didn't actually form any 559 // new cycles. We're done. 560 if (MergeRange.begin() == MergeRange.end()) { 561 // Now that the SCC structure is finalized, flip the kind to call. 562 SourceN->setEdgeKind(TargetN, Edge::Call); 563 return DeletedSCCs; 564 } 565 566 #ifndef NDEBUG 567 // Before merging, check that the RefSCC remains valid after all the 568 // postorder updates. 569 verify(); 570 #endif 571 572 // Otherwise we need to merge all of the SCCs in the cycle into a single 573 // result SCC. 574 // 575 // NB: We merge into the target because all of these functions were already 576 // reachable from the target, meaning any SCC-wide properties deduced about it 577 // other than the set of functions within it will not have changed. 578 for (SCC *C : MergeRange) { 579 assert(C != &TargetSCC && 580 "We merge *into* the target and shouldn't process it here!"); 581 SCCIndices.erase(C); 582 TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end()); 583 for (Node *N : C->Nodes) 584 G->SCCMap[N] = &TargetSCC; 585 C->clear(); 586 DeletedSCCs.push_back(C); 587 } 588 589 // Erase the merged SCCs from the list and update the indices of the 590 // remaining SCCs. 591 int IndexOffset = MergeRange.end() - MergeRange.begin(); 592 auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end()); 593 for (SCC *C : make_range(EraseEnd, SCCs.end())) 594 SCCIndices[C] -= IndexOffset; 595 596 // Now that the SCC structure is finalized, flip the kind to call. 597 SourceN->setEdgeKind(TargetN, Edge::Call); 598 599 // And we're done! 600 return DeletedSCCs; 601 } 602 603 void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node &SourceN, 604 Node &TargetN) { 605 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!"); 606 607 #ifndef NDEBUG 608 // In a debug build, verify the RefSCC is valid to start with and when this 609 // routine finishes. 610 verify(); 611 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 612 #endif 613 614 assert(G->lookupRefSCC(SourceN) == this && 615 "Source must be in this RefSCC."); 616 assert(G->lookupRefSCC(TargetN) == this && 617 "Target must be in this RefSCC."); 618 assert(G->lookupSCC(SourceN) != G->lookupSCC(TargetN) && 619 "Source and Target must be in separate SCCs for this to be trivial!"); 620 621 // Set the edge kind. 622 SourceN->setEdgeKind(TargetN, Edge::Ref); 623 } 624 625 iterator_range<LazyCallGraph::RefSCC::iterator> 626 LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) { 627 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!"); 628 629 #ifndef NDEBUG 630 // In a debug build, verify the RefSCC is valid to start with and when this 631 // routine finishes. 632 verify(); 633 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 634 #endif 635 636 assert(G->lookupRefSCC(SourceN) == this && 637 "Source must be in this RefSCC."); 638 assert(G->lookupRefSCC(TargetN) == this && 639 "Target must be in this RefSCC."); 640 641 SCC &TargetSCC = *G->lookupSCC(TargetN); 642 assert(G->lookupSCC(SourceN) == &TargetSCC && "Source and Target must be in " 643 "the same SCC to require the " 644 "full CG update."); 645 646 // Set the edge kind. 647 SourceN->setEdgeKind(TargetN, Edge::Ref); 648 649 // Otherwise we are removing a call edge from a single SCC. This may break 650 // the cycle. In order to compute the new set of SCCs, we need to do a small 651 // DFS over the nodes within the SCC to form any sub-cycles that remain as 652 // distinct SCCs and compute a postorder over the resulting SCCs. 653 // 654 // However, we specially handle the target node. The target node is known to 655 // reach all other nodes in the original SCC by definition. This means that 656 // we want the old SCC to be replaced with an SCC contaning that node as it 657 // will be the root of whatever SCC DAG results from the DFS. Assumptions 658 // about an SCC such as the set of functions called will continue to hold, 659 // etc. 660 661 SCC &OldSCC = TargetSCC; 662 SmallVector<std::pair<Node *, EdgeSequence::call_iterator>, 16> DFSStack; 663 SmallVector<Node *, 16> PendingSCCStack; 664 SmallVector<SCC *, 4> NewSCCs; 665 666 // Prepare the nodes for a fresh DFS. 667 SmallVector<Node *, 16> Worklist; 668 Worklist.swap(OldSCC.Nodes); 669 for (Node *N : Worklist) { 670 N->DFSNumber = N->LowLink = 0; 671 G->SCCMap.erase(N); 672 } 673 674 // Force the target node to be in the old SCC. This also enables us to take 675 // a very significant short-cut in the standard Tarjan walk to re-form SCCs 676 // below: whenever we build an edge that reaches the target node, we know 677 // that the target node eventually connects back to all other nodes in our 678 // walk. As a consequence, we can detect and handle participants in that 679 // cycle without walking all the edges that form this connection, and instead 680 // by relying on the fundamental guarantee coming into this operation (all 681 // nodes are reachable from the target due to previously forming an SCC). 682 TargetN.DFSNumber = TargetN.LowLink = -1; 683 OldSCC.Nodes.push_back(&TargetN); 684 G->SCCMap[&TargetN] = &OldSCC; 685 686 // Scan down the stack and DFS across the call edges. 687 for (Node *RootN : Worklist) { 688 assert(DFSStack.empty() && 689 "Cannot begin a new root with a non-empty DFS stack!"); 690 assert(PendingSCCStack.empty() && 691 "Cannot begin a new root with pending nodes for an SCC!"); 692 693 // Skip any nodes we've already reached in the DFS. 694 if (RootN->DFSNumber != 0) { 695 assert(RootN->DFSNumber == -1 && 696 "Shouldn't have any mid-DFS root nodes!"); 697 continue; 698 } 699 700 RootN->DFSNumber = RootN->LowLink = 1; 701 int NextDFSNumber = 2; 702 703 DFSStack.push_back({RootN, (*RootN)->call_begin()}); 704 do { 705 Node *N; 706 EdgeSequence::call_iterator I; 707 std::tie(N, I) = DFSStack.pop_back_val(); 708 auto E = (*N)->call_end(); 709 while (I != E) { 710 Node &ChildN = I->getNode(); 711 if (ChildN.DFSNumber == 0) { 712 // We haven't yet visited this child, so descend, pushing the current 713 // node onto the stack. 714 DFSStack.push_back({N, I}); 715 716 assert(!G->SCCMap.count(&ChildN) && 717 "Found a node with 0 DFS number but already in an SCC!"); 718 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++; 719 N = &ChildN; 720 I = (*N)->call_begin(); 721 E = (*N)->call_end(); 722 continue; 723 } 724 725 // Check for the child already being part of some component. 726 if (ChildN.DFSNumber == -1) { 727 if (G->lookupSCC(ChildN) == &OldSCC) { 728 // If the child is part of the old SCC, we know that it can reach 729 // every other node, so we have formed a cycle. Pull the entire DFS 730 // and pending stacks into it. See the comment above about setting 731 // up the old SCC for why we do this. 732 int OldSize = OldSCC.size(); 733 OldSCC.Nodes.push_back(N); 734 OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end()); 735 PendingSCCStack.clear(); 736 while (!DFSStack.empty()) 737 OldSCC.Nodes.push_back(DFSStack.pop_back_val().first); 738 for (Node &N : make_range(OldSCC.begin() + OldSize, OldSCC.end())) { 739 N.DFSNumber = N.LowLink = -1; 740 G->SCCMap[&N] = &OldSCC; 741 } 742 N = nullptr; 743 break; 744 } 745 746 // If the child has already been added to some child component, it 747 // couldn't impact the low-link of this parent because it isn't 748 // connected, and thus its low-link isn't relevant so skip it. 749 ++I; 750 continue; 751 } 752 753 // Track the lowest linked child as the lowest link for this node. 754 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); 755 if (ChildN.LowLink < N->LowLink) 756 N->LowLink = ChildN.LowLink; 757 758 // Move to the next edge. 759 ++I; 760 } 761 if (!N) 762 // Cleared the DFS early, start another round. 763 break; 764 765 // We've finished processing N and its descendents, put it on our pending 766 // SCC stack to eventually get merged into an SCC of nodes. 767 PendingSCCStack.push_back(N); 768 769 // If this node is linked to some lower entry, continue walking up the 770 // stack. 771 if (N->LowLink != N->DFSNumber) 772 continue; 773 774 // Otherwise, we've completed an SCC. Append it to our post order list of 775 // SCCs. 776 int RootDFSNumber = N->DFSNumber; 777 // Find the range of the node stack by walking down until we pass the 778 // root DFS number. 779 auto SCCNodes = make_range( 780 PendingSCCStack.rbegin(), 781 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) { 782 return N->DFSNumber < RootDFSNumber; 783 })); 784 785 // Form a new SCC out of these nodes and then clear them off our pending 786 // stack. 787 NewSCCs.push_back(G->createSCC(*this, SCCNodes)); 788 for (Node &N : *NewSCCs.back()) { 789 N.DFSNumber = N.LowLink = -1; 790 G->SCCMap[&N] = NewSCCs.back(); 791 } 792 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end()); 793 } while (!DFSStack.empty()); 794 } 795 796 // Insert the remaining SCCs before the old one. The old SCC can reach all 797 // other SCCs we form because it contains the target node of the removed edge 798 // of the old SCC. This means that we will have edges into all of the new 799 // SCCs, which means the old one must come last for postorder. 800 int OldIdx = SCCIndices[&OldSCC]; 801 SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end()); 802 803 // Update the mapping from SCC* to index to use the new SCC*s, and remove the 804 // old SCC from the mapping. 805 for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx) 806 SCCIndices[SCCs[Idx]] = Idx; 807 808 return make_range(SCCs.begin() + OldIdx, 809 SCCs.begin() + OldIdx + NewSCCs.size()); 810 } 811 812 void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN, 813 Node &TargetN) { 814 assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!"); 815 816 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 817 assert(G->lookupRefSCC(TargetN) != this && 818 "Target must not be in this RefSCC."); 819 #ifdef EXPENSIVE_CHECKS 820 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && 821 "Target must be a descendant of the Source."); 822 #endif 823 824 // Edges between RefSCCs are the same regardless of call or ref, so we can 825 // just flip the edge here. 826 SourceN->setEdgeKind(TargetN, Edge::Call); 827 828 #ifndef NDEBUG 829 // Check that the RefSCC is still valid. 830 verify(); 831 #endif 832 } 833 834 void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN, 835 Node &TargetN) { 836 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!"); 837 838 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 839 assert(G->lookupRefSCC(TargetN) != this && 840 "Target must not be in this RefSCC."); 841 #ifdef EXPENSIVE_CHECKS 842 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && 843 "Target must be a descendant of the Source."); 844 #endif 845 846 // Edges between RefSCCs are the same regardless of call or ref, so we can 847 // just flip the edge here. 848 SourceN->setEdgeKind(TargetN, Edge::Ref); 849 850 #ifndef NDEBUG 851 // Check that the RefSCC is still valid. 852 verify(); 853 #endif 854 } 855 856 void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN, 857 Node &TargetN) { 858 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 859 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC."); 860 861 SourceN->insertEdgeInternal(TargetN, Edge::Ref); 862 863 #ifndef NDEBUG 864 // Check that the RefSCC is still valid. 865 verify(); 866 #endif 867 } 868 869 void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN, 870 Edge::Kind EK) { 871 // First insert it into the caller. 872 SourceN->insertEdgeInternal(TargetN, EK); 873 874 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 875 876 RefSCC &TargetC = *G->lookupRefSCC(TargetN); 877 assert(&TargetC != this && "Target must not be in this RefSCC."); 878 #ifdef EXPENSIVE_CHECKS 879 assert(TargetC.isDescendantOf(*this) && 880 "Target must be a descendant of the Source."); 881 #endif 882 883 // The only change required is to add this SCC to the parent set of the 884 // callee. 885 TargetC.Parents.insert(this); 886 887 #ifndef NDEBUG 888 // Check that the RefSCC is still valid. 889 verify(); 890 #endif 891 } 892 893 SmallVector<LazyCallGraph::RefSCC *, 1> 894 LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) { 895 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC."); 896 RefSCC &SourceC = *G->lookupRefSCC(SourceN); 897 assert(&SourceC != this && "Source must not be in this RefSCC."); 898 #ifdef EXPENSIVE_CHECKS 899 assert(SourceC.isDescendantOf(*this) && 900 "Source must be a descendant of the Target."); 901 #endif 902 903 SmallVector<RefSCC *, 1> DeletedRefSCCs; 904 905 #ifndef NDEBUG 906 // In a debug build, verify the RefSCC is valid to start with and when this 907 // routine finishes. 908 verify(); 909 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 910 #endif 911 912 int SourceIdx = G->RefSCCIndices[&SourceC]; 913 int TargetIdx = G->RefSCCIndices[this]; 914 assert(SourceIdx < TargetIdx && 915 "Postorder list doesn't see edge as incoming!"); 916 917 // Compute the RefSCCs which (transitively) reach the source. We do this by 918 // working backwards from the source using the parent set in each RefSCC, 919 // skipping any RefSCCs that don't fall in the postorder range. This has the 920 // advantage of walking the sparser parent edge (in high fan-out graphs) but 921 // more importantly this removes examining all forward edges in all RefSCCs 922 // within the postorder range which aren't in fact connected. Only connected 923 // RefSCCs (and their edges) are visited here. 924 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) { 925 Set.insert(&SourceC); 926 SmallVector<RefSCC *, 4> Worklist; 927 Worklist.push_back(&SourceC); 928 do { 929 RefSCC &RC = *Worklist.pop_back_val(); 930 for (RefSCC &ParentRC : RC.parents()) { 931 // Skip any RefSCCs outside the range of source to target in the 932 // postorder sequence. 933 int ParentIdx = G->getRefSCCIndex(ParentRC); 934 assert(ParentIdx > SourceIdx && "Parent cannot precede source in postorder!"); 935 if (ParentIdx > TargetIdx) 936 continue; 937 if (Set.insert(&ParentRC).second) 938 // First edge connecting to this parent, add it to our worklist. 939 Worklist.push_back(&ParentRC); 940 } 941 } while (!Worklist.empty()); 942 }; 943 944 // Use a normal worklist to find which SCCs the target connects to. We still 945 // bound the search based on the range in the postorder list we care about, 946 // but because this is forward connectivity we just "recurse" through the 947 // edges. 948 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) { 949 Set.insert(this); 950 SmallVector<RefSCC *, 4> Worklist; 951 Worklist.push_back(this); 952 do { 953 RefSCC &RC = *Worklist.pop_back_val(); 954 for (SCC &C : RC) 955 for (Node &N : C) 956 for (Edge &E : *N) { 957 RefSCC &EdgeRC = *G->lookupRefSCC(E.getNode()); 958 if (G->getRefSCCIndex(EdgeRC) <= SourceIdx) 959 // Not in the postorder sequence between source and target. 960 continue; 961 962 if (Set.insert(&EdgeRC).second) 963 Worklist.push_back(&EdgeRC); 964 } 965 } while (!Worklist.empty()); 966 }; 967 968 // Use a generic helper to update the postorder sequence of RefSCCs and return 969 // a range of any RefSCCs connected into a cycle by inserting this edge. This 970 // routine will also take care of updating the indices into the postorder 971 // sequence. 972 iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange = 973 updatePostorderSequenceForEdgeInsertion( 974 SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices, 975 ComputeSourceConnectedSet, ComputeTargetConnectedSet); 976 977 // Build a set so we can do fast tests for whether a RefSCC will end up as 978 // part of the merged RefSCC. 979 SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end()); 980 981 // This RefSCC will always be part of that set, so just insert it here. 982 MergeSet.insert(this); 983 984 // Now that we have identified all of the SCCs which need to be merged into 985 // a connected set with the inserted edge, merge all of them into this SCC. 986 SmallVector<SCC *, 16> MergedSCCs; 987 int SCCIndex = 0; 988 for (RefSCC *RC : MergeRange) { 989 assert(RC != this && "We're merging into the target RefSCC, so it " 990 "shouldn't be in the range."); 991 992 // Merge the parents which aren't part of the merge into the our parents. 993 for (RefSCC *ParentRC : RC->Parents) 994 if (!MergeSet.count(ParentRC)) 995 Parents.insert(ParentRC); 996 RC->Parents.clear(); 997 998 // Walk the inner SCCs to update their up-pointer and walk all the edges to 999 // update any parent sets. 1000 // FIXME: We should try to find a way to avoid this (rather expensive) edge 1001 // walk by updating the parent sets in some other manner. 1002 for (SCC &InnerC : *RC) { 1003 InnerC.OuterRefSCC = this; 1004 SCCIndices[&InnerC] = SCCIndex++; 1005 for (Node &N : InnerC) { 1006 G->SCCMap[&N] = &InnerC; 1007 for (Edge &E : *N) { 1008 RefSCC &ChildRC = *G->lookupRefSCC(E.getNode()); 1009 if (MergeSet.count(&ChildRC)) 1010 continue; 1011 ChildRC.Parents.erase(RC); 1012 ChildRC.Parents.insert(this); 1013 } 1014 } 1015 } 1016 1017 // Now merge in the SCCs. We can actually move here so try to reuse storage 1018 // the first time through. 1019 if (MergedSCCs.empty()) 1020 MergedSCCs = std::move(RC->SCCs); 1021 else 1022 MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end()); 1023 RC->SCCs.clear(); 1024 DeletedRefSCCs.push_back(RC); 1025 } 1026 1027 // Append our original SCCs to the merged list and move it into place. 1028 for (SCC &InnerC : *this) 1029 SCCIndices[&InnerC] = SCCIndex++; 1030 MergedSCCs.append(SCCs.begin(), SCCs.end()); 1031 SCCs = std::move(MergedSCCs); 1032 1033 // Remove the merged away RefSCCs from the post order sequence. 1034 for (RefSCC *RC : MergeRange) 1035 G->RefSCCIndices.erase(RC); 1036 int IndexOffset = MergeRange.end() - MergeRange.begin(); 1037 auto EraseEnd = 1038 G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end()); 1039 for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end())) 1040 G->RefSCCIndices[RC] -= IndexOffset; 1041 1042 // At this point we have a merged RefSCC with a post-order SCCs list, just 1043 // connect the nodes to form the new edge. 1044 SourceN->insertEdgeInternal(TargetN, Edge::Ref); 1045 1046 // We return the list of SCCs which were merged so that callers can 1047 // invalidate any data they have associated with those SCCs. Note that these 1048 // SCCs are no longer in an interesting state (they are totally empty) but 1049 // the pointers will remain stable for the life of the graph itself. 1050 return DeletedRefSCCs; 1051 } 1052 1053 void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) { 1054 assert(G->lookupRefSCC(SourceN) == this && 1055 "The source must be a member of this RefSCC."); 1056 1057 RefSCC &TargetRC = *G->lookupRefSCC(TargetN); 1058 assert(&TargetRC != this && "The target must not be a member of this RefSCC"); 1059 1060 assert(!is_contained(G->LeafRefSCCs, this) && 1061 "Cannot have a leaf RefSCC source."); 1062 1063 #ifndef NDEBUG 1064 // In a debug build, verify the RefSCC is valid to start with and when this 1065 // routine finishes. 1066 verify(); 1067 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 1068 #endif 1069 1070 // First remove it from the node. 1071 bool Removed = SourceN->removeEdgeInternal(TargetN); 1072 (void)Removed; 1073 assert(Removed && "Target not in the edge set for this caller?"); 1074 1075 bool HasOtherEdgeToChildRC = false; 1076 bool HasOtherChildRC = false; 1077 for (SCC *InnerC : SCCs) { 1078 for (Node &N : *InnerC) { 1079 for (Edge &E : *N) { 1080 RefSCC &OtherChildRC = *G->lookupRefSCC(E.getNode()); 1081 if (&OtherChildRC == &TargetRC) { 1082 HasOtherEdgeToChildRC = true; 1083 break; 1084 } 1085 if (&OtherChildRC != this) 1086 HasOtherChildRC = true; 1087 } 1088 if (HasOtherEdgeToChildRC) 1089 break; 1090 } 1091 if (HasOtherEdgeToChildRC) 1092 break; 1093 } 1094 // Because the SCCs form a DAG, deleting such an edge cannot change the set 1095 // of SCCs in the graph. However, it may cut an edge of the SCC DAG, making 1096 // the source SCC no longer connected to the target SCC. If so, we need to 1097 // update the target SCC's map of its parents. 1098 if (!HasOtherEdgeToChildRC) { 1099 bool Removed = TargetRC.Parents.erase(this); 1100 (void)Removed; 1101 assert(Removed && 1102 "Did not find the source SCC in the target SCC's parent list!"); 1103 1104 // It may orphan an SCC if it is the last edge reaching it, but that does 1105 // not violate any invariants of the graph. 1106 if (TargetRC.Parents.empty()) 1107 DEBUG(dbgs() << "LCG: Update removing " << SourceN.getFunction().getName() 1108 << " -> " << TargetN.getFunction().getName() 1109 << " edge orphaned the callee's SCC!\n"); 1110 1111 // It may make the Source SCC a leaf SCC. 1112 if (!HasOtherChildRC) 1113 G->LeafRefSCCs.push_back(this); 1114 } 1115 } 1116 1117 SmallVector<LazyCallGraph::RefSCC *, 1> 1118 LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN, Node &TargetN) { 1119 assert(!(*SourceN)[TargetN].isCall() && 1120 "Cannot remove a call edge, it must first be made a ref edge"); 1121 1122 #ifndef NDEBUG 1123 // In a debug build, verify the RefSCC is valid to start with and when this 1124 // routine finishes. 1125 verify(); 1126 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 1127 #endif 1128 1129 // First remove the actual edge. 1130 bool Removed = SourceN->removeEdgeInternal(TargetN); 1131 (void)Removed; 1132 assert(Removed && "Target not in the edge set for this caller?"); 1133 1134 // We return a list of the resulting *new* RefSCCs in post-order. 1135 SmallVector<RefSCC *, 1> Result; 1136 1137 // Direct recursion doesn't impact the SCC graph at all. 1138 if (&SourceN == &TargetN) 1139 return Result; 1140 1141 // If this ref edge is within an SCC then there are sufficient other edges to 1142 // form a cycle without this edge so removing it is a no-op. 1143 SCC &SourceC = *G->lookupSCC(SourceN); 1144 SCC &TargetC = *G->lookupSCC(TargetN); 1145 if (&SourceC == &TargetC) 1146 return Result; 1147 1148 // We build somewhat synthetic new RefSCCs by providing a postorder mapping 1149 // for each inner SCC. We also store these associated with *nodes* rather 1150 // than SCCs because this saves a round-trip through the node->SCC map and in 1151 // the common case, SCCs are small. We will verify that we always give the 1152 // same number to every node in the SCC such that these are equivalent. 1153 const int RootPostOrderNumber = 0; 1154 int PostOrderNumber = RootPostOrderNumber + 1; 1155 SmallDenseMap<Node *, int> PostOrderMapping; 1156 1157 // Every node in the target SCC can already reach every node in this RefSCC 1158 // (by definition). It is the only node we know will stay inside this RefSCC. 1159 // Everything which transitively reaches Target will also remain in the 1160 // RefSCC. We handle this by pre-marking that the nodes in the target SCC map 1161 // back to the root post order number. 1162 // 1163 // This also enables us to take a very significant short-cut in the standard 1164 // Tarjan walk to re-form RefSCCs below: whenever we build an edge that 1165 // references the target node, we know that the target node eventually 1166 // references all other nodes in our walk. As a consequence, we can detect 1167 // and handle participants in that cycle without walking all the edges that 1168 // form the connections, and instead by relying on the fundamental guarantee 1169 // coming into this operation. 1170 for (Node &N : TargetC) 1171 PostOrderMapping[&N] = RootPostOrderNumber; 1172 1173 // Reset all the other nodes to prepare for a DFS over them, and add them to 1174 // our worklist. 1175 SmallVector<Node *, 8> Worklist; 1176 for (SCC *C : SCCs) { 1177 if (C == &TargetC) 1178 continue; 1179 1180 for (Node &N : *C) 1181 N.DFSNumber = N.LowLink = 0; 1182 1183 Worklist.append(C->Nodes.begin(), C->Nodes.end()); 1184 } 1185 1186 auto MarkNodeForSCCNumber = [&PostOrderMapping](Node &N, int Number) { 1187 N.DFSNumber = N.LowLink = -1; 1188 PostOrderMapping[&N] = Number; 1189 }; 1190 1191 SmallVector<std::pair<Node *, EdgeSequence::iterator>, 4> DFSStack; 1192 SmallVector<Node *, 4> PendingRefSCCStack; 1193 do { 1194 assert(DFSStack.empty() && 1195 "Cannot begin a new root with a non-empty DFS stack!"); 1196 assert(PendingRefSCCStack.empty() && 1197 "Cannot begin a new root with pending nodes for an SCC!"); 1198 1199 Node *RootN = Worklist.pop_back_val(); 1200 // Skip any nodes we've already reached in the DFS. 1201 if (RootN->DFSNumber != 0) { 1202 assert(RootN->DFSNumber == -1 && 1203 "Shouldn't have any mid-DFS root nodes!"); 1204 continue; 1205 } 1206 1207 RootN->DFSNumber = RootN->LowLink = 1; 1208 int NextDFSNumber = 2; 1209 1210 DFSStack.push_back({RootN, (*RootN)->begin()}); 1211 do { 1212 Node *N; 1213 EdgeSequence::iterator I; 1214 std::tie(N, I) = DFSStack.pop_back_val(); 1215 auto E = (*N)->end(); 1216 1217 assert(N->DFSNumber != 0 && "We should always assign a DFS number " 1218 "before processing a node."); 1219 1220 while (I != E) { 1221 Node &ChildN = I->getNode(); 1222 if (ChildN.DFSNumber == 0) { 1223 // Mark that we should start at this child when next this node is the 1224 // top of the stack. We don't start at the next child to ensure this 1225 // child's lowlink is reflected. 1226 DFSStack.push_back({N, I}); 1227 1228 // Continue, resetting to the child node. 1229 ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++; 1230 N = &ChildN; 1231 I = ChildN->begin(); 1232 E = ChildN->end(); 1233 continue; 1234 } 1235 if (ChildN.DFSNumber == -1) { 1236 // Check if this edge's target node connects to the deleted edge's 1237 // target node. If so, we know that every node connected will end up 1238 // in this RefSCC, so collapse the entire current stack into the root 1239 // slot in our SCC numbering. See above for the motivation of 1240 // optimizing the target connected nodes in this way. 1241 auto PostOrderI = PostOrderMapping.find(&ChildN); 1242 if (PostOrderI != PostOrderMapping.end() && 1243 PostOrderI->second == RootPostOrderNumber) { 1244 MarkNodeForSCCNumber(*N, RootPostOrderNumber); 1245 while (!PendingRefSCCStack.empty()) 1246 MarkNodeForSCCNumber(*PendingRefSCCStack.pop_back_val(), 1247 RootPostOrderNumber); 1248 while (!DFSStack.empty()) 1249 MarkNodeForSCCNumber(*DFSStack.pop_back_val().first, 1250 RootPostOrderNumber); 1251 // Ensure we break all the way out of the enclosing loop. 1252 N = nullptr; 1253 break; 1254 } 1255 1256 // If this child isn't currently in this RefSCC, no need to process 1257 // it. However, we do need to remove this RefSCC from its RefSCC's 1258 // parent set. 1259 RefSCC &ChildRC = *G->lookupRefSCC(ChildN); 1260 ChildRC.Parents.erase(this); 1261 ++I; 1262 continue; 1263 } 1264 1265 // Track the lowest link of the children, if any are still in the stack. 1266 // Any child not on the stack will have a LowLink of -1. 1267 assert(ChildN.LowLink != 0 && 1268 "Low-link must not be zero with a non-zero DFS number."); 1269 if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink) 1270 N->LowLink = ChildN.LowLink; 1271 ++I; 1272 } 1273 if (!N) 1274 // We short-circuited this node. 1275 break; 1276 1277 // We've finished processing N and its descendents, put it on our pending 1278 // stack to eventually get merged into a RefSCC. 1279 PendingRefSCCStack.push_back(N); 1280 1281 // If this node is linked to some lower entry, continue walking up the 1282 // stack. 1283 if (N->LowLink != N->DFSNumber) { 1284 assert(!DFSStack.empty() && 1285 "We never found a viable root for a RefSCC to pop off!"); 1286 continue; 1287 } 1288 1289 // Otherwise, form a new RefSCC from the top of the pending node stack. 1290 int RootDFSNumber = N->DFSNumber; 1291 // Find the range of the node stack by walking down until we pass the 1292 // root DFS number. 1293 auto RefSCCNodes = make_range( 1294 PendingRefSCCStack.rbegin(), 1295 find_if(reverse(PendingRefSCCStack), [RootDFSNumber](const Node *N) { 1296 return N->DFSNumber < RootDFSNumber; 1297 })); 1298 1299 // Mark the postorder number for these nodes and clear them off the 1300 // stack. We'll use the postorder number to pull them into RefSCCs at the 1301 // end. FIXME: Fuse with the loop above. 1302 int RefSCCNumber = PostOrderNumber++; 1303 for (Node *N : RefSCCNodes) 1304 MarkNodeForSCCNumber(*N, RefSCCNumber); 1305 1306 PendingRefSCCStack.erase(RefSCCNodes.end().base(), 1307 PendingRefSCCStack.end()); 1308 } while (!DFSStack.empty()); 1309 1310 assert(DFSStack.empty() && "Didn't flush the entire DFS stack!"); 1311 assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!"); 1312 } while (!Worklist.empty()); 1313 1314 // We now have a post-order numbering for RefSCCs and a mapping from each 1315 // node in this RefSCC to its final RefSCC. We create each new RefSCC node 1316 // (re-using this RefSCC node for the root) and build a radix-sort style map 1317 // from postorder number to the RefSCC. We then append SCCs to each of these 1318 // RefSCCs in the order they occured in the original SCCs container. 1319 for (int i = 1; i < PostOrderNumber; ++i) 1320 Result.push_back(G->createRefSCC(*G)); 1321 1322 // Insert the resulting postorder sequence into the global graph postorder 1323 // sequence before the current RefSCC in that sequence. The idea being that 1324 // this RefSCC is the target of the reference edge removed, and thus has 1325 // a direct or indirect edge to every other RefSCC formed and so must be at 1326 // the end of any postorder traversal. 1327 // 1328 // FIXME: It'd be nice to change the APIs so that we returned an iterator 1329 // range over the global postorder sequence and generally use that sequence 1330 // rather than building a separate result vector here. 1331 if (!Result.empty()) { 1332 int Idx = G->getRefSCCIndex(*this); 1333 G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx, 1334 Result.begin(), Result.end()); 1335 for (int i : seq<int>(Idx, G->PostOrderRefSCCs.size())) 1336 G->RefSCCIndices[G->PostOrderRefSCCs[i]] = i; 1337 assert(G->PostOrderRefSCCs[G->getRefSCCIndex(*this)] == this && 1338 "Failed to update this RefSCC's index after insertion!"); 1339 } 1340 1341 for (SCC *C : SCCs) { 1342 auto PostOrderI = PostOrderMapping.find(&*C->begin()); 1343 assert(PostOrderI != PostOrderMapping.end() && 1344 "Cannot have missing mappings for nodes!"); 1345 int SCCNumber = PostOrderI->second; 1346 #ifndef NDEBUG 1347 for (Node &N : *C) 1348 assert(PostOrderMapping.find(&N)->second == SCCNumber && 1349 "Cannot have different numbers for nodes in the same SCC!"); 1350 #endif 1351 if (SCCNumber == 0) 1352 // The root node is handled separately by removing the SCCs. 1353 continue; 1354 1355 RefSCC &RC = *Result[SCCNumber - 1]; 1356 int SCCIndex = RC.SCCs.size(); 1357 RC.SCCs.push_back(C); 1358 RC.SCCIndices[C] = SCCIndex; 1359 C->OuterRefSCC = &RC; 1360 } 1361 1362 // FIXME: We re-walk the edges in each RefSCC to establish whether it is 1363 // a leaf and connect it to the rest of the graph's parents lists. This is 1364 // really wasteful. We should instead do this during the DFS to avoid yet 1365 // another edge walk. 1366 for (RefSCC *RC : Result) 1367 G->connectRefSCC(*RC); 1368 1369 // Now erase all but the root's SCCs. 1370 SCCs.erase(remove_if(SCCs, 1371 [&](SCC *C) { 1372 return PostOrderMapping.lookup(&*C->begin()) != 1373 RootPostOrderNumber; 1374 }), 1375 SCCs.end()); 1376 SCCIndices.clear(); 1377 for (int i = 0, Size = SCCs.size(); i < Size; ++i) 1378 SCCIndices[SCCs[i]] = i; 1379 1380 #ifndef NDEBUG 1381 // Now we need to reconnect the current (root) SCC to the graph. We do this 1382 // manually because we can special case our leaf handling and detect errors. 1383 bool IsLeaf = true; 1384 #endif 1385 for (SCC *C : SCCs) 1386 for (Node &N : *C) { 1387 for (Edge &E : *N) { 1388 RefSCC &ChildRC = *G->lookupRefSCC(E.getNode()); 1389 if (&ChildRC == this) 1390 continue; 1391 ChildRC.Parents.insert(this); 1392 #ifndef NDEBUG 1393 IsLeaf = false; 1394 #endif 1395 } 1396 } 1397 #ifndef NDEBUG 1398 if (!Result.empty()) 1399 assert(!IsLeaf && "This SCC cannot be a leaf as we have split out new " 1400 "SCCs by removing this edge."); 1401 if (none_of(G->LeafRefSCCs, [&](RefSCC *C) { return C == this; })) 1402 assert(!IsLeaf && "This SCC cannot be a leaf as it already had child " 1403 "SCCs before we removed this edge."); 1404 #endif 1405 // And connect both this RefSCC and all the new ones to the correct parents. 1406 // The easiest way to do this is just to re-analyze the old parent set. 1407 SmallVector<RefSCC *, 4> OldParents(Parents.begin(), Parents.end()); 1408 Parents.clear(); 1409 for (RefSCC *ParentRC : OldParents) 1410 for (SCC &ParentC : *ParentRC) 1411 for (Node &ParentN : ParentC) 1412 for (Edge &E : *ParentN) { 1413 RefSCC &RC = *G->lookupRefSCC(E.getNode()); 1414 if (&RC != ParentRC) 1415 RC.Parents.insert(ParentRC); 1416 } 1417 1418 // If this SCC stopped being a leaf through this edge removal, remove it from 1419 // the leaf SCC list. Note that this DTRT in the case where this was never 1420 // a leaf. 1421 // FIXME: As LeafRefSCCs could be very large, we might want to not walk the 1422 // entire list if this RefSCC wasn't a leaf before the edge removal. 1423 if (!Result.empty()) 1424 G->LeafRefSCCs.erase( 1425 std::remove(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(), this), 1426 G->LeafRefSCCs.end()); 1427 1428 #ifndef NDEBUG 1429 // Verify all of the new RefSCCs. 1430 for (RefSCC *RC : Result) 1431 RC->verify(); 1432 #endif 1433 1434 // Return the new list of SCCs. 1435 return Result; 1436 } 1437 1438 void LazyCallGraph::RefSCC::handleTrivialEdgeInsertion(Node &SourceN, 1439 Node &TargetN) { 1440 // The only trivial case that requires any graph updates is when we add new 1441 // ref edge and may connect different RefSCCs along that path. This is only 1442 // because of the parents set. Every other part of the graph remains constant 1443 // after this edge insertion. 1444 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 1445 RefSCC &TargetRC = *G->lookupRefSCC(TargetN); 1446 if (&TargetRC == this) { 1447 1448 return; 1449 } 1450 1451 #ifdef EXPENSIVE_CHECKS 1452 assert(TargetRC.isDescendantOf(*this) && 1453 "Target must be a descendant of the Source."); 1454 #endif 1455 // The only change required is to add this RefSCC to the parent set of the 1456 // target. This is a set and so idempotent if the edge already existed. 1457 TargetRC.Parents.insert(this); 1458 } 1459 1460 void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN, 1461 Node &TargetN) { 1462 #ifndef NDEBUG 1463 // Check that the RefSCC is still valid when we finish. 1464 auto ExitVerifier = make_scope_exit([this] { verify(); }); 1465 1466 #ifdef EXPENSIVE_CHECKS 1467 // Check that we aren't breaking some invariants of the SCC graph. Note that 1468 // this is quadratic in the number of edges in the call graph! 1469 SCC &SourceC = *G->lookupSCC(SourceN); 1470 SCC &TargetC = *G->lookupSCC(TargetN); 1471 if (&SourceC != &TargetC) 1472 assert(SourceC.isAncestorOf(TargetC) && 1473 "Call edge is not trivial in the SCC graph!"); 1474 #endif // EXPENSIVE_CHECKS 1475 #endif // NDEBUG 1476 1477 // First insert it into the source or find the existing edge. 1478 auto InsertResult = 1479 SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()}); 1480 if (!InsertResult.second) { 1481 // Already an edge, just update it. 1482 Edge &E = SourceN->Edges[InsertResult.first->second]; 1483 if (E.isCall()) 1484 return; // Nothing to do! 1485 E.setKind(Edge::Call); 1486 } else { 1487 // Create the new edge. 1488 SourceN->Edges.emplace_back(TargetN, Edge::Call); 1489 } 1490 1491 // Now that we have the edge, handle the graph fallout. 1492 handleTrivialEdgeInsertion(SourceN, TargetN); 1493 } 1494 1495 void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) { 1496 #ifndef NDEBUG 1497 // Check that the RefSCC is still valid when we finish. 1498 auto ExitVerifier = make_scope_exit([this] { verify(); }); 1499 1500 #ifdef EXPENSIVE_CHECKS 1501 // Check that we aren't breaking some invariants of the RefSCC graph. 1502 RefSCC &SourceRC = *G->lookupRefSCC(SourceN); 1503 RefSCC &TargetRC = *G->lookupRefSCC(TargetN); 1504 if (&SourceRC != &TargetRC) 1505 assert(SourceRC.isAncestorOf(TargetRC) && 1506 "Ref edge is not trivial in the RefSCC graph!"); 1507 #endif // EXPENSIVE_CHECKS 1508 #endif // NDEBUG 1509 1510 // First insert it into the source or find the existing edge. 1511 auto InsertResult = 1512 SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()}); 1513 if (!InsertResult.second) 1514 // Already an edge, we're done. 1515 return; 1516 1517 // Create the new edge. 1518 SourceN->Edges.emplace_back(TargetN, Edge::Ref); 1519 1520 // Now that we have the edge, handle the graph fallout. 1521 handleTrivialEdgeInsertion(SourceN, TargetN); 1522 } 1523 1524 void LazyCallGraph::RefSCC::replaceNodeFunction(Node &N, Function &NewF) { 1525 Function &OldF = N.getFunction(); 1526 1527 #ifndef NDEBUG 1528 // Check that the RefSCC is still valid when we finish. 1529 auto ExitVerifier = make_scope_exit([this] { verify(); }); 1530 1531 assert(G->lookupRefSCC(N) == this && 1532 "Cannot replace the function of a node outside this RefSCC."); 1533 1534 assert(G->NodeMap.find(&NewF) == G->NodeMap.end() && 1535 "Must not have already walked the new function!'"); 1536 1537 // It is important that this replacement not introduce graph changes so we 1538 // insist that the caller has already removed every use of the original 1539 // function and that all uses of the new function correspond to existing 1540 // edges in the graph. The common and expected way to use this is when 1541 // replacing the function itself in the IR without changing the call graph 1542 // shape and just updating the analysis based on that. 1543 assert(&OldF != &NewF && "Cannot replace a function with itself!"); 1544 assert(OldF.use_empty() && 1545 "Must have moved all uses from the old function to the new!"); 1546 #endif 1547 1548 N.replaceFunction(NewF); 1549 1550 // Update various call graph maps. 1551 G->NodeMap.erase(&OldF); 1552 G->NodeMap[&NewF] = &N; 1553 } 1554 1555 void LazyCallGraph::insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK) { 1556 assert(SCCMap.empty() && 1557 "This method cannot be called after SCCs have been formed!"); 1558 1559 return SourceN->insertEdgeInternal(TargetN, EK); 1560 } 1561 1562 void LazyCallGraph::removeEdge(Node &SourceN, Node &TargetN) { 1563 assert(SCCMap.empty() && 1564 "This method cannot be called after SCCs have been formed!"); 1565 1566 bool Removed = SourceN->removeEdgeInternal(TargetN); 1567 (void)Removed; 1568 assert(Removed && "Target not in the edge set for this caller?"); 1569 } 1570 1571 void LazyCallGraph::removeDeadFunction(Function &F) { 1572 // FIXME: This is unnecessarily restrictive. We should be able to remove 1573 // functions which recursively call themselves. 1574 assert(F.use_empty() && 1575 "This routine should only be called on trivially dead functions!"); 1576 1577 auto NI = NodeMap.find(&F); 1578 if (NI == NodeMap.end()) 1579 // Not in the graph at all! 1580 return; 1581 1582 Node &N = *NI->second; 1583 NodeMap.erase(NI); 1584 1585 // Remove this from the entry edges if present. 1586 EntryEdges.removeEdgeInternal(N); 1587 1588 if (SCCMap.empty()) { 1589 // No SCCs have been formed, so removing this is fine and there is nothing 1590 // else necessary at this point but clearing out the node. 1591 N.clear(); 1592 return; 1593 } 1594 1595 // Cannot remove a function which has yet to be visited in the DFS walk, so 1596 // if we have a node at all then we must have an SCC and RefSCC. 1597 auto CI = SCCMap.find(&N); 1598 assert(CI != SCCMap.end() && 1599 "Tried to remove a node without an SCC after DFS walk started!"); 1600 SCC &C = *CI->second; 1601 SCCMap.erase(CI); 1602 RefSCC &RC = C.getOuterRefSCC(); 1603 1604 // This node must be the only member of its SCC as it has no callers, and 1605 // that SCC must be the only member of a RefSCC as it has no references. 1606 // Validate these properties first. 1607 assert(C.size() == 1 && "Dead functions must be in a singular SCC"); 1608 assert(RC.size() == 1 && "Dead functions must be in a singular RefSCC"); 1609 1610 // Clean up any remaining reference edges. Note that we walk an unordered set 1611 // here but are just removing and so the order doesn't matter. 1612 for (RefSCC &ParentRC : RC.parents()) 1613 for (SCC &ParentC : ParentRC) 1614 for (Node &ParentN : ParentC) 1615 if (ParentN) 1616 ParentN->removeEdgeInternal(N); 1617 1618 // Now remove this RefSCC from any parents sets and the leaf list. 1619 for (Edge &E : *N) 1620 if (RefSCC *TargetRC = lookupRefSCC(E.getNode())) 1621 TargetRC->Parents.erase(&RC); 1622 // FIXME: This is a linear operation which could become hot and benefit from 1623 // an index map. 1624 auto LRI = find(LeafRefSCCs, &RC); 1625 if (LRI != LeafRefSCCs.end()) 1626 LeafRefSCCs.erase(LRI); 1627 1628 auto RCIndexI = RefSCCIndices.find(&RC); 1629 int RCIndex = RCIndexI->second; 1630 PostOrderRefSCCs.erase(PostOrderRefSCCs.begin() + RCIndex); 1631 RefSCCIndices.erase(RCIndexI); 1632 for (int i = RCIndex, Size = PostOrderRefSCCs.size(); i < Size; ++i) 1633 RefSCCIndices[PostOrderRefSCCs[i]] = i; 1634 1635 // Finally clear out all the data structures from the node down through the 1636 // components. 1637 N.clear(); 1638 C.clear(); 1639 RC.clear(); 1640 1641 // Nothing to delete as all the objects are allocated in stable bump pointer 1642 // allocators. 1643 } 1644 1645 LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) { 1646 return *new (MappedN = BPA.Allocate()) Node(*this, F); 1647 } 1648 1649 void LazyCallGraph::updateGraphPtrs() { 1650 // Process all nodes updating the graph pointers. 1651 { 1652 SmallVector<Node *, 16> Worklist; 1653 for (Edge &E : EntryEdges) 1654 Worklist.push_back(&E.getNode()); 1655 1656 while (!Worklist.empty()) { 1657 Node &N = *Worklist.pop_back_val(); 1658 N.G = this; 1659 if (N) 1660 for (Edge &E : *N) 1661 Worklist.push_back(&E.getNode()); 1662 } 1663 } 1664 1665 // Process all SCCs updating the graph pointers. 1666 { 1667 SmallVector<RefSCC *, 16> Worklist(LeafRefSCCs.begin(), LeafRefSCCs.end()); 1668 1669 while (!Worklist.empty()) { 1670 RefSCC &C = *Worklist.pop_back_val(); 1671 C.G = this; 1672 for (RefSCC &ParentC : C.parents()) 1673 Worklist.push_back(&ParentC); 1674 } 1675 } 1676 } 1677 1678 template <typename RootsT, typename GetBeginT, typename GetEndT, 1679 typename GetNodeT, typename FormSCCCallbackT> 1680 void LazyCallGraph::buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin, 1681 GetEndT &&GetEnd, GetNodeT &&GetNode, 1682 FormSCCCallbackT &&FormSCC) { 1683 typedef decltype(GetBegin(std::declval<Node &>())) EdgeItT; 1684 1685 SmallVector<std::pair<Node *, EdgeItT>, 16> DFSStack; 1686 SmallVector<Node *, 16> PendingSCCStack; 1687 1688 // Scan down the stack and DFS across the call edges. 1689 for (Node *RootN : Roots) { 1690 assert(DFSStack.empty() && 1691 "Cannot begin a new root with a non-empty DFS stack!"); 1692 assert(PendingSCCStack.empty() && 1693 "Cannot begin a new root with pending nodes for an SCC!"); 1694 1695 // Skip any nodes we've already reached in the DFS. 1696 if (RootN->DFSNumber != 0) { 1697 assert(RootN->DFSNumber == -1 && 1698 "Shouldn't have any mid-DFS root nodes!"); 1699 continue; 1700 } 1701 1702 RootN->DFSNumber = RootN->LowLink = 1; 1703 int NextDFSNumber = 2; 1704 1705 DFSStack.push_back({RootN, GetBegin(*RootN)}); 1706 do { 1707 Node *N; 1708 EdgeItT I; 1709 std::tie(N, I) = DFSStack.pop_back_val(); 1710 auto E = GetEnd(*N); 1711 while (I != E) { 1712 Node &ChildN = GetNode(I); 1713 if (ChildN.DFSNumber == 0) { 1714 // We haven't yet visited this child, so descend, pushing the current 1715 // node onto the stack. 1716 DFSStack.push_back({N, I}); 1717 1718 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++; 1719 N = &ChildN; 1720 I = GetBegin(*N); 1721 E = GetEnd(*N); 1722 continue; 1723 } 1724 1725 // If the child has already been added to some child component, it 1726 // couldn't impact the low-link of this parent because it isn't 1727 // connected, and thus its low-link isn't relevant so skip it. 1728 if (ChildN.DFSNumber == -1) { 1729 ++I; 1730 continue; 1731 } 1732 1733 // Track the lowest linked child as the lowest link for this node. 1734 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); 1735 if (ChildN.LowLink < N->LowLink) 1736 N->LowLink = ChildN.LowLink; 1737 1738 // Move to the next edge. 1739 ++I; 1740 } 1741 1742 // We've finished processing N and its descendents, put it on our pending 1743 // SCC stack to eventually get merged into an SCC of nodes. 1744 PendingSCCStack.push_back(N); 1745 1746 // If this node is linked to some lower entry, continue walking up the 1747 // stack. 1748 if (N->LowLink != N->DFSNumber) 1749 continue; 1750 1751 // Otherwise, we've completed an SCC. Append it to our post order list of 1752 // SCCs. 1753 int RootDFSNumber = N->DFSNumber; 1754 // Find the range of the node stack by walking down until we pass the 1755 // root DFS number. 1756 auto SCCNodes = make_range( 1757 PendingSCCStack.rbegin(), 1758 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) { 1759 return N->DFSNumber < RootDFSNumber; 1760 })); 1761 // Form a new SCC out of these nodes and then clear them off our pending 1762 // stack. 1763 FormSCC(SCCNodes); 1764 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end()); 1765 } while (!DFSStack.empty()); 1766 } 1767 } 1768 1769 /// Build the internal SCCs for a RefSCC from a sequence of nodes. 1770 /// 1771 /// Appends the SCCs to the provided vector and updates the map with their 1772 /// indices. Both the vector and map must be empty when passed into this 1773 /// routine. 1774 void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) { 1775 assert(RC.SCCs.empty() && "Already built SCCs!"); 1776 assert(RC.SCCIndices.empty() && "Already mapped SCC indices!"); 1777 1778 for (Node *N : Nodes) { 1779 assert(N->LowLink >= (*Nodes.begin())->LowLink && 1780 "We cannot have a low link in an SCC lower than its root on the " 1781 "stack!"); 1782 1783 // This node will go into the next RefSCC, clear out its DFS and low link 1784 // as we scan. 1785 N->DFSNumber = N->LowLink = 0; 1786 } 1787 1788 // Each RefSCC contains a DAG of the call SCCs. To build these, we do 1789 // a direct walk of the call edges using Tarjan's algorithm. We reuse the 1790 // internal storage as we won't need it for the outer graph's DFS any longer. 1791 buildGenericSCCs( 1792 Nodes, [](Node &N) { return N->call_begin(); }, 1793 [](Node &N) { return N->call_end(); }, 1794 [](EdgeSequence::call_iterator I) -> Node & { return I->getNode(); }, 1795 [this, &RC](node_stack_range Nodes) { 1796 RC.SCCs.push_back(createSCC(RC, Nodes)); 1797 for (Node &N : *RC.SCCs.back()) { 1798 N.DFSNumber = N.LowLink = -1; 1799 SCCMap[&N] = RC.SCCs.back(); 1800 } 1801 }); 1802 1803 // Wire up the SCC indices. 1804 for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i) 1805 RC.SCCIndices[RC.SCCs[i]] = i; 1806 } 1807 1808 void LazyCallGraph::buildRefSCCs() { 1809 if (EntryEdges.empty() || !PostOrderRefSCCs.empty()) 1810 // RefSCCs are either non-existent or already built! 1811 return; 1812 1813 assert(RefSCCIndices.empty() && "Already mapped RefSCC indices!"); 1814 1815 SmallVector<Node *, 16> Roots; 1816 for (Edge &E : *this) 1817 Roots.push_back(&E.getNode()); 1818 1819 // The roots will be popped of a stack, so use reverse to get a less 1820 // surprising order. This doesn't change any of the semantics anywhere. 1821 std::reverse(Roots.begin(), Roots.end()); 1822 1823 buildGenericSCCs( 1824 Roots, 1825 [](Node &N) { 1826 // We need to populate each node as we begin to walk its edges. 1827 N.populate(); 1828 return N->begin(); 1829 }, 1830 [](Node &N) { return N->end(); }, 1831 [](EdgeSequence::iterator I) -> Node & { return I->getNode(); }, 1832 [this](node_stack_range Nodes) { 1833 RefSCC *NewRC = createRefSCC(*this); 1834 buildSCCs(*NewRC, Nodes); 1835 connectRefSCC(*NewRC); 1836 1837 // Push the new node into the postorder list and remember its position 1838 // in the index map. 1839 bool Inserted = 1840 RefSCCIndices.insert({NewRC, PostOrderRefSCCs.size()}).second; 1841 (void)Inserted; 1842 assert(Inserted && "Cannot already have this RefSCC in the index map!"); 1843 PostOrderRefSCCs.push_back(NewRC); 1844 #ifndef NDEBUG 1845 NewRC->verify(); 1846 #endif 1847 }); 1848 } 1849 1850 // FIXME: We should move callers of this to embed the parent linking and leaf 1851 // tracking into their DFS in order to remove a full walk of all edges. 1852 void LazyCallGraph::connectRefSCC(RefSCC &RC) { 1853 // Walk all edges in the RefSCC (this remains linear as we only do this once 1854 // when we build the RefSCC) to connect it to the parent sets of its 1855 // children. 1856 bool IsLeaf = true; 1857 for (SCC &C : RC) 1858 for (Node &N : C) 1859 for (Edge &E : *N) { 1860 RefSCC &ChildRC = *lookupRefSCC(E.getNode()); 1861 if (&ChildRC == &RC) 1862 continue; 1863 ChildRC.Parents.insert(&RC); 1864 IsLeaf = false; 1865 } 1866 1867 // For the SCCs where we find no child SCCs, add them to the leaf list. 1868 if (IsLeaf) 1869 LeafRefSCCs.push_back(&RC); 1870 } 1871 1872 AnalysisKey LazyCallGraphAnalysis::Key; 1873 1874 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {} 1875 1876 static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) { 1877 OS << " Edges in function: " << N.getFunction().getName() << "\n"; 1878 for (LazyCallGraph::Edge &E : N.populate()) 1879 OS << " " << (E.isCall() ? "call" : "ref ") << " -> " 1880 << E.getFunction().getName() << "\n"; 1881 1882 OS << "\n"; 1883 } 1884 1885 static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) { 1886 ptrdiff_t Size = std::distance(C.begin(), C.end()); 1887 OS << " SCC with " << Size << " functions:\n"; 1888 1889 for (LazyCallGraph::Node &N : C) 1890 OS << " " << N.getFunction().getName() << "\n"; 1891 } 1892 1893 static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) { 1894 ptrdiff_t Size = std::distance(C.begin(), C.end()); 1895 OS << " RefSCC with " << Size << " call SCCs:\n"; 1896 1897 for (LazyCallGraph::SCC &InnerC : C) 1898 printSCC(OS, InnerC); 1899 1900 OS << "\n"; 1901 } 1902 1903 PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M, 1904 ModuleAnalysisManager &AM) { 1905 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M); 1906 1907 OS << "Printing the call graph for module: " << M.getModuleIdentifier() 1908 << "\n\n"; 1909 1910 for (Function &F : M) 1911 printNode(OS, G.get(F)); 1912 1913 G.buildRefSCCs(); 1914 for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs()) 1915 printRefSCC(OS, C); 1916 1917 return PreservedAnalyses::all(); 1918 } 1919 1920 LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS) 1921 : OS(OS) {} 1922 1923 static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) { 1924 std::string Name = "\"" + DOT::EscapeString(N.getFunction().getName()) + "\""; 1925 1926 for (LazyCallGraph::Edge &E : N.populate()) { 1927 OS << " " << Name << " -> \"" 1928 << DOT::EscapeString(E.getFunction().getName()) << "\""; 1929 if (!E.isCall()) // It is a ref edge. 1930 OS << " [style=dashed,label=\"ref\"]"; 1931 OS << ";\n"; 1932 } 1933 1934 OS << "\n"; 1935 } 1936 1937 PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M, 1938 ModuleAnalysisManager &AM) { 1939 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M); 1940 1941 OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n"; 1942 1943 for (Function &F : M) 1944 printNodeDOT(OS, G.get(F)); 1945 1946 OS << "}\n"; 1947 1948 return PreservedAnalyses::all(); 1949 } 1950