1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Analysis/LazyCallGraph.h" 11 #include "llvm/ADT/ScopeExit.h" 12 #include "llvm/ADT/Sequence.h" 13 #include "llvm/ADT/STLExtras.h" 14 #include "llvm/ADT/ScopeExit.h" 15 #include "llvm/IR/CallSite.h" 16 #include "llvm/IR/InstVisitor.h" 17 #include "llvm/IR/Instructions.h" 18 #include "llvm/IR/PassManager.h" 19 #include "llvm/Support/Debug.h" 20 #include "llvm/Support/GraphWriter.h" 21 22 using namespace llvm; 23 24 #define DEBUG_TYPE "lcg" 25 26 static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges, 27 DenseMap<Function *, int> &EdgeIndexMap, Function &F, 28 LazyCallGraph::Edge::Kind EK) { 29 if (!EdgeIndexMap.insert({&F, Edges.size()}).second) 30 return; 31 32 DEBUG(dbgs() << " Added callable function: " << F.getName() << "\n"); 33 Edges.emplace_back(LazyCallGraph::Edge(F, EK)); 34 } 35 36 LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F) 37 : G(&G), F(F), DFSNumber(0), LowLink(0) { 38 DEBUG(dbgs() << " Adding functions called by '" << F.getName() 39 << "' to the graph.\n"); 40 41 SmallVector<Constant *, 16> Worklist; 42 SmallPtrSet<Function *, 4> Callees; 43 SmallPtrSet<Constant *, 16> Visited; 44 45 // Find all the potential call graph edges in this function. We track both 46 // actual call edges and indirect references to functions. The direct calls 47 // are trivially added, but to accumulate the latter we walk the instructions 48 // and add every operand which is a constant to the worklist to process 49 // afterward. 50 // 51 // Note that we consider *any* function with a definition to be a viable 52 // edge. Even if the function's definition is subject to replacement by 53 // some other module (say, a weak definition) there may still be 54 // optimizations which essentially speculate based on the definition and 55 // a way to check that the specific definition is in fact the one being 56 // used. For example, this could be done by moving the weak definition to 57 // a strong (internal) definition and making the weak definition be an 58 // alias. Then a test of the address of the weak function against the new 59 // strong definition's address would be an effective way to determine the 60 // safety of optimizing a direct call edge. 61 for (BasicBlock &BB : F) 62 for (Instruction &I : BB) { 63 if (auto CS = CallSite(&I)) 64 if (Function *Callee = CS.getCalledFunction()) 65 if (!Callee->isDeclaration()) 66 if (Callees.insert(Callee).second) { 67 Visited.insert(Callee); 68 addEdge(Edges, EdgeIndexMap, *Callee, LazyCallGraph::Edge::Call); 69 } 70 71 for (Value *Op : I.operand_values()) 72 if (Constant *C = dyn_cast<Constant>(Op)) 73 if (Visited.insert(C).second) 74 Worklist.push_back(C); 75 } 76 77 // We've collected all the constant (and thus potentially function or 78 // function containing) operands to all of the instructions in the function. 79 // Process them (recursively) collecting every function found. 80 visitReferences(Worklist, Visited, [&](Function &F) { 81 addEdge(Edges, EdgeIndexMap, F, LazyCallGraph::Edge::Ref); 82 }); 83 } 84 85 void LazyCallGraph::Node::insertEdgeInternal(Function &Target, Edge::Kind EK) { 86 if (Node *N = G->lookup(Target)) 87 return insertEdgeInternal(*N, EK); 88 89 EdgeIndexMap.insert({&Target, Edges.size()}); 90 Edges.emplace_back(Target, EK); 91 } 92 93 void LazyCallGraph::Node::insertEdgeInternal(Node &TargetN, Edge::Kind EK) { 94 EdgeIndexMap.insert({&TargetN.getFunction(), Edges.size()}); 95 Edges.emplace_back(TargetN, EK); 96 } 97 98 void LazyCallGraph::Node::setEdgeKind(Function &TargetF, Edge::Kind EK) { 99 Edges[EdgeIndexMap.find(&TargetF)->second].setKind(EK); 100 } 101 102 void LazyCallGraph::Node::removeEdgeInternal(Function &Target) { 103 auto IndexMapI = EdgeIndexMap.find(&Target); 104 assert(IndexMapI != EdgeIndexMap.end() && 105 "Target not in the edge set for this caller?"); 106 107 Edges[IndexMapI->second] = Edge(); 108 EdgeIndexMap.erase(IndexMapI); 109 } 110 111 void LazyCallGraph::Node::dump() const { 112 dbgs() << *this << '\n'; 113 } 114 115 LazyCallGraph::LazyCallGraph(Module &M) : NextDFSNumber(0) { 116 DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier() 117 << "\n"); 118 for (Function &F : M) 119 if (!F.isDeclaration() && !F.hasLocalLinkage()) 120 if (EntryIndexMap.insert({&F, EntryEdges.size()}).second) { 121 DEBUG(dbgs() << " Adding '" << F.getName() 122 << "' to entry set of the graph.\n"); 123 EntryEdges.emplace_back(F, Edge::Ref); 124 } 125 126 // Now add entry nodes for functions reachable via initializers to globals. 127 SmallVector<Constant *, 16> Worklist; 128 SmallPtrSet<Constant *, 16> Visited; 129 for (GlobalVariable &GV : M.globals()) 130 if (GV.hasInitializer()) 131 if (Visited.insert(GV.getInitializer()).second) 132 Worklist.push_back(GV.getInitializer()); 133 134 DEBUG(dbgs() << " Adding functions referenced by global initializers to the " 135 "entry set.\n"); 136 visitReferences(Worklist, Visited, [&](Function &F) { 137 addEdge(EntryEdges, EntryIndexMap, F, LazyCallGraph::Edge::Ref); 138 }); 139 140 for (const Edge &E : EntryEdges) 141 RefSCCEntryNodes.push_back(&E.getFunction()); 142 } 143 144 LazyCallGraph::LazyCallGraph(LazyCallGraph &&G) 145 : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)), 146 EntryEdges(std::move(G.EntryEdges)), 147 EntryIndexMap(std::move(G.EntryIndexMap)), SCCBPA(std::move(G.SCCBPA)), 148 SCCMap(std::move(G.SCCMap)), LeafRefSCCs(std::move(G.LeafRefSCCs)), 149 DFSStack(std::move(G.DFSStack)), 150 RefSCCEntryNodes(std::move(G.RefSCCEntryNodes)), 151 NextDFSNumber(G.NextDFSNumber) { 152 updateGraphPtrs(); 153 } 154 155 LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) { 156 BPA = std::move(G.BPA); 157 NodeMap = std::move(G.NodeMap); 158 EntryEdges = std::move(G.EntryEdges); 159 EntryIndexMap = std::move(G.EntryIndexMap); 160 SCCBPA = std::move(G.SCCBPA); 161 SCCMap = std::move(G.SCCMap); 162 LeafRefSCCs = std::move(G.LeafRefSCCs); 163 DFSStack = std::move(G.DFSStack); 164 RefSCCEntryNodes = std::move(G.RefSCCEntryNodes); 165 NextDFSNumber = G.NextDFSNumber; 166 updateGraphPtrs(); 167 return *this; 168 } 169 170 void LazyCallGraph::SCC::dump() const { 171 dbgs() << *this << '\n'; 172 } 173 174 #ifndef NDEBUG 175 void LazyCallGraph::SCC::verify() { 176 assert(OuterRefSCC && "Can't have a null RefSCC!"); 177 assert(!Nodes.empty() && "Can't have an empty SCC!"); 178 179 for (Node *N : Nodes) { 180 assert(N && "Can't have a null node!"); 181 assert(OuterRefSCC->G->lookupSCC(*N) == this && 182 "Node does not map to this SCC!"); 183 assert(N->DFSNumber == -1 && 184 "Must set DFS numbers to -1 when adding a node to an SCC!"); 185 assert(N->LowLink == -1 && 186 "Must set low link to -1 when adding a node to an SCC!"); 187 for (Edge &E : *N) 188 assert(E.getNode() && "Can't have an edge to a raw function!"); 189 } 190 } 191 #endif 192 193 bool LazyCallGraph::SCC::isParentOf(const SCC &C) const { 194 if (this == &C) 195 return false; 196 197 for (Node &N : *this) 198 for (Edge &E : N.calls()) 199 if (Node *CalleeN = E.getNode()) 200 if (OuterRefSCC->G->lookupSCC(*CalleeN) == &C) 201 return true; 202 203 // No edges found. 204 return false; 205 } 206 207 bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const { 208 if (this == &TargetC) 209 return false; 210 211 LazyCallGraph &G = *OuterRefSCC->G; 212 213 // Start with this SCC. 214 SmallPtrSet<const SCC *, 16> Visited = {this}; 215 SmallVector<const SCC *, 16> Worklist = {this}; 216 217 // Walk down the graph until we run out of edges or find a path to TargetC. 218 do { 219 const SCC &C = *Worklist.pop_back_val(); 220 for (Node &N : C) 221 for (Edge &E : N.calls()) { 222 Node *CalleeN = E.getNode(); 223 if (!CalleeN) 224 continue; 225 SCC *CalleeC = G.lookupSCC(*CalleeN); 226 if (!CalleeC) 227 continue; 228 229 // If the callee's SCC is the TargetC, we're done. 230 if (CalleeC == &TargetC) 231 return true; 232 233 // If this is the first time we've reached this SCC, put it on the 234 // worklist to recurse through. 235 if (Visited.insert(CalleeC).second) 236 Worklist.push_back(CalleeC); 237 } 238 } while (!Worklist.empty()); 239 240 // No paths found. 241 return false; 242 } 243 244 LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {} 245 246 void LazyCallGraph::RefSCC::dump() const { 247 dbgs() << *this << '\n'; 248 } 249 250 #ifndef NDEBUG 251 void LazyCallGraph::RefSCC::verify() { 252 assert(G && "Can't have a null graph!"); 253 assert(!SCCs.empty() && "Can't have an empty SCC!"); 254 255 // Verify basic properties of the SCCs. 256 SmallPtrSet<SCC *, 4> SCCSet; 257 for (SCC *C : SCCs) { 258 assert(C && "Can't have a null SCC!"); 259 C->verify(); 260 assert(&C->getOuterRefSCC() == this && 261 "SCC doesn't think it is inside this RefSCC!"); 262 bool Inserted = SCCSet.insert(C).second; 263 assert(Inserted && "Found a duplicate SCC!"); 264 auto IndexIt = SCCIndices.find(C); 265 assert(IndexIt != SCCIndices.end() && 266 "Found an SCC that doesn't have an index!"); 267 } 268 269 // Check that our indices map correctly. 270 for (auto &SCCIndexPair : SCCIndices) { 271 SCC *C = SCCIndexPair.first; 272 int i = SCCIndexPair.second; 273 assert(C && "Can't have a null SCC in the indices!"); 274 assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!"); 275 assert(SCCs[i] == C && "Index doesn't point to SCC!"); 276 } 277 278 // Check that the SCCs are in fact in post-order. 279 for (int i = 0, Size = SCCs.size(); i < Size; ++i) { 280 SCC &SourceSCC = *SCCs[i]; 281 for (Node &N : SourceSCC) 282 for (Edge &E : N) { 283 if (!E.isCall()) 284 continue; 285 SCC &TargetSCC = *G->lookupSCC(*E.getNode()); 286 if (&TargetSCC.getOuterRefSCC() == this) { 287 assert(SCCIndices.find(&TargetSCC)->second <= i && 288 "Edge between SCCs violates post-order relationship."); 289 continue; 290 } 291 assert(TargetSCC.getOuterRefSCC().Parents.count(this) && 292 "Edge to a RefSCC missing us in its parent set."); 293 } 294 } 295 296 // Check that our parents are actually parents. 297 for (RefSCC *ParentRC : Parents) { 298 assert(ParentRC != this && "Cannot be our own parent!"); 299 auto HasConnectingEdge = [&] { 300 for (SCC &C : *ParentRC) 301 for (Node &N : C) 302 for (Edge &E : N) 303 if (G->lookupRefSCC(*E.getNode()) == this) 304 return true; 305 return false; 306 }; 307 assert(HasConnectingEdge() && "No edge connects the parent to us!"); 308 } 309 } 310 #endif 311 312 bool LazyCallGraph::RefSCC::isDescendantOf(const RefSCC &C) const { 313 // Walk up the parents of this SCC and verify that we eventually find C. 314 SmallVector<const RefSCC *, 4> AncestorWorklist; 315 AncestorWorklist.push_back(this); 316 do { 317 const RefSCC *AncestorC = AncestorWorklist.pop_back_val(); 318 if (AncestorC->isChildOf(C)) 319 return true; 320 for (const RefSCC *ParentC : AncestorC->Parents) 321 AncestorWorklist.push_back(ParentC); 322 } while (!AncestorWorklist.empty()); 323 324 return false; 325 } 326 327 /// Generic helper that updates a postorder sequence of SCCs for a potentially 328 /// cycle-introducing edge insertion. 329 /// 330 /// A postorder sequence of SCCs of a directed graph has one fundamental 331 /// property: all deges in the DAG of SCCs point "up" the sequence. That is, 332 /// all edges in the SCC DAG point to prior SCCs in the sequence. 333 /// 334 /// This routine both updates a postorder sequence and uses that sequence to 335 /// compute the set of SCCs connected into a cycle. It should only be called to 336 /// insert a "downward" edge which will require changing the sequence to 337 /// restore it to a postorder. 338 /// 339 /// When inserting an edge from an earlier SCC to a later SCC in some postorder 340 /// sequence, all of the SCCs which may be impacted are in the closed range of 341 /// those two within the postorder sequence. The algorithm used here to restore 342 /// the state is as follows: 343 /// 344 /// 1) Starting from the source SCC, construct a set of SCCs which reach the 345 /// source SCC consisting of just the source SCC. Then scan toward the 346 /// target SCC in postorder and for each SCC, if it has an edge to an SCC 347 /// in the set, add it to the set. Otherwise, the source SCC is not 348 /// a successor, move it in the postorder sequence to immediately before 349 /// the source SCC, shifting the source SCC and all SCCs in the set one 350 /// position toward the target SCC. Stop scanning after processing the 351 /// target SCC. 352 /// 2) If the source SCC is now past the target SCC in the postorder sequence, 353 /// and thus the new edge will flow toward the start, we are done. 354 /// 3) Otherwise, starting from the target SCC, walk all edges which reach an 355 /// SCC between the source and the target, and add them to the set of 356 /// connected SCCs, then recurse through them. Once a complete set of the 357 /// SCCs the target connects to is known, hoist the remaining SCCs between 358 /// the source and the target to be above the target. Note that there is no 359 /// need to process the source SCC, it is already known to connect. 360 /// 4) At this point, all of the SCCs in the closed range between the source 361 /// SCC and the target SCC in the postorder sequence are connected, 362 /// including the target SCC and the source SCC. Inserting the edge from 363 /// the source SCC to the target SCC will form a cycle out of precisely 364 /// these SCCs. Thus we can merge all of the SCCs in this closed range into 365 /// a single SCC. 366 /// 367 /// This process has various important properties: 368 /// - Only mutates the SCCs when adding the edge actually changes the SCC 369 /// structure. 370 /// - Never mutates SCCs which are unaffected by the change. 371 /// - Updates the postorder sequence to correctly satisfy the postorder 372 /// constraint after the edge is inserted. 373 /// - Only reorders SCCs in the closed postorder sequence from the source to 374 /// the target, so easy to bound how much has changed even in the ordering. 375 /// - Big-O is the number of edges in the closed postorder range of SCCs from 376 /// source to target. 377 /// 378 /// This helper routine, in addition to updating the postorder sequence itself 379 /// will also update a map from SCCs to indices within that sequecne. 380 /// 381 /// The sequence and the map must operate on pointers to the SCC type. 382 /// 383 /// Two callbacks must be provided. The first computes the subset of SCCs in 384 /// the postorder closed range from the source to the target which connect to 385 /// the source SCC via some (transitive) set of edges. The second computes the 386 /// subset of the same range which the target SCC connects to via some 387 /// (transitive) set of edges. Both callbacks should populate the set argument 388 /// provided. 389 template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT, 390 typename ComputeSourceConnectedSetCallableT, 391 typename ComputeTargetConnectedSetCallableT> 392 static iterator_range<typename PostorderSequenceT::iterator> 393 updatePostorderSequenceForEdgeInsertion( 394 SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs, 395 SCCIndexMapT &SCCIndices, 396 ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet, 397 ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) { 398 int SourceIdx = SCCIndices[&SourceSCC]; 399 int TargetIdx = SCCIndices[&TargetSCC]; 400 assert(SourceIdx < TargetIdx && "Cannot have equal indices here!"); 401 402 SmallPtrSet<SCCT *, 4> ConnectedSet; 403 404 // Compute the SCCs which (transitively) reach the source. 405 ComputeSourceConnectedSet(ConnectedSet); 406 407 // Partition the SCCs in this part of the port-order sequence so only SCCs 408 // connecting to the source remain between it and the target. This is 409 // a benign partition as it preserves postorder. 410 auto SourceI = std::stable_partition( 411 SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1, 412 [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); }); 413 for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i) 414 SCCIndices.find(SCCs[i])->second = i; 415 416 // If the target doesn't connect to the source, then we've corrected the 417 // post-order and there are no cycles formed. 418 if (!ConnectedSet.count(&TargetSCC)) { 419 assert(SourceI > (SCCs.begin() + SourceIdx) && 420 "Must have moved the source to fix the post-order."); 421 assert(*std::prev(SourceI) == &TargetSCC && 422 "Last SCC to move should have bene the target."); 423 424 // Return an empty range at the target SCC indicating there is nothing to 425 // merge. 426 return make_range(std::prev(SourceI), std::prev(SourceI)); 427 } 428 429 assert(SCCs[TargetIdx] == &TargetSCC && 430 "Should not have moved target if connected!"); 431 SourceIdx = SourceI - SCCs.begin(); 432 assert(SCCs[SourceIdx] == &SourceSCC && 433 "Bad updated index computation for the source SCC!"); 434 435 436 // See whether there are any remaining intervening SCCs between the source 437 // and target. If so we need to make sure they all are reachable form the 438 // target. 439 if (SourceIdx + 1 < TargetIdx) { 440 ConnectedSet.clear(); 441 ComputeTargetConnectedSet(ConnectedSet); 442 443 // Partition SCCs so that only SCCs reached from the target remain between 444 // the source and the target. This preserves postorder. 445 auto TargetI = std::stable_partition( 446 SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1, 447 [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); }); 448 for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i) 449 SCCIndices.find(SCCs[i])->second = i; 450 TargetIdx = std::prev(TargetI) - SCCs.begin(); 451 assert(SCCs[TargetIdx] == &TargetSCC && 452 "Should always end with the target!"); 453 } 454 455 // At this point, we know that connecting source to target forms a cycle 456 // because target connects back to source, and we know that all of the SCCs 457 // between the source and target in the postorder sequence participate in that 458 // cycle. 459 return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx); 460 } 461 462 SmallVector<LazyCallGraph::SCC *, 1> 463 LazyCallGraph::RefSCC::switchInternalEdgeToCall(Node &SourceN, Node &TargetN) { 464 assert(!SourceN[TargetN].isCall() && "Must start with a ref edge!"); 465 SmallVector<SCC *, 1> DeletedSCCs; 466 467 #ifndef NDEBUG 468 // In a debug build, verify the RefSCC is valid to start with and when this 469 // routine finishes. 470 verify(); 471 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 472 #endif 473 474 SCC &SourceSCC = *G->lookupSCC(SourceN); 475 SCC &TargetSCC = *G->lookupSCC(TargetN); 476 477 // If the two nodes are already part of the same SCC, we're also done as 478 // we've just added more connectivity. 479 if (&SourceSCC == &TargetSCC) { 480 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call); 481 return DeletedSCCs; 482 } 483 484 // At this point we leverage the postorder list of SCCs to detect when the 485 // insertion of an edge changes the SCC structure in any way. 486 // 487 // First and foremost, we can eliminate the need for any changes when the 488 // edge is toward the beginning of the postorder sequence because all edges 489 // flow in that direction already. Thus adding a new one cannot form a cycle. 490 int SourceIdx = SCCIndices[&SourceSCC]; 491 int TargetIdx = SCCIndices[&TargetSCC]; 492 if (TargetIdx < SourceIdx) { 493 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call); 494 return DeletedSCCs; 495 } 496 497 // Compute the SCCs which (transitively) reach the source. 498 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) { 499 #ifndef NDEBUG 500 // Check that the RefSCC is still valid before computing this as the 501 // results will be nonsensical of we've broken its invariants. 502 verify(); 503 #endif 504 ConnectedSet.insert(&SourceSCC); 505 auto IsConnected = [&](SCC &C) { 506 for (Node &N : C) 507 for (Edge &E : N.calls()) { 508 assert(E.getNode() && "Must have formed a node within an SCC!"); 509 if (ConnectedSet.count(G->lookupSCC(*E.getNode()))) 510 return true; 511 } 512 513 return false; 514 }; 515 516 for (SCC *C : 517 make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1)) 518 if (IsConnected(*C)) 519 ConnectedSet.insert(C); 520 }; 521 522 // Use a normal worklist to find which SCCs the target connects to. We still 523 // bound the search based on the range in the postorder list we care about, 524 // but because this is forward connectivity we just "recurse" through the 525 // edges. 526 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) { 527 #ifndef NDEBUG 528 // Check that the RefSCC is still valid before computing this as the 529 // results will be nonsensical of we've broken its invariants. 530 verify(); 531 #endif 532 ConnectedSet.insert(&TargetSCC); 533 SmallVector<SCC *, 4> Worklist; 534 Worklist.push_back(&TargetSCC); 535 do { 536 SCC &C = *Worklist.pop_back_val(); 537 for (Node &N : C) 538 for (Edge &E : N) { 539 assert(E.getNode() && "Must have formed a node within an SCC!"); 540 if (!E.isCall()) 541 continue; 542 SCC &EdgeC = *G->lookupSCC(*E.getNode()); 543 if (&EdgeC.getOuterRefSCC() != this) 544 // Not in this RefSCC... 545 continue; 546 if (SCCIndices.find(&EdgeC)->second <= SourceIdx) 547 // Not in the postorder sequence between source and target. 548 continue; 549 550 if (ConnectedSet.insert(&EdgeC).second) 551 Worklist.push_back(&EdgeC); 552 } 553 } while (!Worklist.empty()); 554 }; 555 556 // Use a generic helper to update the postorder sequence of SCCs and return 557 // a range of any SCCs connected into a cycle by inserting this edge. This 558 // routine will also take care of updating the indices into the postorder 559 // sequence. 560 auto MergeRange = updatePostorderSequenceForEdgeInsertion( 561 SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet, 562 ComputeTargetConnectedSet); 563 564 // If the merge range is empty, then adding the edge didn't actually form any 565 // new cycles. We're done. 566 if (MergeRange.begin() == MergeRange.end()) { 567 // Now that the SCC structure is finalized, flip the kind to call. 568 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call); 569 return DeletedSCCs; 570 } 571 572 #ifndef NDEBUG 573 // Before merging, check that the RefSCC remains valid after all the 574 // postorder updates. 575 verify(); 576 #endif 577 578 // Otherwise we need to merge all of the SCCs in the cycle into a single 579 // result SCC. 580 // 581 // NB: We merge into the target because all of these functions were already 582 // reachable from the target, meaning any SCC-wide properties deduced about it 583 // other than the set of functions within it will not have changed. 584 for (SCC *C : MergeRange) { 585 assert(C != &TargetSCC && 586 "We merge *into* the target and shouldn't process it here!"); 587 SCCIndices.erase(C); 588 TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end()); 589 for (Node *N : C->Nodes) 590 G->SCCMap[N] = &TargetSCC; 591 C->clear(); 592 DeletedSCCs.push_back(C); 593 } 594 595 // Erase the merged SCCs from the list and update the indices of the 596 // remaining SCCs. 597 int IndexOffset = MergeRange.end() - MergeRange.begin(); 598 auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end()); 599 for (SCC *C : make_range(EraseEnd, SCCs.end())) 600 SCCIndices[C] -= IndexOffset; 601 602 // Now that the SCC structure is finalized, flip the kind to call. 603 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call); 604 605 // And we're done! 606 return DeletedSCCs; 607 } 608 609 iterator_range<LazyCallGraph::RefSCC::iterator> 610 LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) { 611 assert(SourceN[TargetN].isCall() && "Must start with a call edge!"); 612 613 #ifndef NDEBUG 614 // In a debug build, verify the RefSCC is valid to start with and when this 615 // routine finishes. 616 verify(); 617 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 618 #endif 619 620 SCC &SourceSCC = *G->lookupSCC(SourceN); 621 SCC &TargetSCC = *G->lookupSCC(TargetN); 622 623 assert(&SourceSCC.getOuterRefSCC() == this && 624 "Source must be in this RefSCC."); 625 assert(&TargetSCC.getOuterRefSCC() == this && 626 "Target must be in this RefSCC."); 627 628 // Set the edge kind. 629 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref); 630 631 // If this call edge is just connecting two separate SCCs within this RefSCC, 632 // there is nothing to do. 633 if (&SourceSCC != &TargetSCC) 634 return make_range(SCCs.end(), SCCs.end()); 635 636 // Otherwise we are removing a call edge from a single SCC. This may break 637 // the cycle. In order to compute the new set of SCCs, we need to do a small 638 // DFS over the nodes within the SCC to form any sub-cycles that remain as 639 // distinct SCCs and compute a postorder over the resulting SCCs. 640 // 641 // However, we specially handle the target node. The target node is known to 642 // reach all other nodes in the original SCC by definition. This means that 643 // we want the old SCC to be replaced with an SCC contaning that node as it 644 // will be the root of whatever SCC DAG results from the DFS. Assumptions 645 // about an SCC such as the set of functions called will continue to hold, 646 // etc. 647 648 SCC &OldSCC = TargetSCC; 649 SmallVector<std::pair<Node *, call_edge_iterator>, 16> DFSStack; 650 SmallVector<Node *, 16> PendingSCCStack; 651 SmallVector<SCC *, 4> NewSCCs; 652 653 // Prepare the nodes for a fresh DFS. 654 SmallVector<Node *, 16> Worklist; 655 Worklist.swap(OldSCC.Nodes); 656 for (Node *N : Worklist) { 657 N->DFSNumber = N->LowLink = 0; 658 G->SCCMap.erase(N); 659 } 660 661 // Force the target node to be in the old SCC. This also enables us to take 662 // a very significant short-cut in the standard Tarjan walk to re-form SCCs 663 // below: whenever we build an edge that reaches the target node, we know 664 // that the target node eventually connects back to all other nodes in our 665 // walk. As a consequence, we can detect and handle participants in that 666 // cycle without walking all the edges that form this connection, and instead 667 // by relying on the fundamental guarantee coming into this operation (all 668 // nodes are reachable from the target due to previously forming an SCC). 669 TargetN.DFSNumber = TargetN.LowLink = -1; 670 OldSCC.Nodes.push_back(&TargetN); 671 G->SCCMap[&TargetN] = &OldSCC; 672 673 // Scan down the stack and DFS across the call edges. 674 for (Node *RootN : Worklist) { 675 assert(DFSStack.empty() && 676 "Cannot begin a new root with a non-empty DFS stack!"); 677 assert(PendingSCCStack.empty() && 678 "Cannot begin a new root with pending nodes for an SCC!"); 679 680 // Skip any nodes we've already reached in the DFS. 681 if (RootN->DFSNumber != 0) { 682 assert(RootN->DFSNumber == -1 && 683 "Shouldn't have any mid-DFS root nodes!"); 684 continue; 685 } 686 687 RootN->DFSNumber = RootN->LowLink = 1; 688 int NextDFSNumber = 2; 689 690 DFSStack.push_back({RootN, RootN->call_begin()}); 691 do { 692 Node *N; 693 call_edge_iterator I; 694 std::tie(N, I) = DFSStack.pop_back_val(); 695 auto E = N->call_end(); 696 while (I != E) { 697 Node &ChildN = *I->getNode(); 698 if (ChildN.DFSNumber == 0) { 699 // We haven't yet visited this child, so descend, pushing the current 700 // node onto the stack. 701 DFSStack.push_back({N, I}); 702 703 assert(!G->SCCMap.count(&ChildN) && 704 "Found a node with 0 DFS number but already in an SCC!"); 705 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++; 706 N = &ChildN; 707 I = N->call_begin(); 708 E = N->call_end(); 709 continue; 710 } 711 712 // Check for the child already being part of some component. 713 if (ChildN.DFSNumber == -1) { 714 if (G->lookupSCC(ChildN) == &OldSCC) { 715 // If the child is part of the old SCC, we know that it can reach 716 // every other node, so we have formed a cycle. Pull the entire DFS 717 // and pending stacks into it. See the comment above about setting 718 // up the old SCC for why we do this. 719 int OldSize = OldSCC.size(); 720 OldSCC.Nodes.push_back(N); 721 OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end()); 722 PendingSCCStack.clear(); 723 while (!DFSStack.empty()) 724 OldSCC.Nodes.push_back(DFSStack.pop_back_val().first); 725 for (Node &N : make_range(OldSCC.begin() + OldSize, OldSCC.end())) { 726 N.DFSNumber = N.LowLink = -1; 727 G->SCCMap[&N] = &OldSCC; 728 } 729 N = nullptr; 730 break; 731 } 732 733 // If the child has already been added to some child component, it 734 // couldn't impact the low-link of this parent because it isn't 735 // connected, and thus its low-link isn't relevant so skip it. 736 ++I; 737 continue; 738 } 739 740 // Track the lowest linked child as the lowest link for this node. 741 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); 742 if (ChildN.LowLink < N->LowLink) 743 N->LowLink = ChildN.LowLink; 744 745 // Move to the next edge. 746 ++I; 747 } 748 if (!N) 749 // Cleared the DFS early, start another round. 750 break; 751 752 // We've finished processing N and its descendents, put it on our pending 753 // SCC stack to eventually get merged into an SCC of nodes. 754 PendingSCCStack.push_back(N); 755 756 // If this node is linked to some lower entry, continue walking up the 757 // stack. 758 if (N->LowLink != N->DFSNumber) 759 continue; 760 761 // Otherwise, we've completed an SCC. Append it to our post order list of 762 // SCCs. 763 int RootDFSNumber = N->DFSNumber; 764 // Find the range of the node stack by walking down until we pass the 765 // root DFS number. 766 auto SCCNodes = make_range( 767 PendingSCCStack.rbegin(), 768 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) { 769 return N->DFSNumber < RootDFSNumber; 770 })); 771 772 // Form a new SCC out of these nodes and then clear them off our pending 773 // stack. 774 NewSCCs.push_back(G->createSCC(*this, SCCNodes)); 775 for (Node &N : *NewSCCs.back()) { 776 N.DFSNumber = N.LowLink = -1; 777 G->SCCMap[&N] = NewSCCs.back(); 778 } 779 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end()); 780 } while (!DFSStack.empty()); 781 } 782 783 // Insert the remaining SCCs before the old one. The old SCC can reach all 784 // other SCCs we form because it contains the target node of the removed edge 785 // of the old SCC. This means that we will have edges into all of the new 786 // SCCs, which means the old one must come last for postorder. 787 int OldIdx = SCCIndices[&OldSCC]; 788 SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end()); 789 790 // Update the mapping from SCC* to index to use the new SCC*s, and remove the 791 // old SCC from the mapping. 792 for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx) 793 SCCIndices[SCCs[Idx]] = Idx; 794 795 return make_range(SCCs.begin() + OldIdx, 796 SCCs.begin() + OldIdx + NewSCCs.size()); 797 } 798 799 void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN, 800 Node &TargetN) { 801 assert(!SourceN[TargetN].isCall() && "Must start with a ref edge!"); 802 803 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 804 assert(G->lookupRefSCC(TargetN) != this && 805 "Target must not be in this RefSCC."); 806 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && 807 "Target must be a descendant of the Source."); 808 809 // Edges between RefSCCs are the same regardless of call or ref, so we can 810 // just flip the edge here. 811 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call); 812 813 #ifndef NDEBUG 814 // Check that the RefSCC is still valid. 815 verify(); 816 #endif 817 } 818 819 void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN, 820 Node &TargetN) { 821 assert(SourceN[TargetN].isCall() && "Must start with a call edge!"); 822 823 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 824 assert(G->lookupRefSCC(TargetN) != this && 825 "Target must not be in this RefSCC."); 826 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && 827 "Target must be a descendant of the Source."); 828 829 // Edges between RefSCCs are the same regardless of call or ref, so we can 830 // just flip the edge here. 831 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref); 832 833 #ifndef NDEBUG 834 // Check that the RefSCC is still valid. 835 verify(); 836 #endif 837 } 838 839 void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN, 840 Node &TargetN) { 841 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 842 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC."); 843 844 SourceN.insertEdgeInternal(TargetN, Edge::Ref); 845 846 #ifndef NDEBUG 847 // Check that the RefSCC is still valid. 848 verify(); 849 #endif 850 } 851 852 void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN, 853 Edge::Kind EK) { 854 // First insert it into the caller. 855 SourceN.insertEdgeInternal(TargetN, EK); 856 857 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 858 859 RefSCC &TargetC = *G->lookupRefSCC(TargetN); 860 assert(&TargetC != this && "Target must not be in this RefSCC."); 861 assert(TargetC.isDescendantOf(*this) && 862 "Target must be a descendant of the Source."); 863 864 // The only change required is to add this SCC to the parent set of the 865 // callee. 866 TargetC.Parents.insert(this); 867 868 #ifndef NDEBUG 869 // Check that the RefSCC is still valid. 870 verify(); 871 #endif 872 } 873 874 SmallVector<LazyCallGraph::RefSCC *, 1> 875 LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) { 876 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC."); 877 RefSCC &SourceC = *G->lookupRefSCC(SourceN); 878 assert(&SourceC != this && "Source must not be in this RefSCC."); 879 assert(SourceC.isDescendantOf(*this) && 880 "Source must be a descendant of the Target."); 881 882 SmallVector<RefSCC *, 1> DeletedRefSCCs; 883 884 #ifndef NDEBUG 885 // In a debug build, verify the RefSCC is valid to start with and when this 886 // routine finishes. 887 verify(); 888 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 889 #endif 890 891 int SourceIdx = G->RefSCCIndices[&SourceC]; 892 int TargetIdx = G->RefSCCIndices[this]; 893 assert(SourceIdx < TargetIdx && 894 "Postorder list doesn't see edge as incoming!"); 895 896 // Compute the RefSCCs which (transitively) reach the source. We do this by 897 // working backwards from the source using the parent set in each RefSCC, 898 // skipping any RefSCCs that don't fall in the postorder range. This has the 899 // advantage of walking the sparser parent edge (in high fan-out graphs) but 900 // more importantly this removes examining all forward edges in all RefSCCs 901 // within the postorder range which aren't in fact connected. Only connected 902 // RefSCCs (and their edges) are visited here. 903 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) { 904 Set.insert(&SourceC); 905 SmallVector<RefSCC *, 4> Worklist; 906 Worklist.push_back(&SourceC); 907 do { 908 RefSCC &RC = *Worklist.pop_back_val(); 909 for (RefSCC &ParentRC : RC.parents()) { 910 // Skip any RefSCCs outside the range of source to target in the 911 // postorder sequence. 912 int ParentIdx = G->getRefSCCIndex(ParentRC); 913 assert(ParentIdx > SourceIdx && "Parent cannot precede source in postorder!"); 914 if (ParentIdx > TargetIdx) 915 continue; 916 if (Set.insert(&ParentRC).second) 917 // First edge connecting to this parent, add it to our worklist. 918 Worklist.push_back(&ParentRC); 919 } 920 } while (!Worklist.empty()); 921 }; 922 923 // Use a normal worklist to find which SCCs the target connects to. We still 924 // bound the search based on the range in the postorder list we care about, 925 // but because this is forward connectivity we just "recurse" through the 926 // edges. 927 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) { 928 Set.insert(this); 929 SmallVector<RefSCC *, 4> Worklist; 930 Worklist.push_back(this); 931 do { 932 RefSCC &RC = *Worklist.pop_back_val(); 933 for (SCC &C : RC) 934 for (Node &N : C) 935 for (Edge &E : N) { 936 assert(E.getNode() && "Must have formed a node!"); 937 RefSCC &EdgeRC = *G->lookupRefSCC(*E.getNode()); 938 if (G->getRefSCCIndex(EdgeRC) <= SourceIdx) 939 // Not in the postorder sequence between source and target. 940 continue; 941 942 if (Set.insert(&EdgeRC).second) 943 Worklist.push_back(&EdgeRC); 944 } 945 } while (!Worklist.empty()); 946 }; 947 948 // Use a generic helper to update the postorder sequence of RefSCCs and return 949 // a range of any RefSCCs connected into a cycle by inserting this edge. This 950 // routine will also take care of updating the indices into the postorder 951 // sequence. 952 iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange = 953 updatePostorderSequenceForEdgeInsertion( 954 SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices, 955 ComputeSourceConnectedSet, ComputeTargetConnectedSet); 956 957 // Build a set so we can do fast tests for whether a RefSCC will end up as 958 // part of the merged RefSCC. 959 SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end()); 960 961 // This RefSCC will always be part of that set, so just insert it here. 962 MergeSet.insert(this); 963 964 // Now that we have identified all of the SCCs which need to be merged into 965 // a connected set with the inserted edge, merge all of them into this SCC. 966 SmallVector<SCC *, 16> MergedSCCs; 967 int SCCIndex = 0; 968 for (RefSCC *RC : MergeRange) { 969 assert(RC != this && "We're merging into the target RefSCC, so it " 970 "shouldn't be in the range."); 971 972 // Merge the parents which aren't part of the merge into the our parents. 973 for (RefSCC *ParentRC : RC->Parents) 974 if (!MergeSet.count(ParentRC)) 975 Parents.insert(ParentRC); 976 RC->Parents.clear(); 977 978 // Walk the inner SCCs to update their up-pointer and walk all the edges to 979 // update any parent sets. 980 // FIXME: We should try to find a way to avoid this (rather expensive) edge 981 // walk by updating the parent sets in some other manner. 982 for (SCC &InnerC : *RC) { 983 InnerC.OuterRefSCC = this; 984 SCCIndices[&InnerC] = SCCIndex++; 985 for (Node &N : InnerC) { 986 G->SCCMap[&N] = &InnerC; 987 for (Edge &E : N) { 988 assert(E.getNode() && 989 "Cannot have a null node within a visited SCC!"); 990 RefSCC &ChildRC = *G->lookupRefSCC(*E.getNode()); 991 if (MergeSet.count(&ChildRC)) 992 continue; 993 ChildRC.Parents.erase(RC); 994 ChildRC.Parents.insert(this); 995 } 996 } 997 } 998 999 // Now merge in the SCCs. We can actually move here so try to reuse storage 1000 // the first time through. 1001 if (MergedSCCs.empty()) 1002 MergedSCCs = std::move(RC->SCCs); 1003 else 1004 MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end()); 1005 RC->SCCs.clear(); 1006 DeletedRefSCCs.push_back(RC); 1007 } 1008 1009 // Append our original SCCs to the merged list and move it into place. 1010 for (SCC &InnerC : *this) 1011 SCCIndices[&InnerC] = SCCIndex++; 1012 MergedSCCs.append(SCCs.begin(), SCCs.end()); 1013 SCCs = std::move(MergedSCCs); 1014 1015 // Remove the merged away RefSCCs from the post order sequence. 1016 for (RefSCC *RC : MergeRange) 1017 G->RefSCCIndices.erase(RC); 1018 int IndexOffset = MergeRange.end() - MergeRange.begin(); 1019 auto EraseEnd = 1020 G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end()); 1021 for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end())) 1022 G->RefSCCIndices[RC] -= IndexOffset; 1023 1024 // At this point we have a merged RefSCC with a post-order SCCs list, just 1025 // connect the nodes to form the new edge. 1026 SourceN.insertEdgeInternal(TargetN, Edge::Ref); 1027 1028 // We return the list of SCCs which were merged so that callers can 1029 // invalidate any data they have associated with those SCCs. Note that these 1030 // SCCs are no longer in an interesting state (they are totally empty) but 1031 // the pointers will remain stable for the life of the graph itself. 1032 return DeletedRefSCCs; 1033 } 1034 1035 void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) { 1036 assert(G->lookupRefSCC(SourceN) == this && 1037 "The source must be a member of this RefSCC."); 1038 1039 RefSCC &TargetRC = *G->lookupRefSCC(TargetN); 1040 assert(&TargetRC != this && "The target must not be a member of this RefSCC"); 1041 1042 assert(!is_contained(G->LeafRefSCCs, this) && 1043 "Cannot have a leaf RefSCC source."); 1044 1045 #ifndef NDEBUG 1046 // In a debug build, verify the RefSCC is valid to start with and when this 1047 // routine finishes. 1048 verify(); 1049 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 1050 #endif 1051 1052 // First remove it from the node. 1053 SourceN.removeEdgeInternal(TargetN.getFunction()); 1054 1055 bool HasOtherEdgeToChildRC = false; 1056 bool HasOtherChildRC = false; 1057 for (SCC *InnerC : SCCs) { 1058 for (Node &N : *InnerC) { 1059 for (Edge &E : N) { 1060 assert(E.getNode() && "Cannot have a missing node in a visited SCC!"); 1061 RefSCC &OtherChildRC = *G->lookupRefSCC(*E.getNode()); 1062 if (&OtherChildRC == &TargetRC) { 1063 HasOtherEdgeToChildRC = true; 1064 break; 1065 } 1066 if (&OtherChildRC != this) 1067 HasOtherChildRC = true; 1068 } 1069 if (HasOtherEdgeToChildRC) 1070 break; 1071 } 1072 if (HasOtherEdgeToChildRC) 1073 break; 1074 } 1075 // Because the SCCs form a DAG, deleting such an edge cannot change the set 1076 // of SCCs in the graph. However, it may cut an edge of the SCC DAG, making 1077 // the source SCC no longer connected to the target SCC. If so, we need to 1078 // update the target SCC's map of its parents. 1079 if (!HasOtherEdgeToChildRC) { 1080 bool Removed = TargetRC.Parents.erase(this); 1081 (void)Removed; 1082 assert(Removed && 1083 "Did not find the source SCC in the target SCC's parent list!"); 1084 1085 // It may orphan an SCC if it is the last edge reaching it, but that does 1086 // not violate any invariants of the graph. 1087 if (TargetRC.Parents.empty()) 1088 DEBUG(dbgs() << "LCG: Update removing " << SourceN.getFunction().getName() 1089 << " -> " << TargetN.getFunction().getName() 1090 << " edge orphaned the callee's SCC!\n"); 1091 1092 // It may make the Source SCC a leaf SCC. 1093 if (!HasOtherChildRC) 1094 G->LeafRefSCCs.push_back(this); 1095 } 1096 } 1097 1098 SmallVector<LazyCallGraph::RefSCC *, 1> 1099 LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN, Node &TargetN) { 1100 assert(!SourceN[TargetN].isCall() && 1101 "Cannot remove a call edge, it must first be made a ref edge"); 1102 1103 #ifndef NDEBUG 1104 // In a debug build, verify the RefSCC is valid to start with and when this 1105 // routine finishes. 1106 verify(); 1107 auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 1108 #endif 1109 1110 // First remove the actual edge. 1111 SourceN.removeEdgeInternal(TargetN.getFunction()); 1112 1113 // We return a list of the resulting *new* RefSCCs in post-order. 1114 SmallVector<RefSCC *, 1> Result; 1115 1116 // Direct recursion doesn't impact the SCC graph at all. 1117 if (&SourceN == &TargetN) 1118 return Result; 1119 1120 // We build somewhat synthetic new RefSCCs by providing a postorder mapping 1121 // for each inner SCC. We also store these associated with *nodes* rather 1122 // than SCCs because this saves a round-trip through the node->SCC map and in 1123 // the common case, SCCs are small. We will verify that we always give the 1124 // same number to every node in the SCC such that these are equivalent. 1125 const int RootPostOrderNumber = 0; 1126 int PostOrderNumber = RootPostOrderNumber + 1; 1127 SmallDenseMap<Node *, int> PostOrderMapping; 1128 1129 // Every node in the target SCC can already reach every node in this RefSCC 1130 // (by definition). It is the only node we know will stay inside this RefSCC. 1131 // Everything which transitively reaches Target will also remain in the 1132 // RefSCC. We handle this by pre-marking that the nodes in the target SCC map 1133 // back to the root post order number. 1134 // 1135 // This also enables us to take a very significant short-cut in the standard 1136 // Tarjan walk to re-form RefSCCs below: whenever we build an edge that 1137 // references the target node, we know that the target node eventually 1138 // references all other nodes in our walk. As a consequence, we can detect 1139 // and handle participants in that cycle without walking all the edges that 1140 // form the connections, and instead by relying on the fundamental guarantee 1141 // coming into this operation. 1142 SCC &TargetC = *G->lookupSCC(TargetN); 1143 for (Node &N : TargetC) 1144 PostOrderMapping[&N] = RootPostOrderNumber; 1145 1146 // Reset all the other nodes to prepare for a DFS over them, and add them to 1147 // our worklist. 1148 SmallVector<Node *, 8> Worklist; 1149 for (SCC *C : SCCs) { 1150 if (C == &TargetC) 1151 continue; 1152 1153 for (Node &N : *C) 1154 N.DFSNumber = N.LowLink = 0; 1155 1156 Worklist.append(C->Nodes.begin(), C->Nodes.end()); 1157 } 1158 1159 auto MarkNodeForSCCNumber = [&PostOrderMapping](Node &N, int Number) { 1160 N.DFSNumber = N.LowLink = -1; 1161 PostOrderMapping[&N] = Number; 1162 }; 1163 1164 SmallVector<std::pair<Node *, edge_iterator>, 4> DFSStack; 1165 SmallVector<Node *, 4> PendingRefSCCStack; 1166 do { 1167 assert(DFSStack.empty() && 1168 "Cannot begin a new root with a non-empty DFS stack!"); 1169 assert(PendingRefSCCStack.empty() && 1170 "Cannot begin a new root with pending nodes for an SCC!"); 1171 1172 Node *RootN = Worklist.pop_back_val(); 1173 // Skip any nodes we've already reached in the DFS. 1174 if (RootN->DFSNumber != 0) { 1175 assert(RootN->DFSNumber == -1 && 1176 "Shouldn't have any mid-DFS root nodes!"); 1177 continue; 1178 } 1179 1180 RootN->DFSNumber = RootN->LowLink = 1; 1181 int NextDFSNumber = 2; 1182 1183 DFSStack.push_back({RootN, RootN->begin()}); 1184 do { 1185 Node *N; 1186 edge_iterator I; 1187 std::tie(N, I) = DFSStack.pop_back_val(); 1188 auto E = N->end(); 1189 1190 assert(N->DFSNumber != 0 && "We should always assign a DFS number " 1191 "before processing a node."); 1192 1193 while (I != E) { 1194 Node &ChildN = I->getNode(*G); 1195 if (ChildN.DFSNumber == 0) { 1196 // Mark that we should start at this child when next this node is the 1197 // top of the stack. We don't start at the next child to ensure this 1198 // child's lowlink is reflected. 1199 DFSStack.push_back({N, I}); 1200 1201 // Continue, resetting to the child node. 1202 ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++; 1203 N = &ChildN; 1204 I = ChildN.begin(); 1205 E = ChildN.end(); 1206 continue; 1207 } 1208 if (ChildN.DFSNumber == -1) { 1209 // Check if this edge's target node connects to the deleted edge's 1210 // target node. If so, we know that every node connected will end up 1211 // in this RefSCC, so collapse the entire current stack into the root 1212 // slot in our SCC numbering. See above for the motivation of 1213 // optimizing the target connected nodes in this way. 1214 auto PostOrderI = PostOrderMapping.find(&ChildN); 1215 if (PostOrderI != PostOrderMapping.end() && 1216 PostOrderI->second == RootPostOrderNumber) { 1217 MarkNodeForSCCNumber(*N, RootPostOrderNumber); 1218 while (!PendingRefSCCStack.empty()) 1219 MarkNodeForSCCNumber(*PendingRefSCCStack.pop_back_val(), 1220 RootPostOrderNumber); 1221 while (!DFSStack.empty()) 1222 MarkNodeForSCCNumber(*DFSStack.pop_back_val().first, 1223 RootPostOrderNumber); 1224 // Ensure we break all the way out of the enclosing loop. 1225 N = nullptr; 1226 break; 1227 } 1228 1229 // If this child isn't currently in this RefSCC, no need to process 1230 // it. However, we do need to remove this RefSCC from its RefSCC's 1231 // parent set. 1232 RefSCC &ChildRC = *G->lookupRefSCC(ChildN); 1233 ChildRC.Parents.erase(this); 1234 ++I; 1235 continue; 1236 } 1237 1238 // Track the lowest link of the children, if any are still in the stack. 1239 // Any child not on the stack will have a LowLink of -1. 1240 assert(ChildN.LowLink != 0 && 1241 "Low-link must not be zero with a non-zero DFS number."); 1242 if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink) 1243 N->LowLink = ChildN.LowLink; 1244 ++I; 1245 } 1246 if (!N) 1247 // We short-circuited this node. 1248 break; 1249 1250 // We've finished processing N and its descendents, put it on our pending 1251 // stack to eventually get merged into a RefSCC. 1252 PendingRefSCCStack.push_back(N); 1253 1254 // If this node is linked to some lower entry, continue walking up the 1255 // stack. 1256 if (N->LowLink != N->DFSNumber) { 1257 assert(!DFSStack.empty() && 1258 "We never found a viable root for a RefSCC to pop off!"); 1259 continue; 1260 } 1261 1262 // Otherwise, form a new RefSCC from the top of the pending node stack. 1263 int RootDFSNumber = N->DFSNumber; 1264 // Find the range of the node stack by walking down until we pass the 1265 // root DFS number. 1266 auto RefSCCNodes = make_range( 1267 PendingRefSCCStack.rbegin(), 1268 find_if(reverse(PendingRefSCCStack), [RootDFSNumber](const Node *N) { 1269 return N->DFSNumber < RootDFSNumber; 1270 })); 1271 1272 // Mark the postorder number for these nodes and clear them off the 1273 // stack. We'll use the postorder number to pull them into RefSCCs at the 1274 // end. FIXME: Fuse with the loop above. 1275 int RefSCCNumber = PostOrderNumber++; 1276 for (Node *N : RefSCCNodes) 1277 MarkNodeForSCCNumber(*N, RefSCCNumber); 1278 1279 PendingRefSCCStack.erase(RefSCCNodes.end().base(), 1280 PendingRefSCCStack.end()); 1281 } while (!DFSStack.empty()); 1282 1283 assert(DFSStack.empty() && "Didn't flush the entire DFS stack!"); 1284 assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!"); 1285 } while (!Worklist.empty()); 1286 1287 // We now have a post-order numbering for RefSCCs and a mapping from each 1288 // node in this RefSCC to its final RefSCC. We create each new RefSCC node 1289 // (re-using this RefSCC node for the root) and build a radix-sort style map 1290 // from postorder number to the RefSCC. We then append SCCs to each of these 1291 // RefSCCs in the order they occured in the original SCCs container. 1292 for (int i = 1; i < PostOrderNumber; ++i) 1293 Result.push_back(G->createRefSCC(*G)); 1294 1295 // Insert the resulting postorder sequence into the global graph postorder 1296 // sequence before the current RefSCC in that sequence. The idea being that 1297 // this RefSCC is the target of the reference edge removed, and thus has 1298 // a direct or indirect edge to every other RefSCC formed and so must be at 1299 // the end of any postorder traversal. 1300 // 1301 // FIXME: It'd be nice to change the APIs so that we returned an iterator 1302 // range over the global postorder sequence and generally use that sequence 1303 // rather than building a separate result vector here. 1304 if (!Result.empty()) { 1305 int Idx = G->getRefSCCIndex(*this); 1306 G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx, 1307 Result.begin(), Result.end()); 1308 for (int i : seq<int>(Idx, G->PostOrderRefSCCs.size())) 1309 G->RefSCCIndices[G->PostOrderRefSCCs[i]] = i; 1310 assert(G->PostOrderRefSCCs[G->getRefSCCIndex(*this)] == this && 1311 "Failed to update this RefSCC's index after insertion!"); 1312 } 1313 1314 for (SCC *C : SCCs) { 1315 auto PostOrderI = PostOrderMapping.find(&*C->begin()); 1316 assert(PostOrderI != PostOrderMapping.end() && 1317 "Cannot have missing mappings for nodes!"); 1318 int SCCNumber = PostOrderI->second; 1319 #ifndef NDEBUG 1320 for (Node &N : *C) 1321 assert(PostOrderMapping.find(&N)->second == SCCNumber && 1322 "Cannot have different numbers for nodes in the same SCC!"); 1323 #endif 1324 if (SCCNumber == 0) 1325 // The root node is handled separately by removing the SCCs. 1326 continue; 1327 1328 RefSCC &RC = *Result[SCCNumber - 1]; 1329 int SCCIndex = RC.SCCs.size(); 1330 RC.SCCs.push_back(C); 1331 RC.SCCIndices[C] = SCCIndex; 1332 C->OuterRefSCC = &RC; 1333 } 1334 1335 // FIXME: We re-walk the edges in each RefSCC to establish whether it is 1336 // a leaf and connect it to the rest of the graph's parents lists. This is 1337 // really wasteful. We should instead do this during the DFS to avoid yet 1338 // another edge walk. 1339 for (RefSCC *RC : Result) 1340 G->connectRefSCC(*RC); 1341 1342 // Now erase all but the root's SCCs. 1343 SCCs.erase(remove_if(SCCs, 1344 [&](SCC *C) { 1345 return PostOrderMapping.lookup(&*C->begin()) != 1346 RootPostOrderNumber; 1347 }), 1348 SCCs.end()); 1349 SCCIndices.clear(); 1350 for (int i = 0, Size = SCCs.size(); i < Size; ++i) 1351 SCCIndices[SCCs[i]] = i; 1352 1353 #ifndef NDEBUG 1354 // Now we need to reconnect the current (root) SCC to the graph. We do this 1355 // manually because we can special case our leaf handling and detect errors. 1356 bool IsLeaf = true; 1357 #endif 1358 for (SCC *C : SCCs) 1359 for (Node &N : *C) { 1360 for (Edge &E : N) { 1361 assert(E.getNode() && "Cannot have a missing node in a visited SCC!"); 1362 RefSCC &ChildRC = *G->lookupRefSCC(*E.getNode()); 1363 if (&ChildRC == this) 1364 continue; 1365 ChildRC.Parents.insert(this); 1366 #ifndef NDEBUG 1367 IsLeaf = false; 1368 #endif 1369 } 1370 } 1371 #ifndef NDEBUG 1372 if (!Result.empty()) 1373 assert(!IsLeaf && "This SCC cannot be a leaf as we have split out new " 1374 "SCCs by removing this edge."); 1375 if (none_of(G->LeafRefSCCs, [&](RefSCC *C) { return C == this; })) 1376 assert(!IsLeaf && "This SCC cannot be a leaf as it already had child " 1377 "SCCs before we removed this edge."); 1378 #endif 1379 // And connect both this RefSCC and all the new ones to the correct parents. 1380 // The easiest way to do this is just to re-analyze the old parent set. 1381 SmallVector<RefSCC *, 4> OldParents(Parents.begin(), Parents.end()); 1382 Parents.clear(); 1383 for (RefSCC *ParentRC : OldParents) 1384 for (SCC &ParentC : *ParentRC) 1385 for (Node &ParentN : ParentC) 1386 for (Edge &E : ParentN) { 1387 assert(E.getNode() && "Cannot have a missing node in a visited SCC!"); 1388 RefSCC &RC = *G->lookupRefSCC(*E.getNode()); 1389 if (&RC != ParentRC) 1390 RC.Parents.insert(ParentRC); 1391 } 1392 1393 // If this SCC stopped being a leaf through this edge removal, remove it from 1394 // the leaf SCC list. Note that this DTRT in the case where this was never 1395 // a leaf. 1396 // FIXME: As LeafRefSCCs could be very large, we might want to not walk the 1397 // entire list if this RefSCC wasn't a leaf before the edge removal. 1398 if (!Result.empty()) 1399 G->LeafRefSCCs.erase( 1400 std::remove(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(), this), 1401 G->LeafRefSCCs.end()); 1402 1403 #ifndef NDEBUG 1404 // Verify all of the new RefSCCs. 1405 for (RefSCC *RC : Result) 1406 RC->verify(); 1407 #endif 1408 1409 // Return the new list of SCCs. 1410 return Result; 1411 } 1412 1413 void LazyCallGraph::RefSCC::handleTrivialEdgeInsertion(Node &SourceN, 1414 Node &TargetN) { 1415 // The only trivial case that requires any graph updates is when we add new 1416 // ref edge and may connect different RefSCCs along that path. This is only 1417 // because of the parents set. Every other part of the graph remains constant 1418 // after this edge insertion. 1419 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 1420 RefSCC &TargetRC = *G->lookupRefSCC(TargetN); 1421 if (&TargetRC == this) { 1422 1423 return; 1424 } 1425 1426 assert(TargetRC.isDescendantOf(*this) && 1427 "Target must be a descendant of the Source."); 1428 // The only change required is to add this RefSCC to the parent set of the 1429 // target. This is a set and so idempotent if the edge already existed. 1430 TargetRC.Parents.insert(this); 1431 } 1432 1433 void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN, 1434 Node &TargetN) { 1435 #ifndef NDEBUG 1436 // Check that the RefSCC is still valid when we finish. 1437 auto ExitVerifier = make_scope_exit([this] { verify(); }); 1438 1439 // Check that we aren't breaking some invariants of the SCC graph. 1440 SCC &SourceC = *G->lookupSCC(SourceN); 1441 SCC &TargetC = *G->lookupSCC(TargetN); 1442 if (&SourceC != &TargetC) 1443 assert(SourceC.isAncestorOf(TargetC) && 1444 "Call edge is not trivial in the SCC graph!"); 1445 #endif 1446 // First insert it into the source or find the existing edge. 1447 auto InsertResult = SourceN.EdgeIndexMap.insert( 1448 {&TargetN.getFunction(), SourceN.Edges.size()}); 1449 if (!InsertResult.second) { 1450 // Already an edge, just update it. 1451 Edge &E = SourceN.Edges[InsertResult.first->second]; 1452 if (E.isCall()) 1453 return; // Nothing to do! 1454 E.setKind(Edge::Call); 1455 } else { 1456 // Create the new edge. 1457 SourceN.Edges.emplace_back(TargetN, Edge::Call); 1458 } 1459 1460 // Now that we have the edge, handle the graph fallout. 1461 handleTrivialEdgeInsertion(SourceN, TargetN); 1462 } 1463 1464 void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) { 1465 #ifndef NDEBUG 1466 // Check that the RefSCC is still valid when we finish. 1467 auto ExitVerifier = make_scope_exit([this] { verify(); }); 1468 1469 // Check that we aren't breaking some invariants of the RefSCC graph. 1470 RefSCC &SourceRC = *G->lookupRefSCC(SourceN); 1471 RefSCC &TargetRC = *G->lookupRefSCC(TargetN); 1472 if (&SourceRC != &TargetRC) 1473 assert(SourceRC.isAncestorOf(TargetRC) && 1474 "Ref edge is not trivial in the RefSCC graph!"); 1475 #endif 1476 // First insert it into the source or find the existing edge. 1477 auto InsertResult = SourceN.EdgeIndexMap.insert( 1478 {&TargetN.getFunction(), SourceN.Edges.size()}); 1479 if (!InsertResult.second) 1480 // Already an edge, we're done. 1481 return; 1482 1483 // Create the new edge. 1484 SourceN.Edges.emplace_back(TargetN, Edge::Ref); 1485 1486 // Now that we have the edge, handle the graph fallout. 1487 handleTrivialEdgeInsertion(SourceN, TargetN); 1488 } 1489 1490 void LazyCallGraph::insertEdge(Node &SourceN, Function &Target, Edge::Kind EK) { 1491 assert(SCCMap.empty() && DFSStack.empty() && 1492 "This method cannot be called after SCCs have been formed!"); 1493 1494 return SourceN.insertEdgeInternal(Target, EK); 1495 } 1496 1497 void LazyCallGraph::removeEdge(Node &SourceN, Function &Target) { 1498 assert(SCCMap.empty() && DFSStack.empty() && 1499 "This method cannot be called after SCCs have been formed!"); 1500 1501 return SourceN.removeEdgeInternal(Target); 1502 } 1503 1504 void LazyCallGraph::removeDeadFunction(Function &F) { 1505 // FIXME: This is unnecessarily restrictive. We should be able to remove 1506 // functions which recursively call themselves. 1507 assert(F.use_empty() && 1508 "This routine should only be called on trivially dead functions!"); 1509 1510 auto EII = EntryIndexMap.find(&F); 1511 if (EII != EntryIndexMap.end()) { 1512 EntryEdges[EII->second] = Edge(); 1513 EntryIndexMap.erase(EII); 1514 } 1515 1516 // It's safe to just remove un-visited functions from the RefSCC entry list. 1517 // FIXME: This is a linear operation which could become hot and benefit from 1518 // an index map. 1519 auto RENI = find(RefSCCEntryNodes, &F); 1520 if (RENI != RefSCCEntryNodes.end()) 1521 RefSCCEntryNodes.erase(RENI); 1522 1523 auto NI = NodeMap.find(&F); 1524 if (NI == NodeMap.end()) 1525 // Not in the graph at all! 1526 return; 1527 1528 Node &N = *NI->second; 1529 NodeMap.erase(NI); 1530 1531 if (SCCMap.empty() && DFSStack.empty()) { 1532 // No SCC walk has begun, so removing this is fine and there is nothing 1533 // else necessary at this point but clearing out the node. 1534 N.clear(); 1535 return; 1536 } 1537 1538 // Check that we aren't going to break the DFS walk. 1539 assert(all_of(DFSStack, 1540 [&N](const std::pair<Node *, edge_iterator> &Element) { 1541 return Element.first != &N; 1542 }) && 1543 "Tried to remove a function currently in the DFS stack!"); 1544 assert(find(PendingRefSCCStack, &N) == PendingRefSCCStack.end() && 1545 "Tried to remove a function currently pending to add to a RefSCC!"); 1546 1547 // Cannot remove a function which has yet to be visited in the DFS walk, so 1548 // if we have a node at all then we must have an SCC and RefSCC. 1549 auto CI = SCCMap.find(&N); 1550 assert(CI != SCCMap.end() && 1551 "Tried to remove a node without an SCC after DFS walk started!"); 1552 SCC &C = *CI->second; 1553 SCCMap.erase(CI); 1554 RefSCC &RC = C.getOuterRefSCC(); 1555 1556 // This node must be the only member of its SCC as it has no callers, and 1557 // that SCC must be the only member of a RefSCC as it has no references. 1558 // Validate these properties first. 1559 assert(C.size() == 1 && "Dead functions must be in a singular SCC"); 1560 assert(RC.size() == 1 && "Dead functions must be in a singular RefSCC"); 1561 assert(RC.Parents.empty() && "Cannot have parents of a dead RefSCC!"); 1562 1563 // Now remove this RefSCC from any parents sets and the leaf list. 1564 for (Edge &E : N) 1565 if (Node *TargetN = E.getNode()) 1566 if (RefSCC *TargetRC = lookupRefSCC(*TargetN)) 1567 TargetRC->Parents.erase(&RC); 1568 // FIXME: This is a linear operation which could become hot and benefit from 1569 // an index map. 1570 auto LRI = find(LeafRefSCCs, &RC); 1571 if (LRI != LeafRefSCCs.end()) 1572 LeafRefSCCs.erase(LRI); 1573 1574 auto RCIndexI = RefSCCIndices.find(&RC); 1575 int RCIndex = RCIndexI->second; 1576 PostOrderRefSCCs.erase(PostOrderRefSCCs.begin() + RCIndex); 1577 RefSCCIndices.erase(RCIndexI); 1578 for (int i = RCIndex, Size = PostOrderRefSCCs.size(); i < Size; ++i) 1579 RefSCCIndices[PostOrderRefSCCs[i]] = i; 1580 1581 // Finally clear out all the data structures from the node down through the 1582 // components. 1583 N.clear(); 1584 C.clear(); 1585 RC.clear(); 1586 1587 // Nothing to delete as all the objects are allocated in stable bump pointer 1588 // allocators. 1589 } 1590 1591 LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) { 1592 return *new (MappedN = BPA.Allocate()) Node(*this, F); 1593 } 1594 1595 void LazyCallGraph::updateGraphPtrs() { 1596 // Process all nodes updating the graph pointers. 1597 { 1598 SmallVector<Node *, 16> Worklist; 1599 for (Edge &E : EntryEdges) 1600 if (Node *EntryN = E.getNode()) 1601 Worklist.push_back(EntryN); 1602 1603 while (!Worklist.empty()) { 1604 Node *N = Worklist.pop_back_val(); 1605 N->G = this; 1606 for (Edge &E : N->Edges) 1607 if (Node *TargetN = E.getNode()) 1608 Worklist.push_back(TargetN); 1609 } 1610 } 1611 1612 // Process all SCCs updating the graph pointers. 1613 { 1614 SmallVector<RefSCC *, 16> Worklist(LeafRefSCCs.begin(), LeafRefSCCs.end()); 1615 1616 while (!Worklist.empty()) { 1617 RefSCC &C = *Worklist.pop_back_val(); 1618 C.G = this; 1619 for (RefSCC &ParentC : C.parents()) 1620 Worklist.push_back(&ParentC); 1621 } 1622 } 1623 } 1624 1625 /// Build the internal SCCs for a RefSCC from a sequence of nodes. 1626 /// 1627 /// Appends the SCCs to the provided vector and updates the map with their 1628 /// indices. Both the vector and map must be empty when passed into this 1629 /// routine. 1630 void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) { 1631 assert(RC.SCCs.empty() && "Already built SCCs!"); 1632 assert(RC.SCCIndices.empty() && "Already mapped SCC indices!"); 1633 1634 for (Node *N : Nodes) { 1635 assert(N->LowLink >= (*Nodes.begin())->LowLink && 1636 "We cannot have a low link in an SCC lower than its root on the " 1637 "stack!"); 1638 1639 // This node will go into the next RefSCC, clear out its DFS and low link 1640 // as we scan. 1641 N->DFSNumber = N->LowLink = 0; 1642 } 1643 1644 // Each RefSCC contains a DAG of the call SCCs. To build these, we do 1645 // a direct walk of the call edges using Tarjan's algorithm. We reuse the 1646 // internal storage as we won't need it for the outer graph's DFS any longer. 1647 1648 SmallVector<std::pair<Node *, call_edge_iterator>, 16> DFSStack; 1649 SmallVector<Node *, 16> PendingSCCStack; 1650 1651 // Scan down the stack and DFS across the call edges. 1652 for (Node *RootN : Nodes) { 1653 assert(DFSStack.empty() && 1654 "Cannot begin a new root with a non-empty DFS stack!"); 1655 assert(PendingSCCStack.empty() && 1656 "Cannot begin a new root with pending nodes for an SCC!"); 1657 1658 // Skip any nodes we've already reached in the DFS. 1659 if (RootN->DFSNumber != 0) { 1660 assert(RootN->DFSNumber == -1 && 1661 "Shouldn't have any mid-DFS root nodes!"); 1662 continue; 1663 } 1664 1665 RootN->DFSNumber = RootN->LowLink = 1; 1666 int NextDFSNumber = 2; 1667 1668 DFSStack.push_back({RootN, RootN->call_begin()}); 1669 do { 1670 Node *N; 1671 call_edge_iterator I; 1672 std::tie(N, I) = DFSStack.pop_back_val(); 1673 auto E = N->call_end(); 1674 while (I != E) { 1675 Node &ChildN = *I->getNode(); 1676 if (ChildN.DFSNumber == 0) { 1677 // We haven't yet visited this child, so descend, pushing the current 1678 // node onto the stack. 1679 DFSStack.push_back({N, I}); 1680 1681 assert(!lookupSCC(ChildN) && 1682 "Found a node with 0 DFS number but already in an SCC!"); 1683 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++; 1684 N = &ChildN; 1685 I = N->call_begin(); 1686 E = N->call_end(); 1687 continue; 1688 } 1689 1690 // If the child has already been added to some child component, it 1691 // couldn't impact the low-link of this parent because it isn't 1692 // connected, and thus its low-link isn't relevant so skip it. 1693 if (ChildN.DFSNumber == -1) { 1694 ++I; 1695 continue; 1696 } 1697 1698 // Track the lowest linked child as the lowest link for this node. 1699 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); 1700 if (ChildN.LowLink < N->LowLink) 1701 N->LowLink = ChildN.LowLink; 1702 1703 // Move to the next edge. 1704 ++I; 1705 } 1706 1707 // We've finished processing N and its descendents, put it on our pending 1708 // SCC stack to eventually get merged into an SCC of nodes. 1709 PendingSCCStack.push_back(N); 1710 1711 // If this node is linked to some lower entry, continue walking up the 1712 // stack. 1713 if (N->LowLink != N->DFSNumber) 1714 continue; 1715 1716 // Otherwise, we've completed an SCC. Append it to our post order list of 1717 // SCCs. 1718 int RootDFSNumber = N->DFSNumber; 1719 // Find the range of the node stack by walking down until we pass the 1720 // root DFS number. 1721 auto SCCNodes = make_range( 1722 PendingSCCStack.rbegin(), 1723 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) { 1724 return N->DFSNumber < RootDFSNumber; 1725 })); 1726 // Form a new SCC out of these nodes and then clear them off our pending 1727 // stack. 1728 RC.SCCs.push_back(createSCC(RC, SCCNodes)); 1729 for (Node &N : *RC.SCCs.back()) { 1730 N.DFSNumber = N.LowLink = -1; 1731 SCCMap[&N] = RC.SCCs.back(); 1732 } 1733 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end()); 1734 } while (!DFSStack.empty()); 1735 } 1736 1737 // Wire up the SCC indices. 1738 for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i) 1739 RC.SCCIndices[RC.SCCs[i]] = i; 1740 } 1741 1742 // FIXME: We should move callers of this to embed the parent linking and leaf 1743 // tracking into their DFS in order to remove a full walk of all edges. 1744 void LazyCallGraph::connectRefSCC(RefSCC &RC) { 1745 // Walk all edges in the RefSCC (this remains linear as we only do this once 1746 // when we build the RefSCC) to connect it to the parent sets of its 1747 // children. 1748 bool IsLeaf = true; 1749 for (SCC &C : RC) 1750 for (Node &N : C) 1751 for (Edge &E : N) { 1752 assert(E.getNode() && 1753 "Cannot have a missing node in a visited part of the graph!"); 1754 RefSCC &ChildRC = *lookupRefSCC(*E.getNode()); 1755 if (&ChildRC == &RC) 1756 continue; 1757 ChildRC.Parents.insert(&RC); 1758 IsLeaf = false; 1759 } 1760 1761 // For the SCCs where we find no child SCCs, add them to the leaf list. 1762 if (IsLeaf) 1763 LeafRefSCCs.push_back(&RC); 1764 } 1765 1766 bool LazyCallGraph::buildNextRefSCCInPostOrder() { 1767 if (DFSStack.empty()) { 1768 Node *N; 1769 do { 1770 // If we've handled all candidate entry nodes to the SCC forest, we're 1771 // done. 1772 if (RefSCCEntryNodes.empty()) 1773 return false; 1774 1775 N = &get(*RefSCCEntryNodes.pop_back_val()); 1776 } while (N->DFSNumber != 0); 1777 1778 // Found a new root, begin the DFS here. 1779 N->LowLink = N->DFSNumber = 1; 1780 NextDFSNumber = 2; 1781 DFSStack.push_back({N, N->begin()}); 1782 } 1783 1784 for (;;) { 1785 Node *N; 1786 edge_iterator I; 1787 std::tie(N, I) = DFSStack.pop_back_val(); 1788 1789 assert(N->DFSNumber > 0 && "We should always assign a DFS number " 1790 "before placing a node onto the stack."); 1791 1792 auto E = N->end(); 1793 while (I != E) { 1794 Node &ChildN = I->getNode(*this); 1795 if (ChildN.DFSNumber == 0) { 1796 // We haven't yet visited this child, so descend, pushing the current 1797 // node onto the stack. 1798 DFSStack.push_back({N, N->begin()}); 1799 1800 assert(!SCCMap.count(&ChildN) && 1801 "Found a node with 0 DFS number but already in an SCC!"); 1802 ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++; 1803 N = &ChildN; 1804 I = N->begin(); 1805 E = N->end(); 1806 continue; 1807 } 1808 1809 // If the child has already been added to some child component, it 1810 // couldn't impact the low-link of this parent because it isn't 1811 // connected, and thus its low-link isn't relevant so skip it. 1812 if (ChildN.DFSNumber == -1) { 1813 ++I; 1814 continue; 1815 } 1816 1817 // Track the lowest linked child as the lowest link for this node. 1818 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); 1819 if (ChildN.LowLink < N->LowLink) 1820 N->LowLink = ChildN.LowLink; 1821 1822 // Move to the next edge. 1823 ++I; 1824 } 1825 1826 // We've finished processing N and its descendents, put it on our pending 1827 // SCC stack to eventually get merged into an SCC of nodes. 1828 PendingRefSCCStack.push_back(N); 1829 1830 // If this node is linked to some lower entry, continue walking up the 1831 // stack. 1832 if (N->LowLink != N->DFSNumber) { 1833 assert(!DFSStack.empty() && 1834 "We never found a viable root for an SCC to pop off!"); 1835 continue; 1836 } 1837 1838 // Otherwise, form a new RefSCC from the top of the pending node stack. 1839 int RootDFSNumber = N->DFSNumber; 1840 // Find the range of the node stack by walking down until we pass the 1841 // root DFS number. 1842 auto RefSCCNodes = node_stack_range( 1843 PendingRefSCCStack.rbegin(), 1844 find_if(reverse(PendingRefSCCStack), [RootDFSNumber](const Node *N) { 1845 return N->DFSNumber < RootDFSNumber; 1846 })); 1847 // Form a new RefSCC out of these nodes and then clear them off our pending 1848 // stack. 1849 RefSCC *NewRC = createRefSCC(*this); 1850 buildSCCs(*NewRC, RefSCCNodes); 1851 connectRefSCC(*NewRC); 1852 PendingRefSCCStack.erase(RefSCCNodes.end().base(), 1853 PendingRefSCCStack.end()); 1854 1855 // Push the new node into the postorder list and return true indicating we 1856 // successfully grew the postorder sequence by one. 1857 bool Inserted = 1858 RefSCCIndices.insert({NewRC, PostOrderRefSCCs.size()}).second; 1859 (void)Inserted; 1860 assert(Inserted && "Cannot already have this RefSCC in the index map!"); 1861 PostOrderRefSCCs.push_back(NewRC); 1862 return true; 1863 } 1864 } 1865 1866 AnalysisKey LazyCallGraphAnalysis::Key; 1867 1868 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {} 1869 1870 static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) { 1871 OS << " Edges in function: " << N.getFunction().getName() << "\n"; 1872 for (const LazyCallGraph::Edge &E : N) 1873 OS << " " << (E.isCall() ? "call" : "ref ") << " -> " 1874 << E.getFunction().getName() << "\n"; 1875 1876 OS << "\n"; 1877 } 1878 1879 static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) { 1880 ptrdiff_t Size = std::distance(C.begin(), C.end()); 1881 OS << " SCC with " << Size << " functions:\n"; 1882 1883 for (LazyCallGraph::Node &N : C) 1884 OS << " " << N.getFunction().getName() << "\n"; 1885 } 1886 1887 static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) { 1888 ptrdiff_t Size = std::distance(C.begin(), C.end()); 1889 OS << " RefSCC with " << Size << " call SCCs:\n"; 1890 1891 for (LazyCallGraph::SCC &InnerC : C) 1892 printSCC(OS, InnerC); 1893 1894 OS << "\n"; 1895 } 1896 1897 PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M, 1898 ModuleAnalysisManager &AM) { 1899 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M); 1900 1901 OS << "Printing the call graph for module: " << M.getModuleIdentifier() 1902 << "\n\n"; 1903 1904 for (Function &F : M) 1905 printNode(OS, G.get(F)); 1906 1907 for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs()) 1908 printRefSCC(OS, C); 1909 1910 return PreservedAnalyses::all(); 1911 } 1912 1913 LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS) 1914 : OS(OS) {} 1915 1916 static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) { 1917 std::string Name = "\"" + DOT::EscapeString(N.getFunction().getName()) + "\""; 1918 1919 for (const LazyCallGraph::Edge &E : N) { 1920 OS << " " << Name << " -> \"" 1921 << DOT::EscapeString(E.getFunction().getName()) << "\""; 1922 if (!E.isCall()) // It is a ref edge. 1923 OS << " [style=dashed,label=\"ref\"]"; 1924 OS << ";\n"; 1925 } 1926 1927 OS << "\n"; 1928 } 1929 1930 PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M, 1931 ModuleAnalysisManager &AM) { 1932 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M); 1933 1934 OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n"; 1935 1936 for (Function &F : M) 1937 printNodeDOT(OS, G.get(F)); 1938 1939 OS << "}\n"; 1940 1941 return PreservedAnalyses::all(); 1942 } 1943