1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Analysis/LazyCallGraph.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/IR/CallSite.h" 13 #include "llvm/IR/InstVisitor.h" 14 #include "llvm/IR/Instructions.h" 15 #include "llvm/IR/PassManager.h" 16 #include "llvm/Support/Debug.h" 17 #include "llvm/Support/GraphWriter.h" 18 19 using namespace llvm; 20 21 #define DEBUG_TYPE "lcg" 22 23 static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges, 24 DenseMap<Function *, int> &EdgeIndexMap, Function &F, 25 LazyCallGraph::Edge::Kind EK) { 26 // Note that we consider *any* function with a definition to be a viable 27 // edge. Even if the function's definition is subject to replacement by 28 // some other module (say, a weak definition) there may still be 29 // optimizations which essentially speculate based on the definition and 30 // a way to check that the specific definition is in fact the one being 31 // used. For example, this could be done by moving the weak definition to 32 // a strong (internal) definition and making the weak definition be an 33 // alias. Then a test of the address of the weak function against the new 34 // strong definition's address would be an effective way to determine the 35 // safety of optimizing a direct call edge. 36 if (!F.isDeclaration() && 37 EdgeIndexMap.insert({&F, Edges.size()}).second) { 38 DEBUG(dbgs() << " Added callable function: " << F.getName() << "\n"); 39 Edges.emplace_back(LazyCallGraph::Edge(F, EK)); 40 } 41 } 42 43 LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F) 44 : G(&G), F(F), DFSNumber(0), LowLink(0) { 45 DEBUG(dbgs() << " Adding functions called by '" << F.getName() 46 << "' to the graph.\n"); 47 48 SmallVector<Constant *, 16> Worklist; 49 SmallPtrSet<Function *, 4> Callees; 50 SmallPtrSet<Constant *, 16> Visited; 51 52 // Find all the potential call graph edges in this function. We track both 53 // actual call edges and indirect references to functions. The direct calls 54 // are trivially added, but to accumulate the latter we walk the instructions 55 // and add every operand which is a constant to the worklist to process 56 // afterward. 57 for (BasicBlock &BB : F) 58 for (Instruction &I : BB) { 59 if (auto CS = CallSite(&I)) 60 if (Function *Callee = CS.getCalledFunction()) 61 if (Callees.insert(Callee).second) { 62 Visited.insert(Callee); 63 addEdge(Edges, EdgeIndexMap, *Callee, LazyCallGraph::Edge::Call); 64 } 65 66 for (Value *Op : I.operand_values()) 67 if (Constant *C = dyn_cast<Constant>(Op)) 68 if (Visited.insert(C).second) 69 Worklist.push_back(C); 70 } 71 72 // We've collected all the constant (and thus potentially function or 73 // function containing) operands to all of the instructions in the function. 74 // Process them (recursively) collecting every function found. 75 visitReferences(Worklist, Visited, [&](Function &F) { 76 addEdge(Edges, EdgeIndexMap, F, LazyCallGraph::Edge::Ref); 77 }); 78 } 79 80 void LazyCallGraph::Node::insertEdgeInternal(Function &Target, Edge::Kind EK) { 81 if (Node *N = G->lookup(Target)) 82 return insertEdgeInternal(*N, EK); 83 84 EdgeIndexMap.insert({&Target, Edges.size()}); 85 Edges.emplace_back(Target, EK); 86 } 87 88 void LazyCallGraph::Node::insertEdgeInternal(Node &TargetN, Edge::Kind EK) { 89 EdgeIndexMap.insert({&TargetN.getFunction(), Edges.size()}); 90 Edges.emplace_back(TargetN, EK); 91 } 92 93 void LazyCallGraph::Node::setEdgeKind(Function &TargetF, Edge::Kind EK) { 94 Edges[EdgeIndexMap.find(&TargetF)->second].setKind(EK); 95 } 96 97 void LazyCallGraph::Node::removeEdgeInternal(Function &Target) { 98 auto IndexMapI = EdgeIndexMap.find(&Target); 99 assert(IndexMapI != EdgeIndexMap.end() && 100 "Target not in the edge set for this caller?"); 101 102 Edges[IndexMapI->second] = Edge(); 103 EdgeIndexMap.erase(IndexMapI); 104 } 105 106 void LazyCallGraph::Node::dump() const { 107 dbgs() << *this << '\n'; 108 } 109 110 LazyCallGraph::LazyCallGraph(Module &M) : NextDFSNumber(0) { 111 DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier() 112 << "\n"); 113 for (Function &F : M) 114 if (!F.isDeclaration() && !F.hasLocalLinkage()) 115 if (EntryIndexMap.insert({&F, EntryEdges.size()}).second) { 116 DEBUG(dbgs() << " Adding '" << F.getName() 117 << "' to entry set of the graph.\n"); 118 EntryEdges.emplace_back(F, Edge::Ref); 119 } 120 121 // Now add entry nodes for functions reachable via initializers to globals. 122 SmallVector<Constant *, 16> Worklist; 123 SmallPtrSet<Constant *, 16> Visited; 124 for (GlobalVariable &GV : M.globals()) 125 if (GV.hasInitializer()) 126 if (Visited.insert(GV.getInitializer()).second) 127 Worklist.push_back(GV.getInitializer()); 128 129 DEBUG(dbgs() << " Adding functions referenced by global initializers to the " 130 "entry set.\n"); 131 visitReferences(Worklist, Visited, [&](Function &F) { 132 addEdge(EntryEdges, EntryIndexMap, F, LazyCallGraph::Edge::Ref); 133 }); 134 135 for (const Edge &E : EntryEdges) 136 RefSCCEntryNodes.push_back(&E.getFunction()); 137 } 138 139 LazyCallGraph::LazyCallGraph(LazyCallGraph &&G) 140 : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)), 141 EntryEdges(std::move(G.EntryEdges)), 142 EntryIndexMap(std::move(G.EntryIndexMap)), SCCBPA(std::move(G.SCCBPA)), 143 SCCMap(std::move(G.SCCMap)), LeafRefSCCs(std::move(G.LeafRefSCCs)), 144 DFSStack(std::move(G.DFSStack)), 145 RefSCCEntryNodes(std::move(G.RefSCCEntryNodes)), 146 NextDFSNumber(G.NextDFSNumber) { 147 updateGraphPtrs(); 148 } 149 150 LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) { 151 BPA = std::move(G.BPA); 152 NodeMap = std::move(G.NodeMap); 153 EntryEdges = std::move(G.EntryEdges); 154 EntryIndexMap = std::move(G.EntryIndexMap); 155 SCCBPA = std::move(G.SCCBPA); 156 SCCMap = std::move(G.SCCMap); 157 LeafRefSCCs = std::move(G.LeafRefSCCs); 158 DFSStack = std::move(G.DFSStack); 159 RefSCCEntryNodes = std::move(G.RefSCCEntryNodes); 160 NextDFSNumber = G.NextDFSNumber; 161 updateGraphPtrs(); 162 return *this; 163 } 164 165 void LazyCallGraph::SCC::dump() const { 166 dbgs() << *this << '\n'; 167 } 168 169 #ifndef NDEBUG 170 void LazyCallGraph::SCC::verify() { 171 assert(OuterRefSCC && "Can't have a null RefSCC!"); 172 assert(!Nodes.empty() && "Can't have an empty SCC!"); 173 174 for (Node *N : Nodes) { 175 assert(N && "Can't have a null node!"); 176 assert(OuterRefSCC->G->lookupSCC(*N) == this && 177 "Node does not map to this SCC!"); 178 assert(N->DFSNumber == -1 && 179 "Must set DFS numbers to -1 when adding a node to an SCC!"); 180 assert(N->LowLink == -1 && 181 "Must set low link to -1 when adding a node to an SCC!"); 182 for (Edge &E : *N) 183 assert(E.getNode() && "Can't have an edge to a raw function!"); 184 } 185 } 186 #endif 187 188 LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {} 189 190 void LazyCallGraph::RefSCC::dump() const { 191 dbgs() << *this << '\n'; 192 } 193 194 #ifndef NDEBUG 195 void LazyCallGraph::RefSCC::verify() { 196 assert(G && "Can't have a null graph!"); 197 assert(!SCCs.empty() && "Can't have an empty SCC!"); 198 199 // Verify basic properties of the SCCs. 200 SmallPtrSet<SCC *, 4> SCCSet; 201 for (SCC *C : SCCs) { 202 assert(C && "Can't have a null SCC!"); 203 C->verify(); 204 assert(&C->getOuterRefSCC() == this && 205 "SCC doesn't think it is inside this RefSCC!"); 206 bool Inserted = SCCSet.insert(C).second; 207 assert(Inserted && "Found a duplicate SCC!"); 208 } 209 210 // Check that our indices map correctly. 211 for (auto &SCCIndexPair : SCCIndices) { 212 SCC *C = SCCIndexPair.first; 213 int i = SCCIndexPair.second; 214 assert(C && "Can't have a null SCC in the indices!"); 215 assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!"); 216 assert(SCCs[i] == C && "Index doesn't point to SCC!"); 217 } 218 219 // Check that the SCCs are in fact in post-order. 220 for (int i = 0, Size = SCCs.size(); i < Size; ++i) { 221 SCC &SourceSCC = *SCCs[i]; 222 for (Node &N : SourceSCC) 223 for (Edge &E : N) { 224 if (!E.isCall()) 225 continue; 226 SCC &TargetSCC = *G->lookupSCC(*E.getNode()); 227 if (&TargetSCC.getOuterRefSCC() == this) { 228 assert(SCCIndices.find(&TargetSCC)->second <= i && 229 "Edge between SCCs violates post-order relationship."); 230 continue; 231 } 232 assert(TargetSCC.getOuterRefSCC().Parents.count(this) && 233 "Edge to a RefSCC missing us in its parent set."); 234 } 235 } 236 } 237 #endif 238 239 bool LazyCallGraph::RefSCC::isDescendantOf(const RefSCC &C) const { 240 // Walk up the parents of this SCC and verify that we eventually find C. 241 SmallVector<const RefSCC *, 4> AncestorWorklist; 242 AncestorWorklist.push_back(this); 243 do { 244 const RefSCC *AncestorC = AncestorWorklist.pop_back_val(); 245 if (AncestorC->isChildOf(C)) 246 return true; 247 for (const RefSCC *ParentC : AncestorC->Parents) 248 AncestorWorklist.push_back(ParentC); 249 } while (!AncestorWorklist.empty()); 250 251 return false; 252 } 253 254 SmallVector<LazyCallGraph::SCC *, 1> 255 LazyCallGraph::RefSCC::switchInternalEdgeToCall(Node &SourceN, Node &TargetN) { 256 assert(!SourceN[TargetN].isCall() && "Must start with a ref edge!"); 257 258 SmallVector<SCC *, 1> DeletedSCCs; 259 260 SCC &SourceSCC = *G->lookupSCC(SourceN); 261 SCC &TargetSCC = *G->lookupSCC(TargetN); 262 263 // If the two nodes are already part of the same SCC, we're also done as 264 // we've just added more connectivity. 265 if (&SourceSCC == &TargetSCC) { 266 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call); 267 #ifndef NDEBUG 268 // Check that the RefSCC is still valid. 269 verify(); 270 #endif 271 return DeletedSCCs; 272 } 273 274 // At this point we leverage the postorder list of SCCs to detect when the 275 // insertion of an edge changes the SCC structure in any way. 276 // 277 // First and foremost, we can eliminate the need for any changes when the 278 // edge is toward the beginning of the postorder sequence because all edges 279 // flow in that direction already. Thus adding a new one cannot form a cycle. 280 int SourceIdx = SCCIndices[&SourceSCC]; 281 int TargetIdx = SCCIndices[&TargetSCC]; 282 if (TargetIdx < SourceIdx) { 283 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call); 284 #ifndef NDEBUG 285 // Check that the RefSCC is still valid. 286 verify(); 287 #endif 288 return DeletedSCCs; 289 } 290 291 // When we do have an edge from an earlier SCC to a later SCC in the 292 // postorder sequence, all of the SCCs which may be impacted are in the 293 // closed range of those two within the postorder sequence. The algorithm to 294 // restore the state is as follows: 295 // 296 // 1) Starting from the source SCC, construct a set of SCCs which reach the 297 // source SCC consisting of just the source SCC. Then scan toward the 298 // target SCC in postorder and for each SCC, if it has an edge to an SCC 299 // in the set, add it to the set. Otherwise, the source SCC is not 300 // a successor, move it in the postorder sequence to immediately before 301 // the source SCC, shifting the source SCC and all SCCs in the set one 302 // position toward the target SCC. Stop scanning after processing the 303 // target SCC. 304 // 2) If the source SCC is now past the target SCC in the postorder sequence, 305 // and thus the new edge will flow toward the start, we are done. 306 // 3) Otherwise, starting from the target SCC, walk all edges which reach an 307 // SCC between the source and the target, and add them to the set of 308 // connected SCCs, then recurse through them. Once a complete set of the 309 // SCCs the target connects to is known, hoist the remaining SCCs between 310 // the source and the target to be above the target. Note that there is no 311 // need to process the source SCC, it is already known to connect. 312 // 4) At this point, all of the SCCs in the closed range between the source 313 // SCC and the target SCC in the postorder sequence are connected, 314 // including the target SCC and the source SCC. Inserting the edge from 315 // the source SCC to the target SCC will form a cycle out of precisely 316 // these SCCs. Thus we can merge all of the SCCs in this closed range into 317 // a single SCC. 318 // 319 // This process has various important properties: 320 // - Only mutates the SCCs when adding the edge actually changes the SCC 321 // structure. 322 // - Never mutates SCCs which are unaffected by the change. 323 // - Updates the postorder sequence to correctly satisfy the postorder 324 // constraint after the edge is inserted. 325 // - Only reorders SCCs in the closed postorder sequence from the source to 326 // the target, so easy to bound how much has changed even in the ordering. 327 // - Big-O is the number of edges in the closed postorder range of SCCs from 328 // source to target. 329 330 assert(SourceIdx < TargetIdx && "Cannot have equal indices here!"); 331 SmallPtrSet<SCC *, 4> ConnectedSet; 332 333 // Compute the SCCs which (transitively) reach the source. 334 ConnectedSet.insert(&SourceSCC); 335 auto IsConnected = [&](SCC &C) { 336 for (Node &N : C) 337 for (Edge &E : N.calls()) { 338 assert(E.getNode() && "Must have formed a node within an SCC!"); 339 if (ConnectedSet.count(G->lookupSCC(*E.getNode()))) 340 return true; 341 } 342 343 return false; 344 }; 345 346 for (SCC *C : 347 make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1)) 348 if (IsConnected(*C)) 349 ConnectedSet.insert(C); 350 351 // Partition the SCCs in this part of the port-order sequence so only SCCs 352 // connecting to the source remain between it and the target. This is 353 // a benign partition as it preserves postorder. 354 auto SourceI = std::stable_partition( 355 SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1, 356 [&ConnectedSet](SCC *C) { return !ConnectedSet.count(C); }); 357 for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i) 358 SCCIndices.find(SCCs[i])->second = i; 359 360 // If the target doesn't connect to the source, then we've corrected the 361 // post-order and there are no cycles formed. 362 if (!ConnectedSet.count(&TargetSCC)) { 363 assert(SourceI > (SCCs.begin() + SourceIdx) && 364 "Must have moved the source to fix the post-order."); 365 assert(*std::prev(SourceI) == &TargetSCC && 366 "Last SCC to move should have bene the target."); 367 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call); 368 #ifndef NDEBUG 369 verify(); 370 #endif 371 return DeletedSCCs; 372 } 373 374 assert(SCCs[TargetIdx] == &TargetSCC && 375 "Should not have moved target if connected!"); 376 SourceIdx = SourceI - SCCs.begin(); 377 378 #ifndef NDEBUG 379 // Check that the RefSCC is still valid. 380 verify(); 381 #endif 382 383 // See whether there are any remaining intervening SCCs between the source 384 // and target. If so we need to make sure they all are reachable form the 385 // target. 386 if (SourceIdx + 1 < TargetIdx) { 387 // Use a normal worklist to find which SCCs the target connects to. We still 388 // bound the search based on the range in the postorder list we care about, 389 // but because this is forward connectivity we just "recurse" through the 390 // edges. 391 ConnectedSet.clear(); 392 ConnectedSet.insert(&TargetSCC); 393 SmallVector<SCC *, 4> Worklist; 394 Worklist.push_back(&TargetSCC); 395 do { 396 SCC &C = *Worklist.pop_back_val(); 397 for (Node &N : C) 398 for (Edge &E : N) { 399 assert(E.getNode() && "Must have formed a node within an SCC!"); 400 if (!E.isCall()) 401 continue; 402 SCC &EdgeC = *G->lookupSCC(*E.getNode()); 403 if (&EdgeC.getOuterRefSCC() != this) 404 // Not in this RefSCC... 405 continue; 406 if (SCCIndices.find(&EdgeC)->second <= SourceIdx) 407 // Not in the postorder sequence between source and target. 408 continue; 409 410 if (ConnectedSet.insert(&EdgeC).second) 411 Worklist.push_back(&EdgeC); 412 } 413 } while (!Worklist.empty()); 414 415 // Partition SCCs so that only SCCs reached from the target remain between 416 // the source and the target. This preserves postorder. 417 auto TargetI = std::stable_partition( 418 SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1, 419 [&ConnectedSet](SCC *C) { return ConnectedSet.count(C); }); 420 for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i) 421 SCCIndices.find(SCCs[i])->second = i; 422 TargetIdx = std::prev(TargetI) - SCCs.begin(); 423 assert(SCCs[TargetIdx] == &TargetSCC && 424 "Should always end with the target!"); 425 426 #ifndef NDEBUG 427 // Check that the RefSCC is still valid. 428 verify(); 429 #endif 430 } 431 432 // At this point, we know that connecting source to target forms a cycle 433 // because target connects back to source, and we know that all of the SCCs 434 // between the source and target in the postorder sequence participate in that 435 // cycle. This means that we need to merge all of these SCCs into a single 436 // result SCC. 437 // 438 // NB: We merge into the target because all of these functions were already 439 // reachable from the target, meaning any SCC-wide properties deduced about it 440 // other than the set of functions within it will not have changed. 441 auto MergeRange = 442 make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx); 443 for (SCC *C : MergeRange) { 444 assert(C != &TargetSCC && 445 "We merge *into* the target and shouldn't process it here!"); 446 SCCIndices.erase(C); 447 TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end()); 448 for (Node *N : C->Nodes) 449 G->SCCMap[N] = &TargetSCC; 450 C->clear(); 451 DeletedSCCs.push_back(C); 452 } 453 454 // Erase the merged SCCs from the list and update the indices of the 455 // remaining SCCs. 456 int IndexOffset = MergeRange.end() - MergeRange.begin(); 457 auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end()); 458 for (SCC *C : make_range(EraseEnd, SCCs.end())) 459 SCCIndices[C] -= IndexOffset; 460 461 // Now that the SCC structure is finalized, flip the kind to call. 462 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call); 463 464 #ifndef NDEBUG 465 // And we're done! Verify in debug builds that the RefSCC is coherent. 466 verify(); 467 #endif 468 return DeletedSCCs; 469 } 470 471 iterator_range<LazyCallGraph::RefSCC::iterator> 472 LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) { 473 assert(SourceN[TargetN].isCall() && "Must start with a call edge!"); 474 475 SCC &SourceSCC = *G->lookupSCC(SourceN); 476 SCC &TargetSCC = *G->lookupSCC(TargetN); 477 478 assert(&SourceSCC.getOuterRefSCC() == this && 479 "Source must be in this RefSCC."); 480 assert(&TargetSCC.getOuterRefSCC() == this && 481 "Target must be in this RefSCC."); 482 483 // Set the edge kind. 484 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref); 485 486 // If this call edge is just connecting two separate SCCs within this RefSCC, 487 // there is nothing to do. 488 if (&SourceSCC != &TargetSCC) { 489 #ifndef NDEBUG 490 // Check that the RefSCC is still valid. 491 verify(); 492 #endif 493 return make_range(SCCs.end(), SCCs.end()); 494 } 495 496 // Otherwise we are removing a call edge from a single SCC. This may break 497 // the cycle. In order to compute the new set of SCCs, we need to do a small 498 // DFS over the nodes within the SCC to form any sub-cycles that remain as 499 // distinct SCCs and compute a postorder over the resulting SCCs. 500 // 501 // However, we specially handle the target node. The target node is known to 502 // reach all other nodes in the original SCC by definition. This means that 503 // we want the old SCC to be replaced with an SCC contaning that node as it 504 // will be the root of whatever SCC DAG results from the DFS. Assumptions 505 // about an SCC such as the set of functions called will continue to hold, 506 // etc. 507 508 SCC &OldSCC = TargetSCC; 509 SmallVector<std::pair<Node *, call_edge_iterator>, 16> DFSStack; 510 SmallVector<Node *, 16> PendingSCCStack; 511 SmallVector<SCC *, 4> NewSCCs; 512 513 // Prepare the nodes for a fresh DFS. 514 SmallVector<Node *, 16> Worklist; 515 Worklist.swap(OldSCC.Nodes); 516 for (Node *N : Worklist) { 517 N->DFSNumber = N->LowLink = 0; 518 G->SCCMap.erase(N); 519 } 520 521 // Force the target node to be in the old SCC. This also enables us to take 522 // a very significant short-cut in the standard Tarjan walk to re-form SCCs 523 // below: whenever we build an edge that reaches the target node, we know 524 // that the target node eventually connects back to all other nodes in our 525 // walk. As a consequence, we can detect and handle participants in that 526 // cycle without walking all the edges that form this connection, and instead 527 // by relying on the fundamental guarantee coming into this operation (all 528 // nodes are reachable from the target due to previously forming an SCC). 529 TargetN.DFSNumber = TargetN.LowLink = -1; 530 OldSCC.Nodes.push_back(&TargetN); 531 G->SCCMap[&TargetN] = &OldSCC; 532 533 // Scan down the stack and DFS across the call edges. 534 for (Node *RootN : Worklist) { 535 assert(DFSStack.empty() && 536 "Cannot begin a new root with a non-empty DFS stack!"); 537 assert(PendingSCCStack.empty() && 538 "Cannot begin a new root with pending nodes for an SCC!"); 539 540 // Skip any nodes we've already reached in the DFS. 541 if (RootN->DFSNumber != 0) { 542 assert(RootN->DFSNumber == -1 && 543 "Shouldn't have any mid-DFS root nodes!"); 544 continue; 545 } 546 547 RootN->DFSNumber = RootN->LowLink = 1; 548 int NextDFSNumber = 2; 549 550 DFSStack.push_back({RootN, RootN->call_begin()}); 551 do { 552 Node *N; 553 call_edge_iterator I; 554 std::tie(N, I) = DFSStack.pop_back_val(); 555 auto E = N->call_end(); 556 while (I != E) { 557 Node &ChildN = *I->getNode(); 558 if (ChildN.DFSNumber == 0) { 559 // We haven't yet visited this child, so descend, pushing the current 560 // node onto the stack. 561 DFSStack.push_back({N, I}); 562 563 assert(!G->SCCMap.count(&ChildN) && 564 "Found a node with 0 DFS number but already in an SCC!"); 565 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++; 566 N = &ChildN; 567 I = N->call_begin(); 568 E = N->call_end(); 569 continue; 570 } 571 572 // Check for the child already being part of some component. 573 if (ChildN.DFSNumber == -1) { 574 if (G->lookupSCC(ChildN) == &OldSCC) { 575 // If the child is part of the old SCC, we know that it can reach 576 // every other node, so we have formed a cycle. Pull the entire DFS 577 // and pending stacks into it. See the comment above about setting 578 // up the old SCC for why we do this. 579 int OldSize = OldSCC.size(); 580 OldSCC.Nodes.push_back(N); 581 OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end()); 582 PendingSCCStack.clear(); 583 while (!DFSStack.empty()) 584 OldSCC.Nodes.push_back(DFSStack.pop_back_val().first); 585 for (Node &N : make_range(OldSCC.begin() + OldSize, OldSCC.end())) { 586 N.DFSNumber = N.LowLink = -1; 587 G->SCCMap[&N] = &OldSCC; 588 } 589 N = nullptr; 590 break; 591 } 592 593 // If the child has already been added to some child component, it 594 // couldn't impact the low-link of this parent because it isn't 595 // connected, and thus its low-link isn't relevant so skip it. 596 ++I; 597 continue; 598 } 599 600 // Track the lowest linked child as the lowest link for this node. 601 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); 602 if (ChildN.LowLink < N->LowLink) 603 N->LowLink = ChildN.LowLink; 604 605 // Move to the next edge. 606 ++I; 607 } 608 if (!N) 609 // Cleared the DFS early, start another round. 610 break; 611 612 // We've finished processing N and its descendents, put it on our pending 613 // SCC stack to eventually get merged into an SCC of nodes. 614 PendingSCCStack.push_back(N); 615 616 // If this node is linked to some lower entry, continue walking up the 617 // stack. 618 if (N->LowLink != N->DFSNumber) 619 continue; 620 621 // Otherwise, we've completed an SCC. Append it to our post order list of 622 // SCCs. 623 int RootDFSNumber = N->DFSNumber; 624 // Find the range of the node stack by walking down until we pass the 625 // root DFS number. 626 auto SCCNodes = make_range( 627 PendingSCCStack.rbegin(), 628 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) { 629 return N->DFSNumber < RootDFSNumber; 630 })); 631 632 // Form a new SCC out of these nodes and then clear them off our pending 633 // stack. 634 NewSCCs.push_back(G->createSCC(*this, SCCNodes)); 635 for (Node &N : *NewSCCs.back()) { 636 N.DFSNumber = N.LowLink = -1; 637 G->SCCMap[&N] = NewSCCs.back(); 638 } 639 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end()); 640 } while (!DFSStack.empty()); 641 } 642 643 // Insert the remaining SCCs before the old one. The old SCC can reach all 644 // other SCCs we form because it contains the target node of the removed edge 645 // of the old SCC. This means that we will have edges into all of the new 646 // SCCs, which means the old one must come last for postorder. 647 int OldIdx = SCCIndices[&OldSCC]; 648 SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end()); 649 650 // Update the mapping from SCC* to index to use the new SCC*s, and remove the 651 // old SCC from the mapping. 652 for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx) 653 SCCIndices[SCCs[Idx]] = Idx; 654 655 #ifndef NDEBUG 656 // We're done. Check the validity on our way out. 657 verify(); 658 #endif 659 660 return make_range(SCCs.begin() + OldIdx, 661 SCCs.begin() + OldIdx + NewSCCs.size()); 662 } 663 664 void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN, 665 Node &TargetN) { 666 assert(!SourceN[TargetN].isCall() && "Must start with a ref edge!"); 667 668 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 669 assert(G->lookupRefSCC(TargetN) != this && 670 "Target must not be in this RefSCC."); 671 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && 672 "Target must be a descendant of the Source."); 673 674 // Edges between RefSCCs are the same regardless of call or ref, so we can 675 // just flip the edge here. 676 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call); 677 678 #ifndef NDEBUG 679 // Check that the RefSCC is still valid. 680 verify(); 681 #endif 682 } 683 684 void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN, 685 Node &TargetN) { 686 assert(SourceN[TargetN].isCall() && "Must start with a call edge!"); 687 688 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 689 assert(G->lookupRefSCC(TargetN) != this && 690 "Target must not be in this RefSCC."); 691 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && 692 "Target must be a descendant of the Source."); 693 694 // Edges between RefSCCs are the same regardless of call or ref, so we can 695 // just flip the edge here. 696 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref); 697 698 #ifndef NDEBUG 699 // Check that the RefSCC is still valid. 700 verify(); 701 #endif 702 } 703 704 void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN, 705 Node &TargetN) { 706 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 707 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC."); 708 709 SourceN.insertEdgeInternal(TargetN, Edge::Ref); 710 711 #ifndef NDEBUG 712 // Check that the RefSCC is still valid. 713 verify(); 714 #endif 715 } 716 717 void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN, 718 Edge::Kind EK) { 719 // First insert it into the caller. 720 SourceN.insertEdgeInternal(TargetN, EK); 721 722 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 723 724 RefSCC &TargetC = *G->lookupRefSCC(TargetN); 725 assert(&TargetC != this && "Target must not be in this RefSCC."); 726 assert(TargetC.isDescendantOf(*this) && 727 "Target must be a descendant of the Source."); 728 729 // The only change required is to add this SCC to the parent set of the 730 // callee. 731 TargetC.Parents.insert(this); 732 733 #ifndef NDEBUG 734 // Check that the RefSCC is still valid. 735 verify(); 736 #endif 737 } 738 739 SmallVector<LazyCallGraph::RefSCC *, 1> 740 LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) { 741 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this SCC."); 742 743 // We store the RefSCCs found to be connected in postorder so that we can use 744 // that when merging. We also return this to the caller to allow them to 745 // invalidate information pertaining to these RefSCCs. 746 SmallVector<RefSCC *, 1> Connected; 747 748 RefSCC &SourceC = *G->lookupRefSCC(SourceN); 749 assert(&SourceC != this && "Source must not be in this SCC."); 750 assert(SourceC.isDescendantOf(*this) && 751 "Source must be a descendant of the Target."); 752 753 // The algorithm we use for merging SCCs based on the cycle introduced here 754 // is to walk the RefSCC inverted DAG formed by the parent sets. The inverse 755 // graph has the same cycle properties as the actual DAG of the RefSCCs, and 756 // when forming RefSCCs lazily by a DFS, the bottom of the graph won't exist 757 // in many cases which should prune the search space. 758 // 759 // FIXME: We can get this pruning behavior even after the incremental RefSCC 760 // formation by leaving behind (conservative) DFS numberings in the nodes, 761 // and pruning the search with them. These would need to be cleverly updated 762 // during the removal of intra-SCC edges, but could be preserved 763 // conservatively. 764 // 765 // FIXME: This operation currently creates ordering stability problems 766 // because we don't use stably ordered containers for the parent SCCs. 767 768 // The set of RefSCCs that are connected to the parent, and thus will 769 // participate in the merged connected component. 770 SmallPtrSet<RefSCC *, 8> ConnectedSet; 771 ConnectedSet.insert(this); 772 773 // We build up a DFS stack of the parents chains. 774 SmallVector<std::pair<RefSCC *, parent_iterator>, 8> DFSStack; 775 SmallPtrSet<RefSCC *, 8> Visited; 776 int ConnectedDepth = -1; 777 DFSStack.push_back({&SourceC, SourceC.parent_begin()}); 778 do { 779 auto DFSPair = DFSStack.pop_back_val(); 780 RefSCC *C = DFSPair.first; 781 parent_iterator I = DFSPair.second; 782 auto E = C->parent_end(); 783 784 while (I != E) { 785 RefSCC &Parent = *I++; 786 787 // If we have already processed this parent SCC, skip it, and remember 788 // whether it was connected so we don't have to check the rest of the 789 // stack. This also handles when we reach a child of the 'this' SCC (the 790 // callee) which terminates the search. 791 if (ConnectedSet.count(&Parent)) { 792 assert(ConnectedDepth < (int)DFSStack.size() && 793 "Cannot have a connected depth greater than the DFS depth!"); 794 ConnectedDepth = DFSStack.size(); 795 continue; 796 } 797 if (Visited.count(&Parent)) 798 continue; 799 800 // We fully explore the depth-first space, adding nodes to the connected 801 // set only as we pop them off, so "recurse" by rotating to the parent. 802 DFSStack.push_back({C, I}); 803 C = &Parent; 804 I = C->parent_begin(); 805 E = C->parent_end(); 806 } 807 808 // If we've found a connection anywhere below this point on the stack (and 809 // thus up the parent graph from the caller), the current node needs to be 810 // added to the connected set now that we've processed all of its parents. 811 if ((int)DFSStack.size() == ConnectedDepth) { 812 --ConnectedDepth; // We're finished with this connection. 813 bool Inserted = ConnectedSet.insert(C).second; 814 (void)Inserted; 815 assert(Inserted && "Cannot insert a refSCC multiple times!"); 816 Connected.push_back(C); 817 } else { 818 // Otherwise remember that its parents don't ever connect. 819 assert(ConnectedDepth < (int)DFSStack.size() && 820 "Cannot have a connected depth greater than the DFS depth!"); 821 Visited.insert(C); 822 } 823 } while (!DFSStack.empty()); 824 825 // Now that we have identified all of the SCCs which need to be merged into 826 // a connected set with the inserted edge, merge all of them into this SCC. 827 // We walk the newly connected RefSCCs in the reverse postorder of the parent 828 // DAG walk above and merge in each of their SCC postorder lists. This 829 // ensures a merged postorder SCC list. 830 SmallVector<SCC *, 16> MergedSCCs; 831 int SCCIndex = 0; 832 for (RefSCC *C : reverse(Connected)) { 833 assert(C != this && 834 "This RefSCC should terminate the DFS without being reached."); 835 836 // Merge the parents which aren't part of the merge into the our parents. 837 for (RefSCC *ParentC : C->Parents) 838 if (!ConnectedSet.count(ParentC)) 839 Parents.insert(ParentC); 840 C->Parents.clear(); 841 842 // Walk the inner SCCs to update their up-pointer and walk all the edges to 843 // update any parent sets. 844 // FIXME: We should try to find a way to avoid this (rather expensive) edge 845 // walk by updating the parent sets in some other manner. 846 for (SCC &InnerC : *C) { 847 InnerC.OuterRefSCC = this; 848 SCCIndices[&InnerC] = SCCIndex++; 849 for (Node &N : InnerC) { 850 G->SCCMap[&N] = &InnerC; 851 for (Edge &E : N) { 852 assert(E.getNode() && 853 "Cannot have a null node within a visited SCC!"); 854 RefSCC &ChildRC = *G->lookupRefSCC(*E.getNode()); 855 if (ConnectedSet.count(&ChildRC)) 856 continue; 857 ChildRC.Parents.erase(C); 858 ChildRC.Parents.insert(this); 859 } 860 } 861 } 862 863 // Now merge in the SCCs. We can actually move here so try to reuse storage 864 // the first time through. 865 if (MergedSCCs.empty()) 866 MergedSCCs = std::move(C->SCCs); 867 else 868 MergedSCCs.append(C->SCCs.begin(), C->SCCs.end()); 869 C->SCCs.clear(); 870 } 871 872 // Finally append our original SCCs to the merged list and move it into 873 // place. 874 for (SCC &InnerC : *this) 875 SCCIndices[&InnerC] = SCCIndex++; 876 MergedSCCs.append(SCCs.begin(), SCCs.end()); 877 SCCs = std::move(MergedSCCs); 878 879 // At this point we have a merged RefSCC with a post-order SCCs list, just 880 // connect the nodes to form the new edge. 881 SourceN.insertEdgeInternal(TargetN, Edge::Ref); 882 883 #ifndef NDEBUG 884 // Check that the RefSCC is still valid. 885 verify(); 886 #endif 887 888 // We return the list of SCCs which were merged so that callers can 889 // invalidate any data they have associated with those SCCs. Note that these 890 // SCCs are no longer in an interesting state (they are totally empty) but 891 // the pointers will remain stable for the life of the graph itself. 892 return Connected; 893 } 894 895 void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) { 896 assert(G->lookupRefSCC(SourceN) == this && 897 "The source must be a member of this RefSCC."); 898 899 RefSCC &TargetRC = *G->lookupRefSCC(TargetN); 900 assert(&TargetRC != this && "The target must not be a member of this RefSCC"); 901 902 assert(!is_contained(G->LeafRefSCCs, this) && 903 "Cannot have a leaf RefSCC source."); 904 905 // First remove it from the node. 906 SourceN.removeEdgeInternal(TargetN.getFunction()); 907 908 bool HasOtherEdgeToChildRC = false; 909 bool HasOtherChildRC = false; 910 for (SCC *InnerC : SCCs) { 911 for (Node &N : *InnerC) { 912 for (Edge &E : N) { 913 assert(E.getNode() && "Cannot have a missing node in a visited SCC!"); 914 RefSCC &OtherChildRC = *G->lookupRefSCC(*E.getNode()); 915 if (&OtherChildRC == &TargetRC) { 916 HasOtherEdgeToChildRC = true; 917 break; 918 } 919 if (&OtherChildRC != this) 920 HasOtherChildRC = true; 921 } 922 if (HasOtherEdgeToChildRC) 923 break; 924 } 925 if (HasOtherEdgeToChildRC) 926 break; 927 } 928 // Because the SCCs form a DAG, deleting such an edge cannot change the set 929 // of SCCs in the graph. However, it may cut an edge of the SCC DAG, making 930 // the source SCC no longer connected to the target SCC. If so, we need to 931 // update the target SCC's map of its parents. 932 if (!HasOtherEdgeToChildRC) { 933 bool Removed = TargetRC.Parents.erase(this); 934 (void)Removed; 935 assert(Removed && 936 "Did not find the source SCC in the target SCC's parent list!"); 937 938 // It may orphan an SCC if it is the last edge reaching it, but that does 939 // not violate any invariants of the graph. 940 if (TargetRC.Parents.empty()) 941 DEBUG(dbgs() << "LCG: Update removing " << SourceN.getFunction().getName() 942 << " -> " << TargetN.getFunction().getName() 943 << " edge orphaned the callee's SCC!\n"); 944 945 // It may make the Source SCC a leaf SCC. 946 if (!HasOtherChildRC) 947 G->LeafRefSCCs.push_back(this); 948 } 949 } 950 951 SmallVector<LazyCallGraph::RefSCC *, 1> 952 LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN, Node &TargetN) { 953 assert(!SourceN[TargetN].isCall() && 954 "Cannot remove a call edge, it must first be made a ref edge"); 955 956 // First remove the actual edge. 957 SourceN.removeEdgeInternal(TargetN.getFunction()); 958 959 // We return a list of the resulting *new* RefSCCs in post-order. 960 SmallVector<RefSCC *, 1> Result; 961 962 // Direct recursion doesn't impact the SCC graph at all. 963 if (&SourceN == &TargetN) 964 return Result; 965 966 // We build somewhat synthetic new RefSCCs by providing a postorder mapping 967 // for each inner SCC. We also store these associated with *nodes* rather 968 // than SCCs because this saves a round-trip through the node->SCC map and in 969 // the common case, SCCs are small. We will verify that we always give the 970 // same number to every node in the SCC such that these are equivalent. 971 const int RootPostOrderNumber = 0; 972 int PostOrderNumber = RootPostOrderNumber + 1; 973 SmallDenseMap<Node *, int> PostOrderMapping; 974 975 // Every node in the target SCC can already reach every node in this RefSCC 976 // (by definition). It is the only node we know will stay inside this RefSCC. 977 // Everything which transitively reaches Target will also remain in the 978 // RefSCC. We handle this by pre-marking that the nodes in the target SCC map 979 // back to the root post order number. 980 // 981 // This also enables us to take a very significant short-cut in the standard 982 // Tarjan walk to re-form RefSCCs below: whenever we build an edge that 983 // references the target node, we know that the target node eventually 984 // references all other nodes in our walk. As a consequence, we can detect 985 // and handle participants in that cycle without walking all the edges that 986 // form the connections, and instead by relying on the fundamental guarantee 987 // coming into this operation. 988 SCC &TargetC = *G->lookupSCC(TargetN); 989 for (Node &N : TargetC) 990 PostOrderMapping[&N] = RootPostOrderNumber; 991 992 // Reset all the other nodes to prepare for a DFS over them, and add them to 993 // our worklist. 994 SmallVector<Node *, 8> Worklist; 995 for (SCC *C : SCCs) { 996 if (C == &TargetC) 997 continue; 998 999 for (Node &N : *C) 1000 N.DFSNumber = N.LowLink = 0; 1001 1002 Worklist.append(C->Nodes.begin(), C->Nodes.end()); 1003 } 1004 1005 auto MarkNodeForSCCNumber = [&PostOrderMapping](Node &N, int Number) { 1006 N.DFSNumber = N.LowLink = -1; 1007 PostOrderMapping[&N] = Number; 1008 }; 1009 1010 SmallVector<std::pair<Node *, edge_iterator>, 4> DFSStack; 1011 SmallVector<Node *, 4> PendingRefSCCStack; 1012 do { 1013 assert(DFSStack.empty() && 1014 "Cannot begin a new root with a non-empty DFS stack!"); 1015 assert(PendingRefSCCStack.empty() && 1016 "Cannot begin a new root with pending nodes for an SCC!"); 1017 1018 Node *RootN = Worklist.pop_back_val(); 1019 // Skip any nodes we've already reached in the DFS. 1020 if (RootN->DFSNumber != 0) { 1021 assert(RootN->DFSNumber == -1 && 1022 "Shouldn't have any mid-DFS root nodes!"); 1023 continue; 1024 } 1025 1026 RootN->DFSNumber = RootN->LowLink = 1; 1027 int NextDFSNumber = 2; 1028 1029 DFSStack.push_back({RootN, RootN->begin()}); 1030 do { 1031 Node *N; 1032 edge_iterator I; 1033 std::tie(N, I) = DFSStack.pop_back_val(); 1034 auto E = N->end(); 1035 1036 assert(N->DFSNumber != 0 && "We should always assign a DFS number " 1037 "before processing a node."); 1038 1039 while (I != E) { 1040 Node &ChildN = I->getNode(*G); 1041 if (ChildN.DFSNumber == 0) { 1042 // Mark that we should start at this child when next this node is the 1043 // top of the stack. We don't start at the next child to ensure this 1044 // child's lowlink is reflected. 1045 DFSStack.push_back({N, I}); 1046 1047 // Continue, resetting to the child node. 1048 ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++; 1049 N = &ChildN; 1050 I = ChildN.begin(); 1051 E = ChildN.end(); 1052 continue; 1053 } 1054 if (ChildN.DFSNumber == -1) { 1055 // Check if this edge's target node connects to the deleted edge's 1056 // target node. If so, we know that every node connected will end up 1057 // in this RefSCC, so collapse the entire current stack into the root 1058 // slot in our SCC numbering. See above for the motivation of 1059 // optimizing the target connected nodes in this way. 1060 auto PostOrderI = PostOrderMapping.find(&ChildN); 1061 if (PostOrderI != PostOrderMapping.end() && 1062 PostOrderI->second == RootPostOrderNumber) { 1063 MarkNodeForSCCNumber(*N, RootPostOrderNumber); 1064 while (!PendingRefSCCStack.empty()) 1065 MarkNodeForSCCNumber(*PendingRefSCCStack.pop_back_val(), 1066 RootPostOrderNumber); 1067 while (!DFSStack.empty()) 1068 MarkNodeForSCCNumber(*DFSStack.pop_back_val().first, 1069 RootPostOrderNumber); 1070 // Ensure we break all the way out of the enclosing loop. 1071 N = nullptr; 1072 break; 1073 } 1074 1075 // If this child isn't currently in this RefSCC, no need to process 1076 // it. 1077 // However, we do need to remove this RefSCC from its RefSCC's parent 1078 // set. 1079 RefSCC &ChildRC = *G->lookupRefSCC(ChildN); 1080 ChildRC.Parents.erase(this); 1081 ++I; 1082 continue; 1083 } 1084 1085 // Track the lowest link of the children, if any are still in the stack. 1086 // Any child not on the stack will have a LowLink of -1. 1087 assert(ChildN.LowLink != 0 && 1088 "Low-link must not be zero with a non-zero DFS number."); 1089 if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink) 1090 N->LowLink = ChildN.LowLink; 1091 ++I; 1092 } 1093 if (!N) 1094 // We short-circuited this node. 1095 break; 1096 1097 // We've finished processing N and its descendents, put it on our pending 1098 // stack to eventually get merged into a RefSCC. 1099 PendingRefSCCStack.push_back(N); 1100 1101 // If this node is linked to some lower entry, continue walking up the 1102 // stack. 1103 if (N->LowLink != N->DFSNumber) { 1104 assert(!DFSStack.empty() && 1105 "We never found a viable root for a RefSCC to pop off!"); 1106 continue; 1107 } 1108 1109 // Otherwise, form a new RefSCC from the top of the pending node stack. 1110 int RootDFSNumber = N->DFSNumber; 1111 // Find the range of the node stack by walking down until we pass the 1112 // root DFS number. 1113 auto RefSCCNodes = make_range( 1114 PendingRefSCCStack.rbegin(), 1115 find_if(reverse(PendingRefSCCStack), [RootDFSNumber](const Node *N) { 1116 return N->DFSNumber < RootDFSNumber; 1117 })); 1118 1119 // Mark the postorder number for these nodes and clear them off the 1120 // stack. We'll use the postorder number to pull them into RefSCCs at the 1121 // end. FIXME: Fuse with the loop above. 1122 int RefSCCNumber = PostOrderNumber++; 1123 for (Node *N : RefSCCNodes) 1124 MarkNodeForSCCNumber(*N, RefSCCNumber); 1125 1126 PendingRefSCCStack.erase(RefSCCNodes.end().base(), 1127 PendingRefSCCStack.end()); 1128 } while (!DFSStack.empty()); 1129 1130 assert(DFSStack.empty() && "Didn't flush the entire DFS stack!"); 1131 assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!"); 1132 } while (!Worklist.empty()); 1133 1134 // We now have a post-order numbering for RefSCCs and a mapping from each 1135 // node in this RefSCC to its final RefSCC. We create each new RefSCC node 1136 // (re-using this RefSCC node for the root) and build a radix-sort style map 1137 // from postorder number to the RefSCC. We then append SCCs to each of these 1138 // RefSCCs in the order they occured in the original SCCs container. 1139 for (int i = 1; i < PostOrderNumber; ++i) 1140 Result.push_back(G->createRefSCC(*G)); 1141 1142 for (SCC *C : SCCs) { 1143 auto PostOrderI = PostOrderMapping.find(&*C->begin()); 1144 assert(PostOrderI != PostOrderMapping.end() && 1145 "Cannot have missing mappings for nodes!"); 1146 int SCCNumber = PostOrderI->second; 1147 #ifndef NDEBUG 1148 for (Node &N : *C) 1149 assert(PostOrderMapping.find(&N)->second == SCCNumber && 1150 "Cannot have different numbers for nodes in the same SCC!"); 1151 #endif 1152 if (SCCNumber == 0) 1153 // The root node is handled separately by removing the SCCs. 1154 continue; 1155 1156 RefSCC &RC = *Result[SCCNumber - 1]; 1157 int SCCIndex = RC.SCCs.size(); 1158 RC.SCCs.push_back(C); 1159 SCCIndices[C] = SCCIndex; 1160 C->OuterRefSCC = &RC; 1161 } 1162 1163 // FIXME: We re-walk the edges in each RefSCC to establish whether it is 1164 // a leaf and connect it to the rest of the graph's parents lists. This is 1165 // really wasteful. We should instead do this during the DFS to avoid yet 1166 // another edge walk. 1167 for (RefSCC *RC : Result) 1168 G->connectRefSCC(*RC); 1169 1170 // Now erase all but the root's SCCs. 1171 SCCs.erase(remove_if(SCCs, 1172 [&](SCC *C) { 1173 return PostOrderMapping.lookup(&*C->begin()) != 1174 RootPostOrderNumber; 1175 }), 1176 SCCs.end()); 1177 SCCIndices.clear(); 1178 for (int i = 0, Size = SCCs.size(); i < Size; ++i) 1179 SCCIndices[SCCs[i]] = i; 1180 1181 #ifndef NDEBUG 1182 // Now we need to reconnect the current (root) SCC to the graph. We do this 1183 // manually because we can special case our leaf handling and detect errors. 1184 bool IsLeaf = true; 1185 #endif 1186 for (SCC *C : SCCs) 1187 for (Node &N : *C) { 1188 for (Edge &E : N) { 1189 assert(E.getNode() && "Cannot have a missing node in a visited SCC!"); 1190 RefSCC &ChildRC = *G->lookupRefSCC(*E.getNode()); 1191 if (&ChildRC == this) 1192 continue; 1193 ChildRC.Parents.insert(this); 1194 #ifndef NDEBUG 1195 IsLeaf = false; 1196 #endif 1197 } 1198 } 1199 #ifndef NDEBUG 1200 if (!Result.empty()) 1201 assert(!IsLeaf && "This SCC cannot be a leaf as we have split out new " 1202 "SCCs by removing this edge."); 1203 if (none_of(G->LeafRefSCCs, [&](RefSCC *C) { return C == this; })) 1204 assert(!IsLeaf && "This SCC cannot be a leaf as it already had child " 1205 "SCCs before we removed this edge."); 1206 #endif 1207 // If this SCC stopped being a leaf through this edge removal, remove it from 1208 // the leaf SCC list. Note that this DTRT in the case where this was never 1209 // a leaf. 1210 // FIXME: As LeafRefSCCs could be very large, we might want to not walk the 1211 // entire list if this RefSCC wasn't a leaf before the edge removal. 1212 if (!Result.empty()) 1213 G->LeafRefSCCs.erase( 1214 std::remove(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(), this), 1215 G->LeafRefSCCs.end()); 1216 1217 // Return the new list of SCCs. 1218 return Result; 1219 } 1220 1221 void LazyCallGraph::insertEdge(Node &SourceN, Function &Target, Edge::Kind EK) { 1222 assert(SCCMap.empty() && DFSStack.empty() && 1223 "This method cannot be called after SCCs have been formed!"); 1224 1225 return SourceN.insertEdgeInternal(Target, EK); 1226 } 1227 1228 void LazyCallGraph::removeEdge(Node &SourceN, Function &Target) { 1229 assert(SCCMap.empty() && DFSStack.empty() && 1230 "This method cannot be called after SCCs have been formed!"); 1231 1232 return SourceN.removeEdgeInternal(Target); 1233 } 1234 1235 LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) { 1236 return *new (MappedN = BPA.Allocate()) Node(*this, F); 1237 } 1238 1239 void LazyCallGraph::updateGraphPtrs() { 1240 // Process all nodes updating the graph pointers. 1241 { 1242 SmallVector<Node *, 16> Worklist; 1243 for (Edge &E : EntryEdges) 1244 if (Node *EntryN = E.getNode()) 1245 Worklist.push_back(EntryN); 1246 1247 while (!Worklist.empty()) { 1248 Node *N = Worklist.pop_back_val(); 1249 N->G = this; 1250 for (Edge &E : N->Edges) 1251 if (Node *TargetN = E.getNode()) 1252 Worklist.push_back(TargetN); 1253 } 1254 } 1255 1256 // Process all SCCs updating the graph pointers. 1257 { 1258 SmallVector<RefSCC *, 16> Worklist(LeafRefSCCs.begin(), LeafRefSCCs.end()); 1259 1260 while (!Worklist.empty()) { 1261 RefSCC &C = *Worklist.pop_back_val(); 1262 C.G = this; 1263 for (RefSCC &ParentC : C.parents()) 1264 Worklist.push_back(&ParentC); 1265 } 1266 } 1267 } 1268 1269 /// Build the internal SCCs for a RefSCC from a sequence of nodes. 1270 /// 1271 /// Appends the SCCs to the provided vector and updates the map with their 1272 /// indices. Both the vector and map must be empty when passed into this 1273 /// routine. 1274 void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) { 1275 assert(RC.SCCs.empty() && "Already built SCCs!"); 1276 assert(RC.SCCIndices.empty() && "Already mapped SCC indices!"); 1277 1278 for (Node *N : Nodes) { 1279 assert(N->LowLink >= (*Nodes.begin())->LowLink && 1280 "We cannot have a low link in an SCC lower than its root on the " 1281 "stack!"); 1282 1283 // This node will go into the next RefSCC, clear out its DFS and low link 1284 // as we scan. 1285 N->DFSNumber = N->LowLink = 0; 1286 } 1287 1288 // Each RefSCC contains a DAG of the call SCCs. To build these, we do 1289 // a direct walk of the call edges using Tarjan's algorithm. We reuse the 1290 // internal storage as we won't need it for the outer graph's DFS any longer. 1291 1292 SmallVector<std::pair<Node *, call_edge_iterator>, 16> DFSStack; 1293 SmallVector<Node *, 16> PendingSCCStack; 1294 1295 // Scan down the stack and DFS across the call edges. 1296 for (Node *RootN : Nodes) { 1297 assert(DFSStack.empty() && 1298 "Cannot begin a new root with a non-empty DFS stack!"); 1299 assert(PendingSCCStack.empty() && 1300 "Cannot begin a new root with pending nodes for an SCC!"); 1301 1302 // Skip any nodes we've already reached in the DFS. 1303 if (RootN->DFSNumber != 0) { 1304 assert(RootN->DFSNumber == -1 && 1305 "Shouldn't have any mid-DFS root nodes!"); 1306 continue; 1307 } 1308 1309 RootN->DFSNumber = RootN->LowLink = 1; 1310 int NextDFSNumber = 2; 1311 1312 DFSStack.push_back({RootN, RootN->call_begin()}); 1313 do { 1314 Node *N; 1315 call_edge_iterator I; 1316 std::tie(N, I) = DFSStack.pop_back_val(); 1317 auto E = N->call_end(); 1318 while (I != E) { 1319 Node &ChildN = *I->getNode(); 1320 if (ChildN.DFSNumber == 0) { 1321 // We haven't yet visited this child, so descend, pushing the current 1322 // node onto the stack. 1323 DFSStack.push_back({N, I}); 1324 1325 assert(!lookupSCC(ChildN) && 1326 "Found a node with 0 DFS number but already in an SCC!"); 1327 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++; 1328 N = &ChildN; 1329 I = N->call_begin(); 1330 E = N->call_end(); 1331 continue; 1332 } 1333 1334 // If the child has already been added to some child component, it 1335 // couldn't impact the low-link of this parent because it isn't 1336 // connected, and thus its low-link isn't relevant so skip it. 1337 if (ChildN.DFSNumber == -1) { 1338 ++I; 1339 continue; 1340 } 1341 1342 // Track the lowest linked child as the lowest link for this node. 1343 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); 1344 if (ChildN.LowLink < N->LowLink) 1345 N->LowLink = ChildN.LowLink; 1346 1347 // Move to the next edge. 1348 ++I; 1349 } 1350 1351 // We've finished processing N and its descendents, put it on our pending 1352 // SCC stack to eventually get merged into an SCC of nodes. 1353 PendingSCCStack.push_back(N); 1354 1355 // If this node is linked to some lower entry, continue walking up the 1356 // stack. 1357 if (N->LowLink != N->DFSNumber) 1358 continue; 1359 1360 // Otherwise, we've completed an SCC. Append it to our post order list of 1361 // SCCs. 1362 int RootDFSNumber = N->DFSNumber; 1363 // Find the range of the node stack by walking down until we pass the 1364 // root DFS number. 1365 auto SCCNodes = make_range( 1366 PendingSCCStack.rbegin(), 1367 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) { 1368 return N->DFSNumber < RootDFSNumber; 1369 })); 1370 // Form a new SCC out of these nodes and then clear them off our pending 1371 // stack. 1372 RC.SCCs.push_back(createSCC(RC, SCCNodes)); 1373 for (Node &N : *RC.SCCs.back()) { 1374 N.DFSNumber = N.LowLink = -1; 1375 SCCMap[&N] = RC.SCCs.back(); 1376 } 1377 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end()); 1378 } while (!DFSStack.empty()); 1379 } 1380 1381 // Wire up the SCC indices. 1382 for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i) 1383 RC.SCCIndices[RC.SCCs[i]] = i; 1384 } 1385 1386 // FIXME: We should move callers of this to embed the parent linking and leaf 1387 // tracking into their DFS in order to remove a full walk of all edges. 1388 void LazyCallGraph::connectRefSCC(RefSCC &RC) { 1389 // Walk all edges in the RefSCC (this remains linear as we only do this once 1390 // when we build the RefSCC) to connect it to the parent sets of its 1391 // children. 1392 bool IsLeaf = true; 1393 for (SCC &C : RC) 1394 for (Node &N : C) 1395 for (Edge &E : N) { 1396 assert(E.getNode() && 1397 "Cannot have a missing node in a visited part of the graph!"); 1398 RefSCC &ChildRC = *lookupRefSCC(*E.getNode()); 1399 if (&ChildRC == &RC) 1400 continue; 1401 ChildRC.Parents.insert(&RC); 1402 IsLeaf = false; 1403 } 1404 1405 // For the SCCs where we fine no child SCCs, add them to the leaf list. 1406 if (IsLeaf) 1407 LeafRefSCCs.push_back(&RC); 1408 } 1409 1410 LazyCallGraph::RefSCC *LazyCallGraph::getNextRefSCCInPostOrder() { 1411 if (DFSStack.empty()) { 1412 Node *N; 1413 do { 1414 // If we've handled all candidate entry nodes to the SCC forest, we're 1415 // done. 1416 if (RefSCCEntryNodes.empty()) 1417 return nullptr; 1418 1419 N = &get(*RefSCCEntryNodes.pop_back_val()); 1420 } while (N->DFSNumber != 0); 1421 1422 // Found a new root, begin the DFS here. 1423 N->LowLink = N->DFSNumber = 1; 1424 NextDFSNumber = 2; 1425 DFSStack.push_back({N, N->begin()}); 1426 } 1427 1428 for (;;) { 1429 Node *N; 1430 edge_iterator I; 1431 std::tie(N, I) = DFSStack.pop_back_val(); 1432 1433 assert(N->DFSNumber > 0 && "We should always assign a DFS number " 1434 "before placing a node onto the stack."); 1435 1436 auto E = N->end(); 1437 while (I != E) { 1438 Node &ChildN = I->getNode(*this); 1439 if (ChildN.DFSNumber == 0) { 1440 // We haven't yet visited this child, so descend, pushing the current 1441 // node onto the stack. 1442 DFSStack.push_back({N, N->begin()}); 1443 1444 assert(!SCCMap.count(&ChildN) && 1445 "Found a node with 0 DFS number but already in an SCC!"); 1446 ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++; 1447 N = &ChildN; 1448 I = N->begin(); 1449 E = N->end(); 1450 continue; 1451 } 1452 1453 // If the child has already been added to some child component, it 1454 // couldn't impact the low-link of this parent because it isn't 1455 // connected, and thus its low-link isn't relevant so skip it. 1456 if (ChildN.DFSNumber == -1) { 1457 ++I; 1458 continue; 1459 } 1460 1461 // Track the lowest linked child as the lowest link for this node. 1462 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); 1463 if (ChildN.LowLink < N->LowLink) 1464 N->LowLink = ChildN.LowLink; 1465 1466 // Move to the next edge. 1467 ++I; 1468 } 1469 1470 // We've finished processing N and its descendents, put it on our pending 1471 // SCC stack to eventually get merged into an SCC of nodes. 1472 PendingRefSCCStack.push_back(N); 1473 1474 // If this node is linked to some lower entry, continue walking up the 1475 // stack. 1476 if (N->LowLink != N->DFSNumber) { 1477 assert(!DFSStack.empty() && 1478 "We never found a viable root for an SCC to pop off!"); 1479 continue; 1480 } 1481 1482 // Otherwise, form a new RefSCC from the top of the pending node stack. 1483 int RootDFSNumber = N->DFSNumber; 1484 // Find the range of the node stack by walking down until we pass the 1485 // root DFS number. 1486 auto RefSCCNodes = node_stack_range( 1487 PendingRefSCCStack.rbegin(), 1488 find_if(reverse(PendingRefSCCStack), [RootDFSNumber](const Node *N) { 1489 return N->DFSNumber < RootDFSNumber; 1490 })); 1491 // Form a new RefSCC out of these nodes and then clear them off our pending 1492 // stack. 1493 RefSCC *NewRC = createRefSCC(*this); 1494 buildSCCs(*NewRC, RefSCCNodes); 1495 connectRefSCC(*NewRC); 1496 PendingRefSCCStack.erase(RefSCCNodes.end().base(), 1497 PendingRefSCCStack.end()); 1498 1499 // We return the new node here. This essentially suspends the DFS walk 1500 // until another RefSCC is requested. 1501 return NewRC; 1502 } 1503 } 1504 1505 char LazyCallGraphAnalysis::PassID; 1506 1507 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {} 1508 1509 static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) { 1510 OS << " Edges in function: " << N.getFunction().getName() << "\n"; 1511 for (const LazyCallGraph::Edge &E : N) 1512 OS << " " << (E.isCall() ? "call" : "ref ") << " -> " 1513 << E.getFunction().getName() << "\n"; 1514 1515 OS << "\n"; 1516 } 1517 1518 static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) { 1519 ptrdiff_t Size = std::distance(C.begin(), C.end()); 1520 OS << " SCC with " << Size << " functions:\n"; 1521 1522 for (LazyCallGraph::Node &N : C) 1523 OS << " " << N.getFunction().getName() << "\n"; 1524 } 1525 1526 static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) { 1527 ptrdiff_t Size = std::distance(C.begin(), C.end()); 1528 OS << " RefSCC with " << Size << " call SCCs:\n"; 1529 1530 for (LazyCallGraph::SCC &InnerC : C) 1531 printSCC(OS, InnerC); 1532 1533 OS << "\n"; 1534 } 1535 1536 PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M, 1537 ModuleAnalysisManager &AM) { 1538 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M); 1539 1540 OS << "Printing the call graph for module: " << M.getModuleIdentifier() 1541 << "\n\n"; 1542 1543 for (Function &F : M) 1544 printNode(OS, G.get(F)); 1545 1546 for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs()) 1547 printRefSCC(OS, C); 1548 1549 return PreservedAnalyses::all(); 1550 } 1551 1552 LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS) 1553 : OS(OS) {} 1554 1555 static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) { 1556 std::string Name = "\"" + DOT::EscapeString(N.getFunction().getName()) + "\""; 1557 1558 for (const LazyCallGraph::Edge &E : N) { 1559 OS << " " << Name << " -> \"" 1560 << DOT::EscapeString(E.getFunction().getName()) << "\""; 1561 if (!E.isCall()) // It is a ref edge. 1562 OS << " [style=dashed,label=\"ref\"]"; 1563 OS << ";\n"; 1564 } 1565 1566 OS << "\n"; 1567 } 1568 1569 PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M, 1570 ModuleAnalysisManager &AM) { 1571 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M); 1572 1573 OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n"; 1574 1575 for (Function &F : M) 1576 printNodeDOT(OS, G.get(F)); 1577 1578 OS << "}\n"; 1579 1580 return PreservedAnalyses::all(); 1581 } 1582