1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Analysis/LazyCallGraph.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/IR/CallSite.h"
13 #include "llvm/IR/InstVisitor.h"
14 #include "llvm/IR/Instructions.h"
15 #include "llvm/IR/PassManager.h"
16 #include "llvm/Support/Debug.h"
17 #include "llvm/Support/raw_ostream.h"
18 
19 using namespace llvm;
20 
21 #define DEBUG_TYPE "lcg"
22 
23 static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges,
24                     DenseMap<Function *, int> &EdgeIndexMap, Function &F,
25                     LazyCallGraph::Edge::Kind EK) {
26   // Note that we consider *any* function with a definition to be a viable
27   // edge. Even if the function's definition is subject to replacement by
28   // some other module (say, a weak definition) there may still be
29   // optimizations which essentially speculate based on the definition and
30   // a way to check that the specific definition is in fact the one being
31   // used. For example, this could be done by moving the weak definition to
32   // a strong (internal) definition and making the weak definition be an
33   // alias. Then a test of the address of the weak function against the new
34   // strong definition's address would be an effective way to determine the
35   // safety of optimizing a direct call edge.
36   if (!F.isDeclaration() &&
37       EdgeIndexMap.insert({&F, Edges.size()}).second) {
38     DEBUG(dbgs() << "    Added callable function: " << F.getName() << "\n");
39     Edges.emplace_back(LazyCallGraph::Edge(F, EK));
40   }
41 }
42 
43 static void findReferences(SmallVectorImpl<Constant *> &Worklist,
44                            SmallPtrSetImpl<Constant *> &Visited,
45                            SmallVectorImpl<LazyCallGraph::Edge> &Edges,
46                            DenseMap<Function *, int> &EdgeIndexMap) {
47   while (!Worklist.empty()) {
48     Constant *C = Worklist.pop_back_val();
49 
50     if (Function *F = dyn_cast<Function>(C)) {
51       addEdge(Edges, EdgeIndexMap, *F, LazyCallGraph::Edge::Ref);
52       continue;
53     }
54 
55     for (Value *Op : C->operand_values())
56       if (Visited.insert(cast<Constant>(Op)).second)
57         Worklist.push_back(cast<Constant>(Op));
58   }
59 }
60 
61 LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F)
62     : G(&G), F(F), DFSNumber(0), LowLink(0) {
63   DEBUG(dbgs() << "  Adding functions called by '" << F.getName()
64                << "' to the graph.\n");
65 
66   SmallVector<Constant *, 16> Worklist;
67   SmallPtrSet<Function *, 4> Callees;
68   SmallPtrSet<Constant *, 16> Visited;
69 
70   // Find all the potential call graph edges in this function. We track both
71   // actual call edges and indirect references to functions. The direct calls
72   // are trivially added, but to accumulate the latter we walk the instructions
73   // and add every operand which is a constant to the worklist to process
74   // afterward.
75   for (BasicBlock &BB : F)
76     for (Instruction &I : BB) {
77       if (auto CS = CallSite(&I))
78         if (Function *Callee = CS.getCalledFunction())
79           if (Callees.insert(Callee).second) {
80             Visited.insert(Callee);
81             addEdge(Edges, EdgeIndexMap, *Callee, LazyCallGraph::Edge::Call);
82           }
83 
84       for (Value *Op : I.operand_values())
85         if (Constant *C = dyn_cast<Constant>(Op))
86           if (Visited.insert(C).second)
87             Worklist.push_back(C);
88     }
89 
90   // We've collected all the constant (and thus potentially function or
91   // function containing) operands to all of the instructions in the function.
92   // Process them (recursively) collecting every function found.
93   findReferences(Worklist, Visited, Edges, EdgeIndexMap);
94 }
95 
96 void LazyCallGraph::Node::insertEdgeInternal(Function &Target, Edge::Kind EK) {
97   if (Node *N = G->lookup(Target))
98     return insertEdgeInternal(*N, EK);
99 
100   EdgeIndexMap.insert({&Target, Edges.size()});
101   Edges.emplace_back(Target, EK);
102 }
103 
104 void LazyCallGraph::Node::insertEdgeInternal(Node &TargetN, Edge::Kind EK) {
105   EdgeIndexMap.insert({&TargetN.getFunction(), Edges.size()});
106   Edges.emplace_back(TargetN, EK);
107 }
108 
109 void LazyCallGraph::Node::setEdgeKind(Function &TargetF, Edge::Kind EK) {
110   Edges[EdgeIndexMap.find(&TargetF)->second].setKind(EK);
111 }
112 
113 void LazyCallGraph::Node::removeEdgeInternal(Function &Target) {
114   auto IndexMapI = EdgeIndexMap.find(&Target);
115   assert(IndexMapI != EdgeIndexMap.end() &&
116          "Target not in the edge set for this caller?");
117 
118   Edges[IndexMapI->second] = Edge();
119   EdgeIndexMap.erase(IndexMapI);
120 }
121 
122 LazyCallGraph::LazyCallGraph(Module &M) : NextDFSNumber(0) {
123   DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
124                << "\n");
125   for (Function &F : M)
126     if (!F.isDeclaration() && !F.hasLocalLinkage())
127       if (EntryIndexMap.insert({&F, EntryEdges.size()}).second) {
128         DEBUG(dbgs() << "  Adding '" << F.getName()
129                      << "' to entry set of the graph.\n");
130         EntryEdges.emplace_back(F, Edge::Ref);
131       }
132 
133   // Now add entry nodes for functions reachable via initializers to globals.
134   SmallVector<Constant *, 16> Worklist;
135   SmallPtrSet<Constant *, 16> Visited;
136   for (GlobalVariable &GV : M.globals())
137     if (GV.hasInitializer())
138       if (Visited.insert(GV.getInitializer()).second)
139         Worklist.push_back(GV.getInitializer());
140 
141   DEBUG(dbgs() << "  Adding functions referenced by global initializers to the "
142                   "entry set.\n");
143   findReferences(Worklist, Visited, EntryEdges, EntryIndexMap);
144 
145   for (const Edge &E : EntryEdges)
146     RefSCCEntryNodes.push_back(&E.getFunction());
147 }
148 
149 LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
150     : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
151       EntryEdges(std::move(G.EntryEdges)),
152       EntryIndexMap(std::move(G.EntryIndexMap)), SCCBPA(std::move(G.SCCBPA)),
153       SCCMap(std::move(G.SCCMap)), LeafRefSCCs(std::move(G.LeafRefSCCs)),
154       DFSStack(std::move(G.DFSStack)),
155       RefSCCEntryNodes(std::move(G.RefSCCEntryNodes)),
156       NextDFSNumber(G.NextDFSNumber) {
157   updateGraphPtrs();
158 }
159 
160 LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
161   BPA = std::move(G.BPA);
162   NodeMap = std::move(G.NodeMap);
163   EntryEdges = std::move(G.EntryEdges);
164   EntryIndexMap = std::move(G.EntryIndexMap);
165   SCCBPA = std::move(G.SCCBPA);
166   SCCMap = std::move(G.SCCMap);
167   LeafRefSCCs = std::move(G.LeafRefSCCs);
168   DFSStack = std::move(G.DFSStack);
169   RefSCCEntryNodes = std::move(G.RefSCCEntryNodes);
170   NextDFSNumber = G.NextDFSNumber;
171   updateGraphPtrs();
172   return *this;
173 }
174 
175 #ifndef NDEBUG
176 void LazyCallGraph::SCC::verify() {
177   assert(OuterRefSCC && "Can't have a null RefSCC!");
178   assert(!Nodes.empty() && "Can't have an empty SCC!");
179 
180   for (Node *N : Nodes) {
181     assert(N && "Can't have a null node!");
182     assert(OuterRefSCC->G->lookupSCC(*N) == this &&
183            "Node does not map to this SCC!");
184     assert(N->DFSNumber == -1 &&
185            "Must set DFS numbers to -1 when adding a node to an SCC!");
186     assert(N->LowLink == -1 &&
187            "Must set low link to -1 when adding a node to an SCC!");
188     for (Edge &E : *N)
189       assert(E.getNode() && "Can't have an edge to a raw function!");
190   }
191 }
192 #endif
193 
194 LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {}
195 
196 #ifndef NDEBUG
197 void LazyCallGraph::RefSCC::verify() {
198   assert(G && "Can't have a null graph!");
199   assert(!SCCs.empty() && "Can't have an empty SCC!");
200 
201   // Verify basic properties of the SCCs.
202   for (SCC *C : SCCs) {
203     assert(C && "Can't have a null SCC!");
204     C->verify();
205     assert(&C->getOuterRefSCC() == this &&
206            "SCC doesn't think it is inside this RefSCC!");
207   }
208 
209   // Check that our indices map correctly.
210   for (auto &SCCIndexPair : SCCIndices) {
211     SCC *C = SCCIndexPair.first;
212     int i = SCCIndexPair.second;
213     assert(C && "Can't have a null SCC in the indices!");
214     assert(SCCs[i] == C && "Index doesn't point to SCC!");
215   }
216 
217   // Check that the SCCs are in fact in post-order.
218   for (int i = 0, Size = SCCs.size(); i < Size; ++i) {
219     SCC &SourceSCC = *SCCs[i];
220     for (Node &N : SourceSCC)
221       for (Edge &E : N) {
222         if (!E.isCall())
223           continue;
224         SCC &TargetSCC = *G->lookupSCC(*E.getNode());
225         if (&TargetSCC.getOuterRefSCC() == this) {
226           assert(SCCIndices.find(&TargetSCC)->second <= i &&
227                  "Edge between SCCs violates post-order relationship.");
228           continue;
229         }
230         assert(TargetSCC.getOuterRefSCC().Parents.count(this) &&
231                "Edge to a RefSCC missing us in its parent set.");
232       }
233   }
234 }
235 #endif
236 
237 bool LazyCallGraph::RefSCC::isDescendantOf(const RefSCC &C) const {
238   // Walk up the parents of this SCC and verify that we eventually find C.
239   SmallVector<const RefSCC *, 4> AncestorWorklist;
240   AncestorWorklist.push_back(this);
241   do {
242     const RefSCC *AncestorC = AncestorWorklist.pop_back_val();
243     if (AncestorC->isChildOf(C))
244       return true;
245     for (const RefSCC *ParentC : AncestorC->Parents)
246       AncestorWorklist.push_back(ParentC);
247   } while (!AncestorWorklist.empty());
248 
249   return false;
250 }
251 
252 SmallVector<LazyCallGraph::SCC *, 1>
253 LazyCallGraph::RefSCC::switchInternalEdgeToCall(Node &SourceN, Node &TargetN) {
254   assert(!SourceN[TargetN].isCall() && "Must start with a ref edge!");
255 
256   SmallVector<SCC *, 1> DeletedSCCs;
257 
258   SCC &SourceSCC = *G->lookupSCC(SourceN);
259   SCC &TargetSCC = *G->lookupSCC(TargetN);
260 
261   // If the two nodes are already part of the same SCC, we're also done as
262   // we've just added more connectivity.
263   if (&SourceSCC == &TargetSCC) {
264     SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
265 #ifndef NDEBUG
266     // Check that the RefSCC is still valid.
267     verify();
268 #endif
269     return DeletedSCCs;
270   }
271 
272   // At this point we leverage the postorder list of SCCs to detect when the
273   // insertion of an edge changes the SCC structure in any way.
274   //
275   // First and foremost, we can eliminate the need for any changes when the
276   // edge is toward the beginning of the postorder sequence because all edges
277   // flow in that direction already. Thus adding a new one cannot form a cycle.
278   int SourceIdx = SCCIndices[&SourceSCC];
279   int TargetIdx = SCCIndices[&TargetSCC];
280   if (TargetIdx < SourceIdx) {
281     SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
282 #ifndef NDEBUG
283     // Check that the RefSCC is still valid.
284     verify();
285 #endif
286     return DeletedSCCs;
287   }
288 
289   // When we do have an edge from an earlier SCC to a later SCC in the
290   // postorder sequence, all of the SCCs which may be impacted are in the
291   // closed range of those two within the postorder sequence. The algorithm to
292   // restore the state is as follows:
293   //
294   // 1) Starting from the source SCC, construct a set of SCCs which reach the
295   //    source SCC consisting of just the source SCC. Then scan toward the
296   //    target SCC in postorder and for each SCC, if it has an edge to an SCC
297   //    in the set, add it to the set. Otherwise, the source SCC is not
298   //    a successor, move it in the postorder sequence to immediately before
299   //    the source SCC, shifting the source SCC and all SCCs in the set one
300   //    position toward the target SCC. Stop scanning after processing the
301   //    target SCC.
302   // 2) If the source SCC is now past the target SCC in the postorder sequence,
303   //    and thus the new edge will flow toward the start, we are done.
304   // 3) Otherwise, starting from the target SCC, walk all edges which reach an
305   //    SCC between the source and the target, and add them to the set of
306   //    connected SCCs, then recurse through them. Once a complete set of the
307   //    SCCs the target connects to is known, hoist the remaining SCCs between
308   //    the source and the target to be above the target. Note that there is no
309   //    need to process the source SCC, it is already known to connect.
310   // 4) At this point, all of the SCCs in the closed range between the source
311   //    SCC and the target SCC in the postorder sequence are connected,
312   //    including the target SCC and the source SCC. Inserting the edge from
313   //    the source SCC to the target SCC will form a cycle out of precisely
314   //    these SCCs. Thus we can merge all of the SCCs in this closed range into
315   //    a single SCC.
316   //
317   // This process has various important properties:
318   // - Only mutates the SCCs when adding the edge actually changes the SCC
319   //   structure.
320   // - Never mutates SCCs which are unaffected by the change.
321   // - Updates the postorder sequence to correctly satisfy the postorder
322   //   constraint after the edge is inserted.
323   // - Only reorders SCCs in the closed postorder sequence from the source to
324   //   the target, so easy to bound how much has changed even in the ordering.
325   // - Big-O is the number of edges in the closed postorder range of SCCs from
326   //   source to target.
327 
328   assert(SourceIdx < TargetIdx && "Cannot have equal indices here!");
329   SmallPtrSet<SCC *, 4> ConnectedSet;
330 
331   // Compute the SCCs which (transitively) reach the source.
332   ConnectedSet.insert(&SourceSCC);
333   auto IsConnected = [&](SCC &C) {
334     for (Node &N : C)
335       for (Edge &E : N.calls()) {
336         assert(E.getNode() && "Must have formed a node within an SCC!");
337         if (ConnectedSet.count(G->lookupSCC(*E.getNode())))
338           return true;
339       }
340 
341     return false;
342   };
343 
344   for (SCC *C :
345        make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1))
346     if (IsConnected(*C))
347       ConnectedSet.insert(C);
348 
349   // Partition the SCCs in this part of the port-order sequence so only SCCs
350   // connecting to the source remain between it and the target. This is
351   // a benign partition as it preserves postorder.
352   auto SourceI = std::stable_partition(
353       SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1,
354       [&ConnectedSet](SCC *C) { return !ConnectedSet.count(C); });
355   for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i)
356     SCCIndices.find(SCCs[i])->second = i;
357 
358   // If the target doesn't connect to the source, then we've corrected the
359   // post-order and there are no cycles formed.
360   if (!ConnectedSet.count(&TargetSCC)) {
361     assert(SourceI > (SCCs.begin() + SourceIdx) &&
362            "Must have moved the source to fix the post-order.");
363     assert(*std::prev(SourceI) == &TargetSCC &&
364            "Last SCC to move should have bene the target.");
365     SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
366 #ifndef NDEBUG
367     verify();
368 #endif
369     return DeletedSCCs;
370   }
371 
372   assert(SCCs[TargetIdx] == &TargetSCC &&
373          "Should not have moved target if connected!");
374   SourceIdx = SourceI - SCCs.begin();
375 
376 #ifndef NDEBUG
377   // Check that the RefSCC is still valid.
378   verify();
379 #endif
380 
381   // See whether there are any remaining intervening SCCs between the source
382   // and target. If so we need to make sure they all are reachable form the
383   // target.
384   if (SourceIdx + 1 < TargetIdx) {
385     // Use a normal worklist to find which SCCs the target connects to. We still
386     // bound the search based on the range in the postorder list we care about,
387     // but because this is forward connectivity we just "recurse" through the
388     // edges.
389     ConnectedSet.clear();
390     ConnectedSet.insert(&TargetSCC);
391     SmallVector<SCC *, 4> Worklist;
392     Worklist.push_back(&TargetSCC);
393     do {
394       SCC &C = *Worklist.pop_back_val();
395       for (Node &N : C)
396         for (Edge &E : N) {
397           assert(E.getNode() && "Must have formed a node within an SCC!");
398           if (!E.isCall())
399             continue;
400           SCC &EdgeC = *G->lookupSCC(*E.getNode());
401           if (&EdgeC.getOuterRefSCC() != this)
402             // Not in this RefSCC...
403             continue;
404           if (SCCIndices.find(&EdgeC)->second <= SourceIdx)
405             // Not in the postorder sequence between source and target.
406             continue;
407 
408           if (ConnectedSet.insert(&EdgeC).second)
409             Worklist.push_back(&EdgeC);
410         }
411     } while (!Worklist.empty());
412 
413     // Partition SCCs so that only SCCs reached from the target remain between
414     // the source and the target. This preserves postorder.
415     auto TargetI = std::stable_partition(
416         SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1,
417         [&ConnectedSet](SCC *C) { return ConnectedSet.count(C); });
418     for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i)
419       SCCIndices.find(SCCs[i])->second = i;
420     TargetIdx = std::prev(TargetI) - SCCs.begin();
421     assert(SCCs[TargetIdx] == &TargetSCC &&
422            "Should always end with the target!");
423 
424 #ifndef NDEBUG
425     // Check that the RefSCC is still valid.
426     verify();
427 #endif
428   }
429 
430   // At this point, we know that connecting source to target forms a cycle
431   // because target connects back to source, and we know that all of the SCCs
432   // between the source and target in the postorder sequence participate in that
433   // cycle. This means that we need to merge all of these SCCs into a single
434   // result SCC.
435   //
436   // NB: We merge into the target because all of these functions were already
437   // reachable from the target, meaning any SCC-wide properties deduced about it
438   // other than the set of functions within it will not have changed.
439   auto MergeRange =
440       make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx);
441   for (SCC *C : MergeRange) {
442     assert(C != &TargetSCC &&
443            "We merge *into* the target and shouldn't process it here!");
444     SCCIndices.erase(C);
445     TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end());
446     for (Node *N : C->Nodes)
447       G->SCCMap[N] = &TargetSCC;
448     C->clear();
449     DeletedSCCs.push_back(C);
450   }
451 
452   // Erase the merged SCCs from the list and update the indices of the
453   // remaining SCCs.
454   int IndexOffset = MergeRange.end() - MergeRange.begin();
455   auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end());
456   for (SCC *C : make_range(EraseEnd, SCCs.end()))
457     SCCIndices[C] -= IndexOffset;
458 
459   // Now that the SCC structure is finalized, flip the kind to call.
460   SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
461 
462 #ifndef NDEBUG
463   // And we're done! Verify in debug builds that the RefSCC is coherent.
464   verify();
465 #endif
466   return DeletedSCCs;
467 }
468 
469 void LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN,
470                                                     Node &TargetN) {
471   assert(SourceN[TargetN].isCall() && "Must start with a call edge!");
472 
473   SCC &SourceSCC = *G->lookupSCC(SourceN);
474   SCC &TargetSCC = *G->lookupSCC(TargetN);
475 
476   assert(&SourceSCC.getOuterRefSCC() == this &&
477          "Source must be in this RefSCC.");
478   assert(&TargetSCC.getOuterRefSCC() == this &&
479          "Target must be in this RefSCC.");
480 
481   // Set the edge kind.
482   SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref);
483 
484   // If this call edge is just connecting two separate SCCs within this RefSCC,
485   // there is nothing to do.
486   if (&SourceSCC != &TargetSCC) {
487 #ifndef NDEBUG
488     // Check that the RefSCC is still valid.
489     verify();
490 #endif
491     return;
492   }
493 
494   // Otherwise we are removing a call edge from a single SCC. This may break
495   // the cycle. In order to compute the new set of SCCs, we need to do a small
496   // DFS over the nodes within the SCC to form any sub-cycles that remain as
497   // distinct SCCs and compute a postorder over the resulting SCCs.
498   //
499   // However, we specially handle the target node. The target node is known to
500   // reach all other nodes in the original SCC by definition. This means that
501   // we want the old SCC to be replaced with an SCC contaning that node as it
502   // will be the root of whatever SCC DAG results from the DFS. Assumptions
503   // about an SCC such as the set of functions called will continue to hold,
504   // etc.
505 
506   SCC &OldSCC = TargetSCC;
507   SmallVector<std::pair<Node *, call_edge_iterator>, 16> DFSStack;
508   SmallVector<Node *, 16> PendingSCCStack;
509   SmallVector<SCC *, 4> NewSCCs;
510 
511   // Prepare the nodes for a fresh DFS.
512   SmallVector<Node *, 16> Worklist;
513   Worklist.swap(OldSCC.Nodes);
514   for (Node *N : Worklist) {
515     N->DFSNumber = N->LowLink = 0;
516     G->SCCMap.erase(N);
517   }
518 
519   // Force the target node to be in the old SCC. This also enables us to take
520   // a very significant short-cut in the standard Tarjan walk to re-form SCCs
521   // below: whenever we build an edge that reaches the target node, we know
522   // that the target node eventually connects back to all other nodes in our
523   // walk. As a consequence, we can detect and handle participants in that
524   // cycle without walking all the edges that form this connection, and instead
525   // by relying on the fundamental guarantee coming into this operation (all
526   // nodes are reachable from the target due to previously forming an SCC).
527   TargetN.DFSNumber = TargetN.LowLink = -1;
528   OldSCC.Nodes.push_back(&TargetN);
529   G->SCCMap[&TargetN] = &OldSCC;
530 
531   // Scan down the stack and DFS across the call edges.
532   for (Node *RootN : Worklist) {
533     assert(DFSStack.empty() &&
534            "Cannot begin a new root with a non-empty DFS stack!");
535     assert(PendingSCCStack.empty() &&
536            "Cannot begin a new root with pending nodes for an SCC!");
537 
538     // Skip any nodes we've already reached in the DFS.
539     if (RootN->DFSNumber != 0) {
540       assert(RootN->DFSNumber == -1 &&
541              "Shouldn't have any mid-DFS root nodes!");
542       continue;
543     }
544 
545     RootN->DFSNumber = RootN->LowLink = 1;
546     int NextDFSNumber = 2;
547 
548     DFSStack.push_back({RootN, RootN->call_begin()});
549     do {
550       Node *N;
551       call_edge_iterator I;
552       std::tie(N, I) = DFSStack.pop_back_val();
553       auto E = N->call_end();
554       while (I != E) {
555         Node &ChildN = *I->getNode();
556         if (ChildN.DFSNumber == 0) {
557           // We haven't yet visited this child, so descend, pushing the current
558           // node onto the stack.
559           DFSStack.push_back({N, I});
560 
561           assert(!G->SCCMap.count(&ChildN) &&
562                  "Found a node with 0 DFS number but already in an SCC!");
563           ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
564           N = &ChildN;
565           I = N->call_begin();
566           E = N->call_end();
567           continue;
568         }
569 
570         // Check for the child already being part of some component.
571         if (ChildN.DFSNumber == -1) {
572           if (G->lookupSCC(ChildN) == &OldSCC) {
573             // If the child is part of the old SCC, we know that it can reach
574             // every other node, so we have formed a cycle. Pull the entire DFS
575             // and pending stacks into it. See the comment above about setting
576             // up the old SCC for why we do this.
577             int OldSize = OldSCC.size();
578             OldSCC.Nodes.push_back(N);
579             OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end());
580             PendingSCCStack.clear();
581             while (!DFSStack.empty())
582               OldSCC.Nodes.push_back(DFSStack.pop_back_val().first);
583             for (Node &N : make_range(OldSCC.begin() + OldSize, OldSCC.end())) {
584               N.DFSNumber = N.LowLink = -1;
585               G->SCCMap[&N] = &OldSCC;
586             }
587             N = nullptr;
588             break;
589           }
590 
591           // If the child has already been added to some child component, it
592           // couldn't impact the low-link of this parent because it isn't
593           // connected, and thus its low-link isn't relevant so skip it.
594           ++I;
595           continue;
596         }
597 
598         // Track the lowest linked child as the lowest link for this node.
599         assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
600         if (ChildN.LowLink < N->LowLink)
601           N->LowLink = ChildN.LowLink;
602 
603         // Move to the next edge.
604         ++I;
605       }
606       if (!N)
607         // Cleared the DFS early, start another round.
608         break;
609 
610       // We've finished processing N and its descendents, put it on our pending
611       // SCC stack to eventually get merged into an SCC of nodes.
612       PendingSCCStack.push_back(N);
613 
614       // If this node is linked to some lower entry, continue walking up the
615       // stack.
616       if (N->LowLink != N->DFSNumber)
617         continue;
618 
619       // Otherwise, we've completed an SCC. Append it to our post order list of
620       // SCCs.
621       int RootDFSNumber = N->DFSNumber;
622       // Find the range of the node stack by walking down until we pass the
623       // root DFS number.
624       auto SCCNodes = make_range(
625           PendingSCCStack.rbegin(),
626           std::find_if(PendingSCCStack.rbegin(), PendingSCCStack.rend(),
627                        [RootDFSNumber](Node *N) {
628                          return N->DFSNumber < RootDFSNumber;
629                        }));
630 
631       // Form a new SCC out of these nodes and then clear them off our pending
632       // stack.
633       NewSCCs.push_back(G->createSCC(*this, SCCNodes));
634       for (Node &N : *NewSCCs.back()) {
635         N.DFSNumber = N.LowLink = -1;
636         G->SCCMap[&N] = NewSCCs.back();
637       }
638       PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
639     } while (!DFSStack.empty());
640   }
641 
642   // Insert the remaining SCCs before the old one. The old SCC can reach all
643   // other SCCs we form because it contains the target node of the removed edge
644   // of the old SCC. This means that we will have edges into all of the new
645   // SCCs, which means the old one must come last for postorder.
646   int OldIdx = SCCIndices[&OldSCC];
647   SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end());
648 
649   // Update the mapping from SCC* to index to use the new SCC*s, and remove the
650   // old SCC from the mapping.
651   for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx)
652     SCCIndices[SCCs[Idx]] = Idx;
653 
654 #ifndef NDEBUG
655   // We're done. Check the validity on our way out.
656   verify();
657 #endif
658 }
659 
660 void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN,
661                                                      Node &TargetN) {
662   assert(!SourceN[TargetN].isCall() && "Must start with a ref edge!");
663 
664   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
665   assert(G->lookupRefSCC(TargetN) != this &&
666          "Target must not be in this RefSCC.");
667   assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
668          "Target must be a descendant of the Source.");
669 
670   // Edges between RefSCCs are the same regardless of call or ref, so we can
671   // just flip the edge here.
672   SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
673 
674 #ifndef NDEBUG
675   // Check that the RefSCC is still valid.
676   verify();
677 #endif
678 }
679 
680 void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN,
681                                                     Node &TargetN) {
682   assert(SourceN[TargetN].isCall() && "Must start with a call edge!");
683 
684   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
685   assert(G->lookupRefSCC(TargetN) != this &&
686          "Target must not be in this RefSCC.");
687   assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
688          "Target must be a descendant of the Source.");
689 
690   // Edges between RefSCCs are the same regardless of call or ref, so we can
691   // just flip the edge here.
692   SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref);
693 
694 #ifndef NDEBUG
695   // Check that the RefSCC is still valid.
696   verify();
697 #endif
698 }
699 
700 void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN,
701                                                   Node &TargetN) {
702   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
703   assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
704 
705   SourceN.insertEdgeInternal(TargetN, Edge::Ref);
706 
707 #ifndef NDEBUG
708   // Check that the RefSCC is still valid.
709   verify();
710 #endif
711 }
712 
713 void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN,
714                                                Edge::Kind EK) {
715   // First insert it into the caller.
716   SourceN.insertEdgeInternal(TargetN, EK);
717 
718   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
719 
720   RefSCC &TargetC = *G->lookupRefSCC(TargetN);
721   assert(&TargetC != this && "Target must not be in this RefSCC.");
722   assert(TargetC.isDescendantOf(*this) &&
723          "Target must be a descendant of the Source.");
724 
725   // The only change required is to add this SCC to the parent set of the
726   // callee.
727   TargetC.Parents.insert(this);
728 
729 #ifndef NDEBUG
730   // Check that the RefSCC is still valid.
731   verify();
732 #endif
733 }
734 
735 SmallVector<LazyCallGraph::RefSCC *, 1>
736 LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) {
737   assert(G->lookupRefSCC(TargetN) == this && "Target must be in this SCC.");
738 
739   // We store the RefSCCs found to be connected in postorder so that we can use
740   // that when merging. We also return this to the caller to allow them to
741   // invalidate information pertaining to these RefSCCs.
742   SmallVector<RefSCC *, 1> Connected;
743 
744   RefSCC &SourceC = *G->lookupRefSCC(SourceN);
745   assert(&SourceC != this && "Source must not be in this SCC.");
746   assert(SourceC.isDescendantOf(*this) &&
747          "Source must be a descendant of the Target.");
748 
749   // The algorithm we use for merging SCCs based on the cycle introduced here
750   // is to walk the RefSCC inverted DAG formed by the parent sets. The inverse
751   // graph has the same cycle properties as the actual DAG of the RefSCCs, and
752   // when forming RefSCCs lazily by a DFS, the bottom of the graph won't exist
753   // in many cases which should prune the search space.
754   //
755   // FIXME: We can get this pruning behavior even after the incremental RefSCC
756   // formation by leaving behind (conservative) DFS numberings in the nodes,
757   // and pruning the search with them. These would need to be cleverly updated
758   // during the removal of intra-SCC edges, but could be preserved
759   // conservatively.
760   //
761   // FIXME: This operation currently creates ordering stability problems
762   // because we don't use stably ordered containers for the parent SCCs.
763 
764   // The set of RefSCCs that are connected to the parent, and thus will
765   // participate in the merged connected component.
766   SmallPtrSet<RefSCC *, 8> ConnectedSet;
767   ConnectedSet.insert(this);
768 
769   // We build up a DFS stack of the parents chains.
770   SmallVector<std::pair<RefSCC *, parent_iterator>, 8> DFSStack;
771   SmallPtrSet<RefSCC *, 8> Visited;
772   int ConnectedDepth = -1;
773   DFSStack.push_back({&SourceC, SourceC.parent_begin()});
774   do {
775     auto DFSPair = DFSStack.pop_back_val();
776     RefSCC *C = DFSPair.first;
777     parent_iterator I = DFSPair.second;
778     auto E = C->parent_end();
779 
780     while (I != E) {
781       RefSCC &Parent = *I++;
782 
783       // If we have already processed this parent SCC, skip it, and remember
784       // whether it was connected so we don't have to check the rest of the
785       // stack. This also handles when we reach a child of the 'this' SCC (the
786       // callee) which terminates the search.
787       if (ConnectedSet.count(&Parent)) {
788         assert(ConnectedDepth < (int)DFSStack.size() &&
789                "Cannot have a connected depth greater than the DFS depth!");
790         ConnectedDepth = DFSStack.size();
791         continue;
792       }
793       if (Visited.count(&Parent))
794         continue;
795 
796       // We fully explore the depth-first space, adding nodes to the connected
797       // set only as we pop them off, so "recurse" by rotating to the parent.
798       DFSStack.push_back({C, I});
799       C = &Parent;
800       I = C->parent_begin();
801       E = C->parent_end();
802     }
803 
804     // If we've found a connection anywhere below this point on the stack (and
805     // thus up the parent graph from the caller), the current node needs to be
806     // added to the connected set now that we've processed all of its parents.
807     if ((int)DFSStack.size() == ConnectedDepth) {
808       --ConnectedDepth; // We're finished with this connection.
809       bool Inserted = ConnectedSet.insert(C).second;
810       (void)Inserted;
811       assert(Inserted && "Cannot insert a refSCC multiple times!");
812       Connected.push_back(C);
813     } else {
814       // Otherwise remember that its parents don't ever connect.
815       assert(ConnectedDepth < (int)DFSStack.size() &&
816              "Cannot have a connected depth greater than the DFS depth!");
817       Visited.insert(C);
818     }
819   } while (!DFSStack.empty());
820 
821   // Now that we have identified all of the SCCs which need to be merged into
822   // a connected set with the inserted edge, merge all of them into this SCC.
823   // We walk the newly connected RefSCCs in the reverse postorder of the parent
824   // DAG walk above and merge in each of their SCC postorder lists. This
825   // ensures a merged postorder SCC list.
826   SmallVector<SCC *, 16> MergedSCCs;
827   int SCCIndex = 0;
828   for (RefSCC *C : reverse(Connected)) {
829     assert(C != this &&
830            "This RefSCC should terminate the DFS without being reached.");
831 
832     // Merge the parents which aren't part of the merge into the our parents.
833     for (RefSCC *ParentC : C->Parents)
834       if (!ConnectedSet.count(ParentC))
835         Parents.insert(ParentC);
836     C->Parents.clear();
837 
838     // Walk the inner SCCs to update their up-pointer and walk all the edges to
839     // update any parent sets.
840     // FIXME: We should try to find a way to avoid this (rather expensive) edge
841     // walk by updating the parent sets in some other manner.
842     for (SCC &InnerC : *C) {
843       InnerC.OuterRefSCC = this;
844       SCCIndices[&InnerC] = SCCIndex++;
845       for (Node &N : InnerC) {
846         G->SCCMap[&N] = &InnerC;
847         for (Edge &E : N) {
848           assert(E.getNode() &&
849                  "Cannot have a null node within a visited SCC!");
850           RefSCC &ChildRC = *G->lookupRefSCC(*E.getNode());
851           if (ConnectedSet.count(&ChildRC))
852             continue;
853           ChildRC.Parents.erase(C);
854           ChildRC.Parents.insert(this);
855         }
856       }
857     }
858 
859     // Now merge in the SCCs. We can actually move here so try to reuse storage
860     // the first time through.
861     if (MergedSCCs.empty())
862       MergedSCCs = std::move(C->SCCs);
863     else
864       MergedSCCs.append(C->SCCs.begin(), C->SCCs.end());
865     C->SCCs.clear();
866   }
867 
868   // Finally append our original SCCs to the merged list and move it into
869   // place.
870   for (SCC &InnerC : *this)
871     SCCIndices[&InnerC] = SCCIndex++;
872   MergedSCCs.append(SCCs.begin(), SCCs.end());
873   SCCs = std::move(MergedSCCs);
874 
875   // At this point we have a merged RefSCC with a post-order SCCs list, just
876   // connect the nodes to form the new edge.
877   SourceN.insertEdgeInternal(TargetN, Edge::Ref);
878 
879 #ifndef NDEBUG
880   // Check that the RefSCC is still valid.
881   verify();
882 #endif
883 
884   // We return the list of SCCs which were merged so that callers can
885   // invalidate any data they have associated with those SCCs. Note that these
886   // SCCs are no longer in an interesting state (they are totally empty) but
887   // the pointers will remain stable for the life of the graph itself.
888   return Connected;
889 }
890 
891 void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) {
892   assert(G->lookupRefSCC(SourceN) == this &&
893          "The source must be a member of this RefSCC.");
894 
895   RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
896   assert(&TargetRC != this && "The target must not be a member of this RefSCC");
897 
898   assert(std::find(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(), this) ==
899              G->LeafRefSCCs.end() &&
900          "Cannot have a leaf RefSCC source.");
901 
902   // First remove it from the node.
903   SourceN.removeEdgeInternal(TargetN.getFunction());
904 
905   bool HasOtherEdgeToChildRC = false;
906   bool HasOtherChildRC = false;
907   for (SCC *InnerC : SCCs) {
908     for (Node &N : *InnerC) {
909       for (Edge &E : N) {
910         assert(E.getNode() && "Cannot have a missing node in a visited SCC!");
911         RefSCC &OtherChildRC = *G->lookupRefSCC(*E.getNode());
912         if (&OtherChildRC == &TargetRC) {
913           HasOtherEdgeToChildRC = true;
914           break;
915         }
916         if (&OtherChildRC != this)
917           HasOtherChildRC = true;
918       }
919       if (HasOtherEdgeToChildRC)
920         break;
921     }
922     if (HasOtherEdgeToChildRC)
923       break;
924   }
925   // Because the SCCs form a DAG, deleting such an edge cannot change the set
926   // of SCCs in the graph. However, it may cut an edge of the SCC DAG, making
927   // the source SCC no longer connected to the target SCC. If so, we need to
928   // update the target SCC's map of its parents.
929   if (!HasOtherEdgeToChildRC) {
930     bool Removed = TargetRC.Parents.erase(this);
931     (void)Removed;
932     assert(Removed &&
933            "Did not find the source SCC in the target SCC's parent list!");
934 
935     // It may orphan an SCC if it is the last edge reaching it, but that does
936     // not violate any invariants of the graph.
937     if (TargetRC.Parents.empty())
938       DEBUG(dbgs() << "LCG: Update removing " << SourceN.getFunction().getName()
939                    << " -> " << TargetN.getFunction().getName()
940                    << " edge orphaned the callee's SCC!\n");
941 
942     // It may make the Source SCC a leaf SCC.
943     if (!HasOtherChildRC)
944       G->LeafRefSCCs.push_back(this);
945   }
946 }
947 
948 SmallVector<LazyCallGraph::RefSCC *, 1>
949 LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN, Node &TargetN) {
950   assert(!SourceN[TargetN].isCall() &&
951          "Cannot remove a call edge, it must first be made a ref edge");
952 
953   // First remove the actual edge.
954   SourceN.removeEdgeInternal(TargetN.getFunction());
955 
956   // We return a list of the resulting *new* RefSCCs in post-order.
957   SmallVector<RefSCC *, 1> Result;
958 
959   // Direct recursion doesn't impact the SCC graph at all.
960   if (&SourceN == &TargetN)
961     return Result;
962 
963   // We build somewhat synthetic new RefSCCs by providing a postorder mapping
964   // for each inner SCC. We also store these associated with *nodes* rather
965   // than SCCs because this saves a round-trip through the node->SCC map and in
966   // the common case, SCCs are small. We will verify that we always give the
967   // same number to every node in the SCC such that these are equivalent.
968   const int RootPostOrderNumber = 0;
969   int PostOrderNumber = RootPostOrderNumber + 1;
970   SmallDenseMap<Node *, int> PostOrderMapping;
971 
972   // Every node in the target SCC can already reach every node in this RefSCC
973   // (by definition). It is the only node we know will stay inside this RefSCC.
974   // Everything which transitively reaches Target will also remain in the
975   // RefSCC. We handle this by pre-marking that the nodes in the target SCC map
976   // back to the root post order number.
977   //
978   // This also enables us to take a very significant short-cut in the standard
979   // Tarjan walk to re-form RefSCCs below: whenever we build an edge that
980   // references the target node, we know that the target node eventually
981   // references all other nodes in our walk. As a consequence, we can detect
982   // and handle participants in that cycle without walking all the edges that
983   // form the connections, and instead by relying on the fundamental guarantee
984   // coming into this operation.
985   SCC &TargetC = *G->lookupSCC(TargetN);
986   for (Node &N : TargetC)
987     PostOrderMapping[&N] = RootPostOrderNumber;
988 
989   // Reset all the other nodes to prepare for a DFS over them, and add them to
990   // our worklist.
991   SmallVector<Node *, 8> Worklist;
992   for (SCC *C : SCCs) {
993     if (C == &TargetC)
994       continue;
995 
996     for (Node &N : *C)
997       N.DFSNumber = N.LowLink = 0;
998 
999     Worklist.append(C->Nodes.begin(), C->Nodes.end());
1000   }
1001 
1002   auto MarkNodeForSCCNumber = [&PostOrderMapping](Node &N, int Number) {
1003     N.DFSNumber = N.LowLink = -1;
1004     PostOrderMapping[&N] = Number;
1005   };
1006 
1007   SmallVector<std::pair<Node *, edge_iterator>, 4> DFSStack;
1008   SmallVector<Node *, 4> PendingRefSCCStack;
1009   do {
1010     assert(DFSStack.empty() &&
1011            "Cannot begin a new root with a non-empty DFS stack!");
1012     assert(PendingRefSCCStack.empty() &&
1013            "Cannot begin a new root with pending nodes for an SCC!");
1014 
1015     Node *RootN = Worklist.pop_back_val();
1016     // Skip any nodes we've already reached in the DFS.
1017     if (RootN->DFSNumber != 0) {
1018       assert(RootN->DFSNumber == -1 &&
1019              "Shouldn't have any mid-DFS root nodes!");
1020       continue;
1021     }
1022 
1023     RootN->DFSNumber = RootN->LowLink = 1;
1024     int NextDFSNumber = 2;
1025 
1026     DFSStack.push_back({RootN, RootN->begin()});
1027     do {
1028       Node *N;
1029       edge_iterator I;
1030       std::tie(N, I) = DFSStack.pop_back_val();
1031       auto E = N->end();
1032 
1033       assert(N->DFSNumber != 0 && "We should always assign a DFS number "
1034                                   "before processing a node.");
1035 
1036       while (I != E) {
1037         Node &ChildN = I->getNode(*G);
1038         if (ChildN.DFSNumber == 0) {
1039           // Mark that we should start at this child when next this node is the
1040           // top of the stack. We don't start at the next child to ensure this
1041           // child's lowlink is reflected.
1042           DFSStack.push_back({N, I});
1043 
1044           // Continue, resetting to the child node.
1045           ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
1046           N = &ChildN;
1047           I = ChildN.begin();
1048           E = ChildN.end();
1049           continue;
1050         }
1051         if (ChildN.DFSNumber == -1) {
1052           // Check if this edge's target node connects to the deleted edge's
1053           // target node. If so, we know that every node connected will end up
1054           // in this RefSCC, so collapse the entire current stack into the root
1055           // slot in our SCC numbering. See above for the motivation of
1056           // optimizing the target connected nodes in this way.
1057           auto PostOrderI = PostOrderMapping.find(&ChildN);
1058           if (PostOrderI != PostOrderMapping.end() &&
1059               PostOrderI->second == RootPostOrderNumber) {
1060             MarkNodeForSCCNumber(*N, RootPostOrderNumber);
1061             while (!PendingRefSCCStack.empty())
1062               MarkNodeForSCCNumber(*PendingRefSCCStack.pop_back_val(),
1063                                    RootPostOrderNumber);
1064             while (!DFSStack.empty())
1065               MarkNodeForSCCNumber(*DFSStack.pop_back_val().first,
1066                                    RootPostOrderNumber);
1067             // Ensure we break all the way out of the enclosing loop.
1068             N = nullptr;
1069             break;
1070           }
1071 
1072           // If this child isn't currently in this RefSCC, no need to process
1073           // it.
1074           // However, we do need to remove this RefSCC from its RefSCC's parent
1075           // set.
1076           RefSCC &ChildRC = *G->lookupRefSCC(ChildN);
1077           ChildRC.Parents.erase(this);
1078           ++I;
1079           continue;
1080         }
1081 
1082         // Track the lowest link of the children, if any are still in the stack.
1083         // Any child not on the stack will have a LowLink of -1.
1084         assert(ChildN.LowLink != 0 &&
1085                "Low-link must not be zero with a non-zero DFS number.");
1086         if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
1087           N->LowLink = ChildN.LowLink;
1088         ++I;
1089       }
1090       if (!N)
1091         // We short-circuited this node.
1092         break;
1093 
1094       // We've finished processing N and its descendents, put it on our pending
1095       // stack to eventually get merged into a RefSCC.
1096       PendingRefSCCStack.push_back(N);
1097 
1098       // If this node is linked to some lower entry, continue walking up the
1099       // stack.
1100       if (N->LowLink != N->DFSNumber) {
1101         assert(!DFSStack.empty() &&
1102                "We never found a viable root for a RefSCC to pop off!");
1103         continue;
1104       }
1105 
1106       // Otherwise, form a new RefSCC from the top of the pending node stack.
1107       int RootDFSNumber = N->DFSNumber;
1108       // Find the range of the node stack by walking down until we pass the
1109       // root DFS number.
1110       auto RefSCCNodes = make_range(
1111           PendingRefSCCStack.rbegin(),
1112           std::find_if(PendingRefSCCStack.rbegin(), PendingRefSCCStack.rend(),
1113                        [RootDFSNumber](Node *N) {
1114                          return N->DFSNumber < RootDFSNumber;
1115                        }));
1116 
1117       // Mark the postorder number for these nodes and clear them off the
1118       // stack. We'll use the postorder number to pull them into RefSCCs at the
1119       // end. FIXME: Fuse with the loop above.
1120       int RefSCCNumber = PostOrderNumber++;
1121       for (Node *N : RefSCCNodes)
1122         MarkNodeForSCCNumber(*N, RefSCCNumber);
1123 
1124       PendingRefSCCStack.erase(RefSCCNodes.end().base(),
1125                                PendingRefSCCStack.end());
1126     } while (!DFSStack.empty());
1127 
1128     assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
1129     assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!");
1130   } while (!Worklist.empty());
1131 
1132   // We now have a post-order numbering for RefSCCs and a mapping from each
1133   // node in this RefSCC to its final RefSCC. We create each new RefSCC node
1134   // (re-using this RefSCC node for the root) and build a radix-sort style map
1135   // from postorder number to the RefSCC. We then append SCCs to each of these
1136   // RefSCCs in the order they occured in the original SCCs container.
1137   for (int i = 1; i < PostOrderNumber; ++i)
1138     Result.push_back(G->createRefSCC(*G));
1139 
1140   for (SCC *C : SCCs) {
1141     auto PostOrderI = PostOrderMapping.find(&*C->begin());
1142     assert(PostOrderI != PostOrderMapping.end() &&
1143            "Cannot have missing mappings for nodes!");
1144     int SCCNumber = PostOrderI->second;
1145 #ifndef NDEBUG
1146     for (Node &N : *C)
1147       assert(PostOrderMapping.find(&N)->second == SCCNumber &&
1148              "Cannot have different numbers for nodes in the same SCC!");
1149 #endif
1150     if (SCCNumber == 0)
1151       // The root node is handled separately by removing the SCCs.
1152       continue;
1153 
1154     RefSCC &RC = *Result[SCCNumber - 1];
1155     int SCCIndex = RC.SCCs.size();
1156     RC.SCCs.push_back(C);
1157     SCCIndices[C] = SCCIndex;
1158     C->OuterRefSCC = &RC;
1159   }
1160 
1161   // FIXME: We re-walk the edges in each RefSCC to establish whether it is
1162   // a leaf and connect it to the rest of the graph's parents lists. This is
1163   // really wasteful. We should instead do this during the DFS to avoid yet
1164   // another edge walk.
1165   for (RefSCC *RC : Result)
1166     G->connectRefSCC(*RC);
1167 
1168   // Now erase all but the root's SCCs.
1169   SCCs.erase(std::remove_if(SCCs.begin(), SCCs.end(),
1170                             [&](SCC *C) {
1171                               return PostOrderMapping.lookup(&*C->begin()) !=
1172                                      RootPostOrderNumber;
1173                             }),
1174              SCCs.end());
1175 
1176 #ifndef NDEBUG
1177   // Now we need to reconnect the current (root) SCC to the graph. We do this
1178   // manually because we can special case our leaf handling and detect errors.
1179   bool IsLeaf = true;
1180 #endif
1181   for (SCC *C : SCCs)
1182     for (Node &N : *C) {
1183       for (Edge &E : N) {
1184         assert(E.getNode() && "Cannot have a missing node in a visited SCC!");
1185         RefSCC &ChildRC = *G->lookupRefSCC(*E.getNode());
1186         if (&ChildRC == this)
1187           continue;
1188         ChildRC.Parents.insert(this);
1189 #ifndef NDEBUG
1190         IsLeaf = false;
1191 #endif
1192       }
1193     }
1194 #ifndef NDEBUG
1195   if (!Result.empty())
1196     assert(!IsLeaf && "This SCC cannot be a leaf as we have split out new "
1197                       "SCCs by removing this edge.");
1198   if (!std::any_of(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(),
1199                    [&](RefSCC *C) { return C == this; }))
1200     assert(!IsLeaf && "This SCC cannot be a leaf as it already had child "
1201                       "SCCs before we removed this edge.");
1202 #endif
1203   // If this SCC stopped being a leaf through this edge removal, remove it from
1204   // the leaf SCC list. Note that this DTRT in the case where this was never
1205   // a leaf.
1206   // FIXME: As LeafRefSCCs could be very large, we might want to not walk the
1207   // entire list if this RefSCC wasn't a leaf before the edge removal.
1208   if (!Result.empty())
1209     G->LeafRefSCCs.erase(
1210         std::remove(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(), this),
1211         G->LeafRefSCCs.end());
1212 
1213   // Return the new list of SCCs.
1214   return Result;
1215 }
1216 
1217 void LazyCallGraph::insertEdge(Node &SourceN, Function &Target, Edge::Kind EK) {
1218   assert(SCCMap.empty() && DFSStack.empty() &&
1219          "This method cannot be called after SCCs have been formed!");
1220 
1221   return SourceN.insertEdgeInternal(Target, EK);
1222 }
1223 
1224 void LazyCallGraph::removeEdge(Node &SourceN, Function &Target) {
1225   assert(SCCMap.empty() && DFSStack.empty() &&
1226          "This method cannot be called after SCCs have been formed!");
1227 
1228   return SourceN.removeEdgeInternal(Target);
1229 }
1230 
1231 LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
1232   return *new (MappedN = BPA.Allocate()) Node(*this, F);
1233 }
1234 
1235 void LazyCallGraph::updateGraphPtrs() {
1236   // Process all nodes updating the graph pointers.
1237   {
1238     SmallVector<Node *, 16> Worklist;
1239     for (Edge &E : EntryEdges)
1240       if (Node *EntryN = E.getNode())
1241         Worklist.push_back(EntryN);
1242 
1243     while (!Worklist.empty()) {
1244       Node *N = Worklist.pop_back_val();
1245       N->G = this;
1246       for (Edge &E : N->Edges)
1247         if (Node *TargetN = E.getNode())
1248           Worklist.push_back(TargetN);
1249     }
1250   }
1251 
1252   // Process all SCCs updating the graph pointers.
1253   {
1254     SmallVector<RefSCC *, 16> Worklist(LeafRefSCCs.begin(), LeafRefSCCs.end());
1255 
1256     while (!Worklist.empty()) {
1257       RefSCC &C = *Worklist.pop_back_val();
1258       C.G = this;
1259       for (RefSCC &ParentC : C.parents())
1260         Worklist.push_back(&ParentC);
1261     }
1262   }
1263 }
1264 
1265 /// Build the internal SCCs for a RefSCC from a sequence of nodes.
1266 ///
1267 /// Appends the SCCs to the provided vector and updates the map with their
1268 /// indices. Both the vector and map must be empty when passed into this
1269 /// routine.
1270 void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
1271   assert(RC.SCCs.empty() && "Already built SCCs!");
1272   assert(RC.SCCIndices.empty() && "Already mapped SCC indices!");
1273 
1274   for (Node *N : Nodes) {
1275     assert(N->LowLink >= (*Nodes.begin())->LowLink &&
1276            "We cannot have a low link in an SCC lower than its root on the "
1277            "stack!");
1278 
1279     // This node will go into the next RefSCC, clear out its DFS and low link
1280     // as we scan.
1281     N->DFSNumber = N->LowLink = 0;
1282   }
1283 
1284   // Each RefSCC contains a DAG of the call SCCs. To build these, we do
1285   // a direct walk of the call edges using Tarjan's algorithm. We reuse the
1286   // internal storage as we won't need it for the outer graph's DFS any longer.
1287 
1288   SmallVector<std::pair<Node *, call_edge_iterator>, 16> DFSStack;
1289   SmallVector<Node *, 16> PendingSCCStack;
1290 
1291   // Scan down the stack and DFS across the call edges.
1292   for (Node *RootN : Nodes) {
1293     assert(DFSStack.empty() &&
1294            "Cannot begin a new root with a non-empty DFS stack!");
1295     assert(PendingSCCStack.empty() &&
1296            "Cannot begin a new root with pending nodes for an SCC!");
1297 
1298     // Skip any nodes we've already reached in the DFS.
1299     if (RootN->DFSNumber != 0) {
1300       assert(RootN->DFSNumber == -1 &&
1301              "Shouldn't have any mid-DFS root nodes!");
1302       continue;
1303     }
1304 
1305     RootN->DFSNumber = RootN->LowLink = 1;
1306     int NextDFSNumber = 2;
1307 
1308     DFSStack.push_back({RootN, RootN->call_begin()});
1309     do {
1310       Node *N;
1311       call_edge_iterator I;
1312       std::tie(N, I) = DFSStack.pop_back_val();
1313       auto E = N->call_end();
1314       while (I != E) {
1315         Node &ChildN = *I->getNode();
1316         if (ChildN.DFSNumber == 0) {
1317           // We haven't yet visited this child, so descend, pushing the current
1318           // node onto the stack.
1319           DFSStack.push_back({N, I});
1320 
1321           assert(!lookupSCC(ChildN) &&
1322                  "Found a node with 0 DFS number but already in an SCC!");
1323           ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
1324           N = &ChildN;
1325           I = N->call_begin();
1326           E = N->call_end();
1327           continue;
1328         }
1329 
1330         // If the child has already been added to some child component, it
1331         // couldn't impact the low-link of this parent because it isn't
1332         // connected, and thus its low-link isn't relevant so skip it.
1333         if (ChildN.DFSNumber == -1) {
1334           ++I;
1335           continue;
1336         }
1337 
1338         // Track the lowest linked child as the lowest link for this node.
1339         assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
1340         if (ChildN.LowLink < N->LowLink)
1341           N->LowLink = ChildN.LowLink;
1342 
1343         // Move to the next edge.
1344         ++I;
1345       }
1346 
1347       // We've finished processing N and its descendents, put it on our pending
1348       // SCC stack to eventually get merged into an SCC of nodes.
1349       PendingSCCStack.push_back(N);
1350 
1351       // If this node is linked to some lower entry, continue walking up the
1352       // stack.
1353       if (N->LowLink != N->DFSNumber)
1354         continue;
1355 
1356       // Otherwise, we've completed an SCC. Append it to our post order list of
1357       // SCCs.
1358       int RootDFSNumber = N->DFSNumber;
1359       // Find the range of the node stack by walking down until we pass the
1360       // root DFS number.
1361       auto SCCNodes = make_range(
1362           PendingSCCStack.rbegin(),
1363           std::find_if(PendingSCCStack.rbegin(), PendingSCCStack.rend(),
1364                        [RootDFSNumber](Node *N) {
1365                          return N->DFSNumber < RootDFSNumber;
1366                        }));
1367       // Form a new SCC out of these nodes and then clear them off our pending
1368       // stack.
1369       RC.SCCs.push_back(createSCC(RC, SCCNodes));
1370       for (Node &N : *RC.SCCs.back()) {
1371         N.DFSNumber = N.LowLink = -1;
1372         SCCMap[&N] = RC.SCCs.back();
1373       }
1374       PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
1375     } while (!DFSStack.empty());
1376   }
1377 
1378   // Wire up the SCC indices.
1379   for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i)
1380     RC.SCCIndices[RC.SCCs[i]] = i;
1381 }
1382 
1383 // FIXME: We should move callers of this to embed the parent linking and leaf
1384 // tracking into their DFS in order to remove a full walk of all edges.
1385 void LazyCallGraph::connectRefSCC(RefSCC &RC) {
1386   // Walk all edges in the RefSCC (this remains linear as we only do this once
1387   // when we build the RefSCC) to connect it to the parent sets of its
1388   // children.
1389   bool IsLeaf = true;
1390   for (SCC &C : RC)
1391     for (Node &N : C)
1392       for (Edge &E : N) {
1393         assert(E.getNode() &&
1394                "Cannot have a missing node in a visited part of the graph!");
1395         RefSCC &ChildRC = *lookupRefSCC(*E.getNode());
1396         if (&ChildRC == &RC)
1397           continue;
1398         ChildRC.Parents.insert(&RC);
1399         IsLeaf = false;
1400       }
1401 
1402   // For the SCCs where we fine no child SCCs, add them to the leaf list.
1403   if (IsLeaf)
1404     LeafRefSCCs.push_back(&RC);
1405 }
1406 
1407 LazyCallGraph::RefSCC *LazyCallGraph::getNextRefSCCInPostOrder() {
1408   if (DFSStack.empty()) {
1409     Node *N;
1410     do {
1411       // If we've handled all candidate entry nodes to the SCC forest, we're
1412       // done.
1413       if (RefSCCEntryNodes.empty())
1414         return nullptr;
1415 
1416       N = &get(*RefSCCEntryNodes.pop_back_val());
1417     } while (N->DFSNumber != 0);
1418 
1419     // Found a new root, begin the DFS here.
1420     N->LowLink = N->DFSNumber = 1;
1421     NextDFSNumber = 2;
1422     DFSStack.push_back({N, N->begin()});
1423   }
1424 
1425   for (;;) {
1426     Node *N;
1427     edge_iterator I;
1428     std::tie(N, I) = DFSStack.pop_back_val();
1429 
1430     assert(N->DFSNumber > 0 && "We should always assign a DFS number "
1431                                "before placing a node onto the stack.");
1432 
1433     auto E = N->end();
1434     while (I != E) {
1435       Node &ChildN = I->getNode(*this);
1436       if (ChildN.DFSNumber == 0) {
1437         // We haven't yet visited this child, so descend, pushing the current
1438         // node onto the stack.
1439         DFSStack.push_back({N, N->begin()});
1440 
1441         assert(!SCCMap.count(&ChildN) &&
1442                "Found a node with 0 DFS number but already in an SCC!");
1443         ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
1444         N = &ChildN;
1445         I = N->begin();
1446         E = N->end();
1447         continue;
1448       }
1449 
1450       // If the child has already been added to some child component, it
1451       // couldn't impact the low-link of this parent because it isn't
1452       // connected, and thus its low-link isn't relevant so skip it.
1453       if (ChildN.DFSNumber == -1) {
1454         ++I;
1455         continue;
1456       }
1457 
1458       // Track the lowest linked child as the lowest link for this node.
1459       assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
1460       if (ChildN.LowLink < N->LowLink)
1461         N->LowLink = ChildN.LowLink;
1462 
1463       // Move to the next edge.
1464       ++I;
1465     }
1466 
1467     // We've finished processing N and its descendents, put it on our pending
1468     // SCC stack to eventually get merged into an SCC of nodes.
1469     PendingRefSCCStack.push_back(N);
1470 
1471     // If this node is linked to some lower entry, continue walking up the
1472     // stack.
1473     if (N->LowLink != N->DFSNumber) {
1474       assert(!DFSStack.empty() &&
1475              "We never found a viable root for an SCC to pop off!");
1476       continue;
1477     }
1478 
1479     // Otherwise, form a new RefSCC from the top of the pending node stack.
1480     int RootDFSNumber = N->DFSNumber;
1481     // Find the range of the node stack by walking down until we pass the
1482     // root DFS number.
1483     auto RefSCCNodes = node_stack_range(
1484         PendingRefSCCStack.rbegin(),
1485         std::find_if(
1486             PendingRefSCCStack.rbegin(), PendingRefSCCStack.rend(),
1487             [RootDFSNumber](Node *N) { return N->DFSNumber < RootDFSNumber; }));
1488     // Form a new RefSCC out of these nodes and then clear them off our pending
1489     // stack.
1490     RefSCC *NewRC = createRefSCC(*this);
1491     buildSCCs(*NewRC, RefSCCNodes);
1492     connectRefSCC(*NewRC);
1493     PendingRefSCCStack.erase(RefSCCNodes.end().base(),
1494                              PendingRefSCCStack.end());
1495 
1496     // We return the new node here. This essentially suspends the DFS walk
1497     // until another RefSCC is requested.
1498     return NewRC;
1499   }
1500 }
1501 
1502 char LazyCallGraphAnalysis::PassID;
1503 
1504 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
1505 
1506 static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) {
1507   OS << "  Edges in function: " << N.getFunction().getName() << "\n";
1508   for (const LazyCallGraph::Edge &E : N)
1509     OS << "    " << (E.isCall() ? "call" : "ref ") << " -> "
1510        << E.getFunction().getName() << "\n";
1511 
1512   OS << "\n";
1513 }
1514 
1515 static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) {
1516   ptrdiff_t Size = std::distance(C.begin(), C.end());
1517   OS << "    SCC with " << Size << " functions:\n";
1518 
1519   for (LazyCallGraph::Node &N : C)
1520     OS << "      " << N.getFunction().getName() << "\n";
1521 }
1522 
1523 static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) {
1524   ptrdiff_t Size = std::distance(C.begin(), C.end());
1525   OS << "  RefSCC with " << Size << " call SCCs:\n";
1526 
1527   for (LazyCallGraph::SCC &InnerC : C)
1528     printSCC(OS, InnerC);
1529 
1530   OS << "\n";
1531 }
1532 
1533 PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
1534                                                 ModuleAnalysisManager &AM) {
1535   LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
1536 
1537   OS << "Printing the call graph for module: " << M.getModuleIdentifier()
1538      << "\n\n";
1539 
1540   for (Function &F : M)
1541     printNode(OS, G.get(F));
1542 
1543   for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs())
1544     printRefSCC(OS, C);
1545 
1546   return PreservedAnalyses::all();
1547 }
1548