1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements routines for folding instructions into simpler forms 11 // that do not require creating new instructions. This does constant folding 12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 15 // simplified: This is usually true and assuming it simplifies the logic (if 16 // they have not been simplified then results are correct but maybe suboptimal). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/Analysis/VectorUtils.h" 29 #include "llvm/IR/ConstantRange.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/GetElementPtrTypeIterator.h" 33 #include "llvm/IR/GlobalAlias.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/IR/ValueHandle.h" 37 #include <algorithm> 38 using namespace llvm; 39 using namespace llvm::PatternMatch; 40 41 #define DEBUG_TYPE "instsimplify" 42 43 enum { RecursionLimit = 3 }; 44 45 STATISTIC(NumExpand, "Number of expansions"); 46 STATISTIC(NumReassoc, "Number of reassociations"); 47 48 namespace { 49 struct Query { 50 const DataLayout &DL; 51 const TargetLibraryInfo *TLI; 52 const DominatorTree *DT; 53 AssumptionCache *AC; 54 const Instruction *CxtI; 55 56 Query(const DataLayout &DL, const TargetLibraryInfo *tli, 57 const DominatorTree *dt, AssumptionCache *ac = nullptr, 58 const Instruction *cxti = nullptr) 59 : DL(DL), TLI(tli), DT(dt), AC(ac), CxtI(cxti) {} 60 }; 61 } // end anonymous namespace 62 63 static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned); 64 static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &, 65 unsigned); 66 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &, 67 const Query &, unsigned); 68 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &, 69 unsigned); 70 static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned); 71 static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned); 72 static Value *SimplifyCastInst(unsigned, Value *, Type *, 73 const Query &, unsigned); 74 75 /// For a boolean type, or a vector of boolean type, return false, or 76 /// a vector with every element false, as appropriate for the type. 77 static Constant *getFalse(Type *Ty) { 78 assert(Ty->getScalarType()->isIntegerTy(1) && 79 "Expected i1 type or a vector of i1!"); 80 return Constant::getNullValue(Ty); 81 } 82 83 /// For a boolean type, or a vector of boolean type, return true, or 84 /// a vector with every element true, as appropriate for the type. 85 static Constant *getTrue(Type *Ty) { 86 assert(Ty->getScalarType()->isIntegerTy(1) && 87 "Expected i1 type or a vector of i1!"); 88 return Constant::getAllOnesValue(Ty); 89 } 90 91 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 92 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 93 Value *RHS) { 94 CmpInst *Cmp = dyn_cast<CmpInst>(V); 95 if (!Cmp) 96 return false; 97 CmpInst::Predicate CPred = Cmp->getPredicate(); 98 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 99 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 100 return true; 101 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 102 CRHS == LHS; 103 } 104 105 /// Does the given value dominate the specified phi node? 106 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 107 Instruction *I = dyn_cast<Instruction>(V); 108 if (!I) 109 // Arguments and constants dominate all instructions. 110 return true; 111 112 // If we are processing instructions (and/or basic blocks) that have not been 113 // fully added to a function, the parent nodes may still be null. Simply 114 // return the conservative answer in these cases. 115 if (!I->getParent() || !P->getParent() || !I->getParent()->getParent()) 116 return false; 117 118 // If we have a DominatorTree then do a precise test. 119 if (DT) { 120 if (!DT->isReachableFromEntry(P->getParent())) 121 return true; 122 if (!DT->isReachableFromEntry(I->getParent())) 123 return false; 124 return DT->dominates(I, P); 125 } 126 127 // Otherwise, if the instruction is in the entry block and is not an invoke, 128 // then it obviously dominates all phi nodes. 129 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() && 130 !isa<InvokeInst>(I)) 131 return true; 132 133 return false; 134 } 135 136 /// Simplify "A op (B op' C)" by distributing op over op', turning it into 137 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 138 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 139 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 140 /// Returns the simplified value, or null if no simplification was performed. 141 static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS, 142 unsigned OpcToExpand, const Query &Q, 143 unsigned MaxRecurse) { 144 Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand; 145 // Recursion is always used, so bail out at once if we already hit the limit. 146 if (!MaxRecurse--) 147 return nullptr; 148 149 // Check whether the expression has the form "(A op' B) op C". 150 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 151 if (Op0->getOpcode() == OpcodeToExpand) { 152 // It does! Try turning it into "(A op C) op' (B op C)". 153 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 154 // Do "A op C" and "B op C" both simplify? 155 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 156 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 157 // They do! Return "L op' R" if it simplifies or is already available. 158 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 159 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 160 && L == B && R == A)) { 161 ++NumExpand; 162 return LHS; 163 } 164 // Otherwise return "L op' R" if it simplifies. 165 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 166 ++NumExpand; 167 return V; 168 } 169 } 170 } 171 172 // Check whether the expression has the form "A op (B op' C)". 173 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 174 if (Op1->getOpcode() == OpcodeToExpand) { 175 // It does! Try turning it into "(A op B) op' (A op C)". 176 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 177 // Do "A op B" and "A op C" both simplify? 178 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 179 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 180 // They do! Return "L op' R" if it simplifies or is already available. 181 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 182 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 183 && L == C && R == B)) { 184 ++NumExpand; 185 return RHS; 186 } 187 // Otherwise return "L op' R" if it simplifies. 188 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 189 ++NumExpand; 190 return V; 191 } 192 } 193 } 194 195 return nullptr; 196 } 197 198 /// Generic simplifications for associative binary operations. 199 /// Returns the simpler value, or null if none was found. 200 static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS, 201 const Query &Q, unsigned MaxRecurse) { 202 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc; 203 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 204 205 // Recursion is always used, so bail out at once if we already hit the limit. 206 if (!MaxRecurse--) 207 return nullptr; 208 209 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 210 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 211 212 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 213 if (Op0 && Op0->getOpcode() == Opcode) { 214 Value *A = Op0->getOperand(0); 215 Value *B = Op0->getOperand(1); 216 Value *C = RHS; 217 218 // Does "B op C" simplify? 219 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 220 // It does! Return "A op V" if it simplifies or is already available. 221 // If V equals B then "A op V" is just the LHS. 222 if (V == B) return LHS; 223 // Otherwise return "A op V" if it simplifies. 224 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 225 ++NumReassoc; 226 return W; 227 } 228 } 229 } 230 231 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 232 if (Op1 && Op1->getOpcode() == Opcode) { 233 Value *A = LHS; 234 Value *B = Op1->getOperand(0); 235 Value *C = Op1->getOperand(1); 236 237 // Does "A op B" simplify? 238 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 239 // It does! Return "V op C" if it simplifies or is already available. 240 // If V equals B then "V op C" is just the RHS. 241 if (V == B) return RHS; 242 // Otherwise return "V op C" if it simplifies. 243 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 244 ++NumReassoc; 245 return W; 246 } 247 } 248 } 249 250 // The remaining transforms require commutativity as well as associativity. 251 if (!Instruction::isCommutative(Opcode)) 252 return nullptr; 253 254 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 255 if (Op0 && Op0->getOpcode() == Opcode) { 256 Value *A = Op0->getOperand(0); 257 Value *B = Op0->getOperand(1); 258 Value *C = RHS; 259 260 // Does "C op A" simplify? 261 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 262 // It does! Return "V op B" if it simplifies or is already available. 263 // If V equals A then "V op B" is just the LHS. 264 if (V == A) return LHS; 265 // Otherwise return "V op B" if it simplifies. 266 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 267 ++NumReassoc; 268 return W; 269 } 270 } 271 } 272 273 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 274 if (Op1 && Op1->getOpcode() == Opcode) { 275 Value *A = LHS; 276 Value *B = Op1->getOperand(0); 277 Value *C = Op1->getOperand(1); 278 279 // Does "C op A" simplify? 280 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 281 // It does! Return "B op V" if it simplifies or is already available. 282 // If V equals C then "B op V" is just the RHS. 283 if (V == C) return RHS; 284 // Otherwise return "B op V" if it simplifies. 285 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 286 ++NumReassoc; 287 return W; 288 } 289 } 290 } 291 292 return nullptr; 293 } 294 295 /// In the case of a binary operation with a select instruction as an operand, 296 /// try to simplify the binop by seeing whether evaluating it on both branches 297 /// of the select results in the same value. Returns the common value if so, 298 /// otherwise returns null. 299 static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS, 300 const Query &Q, unsigned MaxRecurse) { 301 // Recursion is always used, so bail out at once if we already hit the limit. 302 if (!MaxRecurse--) 303 return nullptr; 304 305 SelectInst *SI; 306 if (isa<SelectInst>(LHS)) { 307 SI = cast<SelectInst>(LHS); 308 } else { 309 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 310 SI = cast<SelectInst>(RHS); 311 } 312 313 // Evaluate the BinOp on the true and false branches of the select. 314 Value *TV; 315 Value *FV; 316 if (SI == LHS) { 317 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 318 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 319 } else { 320 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 321 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 322 } 323 324 // If they simplified to the same value, then return the common value. 325 // If they both failed to simplify then return null. 326 if (TV == FV) 327 return TV; 328 329 // If one branch simplified to undef, return the other one. 330 if (TV && isa<UndefValue>(TV)) 331 return FV; 332 if (FV && isa<UndefValue>(FV)) 333 return TV; 334 335 // If applying the operation did not change the true and false select values, 336 // then the result of the binop is the select itself. 337 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 338 return SI; 339 340 // If one branch simplified and the other did not, and the simplified 341 // value is equal to the unsimplified one, return the simplified value. 342 // For example, select (cond, X, X & Z) & Z -> X & Z. 343 if ((FV && !TV) || (TV && !FV)) { 344 // Check that the simplified value has the form "X op Y" where "op" is the 345 // same as the original operation. 346 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 347 if (Simplified && Simplified->getOpcode() == Opcode) { 348 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 349 // We already know that "op" is the same as for the simplified value. See 350 // if the operands match too. If so, return the simplified value. 351 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 352 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 353 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 354 if (Simplified->getOperand(0) == UnsimplifiedLHS && 355 Simplified->getOperand(1) == UnsimplifiedRHS) 356 return Simplified; 357 if (Simplified->isCommutative() && 358 Simplified->getOperand(1) == UnsimplifiedLHS && 359 Simplified->getOperand(0) == UnsimplifiedRHS) 360 return Simplified; 361 } 362 } 363 364 return nullptr; 365 } 366 367 /// In the case of a comparison with a select instruction, try to simplify the 368 /// comparison by seeing whether both branches of the select result in the same 369 /// value. Returns the common value if so, otherwise returns null. 370 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 371 Value *RHS, const Query &Q, 372 unsigned MaxRecurse) { 373 // Recursion is always used, so bail out at once if we already hit the limit. 374 if (!MaxRecurse--) 375 return nullptr; 376 377 // Make sure the select is on the LHS. 378 if (!isa<SelectInst>(LHS)) { 379 std::swap(LHS, RHS); 380 Pred = CmpInst::getSwappedPredicate(Pred); 381 } 382 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 383 SelectInst *SI = cast<SelectInst>(LHS); 384 Value *Cond = SI->getCondition(); 385 Value *TV = SI->getTrueValue(); 386 Value *FV = SI->getFalseValue(); 387 388 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 389 // Does "cmp TV, RHS" simplify? 390 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 391 if (TCmp == Cond) { 392 // It not only simplified, it simplified to the select condition. Replace 393 // it with 'true'. 394 TCmp = getTrue(Cond->getType()); 395 } else if (!TCmp) { 396 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 397 // condition then we can replace it with 'true'. Otherwise give up. 398 if (!isSameCompare(Cond, Pred, TV, RHS)) 399 return nullptr; 400 TCmp = getTrue(Cond->getType()); 401 } 402 403 // Does "cmp FV, RHS" simplify? 404 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 405 if (FCmp == Cond) { 406 // It not only simplified, it simplified to the select condition. Replace 407 // it with 'false'. 408 FCmp = getFalse(Cond->getType()); 409 } else if (!FCmp) { 410 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 411 // condition then we can replace it with 'false'. Otherwise give up. 412 if (!isSameCompare(Cond, Pred, FV, RHS)) 413 return nullptr; 414 FCmp = getFalse(Cond->getType()); 415 } 416 417 // If both sides simplified to the same value, then use it as the result of 418 // the original comparison. 419 if (TCmp == FCmp) 420 return TCmp; 421 422 // The remaining cases only make sense if the select condition has the same 423 // type as the result of the comparison, so bail out if this is not so. 424 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 425 return nullptr; 426 // If the false value simplified to false, then the result of the compare 427 // is equal to "Cond && TCmp". This also catches the case when the false 428 // value simplified to false and the true value to true, returning "Cond". 429 if (match(FCmp, m_Zero())) 430 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 431 return V; 432 // If the true value simplified to true, then the result of the compare 433 // is equal to "Cond || FCmp". 434 if (match(TCmp, m_One())) 435 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 436 return V; 437 // Finally, if the false value simplified to true and the true value to 438 // false, then the result of the compare is equal to "!Cond". 439 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 440 if (Value *V = 441 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 442 Q, MaxRecurse)) 443 return V; 444 445 return nullptr; 446 } 447 448 /// In the case of a binary operation with an operand that is a PHI instruction, 449 /// try to simplify the binop by seeing whether evaluating it on the incoming 450 /// phi values yields the same result for every value. If so returns the common 451 /// value, otherwise returns null. 452 static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS, 453 const Query &Q, unsigned MaxRecurse) { 454 // Recursion is always used, so bail out at once if we already hit the limit. 455 if (!MaxRecurse--) 456 return nullptr; 457 458 PHINode *PI; 459 if (isa<PHINode>(LHS)) { 460 PI = cast<PHINode>(LHS); 461 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 462 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 463 return nullptr; 464 } else { 465 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 466 PI = cast<PHINode>(RHS); 467 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 468 if (!ValueDominatesPHI(LHS, PI, Q.DT)) 469 return nullptr; 470 } 471 472 // Evaluate the BinOp on the incoming phi values. 473 Value *CommonValue = nullptr; 474 for (Value *Incoming : PI->incoming_values()) { 475 // If the incoming value is the phi node itself, it can safely be skipped. 476 if (Incoming == PI) continue; 477 Value *V = PI == LHS ? 478 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 479 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 480 // If the operation failed to simplify, or simplified to a different value 481 // to previously, then give up. 482 if (!V || (CommonValue && V != CommonValue)) 483 return nullptr; 484 CommonValue = V; 485 } 486 487 return CommonValue; 488 } 489 490 /// In the case of a comparison with a PHI instruction, try to simplify the 491 /// comparison by seeing whether comparing with all of the incoming phi values 492 /// yields the same result every time. If so returns the common result, 493 /// otherwise returns null. 494 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 495 const Query &Q, unsigned MaxRecurse) { 496 // Recursion is always used, so bail out at once if we already hit the limit. 497 if (!MaxRecurse--) 498 return nullptr; 499 500 // Make sure the phi is on the LHS. 501 if (!isa<PHINode>(LHS)) { 502 std::swap(LHS, RHS); 503 Pred = CmpInst::getSwappedPredicate(Pred); 504 } 505 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 506 PHINode *PI = cast<PHINode>(LHS); 507 508 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 509 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 510 return nullptr; 511 512 // Evaluate the BinOp on the incoming phi values. 513 Value *CommonValue = nullptr; 514 for (Value *Incoming : PI->incoming_values()) { 515 // If the incoming value is the phi node itself, it can safely be skipped. 516 if (Incoming == PI) continue; 517 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 518 // If the operation failed to simplify, or simplified to a different value 519 // to previously, then give up. 520 if (!V || (CommonValue && V != CommonValue)) 521 return nullptr; 522 CommonValue = V; 523 } 524 525 return CommonValue; 526 } 527 528 /// Given operands for an Add, see if we can fold the result. 529 /// If not, this returns null. 530 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 531 const Query &Q, unsigned MaxRecurse) { 532 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 533 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 534 return ConstantFoldBinaryOpOperands(Instruction::Add, CLHS, CRHS, Q.DL); 535 536 // Canonicalize the constant to the RHS. 537 std::swap(Op0, Op1); 538 } 539 540 // X + undef -> undef 541 if (match(Op1, m_Undef())) 542 return Op1; 543 544 // X + 0 -> X 545 if (match(Op1, m_Zero())) 546 return Op0; 547 548 // X + (Y - X) -> Y 549 // (Y - X) + X -> Y 550 // Eg: X + -X -> 0 551 Value *Y = nullptr; 552 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 553 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 554 return Y; 555 556 // X + ~X -> -1 since ~X = -X-1 557 if (match(Op0, m_Not(m_Specific(Op1))) || 558 match(Op1, m_Not(m_Specific(Op0)))) 559 return Constant::getAllOnesValue(Op0->getType()); 560 561 /// i1 add -> xor. 562 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 563 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 564 return V; 565 566 // Try some generic simplifications for associative operations. 567 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 568 MaxRecurse)) 569 return V; 570 571 // Threading Add over selects and phi nodes is pointless, so don't bother. 572 // Threading over the select in "A + select(cond, B, C)" means evaluating 573 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 574 // only if B and C are equal. If B and C are equal then (since we assume 575 // that operands have already been simplified) "select(cond, B, C)" should 576 // have been simplified to the common value of B and C already. Analysing 577 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 578 // for threading over phi nodes. 579 580 return nullptr; 581 } 582 583 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 584 const DataLayout &DL, const TargetLibraryInfo *TLI, 585 const DominatorTree *DT, AssumptionCache *AC, 586 const Instruction *CxtI) { 587 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 588 RecursionLimit); 589 } 590 591 /// \brief Compute the base pointer and cumulative constant offsets for V. 592 /// 593 /// This strips all constant offsets off of V, leaving it the base pointer, and 594 /// accumulates the total constant offset applied in the returned constant. It 595 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 596 /// no constant offsets applied. 597 /// 598 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 599 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 600 /// folding. 601 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 602 bool AllowNonInbounds = false) { 603 assert(V->getType()->getScalarType()->isPointerTy()); 604 605 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 606 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 607 608 // Even though we don't look through PHI nodes, we could be called on an 609 // instruction in an unreachable block, which may be on a cycle. 610 SmallPtrSet<Value *, 4> Visited; 611 Visited.insert(V); 612 do { 613 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 614 if ((!AllowNonInbounds && !GEP->isInBounds()) || 615 !GEP->accumulateConstantOffset(DL, Offset)) 616 break; 617 V = GEP->getPointerOperand(); 618 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 619 V = cast<Operator>(V)->getOperand(0); 620 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 621 if (GA->isInterposable()) 622 break; 623 V = GA->getAliasee(); 624 } else { 625 if (auto CS = CallSite(V)) 626 if (Value *RV = CS.getReturnedArgOperand()) { 627 V = RV; 628 continue; 629 } 630 break; 631 } 632 assert(V->getType()->getScalarType()->isPointerTy() && 633 "Unexpected operand type!"); 634 } while (Visited.insert(V).second); 635 636 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 637 if (V->getType()->isVectorTy()) 638 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 639 OffsetIntPtr); 640 return OffsetIntPtr; 641 } 642 643 /// \brief Compute the constant difference between two pointer values. 644 /// If the difference is not a constant, returns zero. 645 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 646 Value *RHS) { 647 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 648 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 649 650 // If LHS and RHS are not related via constant offsets to the same base 651 // value, there is nothing we can do here. 652 if (LHS != RHS) 653 return nullptr; 654 655 // Otherwise, the difference of LHS - RHS can be computed as: 656 // LHS - RHS 657 // = (LHSOffset + Base) - (RHSOffset + Base) 658 // = LHSOffset - RHSOffset 659 return ConstantExpr::getSub(LHSOffset, RHSOffset); 660 } 661 662 /// Given operands for a Sub, see if we can fold the result. 663 /// If not, this returns null. 664 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 665 const Query &Q, unsigned MaxRecurse) { 666 if (Constant *CLHS = dyn_cast<Constant>(Op0)) 667 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 668 return ConstantFoldBinaryOpOperands(Instruction::Sub, CLHS, CRHS, Q.DL); 669 670 // X - undef -> undef 671 // undef - X -> undef 672 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 673 return UndefValue::get(Op0->getType()); 674 675 // X - 0 -> X 676 if (match(Op1, m_Zero())) 677 return Op0; 678 679 // X - X -> 0 680 if (Op0 == Op1) 681 return Constant::getNullValue(Op0->getType()); 682 683 // 0 - X -> 0 if the sub is NUW. 684 if (isNUW && match(Op0, m_Zero())) 685 return Op0; 686 687 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 688 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 689 Value *X = nullptr, *Y = nullptr, *Z = Op1; 690 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 691 // See if "V === Y - Z" simplifies. 692 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 693 // It does! Now see if "X + V" simplifies. 694 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 695 // It does, we successfully reassociated! 696 ++NumReassoc; 697 return W; 698 } 699 // See if "V === X - Z" simplifies. 700 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 701 // It does! Now see if "Y + V" simplifies. 702 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 703 // It does, we successfully reassociated! 704 ++NumReassoc; 705 return W; 706 } 707 } 708 709 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 710 // For example, X - (X + 1) -> -1 711 X = Op0; 712 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 713 // See if "V === X - Y" simplifies. 714 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 715 // It does! Now see if "V - Z" simplifies. 716 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 717 // It does, we successfully reassociated! 718 ++NumReassoc; 719 return W; 720 } 721 // See if "V === X - Z" simplifies. 722 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 723 // It does! Now see if "V - Y" simplifies. 724 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 725 // It does, we successfully reassociated! 726 ++NumReassoc; 727 return W; 728 } 729 } 730 731 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 732 // For example, X - (X - Y) -> Y. 733 Z = Op0; 734 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 735 // See if "V === Z - X" simplifies. 736 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 737 // It does! Now see if "V + Y" simplifies. 738 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 739 // It does, we successfully reassociated! 740 ++NumReassoc; 741 return W; 742 } 743 744 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 745 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 746 match(Op1, m_Trunc(m_Value(Y)))) 747 if (X->getType() == Y->getType()) 748 // See if "V === X - Y" simplifies. 749 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 750 // It does! Now see if "trunc V" simplifies. 751 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 752 Q, MaxRecurse - 1)) 753 // It does, return the simplified "trunc V". 754 return W; 755 756 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 757 if (match(Op0, m_PtrToInt(m_Value(X))) && 758 match(Op1, m_PtrToInt(m_Value(Y)))) 759 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 760 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 761 762 // i1 sub -> xor. 763 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 764 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 765 return V; 766 767 // Threading Sub over selects and phi nodes is pointless, so don't bother. 768 // Threading over the select in "A - select(cond, B, C)" means evaluating 769 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 770 // only if B and C are equal. If B and C are equal then (since we assume 771 // that operands have already been simplified) "select(cond, B, C)" should 772 // have been simplified to the common value of B and C already. Analysing 773 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 774 // for threading over phi nodes. 775 776 return nullptr; 777 } 778 779 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 780 const DataLayout &DL, const TargetLibraryInfo *TLI, 781 const DominatorTree *DT, AssumptionCache *AC, 782 const Instruction *CxtI) { 783 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 784 RecursionLimit); 785 } 786 787 /// Given operands for an FAdd, see if we can fold the result. If not, this 788 /// returns null. 789 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 790 const Query &Q, unsigned MaxRecurse) { 791 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 792 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 793 return ConstantFoldBinaryOpOperands(Instruction::FAdd, CLHS, CRHS, Q.DL); 794 795 // Canonicalize the constant to the RHS. 796 std::swap(Op0, Op1); 797 } 798 799 // fadd X, -0 ==> X 800 if (match(Op1, m_NegZero())) 801 return Op0; 802 803 // fadd X, 0 ==> X, when we know X is not -0 804 if (match(Op1, m_Zero()) && 805 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 806 return Op0; 807 808 // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0 809 // where nnan and ninf have to occur at least once somewhere in this 810 // expression 811 Value *SubOp = nullptr; 812 if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0)))) 813 SubOp = Op1; 814 else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1)))) 815 SubOp = Op0; 816 if (SubOp) { 817 Instruction *FSub = cast<Instruction>(SubOp); 818 if ((FMF.noNaNs() || FSub->hasNoNaNs()) && 819 (FMF.noInfs() || FSub->hasNoInfs())) 820 return Constant::getNullValue(Op0->getType()); 821 } 822 823 return nullptr; 824 } 825 826 /// Given operands for an FSub, see if we can fold the result. If not, this 827 /// returns null. 828 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 829 const Query &Q, unsigned MaxRecurse) { 830 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 831 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 832 return ConstantFoldBinaryOpOperands(Instruction::FSub, CLHS, CRHS, Q.DL); 833 } 834 835 // fsub X, 0 ==> X 836 if (match(Op1, m_Zero())) 837 return Op0; 838 839 // fsub X, -0 ==> X, when we know X is not -0 840 if (match(Op1, m_NegZero()) && 841 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 842 return Op0; 843 844 // fsub -0.0, (fsub -0.0, X) ==> X 845 Value *X; 846 if (match(Op0, m_NegZero()) && match(Op1, m_FSub(m_NegZero(), m_Value(X)))) 847 return X; 848 849 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 850 if (FMF.noSignedZeros() && match(Op0, m_AnyZero()) && 851 match(Op1, m_FSub(m_AnyZero(), m_Value(X)))) 852 return X; 853 854 // fsub nnan x, x ==> 0.0 855 if (FMF.noNaNs() && Op0 == Op1) 856 return Constant::getNullValue(Op0->getType()); 857 858 return nullptr; 859 } 860 861 /// Given the operands for an FMul, see if we can fold the result 862 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, 863 FastMathFlags FMF, 864 const Query &Q, 865 unsigned MaxRecurse) { 866 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 867 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 868 return ConstantFoldBinaryOpOperands(Instruction::FMul, CLHS, CRHS, Q.DL); 869 870 // Canonicalize the constant to the RHS. 871 std::swap(Op0, Op1); 872 } 873 874 // fmul X, 1.0 ==> X 875 if (match(Op1, m_FPOne())) 876 return Op0; 877 878 // fmul nnan nsz X, 0 ==> 0 879 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero())) 880 return Op1; 881 882 return nullptr; 883 } 884 885 /// Given operands for a Mul, see if we can fold the result. 886 /// If not, this returns null. 887 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q, 888 unsigned MaxRecurse) { 889 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 890 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 891 return ConstantFoldBinaryOpOperands(Instruction::Mul, CLHS, CRHS, Q.DL); 892 893 // Canonicalize the constant to the RHS. 894 std::swap(Op0, Op1); 895 } 896 897 // X * undef -> 0 898 if (match(Op1, m_Undef())) 899 return Constant::getNullValue(Op0->getType()); 900 901 // X * 0 -> 0 902 if (match(Op1, m_Zero())) 903 return Op1; 904 905 // X * 1 -> X 906 if (match(Op1, m_One())) 907 return Op0; 908 909 // (X / Y) * Y -> X if the division is exact. 910 Value *X = nullptr; 911 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 912 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y) 913 return X; 914 915 // i1 mul -> and. 916 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 917 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 918 return V; 919 920 // Try some generic simplifications for associative operations. 921 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 922 MaxRecurse)) 923 return V; 924 925 // Mul distributes over Add. Try some generic simplifications based on this. 926 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 927 Q, MaxRecurse)) 928 return V; 929 930 // If the operation is with the result of a select instruction, check whether 931 // operating on either branch of the select always yields the same value. 932 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 933 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 934 MaxRecurse)) 935 return V; 936 937 // If the operation is with the result of a phi instruction, check whether 938 // operating on all incoming values of the phi always yields the same value. 939 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 940 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 941 MaxRecurse)) 942 return V; 943 944 return nullptr; 945 } 946 947 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 948 const DataLayout &DL, 949 const TargetLibraryInfo *TLI, 950 const DominatorTree *DT, AssumptionCache *AC, 951 const Instruction *CxtI) { 952 return ::SimplifyFAddInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 953 RecursionLimit); 954 } 955 956 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 957 const DataLayout &DL, 958 const TargetLibraryInfo *TLI, 959 const DominatorTree *DT, AssumptionCache *AC, 960 const Instruction *CxtI) { 961 return ::SimplifyFSubInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 962 RecursionLimit); 963 } 964 965 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 966 const DataLayout &DL, 967 const TargetLibraryInfo *TLI, 968 const DominatorTree *DT, AssumptionCache *AC, 969 const Instruction *CxtI) { 970 return ::SimplifyFMulInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 971 RecursionLimit); 972 } 973 974 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout &DL, 975 const TargetLibraryInfo *TLI, 976 const DominatorTree *DT, AssumptionCache *AC, 977 const Instruction *CxtI) { 978 return ::SimplifyMulInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 979 RecursionLimit); 980 } 981 982 /// Given operands for an SDiv or UDiv, see if we can fold the result. 983 /// If not, this returns null. 984 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 985 const Query &Q, unsigned MaxRecurse) { 986 if (Constant *C0 = dyn_cast<Constant>(Op0)) 987 if (Constant *C1 = dyn_cast<Constant>(Op1)) 988 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 989 990 bool isSigned = Opcode == Instruction::SDiv; 991 992 // X / undef -> undef 993 if (match(Op1, m_Undef())) 994 return Op1; 995 996 // X / 0 -> undef, we don't need to preserve faults! 997 if (match(Op1, m_Zero())) 998 return UndefValue::get(Op1->getType()); 999 1000 // undef / X -> 0 1001 if (match(Op0, m_Undef())) 1002 return Constant::getNullValue(Op0->getType()); 1003 1004 // 0 / X -> 0, we don't need to preserve faults! 1005 if (match(Op0, m_Zero())) 1006 return Op0; 1007 1008 // X / 1 -> X 1009 if (match(Op1, m_One())) 1010 return Op0; 1011 1012 if (Op0->getType()->isIntegerTy(1)) 1013 // It can't be division by zero, hence it must be division by one. 1014 return Op0; 1015 1016 // X / X -> 1 1017 if (Op0 == Op1) 1018 return ConstantInt::get(Op0->getType(), 1); 1019 1020 // (X * Y) / Y -> X if the multiplication does not overflow. 1021 Value *X = nullptr, *Y = nullptr; 1022 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) { 1023 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1 1024 OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0); 1025 // If the Mul knows it does not overflow, then we are good to go. 1026 if ((isSigned && Mul->hasNoSignedWrap()) || 1027 (!isSigned && Mul->hasNoUnsignedWrap())) 1028 return X; 1029 // If X has the form X = A / Y then X * Y cannot overflow. 1030 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X)) 1031 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y) 1032 return X; 1033 } 1034 1035 // (X rem Y) / Y -> 0 1036 if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1037 (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1038 return Constant::getNullValue(Op0->getType()); 1039 1040 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1041 ConstantInt *C1, *C2; 1042 if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1043 match(Op1, m_ConstantInt(C2))) { 1044 bool Overflow; 1045 C1->getValue().umul_ov(C2->getValue(), Overflow); 1046 if (Overflow) 1047 return Constant::getNullValue(Op0->getType()); 1048 } 1049 1050 // If the operation is with the result of a select instruction, check whether 1051 // operating on either branch of the select always yields the same value. 1052 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1053 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1054 return V; 1055 1056 // If the operation is with the result of a phi instruction, check whether 1057 // operating on all incoming values of the phi always yields the same value. 1058 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1059 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1060 return V; 1061 1062 return nullptr; 1063 } 1064 1065 /// Given operands for an SDiv, see if we can fold the result. 1066 /// If not, this returns null. 1067 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q, 1068 unsigned MaxRecurse) { 1069 if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse)) 1070 return V; 1071 1072 return nullptr; 1073 } 1074 1075 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout &DL, 1076 const TargetLibraryInfo *TLI, 1077 const DominatorTree *DT, AssumptionCache *AC, 1078 const Instruction *CxtI) { 1079 return ::SimplifySDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1080 RecursionLimit); 1081 } 1082 1083 /// Given operands for a UDiv, see if we can fold the result. 1084 /// If not, this returns null. 1085 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q, 1086 unsigned MaxRecurse) { 1087 if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse)) 1088 return V; 1089 1090 return nullptr; 1091 } 1092 1093 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout &DL, 1094 const TargetLibraryInfo *TLI, 1095 const DominatorTree *DT, AssumptionCache *AC, 1096 const Instruction *CxtI) { 1097 return ::SimplifyUDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1098 RecursionLimit); 1099 } 1100 1101 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1102 const Query &Q, unsigned) { 1103 // undef / X -> undef (the undef could be a snan). 1104 if (match(Op0, m_Undef())) 1105 return Op0; 1106 1107 // X / undef -> undef 1108 if (match(Op1, m_Undef())) 1109 return Op1; 1110 1111 // 0 / X -> 0 1112 // Requires that NaNs are off (X could be zero) and signed zeroes are 1113 // ignored (X could be positive or negative, so the output sign is unknown). 1114 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 1115 return Op0; 1116 1117 if (FMF.noNaNs()) { 1118 // X / X -> 1.0 is legal when NaNs are ignored. 1119 if (Op0 == Op1) 1120 return ConstantFP::get(Op0->getType(), 1.0); 1121 1122 // -X / X -> -1.0 and 1123 // X / -X -> -1.0 are legal when NaNs are ignored. 1124 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 1125 if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) && 1126 BinaryOperator::getFNegArgument(Op0) == Op1) || 1127 (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) && 1128 BinaryOperator::getFNegArgument(Op1) == Op0)) 1129 return ConstantFP::get(Op0->getType(), -1.0); 1130 } 1131 1132 return nullptr; 1133 } 1134 1135 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1136 const DataLayout &DL, 1137 const TargetLibraryInfo *TLI, 1138 const DominatorTree *DT, AssumptionCache *AC, 1139 const Instruction *CxtI) { 1140 return ::SimplifyFDivInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 1141 RecursionLimit); 1142 } 1143 1144 /// Given operands for an SRem or URem, see if we can fold the result. 1145 /// If not, this returns null. 1146 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1147 const Query &Q, unsigned MaxRecurse) { 1148 if (Constant *C0 = dyn_cast<Constant>(Op0)) 1149 if (Constant *C1 = dyn_cast<Constant>(Op1)) 1150 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 1151 1152 // X % undef -> undef 1153 if (match(Op1, m_Undef())) 1154 return Op1; 1155 1156 // undef % X -> 0 1157 if (match(Op0, m_Undef())) 1158 return Constant::getNullValue(Op0->getType()); 1159 1160 // 0 % X -> 0, we don't need to preserve faults! 1161 if (match(Op0, m_Zero())) 1162 return Op0; 1163 1164 // X % 0 -> undef, we don't need to preserve faults! 1165 if (match(Op1, m_Zero())) 1166 return UndefValue::get(Op0->getType()); 1167 1168 // X % 1 -> 0 1169 if (match(Op1, m_One())) 1170 return Constant::getNullValue(Op0->getType()); 1171 1172 if (Op0->getType()->isIntegerTy(1)) 1173 // It can't be remainder by zero, hence it must be remainder by one. 1174 return Constant::getNullValue(Op0->getType()); 1175 1176 // X % X -> 0 1177 if (Op0 == Op1) 1178 return Constant::getNullValue(Op0->getType()); 1179 1180 // (X % Y) % Y -> X % Y 1181 if ((Opcode == Instruction::SRem && 1182 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1183 (Opcode == Instruction::URem && 1184 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1185 return Op0; 1186 1187 // If the operation is with the result of a select instruction, check whether 1188 // operating on either branch of the select always yields the same value. 1189 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1190 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1191 return V; 1192 1193 // If the operation is with the result of a phi instruction, check whether 1194 // operating on all incoming values of the phi always yields the same value. 1195 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1196 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1197 return V; 1198 1199 return nullptr; 1200 } 1201 1202 /// Given operands for an SRem, see if we can fold the result. 1203 /// If not, this returns null. 1204 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q, 1205 unsigned MaxRecurse) { 1206 if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse)) 1207 return V; 1208 1209 return nullptr; 1210 } 1211 1212 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout &DL, 1213 const TargetLibraryInfo *TLI, 1214 const DominatorTree *DT, AssumptionCache *AC, 1215 const Instruction *CxtI) { 1216 return ::SimplifySRemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1217 RecursionLimit); 1218 } 1219 1220 /// Given operands for a URem, see if we can fold the result. 1221 /// If not, this returns null. 1222 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q, 1223 unsigned MaxRecurse) { 1224 if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse)) 1225 return V; 1226 1227 return nullptr; 1228 } 1229 1230 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout &DL, 1231 const TargetLibraryInfo *TLI, 1232 const DominatorTree *DT, AssumptionCache *AC, 1233 const Instruction *CxtI) { 1234 return ::SimplifyURemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1235 RecursionLimit); 1236 } 1237 1238 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1239 const Query &, unsigned) { 1240 // undef % X -> undef (the undef could be a snan). 1241 if (match(Op0, m_Undef())) 1242 return Op0; 1243 1244 // X % undef -> undef 1245 if (match(Op1, m_Undef())) 1246 return Op1; 1247 1248 // 0 % X -> 0 1249 // Requires that NaNs are off (X could be zero) and signed zeroes are 1250 // ignored (X could be positive or negative, so the output sign is unknown). 1251 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 1252 return Op0; 1253 1254 return nullptr; 1255 } 1256 1257 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1258 const DataLayout &DL, 1259 const TargetLibraryInfo *TLI, 1260 const DominatorTree *DT, AssumptionCache *AC, 1261 const Instruction *CxtI) { 1262 return ::SimplifyFRemInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 1263 RecursionLimit); 1264 } 1265 1266 /// Returns true if a shift by \c Amount always yields undef. 1267 static bool isUndefShift(Value *Amount) { 1268 Constant *C = dyn_cast<Constant>(Amount); 1269 if (!C) 1270 return false; 1271 1272 // X shift by undef -> undef because it may shift by the bitwidth. 1273 if (isa<UndefValue>(C)) 1274 return true; 1275 1276 // Shifting by the bitwidth or more is undefined. 1277 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1278 if (CI->getValue().getLimitedValue() >= 1279 CI->getType()->getScalarSizeInBits()) 1280 return true; 1281 1282 // If all lanes of a vector shift are undefined the whole shift is. 1283 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1284 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) 1285 if (!isUndefShift(C->getAggregateElement(I))) 1286 return false; 1287 return true; 1288 } 1289 1290 return false; 1291 } 1292 1293 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1294 /// If not, this returns null. 1295 static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1, 1296 const Query &Q, unsigned MaxRecurse) { 1297 if (Constant *C0 = dyn_cast<Constant>(Op0)) 1298 if (Constant *C1 = dyn_cast<Constant>(Op1)) 1299 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 1300 1301 // 0 shift by X -> 0 1302 if (match(Op0, m_Zero())) 1303 return Op0; 1304 1305 // X shift by 0 -> X 1306 if (match(Op1, m_Zero())) 1307 return Op0; 1308 1309 // Fold undefined shifts. 1310 if (isUndefShift(Op1)) 1311 return UndefValue::get(Op0->getType()); 1312 1313 // If the operation is with the result of a select instruction, check whether 1314 // operating on either branch of the select always yields the same value. 1315 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1316 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1317 return V; 1318 1319 // If the operation is with the result of a phi instruction, check whether 1320 // operating on all incoming values of the phi always yields the same value. 1321 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1322 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1323 return V; 1324 1325 // If any bits in the shift amount make that value greater than or equal to 1326 // the number of bits in the type, the shift is undefined. 1327 unsigned BitWidth = Op1->getType()->getScalarSizeInBits(); 1328 APInt KnownZero(BitWidth, 0); 1329 APInt KnownOne(BitWidth, 0); 1330 computeKnownBits(Op1, KnownZero, KnownOne, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1331 if (KnownOne.getLimitedValue() >= BitWidth) 1332 return UndefValue::get(Op0->getType()); 1333 1334 // If all valid bits in the shift amount are known zero, the first operand is 1335 // unchanged. 1336 unsigned NumValidShiftBits = Log2_32_Ceil(BitWidth); 1337 APInt ShiftAmountMask = APInt::getLowBitsSet(BitWidth, NumValidShiftBits); 1338 if ((KnownZero & ShiftAmountMask) == ShiftAmountMask) 1339 return Op0; 1340 1341 return nullptr; 1342 } 1343 1344 /// \brief Given operands for an Shl, LShr or AShr, see if we can 1345 /// fold the result. If not, this returns null. 1346 static Value *SimplifyRightShift(unsigned Opcode, Value *Op0, Value *Op1, 1347 bool isExact, const Query &Q, 1348 unsigned MaxRecurse) { 1349 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1350 return V; 1351 1352 // X >> X -> 0 1353 if (Op0 == Op1) 1354 return Constant::getNullValue(Op0->getType()); 1355 1356 // undef >> X -> 0 1357 // undef >> X -> undef (if it's exact) 1358 if (match(Op0, m_Undef())) 1359 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1360 1361 // The low bit cannot be shifted out of an exact shift if it is set. 1362 if (isExact) { 1363 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 1364 APInt Op0KnownZero(BitWidth, 0); 1365 APInt Op0KnownOne(BitWidth, 0); 1366 computeKnownBits(Op0, Op0KnownZero, Op0KnownOne, Q.DL, /*Depth=*/0, Q.AC, 1367 Q.CxtI, Q.DT); 1368 if (Op0KnownOne[0]) 1369 return Op0; 1370 } 1371 1372 return nullptr; 1373 } 1374 1375 /// Given operands for an Shl, see if we can fold the result. 1376 /// If not, this returns null. 1377 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1378 const Query &Q, unsigned MaxRecurse) { 1379 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1380 return V; 1381 1382 // undef << X -> 0 1383 // undef << X -> undef if (if it's NSW/NUW) 1384 if (match(Op0, m_Undef())) 1385 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1386 1387 // (X >> A) << A -> X 1388 Value *X; 1389 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1390 return X; 1391 return nullptr; 1392 } 1393 1394 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1395 const DataLayout &DL, const TargetLibraryInfo *TLI, 1396 const DominatorTree *DT, AssumptionCache *AC, 1397 const Instruction *CxtI) { 1398 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 1399 RecursionLimit); 1400 } 1401 1402 /// Given operands for an LShr, see if we can fold the result. 1403 /// If not, this returns null. 1404 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1405 const Query &Q, unsigned MaxRecurse) { 1406 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1407 MaxRecurse)) 1408 return V; 1409 1410 // (X << A) >> A -> X 1411 Value *X; 1412 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1413 return X; 1414 1415 return nullptr; 1416 } 1417 1418 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1419 const DataLayout &DL, 1420 const TargetLibraryInfo *TLI, 1421 const DominatorTree *DT, AssumptionCache *AC, 1422 const Instruction *CxtI) { 1423 return ::SimplifyLShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI), 1424 RecursionLimit); 1425 } 1426 1427 /// Given operands for an AShr, see if we can fold the result. 1428 /// If not, this returns null. 1429 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1430 const Query &Q, unsigned MaxRecurse) { 1431 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1432 MaxRecurse)) 1433 return V; 1434 1435 // all ones >>a X -> all ones 1436 if (match(Op0, m_AllOnes())) 1437 return Op0; 1438 1439 // (X << A) >> A -> X 1440 Value *X; 1441 if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1442 return X; 1443 1444 // Arithmetic shifting an all-sign-bit value is a no-op. 1445 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1446 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1447 return Op0; 1448 1449 return nullptr; 1450 } 1451 1452 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1453 const DataLayout &DL, 1454 const TargetLibraryInfo *TLI, 1455 const DominatorTree *DT, AssumptionCache *AC, 1456 const Instruction *CxtI) { 1457 return ::SimplifyAShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI), 1458 RecursionLimit); 1459 } 1460 1461 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1462 ICmpInst *UnsignedICmp, bool IsAnd) { 1463 Value *X, *Y; 1464 1465 ICmpInst::Predicate EqPred; 1466 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1467 !ICmpInst::isEquality(EqPred)) 1468 return nullptr; 1469 1470 ICmpInst::Predicate UnsignedPred; 1471 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1472 ICmpInst::isUnsigned(UnsignedPred)) 1473 ; 1474 else if (match(UnsignedICmp, 1475 m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) && 1476 ICmpInst::isUnsigned(UnsignedPred)) 1477 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1478 else 1479 return nullptr; 1480 1481 // X < Y && Y != 0 --> X < Y 1482 // X < Y || Y != 0 --> Y != 0 1483 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1484 return IsAnd ? UnsignedICmp : ZeroICmp; 1485 1486 // X >= Y || Y != 0 --> true 1487 // X >= Y || Y == 0 --> X >= Y 1488 if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) { 1489 if (EqPred == ICmpInst::ICMP_NE) 1490 return getTrue(UnsignedICmp->getType()); 1491 return UnsignedICmp; 1492 } 1493 1494 // X < Y && Y == 0 --> false 1495 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1496 IsAnd) 1497 return getFalse(UnsignedICmp->getType()); 1498 1499 return nullptr; 1500 } 1501 1502 static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1503 Type *ITy = Op0->getType(); 1504 ICmpInst::Predicate Pred0, Pred1; 1505 ConstantInt *CI1, *CI2; 1506 Value *V; 1507 1508 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true)) 1509 return X; 1510 1511 // Look for this pattern: (icmp V, C0) & (icmp V, C1)). 1512 const APInt *C0, *C1; 1513 if (match(Op0, m_ICmp(Pred0, m_Value(V), m_APInt(C0))) && 1514 match(Op1, m_ICmp(Pred1, m_Specific(V), m_APInt(C1)))) { 1515 // Make a constant range that's the intersection of the two icmp ranges. 1516 // If the intersection is empty, we know that the result is false. 1517 auto Range0 = ConstantRange::makeAllowedICmpRegion(Pred0, *C0); 1518 auto Range1 = ConstantRange::makeAllowedICmpRegion(Pred1, *C1); 1519 if (Range0.intersectWith(Range1).isEmptySet()) 1520 return getFalse(ITy); 1521 } 1522 1523 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)), 1524 m_ConstantInt(CI2)))) 1525 return nullptr; 1526 1527 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1)))) 1528 return nullptr; 1529 1530 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1531 bool isNSW = AddInst->hasNoSignedWrap(); 1532 bool isNUW = AddInst->hasNoUnsignedWrap(); 1533 1534 const APInt &CI1V = CI1->getValue(); 1535 const APInt &CI2V = CI2->getValue(); 1536 const APInt Delta = CI2V - CI1V; 1537 if (CI1V.isStrictlyPositive()) { 1538 if (Delta == 2) { 1539 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1540 return getFalse(ITy); 1541 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1542 return getFalse(ITy); 1543 } 1544 if (Delta == 1) { 1545 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1546 return getFalse(ITy); 1547 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1548 return getFalse(ITy); 1549 } 1550 } 1551 if (CI1V.getBoolValue() && isNUW) { 1552 if (Delta == 2) 1553 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1554 return getFalse(ITy); 1555 if (Delta == 1) 1556 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1557 return getFalse(ITy); 1558 } 1559 1560 return nullptr; 1561 } 1562 1563 /// Given operands for an And, see if we can fold the result. 1564 /// If not, this returns null. 1565 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q, 1566 unsigned MaxRecurse) { 1567 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1568 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1569 return ConstantFoldBinaryOpOperands(Instruction::And, CLHS, CRHS, Q.DL); 1570 1571 // Canonicalize the constant to the RHS. 1572 std::swap(Op0, Op1); 1573 } 1574 1575 // X & undef -> 0 1576 if (match(Op1, m_Undef())) 1577 return Constant::getNullValue(Op0->getType()); 1578 1579 // X & X = X 1580 if (Op0 == Op1) 1581 return Op0; 1582 1583 // X & 0 = 0 1584 if (match(Op1, m_Zero())) 1585 return Op1; 1586 1587 // X & -1 = X 1588 if (match(Op1, m_AllOnes())) 1589 return Op0; 1590 1591 // A & ~A = ~A & A = 0 1592 if (match(Op0, m_Not(m_Specific(Op1))) || 1593 match(Op1, m_Not(m_Specific(Op0)))) 1594 return Constant::getNullValue(Op0->getType()); 1595 1596 // (A | ?) & A = A 1597 Value *A = nullptr, *B = nullptr; 1598 if (match(Op0, m_Or(m_Value(A), m_Value(B))) && 1599 (A == Op1 || B == Op1)) 1600 return Op1; 1601 1602 // A & (A | ?) = A 1603 if (match(Op1, m_Or(m_Value(A), m_Value(B))) && 1604 (A == Op0 || B == Op0)) 1605 return Op0; 1606 1607 // A & (-A) = A if A is a power of two or zero. 1608 if (match(Op0, m_Neg(m_Specific(Op1))) || 1609 match(Op1, m_Neg(m_Specific(Op0)))) { 1610 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1611 Q.DT)) 1612 return Op0; 1613 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1614 Q.DT)) 1615 return Op1; 1616 } 1617 1618 if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) { 1619 if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) { 1620 if (Value *V = SimplifyAndOfICmps(ICILHS, ICIRHS)) 1621 return V; 1622 if (Value *V = SimplifyAndOfICmps(ICIRHS, ICILHS)) 1623 return V; 1624 } 1625 } 1626 1627 // The compares may be hidden behind casts. Look through those and try the 1628 // same folds as above. 1629 auto *Cast0 = dyn_cast<CastInst>(Op0); 1630 auto *Cast1 = dyn_cast<CastInst>(Op1); 1631 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1632 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1633 auto *Cmp0 = dyn_cast<ICmpInst>(Cast0->getOperand(0)); 1634 auto *Cmp1 = dyn_cast<ICmpInst>(Cast1->getOperand(0)); 1635 if (Cmp0 && Cmp1) { 1636 Instruction::CastOps CastOpc = Cast0->getOpcode(); 1637 Type *ResultType = Cast0->getType(); 1638 if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp0, Cmp1))) 1639 return ConstantExpr::getCast(CastOpc, V, ResultType); 1640 if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp1, Cmp0))) 1641 return ConstantExpr::getCast(CastOpc, V, ResultType); 1642 } 1643 } 1644 1645 // Try some generic simplifications for associative operations. 1646 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1647 MaxRecurse)) 1648 return V; 1649 1650 // And distributes over Or. Try some generic simplifications based on this. 1651 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1652 Q, MaxRecurse)) 1653 return V; 1654 1655 // And distributes over Xor. Try some generic simplifications based on this. 1656 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1657 Q, MaxRecurse)) 1658 return V; 1659 1660 // If the operation is with the result of a select instruction, check whether 1661 // operating on either branch of the select always yields the same value. 1662 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1663 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 1664 MaxRecurse)) 1665 return V; 1666 1667 // If the operation is with the result of a phi instruction, check whether 1668 // operating on all incoming values of the phi always yields the same value. 1669 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1670 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 1671 MaxRecurse)) 1672 return V; 1673 1674 return nullptr; 1675 } 1676 1677 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout &DL, 1678 const TargetLibraryInfo *TLI, 1679 const DominatorTree *DT, AssumptionCache *AC, 1680 const Instruction *CxtI) { 1681 return ::SimplifyAndInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1682 RecursionLimit); 1683 } 1684 1685 /// Simplify (or (icmp ...) (icmp ...)) to true when we can tell that the union 1686 /// contains all possible values. 1687 static Value *SimplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1688 ICmpInst::Predicate Pred0, Pred1; 1689 ConstantInt *CI1, *CI2; 1690 Value *V; 1691 1692 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false)) 1693 return X; 1694 1695 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)), 1696 m_ConstantInt(CI2)))) 1697 return nullptr; 1698 1699 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1)))) 1700 return nullptr; 1701 1702 Type *ITy = Op0->getType(); 1703 1704 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1705 bool isNSW = AddInst->hasNoSignedWrap(); 1706 bool isNUW = AddInst->hasNoUnsignedWrap(); 1707 1708 const APInt &CI1V = CI1->getValue(); 1709 const APInt &CI2V = CI2->getValue(); 1710 const APInt Delta = CI2V - CI1V; 1711 if (CI1V.isStrictlyPositive()) { 1712 if (Delta == 2) { 1713 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1714 return getTrue(ITy); 1715 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1716 return getTrue(ITy); 1717 } 1718 if (Delta == 1) { 1719 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1720 return getTrue(ITy); 1721 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1722 return getTrue(ITy); 1723 } 1724 } 1725 if (CI1V.getBoolValue() && isNUW) { 1726 if (Delta == 2) 1727 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1728 return getTrue(ITy); 1729 if (Delta == 1) 1730 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1731 return getTrue(ITy); 1732 } 1733 1734 return nullptr; 1735 } 1736 1737 /// Given operands for an Or, see if we can fold the result. 1738 /// If not, this returns null. 1739 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q, 1740 unsigned MaxRecurse) { 1741 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1742 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1743 return ConstantFoldBinaryOpOperands(Instruction::Or, CLHS, CRHS, Q.DL); 1744 1745 // Canonicalize the constant to the RHS. 1746 std::swap(Op0, Op1); 1747 } 1748 1749 // X | undef -> -1 1750 if (match(Op1, m_Undef())) 1751 return Constant::getAllOnesValue(Op0->getType()); 1752 1753 // X | X = X 1754 if (Op0 == Op1) 1755 return Op0; 1756 1757 // X | 0 = X 1758 if (match(Op1, m_Zero())) 1759 return Op0; 1760 1761 // X | -1 = -1 1762 if (match(Op1, m_AllOnes())) 1763 return Op1; 1764 1765 // A | ~A = ~A | A = -1 1766 if (match(Op0, m_Not(m_Specific(Op1))) || 1767 match(Op1, m_Not(m_Specific(Op0)))) 1768 return Constant::getAllOnesValue(Op0->getType()); 1769 1770 // (A & ?) | A = A 1771 Value *A = nullptr, *B = nullptr; 1772 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1773 (A == Op1 || B == Op1)) 1774 return Op1; 1775 1776 // A | (A & ?) = A 1777 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1778 (A == Op0 || B == Op0)) 1779 return Op0; 1780 1781 // ~(A & ?) | A = -1 1782 if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) && 1783 (A == Op1 || B == Op1)) 1784 return Constant::getAllOnesValue(Op1->getType()); 1785 1786 // A | ~(A & ?) = -1 1787 if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) && 1788 (A == Op0 || B == Op0)) 1789 return Constant::getAllOnesValue(Op0->getType()); 1790 1791 if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) { 1792 if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) { 1793 if (Value *V = SimplifyOrOfICmps(ICILHS, ICIRHS)) 1794 return V; 1795 if (Value *V = SimplifyOrOfICmps(ICIRHS, ICILHS)) 1796 return V; 1797 } 1798 } 1799 1800 // Try some generic simplifications for associative operations. 1801 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 1802 MaxRecurse)) 1803 return V; 1804 1805 // Or distributes over And. Try some generic simplifications based on this. 1806 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 1807 MaxRecurse)) 1808 return V; 1809 1810 // If the operation is with the result of a select instruction, check whether 1811 // operating on either branch of the select always yields the same value. 1812 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1813 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 1814 MaxRecurse)) 1815 return V; 1816 1817 // (A & C)|(B & D) 1818 Value *C = nullptr, *D = nullptr; 1819 if (match(Op0, m_And(m_Value(A), m_Value(C))) && 1820 match(Op1, m_And(m_Value(B), m_Value(D)))) { 1821 ConstantInt *C1 = dyn_cast<ConstantInt>(C); 1822 ConstantInt *C2 = dyn_cast<ConstantInt>(D); 1823 if (C1 && C2 && (C1->getValue() == ~C2->getValue())) { 1824 // (A & C1)|(B & C2) 1825 // If we have: ((V + N) & C1) | (V & C2) 1826 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 1827 // replace with V+N. 1828 Value *V1, *V2; 1829 if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+ 1830 match(A, m_Add(m_Value(V1), m_Value(V2)))) { 1831 // Add commutes, try both ways. 1832 if (V1 == B && 1833 MaskedValueIsZero(V2, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1834 return A; 1835 if (V2 == B && 1836 MaskedValueIsZero(V1, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1837 return A; 1838 } 1839 // Or commutes, try both ways. 1840 if ((C1->getValue() & (C1->getValue() + 1)) == 0 && 1841 match(B, m_Add(m_Value(V1), m_Value(V2)))) { 1842 // Add commutes, try both ways. 1843 if (V1 == A && 1844 MaskedValueIsZero(V2, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1845 return B; 1846 if (V2 == A && 1847 MaskedValueIsZero(V1, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1848 return B; 1849 } 1850 } 1851 } 1852 1853 // If the operation is with the result of a phi instruction, check whether 1854 // operating on all incoming values of the phi always yields the same value. 1855 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1856 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 1857 return V; 1858 1859 return nullptr; 1860 } 1861 1862 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout &DL, 1863 const TargetLibraryInfo *TLI, 1864 const DominatorTree *DT, AssumptionCache *AC, 1865 const Instruction *CxtI) { 1866 return ::SimplifyOrInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1867 RecursionLimit); 1868 } 1869 1870 /// Given operands for a Xor, see if we can fold the result. 1871 /// If not, this returns null. 1872 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q, 1873 unsigned MaxRecurse) { 1874 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1875 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1876 return ConstantFoldBinaryOpOperands(Instruction::Xor, CLHS, CRHS, Q.DL); 1877 1878 // Canonicalize the constant to the RHS. 1879 std::swap(Op0, Op1); 1880 } 1881 1882 // A ^ undef -> undef 1883 if (match(Op1, m_Undef())) 1884 return Op1; 1885 1886 // A ^ 0 = A 1887 if (match(Op1, m_Zero())) 1888 return Op0; 1889 1890 // A ^ A = 0 1891 if (Op0 == Op1) 1892 return Constant::getNullValue(Op0->getType()); 1893 1894 // A ^ ~A = ~A ^ A = -1 1895 if (match(Op0, m_Not(m_Specific(Op1))) || 1896 match(Op1, m_Not(m_Specific(Op0)))) 1897 return Constant::getAllOnesValue(Op0->getType()); 1898 1899 // Try some generic simplifications for associative operations. 1900 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 1901 MaxRecurse)) 1902 return V; 1903 1904 // Threading Xor over selects and phi nodes is pointless, so don't bother. 1905 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 1906 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 1907 // only if B and C are equal. If B and C are equal then (since we assume 1908 // that operands have already been simplified) "select(cond, B, C)" should 1909 // have been simplified to the common value of B and C already. Analysing 1910 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 1911 // for threading over phi nodes. 1912 1913 return nullptr; 1914 } 1915 1916 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout &DL, 1917 const TargetLibraryInfo *TLI, 1918 const DominatorTree *DT, AssumptionCache *AC, 1919 const Instruction *CxtI) { 1920 return ::SimplifyXorInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1921 RecursionLimit); 1922 } 1923 1924 static Type *GetCompareTy(Value *Op) { 1925 return CmpInst::makeCmpResultType(Op->getType()); 1926 } 1927 1928 /// Rummage around inside V looking for something equivalent to the comparison 1929 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 1930 /// Helper function for analyzing max/min idioms. 1931 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 1932 Value *LHS, Value *RHS) { 1933 SelectInst *SI = dyn_cast<SelectInst>(V); 1934 if (!SI) 1935 return nullptr; 1936 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 1937 if (!Cmp) 1938 return nullptr; 1939 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 1940 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 1941 return Cmp; 1942 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 1943 LHS == CmpRHS && RHS == CmpLHS) 1944 return Cmp; 1945 return nullptr; 1946 } 1947 1948 // A significant optimization not implemented here is assuming that alloca 1949 // addresses are not equal to incoming argument values. They don't *alias*, 1950 // as we say, but that doesn't mean they aren't equal, so we take a 1951 // conservative approach. 1952 // 1953 // This is inspired in part by C++11 5.10p1: 1954 // "Two pointers of the same type compare equal if and only if they are both 1955 // null, both point to the same function, or both represent the same 1956 // address." 1957 // 1958 // This is pretty permissive. 1959 // 1960 // It's also partly due to C11 6.5.9p6: 1961 // "Two pointers compare equal if and only if both are null pointers, both are 1962 // pointers to the same object (including a pointer to an object and a 1963 // subobject at its beginning) or function, both are pointers to one past the 1964 // last element of the same array object, or one is a pointer to one past the 1965 // end of one array object and the other is a pointer to the start of a 1966 // different array object that happens to immediately follow the first array 1967 // object in the address space.) 1968 // 1969 // C11's version is more restrictive, however there's no reason why an argument 1970 // couldn't be a one-past-the-end value for a stack object in the caller and be 1971 // equal to the beginning of a stack object in the callee. 1972 // 1973 // If the C and C++ standards are ever made sufficiently restrictive in this 1974 // area, it may be possible to update LLVM's semantics accordingly and reinstate 1975 // this optimization. 1976 static Constant * 1977 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 1978 const DominatorTree *DT, CmpInst::Predicate Pred, 1979 const Instruction *CxtI, Value *LHS, Value *RHS) { 1980 // First, skip past any trivial no-ops. 1981 LHS = LHS->stripPointerCasts(); 1982 RHS = RHS->stripPointerCasts(); 1983 1984 // A non-null pointer is not equal to a null pointer. 1985 if (llvm::isKnownNonNull(LHS) && isa<ConstantPointerNull>(RHS) && 1986 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 1987 return ConstantInt::get(GetCompareTy(LHS), 1988 !CmpInst::isTrueWhenEqual(Pred)); 1989 1990 // We can only fold certain predicates on pointer comparisons. 1991 switch (Pred) { 1992 default: 1993 return nullptr; 1994 1995 // Equality comaprisons are easy to fold. 1996 case CmpInst::ICMP_EQ: 1997 case CmpInst::ICMP_NE: 1998 break; 1999 2000 // We can only handle unsigned relational comparisons because 'inbounds' on 2001 // a GEP only protects against unsigned wrapping. 2002 case CmpInst::ICMP_UGT: 2003 case CmpInst::ICMP_UGE: 2004 case CmpInst::ICMP_ULT: 2005 case CmpInst::ICMP_ULE: 2006 // However, we have to switch them to their signed variants to handle 2007 // negative indices from the base pointer. 2008 Pred = ICmpInst::getSignedPredicate(Pred); 2009 break; 2010 } 2011 2012 // Strip off any constant offsets so that we can reason about them. 2013 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2014 // here and compare base addresses like AliasAnalysis does, however there are 2015 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2016 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2017 // doesn't need to guarantee pointer inequality when it says NoAlias. 2018 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2019 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2020 2021 // If LHS and RHS are related via constant offsets to the same base 2022 // value, we can replace it with an icmp which just compares the offsets. 2023 if (LHS == RHS) 2024 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2025 2026 // Various optimizations for (in)equality comparisons. 2027 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2028 // Different non-empty allocations that exist at the same time have 2029 // different addresses (if the program can tell). Global variables always 2030 // exist, so they always exist during the lifetime of each other and all 2031 // allocas. Two different allocas usually have different addresses... 2032 // 2033 // However, if there's an @llvm.stackrestore dynamically in between two 2034 // allocas, they may have the same address. It's tempting to reduce the 2035 // scope of the problem by only looking at *static* allocas here. That would 2036 // cover the majority of allocas while significantly reducing the likelihood 2037 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2038 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2039 // an entry block. Also, if we have a block that's not attached to a 2040 // function, we can't tell if it's "static" under the current definition. 2041 // Theoretically, this problem could be fixed by creating a new kind of 2042 // instruction kind specifically for static allocas. Such a new instruction 2043 // could be required to be at the top of the entry block, thus preventing it 2044 // from being subject to a @llvm.stackrestore. Instcombine could even 2045 // convert regular allocas into these special allocas. It'd be nifty. 2046 // However, until then, this problem remains open. 2047 // 2048 // So, we'll assume that two non-empty allocas have different addresses 2049 // for now. 2050 // 2051 // With all that, if the offsets are within the bounds of their allocations 2052 // (and not one-past-the-end! so we can't use inbounds!), and their 2053 // allocations aren't the same, the pointers are not equal. 2054 // 2055 // Note that it's not necessary to check for LHS being a global variable 2056 // address, due to canonicalization and constant folding. 2057 if (isa<AllocaInst>(LHS) && 2058 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2059 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2060 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2061 uint64_t LHSSize, RHSSize; 2062 if (LHSOffsetCI && RHSOffsetCI && 2063 getObjectSize(LHS, LHSSize, DL, TLI) && 2064 getObjectSize(RHS, RHSSize, DL, TLI)) { 2065 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2066 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2067 if (!LHSOffsetValue.isNegative() && 2068 !RHSOffsetValue.isNegative() && 2069 LHSOffsetValue.ult(LHSSize) && 2070 RHSOffsetValue.ult(RHSSize)) { 2071 return ConstantInt::get(GetCompareTy(LHS), 2072 !CmpInst::isTrueWhenEqual(Pred)); 2073 } 2074 } 2075 2076 // Repeat the above check but this time without depending on DataLayout 2077 // or being able to compute a precise size. 2078 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2079 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2080 LHSOffset->isNullValue() && 2081 RHSOffset->isNullValue()) 2082 return ConstantInt::get(GetCompareTy(LHS), 2083 !CmpInst::isTrueWhenEqual(Pred)); 2084 } 2085 2086 // Even if an non-inbounds GEP occurs along the path we can still optimize 2087 // equality comparisons concerning the result. We avoid walking the whole 2088 // chain again by starting where the last calls to 2089 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2090 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2091 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2092 if (LHS == RHS) 2093 return ConstantExpr::getICmp(Pred, 2094 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2095 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2096 2097 // If one side of the equality comparison must come from a noalias call 2098 // (meaning a system memory allocation function), and the other side must 2099 // come from a pointer that cannot overlap with dynamically-allocated 2100 // memory within the lifetime of the current function (allocas, byval 2101 // arguments, globals), then determine the comparison result here. 2102 SmallVector<Value *, 8> LHSUObjs, RHSUObjs; 2103 GetUnderlyingObjects(LHS, LHSUObjs, DL); 2104 GetUnderlyingObjects(RHS, RHSUObjs, DL); 2105 2106 // Is the set of underlying objects all noalias calls? 2107 auto IsNAC = [](ArrayRef<Value *> Objects) { 2108 return all_of(Objects, isNoAliasCall); 2109 }; 2110 2111 // Is the set of underlying objects all things which must be disjoint from 2112 // noalias calls. For allocas, we consider only static ones (dynamic 2113 // allocas might be transformed into calls to malloc not simultaneously 2114 // live with the compared-to allocation). For globals, we exclude symbols 2115 // that might be resolve lazily to symbols in another dynamically-loaded 2116 // library (and, thus, could be malloc'ed by the implementation). 2117 auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) { 2118 return all_of(Objects, [](Value *V) { 2119 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2120 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2121 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2122 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2123 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2124 !GV->isThreadLocal(); 2125 if (const Argument *A = dyn_cast<Argument>(V)) 2126 return A->hasByValAttr(); 2127 return false; 2128 }); 2129 }; 2130 2131 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2132 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2133 return ConstantInt::get(GetCompareTy(LHS), 2134 !CmpInst::isTrueWhenEqual(Pred)); 2135 2136 // Fold comparisons for non-escaping pointer even if the allocation call 2137 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2138 // dynamic allocation call could be either of the operands. 2139 Value *MI = nullptr; 2140 if (isAllocLikeFn(LHS, TLI) && llvm::isKnownNonNullAt(RHS, CxtI, DT)) 2141 MI = LHS; 2142 else if (isAllocLikeFn(RHS, TLI) && llvm::isKnownNonNullAt(LHS, CxtI, DT)) 2143 MI = RHS; 2144 // FIXME: We should also fold the compare when the pointer escapes, but the 2145 // compare dominates the pointer escape 2146 if (MI && !PointerMayBeCaptured(MI, true, true)) 2147 return ConstantInt::get(GetCompareTy(LHS), 2148 CmpInst::isFalseWhenEqual(Pred)); 2149 } 2150 2151 // Otherwise, fail. 2152 return nullptr; 2153 } 2154 2155 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2156 Value *RHS) { 2157 const APInt *C; 2158 if (!match(RHS, m_APInt(C))) 2159 return nullptr; 2160 2161 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2162 ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, *C); 2163 if (RHS_CR.isEmptySet()) 2164 return ConstantInt::getFalse(GetCompareTy(RHS)); 2165 if (RHS_CR.isFullSet()) 2166 return ConstantInt::getTrue(GetCompareTy(RHS)); 2167 2168 // Many binary operators with constant RHS have easy to compute constant 2169 // range. Use them to check whether the comparison is a tautology. 2170 unsigned Width = C->getBitWidth(); 2171 APInt Lower = APInt(Width, 0); 2172 APInt Upper = APInt(Width, 0); 2173 const APInt *C2; 2174 if (match(LHS, m_URem(m_Value(), m_APInt(C2)))) { 2175 // 'urem x, C2' produces [0, C2). 2176 Upper = *C2; 2177 } else if (match(LHS, m_SRem(m_Value(), m_APInt(C2)))) { 2178 // 'srem x, C2' produces (-|C2|, |C2|). 2179 Upper = C2->abs(); 2180 Lower = (-Upper) + 1; 2181 } else if (match(LHS, m_UDiv(m_APInt(C2), m_Value()))) { 2182 // 'udiv C2, x' produces [0, C2]. 2183 Upper = *C2 + 1; 2184 } else if (match(LHS, m_UDiv(m_Value(), m_APInt(C2)))) { 2185 // 'udiv x, C2' produces [0, UINT_MAX / C2]. 2186 APInt NegOne = APInt::getAllOnesValue(Width); 2187 if (*C2 != 0) 2188 Upper = NegOne.udiv(*C2) + 1; 2189 } else if (match(LHS, m_SDiv(m_APInt(C2), m_Value()))) { 2190 if (C2->isMinSignedValue()) { 2191 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 2192 Lower = *C2; 2193 Upper = Lower.lshr(1) + 1; 2194 } else { 2195 // 'sdiv C2, x' produces [-|C2|, |C2|]. 2196 Upper = C2->abs() + 1; 2197 Lower = (-Upper) + 1; 2198 } 2199 } else if (match(LHS, m_SDiv(m_Value(), m_APInt(C2)))) { 2200 APInt IntMin = APInt::getSignedMinValue(Width); 2201 APInt IntMax = APInt::getSignedMaxValue(Width); 2202 if (C2->isAllOnesValue()) { 2203 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 2204 // where C2 != -1 and C2 != 0 and C2 != 1 2205 Lower = IntMin + 1; 2206 Upper = IntMax + 1; 2207 } else if (C2->countLeadingZeros() < Width - 1) { 2208 // 'sdiv x, C2' produces [INT_MIN / C2, INT_MAX / C2] 2209 // where C2 != -1 and C2 != 0 and C2 != 1 2210 Lower = IntMin.sdiv(*C2); 2211 Upper = IntMax.sdiv(*C2); 2212 if (Lower.sgt(Upper)) 2213 std::swap(Lower, Upper); 2214 Upper = Upper + 1; 2215 assert(Upper != Lower && "Upper part of range has wrapped!"); 2216 } 2217 } else if (match(LHS, m_NUWShl(m_APInt(C2), m_Value()))) { 2218 // 'shl nuw C2, x' produces [C2, C2 << CLZ(C2)] 2219 Lower = *C2; 2220 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 2221 } else if (match(LHS, m_NSWShl(m_APInt(C2), m_Value()))) { 2222 if (C2->isNegative()) { 2223 // 'shl nsw C2, x' produces [C2 << CLO(C2)-1, C2] 2224 unsigned ShiftAmount = C2->countLeadingOnes() - 1; 2225 Lower = C2->shl(ShiftAmount); 2226 Upper = *C2 + 1; 2227 } else { 2228 // 'shl nsw C2, x' produces [C2, C2 << CLZ(C2)-1] 2229 unsigned ShiftAmount = C2->countLeadingZeros() - 1; 2230 Lower = *C2; 2231 Upper = C2->shl(ShiftAmount) + 1; 2232 } 2233 } else if (match(LHS, m_LShr(m_Value(), m_APInt(C2)))) { 2234 // 'lshr x, C2' produces [0, UINT_MAX >> C2]. 2235 APInt NegOne = APInt::getAllOnesValue(Width); 2236 if (C2->ult(Width)) 2237 Upper = NegOne.lshr(*C2) + 1; 2238 } else if (match(LHS, m_LShr(m_APInt(C2), m_Value()))) { 2239 // 'lshr C2, x' produces [C2 >> (Width-1), C2]. 2240 unsigned ShiftAmount = Width - 1; 2241 if (*C2 != 0 && cast<BinaryOperator>(LHS)->isExact()) 2242 ShiftAmount = C2->countTrailingZeros(); 2243 Lower = C2->lshr(ShiftAmount); 2244 Upper = *C2 + 1; 2245 } else if (match(LHS, m_AShr(m_Value(), m_APInt(C2)))) { 2246 // 'ashr x, C2' produces [INT_MIN >> C2, INT_MAX >> C2]. 2247 APInt IntMin = APInt::getSignedMinValue(Width); 2248 APInt IntMax = APInt::getSignedMaxValue(Width); 2249 if (C2->ult(Width)) { 2250 Lower = IntMin.ashr(*C2); 2251 Upper = IntMax.ashr(*C2) + 1; 2252 } 2253 } else if (match(LHS, m_AShr(m_APInt(C2), m_Value()))) { 2254 unsigned ShiftAmount = Width - 1; 2255 if (*C2 != 0 && cast<BinaryOperator>(LHS)->isExact()) 2256 ShiftAmount = C2->countTrailingZeros(); 2257 if (C2->isNegative()) { 2258 // 'ashr C2, x' produces [C2, C2 >> (Width-1)] 2259 Lower = *C2; 2260 Upper = C2->ashr(ShiftAmount) + 1; 2261 } else { 2262 // 'ashr C2, x' produces [C2 >> (Width-1), C2] 2263 Lower = C2->ashr(ShiftAmount); 2264 Upper = *C2 + 1; 2265 } 2266 } else if (match(LHS, m_Or(m_Value(), m_APInt(C2)))) { 2267 // 'or x, C2' produces [C2, UINT_MAX]. 2268 Lower = *C2; 2269 } else if (match(LHS, m_And(m_Value(), m_APInt(C2)))) { 2270 // 'and x, C2' produces [0, C2]. 2271 Upper = *C2 + 1; 2272 } else if (match(LHS, m_NUWAdd(m_Value(), m_APInt(C2)))) { 2273 // 'add nuw x, C2' produces [C2, UINT_MAX]. 2274 Lower = *C2; 2275 } 2276 2277 ConstantRange LHS_CR = 2278 Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true); 2279 2280 if (auto *I = dyn_cast<Instruction>(LHS)) 2281 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) 2282 LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges)); 2283 2284 if (!LHS_CR.isFullSet()) { 2285 if (RHS_CR.contains(LHS_CR)) 2286 return ConstantInt::getTrue(GetCompareTy(RHS)); 2287 if (RHS_CR.inverse().contains(LHS_CR)) 2288 return ConstantInt::getFalse(GetCompareTy(RHS)); 2289 } 2290 2291 return nullptr; 2292 } 2293 2294 /// Given operands for an ICmpInst, see if we can fold the result. 2295 /// If not, this returns null. 2296 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 2297 const Query &Q, unsigned MaxRecurse) { 2298 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 2299 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 2300 2301 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 2302 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 2303 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 2304 2305 // If we have a constant, make sure it is on the RHS. 2306 std::swap(LHS, RHS); 2307 Pred = CmpInst::getSwappedPredicate(Pred); 2308 } 2309 2310 Type *ITy = GetCompareTy(LHS); // The return type. 2311 Type *OpTy = LHS->getType(); // The operand type. 2312 2313 // icmp X, X -> true/false 2314 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false 2315 // because X could be 0. 2316 if (LHS == RHS || isa<UndefValue>(RHS)) 2317 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 2318 2319 // Special case logic when the operands have i1 type. 2320 if (OpTy->getScalarType()->isIntegerTy(1)) { 2321 switch (Pred) { 2322 default: break; 2323 case ICmpInst::ICMP_EQ: 2324 // X == 1 -> X 2325 if (match(RHS, m_One())) 2326 return LHS; 2327 break; 2328 case ICmpInst::ICMP_NE: 2329 // X != 0 -> X 2330 if (match(RHS, m_Zero())) 2331 return LHS; 2332 break; 2333 case ICmpInst::ICMP_UGT: 2334 // X >u 0 -> X 2335 if (match(RHS, m_Zero())) 2336 return LHS; 2337 break; 2338 case ICmpInst::ICMP_UGE: { 2339 // X >=u 1 -> X 2340 if (match(RHS, m_One())) 2341 return LHS; 2342 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2343 return getTrue(ITy); 2344 break; 2345 } 2346 case ICmpInst::ICMP_SGE: { 2347 /// For signed comparison, the values for an i1 are 0 and -1 2348 /// respectively. This maps into a truth table of: 2349 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2350 /// 0 | 0 | 1 (0 >= 0) | 1 2351 /// 0 | 1 | 1 (0 >= -1) | 1 2352 /// 1 | 0 | 0 (-1 >= 0) | 0 2353 /// 1 | 1 | 1 (-1 >= -1) | 1 2354 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2355 return getTrue(ITy); 2356 break; 2357 } 2358 case ICmpInst::ICMP_SLT: 2359 // X <s 0 -> X 2360 if (match(RHS, m_Zero())) 2361 return LHS; 2362 break; 2363 case ICmpInst::ICMP_SLE: 2364 // X <=s -1 -> X 2365 if (match(RHS, m_One())) 2366 return LHS; 2367 break; 2368 case ICmpInst::ICMP_ULE: { 2369 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2370 return getTrue(ITy); 2371 break; 2372 } 2373 } 2374 } 2375 2376 // If we are comparing with zero then try hard since this is a common case. 2377 if (match(RHS, m_Zero())) { 2378 bool LHSKnownNonNegative, LHSKnownNegative; 2379 switch (Pred) { 2380 default: llvm_unreachable("Unknown ICmp predicate!"); 2381 case ICmpInst::ICMP_ULT: 2382 return getFalse(ITy); 2383 case ICmpInst::ICMP_UGE: 2384 return getTrue(ITy); 2385 case ICmpInst::ICMP_EQ: 2386 case ICmpInst::ICMP_ULE: 2387 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2388 return getFalse(ITy); 2389 break; 2390 case ICmpInst::ICMP_NE: 2391 case ICmpInst::ICMP_UGT: 2392 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2393 return getTrue(ITy); 2394 break; 2395 case ICmpInst::ICMP_SLT: 2396 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2397 Q.CxtI, Q.DT); 2398 if (LHSKnownNegative) 2399 return getTrue(ITy); 2400 if (LHSKnownNonNegative) 2401 return getFalse(ITy); 2402 break; 2403 case ICmpInst::ICMP_SLE: 2404 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2405 Q.CxtI, Q.DT); 2406 if (LHSKnownNegative) 2407 return getTrue(ITy); 2408 if (LHSKnownNonNegative && 2409 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2410 return getFalse(ITy); 2411 break; 2412 case ICmpInst::ICMP_SGE: 2413 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2414 Q.CxtI, Q.DT); 2415 if (LHSKnownNegative) 2416 return getFalse(ITy); 2417 if (LHSKnownNonNegative) 2418 return getTrue(ITy); 2419 break; 2420 case ICmpInst::ICMP_SGT: 2421 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2422 Q.CxtI, Q.DT); 2423 if (LHSKnownNegative) 2424 return getFalse(ITy); 2425 if (LHSKnownNonNegative && 2426 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2427 return getTrue(ITy); 2428 break; 2429 } 2430 } 2431 2432 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS)) 2433 return V; 2434 2435 // If both operands have range metadata, use the metadata 2436 // to simplify the comparison. 2437 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 2438 auto RHS_Instr = dyn_cast<Instruction>(RHS); 2439 auto LHS_Instr = dyn_cast<Instruction>(LHS); 2440 2441 if (RHS_Instr->getMetadata(LLVMContext::MD_range) && 2442 LHS_Instr->getMetadata(LLVMContext::MD_range)) { 2443 auto RHS_CR = getConstantRangeFromMetadata( 2444 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 2445 auto LHS_CR = getConstantRangeFromMetadata( 2446 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 2447 2448 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 2449 if (Satisfied_CR.contains(LHS_CR)) 2450 return ConstantInt::getTrue(RHS->getContext()); 2451 2452 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 2453 CmpInst::getInversePredicate(Pred), RHS_CR); 2454 if (InversedSatisfied_CR.contains(LHS_CR)) 2455 return ConstantInt::getFalse(RHS->getContext()); 2456 } 2457 } 2458 2459 // Compare of cast, for example (zext X) != 0 -> X != 0 2460 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 2461 Instruction *LI = cast<CastInst>(LHS); 2462 Value *SrcOp = LI->getOperand(0); 2463 Type *SrcTy = SrcOp->getType(); 2464 Type *DstTy = LI->getType(); 2465 2466 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 2467 // if the integer type is the same size as the pointer type. 2468 if (MaxRecurse && isa<PtrToIntInst>(LI) && 2469 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 2470 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 2471 // Transfer the cast to the constant. 2472 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 2473 ConstantExpr::getIntToPtr(RHSC, SrcTy), 2474 Q, MaxRecurse-1)) 2475 return V; 2476 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 2477 if (RI->getOperand(0)->getType() == SrcTy) 2478 // Compare without the cast. 2479 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 2480 Q, MaxRecurse-1)) 2481 return V; 2482 } 2483 } 2484 2485 if (isa<ZExtInst>(LHS)) { 2486 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 2487 // same type. 2488 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 2489 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 2490 // Compare X and Y. Note that signed predicates become unsigned. 2491 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 2492 SrcOp, RI->getOperand(0), Q, 2493 MaxRecurse-1)) 2494 return V; 2495 } 2496 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 2497 // too. If not, then try to deduce the result of the comparison. 2498 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 2499 // Compute the constant that would happen if we truncated to SrcTy then 2500 // reextended to DstTy. 2501 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 2502 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 2503 2504 // If the re-extended constant didn't change then this is effectively 2505 // also a case of comparing two zero-extended values. 2506 if (RExt == CI && MaxRecurse) 2507 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 2508 SrcOp, Trunc, Q, MaxRecurse-1)) 2509 return V; 2510 2511 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 2512 // there. Use this to work out the result of the comparison. 2513 if (RExt != CI) { 2514 switch (Pred) { 2515 default: llvm_unreachable("Unknown ICmp predicate!"); 2516 // LHS <u RHS. 2517 case ICmpInst::ICMP_EQ: 2518 case ICmpInst::ICMP_UGT: 2519 case ICmpInst::ICMP_UGE: 2520 return ConstantInt::getFalse(CI->getContext()); 2521 2522 case ICmpInst::ICMP_NE: 2523 case ICmpInst::ICMP_ULT: 2524 case ICmpInst::ICMP_ULE: 2525 return ConstantInt::getTrue(CI->getContext()); 2526 2527 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 2528 // is non-negative then LHS <s RHS. 2529 case ICmpInst::ICMP_SGT: 2530 case ICmpInst::ICMP_SGE: 2531 return CI->getValue().isNegative() ? 2532 ConstantInt::getTrue(CI->getContext()) : 2533 ConstantInt::getFalse(CI->getContext()); 2534 2535 case ICmpInst::ICMP_SLT: 2536 case ICmpInst::ICMP_SLE: 2537 return CI->getValue().isNegative() ? 2538 ConstantInt::getFalse(CI->getContext()) : 2539 ConstantInt::getTrue(CI->getContext()); 2540 } 2541 } 2542 } 2543 } 2544 2545 if (isa<SExtInst>(LHS)) { 2546 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 2547 // same type. 2548 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 2549 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 2550 // Compare X and Y. Note that the predicate does not change. 2551 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 2552 Q, MaxRecurse-1)) 2553 return V; 2554 } 2555 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 2556 // too. If not, then try to deduce the result of the comparison. 2557 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 2558 // Compute the constant that would happen if we truncated to SrcTy then 2559 // reextended to DstTy. 2560 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 2561 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 2562 2563 // If the re-extended constant didn't change then this is effectively 2564 // also a case of comparing two sign-extended values. 2565 if (RExt == CI && MaxRecurse) 2566 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 2567 return V; 2568 2569 // Otherwise the upper bits of LHS are all equal, while RHS has varying 2570 // bits there. Use this to work out the result of the comparison. 2571 if (RExt != CI) { 2572 switch (Pred) { 2573 default: llvm_unreachable("Unknown ICmp predicate!"); 2574 case ICmpInst::ICMP_EQ: 2575 return ConstantInt::getFalse(CI->getContext()); 2576 case ICmpInst::ICMP_NE: 2577 return ConstantInt::getTrue(CI->getContext()); 2578 2579 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 2580 // LHS >s RHS. 2581 case ICmpInst::ICMP_SGT: 2582 case ICmpInst::ICMP_SGE: 2583 return CI->getValue().isNegative() ? 2584 ConstantInt::getTrue(CI->getContext()) : 2585 ConstantInt::getFalse(CI->getContext()); 2586 case ICmpInst::ICMP_SLT: 2587 case ICmpInst::ICMP_SLE: 2588 return CI->getValue().isNegative() ? 2589 ConstantInt::getFalse(CI->getContext()) : 2590 ConstantInt::getTrue(CI->getContext()); 2591 2592 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 2593 // LHS >u RHS. 2594 case ICmpInst::ICMP_UGT: 2595 case ICmpInst::ICMP_UGE: 2596 // Comparison is true iff the LHS <s 0. 2597 if (MaxRecurse) 2598 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 2599 Constant::getNullValue(SrcTy), 2600 Q, MaxRecurse-1)) 2601 return V; 2602 break; 2603 case ICmpInst::ICMP_ULT: 2604 case ICmpInst::ICMP_ULE: 2605 // Comparison is true iff the LHS >=s 0. 2606 if (MaxRecurse) 2607 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 2608 Constant::getNullValue(SrcTy), 2609 Q, MaxRecurse-1)) 2610 return V; 2611 break; 2612 } 2613 } 2614 } 2615 } 2616 } 2617 2618 // icmp eq|ne X, Y -> false|true if X != Y 2619 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2620 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) { 2621 LLVMContext &Ctx = LHS->getType()->getContext(); 2622 return Pred == ICmpInst::ICMP_NE ? 2623 ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx); 2624 } 2625 2626 // Special logic for binary operators. 2627 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2628 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2629 if (MaxRecurse && (LBO || RBO)) { 2630 // Analyze the case when either LHS or RHS is an add instruction. 2631 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2632 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2633 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2634 if (LBO && LBO->getOpcode() == Instruction::Add) { 2635 A = LBO->getOperand(0); B = LBO->getOperand(1); 2636 NoLHSWrapProblem = ICmpInst::isEquality(Pred) || 2637 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) || 2638 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap()); 2639 } 2640 if (RBO && RBO->getOpcode() == Instruction::Add) { 2641 C = RBO->getOperand(0); D = RBO->getOperand(1); 2642 NoRHSWrapProblem = ICmpInst::isEquality(Pred) || 2643 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) || 2644 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap()); 2645 } 2646 2647 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2648 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2649 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2650 Constant::getNullValue(RHS->getType()), 2651 Q, MaxRecurse-1)) 2652 return V; 2653 2654 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2655 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2656 if (Value *V = SimplifyICmpInst(Pred, 2657 Constant::getNullValue(LHS->getType()), 2658 C == LHS ? D : C, Q, MaxRecurse-1)) 2659 return V; 2660 2661 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2662 if (A && C && (A == C || A == D || B == C || B == D) && 2663 NoLHSWrapProblem && NoRHSWrapProblem) { 2664 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2665 Value *Y, *Z; 2666 if (A == C) { 2667 // C + B == C + D -> B == D 2668 Y = B; 2669 Z = D; 2670 } else if (A == D) { 2671 // D + B == C + D -> B == C 2672 Y = B; 2673 Z = C; 2674 } else if (B == C) { 2675 // A + C == C + D -> A == D 2676 Y = A; 2677 Z = D; 2678 } else { 2679 assert(B == D); 2680 // A + D == C + D -> A == C 2681 Y = A; 2682 Z = C; 2683 } 2684 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1)) 2685 return V; 2686 } 2687 } 2688 2689 { 2690 Value *Y = nullptr; 2691 // icmp pred (or X, Y), X 2692 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2693 if (Pred == ICmpInst::ICMP_ULT) 2694 return getFalse(ITy); 2695 if (Pred == ICmpInst::ICMP_UGE) 2696 return getTrue(ITy); 2697 2698 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2699 bool RHSKnownNonNegative, RHSKnownNegative; 2700 bool YKnownNonNegative, YKnownNegative; 2701 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, Q.DL, 0, 2702 Q.AC, Q.CxtI, Q.DT); 2703 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC, 2704 Q.CxtI, Q.DT); 2705 if (RHSKnownNonNegative && YKnownNegative) 2706 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2707 if (RHSKnownNegative || YKnownNonNegative) 2708 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2709 } 2710 } 2711 // icmp pred X, (or X, Y) 2712 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) { 2713 if (Pred == ICmpInst::ICMP_ULE) 2714 return getTrue(ITy); 2715 if (Pred == ICmpInst::ICMP_UGT) 2716 return getFalse(ITy); 2717 2718 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) { 2719 bool LHSKnownNonNegative, LHSKnownNegative; 2720 bool YKnownNonNegative, YKnownNegative; 2721 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, 2722 Q.AC, Q.CxtI, Q.DT); 2723 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC, 2724 Q.CxtI, Q.DT); 2725 if (LHSKnownNonNegative && YKnownNegative) 2726 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy); 2727 if (LHSKnownNegative || YKnownNonNegative) 2728 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy); 2729 } 2730 } 2731 } 2732 2733 // icmp pred (and X, Y), X 2734 if (LBO && match(LBO, m_CombineOr(m_And(m_Value(), m_Specific(RHS)), 2735 m_And(m_Specific(RHS), m_Value())))) { 2736 if (Pred == ICmpInst::ICMP_UGT) 2737 return getFalse(ITy); 2738 if (Pred == ICmpInst::ICMP_ULE) 2739 return getTrue(ITy); 2740 } 2741 // icmp pred X, (and X, Y) 2742 if (RBO && match(RBO, m_CombineOr(m_And(m_Value(), m_Specific(LHS)), 2743 m_And(m_Specific(LHS), m_Value())))) { 2744 if (Pred == ICmpInst::ICMP_UGE) 2745 return getTrue(ITy); 2746 if (Pred == ICmpInst::ICMP_ULT) 2747 return getFalse(ITy); 2748 } 2749 2750 // 0 - (zext X) pred C 2751 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2752 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2753 if (RHSC->getValue().isStrictlyPositive()) { 2754 if (Pred == ICmpInst::ICMP_SLT) 2755 return ConstantInt::getTrue(RHSC->getContext()); 2756 if (Pred == ICmpInst::ICMP_SGE) 2757 return ConstantInt::getFalse(RHSC->getContext()); 2758 if (Pred == ICmpInst::ICMP_EQ) 2759 return ConstantInt::getFalse(RHSC->getContext()); 2760 if (Pred == ICmpInst::ICMP_NE) 2761 return ConstantInt::getTrue(RHSC->getContext()); 2762 } 2763 if (RHSC->getValue().isNonNegative()) { 2764 if (Pred == ICmpInst::ICMP_SLE) 2765 return ConstantInt::getTrue(RHSC->getContext()); 2766 if (Pred == ICmpInst::ICMP_SGT) 2767 return ConstantInt::getFalse(RHSC->getContext()); 2768 } 2769 } 2770 } 2771 2772 // icmp pred (urem X, Y), Y 2773 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2774 bool KnownNonNegative, KnownNegative; 2775 switch (Pred) { 2776 default: 2777 break; 2778 case ICmpInst::ICMP_SGT: 2779 case ICmpInst::ICMP_SGE: 2780 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2781 Q.CxtI, Q.DT); 2782 if (!KnownNonNegative) 2783 break; 2784 LLVM_FALLTHROUGH; 2785 case ICmpInst::ICMP_EQ: 2786 case ICmpInst::ICMP_UGT: 2787 case ICmpInst::ICMP_UGE: 2788 return getFalse(ITy); 2789 case ICmpInst::ICMP_SLT: 2790 case ICmpInst::ICMP_SLE: 2791 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2792 Q.CxtI, Q.DT); 2793 if (!KnownNonNegative) 2794 break; 2795 LLVM_FALLTHROUGH; 2796 case ICmpInst::ICMP_NE: 2797 case ICmpInst::ICMP_ULT: 2798 case ICmpInst::ICMP_ULE: 2799 return getTrue(ITy); 2800 } 2801 } 2802 2803 // icmp pred X, (urem Y, X) 2804 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2805 bool KnownNonNegative, KnownNegative; 2806 switch (Pred) { 2807 default: 2808 break; 2809 case ICmpInst::ICMP_SGT: 2810 case ICmpInst::ICMP_SGE: 2811 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2812 Q.CxtI, Q.DT); 2813 if (!KnownNonNegative) 2814 break; 2815 LLVM_FALLTHROUGH; 2816 case ICmpInst::ICMP_NE: 2817 case ICmpInst::ICMP_UGT: 2818 case ICmpInst::ICMP_UGE: 2819 return getTrue(ITy); 2820 case ICmpInst::ICMP_SLT: 2821 case ICmpInst::ICMP_SLE: 2822 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2823 Q.CxtI, Q.DT); 2824 if (!KnownNonNegative) 2825 break; 2826 LLVM_FALLTHROUGH; 2827 case ICmpInst::ICMP_EQ: 2828 case ICmpInst::ICMP_ULT: 2829 case ICmpInst::ICMP_ULE: 2830 return getFalse(ITy); 2831 } 2832 } 2833 2834 // x >> y <=u x 2835 // x udiv y <=u x. 2836 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2837 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { 2838 // icmp pred (X op Y), X 2839 if (Pred == ICmpInst::ICMP_UGT) 2840 return getFalse(ITy); 2841 if (Pred == ICmpInst::ICMP_ULE) 2842 return getTrue(ITy); 2843 } 2844 2845 // handle: 2846 // CI2 << X == CI 2847 // CI2 << X != CI 2848 // 2849 // where CI2 is a power of 2 and CI isn't 2850 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2851 const APInt *CI2Val, *CIVal = &CI->getValue(); 2852 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2853 CI2Val->isPowerOf2()) { 2854 if (!CIVal->isPowerOf2()) { 2855 // CI2 << X can equal zero in some circumstances, 2856 // this simplification is unsafe if CI is zero. 2857 // 2858 // We know it is safe if: 2859 // - The shift is nsw, we can't shift out the one bit. 2860 // - The shift is nuw, we can't shift out the one bit. 2861 // - CI2 is one 2862 // - CI isn't zero 2863 if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() || 2864 *CI2Val == 1 || !CI->isZero()) { 2865 if (Pred == ICmpInst::ICMP_EQ) 2866 return ConstantInt::getFalse(RHS->getContext()); 2867 if (Pred == ICmpInst::ICMP_NE) 2868 return ConstantInt::getTrue(RHS->getContext()); 2869 } 2870 } 2871 if (CIVal->isSignBit() && *CI2Val == 1) { 2872 if (Pred == ICmpInst::ICMP_UGT) 2873 return ConstantInt::getFalse(RHS->getContext()); 2874 if (Pred == ICmpInst::ICMP_ULE) 2875 return ConstantInt::getTrue(RHS->getContext()); 2876 } 2877 } 2878 } 2879 2880 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2881 LBO->getOperand(1) == RBO->getOperand(1)) { 2882 switch (LBO->getOpcode()) { 2883 default: break; 2884 case Instruction::UDiv: 2885 case Instruction::LShr: 2886 if (ICmpInst::isSigned(Pred)) 2887 break; 2888 LLVM_FALLTHROUGH; 2889 case Instruction::SDiv: 2890 case Instruction::AShr: 2891 if (!LBO->isExact() || !RBO->isExact()) 2892 break; 2893 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2894 RBO->getOperand(0), Q, MaxRecurse-1)) 2895 return V; 2896 break; 2897 case Instruction::Shl: { 2898 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap(); 2899 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap(); 2900 if (!NUW && !NSW) 2901 break; 2902 if (!NSW && ICmpInst::isSigned(Pred)) 2903 break; 2904 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2905 RBO->getOperand(0), Q, MaxRecurse-1)) 2906 return V; 2907 break; 2908 } 2909 } 2910 } 2911 2912 // Simplify comparisons involving max/min. 2913 Value *A, *B; 2914 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 2915 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 2916 2917 // Signed variants on "max(a,b)>=a -> true". 2918 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2919 if (A != RHS) std::swap(A, B); // smax(A, B) pred A. 2920 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2921 // We analyze this as smax(A, B) pred A. 2922 P = Pred; 2923 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 2924 (A == LHS || B == LHS)) { 2925 if (A != LHS) std::swap(A, B); // A pred smax(A, B). 2926 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2927 // We analyze this as smax(A, B) swapped-pred A. 2928 P = CmpInst::getSwappedPredicate(Pred); 2929 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2930 (A == RHS || B == RHS)) { 2931 if (A != RHS) std::swap(A, B); // smin(A, B) pred A. 2932 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2933 // We analyze this as smax(-A, -B) swapped-pred -A. 2934 // Note that we do not need to actually form -A or -B thanks to EqP. 2935 P = CmpInst::getSwappedPredicate(Pred); 2936 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 2937 (A == LHS || B == LHS)) { 2938 if (A != LHS) std::swap(A, B); // A pred smin(A, B). 2939 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2940 // We analyze this as smax(-A, -B) pred -A. 2941 // Note that we do not need to actually form -A or -B thanks to EqP. 2942 P = Pred; 2943 } 2944 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2945 // Cases correspond to "max(A, B) p A". 2946 switch (P) { 2947 default: 2948 break; 2949 case CmpInst::ICMP_EQ: 2950 case CmpInst::ICMP_SLE: 2951 // Equivalent to "A EqP B". This may be the same as the condition tested 2952 // in the max/min; if so, we can just return that. 2953 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2954 return V; 2955 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2956 return V; 2957 // Otherwise, see if "A EqP B" simplifies. 2958 if (MaxRecurse) 2959 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1)) 2960 return V; 2961 break; 2962 case CmpInst::ICMP_NE: 2963 case CmpInst::ICMP_SGT: { 2964 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2965 // Equivalent to "A InvEqP B". This may be the same as the condition 2966 // tested in the max/min; if so, we can just return that. 2967 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2968 return V; 2969 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2970 return V; 2971 // Otherwise, see if "A InvEqP B" simplifies. 2972 if (MaxRecurse) 2973 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1)) 2974 return V; 2975 break; 2976 } 2977 case CmpInst::ICMP_SGE: 2978 // Always true. 2979 return getTrue(ITy); 2980 case CmpInst::ICMP_SLT: 2981 // Always false. 2982 return getFalse(ITy); 2983 } 2984 } 2985 2986 // Unsigned variants on "max(a,b)>=a -> true". 2987 P = CmpInst::BAD_ICMP_PREDICATE; 2988 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2989 if (A != RHS) std::swap(A, B); // umax(A, B) pred A. 2990 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2991 // We analyze this as umax(A, B) pred A. 2992 P = Pred; 2993 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 2994 (A == LHS || B == LHS)) { 2995 if (A != LHS) std::swap(A, B); // A pred umax(A, B). 2996 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2997 // We analyze this as umax(A, B) swapped-pred A. 2998 P = CmpInst::getSwappedPredicate(Pred); 2999 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3000 (A == RHS || B == RHS)) { 3001 if (A != RHS) std::swap(A, B); // umin(A, B) pred A. 3002 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3003 // We analyze this as umax(-A, -B) swapped-pred -A. 3004 // Note that we do not need to actually form -A or -B thanks to EqP. 3005 P = CmpInst::getSwappedPredicate(Pred); 3006 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3007 (A == LHS || B == LHS)) { 3008 if (A != LHS) std::swap(A, B); // A pred umin(A, B). 3009 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3010 // We analyze this as umax(-A, -B) pred -A. 3011 // Note that we do not need to actually form -A or -B thanks to EqP. 3012 P = Pred; 3013 } 3014 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3015 // Cases correspond to "max(A, B) p A". 3016 switch (P) { 3017 default: 3018 break; 3019 case CmpInst::ICMP_EQ: 3020 case CmpInst::ICMP_ULE: 3021 // Equivalent to "A EqP B". This may be the same as the condition tested 3022 // in the max/min; if so, we can just return that. 3023 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3024 return V; 3025 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3026 return V; 3027 // Otherwise, see if "A EqP B" simplifies. 3028 if (MaxRecurse) 3029 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1)) 3030 return V; 3031 break; 3032 case CmpInst::ICMP_NE: 3033 case CmpInst::ICMP_UGT: { 3034 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3035 // Equivalent to "A InvEqP B". This may be the same as the condition 3036 // tested in the max/min; if so, we can just return that. 3037 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3038 return V; 3039 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3040 return V; 3041 // Otherwise, see if "A InvEqP B" simplifies. 3042 if (MaxRecurse) 3043 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1)) 3044 return V; 3045 break; 3046 } 3047 case CmpInst::ICMP_UGE: 3048 // Always true. 3049 return getTrue(ITy); 3050 case CmpInst::ICMP_ULT: 3051 // Always false. 3052 return getFalse(ITy); 3053 } 3054 } 3055 3056 // Variants on "max(x,y) >= min(x,z)". 3057 Value *C, *D; 3058 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3059 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3060 (A == C || A == D || B == C || B == D)) { 3061 // max(x, ?) pred min(x, ?). 3062 if (Pred == CmpInst::ICMP_SGE) 3063 // Always true. 3064 return getTrue(ITy); 3065 if (Pred == CmpInst::ICMP_SLT) 3066 // Always false. 3067 return getFalse(ITy); 3068 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3069 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 3070 (A == C || A == D || B == C || B == D)) { 3071 // min(x, ?) pred max(x, ?). 3072 if (Pred == CmpInst::ICMP_SLE) 3073 // Always true. 3074 return getTrue(ITy); 3075 if (Pred == CmpInst::ICMP_SGT) 3076 // Always false. 3077 return getFalse(ITy); 3078 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3079 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3080 (A == C || A == D || B == C || B == D)) { 3081 // max(x, ?) pred min(x, ?). 3082 if (Pred == CmpInst::ICMP_UGE) 3083 // Always true. 3084 return getTrue(ITy); 3085 if (Pred == CmpInst::ICMP_ULT) 3086 // Always false. 3087 return getFalse(ITy); 3088 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3089 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 3090 (A == C || A == D || B == C || B == D)) { 3091 // min(x, ?) pred max(x, ?). 3092 if (Pred == CmpInst::ICMP_ULE) 3093 // Always true. 3094 return getTrue(ITy); 3095 if (Pred == CmpInst::ICMP_UGT) 3096 // Always false. 3097 return getFalse(ITy); 3098 } 3099 3100 // Simplify comparisons of related pointers using a powerful, recursive 3101 // GEP-walk when we have target data available.. 3102 if (LHS->getType()->isPointerTy()) 3103 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, LHS, RHS)) 3104 return C; 3105 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3106 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3107 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3108 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3109 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3110 Q.DL.getTypeSizeInBits(CRHS->getType())) 3111 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, 3112 CLHS->getPointerOperand(), 3113 CRHS->getPointerOperand())) 3114 return C; 3115 3116 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3117 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3118 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3119 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3120 (ICmpInst::isEquality(Pred) || 3121 (GLHS->isInBounds() && GRHS->isInBounds() && 3122 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3123 // The bases are equal and the indices are constant. Build a constant 3124 // expression GEP with the same indices and a null base pointer to see 3125 // what constant folding can make out of it. 3126 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3127 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3128 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3129 GLHS->getSourceElementType(), Null, IndicesLHS); 3130 3131 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3132 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3133 GLHS->getSourceElementType(), Null, IndicesRHS); 3134 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3135 } 3136 } 3137 } 3138 3139 // If a bit is known to be zero for A and known to be one for B, 3140 // then A and B cannot be equal. 3141 if (ICmpInst::isEquality(Pred)) { 3142 const APInt *RHSVal; 3143 if (match(RHS, m_APInt(RHSVal))) { 3144 unsigned BitWidth = RHSVal->getBitWidth(); 3145 APInt LHSKnownZero(BitWidth, 0); 3146 APInt LHSKnownOne(BitWidth, 0); 3147 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, Q.DL, /*Depth=*/0, Q.AC, 3148 Q.CxtI, Q.DT); 3149 if (((LHSKnownZero & *RHSVal) != 0) || ((LHSKnownOne & ~(*RHSVal)) != 0)) 3150 return Pred == ICmpInst::ICMP_EQ ? ConstantInt::getFalse(ITy) 3151 : ConstantInt::getTrue(ITy); 3152 } 3153 } 3154 3155 // If the comparison is with the result of a select instruction, check whether 3156 // comparing with either branch of the select always yields the same value. 3157 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3158 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3159 return V; 3160 3161 // If the comparison is with the result of a phi instruction, check whether 3162 // doing the compare with each incoming phi value yields a common result. 3163 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3164 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3165 return V; 3166 3167 return nullptr; 3168 } 3169 3170 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3171 const DataLayout &DL, 3172 const TargetLibraryInfo *TLI, 3173 const DominatorTree *DT, AssumptionCache *AC, 3174 const Instruction *CxtI) { 3175 return ::SimplifyICmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 3176 RecursionLimit); 3177 } 3178 3179 /// Given operands for an FCmpInst, see if we can fold the result. 3180 /// If not, this returns null. 3181 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3182 FastMathFlags FMF, const Query &Q, 3183 unsigned MaxRecurse) { 3184 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3185 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3186 3187 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3188 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3189 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3190 3191 // If we have a constant, make sure it is on the RHS. 3192 std::swap(LHS, RHS); 3193 Pred = CmpInst::getSwappedPredicate(Pred); 3194 } 3195 3196 // Fold trivial predicates. 3197 Type *RetTy = GetCompareTy(LHS); 3198 if (Pred == FCmpInst::FCMP_FALSE) 3199 return getFalse(RetTy); 3200 if (Pred == FCmpInst::FCMP_TRUE) 3201 return getTrue(RetTy); 3202 3203 // UNO/ORD predicates can be trivially folded if NaNs are ignored. 3204 if (FMF.noNaNs()) { 3205 if (Pred == FCmpInst::FCMP_UNO) 3206 return getFalse(RetTy); 3207 if (Pred == FCmpInst::FCMP_ORD) 3208 return getTrue(RetTy); 3209 } 3210 3211 // fcmp pred x, undef and fcmp pred undef, x 3212 // fold to true if unordered, false if ordered 3213 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3214 // Choosing NaN for the undef will always make unordered comparison succeed 3215 // and ordered comparison fail. 3216 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3217 } 3218 3219 // fcmp x,x -> true/false. Not all compares are foldable. 3220 if (LHS == RHS) { 3221 if (CmpInst::isTrueWhenEqual(Pred)) 3222 return getTrue(RetTy); 3223 if (CmpInst::isFalseWhenEqual(Pred)) 3224 return getFalse(RetTy); 3225 } 3226 3227 // Handle fcmp with constant RHS 3228 const ConstantFP *CFP = nullptr; 3229 if (const auto *RHSC = dyn_cast<Constant>(RHS)) { 3230 if (RHS->getType()->isVectorTy()) 3231 CFP = dyn_cast_or_null<ConstantFP>(RHSC->getSplatValue()); 3232 else 3233 CFP = dyn_cast<ConstantFP>(RHSC); 3234 } 3235 if (CFP) { 3236 // If the constant is a nan, see if we can fold the comparison based on it. 3237 if (CFP->getValueAPF().isNaN()) { 3238 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo" 3239 return getFalse(RetTy); 3240 assert(FCmpInst::isUnordered(Pred) && 3241 "Comparison must be either ordered or unordered!"); 3242 // True if unordered. 3243 return getTrue(RetTy); 3244 } 3245 // Check whether the constant is an infinity. 3246 if (CFP->getValueAPF().isInfinity()) { 3247 if (CFP->getValueAPF().isNegative()) { 3248 switch (Pred) { 3249 case FCmpInst::FCMP_OLT: 3250 // No value is ordered and less than negative infinity. 3251 return getFalse(RetTy); 3252 case FCmpInst::FCMP_UGE: 3253 // All values are unordered with or at least negative infinity. 3254 return getTrue(RetTy); 3255 default: 3256 break; 3257 } 3258 } else { 3259 switch (Pred) { 3260 case FCmpInst::FCMP_OGT: 3261 // No value is ordered and greater than infinity. 3262 return getFalse(RetTy); 3263 case FCmpInst::FCMP_ULE: 3264 // All values are unordered with and at most infinity. 3265 return getTrue(RetTy); 3266 default: 3267 break; 3268 } 3269 } 3270 } 3271 if (CFP->getValueAPF().isZero()) { 3272 switch (Pred) { 3273 case FCmpInst::FCMP_UGE: 3274 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3275 return getTrue(RetTy); 3276 break; 3277 case FCmpInst::FCMP_OLT: 3278 // X < 0 3279 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3280 return getFalse(RetTy); 3281 break; 3282 default: 3283 break; 3284 } 3285 } 3286 } 3287 3288 // If the comparison is with the result of a select instruction, check whether 3289 // comparing with either branch of the select always yields the same value. 3290 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3291 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3292 return V; 3293 3294 // If the comparison is with the result of a phi instruction, check whether 3295 // doing the compare with each incoming phi value yields a common result. 3296 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3297 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3298 return V; 3299 3300 return nullptr; 3301 } 3302 3303 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3304 FastMathFlags FMF, const DataLayout &DL, 3305 const TargetLibraryInfo *TLI, 3306 const DominatorTree *DT, AssumptionCache *AC, 3307 const Instruction *CxtI) { 3308 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, 3309 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3310 } 3311 3312 /// See if V simplifies when its operand Op is replaced with RepOp. 3313 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3314 const Query &Q, 3315 unsigned MaxRecurse) { 3316 // Trivial replacement. 3317 if (V == Op) 3318 return RepOp; 3319 3320 auto *I = dyn_cast<Instruction>(V); 3321 if (!I) 3322 return nullptr; 3323 3324 // If this is a binary operator, try to simplify it with the replaced op. 3325 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3326 // Consider: 3327 // %cmp = icmp eq i32 %x, 2147483647 3328 // %add = add nsw i32 %x, 1 3329 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3330 // 3331 // We can't replace %sel with %add unless we strip away the flags. 3332 if (isa<OverflowingBinaryOperator>(B)) 3333 if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap()) 3334 return nullptr; 3335 if (isa<PossiblyExactOperator>(B)) 3336 if (B->isExact()) 3337 return nullptr; 3338 3339 if (MaxRecurse) { 3340 if (B->getOperand(0) == Op) 3341 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3342 MaxRecurse - 1); 3343 if (B->getOperand(1) == Op) 3344 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3345 MaxRecurse - 1); 3346 } 3347 } 3348 3349 // Same for CmpInsts. 3350 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3351 if (MaxRecurse) { 3352 if (C->getOperand(0) == Op) 3353 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3354 MaxRecurse - 1); 3355 if (C->getOperand(1) == Op) 3356 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3357 MaxRecurse - 1); 3358 } 3359 } 3360 3361 // TODO: We could hand off more cases to instsimplify here. 3362 3363 // If all operands are constant after substituting Op for RepOp then we can 3364 // constant fold the instruction. 3365 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3366 // Build a list of all constant operands. 3367 SmallVector<Constant *, 8> ConstOps; 3368 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3369 if (I->getOperand(i) == Op) 3370 ConstOps.push_back(CRepOp); 3371 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3372 ConstOps.push_back(COp); 3373 else 3374 break; 3375 } 3376 3377 // All operands were constants, fold it. 3378 if (ConstOps.size() == I->getNumOperands()) { 3379 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3380 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3381 ConstOps[1], Q.DL, Q.TLI); 3382 3383 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3384 if (!LI->isVolatile()) 3385 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3386 3387 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3388 } 3389 } 3390 3391 return nullptr; 3392 } 3393 3394 /// Try to simplify a select instruction when its condition operand is an 3395 /// integer comparison where one operand of the compare is a constant. 3396 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3397 const APInt *Y, bool TrueWhenUnset) { 3398 const APInt *C; 3399 3400 // (X & Y) == 0 ? X & ~Y : X --> X 3401 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3402 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3403 *Y == ~*C) 3404 return TrueWhenUnset ? FalseVal : TrueVal; 3405 3406 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3407 // (X & Y) != 0 ? X : X & ~Y --> X 3408 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3409 *Y == ~*C) 3410 return TrueWhenUnset ? FalseVal : TrueVal; 3411 3412 if (Y->isPowerOf2()) { 3413 // (X & Y) == 0 ? X | Y : X --> X | Y 3414 // (X & Y) != 0 ? X | Y : X --> X 3415 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3416 *Y == *C) 3417 return TrueWhenUnset ? TrueVal : FalseVal; 3418 3419 // (X & Y) == 0 ? X : X | Y --> X 3420 // (X & Y) != 0 ? X : X | Y --> X | Y 3421 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3422 *Y == *C) 3423 return TrueWhenUnset ? TrueVal : FalseVal; 3424 } 3425 3426 return nullptr; 3427 } 3428 3429 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 3430 /// eq/ne. 3431 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *TrueVal, 3432 Value *FalseVal, 3433 bool TrueWhenUnset) { 3434 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits(); 3435 if (!BitWidth) 3436 return nullptr; 3437 3438 APInt MinSignedValue; 3439 Value *X; 3440 if (match(CmpLHS, m_Trunc(m_Value(X))) && (X == TrueVal || X == FalseVal)) { 3441 // icmp slt (trunc X), 0 <--> icmp ne (and X, C), 0 3442 // icmp sgt (trunc X), -1 <--> icmp eq (and X, C), 0 3443 unsigned DestSize = CmpLHS->getType()->getScalarSizeInBits(); 3444 MinSignedValue = APInt::getSignedMinValue(DestSize).zext(BitWidth); 3445 } else { 3446 // icmp slt X, 0 <--> icmp ne (and X, C), 0 3447 // icmp sgt X, -1 <--> icmp eq (and X, C), 0 3448 X = CmpLHS; 3449 MinSignedValue = APInt::getSignedMinValue(BitWidth); 3450 } 3451 3452 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, &MinSignedValue, 3453 TrueWhenUnset)) 3454 return V; 3455 3456 return nullptr; 3457 } 3458 3459 /// Try to simplify a select instruction when its condition operand is an 3460 /// integer comparison. 3461 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 3462 Value *FalseVal, const Query &Q, 3463 unsigned MaxRecurse) { 3464 ICmpInst::Predicate Pred; 3465 Value *CmpLHS, *CmpRHS; 3466 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 3467 return nullptr; 3468 3469 // FIXME: This code is nearly duplicated in InstCombine. Using/refactoring 3470 // decomposeBitTestICmp() might help. 3471 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) { 3472 Value *X; 3473 const APInt *Y; 3474 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 3475 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 3476 Pred == ICmpInst::ICMP_EQ)) 3477 return V; 3478 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 3479 // Comparing signed-less-than 0 checks if the sign bit is set. 3480 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal, 3481 false)) 3482 return V; 3483 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 3484 // Comparing signed-greater-than -1 checks if the sign bit is not set. 3485 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal, 3486 true)) 3487 return V; 3488 } 3489 3490 if (CondVal->hasOneUse()) { 3491 const APInt *C; 3492 if (match(CmpRHS, m_APInt(C))) { 3493 // X < MIN ? T : F --> F 3494 if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue()) 3495 return FalseVal; 3496 // X < MIN ? T : F --> F 3497 if (Pred == ICmpInst::ICMP_ULT && C->isMinValue()) 3498 return FalseVal; 3499 // X > MAX ? T : F --> F 3500 if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue()) 3501 return FalseVal; 3502 // X > MAX ? T : F --> F 3503 if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue()) 3504 return FalseVal; 3505 } 3506 } 3507 3508 // If we have an equality comparison, then we know the value in one of the 3509 // arms of the select. See if substituting this value into the arm and 3510 // simplifying the result yields the same value as the other arm. 3511 if (Pred == ICmpInst::ICMP_EQ) { 3512 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3513 TrueVal || 3514 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3515 TrueVal) 3516 return FalseVal; 3517 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3518 FalseVal || 3519 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3520 FalseVal) 3521 return FalseVal; 3522 } else if (Pred == ICmpInst::ICMP_NE) { 3523 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3524 FalseVal || 3525 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3526 FalseVal) 3527 return TrueVal; 3528 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3529 TrueVal || 3530 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3531 TrueVal) 3532 return TrueVal; 3533 } 3534 3535 return nullptr; 3536 } 3537 3538 /// Given operands for a SelectInst, see if we can fold the result. 3539 /// If not, this returns null. 3540 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal, 3541 Value *FalseVal, const Query &Q, 3542 unsigned MaxRecurse) { 3543 // select true, X, Y -> X 3544 // select false, X, Y -> Y 3545 if (Constant *CB = dyn_cast<Constant>(CondVal)) { 3546 if (CB->isAllOnesValue()) 3547 return TrueVal; 3548 if (CB->isNullValue()) 3549 return FalseVal; 3550 } 3551 3552 // select C, X, X -> X 3553 if (TrueVal == FalseVal) 3554 return TrueVal; 3555 3556 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y 3557 if (isa<Constant>(TrueVal)) 3558 return TrueVal; 3559 return FalseVal; 3560 } 3561 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X 3562 return FalseVal; 3563 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X 3564 return TrueVal; 3565 3566 if (Value *V = 3567 simplifySelectWithICmpCond(CondVal, TrueVal, FalseVal, Q, MaxRecurse)) 3568 return V; 3569 3570 return nullptr; 3571 } 3572 3573 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3574 const DataLayout &DL, 3575 const TargetLibraryInfo *TLI, 3576 const DominatorTree *DT, AssumptionCache *AC, 3577 const Instruction *CxtI) { 3578 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, 3579 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3580 } 3581 3582 /// Given operands for an GetElementPtrInst, see if we can fold the result. 3583 /// If not, this returns null. 3584 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3585 const Query &Q, unsigned) { 3586 // The type of the GEP pointer operand. 3587 unsigned AS = 3588 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 3589 3590 // getelementptr P -> P. 3591 if (Ops.size() == 1) 3592 return Ops[0]; 3593 3594 // Compute the (pointer) type returned by the GEP instruction. 3595 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 3596 Type *GEPTy = PointerType::get(LastType, AS); 3597 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 3598 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3599 3600 if (isa<UndefValue>(Ops[0])) 3601 return UndefValue::get(GEPTy); 3602 3603 if (Ops.size() == 2) { 3604 // getelementptr P, 0 -> P. 3605 if (match(Ops[1], m_Zero())) 3606 return Ops[0]; 3607 3608 Type *Ty = SrcTy; 3609 if (Ty->isSized()) { 3610 Value *P; 3611 uint64_t C; 3612 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 3613 // getelementptr P, N -> P if P points to a type of zero size. 3614 if (TyAllocSize == 0) 3615 return Ops[0]; 3616 3617 // The following transforms are only safe if the ptrtoint cast 3618 // doesn't truncate the pointers. 3619 if (Ops[1]->getType()->getScalarSizeInBits() == 3620 Q.DL.getPointerSizeInBits(AS)) { 3621 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 3622 if (match(P, m_Zero())) 3623 return Constant::getNullValue(GEPTy); 3624 Value *Temp; 3625 if (match(P, m_PtrToInt(m_Value(Temp)))) 3626 if (Temp->getType() == GEPTy) 3627 return Temp; 3628 return nullptr; 3629 }; 3630 3631 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 3632 if (TyAllocSize == 1 && 3633 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 3634 if (Value *R = PtrToIntOrZero(P)) 3635 return R; 3636 3637 // getelementptr V, (ashr (sub P, V), C) -> Q 3638 // if P points to a type of size 1 << C. 3639 if (match(Ops[1], 3640 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3641 m_ConstantInt(C))) && 3642 TyAllocSize == 1ULL << C) 3643 if (Value *R = PtrToIntOrZero(P)) 3644 return R; 3645 3646 // getelementptr V, (sdiv (sub P, V), C) -> Q 3647 // if P points to a type of size C. 3648 if (match(Ops[1], 3649 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3650 m_SpecificInt(TyAllocSize)))) 3651 if (Value *R = PtrToIntOrZero(P)) 3652 return R; 3653 } 3654 } 3655 } 3656 3657 if (Q.DL.getTypeAllocSize(LastType) == 1 && 3658 all_of(Ops.slice(1).drop_back(1), 3659 [](Value *Idx) { return match(Idx, m_Zero()); })) { 3660 unsigned PtrWidth = 3661 Q.DL.getPointerSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 3662 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == PtrWidth) { 3663 APInt BasePtrOffset(PtrWidth, 0); 3664 Value *StrippedBasePtr = 3665 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 3666 BasePtrOffset); 3667 3668 // gep (gep V, C), (sub 0, V) -> C 3669 if (match(Ops.back(), 3670 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { 3671 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 3672 return ConstantExpr::getIntToPtr(CI, GEPTy); 3673 } 3674 // gep (gep V, C), (xor V, -1) -> C-1 3675 if (match(Ops.back(), 3676 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { 3677 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 3678 return ConstantExpr::getIntToPtr(CI, GEPTy); 3679 } 3680 } 3681 } 3682 3683 // Check to see if this is constant foldable. 3684 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3685 if (!isa<Constant>(Ops[i])) 3686 return nullptr; 3687 3688 return ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 3689 Ops.slice(1)); 3690 } 3691 3692 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3693 const DataLayout &DL, 3694 const TargetLibraryInfo *TLI, 3695 const DominatorTree *DT, AssumptionCache *AC, 3696 const Instruction *CxtI) { 3697 return ::SimplifyGEPInst(SrcTy, Ops, 3698 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3699 } 3700 3701 /// Given operands for an InsertValueInst, see if we can fold the result. 3702 /// If not, this returns null. 3703 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 3704 ArrayRef<unsigned> Idxs, const Query &Q, 3705 unsigned) { 3706 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 3707 if (Constant *CVal = dyn_cast<Constant>(Val)) 3708 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 3709 3710 // insertvalue x, undef, n -> x 3711 if (match(Val, m_Undef())) 3712 return Agg; 3713 3714 // insertvalue x, (extractvalue y, n), n 3715 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 3716 if (EV->getAggregateOperand()->getType() == Agg->getType() && 3717 EV->getIndices() == Idxs) { 3718 // insertvalue undef, (extractvalue y, n), n -> y 3719 if (match(Agg, m_Undef())) 3720 return EV->getAggregateOperand(); 3721 3722 // insertvalue y, (extractvalue y, n), n -> y 3723 if (Agg == EV->getAggregateOperand()) 3724 return Agg; 3725 } 3726 3727 return nullptr; 3728 } 3729 3730 Value *llvm::SimplifyInsertValueInst( 3731 Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const DataLayout &DL, 3732 const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC, 3733 const Instruction *CxtI) { 3734 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query(DL, TLI, DT, AC, CxtI), 3735 RecursionLimit); 3736 } 3737 3738 /// Given operands for an ExtractValueInst, see if we can fold the result. 3739 /// If not, this returns null. 3740 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3741 const Query &, unsigned) { 3742 if (auto *CAgg = dyn_cast<Constant>(Agg)) 3743 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 3744 3745 // extractvalue x, (insertvalue y, elt, n), n -> elt 3746 unsigned NumIdxs = Idxs.size(); 3747 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 3748 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 3749 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 3750 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 3751 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 3752 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 3753 Idxs.slice(0, NumCommonIdxs)) { 3754 if (NumIdxs == NumInsertValueIdxs) 3755 return IVI->getInsertedValueOperand(); 3756 break; 3757 } 3758 } 3759 3760 return nullptr; 3761 } 3762 3763 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3764 const DataLayout &DL, 3765 const TargetLibraryInfo *TLI, 3766 const DominatorTree *DT, 3767 AssumptionCache *AC, 3768 const Instruction *CxtI) { 3769 return ::SimplifyExtractValueInst(Agg, Idxs, Query(DL, TLI, DT, AC, CxtI), 3770 RecursionLimit); 3771 } 3772 3773 /// Given operands for an ExtractElementInst, see if we can fold the result. 3774 /// If not, this returns null. 3775 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const Query &, 3776 unsigned) { 3777 if (auto *CVec = dyn_cast<Constant>(Vec)) { 3778 if (auto *CIdx = dyn_cast<Constant>(Idx)) 3779 return ConstantFoldExtractElementInstruction(CVec, CIdx); 3780 3781 // The index is not relevant if our vector is a splat. 3782 if (auto *Splat = CVec->getSplatValue()) 3783 return Splat; 3784 3785 if (isa<UndefValue>(Vec)) 3786 return UndefValue::get(Vec->getType()->getVectorElementType()); 3787 } 3788 3789 // If extracting a specified index from the vector, see if we can recursively 3790 // find a previously computed scalar that was inserted into the vector. 3791 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) 3792 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 3793 return Elt; 3794 3795 return nullptr; 3796 } 3797 3798 Value *llvm::SimplifyExtractElementInst( 3799 Value *Vec, Value *Idx, const DataLayout &DL, const TargetLibraryInfo *TLI, 3800 const DominatorTree *DT, AssumptionCache *AC, const Instruction *CxtI) { 3801 return ::SimplifyExtractElementInst(Vec, Idx, Query(DL, TLI, DT, AC, CxtI), 3802 RecursionLimit); 3803 } 3804 3805 /// See if we can fold the given phi. If not, returns null. 3806 static Value *SimplifyPHINode(PHINode *PN, const Query &Q) { 3807 // If all of the PHI's incoming values are the same then replace the PHI node 3808 // with the common value. 3809 Value *CommonValue = nullptr; 3810 bool HasUndefInput = false; 3811 for (Value *Incoming : PN->incoming_values()) { 3812 // If the incoming value is the phi node itself, it can safely be skipped. 3813 if (Incoming == PN) continue; 3814 if (isa<UndefValue>(Incoming)) { 3815 // Remember that we saw an undef value, but otherwise ignore them. 3816 HasUndefInput = true; 3817 continue; 3818 } 3819 if (CommonValue && Incoming != CommonValue) 3820 return nullptr; // Not the same, bail out. 3821 CommonValue = Incoming; 3822 } 3823 3824 // If CommonValue is null then all of the incoming values were either undef or 3825 // equal to the phi node itself. 3826 if (!CommonValue) 3827 return UndefValue::get(PN->getType()); 3828 3829 // If we have a PHI node like phi(X, undef, X), where X is defined by some 3830 // instruction, we cannot return X as the result of the PHI node unless it 3831 // dominates the PHI block. 3832 if (HasUndefInput) 3833 return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 3834 3835 return CommonValue; 3836 } 3837 3838 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 3839 Type *Ty, const Query &Q, unsigned MaxRecurse) { 3840 if (auto *C = dyn_cast<Constant>(Op)) 3841 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 3842 3843 if (auto *CI = dyn_cast<CastInst>(Op)) { 3844 auto *Src = CI->getOperand(0); 3845 Type *SrcTy = Src->getType(); 3846 Type *MidTy = CI->getType(); 3847 Type *DstTy = Ty; 3848 if (Src->getType() == Ty) { 3849 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 3850 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 3851 Type *SrcIntPtrTy = 3852 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 3853 Type *MidIntPtrTy = 3854 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 3855 Type *DstIntPtrTy = 3856 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 3857 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 3858 SrcIntPtrTy, MidIntPtrTy, 3859 DstIntPtrTy) == Instruction::BitCast) 3860 return Src; 3861 } 3862 } 3863 3864 // bitcast x -> x 3865 if (CastOpc == Instruction::BitCast) 3866 if (Op->getType() == Ty) 3867 return Op; 3868 3869 return nullptr; 3870 } 3871 3872 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 3873 const DataLayout &DL, 3874 const TargetLibraryInfo *TLI, 3875 const DominatorTree *DT, AssumptionCache *AC, 3876 const Instruction *CxtI) { 3877 return ::SimplifyCastInst(CastOpc, Op, Ty, Query(DL, TLI, DT, AC, CxtI), 3878 RecursionLimit); 3879 } 3880 3881 //=== Helper functions for higher up the class hierarchy. 3882 3883 /// Given operands for a BinaryOperator, see if we can fold the result. 3884 /// If not, this returns null. 3885 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 3886 const Query &Q, unsigned MaxRecurse) { 3887 switch (Opcode) { 3888 case Instruction::Add: 3889 return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 3890 Q, MaxRecurse); 3891 case Instruction::FAdd: 3892 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3893 3894 case Instruction::Sub: 3895 return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 3896 Q, MaxRecurse); 3897 case Instruction::FSub: 3898 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3899 3900 case Instruction::Mul: return SimplifyMulInst (LHS, RHS, Q, MaxRecurse); 3901 case Instruction::FMul: 3902 return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3903 case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 3904 case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 3905 case Instruction::FDiv: 3906 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3907 case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 3908 case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 3909 case Instruction::FRem: 3910 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3911 case Instruction::Shl: 3912 return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 3913 Q, MaxRecurse); 3914 case Instruction::LShr: 3915 return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse); 3916 case Instruction::AShr: 3917 return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse); 3918 case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 3919 case Instruction::Or: return SimplifyOrInst (LHS, RHS, Q, MaxRecurse); 3920 case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 3921 default: 3922 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 3923 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3924 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 3925 3926 // If the operation is associative, try some generic simplifications. 3927 if (Instruction::isAssociative(Opcode)) 3928 if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse)) 3929 return V; 3930 3931 // If the operation is with the result of a select instruction check whether 3932 // operating on either branch of the select always yields the same value. 3933 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3934 if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse)) 3935 return V; 3936 3937 // If the operation is with the result of a phi instruction, check whether 3938 // operating on all incoming values of the phi always yields the same value. 3939 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3940 if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse)) 3941 return V; 3942 3943 return nullptr; 3944 } 3945 } 3946 3947 /// Given operands for a BinaryOperator, see if we can fold the result. 3948 /// If not, this returns null. 3949 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the 3950 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp. 3951 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 3952 const FastMathFlags &FMF, const Query &Q, 3953 unsigned MaxRecurse) { 3954 switch (Opcode) { 3955 case Instruction::FAdd: 3956 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 3957 case Instruction::FSub: 3958 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 3959 case Instruction::FMul: 3960 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 3961 default: 3962 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 3963 } 3964 } 3965 3966 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 3967 const DataLayout &DL, const TargetLibraryInfo *TLI, 3968 const DominatorTree *DT, AssumptionCache *AC, 3969 const Instruction *CxtI) { 3970 return ::SimplifyBinOp(Opcode, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 3971 RecursionLimit); 3972 } 3973 3974 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 3975 const FastMathFlags &FMF, const DataLayout &DL, 3976 const TargetLibraryInfo *TLI, 3977 const DominatorTree *DT, AssumptionCache *AC, 3978 const Instruction *CxtI) { 3979 return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Query(DL, TLI, DT, AC, CxtI), 3980 RecursionLimit); 3981 } 3982 3983 /// Given operands for a CmpInst, see if we can fold the result. 3984 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3985 const Query &Q, unsigned MaxRecurse) { 3986 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 3987 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 3988 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3989 } 3990 3991 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3992 const DataLayout &DL, const TargetLibraryInfo *TLI, 3993 const DominatorTree *DT, AssumptionCache *AC, 3994 const Instruction *CxtI) { 3995 return ::SimplifyCmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 3996 RecursionLimit); 3997 } 3998 3999 static bool IsIdempotent(Intrinsic::ID ID) { 4000 switch (ID) { 4001 default: return false; 4002 4003 // Unary idempotent: f(f(x)) = f(x) 4004 case Intrinsic::fabs: 4005 case Intrinsic::floor: 4006 case Intrinsic::ceil: 4007 case Intrinsic::trunc: 4008 case Intrinsic::rint: 4009 case Intrinsic::nearbyint: 4010 case Intrinsic::round: 4011 return true; 4012 } 4013 } 4014 4015 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 4016 const DataLayout &DL) { 4017 GlobalValue *PtrSym; 4018 APInt PtrOffset; 4019 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 4020 return nullptr; 4021 4022 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 4023 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 4024 Type *Int32PtrTy = Int32Ty->getPointerTo(); 4025 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 4026 4027 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 4028 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 4029 return nullptr; 4030 4031 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 4032 if (OffsetInt % 4 != 0) 4033 return nullptr; 4034 4035 Constant *C = ConstantExpr::getGetElementPtr( 4036 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 4037 ConstantInt::get(Int64Ty, OffsetInt / 4)); 4038 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 4039 if (!Loaded) 4040 return nullptr; 4041 4042 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 4043 if (!LoadedCE) 4044 return nullptr; 4045 4046 if (LoadedCE->getOpcode() == Instruction::Trunc) { 4047 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4048 if (!LoadedCE) 4049 return nullptr; 4050 } 4051 4052 if (LoadedCE->getOpcode() != Instruction::Sub) 4053 return nullptr; 4054 4055 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4056 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 4057 return nullptr; 4058 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 4059 4060 Constant *LoadedRHS = LoadedCE->getOperand(1); 4061 GlobalValue *LoadedRHSSym; 4062 APInt LoadedRHSOffset; 4063 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 4064 DL) || 4065 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 4066 return nullptr; 4067 4068 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 4069 } 4070 4071 static bool maskIsAllZeroOrUndef(Value *Mask) { 4072 auto *ConstMask = dyn_cast<Constant>(Mask); 4073 if (!ConstMask) 4074 return false; 4075 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 4076 return true; 4077 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; 4078 ++I) { 4079 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 4080 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 4081 continue; 4082 return false; 4083 } 4084 return true; 4085 } 4086 4087 template <typename IterTy> 4088 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd, 4089 const Query &Q, unsigned MaxRecurse) { 4090 Intrinsic::ID IID = F->getIntrinsicID(); 4091 unsigned NumOperands = std::distance(ArgBegin, ArgEnd); 4092 Type *ReturnType = F->getReturnType(); 4093 4094 // Binary Ops 4095 if (NumOperands == 2) { 4096 Value *LHS = *ArgBegin; 4097 Value *RHS = *(ArgBegin + 1); 4098 if (IID == Intrinsic::usub_with_overflow || 4099 IID == Intrinsic::ssub_with_overflow) { 4100 // X - X -> { 0, false } 4101 if (LHS == RHS) 4102 return Constant::getNullValue(ReturnType); 4103 4104 // X - undef -> undef 4105 // undef - X -> undef 4106 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 4107 return UndefValue::get(ReturnType); 4108 } 4109 4110 if (IID == Intrinsic::uadd_with_overflow || 4111 IID == Intrinsic::sadd_with_overflow) { 4112 // X + undef -> undef 4113 if (isa<UndefValue>(RHS)) 4114 return UndefValue::get(ReturnType); 4115 } 4116 4117 if (IID == Intrinsic::umul_with_overflow || 4118 IID == Intrinsic::smul_with_overflow) { 4119 // X * 0 -> { 0, false } 4120 if (match(RHS, m_Zero())) 4121 return Constant::getNullValue(ReturnType); 4122 4123 // X * undef -> { 0, false } 4124 if (match(RHS, m_Undef())) 4125 return Constant::getNullValue(ReturnType); 4126 } 4127 4128 if (IID == Intrinsic::load_relative && isa<Constant>(LHS) && 4129 isa<Constant>(RHS)) 4130 return SimplifyRelativeLoad(cast<Constant>(LHS), cast<Constant>(RHS), 4131 Q.DL); 4132 } 4133 4134 // Simplify calls to llvm.masked.load.* 4135 if (IID == Intrinsic::masked_load) { 4136 Value *MaskArg = ArgBegin[2]; 4137 Value *PassthruArg = ArgBegin[3]; 4138 // If the mask is all zeros or undef, the "passthru" argument is the result. 4139 if (maskIsAllZeroOrUndef(MaskArg)) 4140 return PassthruArg; 4141 } 4142 4143 // Perform idempotent optimizations 4144 if (!IsIdempotent(IID)) 4145 return nullptr; 4146 4147 // Unary Ops 4148 if (NumOperands == 1) 4149 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) 4150 if (II->getIntrinsicID() == IID) 4151 return II; 4152 4153 return nullptr; 4154 } 4155 4156 template <typename IterTy> 4157 static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd, 4158 const Query &Q, unsigned MaxRecurse) { 4159 Type *Ty = V->getType(); 4160 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 4161 Ty = PTy->getElementType(); 4162 FunctionType *FTy = cast<FunctionType>(Ty); 4163 4164 // call undef -> undef 4165 // call null -> undef 4166 if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V)) 4167 return UndefValue::get(FTy->getReturnType()); 4168 4169 Function *F = dyn_cast<Function>(V); 4170 if (!F) 4171 return nullptr; 4172 4173 if (F->isIntrinsic()) 4174 if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse)) 4175 return Ret; 4176 4177 if (!canConstantFoldCallTo(F)) 4178 return nullptr; 4179 4180 SmallVector<Constant *, 4> ConstantArgs; 4181 ConstantArgs.reserve(ArgEnd - ArgBegin); 4182 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) { 4183 Constant *C = dyn_cast<Constant>(*I); 4184 if (!C) 4185 return nullptr; 4186 ConstantArgs.push_back(C); 4187 } 4188 4189 return ConstantFoldCall(F, ConstantArgs, Q.TLI); 4190 } 4191 4192 Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin, 4193 User::op_iterator ArgEnd, const DataLayout &DL, 4194 const TargetLibraryInfo *TLI, const DominatorTree *DT, 4195 AssumptionCache *AC, const Instruction *CxtI) { 4196 return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT, AC, CxtI), 4197 RecursionLimit); 4198 } 4199 4200 Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args, 4201 const DataLayout &DL, const TargetLibraryInfo *TLI, 4202 const DominatorTree *DT, AssumptionCache *AC, 4203 const Instruction *CxtI) { 4204 return ::SimplifyCall(V, Args.begin(), Args.end(), 4205 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 4206 } 4207 4208 /// See if we can compute a simplified version of this instruction. 4209 /// If not, this returns null. 4210 Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout &DL, 4211 const TargetLibraryInfo *TLI, 4212 const DominatorTree *DT, AssumptionCache *AC) { 4213 Value *Result; 4214 4215 switch (I->getOpcode()) { 4216 default: 4217 Result = ConstantFoldInstruction(I, DL, TLI); 4218 break; 4219 case Instruction::FAdd: 4220 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 4221 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4222 break; 4223 case Instruction::Add: 4224 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), 4225 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4226 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4227 TLI, DT, AC, I); 4228 break; 4229 case Instruction::FSub: 4230 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 4231 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4232 break; 4233 case Instruction::Sub: 4234 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), 4235 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4236 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4237 TLI, DT, AC, I); 4238 break; 4239 case Instruction::FMul: 4240 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 4241 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4242 break; 4243 case Instruction::Mul: 4244 Result = 4245 SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4246 break; 4247 case Instruction::SDiv: 4248 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4249 AC, I); 4250 break; 4251 case Instruction::UDiv: 4252 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4253 AC, I); 4254 break; 4255 case Instruction::FDiv: 4256 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 4257 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4258 break; 4259 case Instruction::SRem: 4260 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4261 AC, I); 4262 break; 4263 case Instruction::URem: 4264 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4265 AC, I); 4266 break; 4267 case Instruction::FRem: 4268 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 4269 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4270 break; 4271 case Instruction::Shl: 4272 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), 4273 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4274 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4275 TLI, DT, AC, I); 4276 break; 4277 case Instruction::LShr: 4278 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 4279 cast<BinaryOperator>(I)->isExact(), DL, TLI, DT, 4280 AC, I); 4281 break; 4282 case Instruction::AShr: 4283 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 4284 cast<BinaryOperator>(I)->isExact(), DL, TLI, DT, 4285 AC, I); 4286 break; 4287 case Instruction::And: 4288 Result = 4289 SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4290 break; 4291 case Instruction::Or: 4292 Result = 4293 SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4294 break; 4295 case Instruction::Xor: 4296 Result = 4297 SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4298 break; 4299 case Instruction::ICmp: 4300 Result = 4301 SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), I->getOperand(0), 4302 I->getOperand(1), DL, TLI, DT, AC, I); 4303 break; 4304 case Instruction::FCmp: 4305 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), 4306 I->getOperand(0), I->getOperand(1), 4307 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4308 break; 4309 case Instruction::Select: 4310 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 4311 I->getOperand(2), DL, TLI, DT, AC, I); 4312 break; 4313 case Instruction::GetElementPtr: { 4314 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 4315 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 4316 Ops, DL, TLI, DT, AC, I); 4317 break; 4318 } 4319 case Instruction::InsertValue: { 4320 InsertValueInst *IV = cast<InsertValueInst>(I); 4321 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 4322 IV->getInsertedValueOperand(), 4323 IV->getIndices(), DL, TLI, DT, AC, I); 4324 break; 4325 } 4326 case Instruction::ExtractValue: { 4327 auto *EVI = cast<ExtractValueInst>(I); 4328 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 4329 EVI->getIndices(), DL, TLI, DT, AC, I); 4330 break; 4331 } 4332 case Instruction::ExtractElement: { 4333 auto *EEI = cast<ExtractElementInst>(I); 4334 Result = SimplifyExtractElementInst( 4335 EEI->getVectorOperand(), EEI->getIndexOperand(), DL, TLI, DT, AC, I); 4336 break; 4337 } 4338 case Instruction::PHI: 4339 Result = SimplifyPHINode(cast<PHINode>(I), Query(DL, TLI, DT, AC, I)); 4340 break; 4341 case Instruction::Call: { 4342 CallSite CS(cast<CallInst>(I)); 4343 Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), DL, 4344 TLI, DT, AC, I); 4345 break; 4346 } 4347 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 4348 #include "llvm/IR/Instruction.def" 4349 #undef HANDLE_CAST_INST 4350 Result = SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), 4351 DL, TLI, DT, AC, I); 4352 break; 4353 } 4354 4355 // In general, it is possible for computeKnownBits to determine all bits in a 4356 // value even when the operands are not all constants. 4357 if (!Result && I->getType()->isIntegerTy()) { 4358 unsigned BitWidth = I->getType()->getScalarSizeInBits(); 4359 APInt KnownZero(BitWidth, 0); 4360 APInt KnownOne(BitWidth, 0); 4361 computeKnownBits(I, KnownZero, KnownOne, DL, /*Depth*/0, AC, I, DT); 4362 if ((KnownZero | KnownOne).isAllOnesValue()) 4363 Result = ConstantInt::get(I->getContext(), KnownOne); 4364 } 4365 4366 /// If called on unreachable code, the above logic may report that the 4367 /// instruction simplified to itself. Make life easier for users by 4368 /// detecting that case here, returning a safe value instead. 4369 return Result == I ? UndefValue::get(I->getType()) : Result; 4370 } 4371 4372 /// \brief Implementation of recursive simplification through an instruction's 4373 /// uses. 4374 /// 4375 /// This is the common implementation of the recursive simplification routines. 4376 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 4377 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 4378 /// instructions to process and attempt to simplify it using 4379 /// InstructionSimplify. 4380 /// 4381 /// This routine returns 'true' only when *it* simplifies something. The passed 4382 /// in simplified value does not count toward this. 4383 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, 4384 const TargetLibraryInfo *TLI, 4385 const DominatorTree *DT, 4386 AssumptionCache *AC) { 4387 bool Simplified = false; 4388 SmallSetVector<Instruction *, 8> Worklist; 4389 const DataLayout &DL = I->getModule()->getDataLayout(); 4390 4391 // If we have an explicit value to collapse to, do that round of the 4392 // simplification loop by hand initially. 4393 if (SimpleV) { 4394 for (User *U : I->users()) 4395 if (U != I) 4396 Worklist.insert(cast<Instruction>(U)); 4397 4398 // Replace the instruction with its simplified value. 4399 I->replaceAllUsesWith(SimpleV); 4400 4401 // Gracefully handle edge cases where the instruction is not wired into any 4402 // parent block. 4403 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4404 !I->mayHaveSideEffects()) 4405 I->eraseFromParent(); 4406 } else { 4407 Worklist.insert(I); 4408 } 4409 4410 // Note that we must test the size on each iteration, the worklist can grow. 4411 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 4412 I = Worklist[Idx]; 4413 4414 // See if this instruction simplifies. 4415 SimpleV = SimplifyInstruction(I, DL, TLI, DT, AC); 4416 if (!SimpleV) 4417 continue; 4418 4419 Simplified = true; 4420 4421 // Stash away all the uses of the old instruction so we can check them for 4422 // recursive simplifications after a RAUW. This is cheaper than checking all 4423 // uses of To on the recursive step in most cases. 4424 for (User *U : I->users()) 4425 Worklist.insert(cast<Instruction>(U)); 4426 4427 // Replace the instruction with its simplified value. 4428 I->replaceAllUsesWith(SimpleV); 4429 4430 // Gracefully handle edge cases where the instruction is not wired into any 4431 // parent block. 4432 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4433 !I->mayHaveSideEffects()) 4434 I->eraseFromParent(); 4435 } 4436 return Simplified; 4437 } 4438 4439 bool llvm::recursivelySimplifyInstruction(Instruction *I, 4440 const TargetLibraryInfo *TLI, 4441 const DominatorTree *DT, 4442 AssumptionCache *AC) { 4443 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC); 4444 } 4445 4446 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, 4447 const TargetLibraryInfo *TLI, 4448 const DominatorTree *DT, 4449 AssumptionCache *AC) { 4450 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 4451 assert(SimpleV && "Must provide a simplified value."); 4452 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC); 4453 } 4454