1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements routines for folding instructions into simpler forms
10 // that do not require creating new instructions. This does constant folding
11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been
14 // simplified: This is usually true and assuming it simplifies the logic (if
15 // they have not been simplified then results are correct but maybe suboptimal).
16 //
17 //===----------------------------------------------------------------------===//
18
19 #include "llvm/Analysis/InstructionSimplify.h"
20
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/CaptureTracking.h"
27 #include "llvm/Analysis/CmpInstAnalysis.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/InstSimplifyFolder.h"
30 #include "llvm/Analysis/LoopAnalysisManager.h"
31 #include "llvm/Analysis/MemoryBuiltins.h"
32 #include "llvm/Analysis/OverflowInstAnalysis.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/IR/ConstantRange.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/PatternMatch.h"
42 #include "llvm/Support/KnownBits.h"
43 #include <algorithm>
44 using namespace llvm;
45 using namespace llvm::PatternMatch;
46
47 #define DEBUG_TYPE "instsimplify"
48
49 enum { RecursionLimit = 3 };
50
51 STATISTIC(NumExpand, "Number of expansions");
52 STATISTIC(NumReassoc, "Number of reassociations");
53
54 static Value *simplifyAndInst(Value *, Value *, const SimplifyQuery &,
55 unsigned);
56 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned);
57 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &,
58 const SimplifyQuery &, unsigned);
59 static Value *simplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
60 unsigned);
61 static Value *simplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &,
62 const SimplifyQuery &, unsigned);
63 static Value *simplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
64 unsigned);
65 static Value *simplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
66 const SimplifyQuery &Q, unsigned MaxRecurse);
67 static Value *simplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
68 static Value *simplifyXorInst(Value *, Value *, const SimplifyQuery &,
69 unsigned);
70 static Value *simplifyCastInst(unsigned, Value *, Type *, const SimplifyQuery &,
71 unsigned);
72 static Value *simplifyGEPInst(Type *, Value *, ArrayRef<Value *>, bool,
73 const SimplifyQuery &, unsigned);
74 static Value *simplifySelectInst(Value *, Value *, Value *,
75 const SimplifyQuery &, unsigned);
76
foldSelectWithBinaryOp(Value * Cond,Value * TrueVal,Value * FalseVal)77 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal,
78 Value *FalseVal) {
79 BinaryOperator::BinaryOps BinOpCode;
80 if (auto *BO = dyn_cast<BinaryOperator>(Cond))
81 BinOpCode = BO->getOpcode();
82 else
83 return nullptr;
84
85 CmpInst::Predicate ExpectedPred, Pred1, Pred2;
86 if (BinOpCode == BinaryOperator::Or) {
87 ExpectedPred = ICmpInst::ICMP_NE;
88 } else if (BinOpCode == BinaryOperator::And) {
89 ExpectedPred = ICmpInst::ICMP_EQ;
90 } else
91 return nullptr;
92
93 // %A = icmp eq %TV, %FV
94 // %B = icmp eq %X, %Y (and one of these is a select operand)
95 // %C = and %A, %B
96 // %D = select %C, %TV, %FV
97 // -->
98 // %FV
99
100 // %A = icmp ne %TV, %FV
101 // %B = icmp ne %X, %Y (and one of these is a select operand)
102 // %C = or %A, %B
103 // %D = select %C, %TV, %FV
104 // -->
105 // %TV
106 Value *X, *Y;
107 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal),
108 m_Specific(FalseVal)),
109 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) ||
110 Pred1 != Pred2 || Pred1 != ExpectedPred)
111 return nullptr;
112
113 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal)
114 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal;
115
116 return nullptr;
117 }
118
119 /// For a boolean type or a vector of boolean type, return false or a vector
120 /// with every element false.
getFalse(Type * Ty)121 static Constant *getFalse(Type *Ty) { return ConstantInt::getFalse(Ty); }
122
123 /// For a boolean type or a vector of boolean type, return true or a vector
124 /// with every element true.
getTrue(Type * Ty)125 static Constant *getTrue(Type *Ty) { return ConstantInt::getTrue(Ty); }
126
127 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
isSameCompare(Value * V,CmpInst::Predicate Pred,Value * LHS,Value * RHS)128 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
129 Value *RHS) {
130 CmpInst *Cmp = dyn_cast<CmpInst>(V);
131 if (!Cmp)
132 return false;
133 CmpInst::Predicate CPred = Cmp->getPredicate();
134 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
135 if (CPred == Pred && CLHS == LHS && CRHS == RHS)
136 return true;
137 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
138 CRHS == LHS;
139 }
140
141 /// Simplify comparison with true or false branch of select:
142 /// %sel = select i1 %cond, i32 %tv, i32 %fv
143 /// %cmp = icmp sle i32 %sel, %rhs
144 /// Compose new comparison by substituting %sel with either %tv or %fv
145 /// and see if it simplifies.
simplifyCmpSelCase(CmpInst::Predicate Pred,Value * LHS,Value * RHS,Value * Cond,const SimplifyQuery & Q,unsigned MaxRecurse,Constant * TrueOrFalse)146 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS,
147 Value *RHS, Value *Cond,
148 const SimplifyQuery &Q, unsigned MaxRecurse,
149 Constant *TrueOrFalse) {
150 Value *SimplifiedCmp = simplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse);
151 if (SimplifiedCmp == Cond) {
152 // %cmp simplified to the select condition (%cond).
153 return TrueOrFalse;
154 } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) {
155 // It didn't simplify. However, if composed comparison is equivalent
156 // to the select condition (%cond) then we can replace it.
157 return TrueOrFalse;
158 }
159 return SimplifiedCmp;
160 }
161
162 /// Simplify comparison with true branch of select
simplifyCmpSelTrueCase(CmpInst::Predicate Pred,Value * LHS,Value * RHS,Value * Cond,const SimplifyQuery & Q,unsigned MaxRecurse)163 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS,
164 Value *RHS, Value *Cond,
165 const SimplifyQuery &Q,
166 unsigned MaxRecurse) {
167 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
168 getTrue(Cond->getType()));
169 }
170
171 /// Simplify comparison with false branch of select
simplifyCmpSelFalseCase(CmpInst::Predicate Pred,Value * LHS,Value * RHS,Value * Cond,const SimplifyQuery & Q,unsigned MaxRecurse)172 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS,
173 Value *RHS, Value *Cond,
174 const SimplifyQuery &Q,
175 unsigned MaxRecurse) {
176 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
177 getFalse(Cond->getType()));
178 }
179
180 /// We know comparison with both branches of select can be simplified, but they
181 /// are not equal. This routine handles some logical simplifications.
handleOtherCmpSelSimplifications(Value * TCmp,Value * FCmp,Value * Cond,const SimplifyQuery & Q,unsigned MaxRecurse)182 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp,
183 Value *Cond,
184 const SimplifyQuery &Q,
185 unsigned MaxRecurse) {
186 // If the false value simplified to false, then the result of the compare
187 // is equal to "Cond && TCmp". This also catches the case when the false
188 // value simplified to false and the true value to true, returning "Cond".
189 // Folding select to and/or isn't poison-safe in general; impliesPoison
190 // checks whether folding it does not convert a well-defined value into
191 // poison.
192 if (match(FCmp, m_Zero()) && impliesPoison(TCmp, Cond))
193 if (Value *V = simplifyAndInst(Cond, TCmp, Q, MaxRecurse))
194 return V;
195 // If the true value simplified to true, then the result of the compare
196 // is equal to "Cond || FCmp".
197 if (match(TCmp, m_One()) && impliesPoison(FCmp, Cond))
198 if (Value *V = simplifyOrInst(Cond, FCmp, Q, MaxRecurse))
199 return V;
200 // Finally, if the false value simplified to true and the true value to
201 // false, then the result of the compare is equal to "!Cond".
202 if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
203 if (Value *V = simplifyXorInst(
204 Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse))
205 return V;
206 return nullptr;
207 }
208
209 /// Does the given value dominate the specified phi node?
valueDominatesPHI(Value * V,PHINode * P,const DominatorTree * DT)210 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
211 Instruction *I = dyn_cast<Instruction>(V);
212 if (!I)
213 // Arguments and constants dominate all instructions.
214 return true;
215
216 // If we are processing instructions (and/or basic blocks) that have not been
217 // fully added to a function, the parent nodes may still be null. Simply
218 // return the conservative answer in these cases.
219 if (!I->getParent() || !P->getParent() || !I->getFunction())
220 return false;
221
222 // If we have a DominatorTree then do a precise test.
223 if (DT)
224 return DT->dominates(I, P);
225
226 // Otherwise, if the instruction is in the entry block and is not an invoke,
227 // then it obviously dominates all phi nodes.
228 if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) &&
229 !isa<CallBrInst>(I))
230 return true;
231
232 return false;
233 }
234
235 /// Try to simplify a binary operator of form "V op OtherOp" where V is
236 /// "(B0 opex B1)" by distributing 'op' across 'opex' as
237 /// "(B0 op OtherOp) opex (B1 op OtherOp)".
expandBinOp(Instruction::BinaryOps Opcode,Value * V,Value * OtherOp,Instruction::BinaryOps OpcodeToExpand,const SimplifyQuery & Q,unsigned MaxRecurse)238 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V,
239 Value *OtherOp, Instruction::BinaryOps OpcodeToExpand,
240 const SimplifyQuery &Q, unsigned MaxRecurse) {
241 auto *B = dyn_cast<BinaryOperator>(V);
242 if (!B || B->getOpcode() != OpcodeToExpand)
243 return nullptr;
244 Value *B0 = B->getOperand(0), *B1 = B->getOperand(1);
245 Value *L =
246 simplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(), MaxRecurse);
247 if (!L)
248 return nullptr;
249 Value *R =
250 simplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(), MaxRecurse);
251 if (!R)
252 return nullptr;
253
254 // Does the expanded pair of binops simplify to the existing binop?
255 if ((L == B0 && R == B1) ||
256 (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) {
257 ++NumExpand;
258 return B;
259 }
260
261 // Otherwise, return "L op' R" if it simplifies.
262 Value *S = simplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse);
263 if (!S)
264 return nullptr;
265
266 ++NumExpand;
267 return S;
268 }
269
270 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by
271 /// distributing op over op'.
expandCommutativeBinOp(Instruction::BinaryOps Opcode,Value * L,Value * R,Instruction::BinaryOps OpcodeToExpand,const SimplifyQuery & Q,unsigned MaxRecurse)272 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode, Value *L,
273 Value *R,
274 Instruction::BinaryOps OpcodeToExpand,
275 const SimplifyQuery &Q,
276 unsigned MaxRecurse) {
277 // Recursion is always used, so bail out at once if we already hit the limit.
278 if (!MaxRecurse--)
279 return nullptr;
280
281 if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse))
282 return V;
283 if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse))
284 return V;
285 return nullptr;
286 }
287
288 /// Generic simplifications for associative binary operations.
289 /// Returns the simpler value, or null if none was found.
simplifyAssociativeBinOp(Instruction::BinaryOps Opcode,Value * LHS,Value * RHS,const SimplifyQuery & Q,unsigned MaxRecurse)290 static Value *simplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
291 Value *LHS, Value *RHS,
292 const SimplifyQuery &Q,
293 unsigned MaxRecurse) {
294 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
295
296 // Recursion is always used, so bail out at once if we already hit the limit.
297 if (!MaxRecurse--)
298 return nullptr;
299
300 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
301 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
302
303 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
304 if (Op0 && Op0->getOpcode() == Opcode) {
305 Value *A = Op0->getOperand(0);
306 Value *B = Op0->getOperand(1);
307 Value *C = RHS;
308
309 // Does "B op C" simplify?
310 if (Value *V = simplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
311 // It does! Return "A op V" if it simplifies or is already available.
312 // If V equals B then "A op V" is just the LHS.
313 if (V == B)
314 return LHS;
315 // Otherwise return "A op V" if it simplifies.
316 if (Value *W = simplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
317 ++NumReassoc;
318 return W;
319 }
320 }
321 }
322
323 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
324 if (Op1 && Op1->getOpcode() == Opcode) {
325 Value *A = LHS;
326 Value *B = Op1->getOperand(0);
327 Value *C = Op1->getOperand(1);
328
329 // Does "A op B" simplify?
330 if (Value *V = simplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
331 // It does! Return "V op C" if it simplifies or is already available.
332 // If V equals B then "V op C" is just the RHS.
333 if (V == B)
334 return RHS;
335 // Otherwise return "V op C" if it simplifies.
336 if (Value *W = simplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
337 ++NumReassoc;
338 return W;
339 }
340 }
341 }
342
343 // The remaining transforms require commutativity as well as associativity.
344 if (!Instruction::isCommutative(Opcode))
345 return nullptr;
346
347 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
348 if (Op0 && Op0->getOpcode() == Opcode) {
349 Value *A = Op0->getOperand(0);
350 Value *B = Op0->getOperand(1);
351 Value *C = RHS;
352
353 // Does "C op A" simplify?
354 if (Value *V = simplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
355 // It does! Return "V op B" if it simplifies or is already available.
356 // If V equals A then "V op B" is just the LHS.
357 if (V == A)
358 return LHS;
359 // Otherwise return "V op B" if it simplifies.
360 if (Value *W = simplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
361 ++NumReassoc;
362 return W;
363 }
364 }
365 }
366
367 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
368 if (Op1 && Op1->getOpcode() == Opcode) {
369 Value *A = LHS;
370 Value *B = Op1->getOperand(0);
371 Value *C = Op1->getOperand(1);
372
373 // Does "C op A" simplify?
374 if (Value *V = simplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
375 // It does! Return "B op V" if it simplifies or is already available.
376 // If V equals C then "B op V" is just the RHS.
377 if (V == C)
378 return RHS;
379 // Otherwise return "B op V" if it simplifies.
380 if (Value *W = simplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
381 ++NumReassoc;
382 return W;
383 }
384 }
385 }
386
387 return nullptr;
388 }
389
390 /// In the case of a binary operation with a select instruction as an operand,
391 /// try to simplify the binop by seeing whether evaluating it on both branches
392 /// of the select results in the same value. Returns the common value if so,
393 /// otherwise returns null.
threadBinOpOverSelect(Instruction::BinaryOps Opcode,Value * LHS,Value * RHS,const SimplifyQuery & Q,unsigned MaxRecurse)394 static Value *threadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
395 Value *RHS, const SimplifyQuery &Q,
396 unsigned MaxRecurse) {
397 // Recursion is always used, so bail out at once if we already hit the limit.
398 if (!MaxRecurse--)
399 return nullptr;
400
401 SelectInst *SI;
402 if (isa<SelectInst>(LHS)) {
403 SI = cast<SelectInst>(LHS);
404 } else {
405 assert(isa<SelectInst>(RHS) && "No select instruction operand!");
406 SI = cast<SelectInst>(RHS);
407 }
408
409 // Evaluate the BinOp on the true and false branches of the select.
410 Value *TV;
411 Value *FV;
412 if (SI == LHS) {
413 TV = simplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
414 FV = simplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
415 } else {
416 TV = simplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
417 FV = simplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
418 }
419
420 // If they simplified to the same value, then return the common value.
421 // If they both failed to simplify then return null.
422 if (TV == FV)
423 return TV;
424
425 // If one branch simplified to undef, return the other one.
426 if (TV && Q.isUndefValue(TV))
427 return FV;
428 if (FV && Q.isUndefValue(FV))
429 return TV;
430
431 // If applying the operation did not change the true and false select values,
432 // then the result of the binop is the select itself.
433 if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
434 return SI;
435
436 // If one branch simplified and the other did not, and the simplified
437 // value is equal to the unsimplified one, return the simplified value.
438 // For example, select (cond, X, X & Z) & Z -> X & Z.
439 if ((FV && !TV) || (TV && !FV)) {
440 // Check that the simplified value has the form "X op Y" where "op" is the
441 // same as the original operation.
442 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
443 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) {
444 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
445 // We already know that "op" is the same as for the simplified value. See
446 // if the operands match too. If so, return the simplified value.
447 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
448 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
449 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
450 if (Simplified->getOperand(0) == UnsimplifiedLHS &&
451 Simplified->getOperand(1) == UnsimplifiedRHS)
452 return Simplified;
453 if (Simplified->isCommutative() &&
454 Simplified->getOperand(1) == UnsimplifiedLHS &&
455 Simplified->getOperand(0) == UnsimplifiedRHS)
456 return Simplified;
457 }
458 }
459
460 return nullptr;
461 }
462
463 /// In the case of a comparison with a select instruction, try to simplify the
464 /// comparison by seeing whether both branches of the select result in the same
465 /// value. Returns the common value if so, otherwise returns null.
466 /// For example, if we have:
467 /// %tmp = select i1 %cmp, i32 1, i32 2
468 /// %cmp1 = icmp sle i32 %tmp, 3
469 /// We can simplify %cmp1 to true, because both branches of select are
470 /// less than 3. We compose new comparison by substituting %tmp with both
471 /// branches of select and see if it can be simplified.
threadCmpOverSelect(CmpInst::Predicate Pred,Value * LHS,Value * RHS,const SimplifyQuery & Q,unsigned MaxRecurse)472 static Value *threadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
473 Value *RHS, const SimplifyQuery &Q,
474 unsigned MaxRecurse) {
475 // Recursion is always used, so bail out at once if we already hit the limit.
476 if (!MaxRecurse--)
477 return nullptr;
478
479 // Make sure the select is on the LHS.
480 if (!isa<SelectInst>(LHS)) {
481 std::swap(LHS, RHS);
482 Pred = CmpInst::getSwappedPredicate(Pred);
483 }
484 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
485 SelectInst *SI = cast<SelectInst>(LHS);
486 Value *Cond = SI->getCondition();
487 Value *TV = SI->getTrueValue();
488 Value *FV = SI->getFalseValue();
489
490 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
491 // Does "cmp TV, RHS" simplify?
492 Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse);
493 if (!TCmp)
494 return nullptr;
495
496 // Does "cmp FV, RHS" simplify?
497 Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse);
498 if (!FCmp)
499 return nullptr;
500
501 // If both sides simplified to the same value, then use it as the result of
502 // the original comparison.
503 if (TCmp == FCmp)
504 return TCmp;
505
506 // The remaining cases only make sense if the select condition has the same
507 // type as the result of the comparison, so bail out if this is not so.
508 if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy())
509 return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse);
510
511 return nullptr;
512 }
513
514 /// In the case of a binary operation with an operand that is a PHI instruction,
515 /// try to simplify the binop by seeing whether evaluating it on the incoming
516 /// phi values yields the same result for every value. If so returns the common
517 /// value, otherwise returns null.
threadBinOpOverPHI(Instruction::BinaryOps Opcode,Value * LHS,Value * RHS,const SimplifyQuery & Q,unsigned MaxRecurse)518 static Value *threadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
519 Value *RHS, const SimplifyQuery &Q,
520 unsigned MaxRecurse) {
521 // Recursion is always used, so bail out at once if we already hit the limit.
522 if (!MaxRecurse--)
523 return nullptr;
524
525 PHINode *PI;
526 if (isa<PHINode>(LHS)) {
527 PI = cast<PHINode>(LHS);
528 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
529 if (!valueDominatesPHI(RHS, PI, Q.DT))
530 return nullptr;
531 } else {
532 assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
533 PI = cast<PHINode>(RHS);
534 // Bail out if LHS and the phi may be mutually interdependent due to a loop.
535 if (!valueDominatesPHI(LHS, PI, Q.DT))
536 return nullptr;
537 }
538
539 // Evaluate the BinOp on the incoming phi values.
540 Value *CommonValue = nullptr;
541 for (Value *Incoming : PI->incoming_values()) {
542 // If the incoming value is the phi node itself, it can safely be skipped.
543 if (Incoming == PI)
544 continue;
545 Value *V = PI == LHS ? simplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse)
546 : simplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
547 // If the operation failed to simplify, or simplified to a different value
548 // to previously, then give up.
549 if (!V || (CommonValue && V != CommonValue))
550 return nullptr;
551 CommonValue = V;
552 }
553
554 return CommonValue;
555 }
556
557 /// In the case of a comparison with a PHI instruction, try to simplify the
558 /// comparison by seeing whether comparing with all of the incoming phi values
559 /// yields the same result every time. If so returns the common result,
560 /// otherwise returns null.
threadCmpOverPHI(CmpInst::Predicate Pred,Value * LHS,Value * RHS,const SimplifyQuery & Q,unsigned MaxRecurse)561 static Value *threadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
562 const SimplifyQuery &Q, unsigned MaxRecurse) {
563 // Recursion is always used, so bail out at once if we already hit the limit.
564 if (!MaxRecurse--)
565 return nullptr;
566
567 // Make sure the phi is on the LHS.
568 if (!isa<PHINode>(LHS)) {
569 std::swap(LHS, RHS);
570 Pred = CmpInst::getSwappedPredicate(Pred);
571 }
572 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
573 PHINode *PI = cast<PHINode>(LHS);
574
575 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
576 if (!valueDominatesPHI(RHS, PI, Q.DT))
577 return nullptr;
578
579 // Evaluate the BinOp on the incoming phi values.
580 Value *CommonValue = nullptr;
581 for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) {
582 Value *Incoming = PI->getIncomingValue(u);
583 Instruction *InTI = PI->getIncomingBlock(u)->getTerminator();
584 // If the incoming value is the phi node itself, it can safely be skipped.
585 if (Incoming == PI)
586 continue;
587 // Change the context instruction to the "edge" that flows into the phi.
588 // This is important because that is where incoming is actually "evaluated"
589 // even though it is used later somewhere else.
590 Value *V = simplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI),
591 MaxRecurse);
592 // If the operation failed to simplify, or simplified to a different value
593 // to previously, then give up.
594 if (!V || (CommonValue && V != CommonValue))
595 return nullptr;
596 CommonValue = V;
597 }
598
599 return CommonValue;
600 }
601
foldOrCommuteConstant(Instruction::BinaryOps Opcode,Value * & Op0,Value * & Op1,const SimplifyQuery & Q)602 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
603 Value *&Op0, Value *&Op1,
604 const SimplifyQuery &Q) {
605 if (auto *CLHS = dyn_cast<Constant>(Op0)) {
606 if (auto *CRHS = dyn_cast<Constant>(Op1)) {
607 switch (Opcode) {
608 default:
609 break;
610 case Instruction::FAdd:
611 case Instruction::FSub:
612 case Instruction::FMul:
613 case Instruction::FDiv:
614 case Instruction::FRem:
615 if (Q.CxtI != nullptr)
616 return ConstantFoldFPInstOperands(Opcode, CLHS, CRHS, Q.DL, Q.CxtI);
617 }
618 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
619 }
620
621 // Canonicalize the constant to the RHS if this is a commutative operation.
622 if (Instruction::isCommutative(Opcode))
623 std::swap(Op0, Op1);
624 }
625 return nullptr;
626 }
627
628 /// Given operands for an Add, see if we can fold the result.
629 /// If not, this returns null.
simplifyAddInst(Value * Op0,Value * Op1,bool IsNSW,bool IsNUW,const SimplifyQuery & Q,unsigned MaxRecurse)630 static Value *simplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
631 const SimplifyQuery &Q, unsigned MaxRecurse) {
632 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
633 return C;
634
635 // X + poison -> poison
636 if (isa<PoisonValue>(Op1))
637 return Op1;
638
639 // X + undef -> undef
640 if (Q.isUndefValue(Op1))
641 return Op1;
642
643 // X + 0 -> X
644 if (match(Op1, m_Zero()))
645 return Op0;
646
647 // If two operands are negative, return 0.
648 if (isKnownNegation(Op0, Op1))
649 return Constant::getNullValue(Op0->getType());
650
651 // X + (Y - X) -> Y
652 // (Y - X) + X -> Y
653 // Eg: X + -X -> 0
654 Value *Y = nullptr;
655 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
656 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
657 return Y;
658
659 // X + ~X -> -1 since ~X = -X-1
660 Type *Ty = Op0->getType();
661 if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0))))
662 return Constant::getAllOnesValue(Ty);
663
664 // add nsw/nuw (xor Y, signmask), signmask --> Y
665 // The no-wrapping add guarantees that the top bit will be set by the add.
666 // Therefore, the xor must be clearing the already set sign bit of Y.
667 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) &&
668 match(Op0, m_Xor(m_Value(Y), m_SignMask())))
669 return Y;
670
671 // add nuw %x, -1 -> -1, because %x can only be 0.
672 if (IsNUW && match(Op1, m_AllOnes()))
673 return Op1; // Which is -1.
674
675 /// i1 add -> xor.
676 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
677 if (Value *V = simplifyXorInst(Op0, Op1, Q, MaxRecurse - 1))
678 return V;
679
680 // Try some generic simplifications for associative operations.
681 if (Value *V =
682 simplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, MaxRecurse))
683 return V;
684
685 // Threading Add over selects and phi nodes is pointless, so don't bother.
686 // Threading over the select in "A + select(cond, B, C)" means evaluating
687 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
688 // only if B and C are equal. If B and C are equal then (since we assume
689 // that operands have already been simplified) "select(cond, B, C)" should
690 // have been simplified to the common value of B and C already. Analysing
691 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly
692 // for threading over phi nodes.
693
694 return nullptr;
695 }
696
simplifyAddInst(Value * Op0,Value * Op1,bool IsNSW,bool IsNUW,const SimplifyQuery & Query)697 Value *llvm::simplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
698 const SimplifyQuery &Query) {
699 return ::simplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit);
700 }
701
702 /// Compute the base pointer and cumulative constant offsets for V.
703 ///
704 /// This strips all constant offsets off of V, leaving it the base pointer, and
705 /// accumulates the total constant offset applied in the returned constant.
706 /// It returns zero if there are no constant offsets applied.
707 ///
708 /// This is very similar to stripAndAccumulateConstantOffsets(), except it
709 /// normalizes the offset bitwidth to the stripped pointer type, not the
710 /// original pointer type.
stripAndComputeConstantOffsets(const DataLayout & DL,Value * & V,bool AllowNonInbounds=false)711 static APInt stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
712 bool AllowNonInbounds = false) {
713 assert(V->getType()->isPtrOrPtrVectorTy());
714
715 APInt Offset = APInt::getZero(DL.getIndexTypeSizeInBits(V->getType()));
716 V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds);
717 // As that strip may trace through `addrspacecast`, need to sext or trunc
718 // the offset calculated.
719 return Offset.sextOrTrunc(DL.getIndexTypeSizeInBits(V->getType()));
720 }
721
722 /// Compute the constant difference between two pointer values.
723 /// If the difference is not a constant, returns zero.
computePointerDifference(const DataLayout & DL,Value * LHS,Value * RHS)724 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
725 Value *RHS) {
726 APInt LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
727 APInt RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
728
729 // If LHS and RHS are not related via constant offsets to the same base
730 // value, there is nothing we can do here.
731 if (LHS != RHS)
732 return nullptr;
733
734 // Otherwise, the difference of LHS - RHS can be computed as:
735 // LHS - RHS
736 // = (LHSOffset + Base) - (RHSOffset + Base)
737 // = LHSOffset - RHSOffset
738 Constant *Res = ConstantInt::get(LHS->getContext(), LHSOffset - RHSOffset);
739 if (auto *VecTy = dyn_cast<VectorType>(LHS->getType()))
740 Res = ConstantVector::getSplat(VecTy->getElementCount(), Res);
741 return Res;
742 }
743
744 /// Given operands for a Sub, see if we can fold the result.
745 /// If not, this returns null.
simplifySubInst(Value * Op0,Value * Op1,bool isNSW,bool isNUW,const SimplifyQuery & Q,unsigned MaxRecurse)746 static Value *simplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
747 const SimplifyQuery &Q, unsigned MaxRecurse) {
748 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
749 return C;
750
751 // X - poison -> poison
752 // poison - X -> poison
753 if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1))
754 return PoisonValue::get(Op0->getType());
755
756 // X - undef -> undef
757 // undef - X -> undef
758 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
759 return UndefValue::get(Op0->getType());
760
761 // X - 0 -> X
762 if (match(Op1, m_Zero()))
763 return Op0;
764
765 // X - X -> 0
766 if (Op0 == Op1)
767 return Constant::getNullValue(Op0->getType());
768
769 // Is this a negation?
770 if (match(Op0, m_Zero())) {
771 // 0 - X -> 0 if the sub is NUW.
772 if (isNUW)
773 return Constant::getNullValue(Op0->getType());
774
775 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
776 if (Known.Zero.isMaxSignedValue()) {
777 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
778 // Op1 must be 0 because negating the minimum signed value is undefined.
779 if (isNSW)
780 return Constant::getNullValue(Op0->getType());
781
782 // 0 - X -> X if X is 0 or the minimum signed value.
783 return Op1;
784 }
785 }
786
787 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
788 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
789 Value *X = nullptr, *Y = nullptr, *Z = Op1;
790 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
791 // See if "V === Y - Z" simplifies.
792 if (Value *V = simplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse - 1))
793 // It does! Now see if "X + V" simplifies.
794 if (Value *W = simplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse - 1)) {
795 // It does, we successfully reassociated!
796 ++NumReassoc;
797 return W;
798 }
799 // See if "V === X - Z" simplifies.
800 if (Value *V = simplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse - 1))
801 // It does! Now see if "Y + V" simplifies.
802 if (Value *W = simplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse - 1)) {
803 // It does, we successfully reassociated!
804 ++NumReassoc;
805 return W;
806 }
807 }
808
809 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
810 // For example, X - (X + 1) -> -1
811 X = Op0;
812 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
813 // See if "V === X - Y" simplifies.
814 if (Value *V = simplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse - 1))
815 // It does! Now see if "V - Z" simplifies.
816 if (Value *W = simplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse - 1)) {
817 // It does, we successfully reassociated!
818 ++NumReassoc;
819 return W;
820 }
821 // See if "V === X - Z" simplifies.
822 if (Value *V = simplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse - 1))
823 // It does! Now see if "V - Y" simplifies.
824 if (Value *W = simplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse - 1)) {
825 // It does, we successfully reassociated!
826 ++NumReassoc;
827 return W;
828 }
829 }
830
831 // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
832 // For example, X - (X - Y) -> Y.
833 Z = Op0;
834 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
835 // See if "V === Z - X" simplifies.
836 if (Value *V = simplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse - 1))
837 // It does! Now see if "V + Y" simplifies.
838 if (Value *W = simplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse - 1)) {
839 // It does, we successfully reassociated!
840 ++NumReassoc;
841 return W;
842 }
843
844 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
845 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
846 match(Op1, m_Trunc(m_Value(Y))))
847 if (X->getType() == Y->getType())
848 // See if "V === X - Y" simplifies.
849 if (Value *V = simplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse - 1))
850 // It does! Now see if "trunc V" simplifies.
851 if (Value *W = simplifyCastInst(Instruction::Trunc, V, Op0->getType(),
852 Q, MaxRecurse - 1))
853 // It does, return the simplified "trunc V".
854 return W;
855
856 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
857 if (match(Op0, m_PtrToInt(m_Value(X))) && match(Op1, m_PtrToInt(m_Value(Y))))
858 if (Constant *Result = computePointerDifference(Q.DL, X, Y))
859 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
860
861 // i1 sub -> xor.
862 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
863 if (Value *V = simplifyXorInst(Op0, Op1, Q, MaxRecurse - 1))
864 return V;
865
866 // Threading Sub over selects and phi nodes is pointless, so don't bother.
867 // Threading over the select in "A - select(cond, B, C)" means evaluating
868 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
869 // only if B and C are equal. If B and C are equal then (since we assume
870 // that operands have already been simplified) "select(cond, B, C)" should
871 // have been simplified to the common value of B and C already. Analysing
872 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly
873 // for threading over phi nodes.
874
875 return nullptr;
876 }
877
simplifySubInst(Value * Op0,Value * Op1,bool isNSW,bool isNUW,const SimplifyQuery & Q)878 Value *llvm::simplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
879 const SimplifyQuery &Q) {
880 return ::simplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
881 }
882
883 /// Given operands for a Mul, see if we can fold the result.
884 /// If not, this returns null.
simplifyMulInst(Value * Op0,Value * Op1,const SimplifyQuery & Q,unsigned MaxRecurse)885 static Value *simplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
886 unsigned MaxRecurse) {
887 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
888 return C;
889
890 // X * poison -> poison
891 if (isa<PoisonValue>(Op1))
892 return Op1;
893
894 // X * undef -> 0
895 // X * 0 -> 0
896 if (Q.isUndefValue(Op1) || match(Op1, m_Zero()))
897 return Constant::getNullValue(Op0->getType());
898
899 // X * 1 -> X
900 if (match(Op1, m_One()))
901 return Op0;
902
903 // (X / Y) * Y -> X if the division is exact.
904 Value *X = nullptr;
905 if (Q.IIQ.UseInstrInfo &&
906 (match(Op0,
907 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
908 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y)
909 return X;
910
911 // i1 mul -> and.
912 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
913 if (Value *V = simplifyAndInst(Op0, Op1, Q, MaxRecurse - 1))
914 return V;
915
916 // Try some generic simplifications for associative operations.
917 if (Value *V =
918 simplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, MaxRecurse))
919 return V;
920
921 // Mul distributes over Add. Try some generic simplifications based on this.
922 if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1,
923 Instruction::Add, Q, MaxRecurse))
924 return V;
925
926 // If the operation is with the result of a select instruction, check whether
927 // operating on either branch of the select always yields the same value.
928 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
929 if (Value *V =
930 threadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, MaxRecurse))
931 return V;
932
933 // If the operation is with the result of a phi instruction, check whether
934 // operating on all incoming values of the phi always yields the same value.
935 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
936 if (Value *V =
937 threadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, MaxRecurse))
938 return V;
939
940 return nullptr;
941 }
942
simplifyMulInst(Value * Op0,Value * Op1,const SimplifyQuery & Q)943 Value *llvm::simplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
944 return ::simplifyMulInst(Op0, Op1, Q, RecursionLimit);
945 }
946
947 /// Check for common or similar folds of integer division or integer remainder.
948 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
simplifyDivRem(Instruction::BinaryOps Opcode,Value * Op0,Value * Op1,const SimplifyQuery & Q)949 static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0,
950 Value *Op1, const SimplifyQuery &Q) {
951 bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv);
952 bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem);
953
954 Type *Ty = Op0->getType();
955
956 // X / undef -> poison
957 // X % undef -> poison
958 if (Q.isUndefValue(Op1) || isa<PoisonValue>(Op1))
959 return PoisonValue::get(Ty);
960
961 // X / 0 -> poison
962 // X % 0 -> poison
963 // We don't need to preserve faults!
964 if (match(Op1, m_Zero()))
965 return PoisonValue::get(Ty);
966
967 // If any element of a constant divisor fixed width vector is zero or undef
968 // the behavior is undefined and we can fold the whole op to poison.
969 auto *Op1C = dyn_cast<Constant>(Op1);
970 auto *VTy = dyn_cast<FixedVectorType>(Ty);
971 if (Op1C && VTy) {
972 unsigned NumElts = VTy->getNumElements();
973 for (unsigned i = 0; i != NumElts; ++i) {
974 Constant *Elt = Op1C->getAggregateElement(i);
975 if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt)))
976 return PoisonValue::get(Ty);
977 }
978 }
979
980 // poison / X -> poison
981 // poison % X -> poison
982 if (isa<PoisonValue>(Op0))
983 return Op0;
984
985 // undef / X -> 0
986 // undef % X -> 0
987 if (Q.isUndefValue(Op0))
988 return Constant::getNullValue(Ty);
989
990 // 0 / X -> 0
991 // 0 % X -> 0
992 if (match(Op0, m_Zero()))
993 return Constant::getNullValue(Op0->getType());
994
995 // X / X -> 1
996 // X % X -> 0
997 if (Op0 == Op1)
998 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
999
1000 // X / 1 -> X
1001 // X % 1 -> 0
1002 // If this is a boolean op (single-bit element type), we can't have
1003 // division-by-zero or remainder-by-zero, so assume the divisor is 1.
1004 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1.
1005 Value *X;
1006 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) ||
1007 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1008 return IsDiv ? Op0 : Constant::getNullValue(Ty);
1009
1010 // If X * Y does not overflow, then:
1011 // X * Y / Y -> X
1012 // X * Y % Y -> 0
1013 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) {
1014 auto *Mul = cast<OverflowingBinaryOperator>(Op0);
1015 // The multiplication can't overflow if it is defined not to, or if
1016 // X == A / Y for some A.
1017 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) ||
1018 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) ||
1019 (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) ||
1020 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) {
1021 return IsDiv ? X : Constant::getNullValue(Op0->getType());
1022 }
1023 }
1024
1025 return nullptr;
1026 }
1027
1028 /// Given a predicate and two operands, return true if the comparison is true.
1029 /// This is a helper for div/rem simplification where we return some other value
1030 /// when we can prove a relationship between the operands.
isICmpTrue(ICmpInst::Predicate Pred,Value * LHS,Value * RHS,const SimplifyQuery & Q,unsigned MaxRecurse)1031 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
1032 const SimplifyQuery &Q, unsigned MaxRecurse) {
1033 Value *V = simplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
1034 Constant *C = dyn_cast_or_null<Constant>(V);
1035 return (C && C->isAllOnesValue());
1036 }
1037
1038 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
1039 /// to simplify X % Y to X.
isDivZero(Value * X,Value * Y,const SimplifyQuery & Q,unsigned MaxRecurse,bool IsSigned)1040 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
1041 unsigned MaxRecurse, bool IsSigned) {
1042 // Recursion is always used, so bail out at once if we already hit the limit.
1043 if (!MaxRecurse--)
1044 return false;
1045
1046 if (IsSigned) {
1047 // |X| / |Y| --> 0
1048 //
1049 // We require that 1 operand is a simple constant. That could be extended to
1050 // 2 variables if we computed the sign bit for each.
1051 //
1052 // Make sure that a constant is not the minimum signed value because taking
1053 // the abs() of that is undefined.
1054 Type *Ty = X->getType();
1055 const APInt *C;
1056 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
1057 // Is the variable divisor magnitude always greater than the constant
1058 // dividend magnitude?
1059 // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
1060 Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
1061 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
1062 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
1063 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
1064 return true;
1065 }
1066 if (match(Y, m_APInt(C))) {
1067 // Special-case: we can't take the abs() of a minimum signed value. If
1068 // that's the divisor, then all we have to do is prove that the dividend
1069 // is also not the minimum signed value.
1070 if (C->isMinSignedValue())
1071 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
1072
1073 // Is the variable dividend magnitude always less than the constant
1074 // divisor magnitude?
1075 // |X| < |C| --> X > -abs(C) and X < abs(C)
1076 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
1077 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
1078 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
1079 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
1080 return true;
1081 }
1082 return false;
1083 }
1084
1085 // IsSigned == false.
1086
1087 // Is the unsigned dividend known to be less than a constant divisor?
1088 // TODO: Convert this (and above) to range analysis
1089 // ("computeConstantRangeIncludingKnownBits")?
1090 const APInt *C;
1091 if (match(Y, m_APInt(C)) &&
1092 computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, Q.DT).getMaxValue().ult(*C))
1093 return true;
1094
1095 // Try again for any divisor:
1096 // Is the dividend unsigned less than the divisor?
1097 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
1098 }
1099
1100 /// These are simplifications common to SDiv and UDiv.
simplifyDiv(Instruction::BinaryOps Opcode,Value * Op0,Value * Op1,const SimplifyQuery & Q,unsigned MaxRecurse)1101 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1102 const SimplifyQuery &Q, unsigned MaxRecurse) {
1103 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1104 return C;
1105
1106 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q))
1107 return V;
1108
1109 bool IsSigned = Opcode == Instruction::SDiv;
1110
1111 // (X rem Y) / Y -> 0
1112 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1113 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1114 return Constant::getNullValue(Op0->getType());
1115
1116 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1117 ConstantInt *C1, *C2;
1118 if (!IsSigned && match(Op0, m_UDiv(m_Value(), m_ConstantInt(C1))) &&
1119 match(Op1, m_ConstantInt(C2))) {
1120 bool Overflow;
1121 (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
1122 if (Overflow)
1123 return Constant::getNullValue(Op0->getType());
1124 }
1125
1126 // If the operation is with the result of a select instruction, check whether
1127 // operating on either branch of the select always yields the same value.
1128 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1129 if (Value *V = threadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1130 return V;
1131
1132 // If the operation is with the result of a phi instruction, check whether
1133 // operating on all incoming values of the phi always yields the same value.
1134 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1135 if (Value *V = threadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1136 return V;
1137
1138 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
1139 return Constant::getNullValue(Op0->getType());
1140
1141 return nullptr;
1142 }
1143
1144 /// These are simplifications common to SRem and URem.
simplifyRem(Instruction::BinaryOps Opcode,Value * Op0,Value * Op1,const SimplifyQuery & Q,unsigned MaxRecurse)1145 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1146 const SimplifyQuery &Q, unsigned MaxRecurse) {
1147 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1148 return C;
1149
1150 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q))
1151 return V;
1152
1153 // (X % Y) % Y -> X % Y
1154 if ((Opcode == Instruction::SRem &&
1155 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1156 (Opcode == Instruction::URem &&
1157 match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1158 return Op0;
1159
1160 // (X << Y) % X -> 0
1161 if (Q.IIQ.UseInstrInfo &&
1162 ((Opcode == Instruction::SRem &&
1163 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) ||
1164 (Opcode == Instruction::URem &&
1165 match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))))
1166 return Constant::getNullValue(Op0->getType());
1167
1168 // If the operation is with the result of a select instruction, check whether
1169 // operating on either branch of the select always yields the same value.
1170 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1171 if (Value *V = threadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1172 return V;
1173
1174 // If the operation is with the result of a phi instruction, check whether
1175 // operating on all incoming values of the phi always yields the same value.
1176 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1177 if (Value *V = threadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1178 return V;
1179
1180 // If X / Y == 0, then X % Y == X.
1181 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem))
1182 return Op0;
1183
1184 return nullptr;
1185 }
1186
1187 /// Given operands for an SDiv, see if we can fold the result.
1188 /// If not, this returns null.
simplifySDivInst(Value * Op0,Value * Op1,const SimplifyQuery & Q,unsigned MaxRecurse)1189 static Value *simplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1190 unsigned MaxRecurse) {
1191 // If two operands are negated and no signed overflow, return -1.
1192 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true))
1193 return Constant::getAllOnesValue(Op0->getType());
1194
1195 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse);
1196 }
1197
simplifySDivInst(Value * Op0,Value * Op1,const SimplifyQuery & Q)1198 Value *llvm::simplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1199 return ::simplifySDivInst(Op0, Op1, Q, RecursionLimit);
1200 }
1201
1202 /// Given operands for a UDiv, see if we can fold the result.
1203 /// If not, this returns null.
simplifyUDivInst(Value * Op0,Value * Op1,const SimplifyQuery & Q,unsigned MaxRecurse)1204 static Value *simplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1205 unsigned MaxRecurse) {
1206 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse);
1207 }
1208
simplifyUDivInst(Value * Op0,Value * Op1,const SimplifyQuery & Q)1209 Value *llvm::simplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1210 return ::simplifyUDivInst(Op0, Op1, Q, RecursionLimit);
1211 }
1212
1213 /// Given operands for an SRem, see if we can fold the result.
1214 /// If not, this returns null.
simplifySRemInst(Value * Op0,Value * Op1,const SimplifyQuery & Q,unsigned MaxRecurse)1215 static Value *simplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1216 unsigned MaxRecurse) {
1217 // If the divisor is 0, the result is undefined, so assume the divisor is -1.
1218 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
1219 Value *X;
1220 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1221 return ConstantInt::getNullValue(Op0->getType());
1222
1223 // If the two operands are negated, return 0.
1224 if (isKnownNegation(Op0, Op1))
1225 return ConstantInt::getNullValue(Op0->getType());
1226
1227 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
1228 }
1229
simplifySRemInst(Value * Op0,Value * Op1,const SimplifyQuery & Q)1230 Value *llvm::simplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1231 return ::simplifySRemInst(Op0, Op1, Q, RecursionLimit);
1232 }
1233
1234 /// Given operands for a URem, see if we can fold the result.
1235 /// If not, this returns null.
simplifyURemInst(Value * Op0,Value * Op1,const SimplifyQuery & Q,unsigned MaxRecurse)1236 static Value *simplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1237 unsigned MaxRecurse) {
1238 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
1239 }
1240
simplifyURemInst(Value * Op0,Value * Op1,const SimplifyQuery & Q)1241 Value *llvm::simplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1242 return ::simplifyURemInst(Op0, Op1, Q, RecursionLimit);
1243 }
1244
1245 /// Returns true if a shift by \c Amount always yields poison.
isPoisonShift(Value * Amount,const SimplifyQuery & Q)1246 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) {
1247 Constant *C = dyn_cast<Constant>(Amount);
1248 if (!C)
1249 return false;
1250
1251 // X shift by undef -> poison because it may shift by the bitwidth.
1252 if (Q.isUndefValue(C))
1253 return true;
1254
1255 // Shifting by the bitwidth or more is undefined.
1256 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1257 if (CI->getValue().uge(CI->getType()->getScalarSizeInBits()))
1258 return true;
1259
1260 // If all lanes of a vector shift are undefined the whole shift is.
1261 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1262 for (unsigned I = 0,
1263 E = cast<FixedVectorType>(C->getType())->getNumElements();
1264 I != E; ++I)
1265 if (!isPoisonShift(C->getAggregateElement(I), Q))
1266 return false;
1267 return true;
1268 }
1269
1270 return false;
1271 }
1272
1273 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1274 /// If not, this returns null.
simplifyShift(Instruction::BinaryOps Opcode,Value * Op0,Value * Op1,bool IsNSW,const SimplifyQuery & Q,unsigned MaxRecurse)1275 static Value *simplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
1276 Value *Op1, bool IsNSW, const SimplifyQuery &Q,
1277 unsigned MaxRecurse) {
1278 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1279 return C;
1280
1281 // poison shift by X -> poison
1282 if (isa<PoisonValue>(Op0))
1283 return Op0;
1284
1285 // 0 shift by X -> 0
1286 if (match(Op0, m_Zero()))
1287 return Constant::getNullValue(Op0->getType());
1288
1289 // X shift by 0 -> X
1290 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
1291 // would be poison.
1292 Value *X;
1293 if (match(Op1, m_Zero()) ||
1294 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1295 return Op0;
1296
1297 // Fold undefined shifts.
1298 if (isPoisonShift(Op1, Q))
1299 return PoisonValue::get(Op0->getType());
1300
1301 // If the operation is with the result of a select instruction, check whether
1302 // operating on either branch of the select always yields the same value.
1303 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1304 if (Value *V = threadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1305 return V;
1306
1307 // If the operation is with the result of a phi instruction, check whether
1308 // operating on all incoming values of the phi always yields the same value.
1309 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1310 if (Value *V = threadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1311 return V;
1312
1313 // If any bits in the shift amount make that value greater than or equal to
1314 // the number of bits in the type, the shift is undefined.
1315 KnownBits KnownAmt = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1316 if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth()))
1317 return PoisonValue::get(Op0->getType());
1318
1319 // If all valid bits in the shift amount are known zero, the first operand is
1320 // unchanged.
1321 unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth());
1322 if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits)
1323 return Op0;
1324
1325 // Check for nsw shl leading to a poison value.
1326 if (IsNSW) {
1327 assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction");
1328 KnownBits KnownVal = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1329 KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt);
1330
1331 if (KnownVal.Zero.isSignBitSet())
1332 KnownShl.Zero.setSignBit();
1333 if (KnownVal.One.isSignBitSet())
1334 KnownShl.One.setSignBit();
1335
1336 if (KnownShl.hasConflict())
1337 return PoisonValue::get(Op0->getType());
1338 }
1339
1340 return nullptr;
1341 }
1342
1343 /// Given operands for an Shl, LShr or AShr, see if we can
1344 /// fold the result. If not, this returns null.
simplifyRightShift(Instruction::BinaryOps Opcode,Value * Op0,Value * Op1,bool isExact,const SimplifyQuery & Q,unsigned MaxRecurse)1345 static Value *simplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
1346 Value *Op1, bool isExact,
1347 const SimplifyQuery &Q, unsigned MaxRecurse) {
1348 if (Value *V =
1349 simplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse))
1350 return V;
1351
1352 // X >> X -> 0
1353 if (Op0 == Op1)
1354 return Constant::getNullValue(Op0->getType());
1355
1356 // undef >> X -> 0
1357 // undef >> X -> undef (if it's exact)
1358 if (Q.isUndefValue(Op0))
1359 return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1360
1361 // The low bit cannot be shifted out of an exact shift if it is set.
1362 if (isExact) {
1363 KnownBits Op0Known =
1364 computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1365 if (Op0Known.One[0])
1366 return Op0;
1367 }
1368
1369 return nullptr;
1370 }
1371
1372 /// Given operands for an Shl, see if we can fold the result.
1373 /// If not, this returns null.
simplifyShlInst(Value * Op0,Value * Op1,bool isNSW,bool isNUW,const SimplifyQuery & Q,unsigned MaxRecurse)1374 static Value *simplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1375 const SimplifyQuery &Q, unsigned MaxRecurse) {
1376 if (Value *V =
1377 simplifyShift(Instruction::Shl, Op0, Op1, isNSW, Q, MaxRecurse))
1378 return V;
1379
1380 // undef << X -> 0
1381 // undef << X -> undef if (if it's NSW/NUW)
1382 if (Q.isUndefValue(Op0))
1383 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1384
1385 // (X >> A) << A -> X
1386 Value *X;
1387 if (Q.IIQ.UseInstrInfo &&
1388 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1389 return X;
1390
1391 // shl nuw i8 C, %x -> C iff C has sign bit set.
1392 if (isNUW && match(Op0, m_Negative()))
1393 return Op0;
1394 // NOTE: could use computeKnownBits() / LazyValueInfo,
1395 // but the cost-benefit analysis suggests it isn't worth it.
1396
1397 return nullptr;
1398 }
1399
simplifyShlInst(Value * Op0,Value * Op1,bool isNSW,bool isNUW,const SimplifyQuery & Q)1400 Value *llvm::simplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1401 const SimplifyQuery &Q) {
1402 return ::simplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
1403 }
1404
1405 /// Given operands for an LShr, see if we can fold the result.
1406 /// If not, this returns null.
simplifyLShrInst(Value * Op0,Value * Op1,bool isExact,const SimplifyQuery & Q,unsigned MaxRecurse)1407 static Value *simplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1408 const SimplifyQuery &Q, unsigned MaxRecurse) {
1409 if (Value *V = simplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1410 MaxRecurse))
1411 return V;
1412
1413 // (X << A) >> A -> X
1414 Value *X;
1415 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1416 return X;
1417
1418 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A.
1419 // We can return X as we do in the above case since OR alters no bits in X.
1420 // SimplifyDemandedBits in InstCombine can do more general optimization for
1421 // bit manipulation. This pattern aims to provide opportunities for other
1422 // optimizers by supporting a simple but common case in InstSimplify.
1423 Value *Y;
1424 const APInt *ShRAmt, *ShLAmt;
1425 if (match(Op1, m_APInt(ShRAmt)) &&
1426 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) &&
1427 *ShRAmt == *ShLAmt) {
1428 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1429 const unsigned EffWidthY = YKnown.countMaxActiveBits();
1430 if (ShRAmt->uge(EffWidthY))
1431 return X;
1432 }
1433
1434 return nullptr;
1435 }
1436
simplifyLShrInst(Value * Op0,Value * Op1,bool isExact,const SimplifyQuery & Q)1437 Value *llvm::simplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1438 const SimplifyQuery &Q) {
1439 return ::simplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1440 }
1441
1442 /// Given operands for an AShr, see if we can fold the result.
1443 /// If not, this returns null.
simplifyAShrInst(Value * Op0,Value * Op1,bool isExact,const SimplifyQuery & Q,unsigned MaxRecurse)1444 static Value *simplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1445 const SimplifyQuery &Q, unsigned MaxRecurse) {
1446 if (Value *V = simplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1447 MaxRecurse))
1448 return V;
1449
1450 // -1 >>a X --> -1
1451 // (-1 << X) a>> X --> -1
1452 // Do not return Op0 because it may contain undef elements if it's a vector.
1453 if (match(Op0, m_AllOnes()) ||
1454 match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1))))
1455 return Constant::getAllOnesValue(Op0->getType());
1456
1457 // (X << A) >> A -> X
1458 Value *X;
1459 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1460 return X;
1461
1462 // Arithmetic shifting an all-sign-bit value is a no-op.
1463 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1464 if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1465 return Op0;
1466
1467 return nullptr;
1468 }
1469
simplifyAShrInst(Value * Op0,Value * Op1,bool isExact,const SimplifyQuery & Q)1470 Value *llvm::simplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1471 const SimplifyQuery &Q) {
1472 return ::simplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1473 }
1474
1475 /// Commuted variants are assumed to be handled by calling this function again
1476 /// with the parameters swapped.
simplifyUnsignedRangeCheck(ICmpInst * ZeroICmp,ICmpInst * UnsignedICmp,bool IsAnd,const SimplifyQuery & Q)1477 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1478 ICmpInst *UnsignedICmp, bool IsAnd,
1479 const SimplifyQuery &Q) {
1480 Value *X, *Y;
1481
1482 ICmpInst::Predicate EqPred;
1483 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1484 !ICmpInst::isEquality(EqPred))
1485 return nullptr;
1486
1487 ICmpInst::Predicate UnsignedPred;
1488
1489 Value *A, *B;
1490 // Y = (A - B);
1491 if (match(Y, m_Sub(m_Value(A), m_Value(B)))) {
1492 if (match(UnsignedICmp,
1493 m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) &&
1494 ICmpInst::isUnsigned(UnsignedPred)) {
1495 // A >=/<= B || (A - B) != 0 <--> true
1496 if ((UnsignedPred == ICmpInst::ICMP_UGE ||
1497 UnsignedPred == ICmpInst::ICMP_ULE) &&
1498 EqPred == ICmpInst::ICMP_NE && !IsAnd)
1499 return ConstantInt::getTrue(UnsignedICmp->getType());
1500 // A </> B && (A - B) == 0 <--> false
1501 if ((UnsignedPred == ICmpInst::ICMP_ULT ||
1502 UnsignedPred == ICmpInst::ICMP_UGT) &&
1503 EqPred == ICmpInst::ICMP_EQ && IsAnd)
1504 return ConstantInt::getFalse(UnsignedICmp->getType());
1505
1506 // A </> B && (A - B) != 0 <--> A </> B
1507 // A </> B || (A - B) != 0 <--> (A - B) != 0
1508 if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT ||
1509 UnsignedPred == ICmpInst::ICMP_UGT))
1510 return IsAnd ? UnsignedICmp : ZeroICmp;
1511
1512 // A <=/>= B && (A - B) == 0 <--> (A - B) == 0
1513 // A <=/>= B || (A - B) == 0 <--> A <=/>= B
1514 if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE ||
1515 UnsignedPred == ICmpInst::ICMP_UGE))
1516 return IsAnd ? ZeroICmp : UnsignedICmp;
1517 }
1518
1519 // Given Y = (A - B)
1520 // Y >= A && Y != 0 --> Y >= A iff B != 0
1521 // Y < A || Y == 0 --> Y < A iff B != 0
1522 if (match(UnsignedICmp,
1523 m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) {
1524 if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd &&
1525 EqPred == ICmpInst::ICMP_NE &&
1526 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1527 return UnsignedICmp;
1528 if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd &&
1529 EqPred == ICmpInst::ICMP_EQ &&
1530 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1531 return UnsignedICmp;
1532 }
1533 }
1534
1535 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1536 ICmpInst::isUnsigned(UnsignedPred))
1537 ;
1538 else if (match(UnsignedICmp,
1539 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) &&
1540 ICmpInst::isUnsigned(UnsignedPred))
1541 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1542 else
1543 return nullptr;
1544
1545 // X > Y && Y == 0 --> Y == 0 iff X != 0
1546 // X > Y || Y == 0 --> X > Y iff X != 0
1547 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1548 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1549 return IsAnd ? ZeroICmp : UnsignedICmp;
1550
1551 // X <= Y && Y != 0 --> X <= Y iff X != 0
1552 // X <= Y || Y != 0 --> Y != 0 iff X != 0
1553 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
1554 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1555 return IsAnd ? UnsignedICmp : ZeroICmp;
1556
1557 // The transforms below here are expected to be handled more generally with
1558 // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's
1559 // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap,
1560 // these are candidates for removal.
1561
1562 // X < Y && Y != 0 --> X < Y
1563 // X < Y || Y != 0 --> Y != 0
1564 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1565 return IsAnd ? UnsignedICmp : ZeroICmp;
1566
1567 // X >= Y && Y == 0 --> Y == 0
1568 // X >= Y || Y == 0 --> X >= Y
1569 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ)
1570 return IsAnd ? ZeroICmp : UnsignedICmp;
1571
1572 // X < Y && Y == 0 --> false
1573 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1574 IsAnd)
1575 return getFalse(UnsignedICmp->getType());
1576
1577 // X >= Y || Y != 0 --> true
1578 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE &&
1579 !IsAnd)
1580 return getTrue(UnsignedICmp->getType());
1581
1582 return nullptr;
1583 }
1584
1585 /// Commuted variants are assumed to be handled by calling this function again
1586 /// with the parameters swapped.
simplifyAndOfICmpsWithSameOperands(ICmpInst * Op0,ICmpInst * Op1)1587 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1588 ICmpInst::Predicate Pred0, Pred1;
1589 Value *A, *B;
1590 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1591 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1592 return nullptr;
1593
1594 // Check for any combination of predicates that are guaranteed to be disjoint.
1595 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1596 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
1597 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
1598 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
1599 return getFalse(Op0->getType());
1600
1601 return nullptr;
1602 }
1603
1604 /// Commuted variants are assumed to be handled by calling this function again
1605 /// with the parameters swapped.
simplifyOrOfICmpsWithSameOperands(ICmpInst * Op0,ICmpInst * Op1)1606 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1607 ICmpInst::Predicate Pred0, Pred1;
1608 Value *A, *B;
1609 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1610 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1611 return nullptr;
1612
1613 // Check for any combination of predicates that cover the entire range of
1614 // possibilities.
1615 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1616 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
1617 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
1618 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
1619 return getTrue(Op0->getType());
1620
1621 return nullptr;
1622 }
1623
1624 /// Test if a pair of compares with a shared operand and 2 constants has an
1625 /// empty set intersection, full set union, or if one compare is a superset of
1626 /// the other.
simplifyAndOrOfICmpsWithConstants(ICmpInst * Cmp0,ICmpInst * Cmp1,bool IsAnd)1627 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
1628 bool IsAnd) {
1629 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
1630 if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
1631 return nullptr;
1632
1633 const APInt *C0, *C1;
1634 if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
1635 !match(Cmp1->getOperand(1), m_APInt(C1)))
1636 return nullptr;
1637
1638 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
1639 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
1640
1641 // For and-of-compares, check if the intersection is empty:
1642 // (icmp X, C0) && (icmp X, C1) --> empty set --> false
1643 if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1644 return getFalse(Cmp0->getType());
1645
1646 // For or-of-compares, check if the union is full:
1647 // (icmp X, C0) || (icmp X, C1) --> full set --> true
1648 if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1649 return getTrue(Cmp0->getType());
1650
1651 // Is one range a superset of the other?
1652 // If this is and-of-compares, take the smaller set:
1653 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
1654 // If this is or-of-compares, take the larger set:
1655 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
1656 if (Range0.contains(Range1))
1657 return IsAnd ? Cmp1 : Cmp0;
1658 if (Range1.contains(Range0))
1659 return IsAnd ? Cmp0 : Cmp1;
1660
1661 return nullptr;
1662 }
1663
simplifyAndOrOfICmpsWithZero(ICmpInst * Cmp0,ICmpInst * Cmp1,bool IsAnd)1664 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1,
1665 bool IsAnd) {
1666 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate();
1667 if (!match(Cmp0->getOperand(1), m_Zero()) ||
1668 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1)
1669 return nullptr;
1670
1671 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ))
1672 return nullptr;
1673
1674 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
1675 Value *X = Cmp0->getOperand(0);
1676 Value *Y = Cmp1->getOperand(0);
1677
1678 // If one of the compares is a masked version of a (not) null check, then
1679 // that compare implies the other, so we eliminate the other. Optionally, look
1680 // through a pointer-to-int cast to match a null check of a pointer type.
1681
1682 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
1683 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
1684 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
1685 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
1686 if (match(Y, m_c_And(m_Specific(X), m_Value())) ||
1687 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value())))
1688 return Cmp1;
1689
1690 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
1691 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
1692 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
1693 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
1694 if (match(X, m_c_And(m_Specific(Y), m_Value())) ||
1695 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value())))
1696 return Cmp0;
1697
1698 return nullptr;
1699 }
1700
simplifyAndOfICmpsWithAdd(ICmpInst * Op0,ICmpInst * Op1,const InstrInfoQuery & IIQ)1701 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1702 const InstrInfoQuery &IIQ) {
1703 // (icmp (add V, C0), C1) & (icmp V, C0)
1704 ICmpInst::Predicate Pred0, Pred1;
1705 const APInt *C0, *C1;
1706 Value *V;
1707 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1708 return nullptr;
1709
1710 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1711 return nullptr;
1712
1713 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0));
1714 if (AddInst->getOperand(1) != Op1->getOperand(1))
1715 return nullptr;
1716
1717 Type *ITy = Op0->getType();
1718 bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1719 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1720
1721 const APInt Delta = *C1 - *C0;
1722 if (C0->isStrictlyPositive()) {
1723 if (Delta == 2) {
1724 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1725 return getFalse(ITy);
1726 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1727 return getFalse(ITy);
1728 }
1729 if (Delta == 1) {
1730 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1731 return getFalse(ITy);
1732 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1733 return getFalse(ITy);
1734 }
1735 }
1736 if (C0->getBoolValue() && isNUW) {
1737 if (Delta == 2)
1738 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1739 return getFalse(ITy);
1740 if (Delta == 1)
1741 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1742 return getFalse(ITy);
1743 }
1744
1745 return nullptr;
1746 }
1747
1748 /// Try to eliminate compares with signed or unsigned min/max constants.
simplifyAndOrOfICmpsWithLimitConst(ICmpInst * Cmp0,ICmpInst * Cmp1,bool IsAnd)1749 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1,
1750 bool IsAnd) {
1751 // Canonicalize an equality compare as Cmp0.
1752 if (Cmp1->isEquality())
1753 std::swap(Cmp0, Cmp1);
1754 if (!Cmp0->isEquality())
1755 return nullptr;
1756
1757 // The non-equality compare must include a common operand (X). Canonicalize
1758 // the common operand as operand 0 (the predicate is swapped if the common
1759 // operand was operand 1).
1760 ICmpInst::Predicate Pred0 = Cmp0->getPredicate();
1761 Value *X = Cmp0->getOperand(0);
1762 ICmpInst::Predicate Pred1;
1763 bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value()));
1764 if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value())))
1765 return nullptr;
1766 if (ICmpInst::isEquality(Pred1))
1767 return nullptr;
1768
1769 // The equality compare must be against a constant. Flip bits if we matched
1770 // a bitwise not. Convert a null pointer constant to an integer zero value.
1771 APInt MinMaxC;
1772 const APInt *C;
1773 if (match(Cmp0->getOperand(1), m_APInt(C)))
1774 MinMaxC = HasNotOp ? ~*C : *C;
1775 else if (isa<ConstantPointerNull>(Cmp0->getOperand(1)))
1776 MinMaxC = APInt::getZero(8);
1777 else
1778 return nullptr;
1779
1780 // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1.
1781 if (!IsAnd) {
1782 Pred0 = ICmpInst::getInversePredicate(Pred0);
1783 Pred1 = ICmpInst::getInversePredicate(Pred1);
1784 }
1785
1786 // Normalize to unsigned compare and unsigned min/max value.
1787 // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255
1788 if (ICmpInst::isSigned(Pred1)) {
1789 Pred1 = ICmpInst::getUnsignedPredicate(Pred1);
1790 MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth());
1791 }
1792
1793 // (X != MAX) && (X < Y) --> X < Y
1794 // (X == MAX) || (X >= Y) --> X >= Y
1795 if (MinMaxC.isMaxValue())
1796 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT)
1797 return Cmp1;
1798
1799 // (X != MIN) && (X > Y) --> X > Y
1800 // (X == MIN) || (X <= Y) --> X <= Y
1801 if (MinMaxC.isMinValue())
1802 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT)
1803 return Cmp1;
1804
1805 return nullptr;
1806 }
1807
1808 /// Try to simplify and/or of icmp with ctpop intrinsic.
simplifyAndOrOfICmpsWithCtpop(ICmpInst * Cmp0,ICmpInst * Cmp1,bool IsAnd)1809 static Value *simplifyAndOrOfICmpsWithCtpop(ICmpInst *Cmp0, ICmpInst *Cmp1,
1810 bool IsAnd) {
1811 ICmpInst::Predicate Pred0, Pred1;
1812 Value *X;
1813 const APInt *C;
1814 if (!match(Cmp0, m_ICmp(Pred0, m_Intrinsic<Intrinsic::ctpop>(m_Value(X)),
1815 m_APInt(C))) ||
1816 !match(Cmp1, m_ICmp(Pred1, m_Specific(X), m_ZeroInt())) || C->isZero())
1817 return nullptr;
1818
1819 // (ctpop(X) == C) || (X != 0) --> X != 0 where C > 0
1820 if (!IsAnd && Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_NE)
1821 return Cmp1;
1822 // (ctpop(X) != C) && (X == 0) --> X == 0 where C > 0
1823 if (IsAnd && Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_EQ)
1824 return Cmp1;
1825
1826 return nullptr;
1827 }
1828
simplifyAndOfICmps(ICmpInst * Op0,ICmpInst * Op1,const SimplifyQuery & Q)1829 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1830 const SimplifyQuery &Q) {
1831 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q))
1832 return X;
1833 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q))
1834 return X;
1835
1836 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
1837 return X;
1838 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
1839 return X;
1840
1841 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
1842 return X;
1843
1844 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true))
1845 return X;
1846
1847 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true))
1848 return X;
1849
1850 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op0, Op1, true))
1851 return X;
1852 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op1, Op0, true))
1853 return X;
1854
1855 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1856 return X;
1857 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1858 return X;
1859
1860 return nullptr;
1861 }
1862
simplifyOrOfICmpsWithAdd(ICmpInst * Op0,ICmpInst * Op1,const InstrInfoQuery & IIQ)1863 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1864 const InstrInfoQuery &IIQ) {
1865 // (icmp (add V, C0), C1) | (icmp V, C0)
1866 ICmpInst::Predicate Pred0, Pred1;
1867 const APInt *C0, *C1;
1868 Value *V;
1869 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1870 return nullptr;
1871
1872 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1873 return nullptr;
1874
1875 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1876 if (AddInst->getOperand(1) != Op1->getOperand(1))
1877 return nullptr;
1878
1879 Type *ITy = Op0->getType();
1880 bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1881 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1882
1883 const APInt Delta = *C1 - *C0;
1884 if (C0->isStrictlyPositive()) {
1885 if (Delta == 2) {
1886 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1887 return getTrue(ITy);
1888 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1889 return getTrue(ITy);
1890 }
1891 if (Delta == 1) {
1892 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1893 return getTrue(ITy);
1894 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1895 return getTrue(ITy);
1896 }
1897 }
1898 if (C0->getBoolValue() && isNUW) {
1899 if (Delta == 2)
1900 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1901 return getTrue(ITy);
1902 if (Delta == 1)
1903 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1904 return getTrue(ITy);
1905 }
1906
1907 return nullptr;
1908 }
1909
simplifyOrOfICmps(ICmpInst * Op0,ICmpInst * Op1,const SimplifyQuery & Q)1910 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1911 const SimplifyQuery &Q) {
1912 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q))
1913 return X;
1914 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q))
1915 return X;
1916
1917 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
1918 return X;
1919 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
1920 return X;
1921
1922 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
1923 return X;
1924
1925 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false))
1926 return X;
1927
1928 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false))
1929 return X;
1930
1931 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op0, Op1, false))
1932 return X;
1933 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op1, Op0, false))
1934 return X;
1935
1936 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1937 return X;
1938 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1939 return X;
1940
1941 return nullptr;
1942 }
1943
simplifyAndOrOfFCmps(const TargetLibraryInfo * TLI,FCmpInst * LHS,FCmpInst * RHS,bool IsAnd)1944 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, FCmpInst *LHS,
1945 FCmpInst *RHS, bool IsAnd) {
1946 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1947 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1948 if (LHS0->getType() != RHS0->getType())
1949 return nullptr;
1950
1951 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1952 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1953 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
1954 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
1955 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
1956 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
1957 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
1958 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
1959 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
1960 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
1961 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
1962 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) ||
1963 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1)))
1964 return RHS;
1965
1966 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
1967 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
1968 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
1969 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
1970 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
1971 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
1972 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
1973 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
1974 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) ||
1975 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1)))
1976 return LHS;
1977 }
1978
1979 return nullptr;
1980 }
1981
simplifyAndOrOfCmps(const SimplifyQuery & Q,Value * Op0,Value * Op1,bool IsAnd)1982 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, Value *Op0,
1983 Value *Op1, bool IsAnd) {
1984 // Look through casts of the 'and' operands to find compares.
1985 auto *Cast0 = dyn_cast<CastInst>(Op0);
1986 auto *Cast1 = dyn_cast<CastInst>(Op1);
1987 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1988 Cast0->getSrcTy() == Cast1->getSrcTy()) {
1989 Op0 = Cast0->getOperand(0);
1990 Op1 = Cast1->getOperand(0);
1991 }
1992
1993 Value *V = nullptr;
1994 auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
1995 auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
1996 if (ICmp0 && ICmp1)
1997 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q)
1998 : simplifyOrOfICmps(ICmp0, ICmp1, Q);
1999
2000 auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
2001 auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
2002 if (FCmp0 && FCmp1)
2003 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd);
2004
2005 if (!V)
2006 return nullptr;
2007 if (!Cast0)
2008 return V;
2009
2010 // If we looked through casts, we can only handle a constant simplification
2011 // because we are not allowed to create a cast instruction here.
2012 if (auto *C = dyn_cast<Constant>(V))
2013 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
2014
2015 return nullptr;
2016 }
2017
2018 /// Given a bitwise logic op, check if the operands are add/sub with a common
2019 /// source value and inverted constant (identity: C - X -> ~(X + ~C)).
simplifyLogicOfAddSub(Value * Op0,Value * Op1,Instruction::BinaryOps Opcode)2020 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1,
2021 Instruction::BinaryOps Opcode) {
2022 assert(Op0->getType() == Op1->getType() && "Mismatched binop types");
2023 assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op");
2024 Value *X;
2025 Constant *C1, *C2;
2026 if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) &&
2027 match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) ||
2028 (match(Op1, m_Add(m_Value(X), m_Constant(C1))) &&
2029 match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) {
2030 if (ConstantExpr::getNot(C1) == C2) {
2031 // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0
2032 // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1
2033 // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1
2034 Type *Ty = Op0->getType();
2035 return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty)
2036 : ConstantInt::getAllOnesValue(Ty);
2037 }
2038 }
2039 return nullptr;
2040 }
2041
2042 /// Given operands for an And, see if we can fold the result.
2043 /// If not, this returns null.
simplifyAndInst(Value * Op0,Value * Op1,const SimplifyQuery & Q,unsigned MaxRecurse)2044 static Value *simplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2045 unsigned MaxRecurse) {
2046 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
2047 return C;
2048
2049 // X & poison -> poison
2050 if (isa<PoisonValue>(Op1))
2051 return Op1;
2052
2053 // X & undef -> 0
2054 if (Q.isUndefValue(Op1))
2055 return Constant::getNullValue(Op0->getType());
2056
2057 // X & X = X
2058 if (Op0 == Op1)
2059 return Op0;
2060
2061 // X & 0 = 0
2062 if (match(Op1, m_Zero()))
2063 return Constant::getNullValue(Op0->getType());
2064
2065 // X & -1 = X
2066 if (match(Op1, m_AllOnes()))
2067 return Op0;
2068
2069 // A & ~A = ~A & A = 0
2070 if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0))))
2071 return Constant::getNullValue(Op0->getType());
2072
2073 // (A | ?) & A = A
2074 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
2075 return Op1;
2076
2077 // A & (A | ?) = A
2078 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
2079 return Op0;
2080
2081 // (X | Y) & (X | ~Y) --> X (commuted 8 ways)
2082 Value *X, *Y;
2083 if (match(Op0, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) &&
2084 match(Op1, m_c_Or(m_Deferred(X), m_Deferred(Y))))
2085 return X;
2086 if (match(Op1, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) &&
2087 match(Op0, m_c_Or(m_Deferred(X), m_Deferred(Y))))
2088 return X;
2089
2090 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And))
2091 return V;
2092
2093 // A mask that only clears known zeros of a shifted value is a no-op.
2094 const APInt *Mask;
2095 const APInt *ShAmt;
2096 if (match(Op1, m_APInt(Mask))) {
2097 // If all bits in the inverted and shifted mask are clear:
2098 // and (shl X, ShAmt), Mask --> shl X, ShAmt
2099 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
2100 (~(*Mask)).lshr(*ShAmt).isZero())
2101 return Op0;
2102
2103 // If all bits in the inverted and shifted mask are clear:
2104 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
2105 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
2106 (~(*Mask)).shl(*ShAmt).isZero())
2107 return Op0;
2108 }
2109
2110 // If we have a multiplication overflow check that is being 'and'ed with a
2111 // check that one of the multipliers is not zero, we can omit the 'and', and
2112 // only keep the overflow check.
2113 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true))
2114 return Op1;
2115 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, true))
2116 return Op0;
2117
2118 // A & (-A) = A if A is a power of two or zero.
2119 if (match(Op0, m_Neg(m_Specific(Op1))) ||
2120 match(Op1, m_Neg(m_Specific(Op0)))) {
2121 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2122 Q.DT))
2123 return Op0;
2124 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2125 Q.DT))
2126 return Op1;
2127 }
2128
2129 // This is a similar pattern used for checking if a value is a power-of-2:
2130 // (A - 1) & A --> 0 (if A is a power-of-2 or 0)
2131 // A & (A - 1) --> 0 (if A is a power-of-2 or 0)
2132 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) &&
2133 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2134 return Constant::getNullValue(Op1->getType());
2135 if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) &&
2136 isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2137 return Constant::getNullValue(Op0->getType());
2138
2139 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true))
2140 return V;
2141
2142 // Try some generic simplifications for associative operations.
2143 if (Value *V =
2144 simplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, MaxRecurse))
2145 return V;
2146
2147 // And distributes over Or. Try some generic simplifications based on this.
2148 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2149 Instruction::Or, Q, MaxRecurse))
2150 return V;
2151
2152 // And distributes over Xor. Try some generic simplifications based on this.
2153 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2154 Instruction::Xor, Q, MaxRecurse))
2155 return V;
2156
2157 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2158 if (Op0->getType()->isIntOrIntVectorTy(1)) {
2159 // A & (A && B) -> A && B
2160 if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero())))
2161 return Op1;
2162 else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero())))
2163 return Op0;
2164 }
2165 // If the operation is with the result of a select instruction, check
2166 // whether operating on either branch of the select always yields the same
2167 // value.
2168 if (Value *V =
2169 threadBinOpOverSelect(Instruction::And, Op0, Op1, Q, MaxRecurse))
2170 return V;
2171 }
2172
2173 // If the operation is with the result of a phi instruction, check whether
2174 // operating on all incoming values of the phi always yields the same value.
2175 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2176 if (Value *V =
2177 threadBinOpOverPHI(Instruction::And, Op0, Op1, Q, MaxRecurse))
2178 return V;
2179
2180 // Assuming the effective width of Y is not larger than A, i.e. all bits
2181 // from X and Y are disjoint in (X << A) | Y,
2182 // if the mask of this AND op covers all bits of X or Y, while it covers
2183 // no bits from the other, we can bypass this AND op. E.g.,
2184 // ((X << A) | Y) & Mask -> Y,
2185 // if Mask = ((1 << effective_width_of(Y)) - 1)
2186 // ((X << A) | Y) & Mask -> X << A,
2187 // if Mask = ((1 << effective_width_of(X)) - 1) << A
2188 // SimplifyDemandedBits in InstCombine can optimize the general case.
2189 // This pattern aims to help other passes for a common case.
2190 Value *XShifted;
2191 if (match(Op1, m_APInt(Mask)) &&
2192 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)),
2193 m_Value(XShifted)),
2194 m_Value(Y)))) {
2195 const unsigned Width = Op0->getType()->getScalarSizeInBits();
2196 const unsigned ShftCnt = ShAmt->getLimitedValue(Width);
2197 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2198 const unsigned EffWidthY = YKnown.countMaxActiveBits();
2199 if (EffWidthY <= ShftCnt) {
2200 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2201 const unsigned EffWidthX = XKnown.countMaxActiveBits();
2202 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY);
2203 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt;
2204 // If the mask is extracting all bits from X or Y as is, we can skip
2205 // this AND op.
2206 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask))
2207 return Y;
2208 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask))
2209 return XShifted;
2210 }
2211 }
2212
2213 // ((X | Y) ^ X ) & ((X | Y) ^ Y) --> 0
2214 // ((X | Y) ^ Y ) & ((X | Y) ^ X) --> 0
2215 BinaryOperator *Or;
2216 if (match(Op0, m_c_Xor(m_Value(X),
2217 m_CombineAnd(m_BinOp(Or),
2218 m_c_Or(m_Deferred(X), m_Value(Y))))) &&
2219 match(Op1, m_c_Xor(m_Specific(Or), m_Specific(Y))))
2220 return Constant::getNullValue(Op0->getType());
2221
2222 if (Op0->getType()->isIntOrIntVectorTy(1)) {
2223 // Op0&Op1 -> Op0 where Op0 implies Op1
2224 if (isImpliedCondition(Op0, Op1, Q.DL).value_or(false))
2225 return Op0;
2226 // Op0&Op1 -> Op1 where Op1 implies Op0
2227 if (isImpliedCondition(Op1, Op0, Q.DL).value_or(false))
2228 return Op1;
2229 }
2230
2231 return nullptr;
2232 }
2233
simplifyAndInst(Value * Op0,Value * Op1,const SimplifyQuery & Q)2234 Value *llvm::simplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2235 return ::simplifyAndInst(Op0, Op1, Q, RecursionLimit);
2236 }
2237
simplifyOrLogic(Value * X,Value * Y)2238 static Value *simplifyOrLogic(Value *X, Value *Y) {
2239 assert(X->getType() == Y->getType() && "Expected same type for 'or' ops");
2240 Type *Ty = X->getType();
2241
2242 // X | ~X --> -1
2243 if (match(Y, m_Not(m_Specific(X))))
2244 return ConstantInt::getAllOnesValue(Ty);
2245
2246 // X | ~(X & ?) = -1
2247 if (match(Y, m_Not(m_c_And(m_Specific(X), m_Value()))))
2248 return ConstantInt::getAllOnesValue(Ty);
2249
2250 // X | (X & ?) --> X
2251 if (match(Y, m_c_And(m_Specific(X), m_Value())))
2252 return X;
2253
2254 Value *A, *B;
2255
2256 // (A ^ B) | (A | B) --> A | B
2257 // (A ^ B) | (B | A) --> B | A
2258 if (match(X, m_Xor(m_Value(A), m_Value(B))) &&
2259 match(Y, m_c_Or(m_Specific(A), m_Specific(B))))
2260 return Y;
2261
2262 // ~(A ^ B) | (A | B) --> -1
2263 // ~(A ^ B) | (B | A) --> -1
2264 if (match(X, m_Not(m_Xor(m_Value(A), m_Value(B)))) &&
2265 match(Y, m_c_Or(m_Specific(A), m_Specific(B))))
2266 return ConstantInt::getAllOnesValue(Ty);
2267
2268 // (A & ~B) | (A ^ B) --> A ^ B
2269 // (~B & A) | (A ^ B) --> A ^ B
2270 // (A & ~B) | (B ^ A) --> B ^ A
2271 // (~B & A) | (B ^ A) --> B ^ A
2272 if (match(X, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
2273 match(Y, m_c_Xor(m_Specific(A), m_Specific(B))))
2274 return Y;
2275
2276 // (~A ^ B) | (A & B) --> ~A ^ B
2277 // (B ^ ~A) | (A & B) --> B ^ ~A
2278 // (~A ^ B) | (B & A) --> ~A ^ B
2279 // (B ^ ~A) | (B & A) --> B ^ ~A
2280 if (match(X, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
2281 match(Y, m_c_And(m_Specific(A), m_Specific(B))))
2282 return X;
2283
2284 // (~A | B) | (A ^ B) --> -1
2285 // (~A | B) | (B ^ A) --> -1
2286 // (B | ~A) | (A ^ B) --> -1
2287 // (B | ~A) | (B ^ A) --> -1
2288 if (match(X, m_c_Or(m_Not(m_Value(A)), m_Value(B))) &&
2289 match(Y, m_c_Xor(m_Specific(A), m_Specific(B))))
2290 return ConstantInt::getAllOnesValue(Ty);
2291
2292 // (~A & B) | ~(A | B) --> ~A
2293 // (~A & B) | ~(B | A) --> ~A
2294 // (B & ~A) | ~(A | B) --> ~A
2295 // (B & ~A) | ~(B | A) --> ~A
2296 Value *NotA;
2297 if (match(X,
2298 m_c_And(m_CombineAnd(m_Value(NotA), m_NotForbidUndef(m_Value(A))),
2299 m_Value(B))) &&
2300 match(Y, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
2301 return NotA;
2302
2303 // ~(A ^ B) | (A & B) --> ~(A ^ B)
2304 // ~(A ^ B) | (B & A) --> ~(A ^ B)
2305 Value *NotAB;
2306 if (match(X, m_CombineAnd(m_NotForbidUndef(m_Xor(m_Value(A), m_Value(B))),
2307 m_Value(NotAB))) &&
2308 match(Y, m_c_And(m_Specific(A), m_Specific(B))))
2309 return NotAB;
2310
2311 // ~(A & B) | (A ^ B) --> ~(A & B)
2312 // ~(A & B) | (B ^ A) --> ~(A & B)
2313 if (match(X, m_CombineAnd(m_NotForbidUndef(m_And(m_Value(A), m_Value(B))),
2314 m_Value(NotAB))) &&
2315 match(Y, m_c_Xor(m_Specific(A), m_Specific(B))))
2316 return NotAB;
2317
2318 return nullptr;
2319 }
2320
2321 /// Given operands for an Or, see if we can fold the result.
2322 /// If not, this returns null.
simplifyOrInst(Value * Op0,Value * Op1,const SimplifyQuery & Q,unsigned MaxRecurse)2323 static Value *simplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2324 unsigned MaxRecurse) {
2325 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
2326 return C;
2327
2328 // X | poison -> poison
2329 if (isa<PoisonValue>(Op1))
2330 return Op1;
2331
2332 // X | undef -> -1
2333 // X | -1 = -1
2334 // Do not return Op1 because it may contain undef elements if it's a vector.
2335 if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes()))
2336 return Constant::getAllOnesValue(Op0->getType());
2337
2338 // X | X = X
2339 // X | 0 = X
2340 if (Op0 == Op1 || match(Op1, m_Zero()))
2341 return Op0;
2342
2343 if (Value *R = simplifyOrLogic(Op0, Op1))
2344 return R;
2345 if (Value *R = simplifyOrLogic(Op1, Op0))
2346 return R;
2347
2348 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or))
2349 return V;
2350
2351 // Rotated -1 is still -1:
2352 // (-1 << X) | (-1 >> (C - X)) --> -1
2353 // (-1 >> X) | (-1 << (C - X)) --> -1
2354 // ...with C <= bitwidth (and commuted variants).
2355 Value *X, *Y;
2356 if ((match(Op0, m_Shl(m_AllOnes(), m_Value(X))) &&
2357 match(Op1, m_LShr(m_AllOnes(), m_Value(Y)))) ||
2358 (match(Op1, m_Shl(m_AllOnes(), m_Value(X))) &&
2359 match(Op0, m_LShr(m_AllOnes(), m_Value(Y))))) {
2360 const APInt *C;
2361 if ((match(X, m_Sub(m_APInt(C), m_Specific(Y))) ||
2362 match(Y, m_Sub(m_APInt(C), m_Specific(X)))) &&
2363 C->ule(X->getType()->getScalarSizeInBits())) {
2364 return ConstantInt::getAllOnesValue(X->getType());
2365 }
2366 }
2367
2368 // A funnel shift (rotate) can be decomposed into simpler shifts. See if we
2369 // are mixing in another shift that is redundant with the funnel shift.
2370
2371 // (fshl X, ?, Y) | (shl X, Y) --> fshl X, ?, Y
2372 // (shl X, Y) | (fshl X, ?, Y) --> fshl X, ?, Y
2373 if (match(Op0,
2374 m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), m_Value(Y))) &&
2375 match(Op1, m_Shl(m_Specific(X), m_Specific(Y))))
2376 return Op0;
2377 if (match(Op1,
2378 m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), m_Value(Y))) &&
2379 match(Op0, m_Shl(m_Specific(X), m_Specific(Y))))
2380 return Op1;
2381
2382 // (fshr ?, X, Y) | (lshr X, Y) --> fshr ?, X, Y
2383 // (lshr X, Y) | (fshr ?, X, Y) --> fshr ?, X, Y
2384 if (match(Op0,
2385 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), m_Value(Y))) &&
2386 match(Op1, m_LShr(m_Specific(X), m_Specific(Y))))
2387 return Op0;
2388 if (match(Op1,
2389 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), m_Value(Y))) &&
2390 match(Op0, m_LShr(m_Specific(X), m_Specific(Y))))
2391 return Op1;
2392
2393 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false))
2394 return V;
2395
2396 // If we have a multiplication overflow check that is being 'and'ed with a
2397 // check that one of the multipliers is not zero, we can omit the 'and', and
2398 // only keep the overflow check.
2399 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false))
2400 return Op1;
2401 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false))
2402 return Op0;
2403
2404 // Try some generic simplifications for associative operations.
2405 if (Value *V =
2406 simplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2407 return V;
2408
2409 // Or distributes over And. Try some generic simplifications based on this.
2410 if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1,
2411 Instruction::And, Q, MaxRecurse))
2412 return V;
2413
2414 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2415 if (Op0->getType()->isIntOrIntVectorTy(1)) {
2416 // A | (A || B) -> A || B
2417 if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value())))
2418 return Op1;
2419 else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value())))
2420 return Op0;
2421 }
2422 // If the operation is with the result of a select instruction, check
2423 // whether operating on either branch of the select always yields the same
2424 // value.
2425 if (Value *V =
2426 threadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2427 return V;
2428 }
2429
2430 // (A & C1)|(B & C2)
2431 Value *A, *B;
2432 const APInt *C1, *C2;
2433 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
2434 match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
2435 if (*C1 == ~*C2) {
2436 // (A & C1)|(B & C2)
2437 // If we have: ((V + N) & C1) | (V & C2)
2438 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2439 // replace with V+N.
2440 Value *N;
2441 if (C2->isMask() && // C2 == 0+1+
2442 match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
2443 // Add commutes, try both ways.
2444 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2445 return A;
2446 }
2447 // Or commutes, try both ways.
2448 if (C1->isMask() && match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
2449 // Add commutes, try both ways.
2450 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2451 return B;
2452 }
2453 }
2454 }
2455
2456 // If the operation is with the result of a phi instruction, check whether
2457 // operating on all incoming values of the phi always yields the same value.
2458 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2459 if (Value *V = threadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2460 return V;
2461
2462 if (Op0->getType()->isIntOrIntVectorTy(1)) {
2463 // Op0|Op1 -> Op1 where Op0 implies Op1
2464 if (isImpliedCondition(Op0, Op1, Q.DL).value_or(false))
2465 return Op1;
2466 // Op0|Op1 -> Op0 where Op1 implies Op0
2467 if (isImpliedCondition(Op1, Op0, Q.DL).value_or(false))
2468 return Op0;
2469 }
2470
2471 return nullptr;
2472 }
2473
simplifyOrInst(Value * Op0,Value * Op1,const SimplifyQuery & Q)2474 Value *llvm::simplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2475 return ::simplifyOrInst(Op0, Op1, Q, RecursionLimit);
2476 }
2477
2478 /// Given operands for a Xor, see if we can fold the result.
2479 /// If not, this returns null.
simplifyXorInst(Value * Op0,Value * Op1,const SimplifyQuery & Q,unsigned MaxRecurse)2480 static Value *simplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2481 unsigned MaxRecurse) {
2482 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
2483 return C;
2484
2485 // X ^ poison -> poison
2486 if (isa<PoisonValue>(Op1))
2487 return Op1;
2488
2489 // A ^ undef -> undef
2490 if (Q.isUndefValue(Op1))
2491 return Op1;
2492
2493 // A ^ 0 = A
2494 if (match(Op1, m_Zero()))
2495 return Op0;
2496
2497 // A ^ A = 0
2498 if (Op0 == Op1)
2499 return Constant::getNullValue(Op0->getType());
2500
2501 // A ^ ~A = ~A ^ A = -1
2502 if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0))))
2503 return Constant::getAllOnesValue(Op0->getType());
2504
2505 auto foldAndOrNot = [](Value *X, Value *Y) -> Value * {
2506 Value *A, *B;
2507 // (~A & B) ^ (A | B) --> A -- There are 8 commuted variants.
2508 if (match(X, m_c_And(m_Not(m_Value(A)), m_Value(B))) &&
2509 match(Y, m_c_Or(m_Specific(A), m_Specific(B))))
2510 return A;
2511
2512 // (~A | B) ^ (A & B) --> ~A -- There are 8 commuted variants.
2513 // The 'not' op must contain a complete -1 operand (no undef elements for
2514 // vector) for the transform to be safe.
2515 Value *NotA;
2516 if (match(X,
2517 m_c_Or(m_CombineAnd(m_NotForbidUndef(m_Value(A)), m_Value(NotA)),
2518 m_Value(B))) &&
2519 match(Y, m_c_And(m_Specific(A), m_Specific(B))))
2520 return NotA;
2521
2522 return nullptr;
2523 };
2524 if (Value *R = foldAndOrNot(Op0, Op1))
2525 return R;
2526 if (Value *R = foldAndOrNot(Op1, Op0))
2527 return R;
2528
2529 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor))
2530 return V;
2531
2532 // Try some generic simplifications for associative operations.
2533 if (Value *V =
2534 simplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, MaxRecurse))
2535 return V;
2536
2537 // Threading Xor over selects and phi nodes is pointless, so don't bother.
2538 // Threading over the select in "A ^ select(cond, B, C)" means evaluating
2539 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
2540 // only if B and C are equal. If B and C are equal then (since we assume
2541 // that operands have already been simplified) "select(cond, B, C)" should
2542 // have been simplified to the common value of B and C already. Analysing
2543 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly
2544 // for threading over phi nodes.
2545
2546 return nullptr;
2547 }
2548
simplifyXorInst(Value * Op0,Value * Op1,const SimplifyQuery & Q)2549 Value *llvm::simplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2550 return ::simplifyXorInst(Op0, Op1, Q, RecursionLimit);
2551 }
2552
getCompareTy(Value * Op)2553 static Type *getCompareTy(Value *Op) {
2554 return CmpInst::makeCmpResultType(Op->getType());
2555 }
2556
2557 /// Rummage around inside V looking for something equivalent to the comparison
2558 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
2559 /// Helper function for analyzing max/min idioms.
extractEquivalentCondition(Value * V,CmpInst::Predicate Pred,Value * LHS,Value * RHS)2560 static Value *extractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
2561 Value *LHS, Value *RHS) {
2562 SelectInst *SI = dyn_cast<SelectInst>(V);
2563 if (!SI)
2564 return nullptr;
2565 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2566 if (!Cmp)
2567 return nullptr;
2568 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2569 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
2570 return Cmp;
2571 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
2572 LHS == CmpRHS && RHS == CmpLHS)
2573 return Cmp;
2574 return nullptr;
2575 }
2576
2577 /// Return true if the underlying object (storage) must be disjoint from
2578 /// storage returned by any noalias return call.
isAllocDisjoint(const Value * V)2579 static bool isAllocDisjoint(const Value *V) {
2580 // For allocas, we consider only static ones (dynamic
2581 // allocas might be transformed into calls to malloc not simultaneously
2582 // live with the compared-to allocation). For globals, we exclude symbols
2583 // that might be resolve lazily to symbols in another dynamically-loaded
2584 // library (and, thus, could be malloc'ed by the implementation).
2585 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2586 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2587 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2588 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2589 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2590 !GV->isThreadLocal();
2591 if (const Argument *A = dyn_cast<Argument>(V))
2592 return A->hasByValAttr();
2593 return false;
2594 }
2595
2596 /// Return true if V1 and V2 are each the base of some distict storage region
2597 /// [V, object_size(V)] which do not overlap. Note that zero sized regions
2598 /// *are* possible, and that zero sized regions do not overlap with any other.
haveNonOverlappingStorage(const Value * V1,const Value * V2)2599 static bool haveNonOverlappingStorage(const Value *V1, const Value *V2) {
2600 // Global variables always exist, so they always exist during the lifetime
2601 // of each other and all allocas. Global variables themselves usually have
2602 // non-overlapping storage, but since their addresses are constants, the
2603 // case involving two globals does not reach here and is instead handled in
2604 // constant folding.
2605 //
2606 // Two different allocas usually have different addresses...
2607 //
2608 // However, if there's an @llvm.stackrestore dynamically in between two
2609 // allocas, they may have the same address. It's tempting to reduce the
2610 // scope of the problem by only looking at *static* allocas here. That would
2611 // cover the majority of allocas while significantly reducing the likelihood
2612 // of having an @llvm.stackrestore pop up in the middle. However, it's not
2613 // actually impossible for an @llvm.stackrestore to pop up in the middle of
2614 // an entry block. Also, if we have a block that's not attached to a
2615 // function, we can't tell if it's "static" under the current definition.
2616 // Theoretically, this problem could be fixed by creating a new kind of
2617 // instruction kind specifically for static allocas. Such a new instruction
2618 // could be required to be at the top of the entry block, thus preventing it
2619 // from being subject to a @llvm.stackrestore. Instcombine could even
2620 // convert regular allocas into these special allocas. It'd be nifty.
2621 // However, until then, this problem remains open.
2622 //
2623 // So, we'll assume that two non-empty allocas have different addresses
2624 // for now.
2625 auto isByValArg = [](const Value *V) {
2626 const Argument *A = dyn_cast<Argument>(V);
2627 return A && A->hasByValAttr();
2628 };
2629
2630 // Byval args are backed by store which does not overlap with each other,
2631 // allocas, or globals.
2632 if (isByValArg(V1))
2633 return isa<AllocaInst>(V2) || isa<GlobalVariable>(V2) || isByValArg(V2);
2634 if (isByValArg(V2))
2635 return isa<AllocaInst>(V1) || isa<GlobalVariable>(V1) || isByValArg(V1);
2636
2637 return isa<AllocaInst>(V1) &&
2638 (isa<AllocaInst>(V2) || isa<GlobalVariable>(V2));
2639 }
2640
2641 // A significant optimization not implemented here is assuming that alloca
2642 // addresses are not equal to incoming argument values. They don't *alias*,
2643 // as we say, but that doesn't mean they aren't equal, so we take a
2644 // conservative approach.
2645 //
2646 // This is inspired in part by C++11 5.10p1:
2647 // "Two pointers of the same type compare equal if and only if they are both
2648 // null, both point to the same function, or both represent the same
2649 // address."
2650 //
2651 // This is pretty permissive.
2652 //
2653 // It's also partly due to C11 6.5.9p6:
2654 // "Two pointers compare equal if and only if both are null pointers, both are
2655 // pointers to the same object (including a pointer to an object and a
2656 // subobject at its beginning) or function, both are pointers to one past the
2657 // last element of the same array object, or one is a pointer to one past the
2658 // end of one array object and the other is a pointer to the start of a
2659 // different array object that happens to immediately follow the first array
2660 // object in the address space.)
2661 //
2662 // C11's version is more restrictive, however there's no reason why an argument
2663 // couldn't be a one-past-the-end value for a stack object in the caller and be
2664 // equal to the beginning of a stack object in the callee.
2665 //
2666 // If the C and C++ standards are ever made sufficiently restrictive in this
2667 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2668 // this optimization.
computePointerICmp(CmpInst::Predicate Pred,Value * LHS,Value * RHS,const SimplifyQuery & Q)2669 static Constant *computePointerICmp(CmpInst::Predicate Pred, Value *LHS,
2670 Value *RHS, const SimplifyQuery &Q) {
2671 const DataLayout &DL = Q.DL;
2672 const TargetLibraryInfo *TLI = Q.TLI;
2673 const DominatorTree *DT = Q.DT;
2674 const Instruction *CxtI = Q.CxtI;
2675 const InstrInfoQuery &IIQ = Q.IIQ;
2676
2677 // First, skip past any trivial no-ops.
2678 LHS = LHS->stripPointerCasts();
2679 RHS = RHS->stripPointerCasts();
2680
2681 // A non-null pointer is not equal to a null pointer.
2682 if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) &&
2683 llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr,
2684 IIQ.UseInstrInfo))
2685 return ConstantInt::get(getCompareTy(LHS), !CmpInst::isTrueWhenEqual(Pred));
2686
2687 // We can only fold certain predicates on pointer comparisons.
2688 switch (Pred) {
2689 default:
2690 return nullptr;
2691
2692 // Equality comaprisons are easy to fold.
2693 case CmpInst::ICMP_EQ:
2694 case CmpInst::ICMP_NE:
2695 break;
2696
2697 // We can only handle unsigned relational comparisons because 'inbounds' on
2698 // a GEP only protects against unsigned wrapping.
2699 case CmpInst::ICMP_UGT:
2700 case CmpInst::ICMP_UGE:
2701 case CmpInst::ICMP_ULT:
2702 case CmpInst::ICMP_ULE:
2703 // However, we have to switch them to their signed variants to handle
2704 // negative indices from the base pointer.
2705 Pred = ICmpInst::getSignedPredicate(Pred);
2706 break;
2707 }
2708
2709 // Strip off any constant offsets so that we can reason about them.
2710 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2711 // here and compare base addresses like AliasAnalysis does, however there are
2712 // numerous hazards. AliasAnalysis and its utilities rely on special rules
2713 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2714 // doesn't need to guarantee pointer inequality when it says NoAlias.
2715
2716 // Even if an non-inbounds GEP occurs along the path we can still optimize
2717 // equality comparisons concerning the result.
2718 bool AllowNonInbounds = ICmpInst::isEquality(Pred);
2719 APInt LHSOffset = stripAndComputeConstantOffsets(DL, LHS, AllowNonInbounds);
2720 APInt RHSOffset = stripAndComputeConstantOffsets(DL, RHS, AllowNonInbounds);
2721
2722 // If LHS and RHS are related via constant offsets to the same base
2723 // value, we can replace it with an icmp which just compares the offsets.
2724 if (LHS == RHS)
2725 return ConstantInt::get(getCompareTy(LHS),
2726 ICmpInst::compare(LHSOffset, RHSOffset, Pred));
2727
2728 // Various optimizations for (in)equality comparisons.
2729 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2730 // Different non-empty allocations that exist at the same time have
2731 // different addresses (if the program can tell). If the offsets are
2732 // within the bounds of their allocations (and not one-past-the-end!
2733 // so we can't use inbounds!), and their allocations aren't the same,
2734 // the pointers are not equal.
2735 if (haveNonOverlappingStorage(LHS, RHS)) {
2736 uint64_t LHSSize, RHSSize;
2737 ObjectSizeOpts Opts;
2738 Opts.EvalMode = ObjectSizeOpts::Mode::Min;
2739 auto *F = [](Value *V) -> Function * {
2740 if (auto *I = dyn_cast<Instruction>(V))
2741 return I->getFunction();
2742 if (auto *A = dyn_cast<Argument>(V))
2743 return A->getParent();
2744 return nullptr;
2745 }(LHS);
2746 Opts.NullIsUnknownSize = F ? NullPointerIsDefined(F) : true;
2747 if (getObjectSize(LHS, LHSSize, DL, TLI, Opts) &&
2748 getObjectSize(RHS, RHSSize, DL, TLI, Opts) &&
2749 !LHSOffset.isNegative() && !RHSOffset.isNegative() &&
2750 LHSOffset.ult(LHSSize) && RHSOffset.ult(RHSSize)) {
2751 return ConstantInt::get(getCompareTy(LHS),
2752 !CmpInst::isTrueWhenEqual(Pred));
2753 }
2754 }
2755
2756 // If one side of the equality comparison must come from a noalias call
2757 // (meaning a system memory allocation function), and the other side must
2758 // come from a pointer that cannot overlap with dynamically-allocated
2759 // memory within the lifetime of the current function (allocas, byval
2760 // arguments, globals), then determine the comparison result here.
2761 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs;
2762 getUnderlyingObjects(LHS, LHSUObjs);
2763 getUnderlyingObjects(RHS, RHSUObjs);
2764
2765 // Is the set of underlying objects all noalias calls?
2766 auto IsNAC = [](ArrayRef<const Value *> Objects) {
2767 return all_of(Objects, isNoAliasCall);
2768 };
2769
2770 // Is the set of underlying objects all things which must be disjoint from
2771 // noalias calls. We assume that indexing from such disjoint storage
2772 // into the heap is undefined, and thus offsets can be safely ignored.
2773 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) {
2774 return all_of(Objects, ::isAllocDisjoint);
2775 };
2776
2777 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2778 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2779 return ConstantInt::get(getCompareTy(LHS),
2780 !CmpInst::isTrueWhenEqual(Pred));
2781
2782 // Fold comparisons for non-escaping pointer even if the allocation call
2783 // cannot be elided. We cannot fold malloc comparison to null. Also, the
2784 // dynamic allocation call could be either of the operands. Note that
2785 // the other operand can not be based on the alloc - if it were, then
2786 // the cmp itself would be a capture.
2787 Value *MI = nullptr;
2788 if (isAllocLikeFn(LHS, TLI) &&
2789 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT))
2790 MI = LHS;
2791 else if (isAllocLikeFn(RHS, TLI) &&
2792 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT))
2793 MI = RHS;
2794 // FIXME: We should also fold the compare when the pointer escapes, but the
2795 // compare dominates the pointer escape
2796 if (MI && !PointerMayBeCaptured(MI, true, true))
2797 return ConstantInt::get(getCompareTy(LHS),
2798 CmpInst::isFalseWhenEqual(Pred));
2799 }
2800
2801 // Otherwise, fail.
2802 return nullptr;
2803 }
2804
2805 /// Fold an icmp when its operands have i1 scalar type.
simplifyICmpOfBools(CmpInst::Predicate Pred,Value * LHS,Value * RHS,const SimplifyQuery & Q)2806 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
2807 Value *RHS, const SimplifyQuery &Q) {
2808 Type *ITy = getCompareTy(LHS); // The return type.
2809 Type *OpTy = LHS->getType(); // The operand type.
2810 if (!OpTy->isIntOrIntVectorTy(1))
2811 return nullptr;
2812
2813 // A boolean compared to true/false can be reduced in 14 out of the 20
2814 // (10 predicates * 2 constants) possible combinations. The other
2815 // 6 cases require a 'not' of the LHS.
2816
2817 auto ExtractNotLHS = [](Value *V) -> Value * {
2818 Value *X;
2819 if (match(V, m_Not(m_Value(X))))
2820 return X;
2821 return nullptr;
2822 };
2823
2824 if (match(RHS, m_Zero())) {
2825 switch (Pred) {
2826 case CmpInst::ICMP_NE: // X != 0 -> X
2827 case CmpInst::ICMP_UGT: // X >u 0 -> X
2828 case CmpInst::ICMP_SLT: // X <s 0 -> X
2829 return LHS;
2830
2831 case CmpInst::ICMP_EQ: // not(X) == 0 -> X != 0 -> X
2832 case CmpInst::ICMP_ULE: // not(X) <=u 0 -> X >u 0 -> X
2833 case CmpInst::ICMP_SGE: // not(X) >=s 0 -> X <s 0 -> X
2834 if (Value *X = ExtractNotLHS(LHS))
2835 return X;
2836 break;
2837
2838 case CmpInst::ICMP_ULT: // X <u 0 -> false
2839 case CmpInst::ICMP_SGT: // X >s 0 -> false
2840 return getFalse(ITy);
2841
2842 case CmpInst::ICMP_UGE: // X >=u 0 -> true
2843 case CmpInst::ICMP_SLE: // X <=s 0 -> true
2844 return getTrue(ITy);
2845
2846 default:
2847 break;
2848 }
2849 } else if (match(RHS, m_One())) {
2850 switch (Pred) {
2851 case CmpInst::ICMP_EQ: // X == 1 -> X
2852 case CmpInst::ICMP_UGE: // X >=u 1 -> X
2853 case CmpInst::ICMP_SLE: // X <=s -1 -> X
2854 return LHS;
2855
2856 case CmpInst::ICMP_NE: // not(X) != 1 -> X == 1 -> X
2857 case CmpInst::ICMP_ULT: // not(X) <=u 1 -> X >=u 1 -> X
2858 case CmpInst::ICMP_SGT: // not(X) >s 1 -> X <=s -1 -> X
2859 if (Value *X = ExtractNotLHS(LHS))
2860 return X;
2861 break;
2862
2863 case CmpInst::ICMP_UGT: // X >u 1 -> false
2864 case CmpInst::ICMP_SLT: // X <s -1 -> false
2865 return getFalse(ITy);
2866
2867 case CmpInst::ICMP_ULE: // X <=u 1 -> true
2868 case CmpInst::ICMP_SGE: // X >=s -1 -> true
2869 return getTrue(ITy);
2870
2871 default:
2872 break;
2873 }
2874 }
2875
2876 switch (Pred) {
2877 default:
2878 break;
2879 case ICmpInst::ICMP_UGE:
2880 if (isImpliedCondition(RHS, LHS, Q.DL).value_or(false))
2881 return getTrue(ITy);
2882 break;
2883 case ICmpInst::ICMP_SGE:
2884 /// For signed comparison, the values for an i1 are 0 and -1
2885 /// respectively. This maps into a truth table of:
2886 /// LHS | RHS | LHS >=s RHS | LHS implies RHS
2887 /// 0 | 0 | 1 (0 >= 0) | 1
2888 /// 0 | 1 | 1 (0 >= -1) | 1
2889 /// 1 | 0 | 0 (-1 >= 0) | 0
2890 /// 1 | 1 | 1 (-1 >= -1) | 1
2891 if (isImpliedCondition(LHS, RHS, Q.DL).value_or(false))
2892 return getTrue(ITy);
2893 break;
2894 case ICmpInst::ICMP_ULE:
2895 if (isImpliedCondition(LHS, RHS, Q.DL).value_or(false))
2896 return getTrue(ITy);
2897 break;
2898 }
2899
2900 return nullptr;
2901 }
2902
2903 /// Try hard to fold icmp with zero RHS because this is a common case.
simplifyICmpWithZero(CmpInst::Predicate Pred,Value * LHS,Value * RHS,const SimplifyQuery & Q)2904 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
2905 Value *RHS, const SimplifyQuery &Q) {
2906 if (!match(RHS, m_Zero()))
2907 return nullptr;
2908
2909 Type *ITy = getCompareTy(LHS); // The return type.
2910 switch (Pred) {
2911 default:
2912 llvm_unreachable("Unknown ICmp predicate!");
2913 case ICmpInst::ICMP_ULT:
2914 return getFalse(ITy);
2915 case ICmpInst::ICMP_UGE:
2916 return getTrue(ITy);
2917 case ICmpInst::ICMP_EQ:
2918 case ICmpInst::ICMP_ULE:
2919 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2920 return getFalse(ITy);
2921 break;
2922 case ICmpInst::ICMP_NE:
2923 case ICmpInst::ICMP_UGT:
2924 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2925 return getTrue(ITy);
2926 break;
2927 case ICmpInst::ICMP_SLT: {
2928 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2929 if (LHSKnown.isNegative())
2930 return getTrue(ITy);
2931 if (LHSKnown.isNonNegative())
2932 return getFalse(ITy);
2933 break;
2934 }
2935 case ICmpInst::ICMP_SLE: {
2936 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2937 if (LHSKnown.isNegative())
2938 return getTrue(ITy);
2939 if (LHSKnown.isNonNegative() &&
2940 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2941 return getFalse(ITy);
2942 break;
2943 }
2944 case ICmpInst::ICMP_SGE: {
2945 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2946 if (LHSKnown.isNegative())
2947 return getFalse(ITy);
2948 if (LHSKnown.isNonNegative())
2949 return getTrue(ITy);
2950 break;
2951 }
2952 case ICmpInst::ICMP_SGT: {
2953 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2954 if (LHSKnown.isNegative())
2955 return getFalse(ITy);
2956 if (LHSKnown.isNonNegative() &&
2957 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2958 return getTrue(ITy);
2959 break;
2960 }
2961 }
2962
2963 return nullptr;
2964 }
2965
simplifyICmpWithConstant(CmpInst::Predicate Pred,Value * LHS,Value * RHS,const InstrInfoQuery & IIQ)2966 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
2967 Value *RHS, const InstrInfoQuery &IIQ) {
2968 Type *ITy = getCompareTy(RHS); // The return type.
2969
2970 Value *X;
2971 // Sign-bit checks can be optimized to true/false after unsigned
2972 // floating-point casts:
2973 // icmp slt (bitcast (uitofp X)), 0 --> false
2974 // icmp sgt (bitcast (uitofp X)), -1 --> true
2975 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) {
2976 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero()))
2977 return ConstantInt::getFalse(ITy);
2978 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes()))
2979 return ConstantInt::getTrue(ITy);
2980 }
2981
2982 const APInt *C;
2983 if (!match(RHS, m_APIntAllowUndef(C)))
2984 return nullptr;
2985
2986 // Rule out tautological comparisons (eg., ult 0 or uge 0).
2987 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2988 if (RHS_CR.isEmptySet())
2989 return ConstantInt::getFalse(ITy);
2990 if (RHS_CR.isFullSet())
2991 return ConstantInt::getTrue(ITy);
2992
2993 ConstantRange LHS_CR =
2994 computeConstantRange(LHS, CmpInst::isSigned(Pred), IIQ.UseInstrInfo);
2995 if (!LHS_CR.isFullSet()) {
2996 if (RHS_CR.contains(LHS_CR))
2997 return ConstantInt::getTrue(ITy);
2998 if (RHS_CR.inverse().contains(LHS_CR))
2999 return ConstantInt::getFalse(ITy);
3000 }
3001
3002 // (mul nuw/nsw X, MulC) != C --> true (if C is not a multiple of MulC)
3003 // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC)
3004 const APInt *MulC;
3005 if (ICmpInst::isEquality(Pred) &&
3006 ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
3007 *MulC != 0 && C->urem(*MulC) != 0) ||
3008 (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
3009 *MulC != 0 && C->srem(*MulC) != 0)))
3010 return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE);
3011
3012 return nullptr;
3013 }
3014
simplifyICmpWithBinOpOnLHS(CmpInst::Predicate Pred,BinaryOperator * LBO,Value * RHS,const SimplifyQuery & Q,unsigned MaxRecurse)3015 static Value *simplifyICmpWithBinOpOnLHS(CmpInst::Predicate Pred,
3016 BinaryOperator *LBO, Value *RHS,
3017 const SimplifyQuery &Q,
3018 unsigned MaxRecurse) {
3019 Type *ITy = getCompareTy(RHS); // The return type.
3020
3021 Value *Y = nullptr;
3022 // icmp pred (or X, Y), X
3023 if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
3024 if (Pred == ICmpInst::ICMP_ULT)
3025 return getFalse(ITy);
3026 if (Pred == ICmpInst::ICMP_UGE)
3027 return getTrue(ITy);
3028
3029 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
3030 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
3031 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
3032 if (RHSKnown.isNonNegative() && YKnown.isNegative())
3033 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
3034 if (RHSKnown.isNegative() || YKnown.isNonNegative())
3035 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
3036 }
3037 }
3038
3039 // icmp pred (and X, Y), X
3040 if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
3041 if (Pred == ICmpInst::ICMP_UGT)
3042 return getFalse(ITy);
3043 if (Pred == ICmpInst::ICMP_ULE)
3044 return getTrue(ITy);
3045 }
3046
3047 // icmp pred (urem X, Y), Y
3048 if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
3049 switch (Pred) {
3050 default:
3051 break;
3052 case ICmpInst::ICMP_SGT:
3053 case ICmpInst::ICMP_SGE: {
3054 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
3055 if (!Known.isNonNegative())
3056 break;
3057 LLVM_FALLTHROUGH;
3058 }
3059 case ICmpInst::ICMP_EQ:
3060 case ICmpInst::ICMP_UGT:
3061 case ICmpInst::ICMP_UGE:
3062 return getFalse(ITy);
3063 case ICmpInst::ICMP_SLT:
3064 case ICmpInst::ICMP_SLE: {
3065 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
3066 if (!Known.isNonNegative())
3067 break;
3068 LLVM_FALLTHROUGH;
3069 }
3070 case ICmpInst::ICMP_NE:
3071 case ICmpInst::ICMP_ULT:
3072 case ICmpInst::ICMP_ULE:
3073 return getTrue(ITy);
3074 }
3075 }
3076
3077 // icmp pred (urem X, Y), X
3078 if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) {
3079 if (Pred == ICmpInst::ICMP_ULE)
3080 return getTrue(ITy);
3081 if (Pred == ICmpInst::ICMP_UGT)
3082 return getFalse(ITy);
3083 }
3084
3085 // x >>u y <=u x --> true.
3086 // x >>u y >u x --> false.
3087 // x udiv y <=u x --> true.
3088 // x udiv y >u x --> false.
3089 if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
3090 match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
3091 // icmp pred (X op Y), X
3092 if (Pred == ICmpInst::ICMP_UGT)
3093 return getFalse(ITy);
3094 if (Pred == ICmpInst::ICMP_ULE)
3095 return getTrue(ITy);
3096 }
3097
3098 // If x is nonzero:
3099 // x >>u C <u x --> true for C != 0.
3100 // x >>u C != x --> true for C != 0.
3101 // x >>u C >=u x --> false for C != 0.
3102 // x >>u C == x --> false for C != 0.
3103 // x udiv C <u x --> true for C != 1.
3104 // x udiv C != x --> true for C != 1.
3105 // x udiv C >=u x --> false for C != 1.
3106 // x udiv C == x --> false for C != 1.
3107 // TODO: allow non-constant shift amount/divisor
3108 const APInt *C;
3109 if ((match(LBO, m_LShr(m_Specific(RHS), m_APInt(C))) && *C != 0) ||
3110 (match(LBO, m_UDiv(m_Specific(RHS), m_APInt(C))) && *C != 1)) {
3111 if (isKnownNonZero(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) {
3112 switch (Pred) {
3113 default:
3114 break;
3115 case ICmpInst::ICMP_EQ:
3116 case ICmpInst::ICMP_UGE:
3117 return getFalse(ITy);
3118 case ICmpInst::ICMP_NE:
3119 case ICmpInst::ICMP_ULT:
3120 return getTrue(ITy);
3121 case ICmpInst::ICMP_UGT:
3122 case ICmpInst::ICMP_ULE:
3123 // UGT/ULE are handled by the more general case just above
3124 llvm_unreachable("Unexpected UGT/ULE, should have been handled");
3125 }
3126 }
3127 }
3128
3129 // (x*C1)/C2 <= x for C1 <= C2.
3130 // This holds even if the multiplication overflows: Assume that x != 0 and
3131 // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and
3132 // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x.
3133 //
3134 // Additionally, either the multiplication and division might be represented
3135 // as shifts:
3136 // (x*C1)>>C2 <= x for C1 < 2**C2.
3137 // (x<<C1)/C2 <= x for 2**C1 < C2.
3138 const APInt *C1, *C2;
3139 if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
3140 C1->ule(*C2)) ||
3141 (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
3142 C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) ||
3143 (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
3144 (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) {
3145 if (Pred == ICmpInst::ICMP_UGT)
3146 return getFalse(ITy);
3147 if (Pred == ICmpInst::ICMP_ULE)
3148 return getTrue(ITy);
3149 }
3150
3151 return nullptr;
3152 }
3153
3154 // If only one of the icmp's operands has NSW flags, try to prove that:
3155 //
3156 // icmp slt (x + C1), (x +nsw C2)
3157 //
3158 // is equivalent to:
3159 //
3160 // icmp slt C1, C2
3161 //
3162 // which is true if x + C2 has the NSW flags set and:
3163 // *) C1 < C2 && C1 >= 0, or
3164 // *) C2 < C1 && C1 <= 0.
3165 //
trySimplifyICmpWithAdds(CmpInst::Predicate Pred,Value * LHS,Value * RHS)3166 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS,
3167 Value *RHS) {
3168 // TODO: only support icmp slt for now.
3169 if (Pred != CmpInst::ICMP_SLT)
3170 return false;
3171
3172 // Canonicalize nsw add as RHS.
3173 if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
3174 std::swap(LHS, RHS);
3175 if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
3176 return false;
3177
3178 Value *X;
3179 const APInt *C1, *C2;
3180 if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) ||
3181 !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2))))
3182 return false;
3183
3184 return (C1->slt(*C2) && C1->isNonNegative()) ||
3185 (C2->slt(*C1) && C1->isNonPositive());
3186 }
3187
3188 /// TODO: A large part of this logic is duplicated in InstCombine's
3189 /// foldICmpBinOp(). We should be able to share that and avoid the code
3190 /// duplication.
simplifyICmpWithBinOp(CmpInst::Predicate Pred,Value * LHS,Value * RHS,const SimplifyQuery & Q,unsigned MaxRecurse)3191 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
3192 Value *RHS, const SimplifyQuery &Q,
3193 unsigned MaxRecurse) {
3194 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
3195 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
3196 if (MaxRecurse && (LBO || RBO)) {
3197 // Analyze the case when either LHS or RHS is an add instruction.
3198 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3199 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
3200 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
3201 if (LBO && LBO->getOpcode() == Instruction::Add) {
3202 A = LBO->getOperand(0);
3203 B = LBO->getOperand(1);
3204 NoLHSWrapProblem =
3205 ICmpInst::isEquality(Pred) ||
3206 (CmpInst::isUnsigned(Pred) &&
3207 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) ||
3208 (CmpInst::isSigned(Pred) &&
3209 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)));
3210 }
3211 if (RBO && RBO->getOpcode() == Instruction::Add) {
3212 C = RBO->getOperand(0);
3213 D = RBO->getOperand(1);
3214 NoRHSWrapProblem =
3215 ICmpInst::isEquality(Pred) ||
3216 (CmpInst::isUnsigned(Pred) &&
3217 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) ||
3218 (CmpInst::isSigned(Pred) &&
3219 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO)));
3220 }
3221
3222 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
3223 if ((A == RHS || B == RHS) && NoLHSWrapProblem)
3224 if (Value *V = simplifyICmpInst(Pred, A == RHS ? B : A,
3225 Constant::getNullValue(RHS->getType()), Q,
3226 MaxRecurse - 1))
3227 return V;
3228
3229 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
3230 if ((C == LHS || D == LHS) && NoRHSWrapProblem)
3231 if (Value *V =
3232 simplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
3233 C == LHS ? D : C, Q, MaxRecurse - 1))
3234 return V;
3235
3236 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
3237 bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) ||
3238 trySimplifyICmpWithAdds(Pred, LHS, RHS);
3239 if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) {
3240 // Determine Y and Z in the form icmp (X+Y), (X+Z).
3241 Value *Y, *Z;
3242 if (A == C) {
3243 // C + B == C + D -> B == D
3244 Y = B;
3245 Z = D;
3246 } else if (A == D) {
3247 // D + B == C + D -> B == C
3248 Y = B;
3249 Z = C;
3250 } else if (B == C) {
3251 // A + C == C + D -> A == D
3252 Y = A;
3253 Z = D;
3254 } else {
3255 assert(B == D);
3256 // A + D == C + D -> A == C
3257 Y = A;
3258 Z = C;
3259 }
3260 if (Value *V = simplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
3261 return V;
3262 }
3263 }
3264
3265 if (LBO)
3266 if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse))
3267 return V;
3268
3269 if (RBO)
3270 if (Value *V = simplifyICmpWithBinOpOnLHS(
3271 ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse))
3272 return V;
3273
3274 // 0 - (zext X) pred C
3275 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
3276 const APInt *C;
3277 if (match(RHS, m_APInt(C))) {
3278 if (C->isStrictlyPositive()) {
3279 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE)
3280 return ConstantInt::getTrue(getCompareTy(RHS));
3281 if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ)
3282 return ConstantInt::getFalse(getCompareTy(RHS));
3283 }
3284 if (C->isNonNegative()) {
3285 if (Pred == ICmpInst::ICMP_SLE)
3286 return ConstantInt::getTrue(getCompareTy(RHS));
3287 if (Pred == ICmpInst::ICMP_SGT)
3288 return ConstantInt::getFalse(getCompareTy(RHS));
3289 }
3290 }
3291 }
3292
3293 // If C2 is a power-of-2 and C is not:
3294 // (C2 << X) == C --> false
3295 // (C2 << X) != C --> true
3296 const APInt *C;
3297 if (match(LHS, m_Shl(m_Power2(), m_Value())) &&
3298 match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) {
3299 // C2 << X can equal zero in some circumstances.
3300 // This simplification might be unsafe if C is zero.
3301 //
3302 // We know it is safe if:
3303 // - The shift is nsw. We can't shift out the one bit.
3304 // - The shift is nuw. We can't shift out the one bit.
3305 // - C2 is one.
3306 // - C isn't zero.
3307 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3308 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3309 match(LHS, m_Shl(m_One(), m_Value())) || !C->isZero()) {
3310 if (Pred == ICmpInst::ICMP_EQ)
3311 return ConstantInt::getFalse(getCompareTy(RHS));
3312 if (Pred == ICmpInst::ICMP_NE)
3313 return ConstantInt::getTrue(getCompareTy(RHS));
3314 }
3315 }
3316
3317 // TODO: This is overly constrained. LHS can be any power-of-2.
3318 // (1 << X) >u 0x8000 --> false
3319 // (1 << X) <=u 0x8000 --> true
3320 if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) {
3321 if (Pred == ICmpInst::ICMP_UGT)
3322 return ConstantInt::getFalse(getCompareTy(RHS));
3323 if (Pred == ICmpInst::ICMP_ULE)
3324 return ConstantInt::getTrue(getCompareTy(RHS));
3325 }
3326
3327 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
3328 LBO->getOperand(1) == RBO->getOperand(1)) {
3329 switch (LBO->getOpcode()) {
3330 default:
3331 break;
3332 case Instruction::UDiv:
3333 case Instruction::LShr:
3334 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) ||
3335 !Q.IIQ.isExact(RBO))
3336 break;
3337 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0),
3338 RBO->getOperand(0), Q, MaxRecurse - 1))
3339 return V;
3340 break;
3341 case Instruction::SDiv:
3342 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) ||
3343 !Q.IIQ.isExact(RBO))
3344 break;
3345 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0),
3346 RBO->getOperand(0), Q, MaxRecurse - 1))
3347 return V;
3348 break;
3349 case Instruction::AShr:
3350 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO))
3351 break;
3352 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0),
3353 RBO->getOperand(0), Q, MaxRecurse - 1))
3354 return V;
3355 break;
3356 case Instruction::Shl: {
3357 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO);
3358 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO);
3359 if (!NUW && !NSW)
3360 break;
3361 if (!NSW && ICmpInst::isSigned(Pred))
3362 break;
3363 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0),
3364 RBO->getOperand(0), Q, MaxRecurse - 1))
3365 return V;
3366 break;
3367 }
3368 }
3369 }
3370 return nullptr;
3371 }
3372
3373 /// simplify integer comparisons where at least one operand of the compare
3374 /// matches an integer min/max idiom.
simplifyICmpWithMinMax(CmpInst::Predicate Pred,Value * LHS,Value * RHS,const SimplifyQuery & Q,unsigned MaxRecurse)3375 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
3376 Value *RHS, const SimplifyQuery &Q,
3377 unsigned MaxRecurse) {
3378 Type *ITy = getCompareTy(LHS); // The return type.
3379 Value *A, *B;
3380 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
3381 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
3382
3383 // Signed variants on "max(a,b)>=a -> true".
3384 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3385 if (A != RHS)
3386 std::swap(A, B); // smax(A, B) pred A.
3387 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3388 // We analyze this as smax(A, B) pred A.
3389 P = Pred;
3390 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
3391 (A == LHS || B == LHS)) {
3392 if (A != LHS)
3393 std::swap(A, B); // A pred smax(A, B).
3394 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3395 // We analyze this as smax(A, B) swapped-pred A.
3396 P = CmpInst::getSwappedPredicate(Pred);
3397 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3398 (A == RHS || B == RHS)) {
3399 if (A != RHS)
3400 std::swap(A, B); // smin(A, B) pred A.
3401 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3402 // We analyze this as smax(-A, -B) swapped-pred -A.
3403 // Note that we do not need to actually form -A or -B thanks to EqP.
3404 P = CmpInst::getSwappedPredicate(Pred);
3405 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
3406 (A == LHS || B == LHS)) {
3407 if (A != LHS)
3408 std::swap(A, B); // A pred smin(A, B).
3409 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3410 // We analyze this as smax(-A, -B) pred -A.
3411 // Note that we do not need to actually form -A or -B thanks to EqP.
3412 P = Pred;
3413 }
3414 if (P != CmpInst::BAD_ICMP_PREDICATE) {
3415 // Cases correspond to "max(A, B) p A".
3416 switch (P) {
3417 default:
3418 break;
3419 case CmpInst::ICMP_EQ:
3420 case CmpInst::ICMP_SLE:
3421 // Equivalent to "A EqP B". This may be the same as the condition tested
3422 // in the max/min; if so, we can just return that.
3423 if (Value *V = extractEquivalentCondition(LHS, EqP, A, B))
3424 return V;
3425 if (Value *V = extractEquivalentCondition(RHS, EqP, A, B))
3426 return V;
3427 // Otherwise, see if "A EqP B" simplifies.
3428 if (MaxRecurse)
3429 if (Value *V = simplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3430 return V;
3431 break;
3432 case CmpInst::ICMP_NE:
3433 case CmpInst::ICMP_SGT: {
3434 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3435 // Equivalent to "A InvEqP B". This may be the same as the condition
3436 // tested in the max/min; if so, we can just return that.
3437 if (Value *V = extractEquivalentCondition(LHS, InvEqP, A, B))
3438 return V;
3439 if (Value *V = extractEquivalentCondition(RHS, InvEqP, A, B))
3440 return V;
3441 // Otherwise, see if "A InvEqP B" simplifies.
3442 if (MaxRecurse)
3443 if (Value *V = simplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3444 return V;
3445 break;
3446 }
3447 case CmpInst::ICMP_SGE:
3448 // Always true.
3449 return getTrue(ITy);
3450 case CmpInst::ICMP_SLT:
3451 // Always false.
3452 return getFalse(ITy);
3453 }
3454 }
3455
3456 // Unsigned variants on "max(a,b)>=a -> true".
3457 P = CmpInst::BAD_ICMP_PREDICATE;
3458 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3459 if (A != RHS)
3460 std::swap(A, B); // umax(A, B) pred A.
3461 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3462 // We analyze this as umax(A, B) pred A.
3463 P = Pred;
3464 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
3465 (A == LHS || B == LHS)) {
3466 if (A != LHS)
3467 std::swap(A, B); // A pred umax(A, B).
3468 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3469 // We analyze this as umax(A, B) swapped-pred A.
3470 P = CmpInst::getSwappedPredicate(Pred);
3471 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3472 (A == RHS || B == RHS)) {
3473 if (A != RHS)
3474 std::swap(A, B); // umin(A, B) pred A.
3475 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3476 // We analyze this as umax(-A, -B) swapped-pred -A.
3477 // Note that we do not need to actually form -A or -B thanks to EqP.
3478 P = CmpInst::getSwappedPredicate(Pred);
3479 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
3480 (A == LHS || B == LHS)) {
3481 if (A != LHS)
3482 std::swap(A, B); // A pred umin(A, B).
3483 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3484 // We analyze this as umax(-A, -B) pred -A.
3485 // Note that we do not need to actually form -A or -B thanks to EqP.
3486 P = Pred;
3487 }
3488 if (P != CmpInst::BAD_ICMP_PREDICATE) {
3489 // Cases correspond to "max(A, B) p A".
3490 switch (P) {
3491 default:
3492 break;
3493 case CmpInst::ICMP_EQ:
3494 case CmpInst::ICMP_ULE:
3495 // Equivalent to "A EqP B". This may be the same as the condition tested
3496 // in the max/min; if so, we can just return that.
3497 if (Value *V = extractEquivalentCondition(LHS, EqP, A, B))
3498 return V;
3499 if (Value *V = extractEquivalentCondition(RHS, EqP, A, B))
3500 return V;
3501 // Otherwise, see if "A EqP B" simplifies.
3502 if (MaxRecurse)
3503 if (Value *V = simplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3504 return V;
3505 break;
3506 case CmpInst::ICMP_NE:
3507 case CmpInst::ICMP_UGT: {
3508 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3509 // Equivalent to "A InvEqP B". This may be the same as the condition
3510 // tested in the max/min; if so, we can just return that.
3511 if (Value *V = extractEquivalentCondition(LHS, InvEqP, A, B))
3512 return V;
3513 if (Value *V = extractEquivalentCondition(RHS, InvEqP, A, B))
3514 return V;
3515 // Otherwise, see if "A InvEqP B" simplifies.
3516 if (MaxRecurse)
3517 if (Value *V = simplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3518 return V;
3519 break;
3520 }
3521 case CmpInst::ICMP_UGE:
3522 return getTrue(ITy);
3523 case CmpInst::ICMP_ULT:
3524 return getFalse(ITy);
3525 }
3526 }
3527
3528 // Comparing 1 each of min/max with a common operand?
3529 // Canonicalize min operand to RHS.
3530 if (match(LHS, m_UMin(m_Value(), m_Value())) ||
3531 match(LHS, m_SMin(m_Value(), m_Value()))) {
3532 std::swap(LHS, RHS);
3533 Pred = ICmpInst::getSwappedPredicate(Pred);
3534 }
3535
3536 Value *C, *D;
3537 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
3538 match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
3539 (A == C || A == D || B == C || B == D)) {
3540 // smax(A, B) >=s smin(A, D) --> true
3541 if (Pred == CmpInst::ICMP_SGE)
3542 return getTrue(ITy);
3543 // smax(A, B) <s smin(A, D) --> false
3544 if (Pred == CmpInst::ICMP_SLT)
3545 return getFalse(ITy);
3546 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3547 match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3548 (A == C || A == D || B == C || B == D)) {
3549 // umax(A, B) >=u umin(A, D) --> true
3550 if (Pred == CmpInst::ICMP_UGE)
3551 return getTrue(ITy);
3552 // umax(A, B) <u umin(A, D) --> false
3553 if (Pred == CmpInst::ICMP_ULT)
3554 return getFalse(ITy);
3555 }
3556
3557 return nullptr;
3558 }
3559
simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate,Value * LHS,Value * RHS,const SimplifyQuery & Q)3560 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate,
3561 Value *LHS, Value *RHS,
3562 const SimplifyQuery &Q) {
3563 // Gracefully handle instructions that have not been inserted yet.
3564 if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent())
3565 return nullptr;
3566
3567 for (Value *AssumeBaseOp : {LHS, RHS}) {
3568 for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) {
3569 if (!AssumeVH)
3570 continue;
3571
3572 CallInst *Assume = cast<CallInst>(AssumeVH);
3573 if (Optional<bool> Imp = isImpliedCondition(Assume->getArgOperand(0),
3574 Predicate, LHS, RHS, Q.DL))
3575 if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT))
3576 return ConstantInt::get(getCompareTy(LHS), *Imp);
3577 }
3578 }
3579
3580 return nullptr;
3581 }
3582
3583 /// Given operands for an ICmpInst, see if we can fold the result.
3584 /// If not, this returns null.
simplifyICmpInst(unsigned Predicate,Value * LHS,Value * RHS,const SimplifyQuery & Q,unsigned MaxRecurse)3585 static Value *simplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3586 const SimplifyQuery &Q, unsigned MaxRecurse) {
3587 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3588 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
3589
3590 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3591 if (Constant *CRHS = dyn_cast<Constant>(RHS))
3592 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3593
3594 // If we have a constant, make sure it is on the RHS.
3595 std::swap(LHS, RHS);
3596 Pred = CmpInst::getSwappedPredicate(Pred);
3597 }
3598 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X");
3599
3600 Type *ITy = getCompareTy(LHS); // The return type.
3601
3602 // icmp poison, X -> poison
3603 if (isa<PoisonValue>(RHS))
3604 return PoisonValue::get(ITy);
3605
3606 // For EQ and NE, we can always pick a value for the undef to make the
3607 // predicate pass or fail, so we can return undef.
3608 // Matches behavior in llvm::ConstantFoldCompareInstruction.
3609 if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred))
3610 return UndefValue::get(ITy);
3611
3612 // icmp X, X -> true/false
3613 // icmp X, undef -> true/false because undef could be X.
3614 if (LHS == RHS || Q.isUndefValue(RHS))
3615 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
3616
3617 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
3618 return V;
3619
3620 // TODO: Sink/common this with other potentially expensive calls that use
3621 // ValueTracking? See comment below for isKnownNonEqual().
3622 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
3623 return V;
3624
3625 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ))
3626 return V;
3627
3628 // If both operands have range metadata, use the metadata
3629 // to simplify the comparison.
3630 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
3631 auto RHS_Instr = cast<Instruction>(RHS);
3632 auto LHS_Instr = cast<Instruction>(LHS);
3633
3634 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) &&
3635 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) {
3636 auto RHS_CR = getConstantRangeFromMetadata(
3637 *RHS_Instr->getMetadata(LLVMContext::MD_range));
3638 auto LHS_CR = getConstantRangeFromMetadata(
3639 *LHS_Instr->getMetadata(LLVMContext::MD_range));
3640
3641 if (LHS_CR.icmp(Pred, RHS_CR))
3642 return ConstantInt::getTrue(RHS->getContext());
3643
3644 if (LHS_CR.icmp(CmpInst::getInversePredicate(Pred), RHS_CR))
3645 return ConstantInt::getFalse(RHS->getContext());
3646 }
3647 }
3648
3649 // Compare of cast, for example (zext X) != 0 -> X != 0
3650 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
3651 Instruction *LI = cast<CastInst>(LHS);
3652 Value *SrcOp = LI->getOperand(0);
3653 Type *SrcTy = SrcOp->getType();
3654 Type *DstTy = LI->getType();
3655
3656 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3657 // if the integer type is the same size as the pointer type.
3658 if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3659 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
3660 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
3661 // Transfer the cast to the constant.
3662 if (Value *V = simplifyICmpInst(Pred, SrcOp,
3663 ConstantExpr::getIntToPtr(RHSC, SrcTy),
3664 Q, MaxRecurse - 1))
3665 return V;
3666 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3667 if (RI->getOperand(0)->getType() == SrcTy)
3668 // Compare without the cast.
3669 if (Value *V = simplifyICmpInst(Pred, SrcOp, RI->getOperand(0), Q,
3670 MaxRecurse - 1))
3671 return V;
3672 }
3673 }
3674
3675 if (isa<ZExtInst>(LHS)) {
3676 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3677 // same type.
3678 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3679 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3680 // Compare X and Y. Note that signed predicates become unsigned.
3681 if (Value *V =
3682 simplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), SrcOp,
3683 RI->getOperand(0), Q, MaxRecurse - 1))
3684 return V;
3685 }
3686 // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true.
3687 else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3688 if (SrcOp == RI->getOperand(0)) {
3689 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE)
3690 return ConstantInt::getTrue(ITy);
3691 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT)
3692 return ConstantInt::getFalse(ITy);
3693 }
3694 }
3695 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3696 // too. If not, then try to deduce the result of the comparison.
3697 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3698 // Compute the constant that would happen if we truncated to SrcTy then
3699 // reextended to DstTy.
3700 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3701 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
3702
3703 // If the re-extended constant didn't change then this is effectively
3704 // also a case of comparing two zero-extended values.
3705 if (RExt == CI && MaxRecurse)
3706 if (Value *V = simplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3707 SrcOp, Trunc, Q, MaxRecurse - 1))
3708 return V;
3709
3710 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3711 // there. Use this to work out the result of the comparison.
3712 if (RExt != CI) {
3713 switch (Pred) {
3714 default:
3715 llvm_unreachable("Unknown ICmp predicate!");
3716 // LHS <u RHS.
3717 case ICmpInst::ICMP_EQ:
3718 case ICmpInst::ICMP_UGT:
3719 case ICmpInst::ICMP_UGE:
3720 return ConstantInt::getFalse(CI->getContext());
3721
3722 case ICmpInst::ICMP_NE:
3723 case ICmpInst::ICMP_ULT:
3724 case ICmpInst::ICMP_ULE:
3725 return ConstantInt::getTrue(CI->getContext());
3726
3727 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS
3728 // is non-negative then LHS <s RHS.
3729 case ICmpInst::ICMP_SGT:
3730 case ICmpInst::ICMP_SGE:
3731 return CI->getValue().isNegative()
3732 ? ConstantInt::getTrue(CI->getContext())
3733 : ConstantInt::getFalse(CI->getContext());
3734
3735 case ICmpInst::ICMP_SLT:
3736 case ICmpInst::ICMP_SLE:
3737 return CI->getValue().isNegative()
3738 ? ConstantInt::getFalse(CI->getContext())
3739 : ConstantInt::getTrue(CI->getContext());
3740 }
3741 }
3742 }
3743 }
3744
3745 if (isa<SExtInst>(LHS)) {
3746 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3747 // same type.
3748 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3749 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3750 // Compare X and Y. Note that the predicate does not change.
3751 if (Value *V = simplifyICmpInst(Pred, SrcOp, RI->getOperand(0), Q,
3752 MaxRecurse - 1))
3753 return V;
3754 }
3755 // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true.
3756 else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3757 if (SrcOp == RI->getOperand(0)) {
3758 if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE)
3759 return ConstantInt::getTrue(ITy);
3760 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT)
3761 return ConstantInt::getFalse(ITy);
3762 }
3763 }
3764 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3765 // too. If not, then try to deduce the result of the comparison.
3766 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3767 // Compute the constant that would happen if we truncated to SrcTy then
3768 // reextended to DstTy.
3769 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3770 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
3771
3772 // If the re-extended constant didn't change then this is effectively
3773 // also a case of comparing two sign-extended values.
3774 if (RExt == CI && MaxRecurse)
3775 if (Value *V =
3776 simplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse - 1))
3777 return V;
3778
3779 // Otherwise the upper bits of LHS are all equal, while RHS has varying
3780 // bits there. Use this to work out the result of the comparison.
3781 if (RExt != CI) {
3782 switch (Pred) {
3783 default:
3784 llvm_unreachable("Unknown ICmp predicate!");
3785 case ICmpInst::ICMP_EQ:
3786 return ConstantInt::getFalse(CI->getContext());
3787 case ICmpInst::ICMP_NE:
3788 return ConstantInt::getTrue(CI->getContext());
3789
3790 // If RHS is non-negative then LHS <s RHS. If RHS is negative then
3791 // LHS >s RHS.
3792 case ICmpInst::ICMP_SGT:
3793 case ICmpInst::ICMP_SGE:
3794 return CI->getValue().isNegative()
3795 ? ConstantInt::getTrue(CI->getContext())
3796 : ConstantInt::getFalse(CI->getContext());
3797 case ICmpInst::ICMP_SLT:
3798 case ICmpInst::ICMP_SLE:
3799 return CI->getValue().isNegative()
3800 ? ConstantInt::getFalse(CI->getContext())
3801 : ConstantInt::getTrue(CI->getContext());
3802
3803 // If LHS is non-negative then LHS <u RHS. If LHS is negative then
3804 // LHS >u RHS.
3805 case ICmpInst::ICMP_UGT:
3806 case ICmpInst::ICMP_UGE:
3807 // Comparison is true iff the LHS <s 0.
3808 if (MaxRecurse)
3809 if (Value *V = simplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3810 Constant::getNullValue(SrcTy), Q,
3811 MaxRecurse - 1))
3812 return V;
3813 break;
3814 case ICmpInst::ICMP_ULT:
3815 case ICmpInst::ICMP_ULE:
3816 // Comparison is true iff the LHS >=s 0.
3817 if (MaxRecurse)
3818 if (Value *V = simplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3819 Constant::getNullValue(SrcTy), Q,
3820 MaxRecurse - 1))
3821 return V;
3822 break;
3823 }
3824 }
3825 }
3826 }
3827 }
3828
3829 // icmp eq|ne X, Y -> false|true if X != Y
3830 // This is potentially expensive, and we have already computedKnownBits for
3831 // compares with 0 above here, so only try this for a non-zero compare.
3832 if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) &&
3833 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) {
3834 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
3835 }
3836
3837 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
3838 return V;
3839
3840 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
3841 return V;
3842
3843 if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q))
3844 return V;
3845
3846 // Simplify comparisons of related pointers using a powerful, recursive
3847 // GEP-walk when we have target data available..
3848 if (LHS->getType()->isPointerTy())
3849 if (auto *C = computePointerICmp(Pred, LHS, RHS, Q))
3850 return C;
3851 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3852 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3853 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3854 Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3855 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3856 Q.DL.getTypeSizeInBits(CRHS->getType()))
3857 if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(),
3858 CRHS->getPointerOperand(), Q))
3859 return C;
3860
3861 // If the comparison is with the result of a select instruction, check whether
3862 // comparing with either branch of the select always yields the same value.
3863 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3864 if (Value *V = threadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3865 return V;
3866
3867 // If the comparison is with the result of a phi instruction, check whether
3868 // doing the compare with each incoming phi value yields a common result.
3869 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3870 if (Value *V = threadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3871 return V;
3872
3873 return nullptr;
3874 }
3875
simplifyICmpInst(unsigned Predicate,Value * LHS,Value * RHS,const SimplifyQuery & Q)3876 Value *llvm::simplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3877 const SimplifyQuery &Q) {
3878 return ::simplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
3879 }
3880
3881 /// Given operands for an FCmpInst, see if we can fold the result.
3882 /// If not, this returns null.
simplifyFCmpInst(unsigned Predicate,Value * LHS,Value * RHS,FastMathFlags FMF,const SimplifyQuery & Q,unsigned MaxRecurse)3883 static Value *simplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3884 FastMathFlags FMF, const SimplifyQuery &Q,
3885 unsigned MaxRecurse) {
3886 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3887 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3888
3889 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3890 if (Constant *CRHS = dyn_cast<Constant>(RHS))
3891 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI,
3892 Q.CxtI);
3893
3894 // If we have a constant, make sure it is on the RHS.
3895 std::swap(LHS, RHS);
3896 Pred = CmpInst::getSwappedPredicate(Pred);
3897 }
3898
3899 // Fold trivial predicates.
3900 Type *RetTy = getCompareTy(LHS);
3901 if (Pred == FCmpInst::FCMP_FALSE)
3902 return getFalse(RetTy);
3903 if (Pred == FCmpInst::FCMP_TRUE)
3904 return getTrue(RetTy);
3905
3906 // Fold (un)ordered comparison if we can determine there are no NaNs.
3907 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD)
3908 if (FMF.noNaNs() ||
3909 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI)))
3910 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD);
3911
3912 // NaN is unordered; NaN is not ordered.
3913 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) &&
3914 "Comparison must be either ordered or unordered");
3915 if (match(RHS, m_NaN()))
3916 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3917
3918 // fcmp pred x, poison and fcmp pred poison, x
3919 // fold to poison
3920 if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS))
3921 return PoisonValue::get(RetTy);
3922
3923 // fcmp pred x, undef and fcmp pred undef, x
3924 // fold to true if unordered, false if ordered
3925 if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) {
3926 // Choosing NaN for the undef will always make unordered comparison succeed
3927 // and ordered comparison fail.
3928 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3929 }
3930
3931 // fcmp x,x -> true/false. Not all compares are foldable.
3932 if (LHS == RHS) {
3933 if (CmpInst::isTrueWhenEqual(Pred))
3934 return getTrue(RetTy);
3935 if (CmpInst::isFalseWhenEqual(Pred))
3936 return getFalse(RetTy);
3937 }
3938
3939 // Handle fcmp with constant RHS.
3940 // TODO: Use match with a specific FP value, so these work with vectors with
3941 // undef lanes.
3942 const APFloat *C;
3943 if (match(RHS, m_APFloat(C))) {
3944 // Check whether the constant is an infinity.
3945 if (C->isInfinity()) {
3946 if (C->isNegative()) {
3947 switch (Pred) {
3948 case FCmpInst::FCMP_OLT:
3949 // No value is ordered and less than negative infinity.
3950 return getFalse(RetTy);
3951 case FCmpInst::FCMP_UGE:
3952 // All values are unordered with or at least negative infinity.
3953 return getTrue(RetTy);
3954 default:
3955 break;
3956 }
3957 } else {
3958 switch (Pred) {
3959 case FCmpInst::FCMP_OGT:
3960 // No value is ordered and greater than infinity.
3961 return getFalse(RetTy);
3962 case FCmpInst::FCMP_ULE:
3963 // All values are unordered with and at most infinity.
3964 return getTrue(RetTy);
3965 default:
3966 break;
3967 }
3968 }
3969
3970 // LHS == Inf
3971 if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI))
3972 return getFalse(RetTy);
3973 // LHS != Inf
3974 if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI))
3975 return getTrue(RetTy);
3976 // LHS == Inf || LHS == NaN
3977 if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) &&
3978 isKnownNeverNaN(LHS, Q.TLI))
3979 return getFalse(RetTy);
3980 // LHS != Inf && LHS != NaN
3981 if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) &&
3982 isKnownNeverNaN(LHS, Q.TLI))
3983 return getTrue(RetTy);
3984 }
3985 if (C->isNegative() && !C->isNegZero()) {
3986 assert(!C->isNaN() && "Unexpected NaN constant!");
3987 // TODO: We can catch more cases by using a range check rather than
3988 // relying on CannotBeOrderedLessThanZero.
3989 switch (Pred) {
3990 case FCmpInst::FCMP_UGE:
3991 case FCmpInst::FCMP_UGT:
3992 case FCmpInst::FCMP_UNE:
3993 // (X >= 0) implies (X > C) when (C < 0)
3994 if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3995 return getTrue(RetTy);
3996 break;
3997 case FCmpInst::FCMP_OEQ:
3998 case FCmpInst::FCMP_OLE:
3999 case FCmpInst::FCMP_OLT:
4000 // (X >= 0) implies !(X < C) when (C < 0)
4001 if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
4002 return getFalse(RetTy);
4003 break;
4004 default:
4005 break;
4006 }
4007 }
4008
4009 // Check comparison of [minnum/maxnum with constant] with other constant.
4010 const APFloat *C2;
4011 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) &&
4012 *C2 < *C) ||
4013 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) &&
4014 *C2 > *C)) {
4015 bool IsMaxNum =
4016 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum;
4017 // The ordered relationship and minnum/maxnum guarantee that we do not
4018 // have NaN constants, so ordered/unordered preds are handled the same.
4019 switch (Pred) {
4020 case FCmpInst::FCMP_OEQ:
4021 case FCmpInst::FCMP_UEQ:
4022 // minnum(X, LesserC) == C --> false
4023 // maxnum(X, GreaterC) == C --> false
4024 return getFalse(RetTy);
4025 case FCmpInst::FCMP_ONE:
4026 case FCmpInst::FCMP_UNE:
4027 // minnum(X, LesserC) != C --> true
4028 // maxnum(X, GreaterC) != C --> true
4029 return getTrue(RetTy);
4030 case FCmpInst::FCMP_OGE:
4031 case FCmpInst::FCMP_UGE:
4032 case FCmpInst::FCMP_OGT:
4033 case FCmpInst::FCMP_UGT:
4034 // minnum(X, LesserC) >= C --> false
4035 // minnum(X, LesserC) > C --> false
4036 // maxnum(X, GreaterC) >= C --> true
4037 // maxnum(X, GreaterC) > C --> true
4038 return ConstantInt::get(RetTy, IsMaxNum);
4039 case FCmpInst::FCMP_OLE:
4040 case FCmpInst::FCMP_ULE:
4041 case FCmpInst::FCMP_OLT:
4042 case FCmpInst::FCMP_ULT:
4043 // minnum(X, LesserC) <= C --> true
4044 // minnum(X, LesserC) < C --> true
4045 // maxnum(X, GreaterC) <= C --> false
4046 // maxnum(X, GreaterC) < C --> false
4047 return ConstantInt::get(RetTy, !IsMaxNum);
4048 default:
4049 // TRUE/FALSE/ORD/UNO should be handled before this.
4050 llvm_unreachable("Unexpected fcmp predicate");
4051 }
4052 }
4053 }
4054
4055 if (match(RHS, m_AnyZeroFP())) {
4056 switch (Pred) {
4057 case FCmpInst::FCMP_OGE:
4058 case FCmpInst::FCMP_ULT:
4059 // Positive or zero X >= 0.0 --> true
4060 // Positive or zero X < 0.0 --> false
4061 if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) &&
4062 CannotBeOrderedLessThanZero(LHS, Q.TLI))
4063 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy);
4064 break;
4065 case FCmpInst::FCMP_UGE:
4066 case FCmpInst::FCMP_OLT:
4067 // Positive or zero or nan X >= 0.0 --> true
4068 // Positive or zero or nan X < 0.0 --> false
4069 if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
4070 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy);
4071 break;
4072 default:
4073 break;
4074 }
4075 }
4076
4077 // If the comparison is with the result of a select instruction, check whether
4078 // comparing with either branch of the select always yields the same value.
4079 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
4080 if (Value *V = threadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
4081 return V;
4082
4083 // If the comparison is with the result of a phi instruction, check whether
4084 // doing the compare with each incoming phi value yields a common result.
4085 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
4086 if (Value *V = threadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
4087 return V;
4088
4089 return nullptr;
4090 }
4091
simplifyFCmpInst(unsigned Predicate,Value * LHS,Value * RHS,FastMathFlags FMF,const SimplifyQuery & Q)4092 Value *llvm::simplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4093 FastMathFlags FMF, const SimplifyQuery &Q) {
4094 return ::simplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
4095 }
4096
simplifyWithOpReplaced(Value * V,Value * Op,Value * RepOp,const SimplifyQuery & Q,bool AllowRefinement,unsigned MaxRecurse)4097 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
4098 const SimplifyQuery &Q,
4099 bool AllowRefinement,
4100 unsigned MaxRecurse) {
4101 assert(!Op->getType()->isVectorTy() && "This is not safe for vectors");
4102
4103 // Trivial replacement.
4104 if (V == Op)
4105 return RepOp;
4106
4107 // We cannot replace a constant, and shouldn't even try.
4108 if (isa<Constant>(Op))
4109 return nullptr;
4110
4111 auto *I = dyn_cast<Instruction>(V);
4112 if (!I || !is_contained(I->operands(), Op))
4113 return nullptr;
4114
4115 // Replace Op with RepOp in instruction operands.
4116 SmallVector<Value *, 8> NewOps(I->getNumOperands());
4117 transform(I->operands(), NewOps.begin(),
4118 [&](Value *V) { return V == Op ? RepOp : V; });
4119
4120 if (!AllowRefinement) {
4121 // General InstSimplify functions may refine the result, e.g. by returning
4122 // a constant for a potentially poison value. To avoid this, implement only
4123 // a few non-refining but profitable transforms here.
4124
4125 if (auto *BO = dyn_cast<BinaryOperator>(I)) {
4126 unsigned Opcode = BO->getOpcode();
4127 // id op x -> x, x op id -> x
4128 if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType()))
4129 return NewOps[1];
4130 if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(),
4131 /* RHS */ true))
4132 return NewOps[0];
4133
4134 // x & x -> x, x | x -> x
4135 if ((Opcode == Instruction::And || Opcode == Instruction::Or) &&
4136 NewOps[0] == NewOps[1])
4137 return NewOps[0];
4138 }
4139
4140 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
4141 // getelementptr x, 0 -> x
4142 if (NewOps.size() == 2 && match(NewOps[1], m_Zero()) &&
4143 !GEP->isInBounds())
4144 return NewOps[0];
4145 }
4146 } else if (MaxRecurse) {
4147 // The simplification queries below may return the original value. Consider:
4148 // %div = udiv i32 %arg, %arg2
4149 // %mul = mul nsw i32 %div, %arg2
4150 // %cmp = icmp eq i32 %mul, %arg
4151 // %sel = select i1 %cmp, i32 %div, i32 undef
4152 // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which
4153 // simplifies back to %arg. This can only happen because %mul does not
4154 // dominate %div. To ensure a consistent return value contract, we make sure
4155 // that this case returns nullptr as well.
4156 auto PreventSelfSimplify = [V](Value *Simplified) {
4157 return Simplified != V ? Simplified : nullptr;
4158 };
4159
4160 if (auto *B = dyn_cast<BinaryOperator>(I))
4161 return PreventSelfSimplify(simplifyBinOp(B->getOpcode(), NewOps[0],
4162 NewOps[1], Q, MaxRecurse - 1));
4163
4164 if (CmpInst *C = dyn_cast<CmpInst>(I))
4165 return PreventSelfSimplify(simplifyCmpInst(C->getPredicate(), NewOps[0],
4166 NewOps[1], Q, MaxRecurse - 1));
4167
4168 if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
4169 return PreventSelfSimplify(simplifyGEPInst(
4170 GEP->getSourceElementType(), NewOps[0], makeArrayRef(NewOps).slice(1),
4171 GEP->isInBounds(), Q, MaxRecurse - 1));
4172
4173 if (isa<SelectInst>(I))
4174 return PreventSelfSimplify(simplifySelectInst(
4175 NewOps[0], NewOps[1], NewOps[2], Q, MaxRecurse - 1));
4176 // TODO: We could hand off more cases to instsimplify here.
4177 }
4178
4179 // If all operands are constant after substituting Op for RepOp then we can
4180 // constant fold the instruction.
4181 SmallVector<Constant *, 8> ConstOps;
4182 for (Value *NewOp : NewOps) {
4183 if (Constant *ConstOp = dyn_cast<Constant>(NewOp))
4184 ConstOps.push_back(ConstOp);
4185 else
4186 return nullptr;
4187 }
4188
4189 // Consider:
4190 // %cmp = icmp eq i32 %x, 2147483647
4191 // %add = add nsw i32 %x, 1
4192 // %sel = select i1 %cmp, i32 -2147483648, i32 %add
4193 //
4194 // We can't replace %sel with %add unless we strip away the flags (which
4195 // will be done in InstCombine).
4196 // TODO: This may be unsound, because it only catches some forms of
4197 // refinement.
4198 if (!AllowRefinement && canCreatePoison(cast<Operator>(I)))
4199 return nullptr;
4200
4201 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
4202 }
4203
simplifyWithOpReplaced(Value * V,Value * Op,Value * RepOp,const SimplifyQuery & Q,bool AllowRefinement)4204 Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
4205 const SimplifyQuery &Q,
4206 bool AllowRefinement) {
4207 return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement,
4208 RecursionLimit);
4209 }
4210
4211 /// Try to simplify a select instruction when its condition operand is an
4212 /// integer comparison where one operand of the compare is a constant.
simplifySelectBitTest(Value * TrueVal,Value * FalseVal,Value * X,const APInt * Y,bool TrueWhenUnset)4213 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
4214 const APInt *Y, bool TrueWhenUnset) {
4215 const APInt *C;
4216
4217 // (X & Y) == 0 ? X & ~Y : X --> X
4218 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y
4219 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
4220 *Y == ~*C)
4221 return TrueWhenUnset ? FalseVal : TrueVal;
4222
4223 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y
4224 // (X & Y) != 0 ? X : X & ~Y --> X
4225 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
4226 *Y == ~*C)
4227 return TrueWhenUnset ? FalseVal : TrueVal;
4228
4229 if (Y->isPowerOf2()) {
4230 // (X & Y) == 0 ? X | Y : X --> X | Y
4231 // (X & Y) != 0 ? X | Y : X --> X
4232 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
4233 *Y == *C)
4234 return TrueWhenUnset ? TrueVal : FalseVal;
4235
4236 // (X & Y) == 0 ? X : X | Y --> X
4237 // (X & Y) != 0 ? X : X | Y --> X | Y
4238 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
4239 *Y == *C)
4240 return TrueWhenUnset ? TrueVal : FalseVal;
4241 }
4242
4243 return nullptr;
4244 }
4245
4246 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
4247 /// eq/ne.
simplifySelectWithFakeICmpEq(Value * CmpLHS,Value * CmpRHS,ICmpInst::Predicate Pred,Value * TrueVal,Value * FalseVal)4248 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
4249 ICmpInst::Predicate Pred,
4250 Value *TrueVal, Value *FalseVal) {
4251 Value *X;
4252 APInt Mask;
4253 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
4254 return nullptr;
4255
4256 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
4257 Pred == ICmpInst::ICMP_EQ);
4258 }
4259
4260 /// Try to simplify a select instruction when its condition operand is an
4261 /// integer comparison.
simplifySelectWithICmpCond(Value * CondVal,Value * TrueVal,Value * FalseVal,const SimplifyQuery & Q,unsigned MaxRecurse)4262 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
4263 Value *FalseVal,
4264 const SimplifyQuery &Q,
4265 unsigned MaxRecurse) {
4266 ICmpInst::Predicate Pred;
4267 Value *CmpLHS, *CmpRHS;
4268 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
4269 return nullptr;
4270
4271 // Canonicalize ne to eq predicate.
4272 if (Pred == ICmpInst::ICMP_NE) {
4273 Pred = ICmpInst::ICMP_EQ;
4274 std::swap(TrueVal, FalseVal);
4275 }
4276
4277 // Check for integer min/max with a limit constant:
4278 // X > MIN_INT ? X : MIN_INT --> X
4279 // X < MAX_INT ? X : MAX_INT --> X
4280 if (TrueVal->getType()->isIntOrIntVectorTy()) {
4281 Value *X, *Y;
4282 SelectPatternFlavor SPF =
4283 matchDecomposedSelectPattern(cast<ICmpInst>(CondVal), TrueVal, FalseVal,
4284 X, Y)
4285 .Flavor;
4286 if (SelectPatternResult::isMinOrMax(SPF) && Pred == getMinMaxPred(SPF)) {
4287 APInt LimitC = getMinMaxLimit(getInverseMinMaxFlavor(SPF),
4288 X->getType()->getScalarSizeInBits());
4289 if (match(Y, m_SpecificInt(LimitC)))
4290 return X;
4291 }
4292 }
4293
4294 if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) {
4295 Value *X;
4296 const APInt *Y;
4297 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
4298 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
4299 /*TrueWhenUnset=*/true))
4300 return V;
4301
4302 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate.
4303 Value *ShAmt;
4304 auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)),
4305 m_FShr(m_Value(), m_Value(X), m_Value(ShAmt)));
4306 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X
4307 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X
4308 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt)
4309 return X;
4310
4311 // Test for a zero-shift-guard-op around rotates. These are used to
4312 // avoid UB from oversized shifts in raw IR rotate patterns, but the
4313 // intrinsics do not have that problem.
4314 // We do not allow this transform for the general funnel shift case because
4315 // that would not preserve the poison safety of the original code.
4316 auto isRotate =
4317 m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)),
4318 m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt)));
4319 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt)
4320 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt)
4321 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt &&
4322 Pred == ICmpInst::ICMP_EQ)
4323 return FalseVal;
4324
4325 // X == 0 ? abs(X) : -abs(X) --> -abs(X)
4326 // X == 0 ? -abs(X) : abs(X) --> abs(X)
4327 if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) &&
4328 match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))))
4329 return FalseVal;
4330 if (match(TrueVal,
4331 m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) &&
4332 match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))
4333 return FalseVal;
4334 }
4335
4336 // Check for other compares that behave like bit test.
4337 if (Value *V =
4338 simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, TrueVal, FalseVal))
4339 return V;
4340
4341 // If we have a scalar equality comparison, then we know the value in one of
4342 // the arms of the select. See if substituting this value into the arm and
4343 // simplifying the result yields the same value as the other arm.
4344 // Note that the equivalence/replacement opportunity does not hold for vectors
4345 // because each element of a vector select is chosen independently.
4346 if (Pred == ICmpInst::ICMP_EQ && !CondVal->getType()->isVectorTy()) {
4347 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q,
4348 /* AllowRefinement */ false,
4349 MaxRecurse) == TrueVal ||
4350 simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q,
4351 /* AllowRefinement */ false,
4352 MaxRecurse) == TrueVal)
4353 return FalseVal;
4354 if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q,
4355 /* AllowRefinement */ true,
4356 MaxRecurse) == FalseVal ||
4357 simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q,
4358 /* AllowRefinement */ true,
4359 MaxRecurse) == FalseVal)
4360 return FalseVal;
4361 }
4362
4363 return nullptr;
4364 }
4365
4366 /// Try to simplify a select instruction when its condition operand is a
4367 /// floating-point comparison.
simplifySelectWithFCmp(Value * Cond,Value * T,Value * F,const SimplifyQuery & Q)4368 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F,
4369 const SimplifyQuery &Q) {
4370 FCmpInst::Predicate Pred;
4371 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) &&
4372 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T))))
4373 return nullptr;
4374
4375 // This transform is safe if we do not have (do not care about) -0.0 or if
4376 // at least one operand is known to not be -0.0. Otherwise, the select can
4377 // change the sign of a zero operand.
4378 bool HasNoSignedZeros =
4379 Q.CxtI && isa<FPMathOperator>(Q.CxtI) && Q.CxtI->hasNoSignedZeros();
4380 const APFloat *C;
4381 if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) ||
4382 (match(F, m_APFloat(C)) && C->isNonZero())) {
4383 // (T == F) ? T : F --> F
4384 // (F == T) ? T : F --> F
4385 if (Pred == FCmpInst::FCMP_OEQ)
4386 return F;
4387
4388 // (T != F) ? T : F --> T
4389 // (F != T) ? T : F --> T
4390 if (Pred == FCmpInst::FCMP_UNE)
4391 return T;
4392 }
4393
4394 return nullptr;
4395 }
4396
4397 /// Given operands for a SelectInst, see if we can fold the result.
4398 /// If not, this returns null.
simplifySelectInst(Value * Cond,Value * TrueVal,Value * FalseVal,const SimplifyQuery & Q,unsigned MaxRecurse)4399 static Value *simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4400 const SimplifyQuery &Q, unsigned MaxRecurse) {
4401 if (auto *CondC = dyn_cast<Constant>(Cond)) {
4402 if (auto *TrueC = dyn_cast<Constant>(TrueVal))
4403 if (auto *FalseC = dyn_cast<Constant>(FalseVal))
4404 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC);
4405
4406 // select poison, X, Y -> poison
4407 if (isa<PoisonValue>(CondC))
4408 return PoisonValue::get(TrueVal->getType());
4409
4410 // select undef, X, Y -> X or Y
4411 if (Q.isUndefValue(CondC))
4412 return isa<Constant>(FalseVal) ? FalseVal : TrueVal;
4413
4414 // select true, X, Y --> X
4415 // select false, X, Y --> Y
4416 // For vectors, allow undef/poison elements in the condition to match the
4417 // defined elements, so we can eliminate the select.
4418 if (match(CondC, m_One()))
4419 return TrueVal;
4420 if (match(CondC, m_Zero()))
4421 return FalseVal;
4422 }
4423
4424 assert(Cond->getType()->isIntOrIntVectorTy(1) &&
4425 "Select must have bool or bool vector condition");
4426 assert(TrueVal->getType() == FalseVal->getType() &&
4427 "Select must have same types for true/false ops");
4428
4429 if (Cond->getType() == TrueVal->getType()) {
4430 // select i1 Cond, i1 true, i1 false --> i1 Cond
4431 if (match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt()))
4432 return Cond;
4433
4434 // (X || Y) && (X || !Y) --> X (commuted 8 ways)
4435 Value *X, *Y;
4436 if (match(FalseVal, m_ZeroInt())) {
4437 if (match(Cond, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) &&
4438 match(TrueVal, m_c_LogicalOr(m_Specific(X), m_Specific(Y))))
4439 return X;
4440 if (match(TrueVal, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) &&
4441 match(Cond, m_c_LogicalOr(m_Specific(X), m_Specific(Y))))
4442 return X;
4443 }
4444 }
4445
4446 // select ?, X, X -> X
4447 if (TrueVal == FalseVal)
4448 return TrueVal;
4449
4450 // If the true or false value is poison, we can fold to the other value.
4451 // If the true or false value is undef, we can fold to the other value as
4452 // long as the other value isn't poison.
4453 // select ?, poison, X -> X
4454 // select ?, undef, X -> X
4455 if (isa<PoisonValue>(TrueVal) ||
4456 (Q.isUndefValue(TrueVal) &&
4457 isGuaranteedNotToBePoison(FalseVal, Q.AC, Q.CxtI, Q.DT)))
4458 return FalseVal;
4459 // select ?, X, poison -> X
4460 // select ?, X, undef -> X
4461 if (isa<PoisonValue>(FalseVal) ||
4462 (Q.isUndefValue(FalseVal) &&
4463 isGuaranteedNotToBePoison(TrueVal, Q.AC, Q.CxtI, Q.DT)))
4464 return TrueVal;
4465
4466 // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC''
4467 Constant *TrueC, *FalseC;
4468 if (isa<FixedVectorType>(TrueVal->getType()) &&
4469 match(TrueVal, m_Constant(TrueC)) &&
4470 match(FalseVal, m_Constant(FalseC))) {
4471 unsigned NumElts =
4472 cast<FixedVectorType>(TrueC->getType())->getNumElements();
4473 SmallVector<Constant *, 16> NewC;
4474 for (unsigned i = 0; i != NumElts; ++i) {
4475 // Bail out on incomplete vector constants.
4476 Constant *TEltC = TrueC->getAggregateElement(i);
4477 Constant *FEltC = FalseC->getAggregateElement(i);
4478 if (!TEltC || !FEltC)
4479 break;
4480
4481 // If the elements match (undef or not), that value is the result. If only
4482 // one element is undef, choose the defined element as the safe result.
4483 if (TEltC == FEltC)
4484 NewC.push_back(TEltC);
4485 else if (isa<PoisonValue>(TEltC) ||
4486 (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC)))
4487 NewC.push_back(FEltC);
4488 else if (isa<PoisonValue>(FEltC) ||
4489 (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC)))
4490 NewC.push_back(TEltC);
4491 else
4492 break;
4493 }
4494 if (NewC.size() == NumElts)
4495 return ConstantVector::get(NewC);
4496 }
4497
4498 if (Value *V =
4499 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse))
4500 return V;
4501
4502 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q))
4503 return V;
4504
4505 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal))
4506 return V;
4507
4508 Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL);
4509 if (Imp)
4510 return *Imp ? TrueVal : FalseVal;
4511
4512 return nullptr;
4513 }
4514
simplifySelectInst(Value * Cond,Value * TrueVal,Value * FalseVal,const SimplifyQuery & Q)4515 Value *llvm::simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4516 const SimplifyQuery &Q) {
4517 return ::simplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
4518 }
4519
4520 /// Given operands for an GetElementPtrInst, see if we can fold the result.
4521 /// If not, this returns null.
simplifyGEPInst(Type * SrcTy,Value * Ptr,ArrayRef<Value * > Indices,bool InBounds,const SimplifyQuery & Q,unsigned)4522 static Value *simplifyGEPInst(Type *SrcTy, Value *Ptr,
4523 ArrayRef<Value *> Indices, bool InBounds,
4524 const SimplifyQuery &Q, unsigned) {
4525 // The type of the GEP pointer operand.
4526 unsigned AS =
4527 cast<PointerType>(Ptr->getType()->getScalarType())->getAddressSpace();
4528
4529 // getelementptr P -> P.
4530 if (Indices.empty())
4531 return Ptr;
4532
4533 // Compute the (pointer) type returned by the GEP instruction.
4534 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Indices);
4535 Type *GEPTy = PointerType::get(LastType, AS);
4536 if (VectorType *VT = dyn_cast<VectorType>(Ptr->getType()))
4537 GEPTy = VectorType::get(GEPTy, VT->getElementCount());
4538 else {
4539 for (Value *Op : Indices) {
4540 // If one of the operands is a vector, the result type is a vector of
4541 // pointers. All vector operands must have the same number of elements.
4542 if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) {
4543 GEPTy = VectorType::get(GEPTy, VT->getElementCount());
4544 break;
4545 }
4546 }
4547 }
4548
4549 // For opaque pointers an all-zero GEP is a no-op. For typed pointers,
4550 // it may be equivalent to a bitcast.
4551 if (Ptr->getType()->getScalarType()->isOpaquePointerTy() &&
4552 Ptr->getType() == GEPTy &&
4553 all_of(Indices, [](const auto *V) { return match(V, m_Zero()); }))
4554 return Ptr;
4555
4556 // getelementptr poison, idx -> poison
4557 // getelementptr baseptr, poison -> poison
4558 if (isa<PoisonValue>(Ptr) ||
4559 any_of(Indices, [](const auto *V) { return isa<PoisonValue>(V); }))
4560 return PoisonValue::get(GEPTy);
4561
4562 if (Q.isUndefValue(Ptr))
4563 // If inbounds, we can choose an out-of-bounds pointer as a base pointer.
4564 return InBounds ? PoisonValue::get(GEPTy) : UndefValue::get(GEPTy);
4565
4566 bool IsScalableVec =
4567 isa<ScalableVectorType>(SrcTy) || any_of(Indices, [](const Value *V) {
4568 return isa<ScalableVectorType>(V->getType());
4569 });
4570
4571 if (Indices.size() == 1) {
4572 // getelementptr P, 0 -> P.
4573 if (match(Indices[0], m_Zero()) && Ptr->getType() == GEPTy)
4574 return Ptr;
4575
4576 Type *Ty = SrcTy;
4577 if (!IsScalableVec && Ty->isSized()) {
4578 Value *P;
4579 uint64_t C;
4580 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
4581 // getelementptr P, N -> P if P points to a type of zero size.
4582 if (TyAllocSize == 0 && Ptr->getType() == GEPTy)
4583 return Ptr;
4584
4585 // The following transforms are only safe if the ptrtoint cast
4586 // doesn't truncate the pointers.
4587 if (Indices[0]->getType()->getScalarSizeInBits() ==
4588 Q.DL.getPointerSizeInBits(AS)) {
4589 auto CanSimplify = [GEPTy, &P, Ptr]() -> bool {
4590 return P->getType() == GEPTy &&
4591 getUnderlyingObject(P) == getUnderlyingObject(Ptr);
4592 };
4593 // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
4594 if (TyAllocSize == 1 &&
4595 match(Indices[0],
4596 m_Sub(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Specific(Ptr)))) &&
4597 CanSimplify())
4598 return P;
4599
4600 // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of
4601 // size 1 << C.
4602 if (match(Indices[0], m_AShr(m_Sub(m_PtrToInt(m_Value(P)),
4603 m_PtrToInt(m_Specific(Ptr))),
4604 m_ConstantInt(C))) &&
4605 TyAllocSize == 1ULL << C && CanSimplify())
4606 return P;
4607
4608 // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of
4609 // size C.
4610 if (match(Indices[0], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)),
4611 m_PtrToInt(m_Specific(Ptr))),
4612 m_SpecificInt(TyAllocSize))) &&
4613 CanSimplify())
4614 return P;
4615 }
4616 }
4617 }
4618
4619 if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 &&
4620 all_of(Indices.drop_back(1),
4621 [](Value *Idx) { return match(Idx, m_Zero()); })) {
4622 unsigned IdxWidth =
4623 Q.DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace());
4624 if (Q.DL.getTypeSizeInBits(Indices.back()->getType()) == IdxWidth) {
4625 APInt BasePtrOffset(IdxWidth, 0);
4626 Value *StrippedBasePtr =
4627 Ptr->stripAndAccumulateInBoundsConstantOffsets(Q.DL, BasePtrOffset);
4628
4629 // Avoid creating inttoptr of zero here: While LLVMs treatment of
4630 // inttoptr is generally conservative, this particular case is folded to
4631 // a null pointer, which will have incorrect provenance.
4632
4633 // gep (gep V, C), (sub 0, V) -> C
4634 if (match(Indices.back(),
4635 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) &&
4636 !BasePtrOffset.isZero()) {
4637 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
4638 return ConstantExpr::getIntToPtr(CI, GEPTy);
4639 }
4640 // gep (gep V, C), (xor V, -1) -> C-1
4641 if (match(Indices.back(),
4642 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) &&
4643 !BasePtrOffset.isOne()) {
4644 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
4645 return ConstantExpr::getIntToPtr(CI, GEPTy);
4646 }
4647 }
4648 }
4649
4650 // Check to see if this is constant foldable.
4651 if (!isa<Constant>(Ptr) ||
4652 !all_of(Indices, [](Value *V) { return isa<Constant>(V); }))
4653 return nullptr;
4654
4655 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ptr), Indices,
4656 InBounds);
4657 return ConstantFoldConstant(CE, Q.DL);
4658 }
4659
simplifyGEPInst(Type * SrcTy,Value * Ptr,ArrayRef<Value * > Indices,bool InBounds,const SimplifyQuery & Q)4660 Value *llvm::simplifyGEPInst(Type *SrcTy, Value *Ptr, ArrayRef<Value *> Indices,
4661 bool InBounds, const SimplifyQuery &Q) {
4662 return ::simplifyGEPInst(SrcTy, Ptr, Indices, InBounds, Q, RecursionLimit);
4663 }
4664
4665 /// Given operands for an InsertValueInst, see if we can fold the result.
4666 /// If not, this returns null.
simplifyInsertValueInst(Value * Agg,Value * Val,ArrayRef<unsigned> Idxs,const SimplifyQuery & Q,unsigned)4667 static Value *simplifyInsertValueInst(Value *Agg, Value *Val,
4668 ArrayRef<unsigned> Idxs,
4669 const SimplifyQuery &Q, unsigned) {
4670 if (Constant *CAgg = dyn_cast<Constant>(Agg))
4671 if (Constant *CVal = dyn_cast<Constant>(Val))
4672 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
4673
4674 // insertvalue x, undef, n -> x
4675 if (Q.isUndefValue(Val))
4676 return Agg;
4677
4678 // insertvalue x, (extractvalue y, n), n
4679 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
4680 if (EV->getAggregateOperand()->getType() == Agg->getType() &&
4681 EV->getIndices() == Idxs) {
4682 // insertvalue undef, (extractvalue y, n), n -> y
4683 if (Q.isUndefValue(Agg))
4684 return EV->getAggregateOperand();
4685
4686 // insertvalue y, (extractvalue y, n), n -> y
4687 if (Agg == EV->getAggregateOperand())
4688 return Agg;
4689 }
4690
4691 return nullptr;
4692 }
4693
simplifyInsertValueInst(Value * Agg,Value * Val,ArrayRef<unsigned> Idxs,const SimplifyQuery & Q)4694 Value *llvm::simplifyInsertValueInst(Value *Agg, Value *Val,
4695 ArrayRef<unsigned> Idxs,
4696 const SimplifyQuery &Q) {
4697 return ::simplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
4698 }
4699
simplifyInsertElementInst(Value * Vec,Value * Val,Value * Idx,const SimplifyQuery & Q)4700 Value *llvm::simplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx,
4701 const SimplifyQuery &Q) {
4702 // Try to constant fold.
4703 auto *VecC = dyn_cast<Constant>(Vec);
4704 auto *ValC = dyn_cast<Constant>(Val);
4705 auto *IdxC = dyn_cast<Constant>(Idx);
4706 if (VecC && ValC && IdxC)
4707 return ConstantExpr::getInsertElement(VecC, ValC, IdxC);
4708
4709 // For fixed-length vector, fold into poison if index is out of bounds.
4710 if (auto *CI = dyn_cast<ConstantInt>(Idx)) {
4711 if (isa<FixedVectorType>(Vec->getType()) &&
4712 CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements()))
4713 return PoisonValue::get(Vec->getType());
4714 }
4715
4716 // If index is undef, it might be out of bounds (see above case)
4717 if (Q.isUndefValue(Idx))
4718 return PoisonValue::get(Vec->getType());
4719
4720 // If the scalar is poison, or it is undef and there is no risk of
4721 // propagating poison from the vector value, simplify to the vector value.
4722 if (isa<PoisonValue>(Val) ||
4723 (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec)))
4724 return Vec;
4725
4726 // If we are extracting a value from a vector, then inserting it into the same
4727 // place, that's the input vector:
4728 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec
4729 if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx))))
4730 return Vec;
4731
4732 return nullptr;
4733 }
4734
4735 /// Given operands for an ExtractValueInst, see if we can fold the result.
4736 /// If not, this returns null.
simplifyExtractValueInst(Value * Agg,ArrayRef<unsigned> Idxs,const SimplifyQuery &,unsigned)4737 static Value *simplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4738 const SimplifyQuery &, unsigned) {
4739 if (auto *CAgg = dyn_cast<Constant>(Agg))
4740 return ConstantFoldExtractValueInstruction(CAgg, Idxs);
4741
4742 // extractvalue x, (insertvalue y, elt, n), n -> elt
4743 unsigned NumIdxs = Idxs.size();
4744 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
4745 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
4746 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
4747 unsigned NumInsertValueIdxs = InsertValueIdxs.size();
4748 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
4749 if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
4750 Idxs.slice(0, NumCommonIdxs)) {
4751 if (NumIdxs == NumInsertValueIdxs)
4752 return IVI->getInsertedValueOperand();
4753 break;
4754 }
4755 }
4756
4757 return nullptr;
4758 }
4759
simplifyExtractValueInst(Value * Agg,ArrayRef<unsigned> Idxs,const SimplifyQuery & Q)4760 Value *llvm::simplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4761 const SimplifyQuery &Q) {
4762 return ::simplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
4763 }
4764
4765 /// Given operands for an ExtractElementInst, see if we can fold the result.
4766 /// If not, this returns null.
simplifyExtractElementInst(Value * Vec,Value * Idx,const SimplifyQuery & Q,unsigned)4767 static Value *simplifyExtractElementInst(Value *Vec, Value *Idx,
4768 const SimplifyQuery &Q, unsigned) {
4769 auto *VecVTy = cast<VectorType>(Vec->getType());
4770 if (auto *CVec = dyn_cast<Constant>(Vec)) {
4771 if (auto *CIdx = dyn_cast<Constant>(Idx))
4772 return ConstantExpr::getExtractElement(CVec, CIdx);
4773
4774 if (Q.isUndefValue(Vec))
4775 return UndefValue::get(VecVTy->getElementType());
4776 }
4777
4778 // An undef extract index can be arbitrarily chosen to be an out-of-range
4779 // index value, which would result in the instruction being poison.
4780 if (Q.isUndefValue(Idx))
4781 return PoisonValue::get(VecVTy->getElementType());
4782
4783 // If extracting a specified index from the vector, see if we can recursively
4784 // find a previously computed scalar that was inserted into the vector.
4785 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) {
4786 // For fixed-length vector, fold into undef if index is out of bounds.
4787 unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue();
4788 if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts))
4789 return PoisonValue::get(VecVTy->getElementType());
4790 // Handle case where an element is extracted from a splat.
4791 if (IdxC->getValue().ult(MinNumElts))
4792 if (auto *Splat = getSplatValue(Vec))
4793 return Splat;
4794 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
4795 return Elt;
4796 } else {
4797 // The index is not relevant if our vector is a splat.
4798 if (Value *Splat = getSplatValue(Vec))
4799 return Splat;
4800 }
4801 return nullptr;
4802 }
4803
simplifyExtractElementInst(Value * Vec,Value * Idx,const SimplifyQuery & Q)4804 Value *llvm::simplifyExtractElementInst(Value *Vec, Value *Idx,
4805 const SimplifyQuery &Q) {
4806 return ::simplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
4807 }
4808
4809 /// See if we can fold the given phi. If not, returns null.
simplifyPHINode(PHINode * PN,ArrayRef<Value * > IncomingValues,const SimplifyQuery & Q)4810 static Value *simplifyPHINode(PHINode *PN, ArrayRef<Value *> IncomingValues,
4811 const SimplifyQuery &Q) {
4812 // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE
4813 // here, because the PHI we may succeed simplifying to was not
4814 // def-reachable from the original PHI!
4815
4816 // If all of the PHI's incoming values are the same then replace the PHI node
4817 // with the common value.
4818 Value *CommonValue = nullptr;
4819 bool HasUndefInput = false;
4820 for (Value *Incoming : IncomingValues) {
4821 // If the incoming value is the phi node itself, it can safely be skipped.
4822 if (Incoming == PN)
4823 continue;
4824 if (Q.isUndefValue(Incoming)) {
4825 // Remember that we saw an undef value, but otherwise ignore them.
4826 HasUndefInput = true;
4827 continue;
4828 }
4829 if (CommonValue && Incoming != CommonValue)
4830 return nullptr; // Not the same, bail out.
4831 CommonValue = Incoming;
4832 }
4833
4834 // If CommonValue is null then all of the incoming values were either undef or
4835 // equal to the phi node itself.
4836 if (!CommonValue)
4837 return UndefValue::get(PN->getType());
4838
4839 if (HasUndefInput) {
4840 // If we have a PHI node like phi(X, undef, X), where X is defined by some
4841 // instruction, we cannot return X as the result of the PHI node unless it
4842 // dominates the PHI block.
4843 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
4844 }
4845
4846 return CommonValue;
4847 }
4848
simplifyCastInst(unsigned CastOpc,Value * Op,Type * Ty,const SimplifyQuery & Q,unsigned MaxRecurse)4849 static Value *simplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
4850 const SimplifyQuery &Q, unsigned MaxRecurse) {
4851 if (auto *C = dyn_cast<Constant>(Op))
4852 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
4853
4854 if (auto *CI = dyn_cast<CastInst>(Op)) {
4855 auto *Src = CI->getOperand(0);
4856 Type *SrcTy = Src->getType();
4857 Type *MidTy = CI->getType();
4858 Type *DstTy = Ty;
4859 if (Src->getType() == Ty) {
4860 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
4861 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
4862 Type *SrcIntPtrTy =
4863 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
4864 Type *MidIntPtrTy =
4865 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
4866 Type *DstIntPtrTy =
4867 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
4868 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
4869 SrcIntPtrTy, MidIntPtrTy,
4870 DstIntPtrTy) == Instruction::BitCast)
4871 return Src;
4872 }
4873 }
4874
4875 // bitcast x -> x
4876 if (CastOpc == Instruction::BitCast)
4877 if (Op->getType() == Ty)
4878 return Op;
4879
4880 return nullptr;
4881 }
4882
simplifyCastInst(unsigned CastOpc,Value * Op,Type * Ty,const SimplifyQuery & Q)4883 Value *llvm::simplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
4884 const SimplifyQuery &Q) {
4885 return ::simplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
4886 }
4887
4888 /// For the given destination element of a shuffle, peek through shuffles to
4889 /// match a root vector source operand that contains that element in the same
4890 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
foldIdentityShuffles(int DestElt,Value * Op0,Value * Op1,int MaskVal,Value * RootVec,unsigned MaxRecurse)4891 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
4892 int MaskVal, Value *RootVec,
4893 unsigned MaxRecurse) {
4894 if (!MaxRecurse--)
4895 return nullptr;
4896
4897 // Bail out if any mask value is undefined. That kind of shuffle may be
4898 // simplified further based on demanded bits or other folds.
4899 if (MaskVal == -1)
4900 return nullptr;
4901
4902 // The mask value chooses which source operand we need to look at next.
4903 int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements();
4904 int RootElt = MaskVal;
4905 Value *SourceOp = Op0;
4906 if (MaskVal >= InVecNumElts) {
4907 RootElt = MaskVal - InVecNumElts;
4908 SourceOp = Op1;
4909 }
4910
4911 // If the source operand is a shuffle itself, look through it to find the
4912 // matching root vector.
4913 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
4914 return foldIdentityShuffles(
4915 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
4916 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
4917 }
4918
4919 // TODO: Look through bitcasts? What if the bitcast changes the vector element
4920 // size?
4921
4922 // The source operand is not a shuffle. Initialize the root vector value for
4923 // this shuffle if that has not been done yet.
4924 if (!RootVec)
4925 RootVec = SourceOp;
4926
4927 // Give up as soon as a source operand does not match the existing root value.
4928 if (RootVec != SourceOp)
4929 return nullptr;
4930
4931 // The element must be coming from the same lane in the source vector
4932 // (although it may have crossed lanes in intermediate shuffles).
4933 if (RootElt != DestElt)
4934 return nullptr;
4935
4936 return RootVec;
4937 }
4938
simplifyShuffleVectorInst(Value * Op0,Value * Op1,ArrayRef<int> Mask,Type * RetTy,const SimplifyQuery & Q,unsigned MaxRecurse)4939 static Value *simplifyShuffleVectorInst(Value *Op0, Value *Op1,
4940 ArrayRef<int> Mask, Type *RetTy,
4941 const SimplifyQuery &Q,
4942 unsigned MaxRecurse) {
4943 if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; }))
4944 return UndefValue::get(RetTy);
4945
4946 auto *InVecTy = cast<VectorType>(Op0->getType());
4947 unsigned MaskNumElts = Mask.size();
4948 ElementCount InVecEltCount = InVecTy->getElementCount();
4949
4950 bool Scalable = InVecEltCount.isScalable();
4951
4952 SmallVector<int, 32> Indices;
4953 Indices.assign(Mask.begin(), Mask.end());
4954
4955 // Canonicalization: If mask does not select elements from an input vector,
4956 // replace that input vector with poison.
4957 if (!Scalable) {
4958 bool MaskSelects0 = false, MaskSelects1 = false;
4959 unsigned InVecNumElts = InVecEltCount.getKnownMinValue();
4960 for (unsigned i = 0; i != MaskNumElts; ++i) {
4961 if (Indices[i] == -1)
4962 continue;
4963 if ((unsigned)Indices[i] < InVecNumElts)
4964 MaskSelects0 = true;
4965 else
4966 MaskSelects1 = true;
4967 }
4968 if (!MaskSelects0)
4969 Op0 = PoisonValue::get(InVecTy);
4970 if (!MaskSelects1)
4971 Op1 = PoisonValue::get(InVecTy);
4972 }
4973
4974 auto *Op0Const = dyn_cast<Constant>(Op0);
4975 auto *Op1Const = dyn_cast<Constant>(Op1);
4976
4977 // If all operands are constant, constant fold the shuffle. This
4978 // transformation depends on the value of the mask which is not known at
4979 // compile time for scalable vectors
4980 if (Op0Const && Op1Const)
4981 return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask);
4982
4983 // Canonicalization: if only one input vector is constant, it shall be the
4984 // second one. This transformation depends on the value of the mask which
4985 // is not known at compile time for scalable vectors
4986 if (!Scalable && Op0Const && !Op1Const) {
4987 std::swap(Op0, Op1);
4988 ShuffleVectorInst::commuteShuffleMask(Indices,
4989 InVecEltCount.getKnownMinValue());
4990 }
4991
4992 // A splat of an inserted scalar constant becomes a vector constant:
4993 // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...>
4994 // NOTE: We may have commuted above, so analyze the updated Indices, not the
4995 // original mask constant.
4996 // NOTE: This transformation depends on the value of the mask which is not
4997 // known at compile time for scalable vectors
4998 Constant *C;
4999 ConstantInt *IndexC;
5000 if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C),
5001 m_ConstantInt(IndexC)))) {
5002 // Match a splat shuffle mask of the insert index allowing undef elements.
5003 int InsertIndex = IndexC->getZExtValue();
5004 if (all_of(Indices, [InsertIndex](int MaskElt) {
5005 return MaskElt == InsertIndex || MaskElt == -1;
5006 })) {
5007 assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat");
5008
5009 // Shuffle mask undefs become undefined constant result elements.
5010 SmallVector<Constant *, 16> VecC(MaskNumElts, C);
5011 for (unsigned i = 0; i != MaskNumElts; ++i)
5012 if (Indices[i] == -1)
5013 VecC[i] = UndefValue::get(C->getType());
5014 return ConstantVector::get(VecC);
5015 }
5016 }
5017
5018 // A shuffle of a splat is always the splat itself. Legal if the shuffle's
5019 // value type is same as the input vectors' type.
5020 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
5021 if (Q.isUndefValue(Op1) && RetTy == InVecTy &&
5022 is_splat(OpShuf->getShuffleMask()))
5023 return Op0;
5024
5025 // All remaining transformation depend on the value of the mask, which is
5026 // not known at compile time for scalable vectors.
5027 if (Scalable)
5028 return nullptr;
5029
5030 // Don't fold a shuffle with undef mask elements. This may get folded in a
5031 // better way using demanded bits or other analysis.
5032 // TODO: Should we allow this?
5033 if (is_contained(Indices, -1))
5034 return nullptr;
5035
5036 // Check if every element of this shuffle can be mapped back to the
5037 // corresponding element of a single root vector. If so, we don't need this
5038 // shuffle. This handles simple identity shuffles as well as chains of
5039 // shuffles that may widen/narrow and/or move elements across lanes and back.
5040 Value *RootVec = nullptr;
5041 for (unsigned i = 0; i != MaskNumElts; ++i) {
5042 // Note that recursion is limited for each vector element, so if any element
5043 // exceeds the limit, this will fail to simplify.
5044 RootVec =
5045 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
5046
5047 // We can't replace a widening/narrowing shuffle with one of its operands.
5048 if (!RootVec || RootVec->getType() != RetTy)
5049 return nullptr;
5050 }
5051 return RootVec;
5052 }
5053
5054 /// Given operands for a ShuffleVectorInst, fold the result or return null.
simplifyShuffleVectorInst(Value * Op0,Value * Op1,ArrayRef<int> Mask,Type * RetTy,const SimplifyQuery & Q)5055 Value *llvm::simplifyShuffleVectorInst(Value *Op0, Value *Op1,
5056 ArrayRef<int> Mask, Type *RetTy,
5057 const SimplifyQuery &Q) {
5058 return ::simplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
5059 }
5060
foldConstant(Instruction::UnaryOps Opcode,Value * & Op,const SimplifyQuery & Q)5061 static Constant *foldConstant(Instruction::UnaryOps Opcode, Value *&Op,
5062 const SimplifyQuery &Q) {
5063 if (auto *C = dyn_cast<Constant>(Op))
5064 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL);
5065 return nullptr;
5066 }
5067
5068 /// Given the operand for an FNeg, see if we can fold the result. If not, this
5069 /// returns null.
simplifyFNegInst(Value * Op,FastMathFlags FMF,const SimplifyQuery & Q,unsigned MaxRecurse)5070 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF,
5071 const SimplifyQuery &Q, unsigned MaxRecurse) {
5072 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q))
5073 return C;
5074
5075 Value *X;
5076 // fneg (fneg X) ==> X
5077 if (match(Op, m_FNeg(m_Value(X))))
5078 return X;
5079
5080 return nullptr;
5081 }
5082
simplifyFNegInst(Value * Op,FastMathFlags FMF,const SimplifyQuery & Q)5083 Value *llvm::simplifyFNegInst(Value *Op, FastMathFlags FMF,
5084 const SimplifyQuery &Q) {
5085 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit);
5086 }
5087
propagateNaN(Constant * In)5088 static Constant *propagateNaN(Constant *In) {
5089 // If the input is a vector with undef elements, just return a default NaN.
5090 if (!In->isNaN())
5091 return ConstantFP::getNaN(In->getType());
5092
5093 // Propagate the existing NaN constant when possible.
5094 // TODO: Should we quiet a signaling NaN?
5095 return In;
5096 }
5097
5098 /// Perform folds that are common to any floating-point operation. This implies
5099 /// transforms based on poison/undef/NaN because the operation itself makes no
5100 /// difference to the result.
simplifyFPOp(ArrayRef<Value * > Ops,FastMathFlags FMF,const SimplifyQuery & Q,fp::ExceptionBehavior ExBehavior,RoundingMode Rounding)5101 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF,
5102 const SimplifyQuery &Q,
5103 fp::ExceptionBehavior ExBehavior,
5104 RoundingMode Rounding) {
5105 // Poison is independent of anything else. It always propagates from an
5106 // operand to a math result.
5107 if (any_of(Ops, [](Value *V) { return match(V, m_Poison()); }))
5108 return PoisonValue::get(Ops[0]->getType());
5109
5110 for (Value *V : Ops) {
5111 bool IsNan = match(V, m_NaN());
5112 bool IsInf = match(V, m_Inf());
5113 bool IsUndef = Q.isUndefValue(V);
5114
5115 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
5116 // (an undef operand can be chosen to be Nan/Inf), then the result of
5117 // this operation is poison.
5118 if (FMF.noNaNs() && (IsNan || IsUndef))
5119 return PoisonValue::get(V->getType());
5120 if (FMF.noInfs() && (IsInf || IsUndef))
5121 return PoisonValue::get(V->getType());
5122
5123 if (isDefaultFPEnvironment(ExBehavior, Rounding)) {
5124 if (IsUndef || IsNan)
5125 return propagateNaN(cast<Constant>(V));
5126 } else if (ExBehavior != fp::ebStrict) {
5127 if (IsNan)
5128 return propagateNaN(cast<Constant>(V));
5129 }
5130 }
5131 return nullptr;
5132 }
5133
5134 /// Given operands for an FAdd, see if we can fold the result. If not, this
5135 /// returns null.
5136 static Value *
simplifyFAddInst(Value * Op0,Value * Op1,FastMathFlags FMF,const SimplifyQuery & Q,unsigned MaxRecurse,fp::ExceptionBehavior ExBehavior=fp::ebIgnore,RoundingMode Rounding=RoundingMode::NearestTiesToEven)5137 simplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5138 const SimplifyQuery &Q, unsigned MaxRecurse,
5139 fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5140 RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5141 if (isDefaultFPEnvironment(ExBehavior, Rounding))
5142 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
5143 return C;
5144
5145 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5146 return C;
5147
5148 // fadd X, -0 ==> X
5149 // With strict/constrained FP, we have these possible edge cases that do
5150 // not simplify to Op0:
5151 // fadd SNaN, -0.0 --> QNaN
5152 // fadd +0.0, -0.0 --> -0.0 (but only with round toward negative)
5153 if (canIgnoreSNaN(ExBehavior, FMF) &&
5154 (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) ||
5155 FMF.noSignedZeros()))
5156 if (match(Op1, m_NegZeroFP()))
5157 return Op0;
5158
5159 // fadd X, 0 ==> X, when we know X is not -0
5160 if (canIgnoreSNaN(ExBehavior, FMF))
5161 if (match(Op1, m_PosZeroFP()) &&
5162 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
5163 return Op0;
5164
5165 if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5166 return nullptr;
5167
5168 // With nnan: -X + X --> 0.0 (and commuted variant)
5169 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
5170 // Negative zeros are allowed because we always end up with positive zero:
5171 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
5172 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
5173 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
5174 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
5175 if (FMF.noNaNs()) {
5176 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) ||
5177 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))
5178 return ConstantFP::getNullValue(Op0->getType());
5179
5180 if (match(Op0, m_FNeg(m_Specific(Op1))) ||
5181 match(Op1, m_FNeg(m_Specific(Op0))))
5182 return ConstantFP::getNullValue(Op0->getType());
5183 }
5184
5185 // (X - Y) + Y --> X
5186 // Y + (X - Y) --> X
5187 Value *X;
5188 if (FMF.noSignedZeros() && FMF.allowReassoc() &&
5189 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) ||
5190 match(Op1, m_FSub(m_Value(X), m_Specific(Op0)))))
5191 return X;
5192
5193 return nullptr;
5194 }
5195
5196 /// Given operands for an FSub, see if we can fold the result. If not, this
5197 /// returns null.
5198 static Value *
simplifyFSubInst(Value * Op0,Value * Op1,FastMathFlags FMF,const SimplifyQuery & Q,unsigned MaxRecurse,fp::ExceptionBehavior ExBehavior=fp::ebIgnore,RoundingMode Rounding=RoundingMode::NearestTiesToEven)5199 simplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5200 const SimplifyQuery &Q, unsigned MaxRecurse,
5201 fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5202 RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5203 if (isDefaultFPEnvironment(ExBehavior, Rounding))
5204 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
5205 return C;
5206
5207 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5208 return C;
5209
5210 // fsub X, +0 ==> X
5211 if (canIgnoreSNaN(ExBehavior, FMF) &&
5212 (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) ||
5213 FMF.noSignedZeros()))
5214 if (match(Op1, m_PosZeroFP()))
5215 return Op0;
5216
5217 // fsub X, -0 ==> X, when we know X is not -0
5218 if (canIgnoreSNaN(ExBehavior, FMF))
5219 if (match(Op1, m_NegZeroFP()) &&
5220 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
5221 return Op0;
5222
5223 // fsub -0.0, (fsub -0.0, X) ==> X
5224 // fsub -0.0, (fneg X) ==> X
5225 Value *X;
5226 if (canIgnoreSNaN(ExBehavior, FMF))
5227 if (match(Op0, m_NegZeroFP()) && match(Op1, m_FNeg(m_Value(X))))
5228 return X;
5229
5230 if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5231 return nullptr;
5232
5233 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
5234 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored.
5235 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) &&
5236 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) ||
5237 match(Op1, m_FNeg(m_Value(X)))))
5238 return X;
5239
5240 // fsub nnan x, x ==> 0.0
5241 if (FMF.noNaNs() && Op0 == Op1)
5242 return Constant::getNullValue(Op0->getType());
5243
5244 // Y - (Y - X) --> X
5245 // (X + Y) - Y --> X
5246 if (FMF.noSignedZeros() && FMF.allowReassoc() &&
5247 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) ||
5248 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X)))))
5249 return X;
5250
5251 return nullptr;
5252 }
5253
simplifyFMAFMul(Value * Op0,Value * Op1,FastMathFlags FMF,const SimplifyQuery & Q,unsigned MaxRecurse,fp::ExceptionBehavior ExBehavior,RoundingMode Rounding)5254 static Value *simplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
5255 const SimplifyQuery &Q, unsigned MaxRecurse,
5256 fp::ExceptionBehavior ExBehavior,
5257 RoundingMode Rounding) {
5258 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5259 return C;
5260
5261 if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5262 return nullptr;
5263
5264 // fmul X, 1.0 ==> X
5265 if (match(Op1, m_FPOne()))
5266 return Op0;
5267
5268 // fmul 1.0, X ==> X
5269 if (match(Op0, m_FPOne()))
5270 return Op1;
5271
5272 // fmul nnan nsz X, 0 ==> 0
5273 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP()))
5274 return ConstantFP::getNullValue(Op0->getType());
5275
5276 // fmul nnan nsz 0, X ==> 0
5277 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
5278 return ConstantFP::getNullValue(Op1->getType());
5279
5280 // sqrt(X) * sqrt(X) --> X, if we can:
5281 // 1. Remove the intermediate rounding (reassociate).
5282 // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
5283 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
5284 Value *X;
5285 if (Op0 == Op1 && match(Op0, m_Sqrt(m_Value(X))) && FMF.allowReassoc() &&
5286 FMF.noNaNs() && FMF.noSignedZeros())
5287 return X;
5288
5289 return nullptr;
5290 }
5291
5292 /// Given the operands for an FMul, see if we can fold the result
5293 static Value *
simplifyFMulInst(Value * Op0,Value * Op1,FastMathFlags FMF,const SimplifyQuery & Q,unsigned MaxRecurse,fp::ExceptionBehavior ExBehavior=fp::ebIgnore,RoundingMode Rounding=RoundingMode::NearestTiesToEven)5294 simplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5295 const SimplifyQuery &Q, unsigned MaxRecurse,
5296 fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5297 RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5298 if (isDefaultFPEnvironment(ExBehavior, Rounding))
5299 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
5300 return C;
5301
5302 // Now apply simplifications that do not require rounding.
5303 return simplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding);
5304 }
5305
simplifyFAddInst(Value * Op0,Value * Op1,FastMathFlags FMF,const SimplifyQuery & Q,fp::ExceptionBehavior ExBehavior,RoundingMode Rounding)5306 Value *llvm::simplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5307 const SimplifyQuery &Q,
5308 fp::ExceptionBehavior ExBehavior,
5309 RoundingMode Rounding) {
5310 return ::simplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5311 Rounding);
5312 }
5313
simplifyFSubInst(Value * Op0,Value * Op1,FastMathFlags FMF,const SimplifyQuery & Q,fp::ExceptionBehavior ExBehavior,RoundingMode Rounding)5314 Value *llvm::simplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5315 const SimplifyQuery &Q,
5316 fp::ExceptionBehavior ExBehavior,
5317 RoundingMode Rounding) {
5318 return ::simplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5319 Rounding);
5320 }
5321
simplifyFMulInst(Value * Op0,Value * Op1,FastMathFlags FMF,const SimplifyQuery & Q,fp::ExceptionBehavior ExBehavior,RoundingMode Rounding)5322 Value *llvm::simplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5323 const SimplifyQuery &Q,
5324 fp::ExceptionBehavior ExBehavior,
5325 RoundingMode Rounding) {
5326 return ::simplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5327 Rounding);
5328 }
5329
simplifyFMAFMul(Value * Op0,Value * Op1,FastMathFlags FMF,const SimplifyQuery & Q,fp::ExceptionBehavior ExBehavior,RoundingMode Rounding)5330 Value *llvm::simplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
5331 const SimplifyQuery &Q,
5332 fp::ExceptionBehavior ExBehavior,
5333 RoundingMode Rounding) {
5334 return ::simplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5335 Rounding);
5336 }
5337
5338 static Value *
simplifyFDivInst(Value * Op0,Value * Op1,FastMathFlags FMF,const SimplifyQuery & Q,unsigned,fp::ExceptionBehavior ExBehavior=fp::ebIgnore,RoundingMode Rounding=RoundingMode::NearestTiesToEven)5339 simplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5340 const SimplifyQuery &Q, unsigned,
5341 fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5342 RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5343 if (isDefaultFPEnvironment(ExBehavior, Rounding))
5344 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
5345 return C;
5346
5347 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5348 return C;
5349
5350 if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5351 return nullptr;
5352
5353 // X / 1.0 -> X
5354 if (match(Op1, m_FPOne()))
5355 return Op0;
5356
5357 // 0 / X -> 0
5358 // Requires that NaNs are off (X could be zero) and signed zeroes are
5359 // ignored (X could be positive or negative, so the output sign is unknown).
5360 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
5361 return ConstantFP::getNullValue(Op0->getType());
5362
5363 if (FMF.noNaNs()) {
5364 // X / X -> 1.0 is legal when NaNs are ignored.
5365 // We can ignore infinities because INF/INF is NaN.
5366 if (Op0 == Op1)
5367 return ConstantFP::get(Op0->getType(), 1.0);
5368
5369 // (X * Y) / Y --> X if we can reassociate to the above form.
5370 Value *X;
5371 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1))))
5372 return X;
5373
5374 // -X / X -> -1.0 and
5375 // X / -X -> -1.0 are legal when NaNs are ignored.
5376 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
5377 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) ||
5378 match(Op1, m_FNegNSZ(m_Specific(Op0))))
5379 return ConstantFP::get(Op0->getType(), -1.0);
5380 }
5381
5382 return nullptr;
5383 }
5384
simplifyFDivInst(Value * Op0,Value * Op1,FastMathFlags FMF,const SimplifyQuery & Q,fp::ExceptionBehavior ExBehavior,RoundingMode Rounding)5385 Value *llvm::simplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5386 const SimplifyQuery &Q,
5387 fp::ExceptionBehavior ExBehavior,
5388 RoundingMode Rounding) {
5389 return ::simplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5390 Rounding);
5391 }
5392
5393 static Value *
simplifyFRemInst(Value * Op0,Value * Op1,FastMathFlags FMF,const SimplifyQuery & Q,unsigned,fp::ExceptionBehavior ExBehavior=fp::ebIgnore,RoundingMode Rounding=RoundingMode::NearestTiesToEven)5394 simplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5395 const SimplifyQuery &Q, unsigned,
5396 fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5397 RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5398 if (isDefaultFPEnvironment(ExBehavior, Rounding))
5399 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
5400 return C;
5401
5402 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5403 return C;
5404
5405 if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5406 return nullptr;
5407
5408 // Unlike fdiv, the result of frem always matches the sign of the dividend.
5409 // The constant match may include undef elements in a vector, so return a full
5410 // zero constant as the result.
5411 if (FMF.noNaNs()) {
5412 // +0 % X -> 0
5413 if (match(Op0, m_PosZeroFP()))
5414 return ConstantFP::getNullValue(Op0->getType());
5415 // -0 % X -> -0
5416 if (match(Op0, m_NegZeroFP()))
5417 return ConstantFP::getNegativeZero(Op0->getType());
5418 }
5419
5420 return nullptr;
5421 }
5422
simplifyFRemInst(Value * Op0,Value * Op1,FastMathFlags FMF,const SimplifyQuery & Q,fp::ExceptionBehavior ExBehavior,RoundingMode Rounding)5423 Value *llvm::simplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5424 const SimplifyQuery &Q,
5425 fp::ExceptionBehavior ExBehavior,
5426 RoundingMode Rounding) {
5427 return ::simplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5428 Rounding);
5429 }
5430
5431 //=== Helper functions for higher up the class hierarchy.
5432
5433 /// Given the operand for a UnaryOperator, see if we can fold the result.
5434 /// If not, this returns null.
simplifyUnOp(unsigned Opcode,Value * Op,const SimplifyQuery & Q,unsigned MaxRecurse)5435 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q,
5436 unsigned MaxRecurse) {
5437 switch (Opcode) {
5438 case Instruction::FNeg:
5439 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse);
5440 default:
5441 llvm_unreachable("Unexpected opcode");
5442 }
5443 }
5444
5445 /// Given the operand for a UnaryOperator, see if we can fold the result.
5446 /// If not, this returns null.
5447 /// Try to use FastMathFlags when folding the result.
simplifyFPUnOp(unsigned Opcode,Value * Op,const FastMathFlags & FMF,const SimplifyQuery & Q,unsigned MaxRecurse)5448 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op,
5449 const FastMathFlags &FMF, const SimplifyQuery &Q,
5450 unsigned MaxRecurse) {
5451 switch (Opcode) {
5452 case Instruction::FNeg:
5453 return simplifyFNegInst(Op, FMF, Q, MaxRecurse);
5454 default:
5455 return simplifyUnOp(Opcode, Op, Q, MaxRecurse);
5456 }
5457 }
5458
simplifyUnOp(unsigned Opcode,Value * Op,const SimplifyQuery & Q)5459 Value *llvm::simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) {
5460 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit);
5461 }
5462
simplifyUnOp(unsigned Opcode,Value * Op,FastMathFlags FMF,const SimplifyQuery & Q)5463 Value *llvm::simplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF,
5464 const SimplifyQuery &Q) {
5465 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit);
5466 }
5467
5468 /// Given operands for a BinaryOperator, see if we can fold the result.
5469 /// If not, this returns null.
simplifyBinOp(unsigned Opcode,Value * LHS,Value * RHS,const SimplifyQuery & Q,unsigned MaxRecurse)5470 static Value *simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5471 const SimplifyQuery &Q, unsigned MaxRecurse) {
5472 switch (Opcode) {
5473 case Instruction::Add:
5474 return simplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
5475 case Instruction::Sub:
5476 return simplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
5477 case Instruction::Mul:
5478 return simplifyMulInst(LHS, RHS, Q, MaxRecurse);
5479 case Instruction::SDiv:
5480 return simplifySDivInst(LHS, RHS, Q, MaxRecurse);
5481 case Instruction::UDiv:
5482 return simplifyUDivInst(LHS, RHS, Q, MaxRecurse);
5483 case Instruction::SRem:
5484 return simplifySRemInst(LHS, RHS, Q, MaxRecurse);
5485 case Instruction::URem:
5486 return simplifyURemInst(LHS, RHS, Q, MaxRecurse);
5487 case Instruction::Shl:
5488 return simplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
5489 case Instruction::LShr:
5490 return simplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
5491 case Instruction::AShr:
5492 return simplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
5493 case Instruction::And:
5494 return simplifyAndInst(LHS, RHS, Q, MaxRecurse);
5495 case Instruction::Or:
5496 return simplifyOrInst(LHS, RHS, Q, MaxRecurse);
5497 case Instruction::Xor:
5498 return simplifyXorInst(LHS, RHS, Q, MaxRecurse);
5499 case Instruction::FAdd:
5500 return simplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5501 case Instruction::FSub:
5502 return simplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5503 case Instruction::FMul:
5504 return simplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5505 case Instruction::FDiv:
5506 return simplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5507 case Instruction::FRem:
5508 return simplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5509 default:
5510 llvm_unreachable("Unexpected opcode");
5511 }
5512 }
5513
5514 /// Given operands for a BinaryOperator, see if we can fold the result.
5515 /// If not, this returns null.
5516 /// Try to use FastMathFlags when folding the result.
simplifyBinOp(unsigned Opcode,Value * LHS,Value * RHS,const FastMathFlags & FMF,const SimplifyQuery & Q,unsigned MaxRecurse)5517 static Value *simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5518 const FastMathFlags &FMF, const SimplifyQuery &Q,
5519 unsigned MaxRecurse) {
5520 switch (Opcode) {
5521 case Instruction::FAdd:
5522 return simplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
5523 case Instruction::FSub:
5524 return simplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
5525 case Instruction::FMul:
5526 return simplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
5527 case Instruction::FDiv:
5528 return simplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
5529 default:
5530 return simplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
5531 }
5532 }
5533
simplifyBinOp(unsigned Opcode,Value * LHS,Value * RHS,const SimplifyQuery & Q)5534 Value *llvm::simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5535 const SimplifyQuery &Q) {
5536 return ::simplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
5537 }
5538
simplifyBinOp(unsigned Opcode,Value * LHS,Value * RHS,FastMathFlags FMF,const SimplifyQuery & Q)5539 Value *llvm::simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5540 FastMathFlags FMF, const SimplifyQuery &Q) {
5541 return ::simplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
5542 }
5543
5544 /// Given operands for a CmpInst, see if we can fold the result.
simplifyCmpInst(unsigned Predicate,Value * LHS,Value * RHS,const SimplifyQuery & Q,unsigned MaxRecurse)5545 static Value *simplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
5546 const SimplifyQuery &Q, unsigned MaxRecurse) {
5547 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
5548 return simplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
5549 return simplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5550 }
5551
simplifyCmpInst(unsigned Predicate,Value * LHS,Value * RHS,const SimplifyQuery & Q)5552 Value *llvm::simplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
5553 const SimplifyQuery &Q) {
5554 return ::simplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
5555 }
5556
isIdempotent(Intrinsic::ID ID)5557 static bool isIdempotent(Intrinsic::ID ID) {
5558 switch (ID) {
5559 default:
5560 return false;
5561
5562 // Unary idempotent: f(f(x)) = f(x)
5563 case Intrinsic::fabs:
5564 case Intrinsic::floor:
5565 case Intrinsic::ceil:
5566 case Intrinsic::trunc:
5567 case Intrinsic::rint:
5568 case Intrinsic::nearbyint:
5569 case Intrinsic::round:
5570 case Intrinsic::roundeven:
5571 case Intrinsic::canonicalize:
5572 return true;
5573 }
5574 }
5575
simplifyRelativeLoad(Constant * Ptr,Constant * Offset,const DataLayout & DL)5576 static Value *simplifyRelativeLoad(Constant *Ptr, Constant *Offset,
5577 const DataLayout &DL) {
5578 GlobalValue *PtrSym;
5579 APInt PtrOffset;
5580 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
5581 return nullptr;
5582
5583 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
5584 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
5585 Type *Int32PtrTy = Int32Ty->getPointerTo();
5586 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
5587
5588 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
5589 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
5590 return nullptr;
5591
5592 uint64_t OffsetInt = OffsetConstInt->getSExtValue();
5593 if (OffsetInt % 4 != 0)
5594 return nullptr;
5595
5596 Constant *C = ConstantExpr::getGetElementPtr(
5597 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
5598 ConstantInt::get(Int64Ty, OffsetInt / 4));
5599 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
5600 if (!Loaded)
5601 return nullptr;
5602
5603 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
5604 if (!LoadedCE)
5605 return nullptr;
5606
5607 if (LoadedCE->getOpcode() == Instruction::Trunc) {
5608 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
5609 if (!LoadedCE)
5610 return nullptr;
5611 }
5612
5613 if (LoadedCE->getOpcode() != Instruction::Sub)
5614 return nullptr;
5615
5616 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
5617 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
5618 return nullptr;
5619 auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
5620
5621 Constant *LoadedRHS = LoadedCE->getOperand(1);
5622 GlobalValue *LoadedRHSSym;
5623 APInt LoadedRHSOffset;
5624 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
5625 DL) ||
5626 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
5627 return nullptr;
5628
5629 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
5630 }
5631
simplifyUnaryIntrinsic(Function * F,Value * Op0,const SimplifyQuery & Q)5632 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0,
5633 const SimplifyQuery &Q) {
5634 // Idempotent functions return the same result when called repeatedly.
5635 Intrinsic::ID IID = F->getIntrinsicID();
5636 if (isIdempotent(IID))
5637 if (auto *II = dyn_cast<IntrinsicInst>(Op0))
5638 if (II->getIntrinsicID() == IID)
5639 return II;
5640
5641 Value *X;
5642 switch (IID) {
5643 case Intrinsic::fabs:
5644 if (SignBitMustBeZero(Op0, Q.TLI))
5645 return Op0;
5646 break;
5647 case Intrinsic::bswap:
5648 // bswap(bswap(x)) -> x
5649 if (match(Op0, m_BSwap(m_Value(X))))
5650 return X;
5651 break;
5652 case Intrinsic::bitreverse:
5653 // bitreverse(bitreverse(x)) -> x
5654 if (match(Op0, m_BitReverse(m_Value(X))))
5655 return X;
5656 break;
5657 case Intrinsic::ctpop: {
5658 // If everything but the lowest bit is zero, that bit is the pop-count. Ex:
5659 // ctpop(and X, 1) --> and X, 1
5660 unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
5661 if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1),
5662 Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
5663 return Op0;
5664 break;
5665 }
5666 case Intrinsic::exp:
5667 // exp(log(x)) -> x
5668 if (Q.CxtI->hasAllowReassoc() &&
5669 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X))))
5670 return X;
5671 break;
5672 case Intrinsic::exp2:
5673 // exp2(log2(x)) -> x
5674 if (Q.CxtI->hasAllowReassoc() &&
5675 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X))))
5676 return X;
5677 break;
5678 case Intrinsic::log:
5679 // log(exp(x)) -> x
5680 if (Q.CxtI->hasAllowReassoc() &&
5681 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))))
5682 return X;
5683 break;
5684 case Intrinsic::log2:
5685 // log2(exp2(x)) -> x
5686 if (Q.CxtI->hasAllowReassoc() &&
5687 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) ||
5688 match(Op0,
5689 m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), m_Value(X)))))
5690 return X;
5691 break;
5692 case Intrinsic::log10:
5693 // log10(pow(10.0, x)) -> x
5694 if (Q.CxtI->hasAllowReassoc() &&
5695 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), m_Value(X))))
5696 return X;
5697 break;
5698 case Intrinsic::floor:
5699 case Intrinsic::trunc:
5700 case Intrinsic::ceil:
5701 case Intrinsic::round:
5702 case Intrinsic::roundeven:
5703 case Intrinsic::nearbyint:
5704 case Intrinsic::rint: {
5705 // floor (sitofp x) -> sitofp x
5706 // floor (uitofp x) -> uitofp x
5707 //
5708 // Converting from int always results in a finite integral number or
5709 // infinity. For either of those inputs, these rounding functions always
5710 // return the same value, so the rounding can be eliminated.
5711 if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value())))
5712 return Op0;
5713 break;
5714 }
5715 case Intrinsic::experimental_vector_reverse:
5716 // experimental.vector.reverse(experimental.vector.reverse(x)) -> x
5717 if (match(Op0,
5718 m_Intrinsic<Intrinsic::experimental_vector_reverse>(m_Value(X))))
5719 return X;
5720 // experimental.vector.reverse(splat(X)) -> splat(X)
5721 if (isSplatValue(Op0))
5722 return Op0;
5723 break;
5724 default:
5725 break;
5726 }
5727
5728 return nullptr;
5729 }
5730
5731 /// Given a min/max intrinsic, see if it can be removed based on having an
5732 /// operand that is another min/max intrinsic with shared operand(s). The caller
5733 /// is expected to swap the operand arguments to handle commutation.
foldMinMaxSharedOp(Intrinsic::ID IID,Value * Op0,Value * Op1)5734 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) {
5735 Value *X, *Y;
5736 if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y))))
5737 return nullptr;
5738
5739 auto *MM0 = dyn_cast<IntrinsicInst>(Op0);
5740 if (!MM0)
5741 return nullptr;
5742 Intrinsic::ID IID0 = MM0->getIntrinsicID();
5743
5744 if (Op1 == X || Op1 == Y ||
5745 match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) {
5746 // max (max X, Y), X --> max X, Y
5747 if (IID0 == IID)
5748 return MM0;
5749 // max (min X, Y), X --> X
5750 if (IID0 == getInverseMinMaxIntrinsic(IID))
5751 return Op1;
5752 }
5753 return nullptr;
5754 }
5755
simplifyBinaryIntrinsic(Function * F,Value * Op0,Value * Op1,const SimplifyQuery & Q)5756 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1,
5757 const SimplifyQuery &Q) {
5758 Intrinsic::ID IID = F->getIntrinsicID();
5759 Type *ReturnType = F->getReturnType();
5760 unsigned BitWidth = ReturnType->getScalarSizeInBits();
5761 switch (IID) {
5762 case Intrinsic::abs:
5763 // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here.
5764 // It is always ok to pick the earlier abs. We'll just lose nsw if its only
5765 // on the outer abs.
5766 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value())))
5767 return Op0;
5768 break;
5769
5770 case Intrinsic::cttz: {
5771 Value *X;
5772 if (match(Op0, m_Shl(m_One(), m_Value(X))))
5773 return X;
5774 break;
5775 }
5776 case Intrinsic::ctlz: {
5777 Value *X;
5778 if (match(Op0, m_LShr(m_Negative(), m_Value(X))))
5779 return X;
5780 if (match(Op0, m_AShr(m_Negative(), m_Value())))
5781 return Constant::getNullValue(ReturnType);
5782 break;
5783 }
5784 case Intrinsic::smax:
5785 case Intrinsic::smin:
5786 case Intrinsic::umax:
5787 case Intrinsic::umin: {
5788 // If the arguments are the same, this is a no-op.
5789 if (Op0 == Op1)
5790 return Op0;
5791
5792 // Canonicalize constant operand as Op1.
5793 if (isa<Constant>(Op0))
5794 std::swap(Op0, Op1);
5795
5796 // Assume undef is the limit value.
5797 if (Q.isUndefValue(Op1))
5798 return ConstantInt::get(
5799 ReturnType, MinMaxIntrinsic::getSaturationPoint(IID, BitWidth));
5800
5801 const APInt *C;
5802 if (match(Op1, m_APIntAllowUndef(C))) {
5803 // Clamp to limit value. For example:
5804 // umax(i8 %x, i8 255) --> 255
5805 if (*C == MinMaxIntrinsic::getSaturationPoint(IID, BitWidth))
5806 return ConstantInt::get(ReturnType, *C);
5807
5808 // If the constant op is the opposite of the limit value, the other must
5809 // be larger/smaller or equal. For example:
5810 // umin(i8 %x, i8 255) --> %x
5811 if (*C == MinMaxIntrinsic::getSaturationPoint(
5812 getInverseMinMaxIntrinsic(IID), BitWidth))
5813 return Op0;
5814
5815 // Remove nested call if constant operands allow it. Example:
5816 // max (max X, 7), 5 -> max X, 7
5817 auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0);
5818 if (MinMax0 && MinMax0->getIntrinsicID() == IID) {
5819 // TODO: loosen undef/splat restrictions for vector constants.
5820 Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1);
5821 const APInt *InnerC;
5822 if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) &&
5823 ICmpInst::compare(*InnerC, *C,
5824 ICmpInst::getNonStrictPredicate(
5825 MinMaxIntrinsic::getPredicate(IID))))
5826 return Op0;
5827 }
5828 }
5829
5830 if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1))
5831 return V;
5832 if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0))
5833 return V;
5834
5835 ICmpInst::Predicate Pred =
5836 ICmpInst::getNonStrictPredicate(MinMaxIntrinsic::getPredicate(IID));
5837 if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit))
5838 return Op0;
5839 if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit))
5840 return Op1;
5841
5842 if (Optional<bool> Imp =
5843 isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL))
5844 return *Imp ? Op0 : Op1;
5845 if (Optional<bool> Imp =
5846 isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL))
5847 return *Imp ? Op1 : Op0;
5848
5849 break;
5850 }
5851 case Intrinsic::usub_with_overflow:
5852 case Intrinsic::ssub_with_overflow:
5853 // X - X -> { 0, false }
5854 // X - undef -> { 0, false }
5855 // undef - X -> { 0, false }
5856 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5857 return Constant::getNullValue(ReturnType);
5858 break;
5859 case Intrinsic::uadd_with_overflow:
5860 case Intrinsic::sadd_with_overflow:
5861 // X + undef -> { -1, false }
5862 // undef + x -> { -1, false }
5863 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) {
5864 return ConstantStruct::get(
5865 cast<StructType>(ReturnType),
5866 {Constant::getAllOnesValue(ReturnType->getStructElementType(0)),
5867 Constant::getNullValue(ReturnType->getStructElementType(1))});
5868 }
5869 break;
5870 case Intrinsic::umul_with_overflow:
5871 case Intrinsic::smul_with_overflow:
5872 // 0 * X -> { 0, false }
5873 // X * 0 -> { 0, false }
5874 if (match(Op0, m_Zero()) || match(Op1, m_Zero()))
5875 return Constant::getNullValue(ReturnType);
5876 // undef * X -> { 0, false }
5877 // X * undef -> { 0, false }
5878 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5879 return Constant::getNullValue(ReturnType);
5880 break;
5881 case Intrinsic::uadd_sat:
5882 // sat(MAX + X) -> MAX
5883 // sat(X + MAX) -> MAX
5884 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes()))
5885 return Constant::getAllOnesValue(ReturnType);
5886 LLVM_FALLTHROUGH;
5887 case Intrinsic::sadd_sat:
5888 // sat(X + undef) -> -1
5889 // sat(undef + X) -> -1
5890 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1).
5891 // For signed: Assume undef is ~X, in which case X + ~X = -1.
5892 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5893 return Constant::getAllOnesValue(ReturnType);
5894
5895 // X + 0 -> X
5896 if (match(Op1, m_Zero()))
5897 return Op0;
5898 // 0 + X -> X
5899 if (match(Op0, m_Zero()))
5900 return Op1;
5901 break;
5902 case Intrinsic::usub_sat:
5903 // sat(0 - X) -> 0, sat(X - MAX) -> 0
5904 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes()))
5905 return Constant::getNullValue(ReturnType);
5906 LLVM_FALLTHROUGH;
5907 case Intrinsic::ssub_sat:
5908 // X - X -> 0, X - undef -> 0, undef - X -> 0
5909 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5910 return Constant::getNullValue(ReturnType);
5911 // X - 0 -> X
5912 if (match(Op1, m_Zero()))
5913 return Op0;
5914 break;
5915 case Intrinsic::load_relative:
5916 if (auto *C0 = dyn_cast<Constant>(Op0))
5917 if (auto *C1 = dyn_cast<Constant>(Op1))
5918 return simplifyRelativeLoad(C0, C1, Q.DL);
5919 break;
5920 case Intrinsic::powi:
5921 if (auto *Power = dyn_cast<ConstantInt>(Op1)) {
5922 // powi(x, 0) -> 1.0
5923 if (Power->isZero())
5924 return ConstantFP::get(Op0->getType(), 1.0);
5925 // powi(x, 1) -> x
5926 if (Power->isOne())
5927 return Op0;
5928 }
5929 break;
5930 case Intrinsic::copysign:
5931 // copysign X, X --> X
5932 if (Op0 == Op1)
5933 return Op0;
5934 // copysign -X, X --> X
5935 // copysign X, -X --> -X
5936 if (match(Op0, m_FNeg(m_Specific(Op1))) ||
5937 match(Op1, m_FNeg(m_Specific(Op0))))
5938 return Op1;
5939 break;
5940 case Intrinsic::maxnum:
5941 case Intrinsic::minnum:
5942 case Intrinsic::maximum:
5943 case Intrinsic::minimum: {
5944 // If the arguments are the same, this is a no-op.
5945 if (Op0 == Op1)
5946 return Op0;
5947
5948 // Canonicalize constant operand as Op1.
5949 if (isa<Constant>(Op0))
5950 std::swap(Op0, Op1);
5951
5952 // If an argument is undef, return the other argument.
5953 if (Q.isUndefValue(Op1))
5954 return Op0;
5955
5956 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
5957 bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum;
5958
5959 // minnum(X, nan) -> X
5960 // maxnum(X, nan) -> X
5961 // minimum(X, nan) -> nan
5962 // maximum(X, nan) -> nan
5963 if (match(Op1, m_NaN()))
5964 return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0;
5965
5966 // In the following folds, inf can be replaced with the largest finite
5967 // float, if the ninf flag is set.
5968 const APFloat *C;
5969 if (match(Op1, m_APFloat(C)) &&
5970 (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) {
5971 // minnum(X, -inf) -> -inf
5972 // maxnum(X, +inf) -> +inf
5973 // minimum(X, -inf) -> -inf if nnan
5974 // maximum(X, +inf) -> +inf if nnan
5975 if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs()))
5976 return ConstantFP::get(ReturnType, *C);
5977
5978 // minnum(X, +inf) -> X if nnan
5979 // maxnum(X, -inf) -> X if nnan
5980 // minimum(X, +inf) -> X
5981 // maximum(X, -inf) -> X
5982 if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs()))
5983 return Op0;
5984 }
5985
5986 // Min/max of the same operation with common operand:
5987 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants)
5988 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0))
5989 if (M0->getIntrinsicID() == IID &&
5990 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1))
5991 return Op0;
5992 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1))
5993 if (M1->getIntrinsicID() == IID &&
5994 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0))
5995 return Op1;
5996
5997 break;
5998 }
5999 case Intrinsic::vector_extract: {
6000 Type *ReturnType = F->getReturnType();
6001
6002 // (extract_vector (insert_vector _, X, 0), 0) -> X
6003 unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue();
6004 Value *X = nullptr;
6005 if (match(Op0, m_Intrinsic<Intrinsic::vector_insert>(m_Value(), m_Value(X),
6006 m_Zero())) &&
6007 IdxN == 0 && X->getType() == ReturnType)
6008 return X;
6009
6010 break;
6011 }
6012 default:
6013 break;
6014 }
6015
6016 return nullptr;
6017 }
6018
simplifyIntrinsic(CallBase * Call,const SimplifyQuery & Q)6019 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) {
6020
6021 unsigned NumOperands = Call->arg_size();
6022 Function *F = cast<Function>(Call->getCalledFunction());
6023 Intrinsic::ID IID = F->getIntrinsicID();
6024
6025 // Most of the intrinsics with no operands have some kind of side effect.
6026 // Don't simplify.
6027 if (!NumOperands) {
6028 switch (IID) {
6029 case Intrinsic::vscale: {
6030 // Call may not be inserted into the IR yet at point of calling simplify.
6031 if (!Call->getParent() || !Call->getParent()->getParent())
6032 return nullptr;
6033 auto Attr = Call->getFunction()->getFnAttribute(Attribute::VScaleRange);
6034 if (!Attr.isValid())
6035 return nullptr;
6036 unsigned VScaleMin = Attr.getVScaleRangeMin();
6037 Optional<unsigned> VScaleMax = Attr.getVScaleRangeMax();
6038 if (VScaleMax && VScaleMin == VScaleMax)
6039 return ConstantInt::get(F->getReturnType(), VScaleMin);
6040 return nullptr;
6041 }
6042 default:
6043 return nullptr;
6044 }
6045 }
6046
6047 if (NumOperands == 1)
6048 return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q);
6049
6050 if (NumOperands == 2)
6051 return simplifyBinaryIntrinsic(F, Call->getArgOperand(0),
6052 Call->getArgOperand(1), Q);
6053
6054 // Handle intrinsics with 3 or more arguments.
6055 switch (IID) {
6056 case Intrinsic::masked_load:
6057 case Intrinsic::masked_gather: {
6058 Value *MaskArg = Call->getArgOperand(2);
6059 Value *PassthruArg = Call->getArgOperand(3);
6060 // If the mask is all zeros or undef, the "passthru" argument is the result.
6061 if (maskIsAllZeroOrUndef(MaskArg))
6062 return PassthruArg;
6063 return nullptr;
6064 }
6065 case Intrinsic::fshl:
6066 case Intrinsic::fshr: {
6067 Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1),
6068 *ShAmtArg = Call->getArgOperand(2);
6069
6070 // If both operands are undef, the result is undef.
6071 if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1))
6072 return UndefValue::get(F->getReturnType());
6073
6074 // If shift amount is undef, assume it is zero.
6075 if (Q.isUndefValue(ShAmtArg))
6076 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
6077
6078 const APInt *ShAmtC;
6079 if (match(ShAmtArg, m_APInt(ShAmtC))) {
6080 // If there's effectively no shift, return the 1st arg or 2nd arg.
6081 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth());
6082 if (ShAmtC->urem(BitWidth).isZero())
6083 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
6084 }
6085
6086 // Rotating zero by anything is zero.
6087 if (match(Op0, m_Zero()) && match(Op1, m_Zero()))
6088 return ConstantInt::getNullValue(F->getReturnType());
6089
6090 // Rotating -1 by anything is -1.
6091 if (match(Op0, m_AllOnes()) && match(Op1, m_AllOnes()))
6092 return ConstantInt::getAllOnesValue(F->getReturnType());
6093
6094 return nullptr;
6095 }
6096 case Intrinsic::experimental_constrained_fma: {
6097 Value *Op0 = Call->getArgOperand(0);
6098 Value *Op1 = Call->getArgOperand(1);
6099 Value *Op2 = Call->getArgOperand(2);
6100 auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6101 if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q,
6102 FPI->getExceptionBehavior().value(),
6103 FPI->getRoundingMode().value()))
6104 return V;
6105 return nullptr;
6106 }
6107 case Intrinsic::fma:
6108 case Intrinsic::fmuladd: {
6109 Value *Op0 = Call->getArgOperand(0);
6110 Value *Op1 = Call->getArgOperand(1);
6111 Value *Op2 = Call->getArgOperand(2);
6112 if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, fp::ebIgnore,
6113 RoundingMode::NearestTiesToEven))
6114 return V;
6115 return nullptr;
6116 }
6117 case Intrinsic::smul_fix:
6118 case Intrinsic::smul_fix_sat: {
6119 Value *Op0 = Call->getArgOperand(0);
6120 Value *Op1 = Call->getArgOperand(1);
6121 Value *Op2 = Call->getArgOperand(2);
6122 Type *ReturnType = F->getReturnType();
6123
6124 // Canonicalize constant operand as Op1 (ConstantFolding handles the case
6125 // when both Op0 and Op1 are constant so we do not care about that special
6126 // case here).
6127 if (isa<Constant>(Op0))
6128 std::swap(Op0, Op1);
6129
6130 // X * 0 -> 0
6131 if (match(Op1, m_Zero()))
6132 return Constant::getNullValue(ReturnType);
6133
6134 // X * undef -> 0
6135 if (Q.isUndefValue(Op1))
6136 return Constant::getNullValue(ReturnType);
6137
6138 // X * (1 << Scale) -> X
6139 APInt ScaledOne =
6140 APInt::getOneBitSet(ReturnType->getScalarSizeInBits(),
6141 cast<ConstantInt>(Op2)->getZExtValue());
6142 if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne)))
6143 return Op0;
6144
6145 return nullptr;
6146 }
6147 case Intrinsic::vector_insert: {
6148 Value *Vec = Call->getArgOperand(0);
6149 Value *SubVec = Call->getArgOperand(1);
6150 Value *Idx = Call->getArgOperand(2);
6151 Type *ReturnType = F->getReturnType();
6152
6153 // (insert_vector Y, (extract_vector X, 0), 0) -> X
6154 // where: Y is X, or Y is undef
6155 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
6156 Value *X = nullptr;
6157 if (match(SubVec,
6158 m_Intrinsic<Intrinsic::vector_extract>(m_Value(X), m_Zero())) &&
6159 (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 &&
6160 X->getType() == ReturnType)
6161 return X;
6162
6163 return nullptr;
6164 }
6165 case Intrinsic::experimental_constrained_fadd: {
6166 auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6167 return simplifyFAddInst(
6168 FPI->getArgOperand(0), FPI->getArgOperand(1), FPI->getFastMathFlags(),
6169 Q, FPI->getExceptionBehavior().value(), FPI->getRoundingMode().value());
6170 }
6171 case Intrinsic::experimental_constrained_fsub: {
6172 auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6173 return simplifyFSubInst(
6174 FPI->getArgOperand(0), FPI->getArgOperand(1), FPI->getFastMathFlags(),
6175 Q, FPI->getExceptionBehavior().value(), FPI->getRoundingMode().value());
6176 }
6177 case Intrinsic::experimental_constrained_fmul: {
6178 auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6179 return simplifyFMulInst(
6180 FPI->getArgOperand(0), FPI->getArgOperand(1), FPI->getFastMathFlags(),
6181 Q, FPI->getExceptionBehavior().value(), FPI->getRoundingMode().value());
6182 }
6183 case Intrinsic::experimental_constrained_fdiv: {
6184 auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6185 return simplifyFDivInst(
6186 FPI->getArgOperand(0), FPI->getArgOperand(1), FPI->getFastMathFlags(),
6187 Q, FPI->getExceptionBehavior().value(), FPI->getRoundingMode().value());
6188 }
6189 case Intrinsic::experimental_constrained_frem: {
6190 auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6191 return simplifyFRemInst(
6192 FPI->getArgOperand(0), FPI->getArgOperand(1), FPI->getFastMathFlags(),
6193 Q, FPI->getExceptionBehavior().value(), FPI->getRoundingMode().value());
6194 }
6195 default:
6196 return nullptr;
6197 }
6198 }
6199
tryConstantFoldCall(CallBase * Call,const SimplifyQuery & Q)6200 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) {
6201 auto *F = dyn_cast<Function>(Call->getCalledOperand());
6202 if (!F || !canConstantFoldCallTo(Call, F))
6203 return nullptr;
6204
6205 SmallVector<Constant *, 4> ConstantArgs;
6206 unsigned NumArgs = Call->arg_size();
6207 ConstantArgs.reserve(NumArgs);
6208 for (auto &Arg : Call->args()) {
6209 Constant *C = dyn_cast<Constant>(&Arg);
6210 if (!C) {
6211 if (isa<MetadataAsValue>(Arg.get()))
6212 continue;
6213 return nullptr;
6214 }
6215 ConstantArgs.push_back(C);
6216 }
6217
6218 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI);
6219 }
6220
simplifyCall(CallBase * Call,const SimplifyQuery & Q)6221 Value *llvm::simplifyCall(CallBase *Call, const SimplifyQuery &Q) {
6222 // musttail calls can only be simplified if they are also DCEd.
6223 // As we can't guarantee this here, don't simplify them.
6224 if (Call->isMustTailCall())
6225 return nullptr;
6226
6227 // call undef -> poison
6228 // call null -> poison
6229 Value *Callee = Call->getCalledOperand();
6230 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee))
6231 return PoisonValue::get(Call->getType());
6232
6233 if (Value *V = tryConstantFoldCall(Call, Q))
6234 return V;
6235
6236 auto *F = dyn_cast<Function>(Callee);
6237 if (F && F->isIntrinsic())
6238 if (Value *Ret = simplifyIntrinsic(Call, Q))
6239 return Ret;
6240
6241 return nullptr;
6242 }
6243
simplifyConstrainedFPCall(CallBase * Call,const SimplifyQuery & Q)6244 Value *llvm::simplifyConstrainedFPCall(CallBase *Call, const SimplifyQuery &Q) {
6245 assert(isa<ConstrainedFPIntrinsic>(Call));
6246 if (Value *V = tryConstantFoldCall(Call, Q))
6247 return V;
6248 if (Value *Ret = simplifyIntrinsic(Call, Q))
6249 return Ret;
6250 return nullptr;
6251 }
6252
6253 /// Given operands for a Freeze, see if we can fold the result.
simplifyFreezeInst(Value * Op0,const SimplifyQuery & Q)6254 static Value *simplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
6255 // Use a utility function defined in ValueTracking.
6256 if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT))
6257 return Op0;
6258 // We have room for improvement.
6259 return nullptr;
6260 }
6261
simplifyFreezeInst(Value * Op0,const SimplifyQuery & Q)6262 Value *llvm::simplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
6263 return ::simplifyFreezeInst(Op0, Q);
6264 }
6265
simplifyLoadInst(LoadInst * LI,Value * PtrOp,const SimplifyQuery & Q)6266 static Value *simplifyLoadInst(LoadInst *LI, Value *PtrOp,
6267 const SimplifyQuery &Q) {
6268 if (LI->isVolatile())
6269 return nullptr;
6270
6271 APInt Offset(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()), 0);
6272 auto *PtrOpC = dyn_cast<Constant>(PtrOp);
6273 // Try to convert operand into a constant by stripping offsets while looking
6274 // through invariant.group intrinsics. Don't bother if the underlying object
6275 // is not constant, as calculating GEP offsets is expensive.
6276 if (!PtrOpC && isa<Constant>(getUnderlyingObject(PtrOp))) {
6277 PtrOp = PtrOp->stripAndAccumulateConstantOffsets(
6278 Q.DL, Offset, /* AllowNonInbounts */ true,
6279 /* AllowInvariantGroup */ true);
6280 // Index size may have changed due to address space casts.
6281 Offset = Offset.sextOrTrunc(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()));
6282 PtrOpC = dyn_cast<Constant>(PtrOp);
6283 }
6284
6285 if (PtrOpC)
6286 return ConstantFoldLoadFromConstPtr(PtrOpC, LI->getType(), Offset, Q.DL);
6287 return nullptr;
6288 }
6289
6290 /// See if we can compute a simplified version of this instruction.
6291 /// If not, this returns null.
6292
simplifyInstructionWithOperands(Instruction * I,ArrayRef<Value * > NewOps,const SimplifyQuery & SQ,OptimizationRemarkEmitter * ORE)6293 static Value *simplifyInstructionWithOperands(Instruction *I,
6294 ArrayRef<Value *> NewOps,
6295 const SimplifyQuery &SQ,
6296 OptimizationRemarkEmitter *ORE) {
6297 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
6298 Value *Result = nullptr;
6299
6300 switch (I->getOpcode()) {
6301 default:
6302 if (llvm::all_of(NewOps, [](Value *V) { return isa<Constant>(V); })) {
6303 SmallVector<Constant *, 8> NewConstOps(NewOps.size());
6304 transform(NewOps, NewConstOps.begin(),
6305 [](Value *V) { return cast<Constant>(V); });
6306 Result = ConstantFoldInstOperands(I, NewConstOps, Q.DL, Q.TLI);
6307 }
6308 break;
6309 case Instruction::FNeg:
6310 Result = simplifyFNegInst(NewOps[0], I->getFastMathFlags(), Q);
6311 break;
6312 case Instruction::FAdd:
6313 Result = simplifyFAddInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6314 break;
6315 case Instruction::Add:
6316 Result = simplifyAddInst(
6317 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6318 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6319 break;
6320 case Instruction::FSub:
6321 Result = simplifyFSubInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6322 break;
6323 case Instruction::Sub:
6324 Result = simplifySubInst(
6325 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6326 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6327 break;
6328 case Instruction::FMul:
6329 Result = simplifyFMulInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6330 break;
6331 case Instruction::Mul:
6332 Result = simplifyMulInst(NewOps[0], NewOps[1], Q);
6333 break;
6334 case Instruction::SDiv:
6335 Result = simplifySDivInst(NewOps[0], NewOps[1], Q);
6336 break;
6337 case Instruction::UDiv:
6338 Result = simplifyUDivInst(NewOps[0], NewOps[1], Q);
6339 break;
6340 case Instruction::FDiv:
6341 Result = simplifyFDivInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6342 break;
6343 case Instruction::SRem:
6344 Result = simplifySRemInst(NewOps[0], NewOps[1], Q);
6345 break;
6346 case Instruction::URem:
6347 Result = simplifyURemInst(NewOps[0], NewOps[1], Q);
6348 break;
6349 case Instruction::FRem:
6350 Result = simplifyFRemInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6351 break;
6352 case Instruction::Shl:
6353 Result = simplifyShlInst(
6354 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6355 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6356 break;
6357 case Instruction::LShr:
6358 Result = simplifyLShrInst(NewOps[0], NewOps[1],
6359 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
6360 break;
6361 case Instruction::AShr:
6362 Result = simplifyAShrInst(NewOps[0], NewOps[1],
6363 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
6364 break;
6365 case Instruction::And:
6366 Result = simplifyAndInst(NewOps[0], NewOps[1], Q);
6367 break;
6368 case Instruction::Or:
6369 Result = simplifyOrInst(NewOps[0], NewOps[1], Q);
6370 break;
6371 case Instruction::Xor:
6372 Result = simplifyXorInst(NewOps[0], NewOps[1], Q);
6373 break;
6374 case Instruction::ICmp:
6375 Result = simplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), NewOps[0],
6376 NewOps[1], Q);
6377 break;
6378 case Instruction::FCmp:
6379 Result = simplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), NewOps[0],
6380 NewOps[1], I->getFastMathFlags(), Q);
6381 break;
6382 case Instruction::Select:
6383 Result = simplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q);
6384 break;
6385 case Instruction::GetElementPtr: {
6386 auto *GEPI = cast<GetElementPtrInst>(I);
6387 Result =
6388 simplifyGEPInst(GEPI->getSourceElementType(), NewOps[0],
6389 makeArrayRef(NewOps).slice(1), GEPI->isInBounds(), Q);
6390 break;
6391 }
6392 case Instruction::InsertValue: {
6393 InsertValueInst *IV = cast<InsertValueInst>(I);
6394 Result = simplifyInsertValueInst(NewOps[0], NewOps[1], IV->getIndices(), Q);
6395 break;
6396 }
6397 case Instruction::InsertElement: {
6398 Result = simplifyInsertElementInst(NewOps[0], NewOps[1], NewOps[2], Q);
6399 break;
6400 }
6401 case Instruction::ExtractValue: {
6402 auto *EVI = cast<ExtractValueInst>(I);
6403 Result = simplifyExtractValueInst(NewOps[0], EVI->getIndices(), Q);
6404 break;
6405 }
6406 case Instruction::ExtractElement: {
6407 Result = simplifyExtractElementInst(NewOps[0], NewOps[1], Q);
6408 break;
6409 }
6410 case Instruction::ShuffleVector: {
6411 auto *SVI = cast<ShuffleVectorInst>(I);
6412 Result = simplifyShuffleVectorInst(
6413 NewOps[0], NewOps[1], SVI->getShuffleMask(), SVI->getType(), Q);
6414 break;
6415 }
6416 case Instruction::PHI:
6417 Result = simplifyPHINode(cast<PHINode>(I), NewOps, Q);
6418 break;
6419 case Instruction::Call: {
6420 // TODO: Use NewOps
6421 Result = simplifyCall(cast<CallInst>(I), Q);
6422 break;
6423 }
6424 case Instruction::Freeze:
6425 Result = llvm::simplifyFreezeInst(NewOps[0], Q);
6426 break;
6427 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
6428 #include "llvm/IR/Instruction.def"
6429 #undef HANDLE_CAST_INST
6430 Result = simplifyCastInst(I->getOpcode(), NewOps[0], I->getType(), Q);
6431 break;
6432 case Instruction::Alloca:
6433 // No simplifications for Alloca and it can't be constant folded.
6434 Result = nullptr;
6435 break;
6436 case Instruction::Load:
6437 Result = simplifyLoadInst(cast<LoadInst>(I), NewOps[0], Q);
6438 break;
6439 }
6440
6441 /// If called on unreachable code, the above logic may report that the
6442 /// instruction simplified to itself. Make life easier for users by
6443 /// detecting that case here, returning a safe value instead.
6444 return Result == I ? UndefValue::get(I->getType()) : Result;
6445 }
6446
simplifyInstructionWithOperands(Instruction * I,ArrayRef<Value * > NewOps,const SimplifyQuery & SQ,OptimizationRemarkEmitter * ORE)6447 Value *llvm::simplifyInstructionWithOperands(Instruction *I,
6448 ArrayRef<Value *> NewOps,
6449 const SimplifyQuery &SQ,
6450 OptimizationRemarkEmitter *ORE) {
6451 assert(NewOps.size() == I->getNumOperands() &&
6452 "Number of operands should match the instruction!");
6453 return ::simplifyInstructionWithOperands(I, NewOps, SQ, ORE);
6454 }
6455
simplifyInstruction(Instruction * I,const SimplifyQuery & SQ,OptimizationRemarkEmitter * ORE)6456 Value *llvm::simplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
6457 OptimizationRemarkEmitter *ORE) {
6458 SmallVector<Value *, 8> Ops(I->operands());
6459 return ::simplifyInstructionWithOperands(I, Ops, SQ, ORE);
6460 }
6461
6462 /// Implementation of recursive simplification through an instruction's
6463 /// uses.
6464 ///
6465 /// This is the common implementation of the recursive simplification routines.
6466 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
6467 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
6468 /// instructions to process and attempt to simplify it using
6469 /// InstructionSimplify. Recursively visited users which could not be
6470 /// simplified themselves are to the optional UnsimplifiedUsers set for
6471 /// further processing by the caller.
6472 ///
6473 /// This routine returns 'true' only when *it* simplifies something. The passed
6474 /// in simplified value does not count toward this.
replaceAndRecursivelySimplifyImpl(Instruction * I,Value * SimpleV,const TargetLibraryInfo * TLI,const DominatorTree * DT,AssumptionCache * AC,SmallSetVector<Instruction *,8> * UnsimplifiedUsers=nullptr)6475 static bool replaceAndRecursivelySimplifyImpl(
6476 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
6477 const DominatorTree *DT, AssumptionCache *AC,
6478 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) {
6479 bool Simplified = false;
6480 SmallSetVector<Instruction *, 8> Worklist;
6481 const DataLayout &DL = I->getModule()->getDataLayout();
6482
6483 // If we have an explicit value to collapse to, do that round of the
6484 // simplification loop by hand initially.
6485 if (SimpleV) {
6486 for (User *U : I->users())
6487 if (U != I)
6488 Worklist.insert(cast<Instruction>(U));
6489
6490 // Replace the instruction with its simplified value.
6491 I->replaceAllUsesWith(SimpleV);
6492
6493 // Gracefully handle edge cases where the instruction is not wired into any
6494 // parent block.
6495 if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
6496 !I->mayHaveSideEffects())
6497 I->eraseFromParent();
6498 } else {
6499 Worklist.insert(I);
6500 }
6501
6502 // Note that we must test the size on each iteration, the worklist can grow.
6503 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
6504 I = Worklist[Idx];
6505
6506 // See if this instruction simplifies.
6507 SimpleV = simplifyInstruction(I, {DL, TLI, DT, AC});
6508 if (!SimpleV) {
6509 if (UnsimplifiedUsers)
6510 UnsimplifiedUsers->insert(I);
6511 continue;
6512 }
6513
6514 Simplified = true;
6515
6516 // Stash away all the uses of the old instruction so we can check them for
6517 // recursive simplifications after a RAUW. This is cheaper than checking all
6518 // uses of To on the recursive step in most cases.
6519 for (User *U : I->users())
6520 Worklist.insert(cast<Instruction>(U));
6521
6522 // Replace the instruction with its simplified value.
6523 I->replaceAllUsesWith(SimpleV);
6524
6525 // Gracefully handle edge cases where the instruction is not wired into any
6526 // parent block.
6527 if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
6528 !I->mayHaveSideEffects())
6529 I->eraseFromParent();
6530 }
6531 return Simplified;
6532 }
6533
replaceAndRecursivelySimplify(Instruction * I,Value * SimpleV,const TargetLibraryInfo * TLI,const DominatorTree * DT,AssumptionCache * AC,SmallSetVector<Instruction *,8> * UnsimplifiedUsers)6534 bool llvm::replaceAndRecursivelySimplify(
6535 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
6536 const DominatorTree *DT, AssumptionCache *AC,
6537 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) {
6538 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
6539 assert(SimpleV && "Must provide a simplified value.");
6540 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC,
6541 UnsimplifiedUsers);
6542 }
6543
6544 namespace llvm {
getBestSimplifyQuery(Pass & P,Function & F)6545 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
6546 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
6547 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
6548 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
6549 auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr;
6550 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
6551 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
6552 return {F.getParent()->getDataLayout(), TLI, DT, AC};
6553 }
6554
getBestSimplifyQuery(LoopStandardAnalysisResults & AR,const DataLayout & DL)6555 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
6556 const DataLayout &DL) {
6557 return {DL, &AR.TLI, &AR.DT, &AR.AC};
6558 }
6559
6560 template <class T, class... TArgs>
getBestSimplifyQuery(AnalysisManager<T,TArgs...> & AM,Function & F)6561 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
6562 Function &F) {
6563 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
6564 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
6565 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
6566 return {F.getParent()->getDataLayout(), TLI, DT, AC};
6567 }
6568 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
6569 Function &);
6570 } // namespace llvm
6571
anchor()6572 void InstSimplifyFolder::anchor() {}
6573