1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements routines for folding instructions into simpler forms 11 // that do not require creating new instructions. This does constant folding 12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 15 // simplified: This is usually true and assuming it simplifies the logic (if 16 // they have not been simplified then results are correct but maybe suboptimal). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/Analysis/VectorUtils.h" 30 #include "llvm/IR/ConstantRange.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/GetElementPtrTypeIterator.h" 34 #include "llvm/IR/GlobalAlias.h" 35 #include "llvm/IR/Operator.h" 36 #include "llvm/IR/PatternMatch.h" 37 #include "llvm/IR/ValueHandle.h" 38 #include <algorithm> 39 using namespace llvm; 40 using namespace llvm::PatternMatch; 41 42 #define DEBUG_TYPE "instsimplify" 43 44 enum { RecursionLimit = 3 }; 45 46 STATISTIC(NumExpand, "Number of expansions"); 47 STATISTIC(NumReassoc, "Number of reassociations"); 48 49 namespace { 50 struct Query { 51 const DataLayout &DL; 52 const TargetLibraryInfo *TLI; 53 const DominatorTree *DT; 54 AssumptionCache *AC; 55 const Instruction *CxtI; 56 57 Query(const DataLayout &DL, const TargetLibraryInfo *tli, 58 const DominatorTree *dt, AssumptionCache *ac = nullptr, 59 const Instruction *cxti = nullptr) 60 : DL(DL), TLI(tli), DT(dt), AC(ac), CxtI(cxti) {} 61 }; 62 } // end anonymous namespace 63 64 static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned); 65 static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &, 66 unsigned); 67 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &, 68 const Query &, unsigned); 69 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &, 70 unsigned); 71 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 72 const Query &Q, unsigned MaxRecurse); 73 static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned); 74 static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned); 75 static Value *SimplifyCastInst(unsigned, Value *, Type *, 76 const Query &, unsigned); 77 78 /// For a boolean type, or a vector of boolean type, return false, or 79 /// a vector with every element false, as appropriate for the type. 80 static Constant *getFalse(Type *Ty) { 81 assert(Ty->getScalarType()->isIntegerTy(1) && 82 "Expected i1 type or a vector of i1!"); 83 return Constant::getNullValue(Ty); 84 } 85 86 /// For a boolean type, or a vector of boolean type, return true, or 87 /// a vector with every element true, as appropriate for the type. 88 static Constant *getTrue(Type *Ty) { 89 assert(Ty->getScalarType()->isIntegerTy(1) && 90 "Expected i1 type or a vector of i1!"); 91 return Constant::getAllOnesValue(Ty); 92 } 93 94 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 95 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 96 Value *RHS) { 97 CmpInst *Cmp = dyn_cast<CmpInst>(V); 98 if (!Cmp) 99 return false; 100 CmpInst::Predicate CPred = Cmp->getPredicate(); 101 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 102 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 103 return true; 104 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 105 CRHS == LHS; 106 } 107 108 /// Does the given value dominate the specified phi node? 109 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 110 Instruction *I = dyn_cast<Instruction>(V); 111 if (!I) 112 // Arguments and constants dominate all instructions. 113 return true; 114 115 // If we are processing instructions (and/or basic blocks) that have not been 116 // fully added to a function, the parent nodes may still be null. Simply 117 // return the conservative answer in these cases. 118 if (!I->getParent() || !P->getParent() || !I->getParent()->getParent()) 119 return false; 120 121 // If we have a DominatorTree then do a precise test. 122 if (DT) { 123 if (!DT->isReachableFromEntry(P->getParent())) 124 return true; 125 if (!DT->isReachableFromEntry(I->getParent())) 126 return false; 127 return DT->dominates(I, P); 128 } 129 130 // Otherwise, if the instruction is in the entry block and is not an invoke, 131 // then it obviously dominates all phi nodes. 132 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() && 133 !isa<InvokeInst>(I)) 134 return true; 135 136 return false; 137 } 138 139 /// Simplify "A op (B op' C)" by distributing op over op', turning it into 140 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 141 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 142 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 143 /// Returns the simplified value, or null if no simplification was performed. 144 static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS, 145 unsigned OpcToExpand, const Query &Q, 146 unsigned MaxRecurse) { 147 Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand; 148 // Recursion is always used, so bail out at once if we already hit the limit. 149 if (!MaxRecurse--) 150 return nullptr; 151 152 // Check whether the expression has the form "(A op' B) op C". 153 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 154 if (Op0->getOpcode() == OpcodeToExpand) { 155 // It does! Try turning it into "(A op C) op' (B op C)". 156 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 157 // Do "A op C" and "B op C" both simplify? 158 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 159 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 160 // They do! Return "L op' R" if it simplifies or is already available. 161 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 162 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 163 && L == B && R == A)) { 164 ++NumExpand; 165 return LHS; 166 } 167 // Otherwise return "L op' R" if it simplifies. 168 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 169 ++NumExpand; 170 return V; 171 } 172 } 173 } 174 175 // Check whether the expression has the form "A op (B op' C)". 176 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 177 if (Op1->getOpcode() == OpcodeToExpand) { 178 // It does! Try turning it into "(A op B) op' (A op C)". 179 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 180 // Do "A op B" and "A op C" both simplify? 181 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 182 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 183 // They do! Return "L op' R" if it simplifies or is already available. 184 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 185 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 186 && L == C && R == B)) { 187 ++NumExpand; 188 return RHS; 189 } 190 // Otherwise return "L op' R" if it simplifies. 191 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 192 ++NumExpand; 193 return V; 194 } 195 } 196 } 197 198 return nullptr; 199 } 200 201 /// Generic simplifications for associative binary operations. 202 /// Returns the simpler value, or null if none was found. 203 static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS, 204 const Query &Q, unsigned MaxRecurse) { 205 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc; 206 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 207 208 // Recursion is always used, so bail out at once if we already hit the limit. 209 if (!MaxRecurse--) 210 return nullptr; 211 212 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 213 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 214 215 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 216 if (Op0 && Op0->getOpcode() == Opcode) { 217 Value *A = Op0->getOperand(0); 218 Value *B = Op0->getOperand(1); 219 Value *C = RHS; 220 221 // Does "B op C" simplify? 222 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 223 // It does! Return "A op V" if it simplifies or is already available. 224 // If V equals B then "A op V" is just the LHS. 225 if (V == B) return LHS; 226 // Otherwise return "A op V" if it simplifies. 227 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 228 ++NumReassoc; 229 return W; 230 } 231 } 232 } 233 234 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 235 if (Op1 && Op1->getOpcode() == Opcode) { 236 Value *A = LHS; 237 Value *B = Op1->getOperand(0); 238 Value *C = Op1->getOperand(1); 239 240 // Does "A op B" simplify? 241 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 242 // It does! Return "V op C" if it simplifies or is already available. 243 // If V equals B then "V op C" is just the RHS. 244 if (V == B) return RHS; 245 // Otherwise return "V op C" if it simplifies. 246 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 247 ++NumReassoc; 248 return W; 249 } 250 } 251 } 252 253 // The remaining transforms require commutativity as well as associativity. 254 if (!Instruction::isCommutative(Opcode)) 255 return nullptr; 256 257 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 258 if (Op0 && Op0->getOpcode() == Opcode) { 259 Value *A = Op0->getOperand(0); 260 Value *B = Op0->getOperand(1); 261 Value *C = RHS; 262 263 // Does "C op A" simplify? 264 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 265 // It does! Return "V op B" if it simplifies or is already available. 266 // If V equals A then "V op B" is just the LHS. 267 if (V == A) return LHS; 268 // Otherwise return "V op B" if it simplifies. 269 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 270 ++NumReassoc; 271 return W; 272 } 273 } 274 } 275 276 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 277 if (Op1 && Op1->getOpcode() == Opcode) { 278 Value *A = LHS; 279 Value *B = Op1->getOperand(0); 280 Value *C = Op1->getOperand(1); 281 282 // Does "C op A" simplify? 283 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 284 // It does! Return "B op V" if it simplifies or is already available. 285 // If V equals C then "B op V" is just the RHS. 286 if (V == C) return RHS; 287 // Otherwise return "B op V" if it simplifies. 288 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 289 ++NumReassoc; 290 return W; 291 } 292 } 293 } 294 295 return nullptr; 296 } 297 298 /// In the case of a binary operation with a select instruction as an operand, 299 /// try to simplify the binop by seeing whether evaluating it on both branches 300 /// of the select results in the same value. Returns the common value if so, 301 /// otherwise returns null. 302 static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS, 303 const Query &Q, unsigned MaxRecurse) { 304 // Recursion is always used, so bail out at once if we already hit the limit. 305 if (!MaxRecurse--) 306 return nullptr; 307 308 SelectInst *SI; 309 if (isa<SelectInst>(LHS)) { 310 SI = cast<SelectInst>(LHS); 311 } else { 312 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 313 SI = cast<SelectInst>(RHS); 314 } 315 316 // Evaluate the BinOp on the true and false branches of the select. 317 Value *TV; 318 Value *FV; 319 if (SI == LHS) { 320 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 321 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 322 } else { 323 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 324 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 325 } 326 327 // If they simplified to the same value, then return the common value. 328 // If they both failed to simplify then return null. 329 if (TV == FV) 330 return TV; 331 332 // If one branch simplified to undef, return the other one. 333 if (TV && isa<UndefValue>(TV)) 334 return FV; 335 if (FV && isa<UndefValue>(FV)) 336 return TV; 337 338 // If applying the operation did not change the true and false select values, 339 // then the result of the binop is the select itself. 340 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 341 return SI; 342 343 // If one branch simplified and the other did not, and the simplified 344 // value is equal to the unsimplified one, return the simplified value. 345 // For example, select (cond, X, X & Z) & Z -> X & Z. 346 if ((FV && !TV) || (TV && !FV)) { 347 // Check that the simplified value has the form "X op Y" where "op" is the 348 // same as the original operation. 349 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 350 if (Simplified && Simplified->getOpcode() == Opcode) { 351 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 352 // We already know that "op" is the same as for the simplified value. See 353 // if the operands match too. If so, return the simplified value. 354 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 355 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 356 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 357 if (Simplified->getOperand(0) == UnsimplifiedLHS && 358 Simplified->getOperand(1) == UnsimplifiedRHS) 359 return Simplified; 360 if (Simplified->isCommutative() && 361 Simplified->getOperand(1) == UnsimplifiedLHS && 362 Simplified->getOperand(0) == UnsimplifiedRHS) 363 return Simplified; 364 } 365 } 366 367 return nullptr; 368 } 369 370 /// In the case of a comparison with a select instruction, try to simplify the 371 /// comparison by seeing whether both branches of the select result in the same 372 /// value. Returns the common value if so, otherwise returns null. 373 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 374 Value *RHS, const Query &Q, 375 unsigned MaxRecurse) { 376 // Recursion is always used, so bail out at once if we already hit the limit. 377 if (!MaxRecurse--) 378 return nullptr; 379 380 // Make sure the select is on the LHS. 381 if (!isa<SelectInst>(LHS)) { 382 std::swap(LHS, RHS); 383 Pred = CmpInst::getSwappedPredicate(Pred); 384 } 385 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 386 SelectInst *SI = cast<SelectInst>(LHS); 387 Value *Cond = SI->getCondition(); 388 Value *TV = SI->getTrueValue(); 389 Value *FV = SI->getFalseValue(); 390 391 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 392 // Does "cmp TV, RHS" simplify? 393 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 394 if (TCmp == Cond) { 395 // It not only simplified, it simplified to the select condition. Replace 396 // it with 'true'. 397 TCmp = getTrue(Cond->getType()); 398 } else if (!TCmp) { 399 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 400 // condition then we can replace it with 'true'. Otherwise give up. 401 if (!isSameCompare(Cond, Pred, TV, RHS)) 402 return nullptr; 403 TCmp = getTrue(Cond->getType()); 404 } 405 406 // Does "cmp FV, RHS" simplify? 407 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 408 if (FCmp == Cond) { 409 // It not only simplified, it simplified to the select condition. Replace 410 // it with 'false'. 411 FCmp = getFalse(Cond->getType()); 412 } else if (!FCmp) { 413 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 414 // condition then we can replace it with 'false'. Otherwise give up. 415 if (!isSameCompare(Cond, Pred, FV, RHS)) 416 return nullptr; 417 FCmp = getFalse(Cond->getType()); 418 } 419 420 // If both sides simplified to the same value, then use it as the result of 421 // the original comparison. 422 if (TCmp == FCmp) 423 return TCmp; 424 425 // The remaining cases only make sense if the select condition has the same 426 // type as the result of the comparison, so bail out if this is not so. 427 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 428 return nullptr; 429 // If the false value simplified to false, then the result of the compare 430 // is equal to "Cond && TCmp". This also catches the case when the false 431 // value simplified to false and the true value to true, returning "Cond". 432 if (match(FCmp, m_Zero())) 433 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 434 return V; 435 // If the true value simplified to true, then the result of the compare 436 // is equal to "Cond || FCmp". 437 if (match(TCmp, m_One())) 438 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 439 return V; 440 // Finally, if the false value simplified to true and the true value to 441 // false, then the result of the compare is equal to "!Cond". 442 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 443 if (Value *V = 444 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 445 Q, MaxRecurse)) 446 return V; 447 448 return nullptr; 449 } 450 451 /// In the case of a binary operation with an operand that is a PHI instruction, 452 /// try to simplify the binop by seeing whether evaluating it on the incoming 453 /// phi values yields the same result for every value. If so returns the common 454 /// value, otherwise returns null. 455 static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS, 456 const Query &Q, unsigned MaxRecurse) { 457 // Recursion is always used, so bail out at once if we already hit the limit. 458 if (!MaxRecurse--) 459 return nullptr; 460 461 PHINode *PI; 462 if (isa<PHINode>(LHS)) { 463 PI = cast<PHINode>(LHS); 464 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 465 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 466 return nullptr; 467 } else { 468 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 469 PI = cast<PHINode>(RHS); 470 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 471 if (!ValueDominatesPHI(LHS, PI, Q.DT)) 472 return nullptr; 473 } 474 475 // Evaluate the BinOp on the incoming phi values. 476 Value *CommonValue = nullptr; 477 for (Value *Incoming : PI->incoming_values()) { 478 // If the incoming value is the phi node itself, it can safely be skipped. 479 if (Incoming == PI) continue; 480 Value *V = PI == LHS ? 481 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 482 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 483 // If the operation failed to simplify, or simplified to a different value 484 // to previously, then give up. 485 if (!V || (CommonValue && V != CommonValue)) 486 return nullptr; 487 CommonValue = V; 488 } 489 490 return CommonValue; 491 } 492 493 /// In the case of a comparison with a PHI instruction, try to simplify the 494 /// comparison by seeing whether comparing with all of the incoming phi values 495 /// yields the same result every time. If so returns the common result, 496 /// otherwise returns null. 497 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 498 const Query &Q, unsigned MaxRecurse) { 499 // Recursion is always used, so bail out at once if we already hit the limit. 500 if (!MaxRecurse--) 501 return nullptr; 502 503 // Make sure the phi is on the LHS. 504 if (!isa<PHINode>(LHS)) { 505 std::swap(LHS, RHS); 506 Pred = CmpInst::getSwappedPredicate(Pred); 507 } 508 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 509 PHINode *PI = cast<PHINode>(LHS); 510 511 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 512 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 513 return nullptr; 514 515 // Evaluate the BinOp on the incoming phi values. 516 Value *CommonValue = nullptr; 517 for (Value *Incoming : PI->incoming_values()) { 518 // If the incoming value is the phi node itself, it can safely be skipped. 519 if (Incoming == PI) continue; 520 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 521 // If the operation failed to simplify, or simplified to a different value 522 // to previously, then give up. 523 if (!V || (CommonValue && V != CommonValue)) 524 return nullptr; 525 CommonValue = V; 526 } 527 528 return CommonValue; 529 } 530 531 /// Given operands for an Add, see if we can fold the result. 532 /// If not, this returns null. 533 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 534 const Query &Q, unsigned MaxRecurse) { 535 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 536 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 537 return ConstantFoldBinaryOpOperands(Instruction::Add, CLHS, CRHS, Q.DL); 538 539 // Canonicalize the constant to the RHS. 540 std::swap(Op0, Op1); 541 } 542 543 // X + undef -> undef 544 if (match(Op1, m_Undef())) 545 return Op1; 546 547 // X + 0 -> X 548 if (match(Op1, m_Zero())) 549 return Op0; 550 551 // X + (Y - X) -> Y 552 // (Y - X) + X -> Y 553 // Eg: X + -X -> 0 554 Value *Y = nullptr; 555 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 556 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 557 return Y; 558 559 // X + ~X -> -1 since ~X = -X-1 560 Type *Ty = Op0->getType(); 561 if (match(Op0, m_Not(m_Specific(Op1))) || 562 match(Op1, m_Not(m_Specific(Op0)))) 563 return Constant::getAllOnesValue(Ty); 564 565 // add nsw/nuw (xor Y, signbit), signbit --> Y 566 // The no-wrapping add guarantees that the top bit will be set by the add. 567 // Therefore, the xor must be clearing the already set sign bit of Y. 568 Constant *SignBit = 569 ConstantInt::get(Ty, APInt::getSignBit(Ty->getScalarSizeInBits())); 570 if ((isNSW || isNUW) && match(Op1, m_Specific(SignBit)) && 571 match(Op0, m_Xor(m_Value(Y), m_Specific(SignBit)))) 572 return Y; 573 574 /// i1 add -> xor. 575 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 576 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 577 return V; 578 579 // Try some generic simplifications for associative operations. 580 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 581 MaxRecurse)) 582 return V; 583 584 // Threading Add over selects and phi nodes is pointless, so don't bother. 585 // Threading over the select in "A + select(cond, B, C)" means evaluating 586 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 587 // only if B and C are equal. If B and C are equal then (since we assume 588 // that operands have already been simplified) "select(cond, B, C)" should 589 // have been simplified to the common value of B and C already. Analysing 590 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 591 // for threading over phi nodes. 592 593 return nullptr; 594 } 595 596 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 597 const DataLayout &DL, const TargetLibraryInfo *TLI, 598 const DominatorTree *DT, AssumptionCache *AC, 599 const Instruction *CxtI) { 600 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 601 RecursionLimit); 602 } 603 604 /// \brief Compute the base pointer and cumulative constant offsets for V. 605 /// 606 /// This strips all constant offsets off of V, leaving it the base pointer, and 607 /// accumulates the total constant offset applied in the returned constant. It 608 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 609 /// no constant offsets applied. 610 /// 611 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 612 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 613 /// folding. 614 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 615 bool AllowNonInbounds = false) { 616 assert(V->getType()->getScalarType()->isPointerTy()); 617 618 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 619 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 620 621 // Even though we don't look through PHI nodes, we could be called on an 622 // instruction in an unreachable block, which may be on a cycle. 623 SmallPtrSet<Value *, 4> Visited; 624 Visited.insert(V); 625 do { 626 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 627 if ((!AllowNonInbounds && !GEP->isInBounds()) || 628 !GEP->accumulateConstantOffset(DL, Offset)) 629 break; 630 V = GEP->getPointerOperand(); 631 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 632 V = cast<Operator>(V)->getOperand(0); 633 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 634 if (GA->isInterposable()) 635 break; 636 V = GA->getAliasee(); 637 } else { 638 if (auto CS = CallSite(V)) 639 if (Value *RV = CS.getReturnedArgOperand()) { 640 V = RV; 641 continue; 642 } 643 break; 644 } 645 assert(V->getType()->getScalarType()->isPointerTy() && 646 "Unexpected operand type!"); 647 } while (Visited.insert(V).second); 648 649 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 650 if (V->getType()->isVectorTy()) 651 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 652 OffsetIntPtr); 653 return OffsetIntPtr; 654 } 655 656 /// \brief Compute the constant difference between two pointer values. 657 /// If the difference is not a constant, returns zero. 658 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 659 Value *RHS) { 660 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 661 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 662 663 // If LHS and RHS are not related via constant offsets to the same base 664 // value, there is nothing we can do here. 665 if (LHS != RHS) 666 return nullptr; 667 668 // Otherwise, the difference of LHS - RHS can be computed as: 669 // LHS - RHS 670 // = (LHSOffset + Base) - (RHSOffset + Base) 671 // = LHSOffset - RHSOffset 672 return ConstantExpr::getSub(LHSOffset, RHSOffset); 673 } 674 675 /// Given operands for a Sub, see if we can fold the result. 676 /// If not, this returns null. 677 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 678 const Query &Q, unsigned MaxRecurse) { 679 if (Constant *CLHS = dyn_cast<Constant>(Op0)) 680 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 681 return ConstantFoldBinaryOpOperands(Instruction::Sub, CLHS, CRHS, Q.DL); 682 683 // X - undef -> undef 684 // undef - X -> undef 685 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 686 return UndefValue::get(Op0->getType()); 687 688 // X - 0 -> X 689 if (match(Op1, m_Zero())) 690 return Op0; 691 692 // X - X -> 0 693 if (Op0 == Op1) 694 return Constant::getNullValue(Op0->getType()); 695 696 // Is this a negation? 697 if (match(Op0, m_Zero())) { 698 // 0 - X -> 0 if the sub is NUW. 699 if (isNUW) 700 return Op0; 701 702 unsigned BitWidth = Op1->getType()->getScalarSizeInBits(); 703 APInt KnownZero(BitWidth, 0); 704 APInt KnownOne(BitWidth, 0); 705 computeKnownBits(Op1, KnownZero, KnownOne, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 706 if (KnownZero == ~APInt::getSignBit(BitWidth)) { 707 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 708 // Op1 must be 0 because negating the minimum signed value is undefined. 709 if (isNSW) 710 return Op0; 711 712 // 0 - X -> X if X is 0 or the minimum signed value. 713 return Op1; 714 } 715 } 716 717 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 718 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 719 Value *X = nullptr, *Y = nullptr, *Z = Op1; 720 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 721 // See if "V === Y - Z" simplifies. 722 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 723 // It does! Now see if "X + V" simplifies. 724 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 725 // It does, we successfully reassociated! 726 ++NumReassoc; 727 return W; 728 } 729 // See if "V === X - Z" simplifies. 730 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 731 // It does! Now see if "Y + V" simplifies. 732 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 733 // It does, we successfully reassociated! 734 ++NumReassoc; 735 return W; 736 } 737 } 738 739 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 740 // For example, X - (X + 1) -> -1 741 X = Op0; 742 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 743 // See if "V === X - Y" simplifies. 744 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 745 // It does! Now see if "V - Z" simplifies. 746 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 747 // It does, we successfully reassociated! 748 ++NumReassoc; 749 return W; 750 } 751 // See if "V === X - Z" simplifies. 752 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 753 // It does! Now see if "V - Y" simplifies. 754 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 755 // It does, we successfully reassociated! 756 ++NumReassoc; 757 return W; 758 } 759 } 760 761 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 762 // For example, X - (X - Y) -> Y. 763 Z = Op0; 764 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 765 // See if "V === Z - X" simplifies. 766 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 767 // It does! Now see if "V + Y" simplifies. 768 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 769 // It does, we successfully reassociated! 770 ++NumReassoc; 771 return W; 772 } 773 774 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 775 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 776 match(Op1, m_Trunc(m_Value(Y)))) 777 if (X->getType() == Y->getType()) 778 // See if "V === X - Y" simplifies. 779 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 780 // It does! Now see if "trunc V" simplifies. 781 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 782 Q, MaxRecurse - 1)) 783 // It does, return the simplified "trunc V". 784 return W; 785 786 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 787 if (match(Op0, m_PtrToInt(m_Value(X))) && 788 match(Op1, m_PtrToInt(m_Value(Y)))) 789 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 790 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 791 792 // i1 sub -> xor. 793 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 794 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 795 return V; 796 797 // Threading Sub over selects and phi nodes is pointless, so don't bother. 798 // Threading over the select in "A - select(cond, B, C)" means evaluating 799 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 800 // only if B and C are equal. If B and C are equal then (since we assume 801 // that operands have already been simplified) "select(cond, B, C)" should 802 // have been simplified to the common value of B and C already. Analysing 803 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 804 // for threading over phi nodes. 805 806 return nullptr; 807 } 808 809 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 810 const DataLayout &DL, const TargetLibraryInfo *TLI, 811 const DominatorTree *DT, AssumptionCache *AC, 812 const Instruction *CxtI) { 813 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 814 RecursionLimit); 815 } 816 817 /// Given operands for an FAdd, see if we can fold the result. If not, this 818 /// returns null. 819 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 820 const Query &Q, unsigned MaxRecurse) { 821 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 822 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 823 return ConstantFoldBinaryOpOperands(Instruction::FAdd, CLHS, CRHS, Q.DL); 824 825 // Canonicalize the constant to the RHS. 826 std::swap(Op0, Op1); 827 } 828 829 // fadd X, -0 ==> X 830 if (match(Op1, m_NegZero())) 831 return Op0; 832 833 // fadd X, 0 ==> X, when we know X is not -0 834 if (match(Op1, m_Zero()) && 835 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 836 return Op0; 837 838 // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0 839 // where nnan and ninf have to occur at least once somewhere in this 840 // expression 841 Value *SubOp = nullptr; 842 if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0)))) 843 SubOp = Op1; 844 else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1)))) 845 SubOp = Op0; 846 if (SubOp) { 847 Instruction *FSub = cast<Instruction>(SubOp); 848 if ((FMF.noNaNs() || FSub->hasNoNaNs()) && 849 (FMF.noInfs() || FSub->hasNoInfs())) 850 return Constant::getNullValue(Op0->getType()); 851 } 852 853 return nullptr; 854 } 855 856 /// Given operands for an FSub, see if we can fold the result. If not, this 857 /// returns null. 858 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 859 const Query &Q, unsigned MaxRecurse) { 860 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 861 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 862 return ConstantFoldBinaryOpOperands(Instruction::FSub, CLHS, CRHS, Q.DL); 863 } 864 865 // fsub X, 0 ==> X 866 if (match(Op1, m_Zero())) 867 return Op0; 868 869 // fsub X, -0 ==> X, when we know X is not -0 870 if (match(Op1, m_NegZero()) && 871 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 872 return Op0; 873 874 // fsub -0.0, (fsub -0.0, X) ==> X 875 Value *X; 876 if (match(Op0, m_NegZero()) && match(Op1, m_FSub(m_NegZero(), m_Value(X)))) 877 return X; 878 879 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 880 if (FMF.noSignedZeros() && match(Op0, m_AnyZero()) && 881 match(Op1, m_FSub(m_AnyZero(), m_Value(X)))) 882 return X; 883 884 // fsub nnan x, x ==> 0.0 885 if (FMF.noNaNs() && Op0 == Op1) 886 return Constant::getNullValue(Op0->getType()); 887 888 return nullptr; 889 } 890 891 /// Given the operands for an FMul, see if we can fold the result 892 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, 893 FastMathFlags FMF, 894 const Query &Q, 895 unsigned MaxRecurse) { 896 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 897 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 898 return ConstantFoldBinaryOpOperands(Instruction::FMul, CLHS, CRHS, Q.DL); 899 900 // Canonicalize the constant to the RHS. 901 std::swap(Op0, Op1); 902 } 903 904 // fmul X, 1.0 ==> X 905 if (match(Op1, m_FPOne())) 906 return Op0; 907 908 // fmul nnan nsz X, 0 ==> 0 909 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero())) 910 return Op1; 911 912 return nullptr; 913 } 914 915 /// Given operands for a Mul, see if we can fold the result. 916 /// If not, this returns null. 917 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q, 918 unsigned MaxRecurse) { 919 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 920 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 921 return ConstantFoldBinaryOpOperands(Instruction::Mul, CLHS, CRHS, Q.DL); 922 923 // Canonicalize the constant to the RHS. 924 std::swap(Op0, Op1); 925 } 926 927 // X * undef -> 0 928 if (match(Op1, m_Undef())) 929 return Constant::getNullValue(Op0->getType()); 930 931 // X * 0 -> 0 932 if (match(Op1, m_Zero())) 933 return Op1; 934 935 // X * 1 -> X 936 if (match(Op1, m_One())) 937 return Op0; 938 939 // (X / Y) * Y -> X if the division is exact. 940 Value *X = nullptr; 941 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 942 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y) 943 return X; 944 945 // i1 mul -> and. 946 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 947 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 948 return V; 949 950 // Try some generic simplifications for associative operations. 951 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 952 MaxRecurse)) 953 return V; 954 955 // Mul distributes over Add. Try some generic simplifications based on this. 956 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 957 Q, MaxRecurse)) 958 return V; 959 960 // If the operation is with the result of a select instruction, check whether 961 // operating on either branch of the select always yields the same value. 962 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 963 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 964 MaxRecurse)) 965 return V; 966 967 // If the operation is with the result of a phi instruction, check whether 968 // operating on all incoming values of the phi always yields the same value. 969 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 970 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 971 MaxRecurse)) 972 return V; 973 974 return nullptr; 975 } 976 977 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 978 const DataLayout &DL, 979 const TargetLibraryInfo *TLI, 980 const DominatorTree *DT, AssumptionCache *AC, 981 const Instruction *CxtI) { 982 return ::SimplifyFAddInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 983 RecursionLimit); 984 } 985 986 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 987 const DataLayout &DL, 988 const TargetLibraryInfo *TLI, 989 const DominatorTree *DT, AssumptionCache *AC, 990 const Instruction *CxtI) { 991 return ::SimplifyFSubInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 992 RecursionLimit); 993 } 994 995 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 996 const DataLayout &DL, 997 const TargetLibraryInfo *TLI, 998 const DominatorTree *DT, AssumptionCache *AC, 999 const Instruction *CxtI) { 1000 return ::SimplifyFMulInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 1001 RecursionLimit); 1002 } 1003 1004 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout &DL, 1005 const TargetLibraryInfo *TLI, 1006 const DominatorTree *DT, AssumptionCache *AC, 1007 const Instruction *CxtI) { 1008 return ::SimplifyMulInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1009 RecursionLimit); 1010 } 1011 1012 /// Check for common or similar folds of integer division or integer remainder. 1013 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) { 1014 Type *Ty = Op0->getType(); 1015 1016 // X / undef -> undef 1017 // X % undef -> undef 1018 if (match(Op1, m_Undef())) 1019 return Op1; 1020 1021 // X / 0 -> undef 1022 // X % 0 -> undef 1023 // We don't need to preserve faults! 1024 if (match(Op1, m_Zero())) 1025 return UndefValue::get(Ty); 1026 1027 // If any element of a constant divisor vector is zero, the whole op is undef. 1028 auto *Op1C = dyn_cast<Constant>(Op1); 1029 if (Op1C && Ty->isVectorTy()) { 1030 unsigned NumElts = Ty->getVectorNumElements(); 1031 for (unsigned i = 0; i != NumElts; ++i) { 1032 Constant *Elt = Op1C->getAggregateElement(i); 1033 if (Elt && Elt->isNullValue()) 1034 return UndefValue::get(Ty); 1035 } 1036 } 1037 1038 // undef / X -> 0 1039 // undef % X -> 0 1040 if (match(Op0, m_Undef())) 1041 return Constant::getNullValue(Ty); 1042 1043 // 0 / X -> 0 1044 // 0 % X -> 0 1045 if (match(Op0, m_Zero())) 1046 return Op0; 1047 1048 // X / X -> 1 1049 // X % X -> 0 1050 if (Op0 == Op1) 1051 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 1052 1053 // X / 1 -> X 1054 // X % 1 -> 0 1055 // If this is a boolean op (single-bit element type), we can't have 1056 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 1057 if (match(Op1, m_One()) || Ty->getScalarType()->isIntegerTy(1)) 1058 return IsDiv ? Op0 : Constant::getNullValue(Ty); 1059 1060 return nullptr; 1061 } 1062 1063 /// Given operands for an SDiv or UDiv, see if we can fold the result. 1064 /// If not, this returns null. 1065 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1066 const Query &Q, unsigned MaxRecurse) { 1067 if (Constant *C0 = dyn_cast<Constant>(Op0)) 1068 if (Constant *C1 = dyn_cast<Constant>(Op1)) 1069 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 1070 1071 if (Value *V = simplifyDivRem(Op0, Op1, true)) 1072 return V; 1073 1074 bool isSigned = Opcode == Instruction::SDiv; 1075 1076 // (X * Y) / Y -> X if the multiplication does not overflow. 1077 Value *X = nullptr, *Y = nullptr; 1078 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) { 1079 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1 1080 OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0); 1081 // If the Mul knows it does not overflow, then we are good to go. 1082 if ((isSigned && Mul->hasNoSignedWrap()) || 1083 (!isSigned && Mul->hasNoUnsignedWrap())) 1084 return X; 1085 // If X has the form X = A / Y then X * Y cannot overflow. 1086 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X)) 1087 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y) 1088 return X; 1089 } 1090 1091 // (X rem Y) / Y -> 0 1092 if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1093 (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1094 return Constant::getNullValue(Op0->getType()); 1095 1096 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1097 ConstantInt *C1, *C2; 1098 if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1099 match(Op1, m_ConstantInt(C2))) { 1100 bool Overflow; 1101 C1->getValue().umul_ov(C2->getValue(), Overflow); 1102 if (Overflow) 1103 return Constant::getNullValue(Op0->getType()); 1104 } 1105 1106 // If the operation is with the result of a select instruction, check whether 1107 // operating on either branch of the select always yields the same value. 1108 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1109 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1110 return V; 1111 1112 // If the operation is with the result of a phi instruction, check whether 1113 // operating on all incoming values of the phi always yields the same value. 1114 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1115 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1116 return V; 1117 1118 return nullptr; 1119 } 1120 1121 /// Given operands for an SDiv, see if we can fold the result. 1122 /// If not, this returns null. 1123 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q, 1124 unsigned MaxRecurse) { 1125 if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse)) 1126 return V; 1127 1128 return nullptr; 1129 } 1130 1131 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout &DL, 1132 const TargetLibraryInfo *TLI, 1133 const DominatorTree *DT, AssumptionCache *AC, 1134 const Instruction *CxtI) { 1135 return ::SimplifySDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1136 RecursionLimit); 1137 } 1138 1139 /// Given operands for a UDiv, see if we can fold the result. 1140 /// If not, this returns null. 1141 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q, 1142 unsigned MaxRecurse) { 1143 if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse)) 1144 return V; 1145 1146 // udiv %V, C -> 0 if %V < C 1147 if (MaxRecurse) { 1148 if (Constant *C = dyn_cast_or_null<Constant>(SimplifyICmpInst( 1149 ICmpInst::ICMP_ULT, Op0, Op1, Q, MaxRecurse - 1))) { 1150 if (C->isAllOnesValue()) { 1151 return Constant::getNullValue(Op0->getType()); 1152 } 1153 } 1154 } 1155 1156 return nullptr; 1157 } 1158 1159 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout &DL, 1160 const TargetLibraryInfo *TLI, 1161 const DominatorTree *DT, AssumptionCache *AC, 1162 const Instruction *CxtI) { 1163 return ::SimplifyUDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1164 RecursionLimit); 1165 } 1166 1167 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1168 const Query &Q, unsigned) { 1169 // undef / X -> undef (the undef could be a snan). 1170 if (match(Op0, m_Undef())) 1171 return Op0; 1172 1173 // X / undef -> undef 1174 if (match(Op1, m_Undef())) 1175 return Op1; 1176 1177 // X / 1.0 -> X 1178 if (match(Op1, m_FPOne())) 1179 return Op0; 1180 1181 // 0 / X -> 0 1182 // Requires that NaNs are off (X could be zero) and signed zeroes are 1183 // ignored (X could be positive or negative, so the output sign is unknown). 1184 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 1185 return Op0; 1186 1187 if (FMF.noNaNs()) { 1188 // X / X -> 1.0 is legal when NaNs are ignored. 1189 if (Op0 == Op1) 1190 return ConstantFP::get(Op0->getType(), 1.0); 1191 1192 // -X / X -> -1.0 and 1193 // X / -X -> -1.0 are legal when NaNs are ignored. 1194 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 1195 if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) && 1196 BinaryOperator::getFNegArgument(Op0) == Op1) || 1197 (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) && 1198 BinaryOperator::getFNegArgument(Op1) == Op0)) 1199 return ConstantFP::get(Op0->getType(), -1.0); 1200 } 1201 1202 return nullptr; 1203 } 1204 1205 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1206 const DataLayout &DL, 1207 const TargetLibraryInfo *TLI, 1208 const DominatorTree *DT, AssumptionCache *AC, 1209 const Instruction *CxtI) { 1210 return ::SimplifyFDivInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 1211 RecursionLimit); 1212 } 1213 1214 /// Given operands for an SRem or URem, see if we can fold the result. 1215 /// If not, this returns null. 1216 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1217 const Query &Q, unsigned MaxRecurse) { 1218 if (Constant *C0 = dyn_cast<Constant>(Op0)) 1219 if (Constant *C1 = dyn_cast<Constant>(Op1)) 1220 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 1221 1222 if (Value *V = simplifyDivRem(Op0, Op1, false)) 1223 return V; 1224 1225 // (X % Y) % Y -> X % Y 1226 if ((Opcode == Instruction::SRem && 1227 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1228 (Opcode == Instruction::URem && 1229 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1230 return Op0; 1231 1232 // If the operation is with the result of a select instruction, check whether 1233 // operating on either branch of the select always yields the same value. 1234 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1235 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1236 return V; 1237 1238 // If the operation is with the result of a phi instruction, check whether 1239 // operating on all incoming values of the phi always yields the same value. 1240 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1241 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1242 return V; 1243 1244 return nullptr; 1245 } 1246 1247 /// Given operands for an SRem, see if we can fold the result. 1248 /// If not, this returns null. 1249 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q, 1250 unsigned MaxRecurse) { 1251 if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse)) 1252 return V; 1253 1254 return nullptr; 1255 } 1256 1257 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout &DL, 1258 const TargetLibraryInfo *TLI, 1259 const DominatorTree *DT, AssumptionCache *AC, 1260 const Instruction *CxtI) { 1261 return ::SimplifySRemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1262 RecursionLimit); 1263 } 1264 1265 /// Given operands for a URem, see if we can fold the result. 1266 /// If not, this returns null. 1267 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q, 1268 unsigned MaxRecurse) { 1269 if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse)) 1270 return V; 1271 1272 // urem %V, C -> %V if %V < C 1273 if (MaxRecurse) { 1274 if (Constant *C = dyn_cast_or_null<Constant>(SimplifyICmpInst( 1275 ICmpInst::ICMP_ULT, Op0, Op1, Q, MaxRecurse - 1))) { 1276 if (C->isAllOnesValue()) { 1277 return Op0; 1278 } 1279 } 1280 } 1281 1282 return nullptr; 1283 } 1284 1285 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout &DL, 1286 const TargetLibraryInfo *TLI, 1287 const DominatorTree *DT, AssumptionCache *AC, 1288 const Instruction *CxtI) { 1289 return ::SimplifyURemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1290 RecursionLimit); 1291 } 1292 1293 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1294 const Query &, unsigned) { 1295 // undef % X -> undef (the undef could be a snan). 1296 if (match(Op0, m_Undef())) 1297 return Op0; 1298 1299 // X % undef -> undef 1300 if (match(Op1, m_Undef())) 1301 return Op1; 1302 1303 // 0 % X -> 0 1304 // Requires that NaNs are off (X could be zero) and signed zeroes are 1305 // ignored (X could be positive or negative, so the output sign is unknown). 1306 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 1307 return Op0; 1308 1309 return nullptr; 1310 } 1311 1312 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1313 const DataLayout &DL, 1314 const TargetLibraryInfo *TLI, 1315 const DominatorTree *DT, AssumptionCache *AC, 1316 const Instruction *CxtI) { 1317 return ::SimplifyFRemInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 1318 RecursionLimit); 1319 } 1320 1321 /// Returns true if a shift by \c Amount always yields undef. 1322 static bool isUndefShift(Value *Amount) { 1323 Constant *C = dyn_cast<Constant>(Amount); 1324 if (!C) 1325 return false; 1326 1327 // X shift by undef -> undef because it may shift by the bitwidth. 1328 if (isa<UndefValue>(C)) 1329 return true; 1330 1331 // Shifting by the bitwidth or more is undefined. 1332 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1333 if (CI->getValue().getLimitedValue() >= 1334 CI->getType()->getScalarSizeInBits()) 1335 return true; 1336 1337 // If all lanes of a vector shift are undefined the whole shift is. 1338 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1339 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) 1340 if (!isUndefShift(C->getAggregateElement(I))) 1341 return false; 1342 return true; 1343 } 1344 1345 return false; 1346 } 1347 1348 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1349 /// If not, this returns null. 1350 static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1, 1351 const Query &Q, unsigned MaxRecurse) { 1352 if (Constant *C0 = dyn_cast<Constant>(Op0)) 1353 if (Constant *C1 = dyn_cast<Constant>(Op1)) 1354 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 1355 1356 // 0 shift by X -> 0 1357 if (match(Op0, m_Zero())) 1358 return Op0; 1359 1360 // X shift by 0 -> X 1361 if (match(Op1, m_Zero())) 1362 return Op0; 1363 1364 // Fold undefined shifts. 1365 if (isUndefShift(Op1)) 1366 return UndefValue::get(Op0->getType()); 1367 1368 // If the operation is with the result of a select instruction, check whether 1369 // operating on either branch of the select always yields the same value. 1370 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1371 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1372 return V; 1373 1374 // If the operation is with the result of a phi instruction, check whether 1375 // operating on all incoming values of the phi always yields the same value. 1376 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1377 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1378 return V; 1379 1380 // If any bits in the shift amount make that value greater than or equal to 1381 // the number of bits in the type, the shift is undefined. 1382 unsigned BitWidth = Op1->getType()->getScalarSizeInBits(); 1383 APInt KnownZero(BitWidth, 0); 1384 APInt KnownOne(BitWidth, 0); 1385 computeKnownBits(Op1, KnownZero, KnownOne, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1386 if (KnownOne.getLimitedValue() >= BitWidth) 1387 return UndefValue::get(Op0->getType()); 1388 1389 // If all valid bits in the shift amount are known zero, the first operand is 1390 // unchanged. 1391 unsigned NumValidShiftBits = Log2_32_Ceil(BitWidth); 1392 APInt ShiftAmountMask = APInt::getLowBitsSet(BitWidth, NumValidShiftBits); 1393 if ((KnownZero & ShiftAmountMask) == ShiftAmountMask) 1394 return Op0; 1395 1396 return nullptr; 1397 } 1398 1399 /// \brief Given operands for an Shl, LShr or AShr, see if we can 1400 /// fold the result. If not, this returns null. 1401 static Value *SimplifyRightShift(unsigned Opcode, Value *Op0, Value *Op1, 1402 bool isExact, const Query &Q, 1403 unsigned MaxRecurse) { 1404 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1405 return V; 1406 1407 // X >> X -> 0 1408 if (Op0 == Op1) 1409 return Constant::getNullValue(Op0->getType()); 1410 1411 // undef >> X -> 0 1412 // undef >> X -> undef (if it's exact) 1413 if (match(Op0, m_Undef())) 1414 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1415 1416 // The low bit cannot be shifted out of an exact shift if it is set. 1417 if (isExact) { 1418 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 1419 APInt Op0KnownZero(BitWidth, 0); 1420 APInt Op0KnownOne(BitWidth, 0); 1421 computeKnownBits(Op0, Op0KnownZero, Op0KnownOne, Q.DL, /*Depth=*/0, Q.AC, 1422 Q.CxtI, Q.DT); 1423 if (Op0KnownOne[0]) 1424 return Op0; 1425 } 1426 1427 return nullptr; 1428 } 1429 1430 /// Given operands for an Shl, see if we can fold the result. 1431 /// If not, this returns null. 1432 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1433 const Query &Q, unsigned MaxRecurse) { 1434 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1435 return V; 1436 1437 // undef << X -> 0 1438 // undef << X -> undef if (if it's NSW/NUW) 1439 if (match(Op0, m_Undef())) 1440 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1441 1442 // (X >> A) << A -> X 1443 Value *X; 1444 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1445 return X; 1446 return nullptr; 1447 } 1448 1449 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1450 const DataLayout &DL, const TargetLibraryInfo *TLI, 1451 const DominatorTree *DT, AssumptionCache *AC, 1452 const Instruction *CxtI) { 1453 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 1454 RecursionLimit); 1455 } 1456 1457 /// Given operands for an LShr, see if we can fold the result. 1458 /// If not, this returns null. 1459 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1460 const Query &Q, unsigned MaxRecurse) { 1461 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1462 MaxRecurse)) 1463 return V; 1464 1465 // (X << A) >> A -> X 1466 Value *X; 1467 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1468 return X; 1469 1470 return nullptr; 1471 } 1472 1473 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1474 const DataLayout &DL, 1475 const TargetLibraryInfo *TLI, 1476 const DominatorTree *DT, AssumptionCache *AC, 1477 const Instruction *CxtI) { 1478 return ::SimplifyLShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI), 1479 RecursionLimit); 1480 } 1481 1482 /// Given operands for an AShr, see if we can fold the result. 1483 /// If not, this returns null. 1484 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1485 const Query &Q, unsigned MaxRecurse) { 1486 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1487 MaxRecurse)) 1488 return V; 1489 1490 // all ones >>a X -> all ones 1491 if (match(Op0, m_AllOnes())) 1492 return Op0; 1493 1494 // (X << A) >> A -> X 1495 Value *X; 1496 if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1497 return X; 1498 1499 // Arithmetic shifting an all-sign-bit value is a no-op. 1500 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1501 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1502 return Op0; 1503 1504 return nullptr; 1505 } 1506 1507 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1508 const DataLayout &DL, 1509 const TargetLibraryInfo *TLI, 1510 const DominatorTree *DT, AssumptionCache *AC, 1511 const Instruction *CxtI) { 1512 return ::SimplifyAShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI), 1513 RecursionLimit); 1514 } 1515 1516 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1517 ICmpInst *UnsignedICmp, bool IsAnd) { 1518 Value *X, *Y; 1519 1520 ICmpInst::Predicate EqPred; 1521 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1522 !ICmpInst::isEquality(EqPred)) 1523 return nullptr; 1524 1525 ICmpInst::Predicate UnsignedPred; 1526 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1527 ICmpInst::isUnsigned(UnsignedPred)) 1528 ; 1529 else if (match(UnsignedICmp, 1530 m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) && 1531 ICmpInst::isUnsigned(UnsignedPred)) 1532 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1533 else 1534 return nullptr; 1535 1536 // X < Y && Y != 0 --> X < Y 1537 // X < Y || Y != 0 --> Y != 0 1538 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1539 return IsAnd ? UnsignedICmp : ZeroICmp; 1540 1541 // X >= Y || Y != 0 --> true 1542 // X >= Y || Y == 0 --> X >= Y 1543 if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) { 1544 if (EqPred == ICmpInst::ICMP_NE) 1545 return getTrue(UnsignedICmp->getType()); 1546 return UnsignedICmp; 1547 } 1548 1549 // X < Y && Y == 0 --> false 1550 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1551 IsAnd) 1552 return getFalse(UnsignedICmp->getType()); 1553 1554 return nullptr; 1555 } 1556 1557 /// Commuted variants are assumed to be handled by calling this function again 1558 /// with the parameters swapped. 1559 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1560 ICmpInst::Predicate Pred0, Pred1; 1561 Value *A ,*B; 1562 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1563 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1564 return nullptr; 1565 1566 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1567 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1568 // can eliminate Op1 from this 'and'. 1569 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1570 return Op0; 1571 1572 // Check for any combination of predicates that are guaranteed to be disjoint. 1573 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1574 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1575 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1576 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1577 return getFalse(Op0->getType()); 1578 1579 return nullptr; 1580 } 1581 1582 /// Commuted variants are assumed to be handled by calling this function again 1583 /// with the parameters swapped. 1584 static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1585 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true)) 1586 return X; 1587 1588 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1589 return X; 1590 1591 // Look for this pattern: (icmp V, C0) & (icmp V, C1)). 1592 Type *ITy = Op0->getType(); 1593 ICmpInst::Predicate Pred0, Pred1; 1594 const APInt *C0, *C1; 1595 Value *V; 1596 if (match(Op0, m_ICmp(Pred0, m_Value(V), m_APInt(C0))) && 1597 match(Op1, m_ICmp(Pred1, m_Specific(V), m_APInt(C1)))) { 1598 // Make a constant range that's the intersection of the two icmp ranges. 1599 // If the intersection is empty, we know that the result is false. 1600 auto Range0 = ConstantRange::makeAllowedICmpRegion(Pred0, *C0); 1601 auto Range1 = ConstantRange::makeAllowedICmpRegion(Pred1, *C1); 1602 if (Range0.intersectWith(Range1).isEmptySet()) 1603 return getFalse(ITy); 1604 } 1605 1606 // (icmp (add V, C0), C1) & (icmp V, C0) 1607 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1608 return nullptr; 1609 1610 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1611 return nullptr; 1612 1613 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1614 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1615 return nullptr; 1616 1617 bool isNSW = AddInst->hasNoSignedWrap(); 1618 bool isNUW = AddInst->hasNoUnsignedWrap(); 1619 1620 const APInt Delta = *C1 - *C0; 1621 if (C0->isStrictlyPositive()) { 1622 if (Delta == 2) { 1623 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1624 return getFalse(ITy); 1625 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1626 return getFalse(ITy); 1627 } 1628 if (Delta == 1) { 1629 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1630 return getFalse(ITy); 1631 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1632 return getFalse(ITy); 1633 } 1634 } 1635 if (C0->getBoolValue() && isNUW) { 1636 if (Delta == 2) 1637 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1638 return getFalse(ITy); 1639 if (Delta == 1) 1640 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1641 return getFalse(ITy); 1642 } 1643 1644 return nullptr; 1645 } 1646 1647 /// Given operands for an And, see if we can fold the result. 1648 /// If not, this returns null. 1649 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q, 1650 unsigned MaxRecurse) { 1651 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1652 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1653 return ConstantFoldBinaryOpOperands(Instruction::And, CLHS, CRHS, Q.DL); 1654 1655 // Canonicalize the constant to the RHS. 1656 std::swap(Op0, Op1); 1657 } 1658 1659 // X & undef -> 0 1660 if (match(Op1, m_Undef())) 1661 return Constant::getNullValue(Op0->getType()); 1662 1663 // X & X = X 1664 if (Op0 == Op1) 1665 return Op0; 1666 1667 // X & 0 = 0 1668 if (match(Op1, m_Zero())) 1669 return Op1; 1670 1671 // X & -1 = X 1672 if (match(Op1, m_AllOnes())) 1673 return Op0; 1674 1675 // A & ~A = ~A & A = 0 1676 if (match(Op0, m_Not(m_Specific(Op1))) || 1677 match(Op1, m_Not(m_Specific(Op0)))) 1678 return Constant::getNullValue(Op0->getType()); 1679 1680 // (A | ?) & A = A 1681 Value *A = nullptr, *B = nullptr; 1682 if (match(Op0, m_Or(m_Value(A), m_Value(B))) && 1683 (A == Op1 || B == Op1)) 1684 return Op1; 1685 1686 // A & (A | ?) = A 1687 if (match(Op1, m_Or(m_Value(A), m_Value(B))) && 1688 (A == Op0 || B == Op0)) 1689 return Op0; 1690 1691 // A & (-A) = A if A is a power of two or zero. 1692 if (match(Op0, m_Neg(m_Specific(Op1))) || 1693 match(Op1, m_Neg(m_Specific(Op0)))) { 1694 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1695 Q.DT)) 1696 return Op0; 1697 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1698 Q.DT)) 1699 return Op1; 1700 } 1701 1702 if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) { 1703 if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) { 1704 if (Value *V = SimplifyAndOfICmps(ICILHS, ICIRHS)) 1705 return V; 1706 if (Value *V = SimplifyAndOfICmps(ICIRHS, ICILHS)) 1707 return V; 1708 } 1709 } 1710 1711 // The compares may be hidden behind casts. Look through those and try the 1712 // same folds as above. 1713 auto *Cast0 = dyn_cast<CastInst>(Op0); 1714 auto *Cast1 = dyn_cast<CastInst>(Op1); 1715 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1716 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1717 auto *Cmp0 = dyn_cast<ICmpInst>(Cast0->getOperand(0)); 1718 auto *Cmp1 = dyn_cast<ICmpInst>(Cast1->getOperand(0)); 1719 if (Cmp0 && Cmp1) { 1720 Instruction::CastOps CastOpc = Cast0->getOpcode(); 1721 Type *ResultType = Cast0->getType(); 1722 if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp0, Cmp1))) 1723 return ConstantExpr::getCast(CastOpc, V, ResultType); 1724 if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp1, Cmp0))) 1725 return ConstantExpr::getCast(CastOpc, V, ResultType); 1726 } 1727 } 1728 1729 // Try some generic simplifications for associative operations. 1730 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1731 MaxRecurse)) 1732 return V; 1733 1734 // And distributes over Or. Try some generic simplifications based on this. 1735 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1736 Q, MaxRecurse)) 1737 return V; 1738 1739 // And distributes over Xor. Try some generic simplifications based on this. 1740 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1741 Q, MaxRecurse)) 1742 return V; 1743 1744 // If the operation is with the result of a select instruction, check whether 1745 // operating on either branch of the select always yields the same value. 1746 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1747 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 1748 MaxRecurse)) 1749 return V; 1750 1751 // If the operation is with the result of a phi instruction, check whether 1752 // operating on all incoming values of the phi always yields the same value. 1753 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1754 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 1755 MaxRecurse)) 1756 return V; 1757 1758 return nullptr; 1759 } 1760 1761 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout &DL, 1762 const TargetLibraryInfo *TLI, 1763 const DominatorTree *DT, AssumptionCache *AC, 1764 const Instruction *CxtI) { 1765 return ::SimplifyAndInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1766 RecursionLimit); 1767 } 1768 1769 /// Commuted variants are assumed to be handled by calling this function again 1770 /// with the parameters swapped. 1771 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1772 ICmpInst::Predicate Pred0, Pred1; 1773 Value *A ,*B; 1774 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1775 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1776 return nullptr; 1777 1778 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1779 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1780 // can eliminate Op0 from this 'or'. 1781 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1782 return Op1; 1783 1784 // Check for any combination of predicates that cover the entire range of 1785 // possibilities. 1786 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1787 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1788 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1789 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1790 return getTrue(Op0->getType()); 1791 1792 return nullptr; 1793 } 1794 1795 /// Commuted variants are assumed to be handled by calling this function again 1796 /// with the parameters swapped. 1797 static Value *SimplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1798 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false)) 1799 return X; 1800 1801 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1802 return X; 1803 1804 // (icmp (add V, C0), C1) | (icmp V, C0) 1805 ICmpInst::Predicate Pred0, Pred1; 1806 const APInt *C0, *C1; 1807 Value *V; 1808 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1809 return nullptr; 1810 1811 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1812 return nullptr; 1813 1814 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1815 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1816 return nullptr; 1817 1818 Type *ITy = Op0->getType(); 1819 bool isNSW = AddInst->hasNoSignedWrap(); 1820 bool isNUW = AddInst->hasNoUnsignedWrap(); 1821 1822 const APInt Delta = *C1 - *C0; 1823 if (C0->isStrictlyPositive()) { 1824 if (Delta == 2) { 1825 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1826 return getTrue(ITy); 1827 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1828 return getTrue(ITy); 1829 } 1830 if (Delta == 1) { 1831 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1832 return getTrue(ITy); 1833 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1834 return getTrue(ITy); 1835 } 1836 } 1837 if (C0->getBoolValue() && isNUW) { 1838 if (Delta == 2) 1839 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1840 return getTrue(ITy); 1841 if (Delta == 1) 1842 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1843 return getTrue(ITy); 1844 } 1845 1846 return nullptr; 1847 } 1848 1849 /// Given operands for an Or, see if we can fold the result. 1850 /// If not, this returns null. 1851 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q, 1852 unsigned MaxRecurse) { 1853 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1854 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1855 return ConstantFoldBinaryOpOperands(Instruction::Or, CLHS, CRHS, Q.DL); 1856 1857 // Canonicalize the constant to the RHS. 1858 std::swap(Op0, Op1); 1859 } 1860 1861 // X | undef -> -1 1862 if (match(Op1, m_Undef())) 1863 return Constant::getAllOnesValue(Op0->getType()); 1864 1865 // X | X = X 1866 if (Op0 == Op1) 1867 return Op0; 1868 1869 // X | 0 = X 1870 if (match(Op1, m_Zero())) 1871 return Op0; 1872 1873 // X | -1 = -1 1874 if (match(Op1, m_AllOnes())) 1875 return Op1; 1876 1877 // A | ~A = ~A | A = -1 1878 if (match(Op0, m_Not(m_Specific(Op1))) || 1879 match(Op1, m_Not(m_Specific(Op0)))) 1880 return Constant::getAllOnesValue(Op0->getType()); 1881 1882 // (A & ?) | A = A 1883 Value *A = nullptr, *B = nullptr; 1884 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1885 (A == Op1 || B == Op1)) 1886 return Op1; 1887 1888 // A | (A & ?) = A 1889 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1890 (A == Op0 || B == Op0)) 1891 return Op0; 1892 1893 // ~(A & ?) | A = -1 1894 if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) && 1895 (A == Op1 || B == Op1)) 1896 return Constant::getAllOnesValue(Op1->getType()); 1897 1898 // A | ~(A & ?) = -1 1899 if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) && 1900 (A == Op0 || B == Op0)) 1901 return Constant::getAllOnesValue(Op0->getType()); 1902 1903 if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) { 1904 if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) { 1905 if (Value *V = SimplifyOrOfICmps(ICILHS, ICIRHS)) 1906 return V; 1907 if (Value *V = SimplifyOrOfICmps(ICIRHS, ICILHS)) 1908 return V; 1909 } 1910 } 1911 1912 // Try some generic simplifications for associative operations. 1913 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 1914 MaxRecurse)) 1915 return V; 1916 1917 // Or distributes over And. Try some generic simplifications based on this. 1918 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 1919 MaxRecurse)) 1920 return V; 1921 1922 // If the operation is with the result of a select instruction, check whether 1923 // operating on either branch of the select always yields the same value. 1924 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1925 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 1926 MaxRecurse)) 1927 return V; 1928 1929 // (A & C)|(B & D) 1930 Value *C = nullptr, *D = nullptr; 1931 if (match(Op0, m_And(m_Value(A), m_Value(C))) && 1932 match(Op1, m_And(m_Value(B), m_Value(D)))) { 1933 ConstantInt *C1 = dyn_cast<ConstantInt>(C); 1934 ConstantInt *C2 = dyn_cast<ConstantInt>(D); 1935 if (C1 && C2 && (C1->getValue() == ~C2->getValue())) { 1936 // (A & C1)|(B & C2) 1937 // If we have: ((V + N) & C1) | (V & C2) 1938 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 1939 // replace with V+N. 1940 Value *V1, *V2; 1941 if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+ 1942 match(A, m_Add(m_Value(V1), m_Value(V2)))) { 1943 // Add commutes, try both ways. 1944 if (V1 == B && 1945 MaskedValueIsZero(V2, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1946 return A; 1947 if (V2 == B && 1948 MaskedValueIsZero(V1, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1949 return A; 1950 } 1951 // Or commutes, try both ways. 1952 if ((C1->getValue() & (C1->getValue() + 1)) == 0 && 1953 match(B, m_Add(m_Value(V1), m_Value(V2)))) { 1954 // Add commutes, try both ways. 1955 if (V1 == A && 1956 MaskedValueIsZero(V2, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1957 return B; 1958 if (V2 == A && 1959 MaskedValueIsZero(V1, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1960 return B; 1961 } 1962 } 1963 } 1964 1965 // If the operation is with the result of a phi instruction, check whether 1966 // operating on all incoming values of the phi always yields the same value. 1967 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1968 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 1969 return V; 1970 1971 return nullptr; 1972 } 1973 1974 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout &DL, 1975 const TargetLibraryInfo *TLI, 1976 const DominatorTree *DT, AssumptionCache *AC, 1977 const Instruction *CxtI) { 1978 return ::SimplifyOrInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1979 RecursionLimit); 1980 } 1981 1982 /// Given operands for a Xor, see if we can fold the result. 1983 /// If not, this returns null. 1984 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q, 1985 unsigned MaxRecurse) { 1986 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1987 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1988 return ConstantFoldBinaryOpOperands(Instruction::Xor, CLHS, CRHS, Q.DL); 1989 1990 // Canonicalize the constant to the RHS. 1991 std::swap(Op0, Op1); 1992 } 1993 1994 // A ^ undef -> undef 1995 if (match(Op1, m_Undef())) 1996 return Op1; 1997 1998 // A ^ 0 = A 1999 if (match(Op1, m_Zero())) 2000 return Op0; 2001 2002 // A ^ A = 0 2003 if (Op0 == Op1) 2004 return Constant::getNullValue(Op0->getType()); 2005 2006 // A ^ ~A = ~A ^ A = -1 2007 if (match(Op0, m_Not(m_Specific(Op1))) || 2008 match(Op1, m_Not(m_Specific(Op0)))) 2009 return Constant::getAllOnesValue(Op0->getType()); 2010 2011 // Try some generic simplifications for associative operations. 2012 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 2013 MaxRecurse)) 2014 return V; 2015 2016 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2017 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2018 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2019 // only if B and C are equal. If B and C are equal then (since we assume 2020 // that operands have already been simplified) "select(cond, B, C)" should 2021 // have been simplified to the common value of B and C already. Analysing 2022 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2023 // for threading over phi nodes. 2024 2025 return nullptr; 2026 } 2027 2028 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout &DL, 2029 const TargetLibraryInfo *TLI, 2030 const DominatorTree *DT, AssumptionCache *AC, 2031 const Instruction *CxtI) { 2032 return ::SimplifyXorInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 2033 RecursionLimit); 2034 } 2035 2036 static Type *GetCompareTy(Value *Op) { 2037 return CmpInst::makeCmpResultType(Op->getType()); 2038 } 2039 2040 /// Rummage around inside V looking for something equivalent to the comparison 2041 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2042 /// Helper function for analyzing max/min idioms. 2043 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2044 Value *LHS, Value *RHS) { 2045 SelectInst *SI = dyn_cast<SelectInst>(V); 2046 if (!SI) 2047 return nullptr; 2048 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2049 if (!Cmp) 2050 return nullptr; 2051 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2052 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2053 return Cmp; 2054 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2055 LHS == CmpRHS && RHS == CmpLHS) 2056 return Cmp; 2057 return nullptr; 2058 } 2059 2060 // A significant optimization not implemented here is assuming that alloca 2061 // addresses are not equal to incoming argument values. They don't *alias*, 2062 // as we say, but that doesn't mean they aren't equal, so we take a 2063 // conservative approach. 2064 // 2065 // This is inspired in part by C++11 5.10p1: 2066 // "Two pointers of the same type compare equal if and only if they are both 2067 // null, both point to the same function, or both represent the same 2068 // address." 2069 // 2070 // This is pretty permissive. 2071 // 2072 // It's also partly due to C11 6.5.9p6: 2073 // "Two pointers compare equal if and only if both are null pointers, both are 2074 // pointers to the same object (including a pointer to an object and a 2075 // subobject at its beginning) or function, both are pointers to one past the 2076 // last element of the same array object, or one is a pointer to one past the 2077 // end of one array object and the other is a pointer to the start of a 2078 // different array object that happens to immediately follow the first array 2079 // object in the address space.) 2080 // 2081 // C11's version is more restrictive, however there's no reason why an argument 2082 // couldn't be a one-past-the-end value for a stack object in the caller and be 2083 // equal to the beginning of a stack object in the callee. 2084 // 2085 // If the C and C++ standards are ever made sufficiently restrictive in this 2086 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2087 // this optimization. 2088 static Constant * 2089 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 2090 const DominatorTree *DT, CmpInst::Predicate Pred, 2091 const Instruction *CxtI, Value *LHS, Value *RHS) { 2092 // First, skip past any trivial no-ops. 2093 LHS = LHS->stripPointerCasts(); 2094 RHS = RHS->stripPointerCasts(); 2095 2096 // A non-null pointer is not equal to a null pointer. 2097 if (llvm::isKnownNonNull(LHS) && isa<ConstantPointerNull>(RHS) && 2098 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 2099 return ConstantInt::get(GetCompareTy(LHS), 2100 !CmpInst::isTrueWhenEqual(Pred)); 2101 2102 // We can only fold certain predicates on pointer comparisons. 2103 switch (Pred) { 2104 default: 2105 return nullptr; 2106 2107 // Equality comaprisons are easy to fold. 2108 case CmpInst::ICMP_EQ: 2109 case CmpInst::ICMP_NE: 2110 break; 2111 2112 // We can only handle unsigned relational comparisons because 'inbounds' on 2113 // a GEP only protects against unsigned wrapping. 2114 case CmpInst::ICMP_UGT: 2115 case CmpInst::ICMP_UGE: 2116 case CmpInst::ICMP_ULT: 2117 case CmpInst::ICMP_ULE: 2118 // However, we have to switch them to their signed variants to handle 2119 // negative indices from the base pointer. 2120 Pred = ICmpInst::getSignedPredicate(Pred); 2121 break; 2122 } 2123 2124 // Strip off any constant offsets so that we can reason about them. 2125 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2126 // here and compare base addresses like AliasAnalysis does, however there are 2127 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2128 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2129 // doesn't need to guarantee pointer inequality when it says NoAlias. 2130 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2131 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2132 2133 // If LHS and RHS are related via constant offsets to the same base 2134 // value, we can replace it with an icmp which just compares the offsets. 2135 if (LHS == RHS) 2136 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2137 2138 // Various optimizations for (in)equality comparisons. 2139 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2140 // Different non-empty allocations that exist at the same time have 2141 // different addresses (if the program can tell). Global variables always 2142 // exist, so they always exist during the lifetime of each other and all 2143 // allocas. Two different allocas usually have different addresses... 2144 // 2145 // However, if there's an @llvm.stackrestore dynamically in between two 2146 // allocas, they may have the same address. It's tempting to reduce the 2147 // scope of the problem by only looking at *static* allocas here. That would 2148 // cover the majority of allocas while significantly reducing the likelihood 2149 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2150 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2151 // an entry block. Also, if we have a block that's not attached to a 2152 // function, we can't tell if it's "static" under the current definition. 2153 // Theoretically, this problem could be fixed by creating a new kind of 2154 // instruction kind specifically for static allocas. Such a new instruction 2155 // could be required to be at the top of the entry block, thus preventing it 2156 // from being subject to a @llvm.stackrestore. Instcombine could even 2157 // convert regular allocas into these special allocas. It'd be nifty. 2158 // However, until then, this problem remains open. 2159 // 2160 // So, we'll assume that two non-empty allocas have different addresses 2161 // for now. 2162 // 2163 // With all that, if the offsets are within the bounds of their allocations 2164 // (and not one-past-the-end! so we can't use inbounds!), and their 2165 // allocations aren't the same, the pointers are not equal. 2166 // 2167 // Note that it's not necessary to check for LHS being a global variable 2168 // address, due to canonicalization and constant folding. 2169 if (isa<AllocaInst>(LHS) && 2170 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2171 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2172 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2173 uint64_t LHSSize, RHSSize; 2174 if (LHSOffsetCI && RHSOffsetCI && 2175 getObjectSize(LHS, LHSSize, DL, TLI) && 2176 getObjectSize(RHS, RHSSize, DL, TLI)) { 2177 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2178 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2179 if (!LHSOffsetValue.isNegative() && 2180 !RHSOffsetValue.isNegative() && 2181 LHSOffsetValue.ult(LHSSize) && 2182 RHSOffsetValue.ult(RHSSize)) { 2183 return ConstantInt::get(GetCompareTy(LHS), 2184 !CmpInst::isTrueWhenEqual(Pred)); 2185 } 2186 } 2187 2188 // Repeat the above check but this time without depending on DataLayout 2189 // or being able to compute a precise size. 2190 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2191 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2192 LHSOffset->isNullValue() && 2193 RHSOffset->isNullValue()) 2194 return ConstantInt::get(GetCompareTy(LHS), 2195 !CmpInst::isTrueWhenEqual(Pred)); 2196 } 2197 2198 // Even if an non-inbounds GEP occurs along the path we can still optimize 2199 // equality comparisons concerning the result. We avoid walking the whole 2200 // chain again by starting where the last calls to 2201 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2202 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2203 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2204 if (LHS == RHS) 2205 return ConstantExpr::getICmp(Pred, 2206 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2207 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2208 2209 // If one side of the equality comparison must come from a noalias call 2210 // (meaning a system memory allocation function), and the other side must 2211 // come from a pointer that cannot overlap with dynamically-allocated 2212 // memory within the lifetime of the current function (allocas, byval 2213 // arguments, globals), then determine the comparison result here. 2214 SmallVector<Value *, 8> LHSUObjs, RHSUObjs; 2215 GetUnderlyingObjects(LHS, LHSUObjs, DL); 2216 GetUnderlyingObjects(RHS, RHSUObjs, DL); 2217 2218 // Is the set of underlying objects all noalias calls? 2219 auto IsNAC = [](ArrayRef<Value *> Objects) { 2220 return all_of(Objects, isNoAliasCall); 2221 }; 2222 2223 // Is the set of underlying objects all things which must be disjoint from 2224 // noalias calls. For allocas, we consider only static ones (dynamic 2225 // allocas might be transformed into calls to malloc not simultaneously 2226 // live with the compared-to allocation). For globals, we exclude symbols 2227 // that might be resolve lazily to symbols in another dynamically-loaded 2228 // library (and, thus, could be malloc'ed by the implementation). 2229 auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) { 2230 return all_of(Objects, [](Value *V) { 2231 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2232 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2233 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2234 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2235 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2236 !GV->isThreadLocal(); 2237 if (const Argument *A = dyn_cast<Argument>(V)) 2238 return A->hasByValAttr(); 2239 return false; 2240 }); 2241 }; 2242 2243 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2244 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2245 return ConstantInt::get(GetCompareTy(LHS), 2246 !CmpInst::isTrueWhenEqual(Pred)); 2247 2248 // Fold comparisons for non-escaping pointer even if the allocation call 2249 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2250 // dynamic allocation call could be either of the operands. 2251 Value *MI = nullptr; 2252 if (isAllocLikeFn(LHS, TLI) && llvm::isKnownNonNullAt(RHS, CxtI, DT)) 2253 MI = LHS; 2254 else if (isAllocLikeFn(RHS, TLI) && llvm::isKnownNonNullAt(LHS, CxtI, DT)) 2255 MI = RHS; 2256 // FIXME: We should also fold the compare when the pointer escapes, but the 2257 // compare dominates the pointer escape 2258 if (MI && !PointerMayBeCaptured(MI, true, true)) 2259 return ConstantInt::get(GetCompareTy(LHS), 2260 CmpInst::isFalseWhenEqual(Pred)); 2261 } 2262 2263 // Otherwise, fail. 2264 return nullptr; 2265 } 2266 2267 /// Fold an icmp when its operands have i1 scalar type. 2268 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2269 Value *RHS, const Query &Q) { 2270 Type *ITy = GetCompareTy(LHS); // The return type. 2271 Type *OpTy = LHS->getType(); // The operand type. 2272 if (!OpTy->getScalarType()->isIntegerTy(1)) 2273 return nullptr; 2274 2275 switch (Pred) { 2276 default: 2277 break; 2278 case ICmpInst::ICMP_EQ: 2279 // X == 1 -> X 2280 if (match(RHS, m_One())) 2281 return LHS; 2282 break; 2283 case ICmpInst::ICMP_NE: 2284 // X != 0 -> X 2285 if (match(RHS, m_Zero())) 2286 return LHS; 2287 break; 2288 case ICmpInst::ICMP_UGT: 2289 // X >u 0 -> X 2290 if (match(RHS, m_Zero())) 2291 return LHS; 2292 break; 2293 case ICmpInst::ICMP_UGE: 2294 // X >=u 1 -> X 2295 if (match(RHS, m_One())) 2296 return LHS; 2297 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2298 return getTrue(ITy); 2299 break; 2300 case ICmpInst::ICMP_SGE: 2301 /// For signed comparison, the values for an i1 are 0 and -1 2302 /// respectively. This maps into a truth table of: 2303 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2304 /// 0 | 0 | 1 (0 >= 0) | 1 2305 /// 0 | 1 | 1 (0 >= -1) | 1 2306 /// 1 | 0 | 0 (-1 >= 0) | 0 2307 /// 1 | 1 | 1 (-1 >= -1) | 1 2308 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2309 return getTrue(ITy); 2310 break; 2311 case ICmpInst::ICMP_SLT: 2312 // X <s 0 -> X 2313 if (match(RHS, m_Zero())) 2314 return LHS; 2315 break; 2316 case ICmpInst::ICMP_SLE: 2317 // X <=s -1 -> X 2318 if (match(RHS, m_One())) 2319 return LHS; 2320 break; 2321 case ICmpInst::ICMP_ULE: 2322 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2323 return getTrue(ITy); 2324 break; 2325 } 2326 2327 return nullptr; 2328 } 2329 2330 /// Try hard to fold icmp with zero RHS because this is a common case. 2331 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2332 Value *RHS, const Query &Q) { 2333 if (!match(RHS, m_Zero())) 2334 return nullptr; 2335 2336 Type *ITy = GetCompareTy(LHS); // The return type. 2337 bool LHSKnownNonNegative, LHSKnownNegative; 2338 switch (Pred) { 2339 default: 2340 llvm_unreachable("Unknown ICmp predicate!"); 2341 case ICmpInst::ICMP_ULT: 2342 return getFalse(ITy); 2343 case ICmpInst::ICMP_UGE: 2344 return getTrue(ITy); 2345 case ICmpInst::ICMP_EQ: 2346 case ICmpInst::ICMP_ULE: 2347 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2348 return getFalse(ITy); 2349 break; 2350 case ICmpInst::ICMP_NE: 2351 case ICmpInst::ICMP_UGT: 2352 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2353 return getTrue(ITy); 2354 break; 2355 case ICmpInst::ICMP_SLT: 2356 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2357 Q.CxtI, Q.DT); 2358 if (LHSKnownNegative) 2359 return getTrue(ITy); 2360 if (LHSKnownNonNegative) 2361 return getFalse(ITy); 2362 break; 2363 case ICmpInst::ICMP_SLE: 2364 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2365 Q.CxtI, Q.DT); 2366 if (LHSKnownNegative) 2367 return getTrue(ITy); 2368 if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2369 return getFalse(ITy); 2370 break; 2371 case ICmpInst::ICMP_SGE: 2372 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2373 Q.CxtI, Q.DT); 2374 if (LHSKnownNegative) 2375 return getFalse(ITy); 2376 if (LHSKnownNonNegative) 2377 return getTrue(ITy); 2378 break; 2379 case ICmpInst::ICMP_SGT: 2380 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2381 Q.CxtI, Q.DT); 2382 if (LHSKnownNegative) 2383 return getFalse(ITy); 2384 if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2385 return getTrue(ITy); 2386 break; 2387 } 2388 2389 return nullptr; 2390 } 2391 2392 /// Many binary operators with a constant operand have an easy-to-compute 2393 /// range of outputs. This can be used to fold a comparison to always true or 2394 /// always false. 2395 static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper) { 2396 unsigned Width = Lower.getBitWidth(); 2397 const APInt *C; 2398 switch (BO.getOpcode()) { 2399 case Instruction::Add: 2400 if (match(BO.getOperand(1), m_APInt(C)) && *C != 0) { 2401 // FIXME: If we have both nuw and nsw, we should reduce the range further. 2402 if (BO.hasNoUnsignedWrap()) { 2403 // 'add nuw x, C' produces [C, UINT_MAX]. 2404 Lower = *C; 2405 } else if (BO.hasNoSignedWrap()) { 2406 if (C->isNegative()) { 2407 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 2408 Lower = APInt::getSignedMinValue(Width); 2409 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 2410 } else { 2411 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 2412 Lower = APInt::getSignedMinValue(Width) + *C; 2413 Upper = APInt::getSignedMaxValue(Width) + 1; 2414 } 2415 } 2416 } 2417 break; 2418 2419 case Instruction::And: 2420 if (match(BO.getOperand(1), m_APInt(C))) 2421 // 'and x, C' produces [0, C]. 2422 Upper = *C + 1; 2423 break; 2424 2425 case Instruction::Or: 2426 if (match(BO.getOperand(1), m_APInt(C))) 2427 // 'or x, C' produces [C, UINT_MAX]. 2428 Lower = *C; 2429 break; 2430 2431 case Instruction::AShr: 2432 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2433 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 2434 Lower = APInt::getSignedMinValue(Width).ashr(*C); 2435 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 2436 } else if (match(BO.getOperand(0), m_APInt(C))) { 2437 unsigned ShiftAmount = Width - 1; 2438 if (*C != 0 && BO.isExact()) 2439 ShiftAmount = C->countTrailingZeros(); 2440 if (C->isNegative()) { 2441 // 'ashr C, x' produces [C, C >> (Width-1)] 2442 Lower = *C; 2443 Upper = C->ashr(ShiftAmount) + 1; 2444 } else { 2445 // 'ashr C, x' produces [C >> (Width-1), C] 2446 Lower = C->ashr(ShiftAmount); 2447 Upper = *C + 1; 2448 } 2449 } 2450 break; 2451 2452 case Instruction::LShr: 2453 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2454 // 'lshr x, C' produces [0, UINT_MAX >> C]. 2455 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 2456 } else if (match(BO.getOperand(0), m_APInt(C))) { 2457 // 'lshr C, x' produces [C >> (Width-1), C]. 2458 unsigned ShiftAmount = Width - 1; 2459 if (*C != 0 && BO.isExact()) 2460 ShiftAmount = C->countTrailingZeros(); 2461 Lower = C->lshr(ShiftAmount); 2462 Upper = *C + 1; 2463 } 2464 break; 2465 2466 case Instruction::Shl: 2467 if (match(BO.getOperand(0), m_APInt(C))) { 2468 if (BO.hasNoUnsignedWrap()) { 2469 // 'shl nuw C, x' produces [C, C << CLZ(C)] 2470 Lower = *C; 2471 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 2472 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 2473 if (C->isNegative()) { 2474 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 2475 unsigned ShiftAmount = C->countLeadingOnes() - 1; 2476 Lower = C->shl(ShiftAmount); 2477 Upper = *C + 1; 2478 } else { 2479 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 2480 unsigned ShiftAmount = C->countLeadingZeros() - 1; 2481 Lower = *C; 2482 Upper = C->shl(ShiftAmount) + 1; 2483 } 2484 } 2485 } 2486 break; 2487 2488 case Instruction::SDiv: 2489 if (match(BO.getOperand(1), m_APInt(C))) { 2490 APInt IntMin = APInt::getSignedMinValue(Width); 2491 APInt IntMax = APInt::getSignedMaxValue(Width); 2492 if (C->isAllOnesValue()) { 2493 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 2494 // where C != -1 and C != 0 and C != 1 2495 Lower = IntMin + 1; 2496 Upper = IntMax + 1; 2497 } else if (C->countLeadingZeros() < Width - 1) { 2498 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 2499 // where C != -1 and C != 0 and C != 1 2500 Lower = IntMin.sdiv(*C); 2501 Upper = IntMax.sdiv(*C); 2502 if (Lower.sgt(Upper)) 2503 std::swap(Lower, Upper); 2504 Upper = Upper + 1; 2505 assert(Upper != Lower && "Upper part of range has wrapped!"); 2506 } 2507 } else if (match(BO.getOperand(0), m_APInt(C))) { 2508 if (C->isMinSignedValue()) { 2509 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 2510 Lower = *C; 2511 Upper = Lower.lshr(1) + 1; 2512 } else { 2513 // 'sdiv C, x' produces [-|C|, |C|]. 2514 Upper = C->abs() + 1; 2515 Lower = (-Upper) + 1; 2516 } 2517 } 2518 break; 2519 2520 case Instruction::UDiv: 2521 if (match(BO.getOperand(1), m_APInt(C)) && *C != 0) { 2522 // 'udiv x, C' produces [0, UINT_MAX / C]. 2523 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 2524 } else if (match(BO.getOperand(0), m_APInt(C))) { 2525 // 'udiv C, x' produces [0, C]. 2526 Upper = *C + 1; 2527 } 2528 break; 2529 2530 case Instruction::SRem: 2531 if (match(BO.getOperand(1), m_APInt(C))) { 2532 // 'srem x, C' produces (-|C|, |C|). 2533 Upper = C->abs(); 2534 Lower = (-Upper) + 1; 2535 } 2536 break; 2537 2538 case Instruction::URem: 2539 if (match(BO.getOperand(1), m_APInt(C))) 2540 // 'urem x, C' produces [0, C). 2541 Upper = *C; 2542 break; 2543 2544 default: 2545 break; 2546 } 2547 } 2548 2549 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2550 Value *RHS) { 2551 const APInt *C; 2552 if (!match(RHS, m_APInt(C))) 2553 return nullptr; 2554 2555 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2556 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2557 if (RHS_CR.isEmptySet()) 2558 return ConstantInt::getFalse(GetCompareTy(RHS)); 2559 if (RHS_CR.isFullSet()) 2560 return ConstantInt::getTrue(GetCompareTy(RHS)); 2561 2562 // Find the range of possible values for binary operators. 2563 unsigned Width = C->getBitWidth(); 2564 APInt Lower = APInt(Width, 0); 2565 APInt Upper = APInt(Width, 0); 2566 if (auto *BO = dyn_cast<BinaryOperator>(LHS)) 2567 setLimitsForBinOp(*BO, Lower, Upper); 2568 2569 ConstantRange LHS_CR = 2570 Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true); 2571 2572 if (auto *I = dyn_cast<Instruction>(LHS)) 2573 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) 2574 LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges)); 2575 2576 if (!LHS_CR.isFullSet()) { 2577 if (RHS_CR.contains(LHS_CR)) 2578 return ConstantInt::getTrue(GetCompareTy(RHS)); 2579 if (RHS_CR.inverse().contains(LHS_CR)) 2580 return ConstantInt::getFalse(GetCompareTy(RHS)); 2581 } 2582 2583 return nullptr; 2584 } 2585 2586 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 2587 Value *RHS, const Query &Q, 2588 unsigned MaxRecurse) { 2589 Type *ITy = GetCompareTy(LHS); // The return type. 2590 2591 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2592 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2593 if (MaxRecurse && (LBO || RBO)) { 2594 // Analyze the case when either LHS or RHS is an add instruction. 2595 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2596 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2597 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2598 if (LBO && LBO->getOpcode() == Instruction::Add) { 2599 A = LBO->getOperand(0); 2600 B = LBO->getOperand(1); 2601 NoLHSWrapProblem = 2602 ICmpInst::isEquality(Pred) || 2603 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) || 2604 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap()); 2605 } 2606 if (RBO && RBO->getOpcode() == Instruction::Add) { 2607 C = RBO->getOperand(0); 2608 D = RBO->getOperand(1); 2609 NoRHSWrapProblem = 2610 ICmpInst::isEquality(Pred) || 2611 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) || 2612 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap()); 2613 } 2614 2615 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2616 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2617 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2618 Constant::getNullValue(RHS->getType()), Q, 2619 MaxRecurse - 1)) 2620 return V; 2621 2622 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2623 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2624 if (Value *V = 2625 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 2626 C == LHS ? D : C, Q, MaxRecurse - 1)) 2627 return V; 2628 2629 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2630 if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem && 2631 NoRHSWrapProblem) { 2632 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2633 Value *Y, *Z; 2634 if (A == C) { 2635 // C + B == C + D -> B == D 2636 Y = B; 2637 Z = D; 2638 } else if (A == D) { 2639 // D + B == C + D -> B == C 2640 Y = B; 2641 Z = C; 2642 } else if (B == C) { 2643 // A + C == C + D -> A == D 2644 Y = A; 2645 Z = D; 2646 } else { 2647 assert(B == D); 2648 // A + D == C + D -> A == C 2649 Y = A; 2650 Z = C; 2651 } 2652 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 2653 return V; 2654 } 2655 } 2656 2657 { 2658 Value *Y = nullptr; 2659 // icmp pred (or X, Y), X 2660 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2661 if (Pred == ICmpInst::ICMP_ULT) 2662 return getFalse(ITy); 2663 if (Pred == ICmpInst::ICMP_UGE) 2664 return getTrue(ITy); 2665 2666 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2667 bool RHSKnownNonNegative, RHSKnownNegative; 2668 bool YKnownNonNegative, YKnownNegative; 2669 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, Q.DL, 0, 2670 Q.AC, Q.CxtI, Q.DT); 2671 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC, 2672 Q.CxtI, Q.DT); 2673 if (RHSKnownNonNegative && YKnownNegative) 2674 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2675 if (RHSKnownNegative || YKnownNonNegative) 2676 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2677 } 2678 } 2679 // icmp pred X, (or X, Y) 2680 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) { 2681 if (Pred == ICmpInst::ICMP_ULE) 2682 return getTrue(ITy); 2683 if (Pred == ICmpInst::ICMP_UGT) 2684 return getFalse(ITy); 2685 2686 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) { 2687 bool LHSKnownNonNegative, LHSKnownNegative; 2688 bool YKnownNonNegative, YKnownNegative; 2689 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, 2690 Q.AC, Q.CxtI, Q.DT); 2691 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC, 2692 Q.CxtI, Q.DT); 2693 if (LHSKnownNonNegative && YKnownNegative) 2694 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy); 2695 if (LHSKnownNegative || YKnownNonNegative) 2696 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy); 2697 } 2698 } 2699 } 2700 2701 // icmp pred (and X, Y), X 2702 if (LBO && match(LBO, m_CombineOr(m_And(m_Value(), m_Specific(RHS)), 2703 m_And(m_Specific(RHS), m_Value())))) { 2704 if (Pred == ICmpInst::ICMP_UGT) 2705 return getFalse(ITy); 2706 if (Pred == ICmpInst::ICMP_ULE) 2707 return getTrue(ITy); 2708 } 2709 // icmp pred X, (and X, Y) 2710 if (RBO && match(RBO, m_CombineOr(m_And(m_Value(), m_Specific(LHS)), 2711 m_And(m_Specific(LHS), m_Value())))) { 2712 if (Pred == ICmpInst::ICMP_UGE) 2713 return getTrue(ITy); 2714 if (Pred == ICmpInst::ICMP_ULT) 2715 return getFalse(ITy); 2716 } 2717 2718 // 0 - (zext X) pred C 2719 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2720 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2721 if (RHSC->getValue().isStrictlyPositive()) { 2722 if (Pred == ICmpInst::ICMP_SLT) 2723 return ConstantInt::getTrue(RHSC->getContext()); 2724 if (Pred == ICmpInst::ICMP_SGE) 2725 return ConstantInt::getFalse(RHSC->getContext()); 2726 if (Pred == ICmpInst::ICMP_EQ) 2727 return ConstantInt::getFalse(RHSC->getContext()); 2728 if (Pred == ICmpInst::ICMP_NE) 2729 return ConstantInt::getTrue(RHSC->getContext()); 2730 } 2731 if (RHSC->getValue().isNonNegative()) { 2732 if (Pred == ICmpInst::ICMP_SLE) 2733 return ConstantInt::getTrue(RHSC->getContext()); 2734 if (Pred == ICmpInst::ICMP_SGT) 2735 return ConstantInt::getFalse(RHSC->getContext()); 2736 } 2737 } 2738 } 2739 2740 // icmp pred (urem X, Y), Y 2741 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2742 bool KnownNonNegative, KnownNegative; 2743 switch (Pred) { 2744 default: 2745 break; 2746 case ICmpInst::ICMP_SGT: 2747 case ICmpInst::ICMP_SGE: 2748 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2749 Q.CxtI, Q.DT); 2750 if (!KnownNonNegative) 2751 break; 2752 LLVM_FALLTHROUGH; 2753 case ICmpInst::ICMP_EQ: 2754 case ICmpInst::ICMP_UGT: 2755 case ICmpInst::ICMP_UGE: 2756 return getFalse(ITy); 2757 case ICmpInst::ICMP_SLT: 2758 case ICmpInst::ICMP_SLE: 2759 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2760 Q.CxtI, Q.DT); 2761 if (!KnownNonNegative) 2762 break; 2763 LLVM_FALLTHROUGH; 2764 case ICmpInst::ICMP_NE: 2765 case ICmpInst::ICMP_ULT: 2766 case ICmpInst::ICMP_ULE: 2767 return getTrue(ITy); 2768 } 2769 } 2770 2771 // icmp pred X, (urem Y, X) 2772 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2773 bool KnownNonNegative, KnownNegative; 2774 switch (Pred) { 2775 default: 2776 break; 2777 case ICmpInst::ICMP_SGT: 2778 case ICmpInst::ICMP_SGE: 2779 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2780 Q.CxtI, Q.DT); 2781 if (!KnownNonNegative) 2782 break; 2783 LLVM_FALLTHROUGH; 2784 case ICmpInst::ICMP_NE: 2785 case ICmpInst::ICMP_UGT: 2786 case ICmpInst::ICMP_UGE: 2787 return getTrue(ITy); 2788 case ICmpInst::ICMP_SLT: 2789 case ICmpInst::ICMP_SLE: 2790 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2791 Q.CxtI, Q.DT); 2792 if (!KnownNonNegative) 2793 break; 2794 LLVM_FALLTHROUGH; 2795 case ICmpInst::ICMP_EQ: 2796 case ICmpInst::ICMP_ULT: 2797 case ICmpInst::ICMP_ULE: 2798 return getFalse(ITy); 2799 } 2800 } 2801 2802 // x >> y <=u x 2803 // x udiv y <=u x. 2804 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2805 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { 2806 // icmp pred (X op Y), X 2807 if (Pred == ICmpInst::ICMP_UGT) 2808 return getFalse(ITy); 2809 if (Pred == ICmpInst::ICMP_ULE) 2810 return getTrue(ITy); 2811 } 2812 2813 // x >=u x >> y 2814 // x >=u x udiv y. 2815 if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) || 2816 match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) { 2817 // icmp pred X, (X op Y) 2818 if (Pred == ICmpInst::ICMP_ULT) 2819 return getFalse(ITy); 2820 if (Pred == ICmpInst::ICMP_UGE) 2821 return getTrue(ITy); 2822 } 2823 2824 // handle: 2825 // CI2 << X == CI 2826 // CI2 << X != CI 2827 // 2828 // where CI2 is a power of 2 and CI isn't 2829 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2830 const APInt *CI2Val, *CIVal = &CI->getValue(); 2831 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2832 CI2Val->isPowerOf2()) { 2833 if (!CIVal->isPowerOf2()) { 2834 // CI2 << X can equal zero in some circumstances, 2835 // this simplification is unsafe if CI is zero. 2836 // 2837 // We know it is safe if: 2838 // - The shift is nsw, we can't shift out the one bit. 2839 // - The shift is nuw, we can't shift out the one bit. 2840 // - CI2 is one 2841 // - CI isn't zero 2842 if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() || 2843 *CI2Val == 1 || !CI->isZero()) { 2844 if (Pred == ICmpInst::ICMP_EQ) 2845 return ConstantInt::getFalse(RHS->getContext()); 2846 if (Pred == ICmpInst::ICMP_NE) 2847 return ConstantInt::getTrue(RHS->getContext()); 2848 } 2849 } 2850 if (CIVal->isSignBit() && *CI2Val == 1) { 2851 if (Pred == ICmpInst::ICMP_UGT) 2852 return ConstantInt::getFalse(RHS->getContext()); 2853 if (Pred == ICmpInst::ICMP_ULE) 2854 return ConstantInt::getTrue(RHS->getContext()); 2855 } 2856 } 2857 } 2858 2859 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2860 LBO->getOperand(1) == RBO->getOperand(1)) { 2861 switch (LBO->getOpcode()) { 2862 default: 2863 break; 2864 case Instruction::UDiv: 2865 case Instruction::LShr: 2866 if (ICmpInst::isSigned(Pred)) 2867 break; 2868 LLVM_FALLTHROUGH; 2869 case Instruction::SDiv: 2870 case Instruction::AShr: 2871 if (!LBO->isExact() || !RBO->isExact()) 2872 break; 2873 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2874 RBO->getOperand(0), Q, MaxRecurse - 1)) 2875 return V; 2876 break; 2877 case Instruction::Shl: { 2878 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap(); 2879 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap(); 2880 if (!NUW && !NSW) 2881 break; 2882 if (!NSW && ICmpInst::isSigned(Pred)) 2883 break; 2884 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2885 RBO->getOperand(0), Q, MaxRecurse - 1)) 2886 return V; 2887 break; 2888 } 2889 } 2890 } 2891 return nullptr; 2892 } 2893 2894 /// Simplify integer comparisons where at least one operand of the compare 2895 /// matches an integer min/max idiom. 2896 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 2897 Value *RHS, const Query &Q, 2898 unsigned MaxRecurse) { 2899 Type *ITy = GetCompareTy(LHS); // The return type. 2900 Value *A, *B; 2901 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 2902 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 2903 2904 // Signed variants on "max(a,b)>=a -> true". 2905 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2906 if (A != RHS) 2907 std::swap(A, B); // smax(A, B) pred A. 2908 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2909 // We analyze this as smax(A, B) pred A. 2910 P = Pred; 2911 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 2912 (A == LHS || B == LHS)) { 2913 if (A != LHS) 2914 std::swap(A, B); // A pred smax(A, B). 2915 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2916 // We analyze this as smax(A, B) swapped-pred A. 2917 P = CmpInst::getSwappedPredicate(Pred); 2918 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2919 (A == RHS || B == RHS)) { 2920 if (A != RHS) 2921 std::swap(A, B); // smin(A, B) pred A. 2922 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2923 // We analyze this as smax(-A, -B) swapped-pred -A. 2924 // Note that we do not need to actually form -A or -B thanks to EqP. 2925 P = CmpInst::getSwappedPredicate(Pred); 2926 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 2927 (A == LHS || B == LHS)) { 2928 if (A != LHS) 2929 std::swap(A, B); // A pred smin(A, B). 2930 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2931 // We analyze this as smax(-A, -B) pred -A. 2932 // Note that we do not need to actually form -A or -B thanks to EqP. 2933 P = Pred; 2934 } 2935 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2936 // Cases correspond to "max(A, B) p A". 2937 switch (P) { 2938 default: 2939 break; 2940 case CmpInst::ICMP_EQ: 2941 case CmpInst::ICMP_SLE: 2942 // Equivalent to "A EqP B". This may be the same as the condition tested 2943 // in the max/min; if so, we can just return that. 2944 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2945 return V; 2946 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2947 return V; 2948 // Otherwise, see if "A EqP B" simplifies. 2949 if (MaxRecurse) 2950 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 2951 return V; 2952 break; 2953 case CmpInst::ICMP_NE: 2954 case CmpInst::ICMP_SGT: { 2955 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2956 // Equivalent to "A InvEqP B". This may be the same as the condition 2957 // tested in the max/min; if so, we can just return that. 2958 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2959 return V; 2960 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2961 return V; 2962 // Otherwise, see if "A InvEqP B" simplifies. 2963 if (MaxRecurse) 2964 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 2965 return V; 2966 break; 2967 } 2968 case CmpInst::ICMP_SGE: 2969 // Always true. 2970 return getTrue(ITy); 2971 case CmpInst::ICMP_SLT: 2972 // Always false. 2973 return getFalse(ITy); 2974 } 2975 } 2976 2977 // Unsigned variants on "max(a,b)>=a -> true". 2978 P = CmpInst::BAD_ICMP_PREDICATE; 2979 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2980 if (A != RHS) 2981 std::swap(A, B); // umax(A, B) pred A. 2982 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2983 // We analyze this as umax(A, B) pred A. 2984 P = Pred; 2985 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 2986 (A == LHS || B == LHS)) { 2987 if (A != LHS) 2988 std::swap(A, B); // A pred umax(A, B). 2989 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2990 // We analyze this as umax(A, B) swapped-pred A. 2991 P = CmpInst::getSwappedPredicate(Pred); 2992 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2993 (A == RHS || B == RHS)) { 2994 if (A != RHS) 2995 std::swap(A, B); // umin(A, B) pred A. 2996 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2997 // We analyze this as umax(-A, -B) swapped-pred -A. 2998 // Note that we do not need to actually form -A or -B thanks to EqP. 2999 P = CmpInst::getSwappedPredicate(Pred); 3000 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3001 (A == LHS || B == LHS)) { 3002 if (A != LHS) 3003 std::swap(A, B); // A pred umin(A, B). 3004 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3005 // We analyze this as umax(-A, -B) pred -A. 3006 // Note that we do not need to actually form -A or -B thanks to EqP. 3007 P = Pred; 3008 } 3009 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3010 // Cases correspond to "max(A, B) p A". 3011 switch (P) { 3012 default: 3013 break; 3014 case CmpInst::ICMP_EQ: 3015 case CmpInst::ICMP_ULE: 3016 // Equivalent to "A EqP B". This may be the same as the condition tested 3017 // in the max/min; if so, we can just return that. 3018 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3019 return V; 3020 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3021 return V; 3022 // Otherwise, see if "A EqP B" simplifies. 3023 if (MaxRecurse) 3024 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3025 return V; 3026 break; 3027 case CmpInst::ICMP_NE: 3028 case CmpInst::ICMP_UGT: { 3029 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3030 // Equivalent to "A InvEqP B". This may be the same as the condition 3031 // tested in the max/min; if so, we can just return that. 3032 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3033 return V; 3034 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3035 return V; 3036 // Otherwise, see if "A InvEqP B" simplifies. 3037 if (MaxRecurse) 3038 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3039 return V; 3040 break; 3041 } 3042 case CmpInst::ICMP_UGE: 3043 // Always true. 3044 return getTrue(ITy); 3045 case CmpInst::ICMP_ULT: 3046 // Always false. 3047 return getFalse(ITy); 3048 } 3049 } 3050 3051 // Variants on "max(x,y) >= min(x,z)". 3052 Value *C, *D; 3053 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3054 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3055 (A == C || A == D || B == C || B == D)) { 3056 // max(x, ?) pred min(x, ?). 3057 if (Pred == CmpInst::ICMP_SGE) 3058 // Always true. 3059 return getTrue(ITy); 3060 if (Pred == CmpInst::ICMP_SLT) 3061 // Always false. 3062 return getFalse(ITy); 3063 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3064 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 3065 (A == C || A == D || B == C || B == D)) { 3066 // min(x, ?) pred max(x, ?). 3067 if (Pred == CmpInst::ICMP_SLE) 3068 // Always true. 3069 return getTrue(ITy); 3070 if (Pred == CmpInst::ICMP_SGT) 3071 // Always false. 3072 return getFalse(ITy); 3073 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3074 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3075 (A == C || A == D || B == C || B == D)) { 3076 // max(x, ?) pred min(x, ?). 3077 if (Pred == CmpInst::ICMP_UGE) 3078 // Always true. 3079 return getTrue(ITy); 3080 if (Pred == CmpInst::ICMP_ULT) 3081 // Always false. 3082 return getFalse(ITy); 3083 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3084 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 3085 (A == C || A == D || B == C || B == D)) { 3086 // min(x, ?) pred max(x, ?). 3087 if (Pred == CmpInst::ICMP_ULE) 3088 // Always true. 3089 return getTrue(ITy); 3090 if (Pred == CmpInst::ICMP_UGT) 3091 // Always false. 3092 return getFalse(ITy); 3093 } 3094 3095 return nullptr; 3096 } 3097 3098 /// Given operands for an ICmpInst, see if we can fold the result. 3099 /// If not, this returns null. 3100 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3101 const Query &Q, unsigned MaxRecurse) { 3102 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3103 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3104 3105 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3106 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3107 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3108 3109 // If we have a constant, make sure it is on the RHS. 3110 std::swap(LHS, RHS); 3111 Pred = CmpInst::getSwappedPredicate(Pred); 3112 } 3113 3114 Type *ITy = GetCompareTy(LHS); // The return type. 3115 3116 // icmp X, X -> true/false 3117 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false 3118 // because X could be 0. 3119 if (LHS == RHS || isa<UndefValue>(RHS)) 3120 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3121 3122 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3123 return V; 3124 3125 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3126 return V; 3127 3128 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS)) 3129 return V; 3130 3131 // If both operands have range metadata, use the metadata 3132 // to simplify the comparison. 3133 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3134 auto RHS_Instr = dyn_cast<Instruction>(RHS); 3135 auto LHS_Instr = dyn_cast<Instruction>(LHS); 3136 3137 if (RHS_Instr->getMetadata(LLVMContext::MD_range) && 3138 LHS_Instr->getMetadata(LLVMContext::MD_range)) { 3139 auto RHS_CR = getConstantRangeFromMetadata( 3140 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3141 auto LHS_CR = getConstantRangeFromMetadata( 3142 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3143 3144 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 3145 if (Satisfied_CR.contains(LHS_CR)) 3146 return ConstantInt::getTrue(RHS->getContext()); 3147 3148 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 3149 CmpInst::getInversePredicate(Pred), RHS_CR); 3150 if (InversedSatisfied_CR.contains(LHS_CR)) 3151 return ConstantInt::getFalse(RHS->getContext()); 3152 } 3153 } 3154 3155 // Compare of cast, for example (zext X) != 0 -> X != 0 3156 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3157 Instruction *LI = cast<CastInst>(LHS); 3158 Value *SrcOp = LI->getOperand(0); 3159 Type *SrcTy = SrcOp->getType(); 3160 Type *DstTy = LI->getType(); 3161 3162 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3163 // if the integer type is the same size as the pointer type. 3164 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3165 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3166 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3167 // Transfer the cast to the constant. 3168 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3169 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3170 Q, MaxRecurse-1)) 3171 return V; 3172 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3173 if (RI->getOperand(0)->getType() == SrcTy) 3174 // Compare without the cast. 3175 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3176 Q, MaxRecurse-1)) 3177 return V; 3178 } 3179 } 3180 3181 if (isa<ZExtInst>(LHS)) { 3182 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3183 // same type. 3184 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3185 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3186 // Compare X and Y. Note that signed predicates become unsigned. 3187 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3188 SrcOp, RI->getOperand(0), Q, 3189 MaxRecurse-1)) 3190 return V; 3191 } 3192 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3193 // too. If not, then try to deduce the result of the comparison. 3194 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3195 // Compute the constant that would happen if we truncated to SrcTy then 3196 // reextended to DstTy. 3197 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3198 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3199 3200 // If the re-extended constant didn't change then this is effectively 3201 // also a case of comparing two zero-extended values. 3202 if (RExt == CI && MaxRecurse) 3203 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3204 SrcOp, Trunc, Q, MaxRecurse-1)) 3205 return V; 3206 3207 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3208 // there. Use this to work out the result of the comparison. 3209 if (RExt != CI) { 3210 switch (Pred) { 3211 default: llvm_unreachable("Unknown ICmp predicate!"); 3212 // LHS <u RHS. 3213 case ICmpInst::ICMP_EQ: 3214 case ICmpInst::ICMP_UGT: 3215 case ICmpInst::ICMP_UGE: 3216 return ConstantInt::getFalse(CI->getContext()); 3217 3218 case ICmpInst::ICMP_NE: 3219 case ICmpInst::ICMP_ULT: 3220 case ICmpInst::ICMP_ULE: 3221 return ConstantInt::getTrue(CI->getContext()); 3222 3223 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3224 // is non-negative then LHS <s RHS. 3225 case ICmpInst::ICMP_SGT: 3226 case ICmpInst::ICMP_SGE: 3227 return CI->getValue().isNegative() ? 3228 ConstantInt::getTrue(CI->getContext()) : 3229 ConstantInt::getFalse(CI->getContext()); 3230 3231 case ICmpInst::ICMP_SLT: 3232 case ICmpInst::ICMP_SLE: 3233 return CI->getValue().isNegative() ? 3234 ConstantInt::getFalse(CI->getContext()) : 3235 ConstantInt::getTrue(CI->getContext()); 3236 } 3237 } 3238 } 3239 } 3240 3241 if (isa<SExtInst>(LHS)) { 3242 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3243 // same type. 3244 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3245 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3246 // Compare X and Y. Note that the predicate does not change. 3247 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3248 Q, MaxRecurse-1)) 3249 return V; 3250 } 3251 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3252 // too. If not, then try to deduce the result of the comparison. 3253 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3254 // Compute the constant that would happen if we truncated to SrcTy then 3255 // reextended to DstTy. 3256 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3257 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3258 3259 // If the re-extended constant didn't change then this is effectively 3260 // also a case of comparing two sign-extended values. 3261 if (RExt == CI && MaxRecurse) 3262 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3263 return V; 3264 3265 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3266 // bits there. Use this to work out the result of the comparison. 3267 if (RExt != CI) { 3268 switch (Pred) { 3269 default: llvm_unreachable("Unknown ICmp predicate!"); 3270 case ICmpInst::ICMP_EQ: 3271 return ConstantInt::getFalse(CI->getContext()); 3272 case ICmpInst::ICMP_NE: 3273 return ConstantInt::getTrue(CI->getContext()); 3274 3275 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3276 // LHS >s RHS. 3277 case ICmpInst::ICMP_SGT: 3278 case ICmpInst::ICMP_SGE: 3279 return CI->getValue().isNegative() ? 3280 ConstantInt::getTrue(CI->getContext()) : 3281 ConstantInt::getFalse(CI->getContext()); 3282 case ICmpInst::ICMP_SLT: 3283 case ICmpInst::ICMP_SLE: 3284 return CI->getValue().isNegative() ? 3285 ConstantInt::getFalse(CI->getContext()) : 3286 ConstantInt::getTrue(CI->getContext()); 3287 3288 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3289 // LHS >u RHS. 3290 case ICmpInst::ICMP_UGT: 3291 case ICmpInst::ICMP_UGE: 3292 // Comparison is true iff the LHS <s 0. 3293 if (MaxRecurse) 3294 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3295 Constant::getNullValue(SrcTy), 3296 Q, MaxRecurse-1)) 3297 return V; 3298 break; 3299 case ICmpInst::ICMP_ULT: 3300 case ICmpInst::ICMP_ULE: 3301 // Comparison is true iff the LHS >=s 0. 3302 if (MaxRecurse) 3303 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3304 Constant::getNullValue(SrcTy), 3305 Q, MaxRecurse-1)) 3306 return V; 3307 break; 3308 } 3309 } 3310 } 3311 } 3312 } 3313 3314 // icmp eq|ne X, Y -> false|true if X != Y 3315 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 3316 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) { 3317 LLVMContext &Ctx = LHS->getType()->getContext(); 3318 return Pred == ICmpInst::ICMP_NE ? 3319 ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx); 3320 } 3321 3322 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3323 return V; 3324 3325 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3326 return V; 3327 3328 // Simplify comparisons of related pointers using a powerful, recursive 3329 // GEP-walk when we have target data available.. 3330 if (LHS->getType()->isPointerTy()) 3331 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, LHS, RHS)) 3332 return C; 3333 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3334 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3335 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3336 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3337 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3338 Q.DL.getTypeSizeInBits(CRHS->getType())) 3339 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, 3340 CLHS->getPointerOperand(), 3341 CRHS->getPointerOperand())) 3342 return C; 3343 3344 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3345 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3346 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3347 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3348 (ICmpInst::isEquality(Pred) || 3349 (GLHS->isInBounds() && GRHS->isInBounds() && 3350 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3351 // The bases are equal and the indices are constant. Build a constant 3352 // expression GEP with the same indices and a null base pointer to see 3353 // what constant folding can make out of it. 3354 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3355 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3356 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3357 GLHS->getSourceElementType(), Null, IndicesLHS); 3358 3359 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3360 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3361 GLHS->getSourceElementType(), Null, IndicesRHS); 3362 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3363 } 3364 } 3365 } 3366 3367 // If a bit is known to be zero for A and known to be one for B, 3368 // then A and B cannot be equal. 3369 if (ICmpInst::isEquality(Pred)) { 3370 const APInt *RHSVal; 3371 if (match(RHS, m_APInt(RHSVal))) { 3372 unsigned BitWidth = RHSVal->getBitWidth(); 3373 APInt LHSKnownZero(BitWidth, 0); 3374 APInt LHSKnownOne(BitWidth, 0); 3375 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, Q.DL, /*Depth=*/0, Q.AC, 3376 Q.CxtI, Q.DT); 3377 if (((LHSKnownZero & *RHSVal) != 0) || ((LHSKnownOne & ~(*RHSVal)) != 0)) 3378 return Pred == ICmpInst::ICMP_EQ ? ConstantInt::getFalse(ITy) 3379 : ConstantInt::getTrue(ITy); 3380 } 3381 } 3382 3383 // If the comparison is with the result of a select instruction, check whether 3384 // comparing with either branch of the select always yields the same value. 3385 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3386 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3387 return V; 3388 3389 // If the comparison is with the result of a phi instruction, check whether 3390 // doing the compare with each incoming phi value yields a common result. 3391 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3392 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3393 return V; 3394 3395 return nullptr; 3396 } 3397 3398 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3399 const DataLayout &DL, 3400 const TargetLibraryInfo *TLI, 3401 const DominatorTree *DT, AssumptionCache *AC, 3402 const Instruction *CxtI) { 3403 return ::SimplifyICmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 3404 RecursionLimit); 3405 } 3406 3407 /// Given operands for an FCmpInst, see if we can fold the result. 3408 /// If not, this returns null. 3409 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3410 FastMathFlags FMF, const Query &Q, 3411 unsigned MaxRecurse) { 3412 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3413 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3414 3415 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3416 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3417 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3418 3419 // If we have a constant, make sure it is on the RHS. 3420 std::swap(LHS, RHS); 3421 Pred = CmpInst::getSwappedPredicate(Pred); 3422 } 3423 3424 // Fold trivial predicates. 3425 Type *RetTy = GetCompareTy(LHS); 3426 if (Pred == FCmpInst::FCMP_FALSE) 3427 return getFalse(RetTy); 3428 if (Pred == FCmpInst::FCMP_TRUE) 3429 return getTrue(RetTy); 3430 3431 // UNO/ORD predicates can be trivially folded if NaNs are ignored. 3432 if (FMF.noNaNs()) { 3433 if (Pred == FCmpInst::FCMP_UNO) 3434 return getFalse(RetTy); 3435 if (Pred == FCmpInst::FCMP_ORD) 3436 return getTrue(RetTy); 3437 } 3438 3439 // fcmp pred x, undef and fcmp pred undef, x 3440 // fold to true if unordered, false if ordered 3441 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3442 // Choosing NaN for the undef will always make unordered comparison succeed 3443 // and ordered comparison fail. 3444 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3445 } 3446 3447 // fcmp x,x -> true/false. Not all compares are foldable. 3448 if (LHS == RHS) { 3449 if (CmpInst::isTrueWhenEqual(Pred)) 3450 return getTrue(RetTy); 3451 if (CmpInst::isFalseWhenEqual(Pred)) 3452 return getFalse(RetTy); 3453 } 3454 3455 // Handle fcmp with constant RHS 3456 const ConstantFP *CFP = nullptr; 3457 if (const auto *RHSC = dyn_cast<Constant>(RHS)) { 3458 if (RHS->getType()->isVectorTy()) 3459 CFP = dyn_cast_or_null<ConstantFP>(RHSC->getSplatValue()); 3460 else 3461 CFP = dyn_cast<ConstantFP>(RHSC); 3462 } 3463 if (CFP) { 3464 // If the constant is a nan, see if we can fold the comparison based on it. 3465 if (CFP->getValueAPF().isNaN()) { 3466 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo" 3467 return getFalse(RetTy); 3468 assert(FCmpInst::isUnordered(Pred) && 3469 "Comparison must be either ordered or unordered!"); 3470 // True if unordered. 3471 return getTrue(RetTy); 3472 } 3473 // Check whether the constant is an infinity. 3474 if (CFP->getValueAPF().isInfinity()) { 3475 if (CFP->getValueAPF().isNegative()) { 3476 switch (Pred) { 3477 case FCmpInst::FCMP_OLT: 3478 // No value is ordered and less than negative infinity. 3479 return getFalse(RetTy); 3480 case FCmpInst::FCMP_UGE: 3481 // All values are unordered with or at least negative infinity. 3482 return getTrue(RetTy); 3483 default: 3484 break; 3485 } 3486 } else { 3487 switch (Pred) { 3488 case FCmpInst::FCMP_OGT: 3489 // No value is ordered and greater than infinity. 3490 return getFalse(RetTy); 3491 case FCmpInst::FCMP_ULE: 3492 // All values are unordered with and at most infinity. 3493 return getTrue(RetTy); 3494 default: 3495 break; 3496 } 3497 } 3498 } 3499 if (CFP->getValueAPF().isZero()) { 3500 switch (Pred) { 3501 case FCmpInst::FCMP_UGE: 3502 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3503 return getTrue(RetTy); 3504 break; 3505 case FCmpInst::FCMP_OLT: 3506 // X < 0 3507 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3508 return getFalse(RetTy); 3509 break; 3510 default: 3511 break; 3512 } 3513 } 3514 } 3515 3516 // If the comparison is with the result of a select instruction, check whether 3517 // comparing with either branch of the select always yields the same value. 3518 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3519 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3520 return V; 3521 3522 // If the comparison is with the result of a phi instruction, check whether 3523 // doing the compare with each incoming phi value yields a common result. 3524 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3525 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3526 return V; 3527 3528 return nullptr; 3529 } 3530 3531 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3532 FastMathFlags FMF, const DataLayout &DL, 3533 const TargetLibraryInfo *TLI, 3534 const DominatorTree *DT, AssumptionCache *AC, 3535 const Instruction *CxtI) { 3536 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, 3537 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3538 } 3539 3540 /// See if V simplifies when its operand Op is replaced with RepOp. 3541 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3542 const Query &Q, 3543 unsigned MaxRecurse) { 3544 // Trivial replacement. 3545 if (V == Op) 3546 return RepOp; 3547 3548 auto *I = dyn_cast<Instruction>(V); 3549 if (!I) 3550 return nullptr; 3551 3552 // If this is a binary operator, try to simplify it with the replaced op. 3553 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3554 // Consider: 3555 // %cmp = icmp eq i32 %x, 2147483647 3556 // %add = add nsw i32 %x, 1 3557 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3558 // 3559 // We can't replace %sel with %add unless we strip away the flags. 3560 if (isa<OverflowingBinaryOperator>(B)) 3561 if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap()) 3562 return nullptr; 3563 if (isa<PossiblyExactOperator>(B)) 3564 if (B->isExact()) 3565 return nullptr; 3566 3567 if (MaxRecurse) { 3568 if (B->getOperand(0) == Op) 3569 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3570 MaxRecurse - 1); 3571 if (B->getOperand(1) == Op) 3572 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3573 MaxRecurse - 1); 3574 } 3575 } 3576 3577 // Same for CmpInsts. 3578 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3579 if (MaxRecurse) { 3580 if (C->getOperand(0) == Op) 3581 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3582 MaxRecurse - 1); 3583 if (C->getOperand(1) == Op) 3584 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3585 MaxRecurse - 1); 3586 } 3587 } 3588 3589 // TODO: We could hand off more cases to instsimplify here. 3590 3591 // If all operands are constant after substituting Op for RepOp then we can 3592 // constant fold the instruction. 3593 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3594 // Build a list of all constant operands. 3595 SmallVector<Constant *, 8> ConstOps; 3596 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3597 if (I->getOperand(i) == Op) 3598 ConstOps.push_back(CRepOp); 3599 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3600 ConstOps.push_back(COp); 3601 else 3602 break; 3603 } 3604 3605 // All operands were constants, fold it. 3606 if (ConstOps.size() == I->getNumOperands()) { 3607 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3608 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3609 ConstOps[1], Q.DL, Q.TLI); 3610 3611 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3612 if (!LI->isVolatile()) 3613 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3614 3615 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3616 } 3617 } 3618 3619 return nullptr; 3620 } 3621 3622 /// Try to simplify a select instruction when its condition operand is an 3623 /// integer comparison where one operand of the compare is a constant. 3624 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3625 const APInt *Y, bool TrueWhenUnset) { 3626 const APInt *C; 3627 3628 // (X & Y) == 0 ? X & ~Y : X --> X 3629 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3630 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3631 *Y == ~*C) 3632 return TrueWhenUnset ? FalseVal : TrueVal; 3633 3634 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3635 // (X & Y) != 0 ? X : X & ~Y --> X 3636 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3637 *Y == ~*C) 3638 return TrueWhenUnset ? FalseVal : TrueVal; 3639 3640 if (Y->isPowerOf2()) { 3641 // (X & Y) == 0 ? X | Y : X --> X | Y 3642 // (X & Y) != 0 ? X | Y : X --> X 3643 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3644 *Y == *C) 3645 return TrueWhenUnset ? TrueVal : FalseVal; 3646 3647 // (X & Y) == 0 ? X : X | Y --> X 3648 // (X & Y) != 0 ? X : X | Y --> X | Y 3649 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3650 *Y == *C) 3651 return TrueWhenUnset ? TrueVal : FalseVal; 3652 } 3653 3654 return nullptr; 3655 } 3656 3657 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 3658 /// eq/ne. 3659 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *TrueVal, 3660 Value *FalseVal, 3661 bool TrueWhenUnset) { 3662 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits(); 3663 if (!BitWidth) 3664 return nullptr; 3665 3666 APInt MinSignedValue; 3667 Value *X; 3668 if (match(CmpLHS, m_Trunc(m_Value(X))) && (X == TrueVal || X == FalseVal)) { 3669 // icmp slt (trunc X), 0 <--> icmp ne (and X, C), 0 3670 // icmp sgt (trunc X), -1 <--> icmp eq (and X, C), 0 3671 unsigned DestSize = CmpLHS->getType()->getScalarSizeInBits(); 3672 MinSignedValue = APInt::getSignedMinValue(DestSize).zext(BitWidth); 3673 } else { 3674 // icmp slt X, 0 <--> icmp ne (and X, C), 0 3675 // icmp sgt X, -1 <--> icmp eq (and X, C), 0 3676 X = CmpLHS; 3677 MinSignedValue = APInt::getSignedMinValue(BitWidth); 3678 } 3679 3680 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, &MinSignedValue, 3681 TrueWhenUnset)) 3682 return V; 3683 3684 return nullptr; 3685 } 3686 3687 /// Try to simplify a select instruction when its condition operand is an 3688 /// integer comparison. 3689 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 3690 Value *FalseVal, const Query &Q, 3691 unsigned MaxRecurse) { 3692 ICmpInst::Predicate Pred; 3693 Value *CmpLHS, *CmpRHS; 3694 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 3695 return nullptr; 3696 3697 // FIXME: This code is nearly duplicated in InstCombine. Using/refactoring 3698 // decomposeBitTestICmp() might help. 3699 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) { 3700 Value *X; 3701 const APInt *Y; 3702 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 3703 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 3704 Pred == ICmpInst::ICMP_EQ)) 3705 return V; 3706 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 3707 // Comparing signed-less-than 0 checks if the sign bit is set. 3708 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal, 3709 false)) 3710 return V; 3711 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 3712 // Comparing signed-greater-than -1 checks if the sign bit is not set. 3713 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal, 3714 true)) 3715 return V; 3716 } 3717 3718 if (CondVal->hasOneUse()) { 3719 const APInt *C; 3720 if (match(CmpRHS, m_APInt(C))) { 3721 // X < MIN ? T : F --> F 3722 if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue()) 3723 return FalseVal; 3724 // X < MIN ? T : F --> F 3725 if (Pred == ICmpInst::ICMP_ULT && C->isMinValue()) 3726 return FalseVal; 3727 // X > MAX ? T : F --> F 3728 if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue()) 3729 return FalseVal; 3730 // X > MAX ? T : F --> F 3731 if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue()) 3732 return FalseVal; 3733 } 3734 } 3735 3736 // If we have an equality comparison, then we know the value in one of the 3737 // arms of the select. See if substituting this value into the arm and 3738 // simplifying the result yields the same value as the other arm. 3739 if (Pred == ICmpInst::ICMP_EQ) { 3740 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3741 TrueVal || 3742 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3743 TrueVal) 3744 return FalseVal; 3745 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3746 FalseVal || 3747 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3748 FalseVal) 3749 return FalseVal; 3750 } else if (Pred == ICmpInst::ICMP_NE) { 3751 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3752 FalseVal || 3753 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3754 FalseVal) 3755 return TrueVal; 3756 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3757 TrueVal || 3758 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3759 TrueVal) 3760 return TrueVal; 3761 } 3762 3763 return nullptr; 3764 } 3765 3766 /// Given operands for a SelectInst, see if we can fold the result. 3767 /// If not, this returns null. 3768 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal, 3769 Value *FalseVal, const Query &Q, 3770 unsigned MaxRecurse) { 3771 // select true, X, Y -> X 3772 // select false, X, Y -> Y 3773 if (Constant *CB = dyn_cast<Constant>(CondVal)) { 3774 if (CB->isAllOnesValue()) 3775 return TrueVal; 3776 if (CB->isNullValue()) 3777 return FalseVal; 3778 } 3779 3780 // select C, X, X -> X 3781 if (TrueVal == FalseVal) 3782 return TrueVal; 3783 3784 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y 3785 if (isa<Constant>(TrueVal)) 3786 return TrueVal; 3787 return FalseVal; 3788 } 3789 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X 3790 return FalseVal; 3791 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X 3792 return TrueVal; 3793 3794 if (Value *V = 3795 simplifySelectWithICmpCond(CondVal, TrueVal, FalseVal, Q, MaxRecurse)) 3796 return V; 3797 3798 return nullptr; 3799 } 3800 3801 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3802 const DataLayout &DL, 3803 const TargetLibraryInfo *TLI, 3804 const DominatorTree *DT, AssumptionCache *AC, 3805 const Instruction *CxtI) { 3806 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, 3807 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3808 } 3809 3810 /// Given operands for an GetElementPtrInst, see if we can fold the result. 3811 /// If not, this returns null. 3812 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3813 const Query &Q, unsigned) { 3814 // The type of the GEP pointer operand. 3815 unsigned AS = 3816 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 3817 3818 // getelementptr P -> P. 3819 if (Ops.size() == 1) 3820 return Ops[0]; 3821 3822 // Compute the (pointer) type returned by the GEP instruction. 3823 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 3824 Type *GEPTy = PointerType::get(LastType, AS); 3825 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 3826 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3827 3828 if (isa<UndefValue>(Ops[0])) 3829 return UndefValue::get(GEPTy); 3830 3831 if (Ops.size() == 2) { 3832 // getelementptr P, 0 -> P. 3833 if (match(Ops[1], m_Zero())) 3834 return Ops[0]; 3835 3836 Type *Ty = SrcTy; 3837 if (Ty->isSized()) { 3838 Value *P; 3839 uint64_t C; 3840 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 3841 // getelementptr P, N -> P if P points to a type of zero size. 3842 if (TyAllocSize == 0) 3843 return Ops[0]; 3844 3845 // The following transforms are only safe if the ptrtoint cast 3846 // doesn't truncate the pointers. 3847 if (Ops[1]->getType()->getScalarSizeInBits() == 3848 Q.DL.getPointerSizeInBits(AS)) { 3849 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 3850 if (match(P, m_Zero())) 3851 return Constant::getNullValue(GEPTy); 3852 Value *Temp; 3853 if (match(P, m_PtrToInt(m_Value(Temp)))) 3854 if (Temp->getType() == GEPTy) 3855 return Temp; 3856 return nullptr; 3857 }; 3858 3859 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 3860 if (TyAllocSize == 1 && 3861 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 3862 if (Value *R = PtrToIntOrZero(P)) 3863 return R; 3864 3865 // getelementptr V, (ashr (sub P, V), C) -> Q 3866 // if P points to a type of size 1 << C. 3867 if (match(Ops[1], 3868 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3869 m_ConstantInt(C))) && 3870 TyAllocSize == 1ULL << C) 3871 if (Value *R = PtrToIntOrZero(P)) 3872 return R; 3873 3874 // getelementptr V, (sdiv (sub P, V), C) -> Q 3875 // if P points to a type of size C. 3876 if (match(Ops[1], 3877 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3878 m_SpecificInt(TyAllocSize)))) 3879 if (Value *R = PtrToIntOrZero(P)) 3880 return R; 3881 } 3882 } 3883 } 3884 3885 if (Q.DL.getTypeAllocSize(LastType) == 1 && 3886 all_of(Ops.slice(1).drop_back(1), 3887 [](Value *Idx) { return match(Idx, m_Zero()); })) { 3888 unsigned PtrWidth = 3889 Q.DL.getPointerSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 3890 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == PtrWidth) { 3891 APInt BasePtrOffset(PtrWidth, 0); 3892 Value *StrippedBasePtr = 3893 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 3894 BasePtrOffset); 3895 3896 // gep (gep V, C), (sub 0, V) -> C 3897 if (match(Ops.back(), 3898 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { 3899 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 3900 return ConstantExpr::getIntToPtr(CI, GEPTy); 3901 } 3902 // gep (gep V, C), (xor V, -1) -> C-1 3903 if (match(Ops.back(), 3904 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { 3905 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 3906 return ConstantExpr::getIntToPtr(CI, GEPTy); 3907 } 3908 } 3909 } 3910 3911 // Check to see if this is constant foldable. 3912 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3913 if (!isa<Constant>(Ops[i])) 3914 return nullptr; 3915 3916 return ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 3917 Ops.slice(1)); 3918 } 3919 3920 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3921 const DataLayout &DL, 3922 const TargetLibraryInfo *TLI, 3923 const DominatorTree *DT, AssumptionCache *AC, 3924 const Instruction *CxtI) { 3925 return ::SimplifyGEPInst(SrcTy, Ops, 3926 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3927 } 3928 3929 /// Given operands for an InsertValueInst, see if we can fold the result. 3930 /// If not, this returns null. 3931 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 3932 ArrayRef<unsigned> Idxs, const Query &Q, 3933 unsigned) { 3934 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 3935 if (Constant *CVal = dyn_cast<Constant>(Val)) 3936 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 3937 3938 // insertvalue x, undef, n -> x 3939 if (match(Val, m_Undef())) 3940 return Agg; 3941 3942 // insertvalue x, (extractvalue y, n), n 3943 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 3944 if (EV->getAggregateOperand()->getType() == Agg->getType() && 3945 EV->getIndices() == Idxs) { 3946 // insertvalue undef, (extractvalue y, n), n -> y 3947 if (match(Agg, m_Undef())) 3948 return EV->getAggregateOperand(); 3949 3950 // insertvalue y, (extractvalue y, n), n -> y 3951 if (Agg == EV->getAggregateOperand()) 3952 return Agg; 3953 } 3954 3955 return nullptr; 3956 } 3957 3958 Value *llvm::SimplifyInsertValueInst( 3959 Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const DataLayout &DL, 3960 const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC, 3961 const Instruction *CxtI) { 3962 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query(DL, TLI, DT, AC, CxtI), 3963 RecursionLimit); 3964 } 3965 3966 /// Given operands for an ExtractValueInst, see if we can fold the result. 3967 /// If not, this returns null. 3968 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3969 const Query &, unsigned) { 3970 if (auto *CAgg = dyn_cast<Constant>(Agg)) 3971 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 3972 3973 // extractvalue x, (insertvalue y, elt, n), n -> elt 3974 unsigned NumIdxs = Idxs.size(); 3975 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 3976 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 3977 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 3978 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 3979 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 3980 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 3981 Idxs.slice(0, NumCommonIdxs)) { 3982 if (NumIdxs == NumInsertValueIdxs) 3983 return IVI->getInsertedValueOperand(); 3984 break; 3985 } 3986 } 3987 3988 return nullptr; 3989 } 3990 3991 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3992 const DataLayout &DL, 3993 const TargetLibraryInfo *TLI, 3994 const DominatorTree *DT, 3995 AssumptionCache *AC, 3996 const Instruction *CxtI) { 3997 return ::SimplifyExtractValueInst(Agg, Idxs, Query(DL, TLI, DT, AC, CxtI), 3998 RecursionLimit); 3999 } 4000 4001 /// Given operands for an ExtractElementInst, see if we can fold the result. 4002 /// If not, this returns null. 4003 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const Query &, 4004 unsigned) { 4005 if (auto *CVec = dyn_cast<Constant>(Vec)) { 4006 if (auto *CIdx = dyn_cast<Constant>(Idx)) 4007 return ConstantFoldExtractElementInstruction(CVec, CIdx); 4008 4009 // The index is not relevant if our vector is a splat. 4010 if (auto *Splat = CVec->getSplatValue()) 4011 return Splat; 4012 4013 if (isa<UndefValue>(Vec)) 4014 return UndefValue::get(Vec->getType()->getVectorElementType()); 4015 } 4016 4017 // If extracting a specified index from the vector, see if we can recursively 4018 // find a previously computed scalar that was inserted into the vector. 4019 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) 4020 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4021 return Elt; 4022 4023 return nullptr; 4024 } 4025 4026 Value *llvm::SimplifyExtractElementInst( 4027 Value *Vec, Value *Idx, const DataLayout &DL, const TargetLibraryInfo *TLI, 4028 const DominatorTree *DT, AssumptionCache *AC, const Instruction *CxtI) { 4029 return ::SimplifyExtractElementInst(Vec, Idx, Query(DL, TLI, DT, AC, CxtI), 4030 RecursionLimit); 4031 } 4032 4033 /// See if we can fold the given phi. If not, returns null. 4034 static Value *SimplifyPHINode(PHINode *PN, const Query &Q) { 4035 // If all of the PHI's incoming values are the same then replace the PHI node 4036 // with the common value. 4037 Value *CommonValue = nullptr; 4038 bool HasUndefInput = false; 4039 for (Value *Incoming : PN->incoming_values()) { 4040 // If the incoming value is the phi node itself, it can safely be skipped. 4041 if (Incoming == PN) continue; 4042 if (isa<UndefValue>(Incoming)) { 4043 // Remember that we saw an undef value, but otherwise ignore them. 4044 HasUndefInput = true; 4045 continue; 4046 } 4047 if (CommonValue && Incoming != CommonValue) 4048 return nullptr; // Not the same, bail out. 4049 CommonValue = Incoming; 4050 } 4051 4052 // If CommonValue is null then all of the incoming values were either undef or 4053 // equal to the phi node itself. 4054 if (!CommonValue) 4055 return UndefValue::get(PN->getType()); 4056 4057 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4058 // instruction, we cannot return X as the result of the PHI node unless it 4059 // dominates the PHI block. 4060 if (HasUndefInput) 4061 return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4062 4063 return CommonValue; 4064 } 4065 4066 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4067 Type *Ty, const Query &Q, unsigned MaxRecurse) { 4068 if (auto *C = dyn_cast<Constant>(Op)) 4069 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4070 4071 if (auto *CI = dyn_cast<CastInst>(Op)) { 4072 auto *Src = CI->getOperand(0); 4073 Type *SrcTy = Src->getType(); 4074 Type *MidTy = CI->getType(); 4075 Type *DstTy = Ty; 4076 if (Src->getType() == Ty) { 4077 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4078 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4079 Type *SrcIntPtrTy = 4080 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4081 Type *MidIntPtrTy = 4082 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4083 Type *DstIntPtrTy = 4084 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4085 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4086 SrcIntPtrTy, MidIntPtrTy, 4087 DstIntPtrTy) == Instruction::BitCast) 4088 return Src; 4089 } 4090 } 4091 4092 // bitcast x -> x 4093 if (CastOpc == Instruction::BitCast) 4094 if (Op->getType() == Ty) 4095 return Op; 4096 4097 return nullptr; 4098 } 4099 4100 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4101 const DataLayout &DL, 4102 const TargetLibraryInfo *TLI, 4103 const DominatorTree *DT, AssumptionCache *AC, 4104 const Instruction *CxtI) { 4105 return ::SimplifyCastInst(CastOpc, Op, Ty, Query(DL, TLI, DT, AC, CxtI), 4106 RecursionLimit); 4107 } 4108 4109 //=== Helper functions for higher up the class hierarchy. 4110 4111 /// Given operands for a BinaryOperator, see if we can fold the result. 4112 /// If not, this returns null. 4113 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4114 const Query &Q, unsigned MaxRecurse) { 4115 switch (Opcode) { 4116 case Instruction::Add: 4117 return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 4118 Q, MaxRecurse); 4119 case Instruction::FAdd: 4120 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4121 4122 case Instruction::Sub: 4123 return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 4124 Q, MaxRecurse); 4125 case Instruction::FSub: 4126 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4127 4128 case Instruction::Mul: return SimplifyMulInst (LHS, RHS, Q, MaxRecurse); 4129 case Instruction::FMul: 4130 return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4131 case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 4132 case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 4133 case Instruction::FDiv: 4134 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4135 case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 4136 case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 4137 case Instruction::FRem: 4138 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4139 case Instruction::Shl: 4140 return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 4141 Q, MaxRecurse); 4142 case Instruction::LShr: 4143 return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse); 4144 case Instruction::AShr: 4145 return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse); 4146 case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 4147 case Instruction::Or: return SimplifyOrInst (LHS, RHS, Q, MaxRecurse); 4148 case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 4149 default: 4150 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 4151 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 4152 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 4153 4154 // If the operation is associative, try some generic simplifications. 4155 if (Instruction::isAssociative(Opcode)) 4156 if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse)) 4157 return V; 4158 4159 // If the operation is with the result of a select instruction check whether 4160 // operating on either branch of the select always yields the same value. 4161 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 4162 if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse)) 4163 return V; 4164 4165 // If the operation is with the result of a phi instruction, check whether 4166 // operating on all incoming values of the phi always yields the same value. 4167 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 4168 if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse)) 4169 return V; 4170 4171 return nullptr; 4172 } 4173 } 4174 4175 /// Given operands for a BinaryOperator, see if we can fold the result. 4176 /// If not, this returns null. 4177 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the 4178 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp. 4179 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4180 const FastMathFlags &FMF, const Query &Q, 4181 unsigned MaxRecurse) { 4182 switch (Opcode) { 4183 case Instruction::FAdd: 4184 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 4185 case Instruction::FSub: 4186 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 4187 case Instruction::FMul: 4188 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 4189 case Instruction::FDiv: 4190 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 4191 default: 4192 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 4193 } 4194 } 4195 4196 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4197 const DataLayout &DL, const TargetLibraryInfo *TLI, 4198 const DominatorTree *DT, AssumptionCache *AC, 4199 const Instruction *CxtI) { 4200 return ::SimplifyBinOp(Opcode, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 4201 RecursionLimit); 4202 } 4203 4204 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4205 const FastMathFlags &FMF, const DataLayout &DL, 4206 const TargetLibraryInfo *TLI, 4207 const DominatorTree *DT, AssumptionCache *AC, 4208 const Instruction *CxtI) { 4209 return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Query(DL, TLI, DT, AC, CxtI), 4210 RecursionLimit); 4211 } 4212 4213 /// Given operands for a CmpInst, see if we can fold the result. 4214 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4215 const Query &Q, unsigned MaxRecurse) { 4216 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 4217 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 4218 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4219 } 4220 4221 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4222 const DataLayout &DL, const TargetLibraryInfo *TLI, 4223 const DominatorTree *DT, AssumptionCache *AC, 4224 const Instruction *CxtI) { 4225 return ::SimplifyCmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 4226 RecursionLimit); 4227 } 4228 4229 static bool IsIdempotent(Intrinsic::ID ID) { 4230 switch (ID) { 4231 default: return false; 4232 4233 // Unary idempotent: f(f(x)) = f(x) 4234 case Intrinsic::fabs: 4235 case Intrinsic::floor: 4236 case Intrinsic::ceil: 4237 case Intrinsic::trunc: 4238 case Intrinsic::rint: 4239 case Intrinsic::nearbyint: 4240 case Intrinsic::round: 4241 return true; 4242 } 4243 } 4244 4245 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 4246 const DataLayout &DL) { 4247 GlobalValue *PtrSym; 4248 APInt PtrOffset; 4249 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 4250 return nullptr; 4251 4252 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 4253 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 4254 Type *Int32PtrTy = Int32Ty->getPointerTo(); 4255 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 4256 4257 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 4258 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 4259 return nullptr; 4260 4261 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 4262 if (OffsetInt % 4 != 0) 4263 return nullptr; 4264 4265 Constant *C = ConstantExpr::getGetElementPtr( 4266 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 4267 ConstantInt::get(Int64Ty, OffsetInt / 4)); 4268 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 4269 if (!Loaded) 4270 return nullptr; 4271 4272 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 4273 if (!LoadedCE) 4274 return nullptr; 4275 4276 if (LoadedCE->getOpcode() == Instruction::Trunc) { 4277 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4278 if (!LoadedCE) 4279 return nullptr; 4280 } 4281 4282 if (LoadedCE->getOpcode() != Instruction::Sub) 4283 return nullptr; 4284 4285 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4286 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 4287 return nullptr; 4288 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 4289 4290 Constant *LoadedRHS = LoadedCE->getOperand(1); 4291 GlobalValue *LoadedRHSSym; 4292 APInt LoadedRHSOffset; 4293 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 4294 DL) || 4295 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 4296 return nullptr; 4297 4298 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 4299 } 4300 4301 static bool maskIsAllZeroOrUndef(Value *Mask) { 4302 auto *ConstMask = dyn_cast<Constant>(Mask); 4303 if (!ConstMask) 4304 return false; 4305 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 4306 return true; 4307 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; 4308 ++I) { 4309 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 4310 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 4311 continue; 4312 return false; 4313 } 4314 return true; 4315 } 4316 4317 template <typename IterTy> 4318 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd, 4319 const Query &Q, unsigned MaxRecurse) { 4320 Intrinsic::ID IID = F->getIntrinsicID(); 4321 unsigned NumOperands = std::distance(ArgBegin, ArgEnd); 4322 4323 // Unary Ops 4324 if (NumOperands == 1) { 4325 // Perform idempotent optimizations 4326 if (IsIdempotent(IID)) { 4327 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) { 4328 if (II->getIntrinsicID() == IID) 4329 return II; 4330 } 4331 } 4332 4333 switch (IID) { 4334 case Intrinsic::fabs: { 4335 if (SignBitMustBeZero(*ArgBegin, Q.TLI)) 4336 return *ArgBegin; 4337 return nullptr; 4338 } 4339 default: 4340 return nullptr; 4341 } 4342 } 4343 4344 // Binary Ops 4345 if (NumOperands == 2) { 4346 Value *LHS = *ArgBegin; 4347 Value *RHS = *(ArgBegin + 1); 4348 Type *ReturnType = F->getReturnType(); 4349 4350 switch (IID) { 4351 case Intrinsic::usub_with_overflow: 4352 case Intrinsic::ssub_with_overflow: { 4353 // X - X -> { 0, false } 4354 if (LHS == RHS) 4355 return Constant::getNullValue(ReturnType); 4356 4357 // X - undef -> undef 4358 // undef - X -> undef 4359 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 4360 return UndefValue::get(ReturnType); 4361 4362 return nullptr; 4363 } 4364 case Intrinsic::uadd_with_overflow: 4365 case Intrinsic::sadd_with_overflow: { 4366 // X + undef -> undef 4367 if (isa<UndefValue>(RHS)) 4368 return UndefValue::get(ReturnType); 4369 4370 return nullptr; 4371 } 4372 case Intrinsic::umul_with_overflow: 4373 case Intrinsic::smul_with_overflow: { 4374 // X * 0 -> { 0, false } 4375 if (match(RHS, m_Zero())) 4376 return Constant::getNullValue(ReturnType); 4377 4378 // X * undef -> { 0, false } 4379 if (match(RHS, m_Undef())) 4380 return Constant::getNullValue(ReturnType); 4381 4382 return nullptr; 4383 } 4384 case Intrinsic::load_relative: { 4385 Constant *C0 = dyn_cast<Constant>(LHS); 4386 Constant *C1 = dyn_cast<Constant>(RHS); 4387 if (C0 && C1) 4388 return SimplifyRelativeLoad(C0, C1, Q.DL); 4389 return nullptr; 4390 } 4391 default: 4392 return nullptr; 4393 } 4394 } 4395 4396 // Simplify calls to llvm.masked.load.* 4397 switch (IID) { 4398 case Intrinsic::masked_load: { 4399 Value *MaskArg = ArgBegin[2]; 4400 Value *PassthruArg = ArgBegin[3]; 4401 // If the mask is all zeros or undef, the "passthru" argument is the result. 4402 if (maskIsAllZeroOrUndef(MaskArg)) 4403 return PassthruArg; 4404 return nullptr; 4405 } 4406 default: 4407 return nullptr; 4408 } 4409 } 4410 4411 template <typename IterTy> 4412 static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd, 4413 const Query &Q, unsigned MaxRecurse) { 4414 Type *Ty = V->getType(); 4415 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 4416 Ty = PTy->getElementType(); 4417 FunctionType *FTy = cast<FunctionType>(Ty); 4418 4419 // call undef -> undef 4420 // call null -> undef 4421 if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V)) 4422 return UndefValue::get(FTy->getReturnType()); 4423 4424 Function *F = dyn_cast<Function>(V); 4425 if (!F) 4426 return nullptr; 4427 4428 if (F->isIntrinsic()) 4429 if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse)) 4430 return Ret; 4431 4432 if (!canConstantFoldCallTo(F)) 4433 return nullptr; 4434 4435 SmallVector<Constant *, 4> ConstantArgs; 4436 ConstantArgs.reserve(ArgEnd - ArgBegin); 4437 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) { 4438 Constant *C = dyn_cast<Constant>(*I); 4439 if (!C) 4440 return nullptr; 4441 ConstantArgs.push_back(C); 4442 } 4443 4444 return ConstantFoldCall(F, ConstantArgs, Q.TLI); 4445 } 4446 4447 Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin, 4448 User::op_iterator ArgEnd, const DataLayout &DL, 4449 const TargetLibraryInfo *TLI, const DominatorTree *DT, 4450 AssumptionCache *AC, const Instruction *CxtI) { 4451 return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT, AC, CxtI), 4452 RecursionLimit); 4453 } 4454 4455 Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args, 4456 const DataLayout &DL, const TargetLibraryInfo *TLI, 4457 const DominatorTree *DT, AssumptionCache *AC, 4458 const Instruction *CxtI) { 4459 return ::SimplifyCall(V, Args.begin(), Args.end(), 4460 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 4461 } 4462 4463 /// See if we can compute a simplified version of this instruction. 4464 /// If not, this returns null. 4465 Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout &DL, 4466 const TargetLibraryInfo *TLI, 4467 const DominatorTree *DT, AssumptionCache *AC, 4468 OptimizationRemarkEmitter *ORE) { 4469 Value *Result; 4470 4471 switch (I->getOpcode()) { 4472 default: 4473 Result = ConstantFoldInstruction(I, DL, TLI); 4474 break; 4475 case Instruction::FAdd: 4476 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 4477 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4478 break; 4479 case Instruction::Add: 4480 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), 4481 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4482 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4483 TLI, DT, AC, I); 4484 break; 4485 case Instruction::FSub: 4486 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 4487 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4488 break; 4489 case Instruction::Sub: 4490 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), 4491 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4492 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4493 TLI, DT, AC, I); 4494 break; 4495 case Instruction::FMul: 4496 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 4497 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4498 break; 4499 case Instruction::Mul: 4500 Result = 4501 SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4502 break; 4503 case Instruction::SDiv: 4504 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4505 AC, I); 4506 break; 4507 case Instruction::UDiv: 4508 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4509 AC, I); 4510 break; 4511 case Instruction::FDiv: 4512 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 4513 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4514 break; 4515 case Instruction::SRem: 4516 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4517 AC, I); 4518 break; 4519 case Instruction::URem: 4520 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4521 AC, I); 4522 break; 4523 case Instruction::FRem: 4524 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 4525 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4526 break; 4527 case Instruction::Shl: 4528 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), 4529 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4530 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4531 TLI, DT, AC, I); 4532 break; 4533 case Instruction::LShr: 4534 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 4535 cast<BinaryOperator>(I)->isExact(), DL, TLI, DT, 4536 AC, I); 4537 break; 4538 case Instruction::AShr: 4539 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 4540 cast<BinaryOperator>(I)->isExact(), DL, TLI, DT, 4541 AC, I); 4542 break; 4543 case Instruction::And: 4544 Result = 4545 SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4546 break; 4547 case Instruction::Or: 4548 Result = 4549 SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4550 break; 4551 case Instruction::Xor: 4552 Result = 4553 SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4554 break; 4555 case Instruction::ICmp: 4556 Result = 4557 SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), I->getOperand(0), 4558 I->getOperand(1), DL, TLI, DT, AC, I); 4559 break; 4560 case Instruction::FCmp: 4561 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), 4562 I->getOperand(0), I->getOperand(1), 4563 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4564 break; 4565 case Instruction::Select: 4566 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 4567 I->getOperand(2), DL, TLI, DT, AC, I); 4568 break; 4569 case Instruction::GetElementPtr: { 4570 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 4571 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 4572 Ops, DL, TLI, DT, AC, I); 4573 break; 4574 } 4575 case Instruction::InsertValue: { 4576 InsertValueInst *IV = cast<InsertValueInst>(I); 4577 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 4578 IV->getInsertedValueOperand(), 4579 IV->getIndices(), DL, TLI, DT, AC, I); 4580 break; 4581 } 4582 case Instruction::ExtractValue: { 4583 auto *EVI = cast<ExtractValueInst>(I); 4584 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 4585 EVI->getIndices(), DL, TLI, DT, AC, I); 4586 break; 4587 } 4588 case Instruction::ExtractElement: { 4589 auto *EEI = cast<ExtractElementInst>(I); 4590 Result = SimplifyExtractElementInst( 4591 EEI->getVectorOperand(), EEI->getIndexOperand(), DL, TLI, DT, AC, I); 4592 break; 4593 } 4594 case Instruction::PHI: 4595 Result = SimplifyPHINode(cast<PHINode>(I), Query(DL, TLI, DT, AC, I)); 4596 break; 4597 case Instruction::Call: { 4598 CallSite CS(cast<CallInst>(I)); 4599 Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), DL, 4600 TLI, DT, AC, I); 4601 break; 4602 } 4603 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 4604 #include "llvm/IR/Instruction.def" 4605 #undef HANDLE_CAST_INST 4606 Result = SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), 4607 DL, TLI, DT, AC, I); 4608 break; 4609 } 4610 4611 // In general, it is possible for computeKnownBits to determine all bits in a 4612 // value even when the operands are not all constants. 4613 if (!Result && I->getType()->isIntOrIntVectorTy()) { 4614 unsigned BitWidth = I->getType()->getScalarSizeInBits(); 4615 APInt KnownZero(BitWidth, 0); 4616 APInt KnownOne(BitWidth, 0); 4617 computeKnownBits(I, KnownZero, KnownOne, DL, /*Depth*/0, AC, I, DT, ORE); 4618 if ((KnownZero | KnownOne).isAllOnesValue()) 4619 Result = ConstantInt::get(I->getType(), KnownOne); 4620 } 4621 4622 /// If called on unreachable code, the above logic may report that the 4623 /// instruction simplified to itself. Make life easier for users by 4624 /// detecting that case here, returning a safe value instead. 4625 return Result == I ? UndefValue::get(I->getType()) : Result; 4626 } 4627 4628 /// \brief Implementation of recursive simplification through an instruction's 4629 /// uses. 4630 /// 4631 /// This is the common implementation of the recursive simplification routines. 4632 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 4633 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 4634 /// instructions to process and attempt to simplify it using 4635 /// InstructionSimplify. 4636 /// 4637 /// This routine returns 'true' only when *it* simplifies something. The passed 4638 /// in simplified value does not count toward this. 4639 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, 4640 const TargetLibraryInfo *TLI, 4641 const DominatorTree *DT, 4642 AssumptionCache *AC) { 4643 bool Simplified = false; 4644 SmallSetVector<Instruction *, 8> Worklist; 4645 const DataLayout &DL = I->getModule()->getDataLayout(); 4646 4647 // If we have an explicit value to collapse to, do that round of the 4648 // simplification loop by hand initially. 4649 if (SimpleV) { 4650 for (User *U : I->users()) 4651 if (U != I) 4652 Worklist.insert(cast<Instruction>(U)); 4653 4654 // Replace the instruction with its simplified value. 4655 I->replaceAllUsesWith(SimpleV); 4656 4657 // Gracefully handle edge cases where the instruction is not wired into any 4658 // parent block. 4659 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4660 !I->mayHaveSideEffects()) 4661 I->eraseFromParent(); 4662 } else { 4663 Worklist.insert(I); 4664 } 4665 4666 // Note that we must test the size on each iteration, the worklist can grow. 4667 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 4668 I = Worklist[Idx]; 4669 4670 // See if this instruction simplifies. 4671 SimpleV = SimplifyInstruction(I, DL, TLI, DT, AC); 4672 if (!SimpleV) 4673 continue; 4674 4675 Simplified = true; 4676 4677 // Stash away all the uses of the old instruction so we can check them for 4678 // recursive simplifications after a RAUW. This is cheaper than checking all 4679 // uses of To on the recursive step in most cases. 4680 for (User *U : I->users()) 4681 Worklist.insert(cast<Instruction>(U)); 4682 4683 // Replace the instruction with its simplified value. 4684 I->replaceAllUsesWith(SimpleV); 4685 4686 // Gracefully handle edge cases where the instruction is not wired into any 4687 // parent block. 4688 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4689 !I->mayHaveSideEffects()) 4690 I->eraseFromParent(); 4691 } 4692 return Simplified; 4693 } 4694 4695 bool llvm::recursivelySimplifyInstruction(Instruction *I, 4696 const TargetLibraryInfo *TLI, 4697 const DominatorTree *DT, 4698 AssumptionCache *AC) { 4699 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC); 4700 } 4701 4702 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, 4703 const TargetLibraryInfo *TLI, 4704 const DominatorTree *DT, 4705 AssumptionCache *AC) { 4706 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 4707 assert(SimpleV && "Must provide a simplified value."); 4708 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC); 4709 } 4710