1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements routines for folding instructions into simpler forms 10 // that do not require creating new instructions. This does constant folding 11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 14 // simplified: This is usually true and assuming it simplifies the logic (if 15 // they have not been simplified then results are correct but maybe suboptimal). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/InstructionSimplify.h" 20 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/Analysis/CaptureTracking.h" 28 #include "llvm/Analysis/CmpInstAnalysis.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/LoopAnalysisManager.h" 31 #include "llvm/Analysis/MemoryBuiltins.h" 32 #include "llvm/Analysis/OverflowInstAnalysis.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/IR/ConstantRange.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/GetElementPtrTypeIterator.h" 39 #include "llvm/IR/GlobalAlias.h" 40 #include "llvm/IR/InstrTypes.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/Operator.h" 43 #include "llvm/IR/PatternMatch.h" 44 #include "llvm/IR/ValueHandle.h" 45 #include "llvm/Support/KnownBits.h" 46 #include <algorithm> 47 using namespace llvm; 48 using namespace llvm::PatternMatch; 49 50 #define DEBUG_TYPE "instsimplify" 51 52 enum { RecursionLimit = 3 }; 53 54 STATISTIC(NumExpand, "Number of expansions"); 55 STATISTIC(NumReassoc, "Number of reassociations"); 56 57 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 58 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); 59 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, 60 const SimplifyQuery &, unsigned); 61 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 62 unsigned); 63 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &, 64 const SimplifyQuery &, unsigned); 65 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 66 unsigned); 67 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 68 const SimplifyQuery &Q, unsigned MaxRecurse); 69 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 70 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 71 static Value *SimplifyCastInst(unsigned, Value *, Type *, 72 const SimplifyQuery &, unsigned); 73 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, bool, 74 const SimplifyQuery &, unsigned); 75 static Value *SimplifySelectInst(Value *, Value *, Value *, 76 const SimplifyQuery &, unsigned); 77 78 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 79 Value *FalseVal) { 80 BinaryOperator::BinaryOps BinOpCode; 81 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 82 BinOpCode = BO->getOpcode(); 83 else 84 return nullptr; 85 86 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 87 if (BinOpCode == BinaryOperator::Or) { 88 ExpectedPred = ICmpInst::ICMP_NE; 89 } else if (BinOpCode == BinaryOperator::And) { 90 ExpectedPred = ICmpInst::ICMP_EQ; 91 } else 92 return nullptr; 93 94 // %A = icmp eq %TV, %FV 95 // %B = icmp eq %X, %Y (and one of these is a select operand) 96 // %C = and %A, %B 97 // %D = select %C, %TV, %FV 98 // --> 99 // %FV 100 101 // %A = icmp ne %TV, %FV 102 // %B = icmp ne %X, %Y (and one of these is a select operand) 103 // %C = or %A, %B 104 // %D = select %C, %TV, %FV 105 // --> 106 // %TV 107 Value *X, *Y; 108 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 109 m_Specific(FalseVal)), 110 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 111 Pred1 != Pred2 || Pred1 != ExpectedPred) 112 return nullptr; 113 114 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 115 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 116 117 return nullptr; 118 } 119 120 /// For a boolean type or a vector of boolean type, return false or a vector 121 /// with every element false. 122 static Constant *getFalse(Type *Ty) { 123 return ConstantInt::getFalse(Ty); 124 } 125 126 /// For a boolean type or a vector of boolean type, return true or a vector 127 /// with every element true. 128 static Constant *getTrue(Type *Ty) { 129 return ConstantInt::getTrue(Ty); 130 } 131 132 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 133 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 134 Value *RHS) { 135 CmpInst *Cmp = dyn_cast<CmpInst>(V); 136 if (!Cmp) 137 return false; 138 CmpInst::Predicate CPred = Cmp->getPredicate(); 139 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 140 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 141 return true; 142 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 143 CRHS == LHS; 144 } 145 146 /// Simplify comparison with true or false branch of select: 147 /// %sel = select i1 %cond, i32 %tv, i32 %fv 148 /// %cmp = icmp sle i32 %sel, %rhs 149 /// Compose new comparison by substituting %sel with either %tv or %fv 150 /// and see if it simplifies. 151 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS, 152 Value *RHS, Value *Cond, 153 const SimplifyQuery &Q, unsigned MaxRecurse, 154 Constant *TrueOrFalse) { 155 Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse); 156 if (SimplifiedCmp == Cond) { 157 // %cmp simplified to the select condition (%cond). 158 return TrueOrFalse; 159 } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) { 160 // It didn't simplify. However, if composed comparison is equivalent 161 // to the select condition (%cond) then we can replace it. 162 return TrueOrFalse; 163 } 164 return SimplifiedCmp; 165 } 166 167 /// Simplify comparison with true branch of select 168 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS, 169 Value *RHS, Value *Cond, 170 const SimplifyQuery &Q, 171 unsigned MaxRecurse) { 172 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 173 getTrue(Cond->getType())); 174 } 175 176 /// Simplify comparison with false branch of select 177 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS, 178 Value *RHS, Value *Cond, 179 const SimplifyQuery &Q, 180 unsigned MaxRecurse) { 181 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 182 getFalse(Cond->getType())); 183 } 184 185 /// We know comparison with both branches of select can be simplified, but they 186 /// are not equal. This routine handles some logical simplifications. 187 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, 188 Value *Cond, 189 const SimplifyQuery &Q, 190 unsigned MaxRecurse) { 191 // If the false value simplified to false, then the result of the compare 192 // is equal to "Cond && TCmp". This also catches the case when the false 193 // value simplified to false and the true value to true, returning "Cond". 194 // Folding select to and/or isn't poison-safe in general; impliesPoison 195 // checks whether folding it does not convert a well-defined value into 196 // poison. 197 if (match(FCmp, m_Zero()) && impliesPoison(TCmp, Cond)) 198 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 199 return V; 200 // If the true value simplified to true, then the result of the compare 201 // is equal to "Cond || FCmp". 202 if (match(TCmp, m_One()) && impliesPoison(FCmp, Cond)) 203 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 204 return V; 205 // Finally, if the false value simplified to true and the true value to 206 // false, then the result of the compare is equal to "!Cond". 207 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 208 if (Value *V = SimplifyXorInst( 209 Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse)) 210 return V; 211 return nullptr; 212 } 213 214 /// Does the given value dominate the specified phi node? 215 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 216 Instruction *I = dyn_cast<Instruction>(V); 217 if (!I) 218 // Arguments and constants dominate all instructions. 219 return true; 220 221 // If we are processing instructions (and/or basic blocks) that have not been 222 // fully added to a function, the parent nodes may still be null. Simply 223 // return the conservative answer in these cases. 224 if (!I->getParent() || !P->getParent() || !I->getFunction()) 225 return false; 226 227 // If we have a DominatorTree then do a precise test. 228 if (DT) 229 return DT->dominates(I, P); 230 231 // Otherwise, if the instruction is in the entry block and is not an invoke, 232 // then it obviously dominates all phi nodes. 233 if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) && 234 !isa<CallBrInst>(I)) 235 return true; 236 237 return false; 238 } 239 240 /// Try to simplify a binary operator of form "V op OtherOp" where V is 241 /// "(B0 opex B1)" by distributing 'op' across 'opex' as 242 /// "(B0 op OtherOp) opex (B1 op OtherOp)". 243 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V, 244 Value *OtherOp, Instruction::BinaryOps OpcodeToExpand, 245 const SimplifyQuery &Q, unsigned MaxRecurse) { 246 auto *B = dyn_cast<BinaryOperator>(V); 247 if (!B || B->getOpcode() != OpcodeToExpand) 248 return nullptr; 249 Value *B0 = B->getOperand(0), *B1 = B->getOperand(1); 250 Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(), 251 MaxRecurse); 252 if (!L) 253 return nullptr; 254 Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(), 255 MaxRecurse); 256 if (!R) 257 return nullptr; 258 259 // Does the expanded pair of binops simplify to the existing binop? 260 if ((L == B0 && R == B1) || 261 (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) { 262 ++NumExpand; 263 return B; 264 } 265 266 // Otherwise, return "L op' R" if it simplifies. 267 Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse); 268 if (!S) 269 return nullptr; 270 271 ++NumExpand; 272 return S; 273 } 274 275 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by 276 /// distributing op over op'. 277 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode, 278 Value *L, Value *R, 279 Instruction::BinaryOps OpcodeToExpand, 280 const SimplifyQuery &Q, 281 unsigned MaxRecurse) { 282 // Recursion is always used, so bail out at once if we already hit the limit. 283 if (!MaxRecurse--) 284 return nullptr; 285 286 if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse)) 287 return V; 288 if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse)) 289 return V; 290 return nullptr; 291 } 292 293 /// Generic simplifications for associative binary operations. 294 /// Returns the simpler value, or null if none was found. 295 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 296 Value *LHS, Value *RHS, 297 const SimplifyQuery &Q, 298 unsigned MaxRecurse) { 299 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 300 301 // Recursion is always used, so bail out at once if we already hit the limit. 302 if (!MaxRecurse--) 303 return nullptr; 304 305 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 306 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 307 308 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 309 if (Op0 && Op0->getOpcode() == Opcode) { 310 Value *A = Op0->getOperand(0); 311 Value *B = Op0->getOperand(1); 312 Value *C = RHS; 313 314 // Does "B op C" simplify? 315 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 316 // It does! Return "A op V" if it simplifies or is already available. 317 // If V equals B then "A op V" is just the LHS. 318 if (V == B) return LHS; 319 // Otherwise return "A op V" if it simplifies. 320 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 321 ++NumReassoc; 322 return W; 323 } 324 } 325 } 326 327 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 328 if (Op1 && Op1->getOpcode() == Opcode) { 329 Value *A = LHS; 330 Value *B = Op1->getOperand(0); 331 Value *C = Op1->getOperand(1); 332 333 // Does "A op B" simplify? 334 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 335 // It does! Return "V op C" if it simplifies or is already available. 336 // If V equals B then "V op C" is just the RHS. 337 if (V == B) return RHS; 338 // Otherwise return "V op C" if it simplifies. 339 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 340 ++NumReassoc; 341 return W; 342 } 343 } 344 } 345 346 // The remaining transforms require commutativity as well as associativity. 347 if (!Instruction::isCommutative(Opcode)) 348 return nullptr; 349 350 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 351 if (Op0 && Op0->getOpcode() == Opcode) { 352 Value *A = Op0->getOperand(0); 353 Value *B = Op0->getOperand(1); 354 Value *C = RHS; 355 356 // Does "C op A" simplify? 357 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 358 // It does! Return "V op B" if it simplifies or is already available. 359 // If V equals A then "V op B" is just the LHS. 360 if (V == A) return LHS; 361 // Otherwise return "V op B" if it simplifies. 362 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 363 ++NumReassoc; 364 return W; 365 } 366 } 367 } 368 369 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 370 if (Op1 && Op1->getOpcode() == Opcode) { 371 Value *A = LHS; 372 Value *B = Op1->getOperand(0); 373 Value *C = Op1->getOperand(1); 374 375 // Does "C op A" simplify? 376 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 377 // It does! Return "B op V" if it simplifies or is already available. 378 // If V equals C then "B op V" is just the RHS. 379 if (V == C) return RHS; 380 // Otherwise return "B op V" if it simplifies. 381 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 382 ++NumReassoc; 383 return W; 384 } 385 } 386 } 387 388 return nullptr; 389 } 390 391 /// In the case of a binary operation with a select instruction as an operand, 392 /// try to simplify the binop by seeing whether evaluating it on both branches 393 /// of the select results in the same value. Returns the common value if so, 394 /// otherwise returns null. 395 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 396 Value *RHS, const SimplifyQuery &Q, 397 unsigned MaxRecurse) { 398 // Recursion is always used, so bail out at once if we already hit the limit. 399 if (!MaxRecurse--) 400 return nullptr; 401 402 SelectInst *SI; 403 if (isa<SelectInst>(LHS)) { 404 SI = cast<SelectInst>(LHS); 405 } else { 406 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 407 SI = cast<SelectInst>(RHS); 408 } 409 410 // Evaluate the BinOp on the true and false branches of the select. 411 Value *TV; 412 Value *FV; 413 if (SI == LHS) { 414 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 415 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 416 } else { 417 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 418 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 419 } 420 421 // If they simplified to the same value, then return the common value. 422 // If they both failed to simplify then return null. 423 if (TV == FV) 424 return TV; 425 426 // If one branch simplified to undef, return the other one. 427 if (TV && Q.isUndefValue(TV)) 428 return FV; 429 if (FV && Q.isUndefValue(FV)) 430 return TV; 431 432 // If applying the operation did not change the true and false select values, 433 // then the result of the binop is the select itself. 434 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 435 return SI; 436 437 // If one branch simplified and the other did not, and the simplified 438 // value is equal to the unsimplified one, return the simplified value. 439 // For example, select (cond, X, X & Z) & Z -> X & Z. 440 if ((FV && !TV) || (TV && !FV)) { 441 // Check that the simplified value has the form "X op Y" where "op" is the 442 // same as the original operation. 443 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 444 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 445 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 446 // We already know that "op" is the same as for the simplified value. See 447 // if the operands match too. If so, return the simplified value. 448 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 449 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 450 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 451 if (Simplified->getOperand(0) == UnsimplifiedLHS && 452 Simplified->getOperand(1) == UnsimplifiedRHS) 453 return Simplified; 454 if (Simplified->isCommutative() && 455 Simplified->getOperand(1) == UnsimplifiedLHS && 456 Simplified->getOperand(0) == UnsimplifiedRHS) 457 return Simplified; 458 } 459 } 460 461 return nullptr; 462 } 463 464 /// In the case of a comparison with a select instruction, try to simplify the 465 /// comparison by seeing whether both branches of the select result in the same 466 /// value. Returns the common value if so, otherwise returns null. 467 /// For example, if we have: 468 /// %tmp = select i1 %cmp, i32 1, i32 2 469 /// %cmp1 = icmp sle i32 %tmp, 3 470 /// We can simplify %cmp1 to true, because both branches of select are 471 /// less than 3. We compose new comparison by substituting %tmp with both 472 /// branches of select and see if it can be simplified. 473 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 474 Value *RHS, const SimplifyQuery &Q, 475 unsigned MaxRecurse) { 476 // Recursion is always used, so bail out at once if we already hit the limit. 477 if (!MaxRecurse--) 478 return nullptr; 479 480 // Make sure the select is on the LHS. 481 if (!isa<SelectInst>(LHS)) { 482 std::swap(LHS, RHS); 483 Pred = CmpInst::getSwappedPredicate(Pred); 484 } 485 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 486 SelectInst *SI = cast<SelectInst>(LHS); 487 Value *Cond = SI->getCondition(); 488 Value *TV = SI->getTrueValue(); 489 Value *FV = SI->getFalseValue(); 490 491 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 492 // Does "cmp TV, RHS" simplify? 493 Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse); 494 if (!TCmp) 495 return nullptr; 496 497 // Does "cmp FV, RHS" simplify? 498 Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse); 499 if (!FCmp) 500 return nullptr; 501 502 // If both sides simplified to the same value, then use it as the result of 503 // the original comparison. 504 if (TCmp == FCmp) 505 return TCmp; 506 507 // The remaining cases only make sense if the select condition has the same 508 // type as the result of the comparison, so bail out if this is not so. 509 if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy()) 510 return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse); 511 512 return nullptr; 513 } 514 515 /// In the case of a binary operation with an operand that is a PHI instruction, 516 /// try to simplify the binop by seeing whether evaluating it on the incoming 517 /// phi values yields the same result for every value. If so returns the common 518 /// value, otherwise returns null. 519 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 520 Value *RHS, const SimplifyQuery &Q, 521 unsigned MaxRecurse) { 522 // Recursion is always used, so bail out at once if we already hit the limit. 523 if (!MaxRecurse--) 524 return nullptr; 525 526 PHINode *PI; 527 if (isa<PHINode>(LHS)) { 528 PI = cast<PHINode>(LHS); 529 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 530 if (!valueDominatesPHI(RHS, PI, Q.DT)) 531 return nullptr; 532 } else { 533 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 534 PI = cast<PHINode>(RHS); 535 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 536 if (!valueDominatesPHI(LHS, PI, Q.DT)) 537 return nullptr; 538 } 539 540 // Evaluate the BinOp on the incoming phi values. 541 Value *CommonValue = nullptr; 542 for (Value *Incoming : PI->incoming_values()) { 543 // If the incoming value is the phi node itself, it can safely be skipped. 544 if (Incoming == PI) continue; 545 Value *V = PI == LHS ? 546 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 547 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 548 // If the operation failed to simplify, or simplified to a different value 549 // to previously, then give up. 550 if (!V || (CommonValue && V != CommonValue)) 551 return nullptr; 552 CommonValue = V; 553 } 554 555 return CommonValue; 556 } 557 558 /// In the case of a comparison with a PHI instruction, try to simplify the 559 /// comparison by seeing whether comparing with all of the incoming phi values 560 /// yields the same result every time. If so returns the common result, 561 /// otherwise returns null. 562 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 563 const SimplifyQuery &Q, unsigned MaxRecurse) { 564 // Recursion is always used, so bail out at once if we already hit the limit. 565 if (!MaxRecurse--) 566 return nullptr; 567 568 // Make sure the phi is on the LHS. 569 if (!isa<PHINode>(LHS)) { 570 std::swap(LHS, RHS); 571 Pred = CmpInst::getSwappedPredicate(Pred); 572 } 573 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 574 PHINode *PI = cast<PHINode>(LHS); 575 576 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 577 if (!valueDominatesPHI(RHS, PI, Q.DT)) 578 return nullptr; 579 580 // Evaluate the BinOp on the incoming phi values. 581 Value *CommonValue = nullptr; 582 for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) { 583 Value *Incoming = PI->getIncomingValue(u); 584 Instruction *InTI = PI->getIncomingBlock(u)->getTerminator(); 585 // If the incoming value is the phi node itself, it can safely be skipped. 586 if (Incoming == PI) continue; 587 // Change the context instruction to the "edge" that flows into the phi. 588 // This is important because that is where incoming is actually "evaluated" 589 // even though it is used later somewhere else. 590 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI), 591 MaxRecurse); 592 // If the operation failed to simplify, or simplified to a different value 593 // to previously, then give up. 594 if (!V || (CommonValue && V != CommonValue)) 595 return nullptr; 596 CommonValue = V; 597 } 598 599 return CommonValue; 600 } 601 602 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 603 Value *&Op0, Value *&Op1, 604 const SimplifyQuery &Q) { 605 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 606 if (auto *CRHS = dyn_cast<Constant>(Op1)) 607 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 608 609 // Canonicalize the constant to the RHS if this is a commutative operation. 610 if (Instruction::isCommutative(Opcode)) 611 std::swap(Op0, Op1); 612 } 613 return nullptr; 614 } 615 616 /// Given operands for an Add, see if we can fold the result. 617 /// If not, this returns null. 618 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 619 const SimplifyQuery &Q, unsigned MaxRecurse) { 620 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 621 return C; 622 623 // X + undef -> undef 624 if (Q.isUndefValue(Op1)) 625 return Op1; 626 627 // X + 0 -> X 628 if (match(Op1, m_Zero())) 629 return Op0; 630 631 // If two operands are negative, return 0. 632 if (isKnownNegation(Op0, Op1)) 633 return Constant::getNullValue(Op0->getType()); 634 635 // X + (Y - X) -> Y 636 // (Y - X) + X -> Y 637 // Eg: X + -X -> 0 638 Value *Y = nullptr; 639 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 640 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 641 return Y; 642 643 // X + ~X -> -1 since ~X = -X-1 644 Type *Ty = Op0->getType(); 645 if (match(Op0, m_Not(m_Specific(Op1))) || 646 match(Op1, m_Not(m_Specific(Op0)))) 647 return Constant::getAllOnesValue(Ty); 648 649 // add nsw/nuw (xor Y, signmask), signmask --> Y 650 // The no-wrapping add guarantees that the top bit will be set by the add. 651 // Therefore, the xor must be clearing the already set sign bit of Y. 652 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 653 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 654 return Y; 655 656 // add nuw %x, -1 -> -1, because %x can only be 0. 657 if (IsNUW && match(Op1, m_AllOnes())) 658 return Op1; // Which is -1. 659 660 /// i1 add -> xor. 661 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 662 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 663 return V; 664 665 // Try some generic simplifications for associative operations. 666 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 667 MaxRecurse)) 668 return V; 669 670 // Threading Add over selects and phi nodes is pointless, so don't bother. 671 // Threading over the select in "A + select(cond, B, C)" means evaluating 672 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 673 // only if B and C are equal. If B and C are equal then (since we assume 674 // that operands have already been simplified) "select(cond, B, C)" should 675 // have been simplified to the common value of B and C already. Analysing 676 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 677 // for threading over phi nodes. 678 679 return nullptr; 680 } 681 682 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 683 const SimplifyQuery &Query) { 684 return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 685 } 686 687 /// Compute the base pointer and cumulative constant offsets for V. 688 /// 689 /// This strips all constant offsets off of V, leaving it the base pointer, and 690 /// accumulates the total constant offset applied in the returned constant. It 691 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 692 /// no constant offsets applied. 693 /// 694 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 695 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 696 /// folding. 697 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 698 bool AllowNonInbounds = false) { 699 assert(V->getType()->isPtrOrPtrVectorTy()); 700 701 Type *IntIdxTy = DL.getIndexType(V->getType())->getScalarType(); 702 APInt Offset = APInt::getZero(IntIdxTy->getIntegerBitWidth()); 703 704 V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds); 705 // As that strip may trace through `addrspacecast`, need to sext or trunc 706 // the offset calculated. 707 IntIdxTy = DL.getIndexType(V->getType())->getScalarType(); 708 Offset = Offset.sextOrTrunc(IntIdxTy->getIntegerBitWidth()); 709 710 Constant *OffsetIntPtr = ConstantInt::get(IntIdxTy, Offset); 711 if (VectorType *VecTy = dyn_cast<VectorType>(V->getType())) 712 return ConstantVector::getSplat(VecTy->getElementCount(), OffsetIntPtr); 713 return OffsetIntPtr; 714 } 715 716 /// Compute the constant difference between two pointer values. 717 /// If the difference is not a constant, returns zero. 718 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 719 Value *RHS) { 720 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 721 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 722 723 // If LHS and RHS are not related via constant offsets to the same base 724 // value, there is nothing we can do here. 725 if (LHS != RHS) 726 return nullptr; 727 728 // Otherwise, the difference of LHS - RHS can be computed as: 729 // LHS - RHS 730 // = (LHSOffset + Base) - (RHSOffset + Base) 731 // = LHSOffset - RHSOffset 732 return ConstantExpr::getSub(LHSOffset, RHSOffset); 733 } 734 735 /// Given operands for a Sub, see if we can fold the result. 736 /// If not, this returns null. 737 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 738 const SimplifyQuery &Q, unsigned MaxRecurse) { 739 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 740 return C; 741 742 // X - poison -> poison 743 // poison - X -> poison 744 if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1)) 745 return PoisonValue::get(Op0->getType()); 746 747 // X - undef -> undef 748 // undef - X -> undef 749 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 750 return UndefValue::get(Op0->getType()); 751 752 // X - 0 -> X 753 if (match(Op1, m_Zero())) 754 return Op0; 755 756 // X - X -> 0 757 if (Op0 == Op1) 758 return Constant::getNullValue(Op0->getType()); 759 760 // Is this a negation? 761 if (match(Op0, m_Zero())) { 762 // 0 - X -> 0 if the sub is NUW. 763 if (isNUW) 764 return Constant::getNullValue(Op0->getType()); 765 766 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 767 if (Known.Zero.isMaxSignedValue()) { 768 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 769 // Op1 must be 0 because negating the minimum signed value is undefined. 770 if (isNSW) 771 return Constant::getNullValue(Op0->getType()); 772 773 // 0 - X -> X if X is 0 or the minimum signed value. 774 return Op1; 775 } 776 } 777 778 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 779 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 780 Value *X = nullptr, *Y = nullptr, *Z = Op1; 781 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 782 // See if "V === Y - Z" simplifies. 783 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 784 // It does! Now see if "X + V" simplifies. 785 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 786 // It does, we successfully reassociated! 787 ++NumReassoc; 788 return W; 789 } 790 // See if "V === X - Z" simplifies. 791 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 792 // It does! Now see if "Y + V" simplifies. 793 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 794 // It does, we successfully reassociated! 795 ++NumReassoc; 796 return W; 797 } 798 } 799 800 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 801 // For example, X - (X + 1) -> -1 802 X = Op0; 803 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 804 // See if "V === X - Y" simplifies. 805 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 806 // It does! Now see if "V - Z" simplifies. 807 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 808 // It does, we successfully reassociated! 809 ++NumReassoc; 810 return W; 811 } 812 // See if "V === X - Z" simplifies. 813 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 814 // It does! Now see if "V - Y" simplifies. 815 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 816 // It does, we successfully reassociated! 817 ++NumReassoc; 818 return W; 819 } 820 } 821 822 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 823 // For example, X - (X - Y) -> Y. 824 Z = Op0; 825 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 826 // See if "V === Z - X" simplifies. 827 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 828 // It does! Now see if "V + Y" simplifies. 829 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 830 // It does, we successfully reassociated! 831 ++NumReassoc; 832 return W; 833 } 834 835 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 836 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 837 match(Op1, m_Trunc(m_Value(Y)))) 838 if (X->getType() == Y->getType()) 839 // See if "V === X - Y" simplifies. 840 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 841 // It does! Now see if "trunc V" simplifies. 842 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 843 Q, MaxRecurse - 1)) 844 // It does, return the simplified "trunc V". 845 return W; 846 847 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 848 if (match(Op0, m_PtrToInt(m_Value(X))) && 849 match(Op1, m_PtrToInt(m_Value(Y)))) 850 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 851 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 852 853 // i1 sub -> xor. 854 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 855 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 856 return V; 857 858 // Threading Sub over selects and phi nodes is pointless, so don't bother. 859 // Threading over the select in "A - select(cond, B, C)" means evaluating 860 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 861 // only if B and C are equal. If B and C are equal then (since we assume 862 // that operands have already been simplified) "select(cond, B, C)" should 863 // have been simplified to the common value of B and C already. Analysing 864 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 865 // for threading over phi nodes. 866 867 return nullptr; 868 } 869 870 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 871 const SimplifyQuery &Q) { 872 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 873 } 874 875 /// Given operands for a Mul, see if we can fold the result. 876 /// If not, this returns null. 877 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 878 unsigned MaxRecurse) { 879 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 880 return C; 881 882 // X * poison -> poison 883 if (isa<PoisonValue>(Op1)) 884 return Op1; 885 886 // X * undef -> 0 887 // X * 0 -> 0 888 if (Q.isUndefValue(Op1) || match(Op1, m_Zero())) 889 return Constant::getNullValue(Op0->getType()); 890 891 // X * 1 -> X 892 if (match(Op1, m_One())) 893 return Op0; 894 895 // (X / Y) * Y -> X if the division is exact. 896 Value *X = nullptr; 897 if (Q.IIQ.UseInstrInfo && 898 (match(Op0, 899 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 900 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 901 return X; 902 903 // i1 mul -> and. 904 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 905 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 906 return V; 907 908 // Try some generic simplifications for associative operations. 909 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 910 MaxRecurse)) 911 return V; 912 913 // Mul distributes over Add. Try some generic simplifications based on this. 914 if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1, 915 Instruction::Add, Q, MaxRecurse)) 916 return V; 917 918 // If the operation is with the result of a select instruction, check whether 919 // operating on either branch of the select always yields the same value. 920 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 921 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 922 MaxRecurse)) 923 return V; 924 925 // If the operation is with the result of a phi instruction, check whether 926 // operating on all incoming values of the phi always yields the same value. 927 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 928 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 929 MaxRecurse)) 930 return V; 931 932 return nullptr; 933 } 934 935 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 936 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 937 } 938 939 /// Check for common or similar folds of integer division or integer remainder. 940 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 941 static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0, 942 Value *Op1, const SimplifyQuery &Q) { 943 bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv); 944 bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem); 945 946 Type *Ty = Op0->getType(); 947 948 // X / undef -> poison 949 // X % undef -> poison 950 if (Q.isUndefValue(Op1)) 951 return PoisonValue::get(Ty); 952 953 // X / 0 -> poison 954 // X % 0 -> poison 955 // We don't need to preserve faults! 956 if (match(Op1, m_Zero())) 957 return PoisonValue::get(Ty); 958 959 // If any element of a constant divisor fixed width vector is zero or undef 960 // the behavior is undefined and we can fold the whole op to poison. 961 auto *Op1C = dyn_cast<Constant>(Op1); 962 auto *VTy = dyn_cast<FixedVectorType>(Ty); 963 if (Op1C && VTy) { 964 unsigned NumElts = VTy->getNumElements(); 965 for (unsigned i = 0; i != NumElts; ++i) { 966 Constant *Elt = Op1C->getAggregateElement(i); 967 if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt))) 968 return PoisonValue::get(Ty); 969 } 970 } 971 972 // poison / X -> poison 973 // poison % X -> poison 974 if (isa<PoisonValue>(Op0)) 975 return Op0; 976 977 // undef / X -> 0 978 // undef % X -> 0 979 if (Q.isUndefValue(Op0)) 980 return Constant::getNullValue(Ty); 981 982 // 0 / X -> 0 983 // 0 % X -> 0 984 if (match(Op0, m_Zero())) 985 return Constant::getNullValue(Op0->getType()); 986 987 // X / X -> 1 988 // X % X -> 0 989 if (Op0 == Op1) 990 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 991 992 // X / 1 -> X 993 // X % 1 -> 0 994 // If this is a boolean op (single-bit element type), we can't have 995 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 996 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. 997 Value *X; 998 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || 999 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1000 return IsDiv ? Op0 : Constant::getNullValue(Ty); 1001 1002 // If X * Y does not overflow, then: 1003 // X * Y / Y -> X 1004 // X * Y % Y -> 0 1005 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1006 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1007 // The multiplication can't overflow if it is defined not to, or if 1008 // X == A / Y for some A. 1009 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 1010 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) || 1011 (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1012 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) { 1013 return IsDiv ? X : Constant::getNullValue(Op0->getType()); 1014 } 1015 } 1016 1017 return nullptr; 1018 } 1019 1020 /// Given a predicate and two operands, return true if the comparison is true. 1021 /// This is a helper for div/rem simplification where we return some other value 1022 /// when we can prove a relationship between the operands. 1023 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 1024 const SimplifyQuery &Q, unsigned MaxRecurse) { 1025 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 1026 Constant *C = dyn_cast_or_null<Constant>(V); 1027 return (C && C->isAllOnesValue()); 1028 } 1029 1030 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 1031 /// to simplify X % Y to X. 1032 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 1033 unsigned MaxRecurse, bool IsSigned) { 1034 // Recursion is always used, so bail out at once if we already hit the limit. 1035 if (!MaxRecurse--) 1036 return false; 1037 1038 if (IsSigned) { 1039 // |X| / |Y| --> 0 1040 // 1041 // We require that 1 operand is a simple constant. That could be extended to 1042 // 2 variables if we computed the sign bit for each. 1043 // 1044 // Make sure that a constant is not the minimum signed value because taking 1045 // the abs() of that is undefined. 1046 Type *Ty = X->getType(); 1047 const APInt *C; 1048 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 1049 // Is the variable divisor magnitude always greater than the constant 1050 // dividend magnitude? 1051 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 1052 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 1053 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 1054 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 1055 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 1056 return true; 1057 } 1058 if (match(Y, m_APInt(C))) { 1059 // Special-case: we can't take the abs() of a minimum signed value. If 1060 // that's the divisor, then all we have to do is prove that the dividend 1061 // is also not the minimum signed value. 1062 if (C->isMinSignedValue()) 1063 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 1064 1065 // Is the variable dividend magnitude always less than the constant 1066 // divisor magnitude? 1067 // |X| < |C| --> X > -abs(C) and X < abs(C) 1068 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 1069 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 1070 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 1071 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 1072 return true; 1073 } 1074 return false; 1075 } 1076 1077 // IsSigned == false. 1078 // Is the dividend unsigned less than the divisor? 1079 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1080 } 1081 1082 /// These are simplifications common to SDiv and UDiv. 1083 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1084 const SimplifyQuery &Q, unsigned MaxRecurse) { 1085 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1086 return C; 1087 1088 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q)) 1089 return V; 1090 1091 bool IsSigned = Opcode == Instruction::SDiv; 1092 1093 // (X rem Y) / Y -> 0 1094 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1095 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1096 return Constant::getNullValue(Op0->getType()); 1097 1098 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1099 ConstantInt *C1, *C2; 1100 if (!IsSigned && match(Op0, m_UDiv(m_Value(), m_ConstantInt(C1))) && 1101 match(Op1, m_ConstantInt(C2))) { 1102 bool Overflow; 1103 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1104 if (Overflow) 1105 return Constant::getNullValue(Op0->getType()); 1106 } 1107 1108 // If the operation is with the result of a select instruction, check whether 1109 // operating on either branch of the select always yields the same value. 1110 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1111 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1112 return V; 1113 1114 // If the operation is with the result of a phi instruction, check whether 1115 // operating on all incoming values of the phi always yields the same value. 1116 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1117 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1118 return V; 1119 1120 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1121 return Constant::getNullValue(Op0->getType()); 1122 1123 return nullptr; 1124 } 1125 1126 /// These are simplifications common to SRem and URem. 1127 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1128 const SimplifyQuery &Q, unsigned MaxRecurse) { 1129 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1130 return C; 1131 1132 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q)) 1133 return V; 1134 1135 // (X % Y) % Y -> X % Y 1136 if ((Opcode == Instruction::SRem && 1137 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1138 (Opcode == Instruction::URem && 1139 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1140 return Op0; 1141 1142 // (X << Y) % X -> 0 1143 if (Q.IIQ.UseInstrInfo && 1144 ((Opcode == Instruction::SRem && 1145 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1146 (Opcode == Instruction::URem && 1147 match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) 1148 return Constant::getNullValue(Op0->getType()); 1149 1150 // If the operation is with the result of a select instruction, check whether 1151 // operating on either branch of the select always yields the same value. 1152 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1153 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1154 return V; 1155 1156 // If the operation is with the result of a phi instruction, check whether 1157 // operating on all incoming values of the phi always yields the same value. 1158 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1159 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1160 return V; 1161 1162 // If X / Y == 0, then X % Y == X. 1163 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1164 return Op0; 1165 1166 return nullptr; 1167 } 1168 1169 /// Given operands for an SDiv, see if we can fold the result. 1170 /// If not, this returns null. 1171 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1172 unsigned MaxRecurse) { 1173 // If two operands are negated and no signed overflow, return -1. 1174 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1175 return Constant::getAllOnesValue(Op0->getType()); 1176 1177 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1178 } 1179 1180 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1181 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1182 } 1183 1184 /// Given operands for a UDiv, see if we can fold the result. 1185 /// If not, this returns null. 1186 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1187 unsigned MaxRecurse) { 1188 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1189 } 1190 1191 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1192 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1193 } 1194 1195 /// Given operands for an SRem, see if we can fold the result. 1196 /// If not, this returns null. 1197 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1198 unsigned MaxRecurse) { 1199 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1200 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1201 Value *X; 1202 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1203 return ConstantInt::getNullValue(Op0->getType()); 1204 1205 // If the two operands are negated, return 0. 1206 if (isKnownNegation(Op0, Op1)) 1207 return ConstantInt::getNullValue(Op0->getType()); 1208 1209 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1210 } 1211 1212 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1213 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1214 } 1215 1216 /// Given operands for a URem, see if we can fold the result. 1217 /// If not, this returns null. 1218 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1219 unsigned MaxRecurse) { 1220 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1221 } 1222 1223 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1224 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1225 } 1226 1227 /// Returns true if a shift by \c Amount always yields poison. 1228 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) { 1229 Constant *C = dyn_cast<Constant>(Amount); 1230 if (!C) 1231 return false; 1232 1233 // X shift by undef -> poison because it may shift by the bitwidth. 1234 if (Q.isUndefValue(C)) 1235 return true; 1236 1237 // Shifting by the bitwidth or more is undefined. 1238 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1239 if (CI->getValue().uge(CI->getType()->getScalarSizeInBits())) 1240 return true; 1241 1242 // If all lanes of a vector shift are undefined the whole shift is. 1243 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1244 for (unsigned I = 0, 1245 E = cast<FixedVectorType>(C->getType())->getNumElements(); 1246 I != E; ++I) 1247 if (!isPoisonShift(C->getAggregateElement(I), Q)) 1248 return false; 1249 return true; 1250 } 1251 1252 return false; 1253 } 1254 1255 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1256 /// If not, this returns null. 1257 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1258 Value *Op1, bool IsNSW, const SimplifyQuery &Q, 1259 unsigned MaxRecurse) { 1260 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1261 return C; 1262 1263 // poison shift by X -> poison 1264 if (isa<PoisonValue>(Op0)) 1265 return Op0; 1266 1267 // 0 shift by X -> 0 1268 if (match(Op0, m_Zero())) 1269 return Constant::getNullValue(Op0->getType()); 1270 1271 // X shift by 0 -> X 1272 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1273 // would be poison. 1274 Value *X; 1275 if (match(Op1, m_Zero()) || 1276 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1277 return Op0; 1278 1279 // Fold undefined shifts. 1280 if (isPoisonShift(Op1, Q)) 1281 return PoisonValue::get(Op0->getType()); 1282 1283 // If the operation is with the result of a select instruction, check whether 1284 // operating on either branch of the select always yields the same value. 1285 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1286 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1287 return V; 1288 1289 // If the operation is with the result of a phi instruction, check whether 1290 // operating on all incoming values of the phi always yields the same value. 1291 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1292 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1293 return V; 1294 1295 // If any bits in the shift amount make that value greater than or equal to 1296 // the number of bits in the type, the shift is undefined. 1297 KnownBits KnownAmt = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1298 if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth())) 1299 return PoisonValue::get(Op0->getType()); 1300 1301 // If all valid bits in the shift amount are known zero, the first operand is 1302 // unchanged. 1303 unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth()); 1304 if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits) 1305 return Op0; 1306 1307 // Check for nsw shl leading to a poison value. 1308 if (IsNSW) { 1309 assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction"); 1310 KnownBits KnownVal = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1311 KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt); 1312 1313 if (KnownVal.Zero.isSignBitSet()) 1314 KnownShl.Zero.setSignBit(); 1315 if (KnownVal.One.isSignBitSet()) 1316 KnownShl.One.setSignBit(); 1317 1318 if (KnownShl.hasConflict()) 1319 return PoisonValue::get(Op0->getType()); 1320 } 1321 1322 return nullptr; 1323 } 1324 1325 /// Given operands for an Shl, LShr or AShr, see if we can 1326 /// fold the result. If not, this returns null. 1327 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1328 Value *Op1, bool isExact, const SimplifyQuery &Q, 1329 unsigned MaxRecurse) { 1330 if (Value *V = 1331 SimplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse)) 1332 return V; 1333 1334 // X >> X -> 0 1335 if (Op0 == Op1) 1336 return Constant::getNullValue(Op0->getType()); 1337 1338 // undef >> X -> 0 1339 // undef >> X -> undef (if it's exact) 1340 if (Q.isUndefValue(Op0)) 1341 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1342 1343 // The low bit cannot be shifted out of an exact shift if it is set. 1344 if (isExact) { 1345 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1346 if (Op0Known.One[0]) 1347 return Op0; 1348 } 1349 1350 return nullptr; 1351 } 1352 1353 /// Given operands for an Shl, see if we can fold the result. 1354 /// If not, this returns null. 1355 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1356 const SimplifyQuery &Q, unsigned MaxRecurse) { 1357 if (Value *V = 1358 SimplifyShift(Instruction::Shl, Op0, Op1, isNSW, Q, MaxRecurse)) 1359 return V; 1360 1361 // undef << X -> 0 1362 // undef << X -> undef if (if it's NSW/NUW) 1363 if (Q.isUndefValue(Op0)) 1364 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1365 1366 // (X >> A) << A -> X 1367 Value *X; 1368 if (Q.IIQ.UseInstrInfo && 1369 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1370 return X; 1371 1372 // shl nuw i8 C, %x -> C iff C has sign bit set. 1373 if (isNUW && match(Op0, m_Negative())) 1374 return Op0; 1375 // NOTE: could use computeKnownBits() / LazyValueInfo, 1376 // but the cost-benefit analysis suggests it isn't worth it. 1377 1378 return nullptr; 1379 } 1380 1381 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1382 const SimplifyQuery &Q) { 1383 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1384 } 1385 1386 /// Given operands for an LShr, see if we can fold the result. 1387 /// If not, this returns null. 1388 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1389 const SimplifyQuery &Q, unsigned MaxRecurse) { 1390 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1391 MaxRecurse)) 1392 return V; 1393 1394 // (X << A) >> A -> X 1395 Value *X; 1396 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1397 return X; 1398 1399 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1400 // We can return X as we do in the above case since OR alters no bits in X. 1401 // SimplifyDemandedBits in InstCombine can do more general optimization for 1402 // bit manipulation. This pattern aims to provide opportunities for other 1403 // optimizers by supporting a simple but common case in InstSimplify. 1404 Value *Y; 1405 const APInt *ShRAmt, *ShLAmt; 1406 if (match(Op1, m_APInt(ShRAmt)) && 1407 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1408 *ShRAmt == *ShLAmt) { 1409 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1410 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 1411 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 1412 if (ShRAmt->uge(EffWidthY)) 1413 return X; 1414 } 1415 1416 return nullptr; 1417 } 1418 1419 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1420 const SimplifyQuery &Q) { 1421 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1422 } 1423 1424 /// Given operands for an AShr, see if we can fold the result. 1425 /// If not, this returns null. 1426 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1427 const SimplifyQuery &Q, unsigned MaxRecurse) { 1428 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1429 MaxRecurse)) 1430 return V; 1431 1432 // all ones >>a X -> -1 1433 // Do not return Op0 because it may contain undef elements if it's a vector. 1434 if (match(Op0, m_AllOnes())) 1435 return Constant::getAllOnesValue(Op0->getType()); 1436 1437 // (X << A) >> A -> X 1438 Value *X; 1439 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1440 return X; 1441 1442 // Arithmetic shifting an all-sign-bit value is a no-op. 1443 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1444 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1445 return Op0; 1446 1447 return nullptr; 1448 } 1449 1450 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1451 const SimplifyQuery &Q) { 1452 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1453 } 1454 1455 /// Commuted variants are assumed to be handled by calling this function again 1456 /// with the parameters swapped. 1457 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1458 ICmpInst *UnsignedICmp, bool IsAnd, 1459 const SimplifyQuery &Q) { 1460 Value *X, *Y; 1461 1462 ICmpInst::Predicate EqPred; 1463 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1464 !ICmpInst::isEquality(EqPred)) 1465 return nullptr; 1466 1467 ICmpInst::Predicate UnsignedPred; 1468 1469 Value *A, *B; 1470 // Y = (A - B); 1471 if (match(Y, m_Sub(m_Value(A), m_Value(B)))) { 1472 if (match(UnsignedICmp, 1473 m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) && 1474 ICmpInst::isUnsigned(UnsignedPred)) { 1475 // A >=/<= B || (A - B) != 0 <--> true 1476 if ((UnsignedPred == ICmpInst::ICMP_UGE || 1477 UnsignedPred == ICmpInst::ICMP_ULE) && 1478 EqPred == ICmpInst::ICMP_NE && !IsAnd) 1479 return ConstantInt::getTrue(UnsignedICmp->getType()); 1480 // A </> B && (A - B) == 0 <--> false 1481 if ((UnsignedPred == ICmpInst::ICMP_ULT || 1482 UnsignedPred == ICmpInst::ICMP_UGT) && 1483 EqPred == ICmpInst::ICMP_EQ && IsAnd) 1484 return ConstantInt::getFalse(UnsignedICmp->getType()); 1485 1486 // A </> B && (A - B) != 0 <--> A </> B 1487 // A </> B || (A - B) != 0 <--> (A - B) != 0 1488 if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT || 1489 UnsignedPred == ICmpInst::ICMP_UGT)) 1490 return IsAnd ? UnsignedICmp : ZeroICmp; 1491 1492 // A <=/>= B && (A - B) == 0 <--> (A - B) == 0 1493 // A <=/>= B || (A - B) == 0 <--> A <=/>= B 1494 if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE || 1495 UnsignedPred == ICmpInst::ICMP_UGE)) 1496 return IsAnd ? ZeroICmp : UnsignedICmp; 1497 } 1498 1499 // Given Y = (A - B) 1500 // Y >= A && Y != 0 --> Y >= A iff B != 0 1501 // Y < A || Y == 0 --> Y < A iff B != 0 1502 if (match(UnsignedICmp, 1503 m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) { 1504 if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd && 1505 EqPred == ICmpInst::ICMP_NE && 1506 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1507 return UnsignedICmp; 1508 if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd && 1509 EqPred == ICmpInst::ICMP_EQ && 1510 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1511 return UnsignedICmp; 1512 } 1513 } 1514 1515 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1516 ICmpInst::isUnsigned(UnsignedPred)) 1517 ; 1518 else if (match(UnsignedICmp, 1519 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1520 ICmpInst::isUnsigned(UnsignedPred)) 1521 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1522 else 1523 return nullptr; 1524 1525 // X > Y && Y == 0 --> Y == 0 iff X != 0 1526 // X > Y || Y == 0 --> X > Y iff X != 0 1527 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1528 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1529 return IsAnd ? ZeroICmp : UnsignedICmp; 1530 1531 // X <= Y && Y != 0 --> X <= Y iff X != 0 1532 // X <= Y || Y != 0 --> Y != 0 iff X != 0 1533 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1534 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1535 return IsAnd ? UnsignedICmp : ZeroICmp; 1536 1537 // The transforms below here are expected to be handled more generally with 1538 // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's 1539 // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap, 1540 // these are candidates for removal. 1541 1542 // X < Y && Y != 0 --> X < Y 1543 // X < Y || Y != 0 --> Y != 0 1544 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1545 return IsAnd ? UnsignedICmp : ZeroICmp; 1546 1547 // X >= Y && Y == 0 --> Y == 0 1548 // X >= Y || Y == 0 --> X >= Y 1549 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ) 1550 return IsAnd ? ZeroICmp : UnsignedICmp; 1551 1552 // X < Y && Y == 0 --> false 1553 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1554 IsAnd) 1555 return getFalse(UnsignedICmp->getType()); 1556 1557 // X >= Y || Y != 0 --> true 1558 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE && 1559 !IsAnd) 1560 return getTrue(UnsignedICmp->getType()); 1561 1562 return nullptr; 1563 } 1564 1565 /// Commuted variants are assumed to be handled by calling this function again 1566 /// with the parameters swapped. 1567 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1568 ICmpInst::Predicate Pred0, Pred1; 1569 Value *A ,*B; 1570 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1571 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1572 return nullptr; 1573 1574 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1575 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1576 // can eliminate Op1 from this 'and'. 1577 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1578 return Op0; 1579 1580 // Check for any combination of predicates that are guaranteed to be disjoint. 1581 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1582 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1583 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1584 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1585 return getFalse(Op0->getType()); 1586 1587 return nullptr; 1588 } 1589 1590 /// Commuted variants are assumed to be handled by calling this function again 1591 /// with the parameters swapped. 1592 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1593 ICmpInst::Predicate Pred0, Pred1; 1594 Value *A ,*B; 1595 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1596 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1597 return nullptr; 1598 1599 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1600 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1601 // can eliminate Op0 from this 'or'. 1602 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1603 return Op1; 1604 1605 // Check for any combination of predicates that cover the entire range of 1606 // possibilities. 1607 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1608 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1609 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1610 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1611 return getTrue(Op0->getType()); 1612 1613 return nullptr; 1614 } 1615 1616 /// Test if a pair of compares with a shared operand and 2 constants has an 1617 /// empty set intersection, full set union, or if one compare is a superset of 1618 /// the other. 1619 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1620 bool IsAnd) { 1621 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1622 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1623 return nullptr; 1624 1625 const APInt *C0, *C1; 1626 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1627 !match(Cmp1->getOperand(1), m_APInt(C1))) 1628 return nullptr; 1629 1630 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1631 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1632 1633 // For and-of-compares, check if the intersection is empty: 1634 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1635 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1636 return getFalse(Cmp0->getType()); 1637 1638 // For or-of-compares, check if the union is full: 1639 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1640 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1641 return getTrue(Cmp0->getType()); 1642 1643 // Is one range a superset of the other? 1644 // If this is and-of-compares, take the smaller set: 1645 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1646 // If this is or-of-compares, take the larger set: 1647 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1648 if (Range0.contains(Range1)) 1649 return IsAnd ? Cmp1 : Cmp0; 1650 if (Range1.contains(Range0)) 1651 return IsAnd ? Cmp0 : Cmp1; 1652 1653 return nullptr; 1654 } 1655 1656 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1657 bool IsAnd) { 1658 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1659 if (!match(Cmp0->getOperand(1), m_Zero()) || 1660 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1661 return nullptr; 1662 1663 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1664 return nullptr; 1665 1666 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1667 Value *X = Cmp0->getOperand(0); 1668 Value *Y = Cmp1->getOperand(0); 1669 1670 // If one of the compares is a masked version of a (not) null check, then 1671 // that compare implies the other, so we eliminate the other. Optionally, look 1672 // through a pointer-to-int cast to match a null check of a pointer type. 1673 1674 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1675 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1676 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1677 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1678 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1679 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1680 return Cmp1; 1681 1682 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1683 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1684 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1685 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1686 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1687 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1688 return Cmp0; 1689 1690 return nullptr; 1691 } 1692 1693 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1694 const InstrInfoQuery &IIQ) { 1695 // (icmp (add V, C0), C1) & (icmp V, C0) 1696 ICmpInst::Predicate Pred0, Pred1; 1697 const APInt *C0, *C1; 1698 Value *V; 1699 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1700 return nullptr; 1701 1702 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1703 return nullptr; 1704 1705 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1706 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1707 return nullptr; 1708 1709 Type *ITy = Op0->getType(); 1710 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1711 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1712 1713 const APInt Delta = *C1 - *C0; 1714 if (C0->isStrictlyPositive()) { 1715 if (Delta == 2) { 1716 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1717 return getFalse(ITy); 1718 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1719 return getFalse(ITy); 1720 } 1721 if (Delta == 1) { 1722 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1723 return getFalse(ITy); 1724 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1725 return getFalse(ITy); 1726 } 1727 } 1728 if (C0->getBoolValue() && isNUW) { 1729 if (Delta == 2) 1730 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1731 return getFalse(ITy); 1732 if (Delta == 1) 1733 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1734 return getFalse(ITy); 1735 } 1736 1737 return nullptr; 1738 } 1739 1740 /// Try to eliminate compares with signed or unsigned min/max constants. 1741 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1, 1742 bool IsAnd) { 1743 // Canonicalize an equality compare as Cmp0. 1744 if (Cmp1->isEquality()) 1745 std::swap(Cmp0, Cmp1); 1746 if (!Cmp0->isEquality()) 1747 return nullptr; 1748 1749 // The non-equality compare must include a common operand (X). Canonicalize 1750 // the common operand as operand 0 (the predicate is swapped if the common 1751 // operand was operand 1). 1752 ICmpInst::Predicate Pred0 = Cmp0->getPredicate(); 1753 Value *X = Cmp0->getOperand(0); 1754 ICmpInst::Predicate Pred1; 1755 bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value())); 1756 if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value()))) 1757 return nullptr; 1758 if (ICmpInst::isEquality(Pred1)) 1759 return nullptr; 1760 1761 // The equality compare must be against a constant. Flip bits if we matched 1762 // a bitwise not. Convert a null pointer constant to an integer zero value. 1763 APInt MinMaxC; 1764 const APInt *C; 1765 if (match(Cmp0->getOperand(1), m_APInt(C))) 1766 MinMaxC = HasNotOp ? ~*C : *C; 1767 else if (isa<ConstantPointerNull>(Cmp0->getOperand(1))) 1768 MinMaxC = APInt::getZero(8); 1769 else 1770 return nullptr; 1771 1772 // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1. 1773 if (!IsAnd) { 1774 Pred0 = ICmpInst::getInversePredicate(Pred0); 1775 Pred1 = ICmpInst::getInversePredicate(Pred1); 1776 } 1777 1778 // Normalize to unsigned compare and unsigned min/max value. 1779 // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255 1780 if (ICmpInst::isSigned(Pred1)) { 1781 Pred1 = ICmpInst::getUnsignedPredicate(Pred1); 1782 MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth()); 1783 } 1784 1785 // (X != MAX) && (X < Y) --> X < Y 1786 // (X == MAX) || (X >= Y) --> X >= Y 1787 if (MinMaxC.isMaxValue()) 1788 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) 1789 return Cmp1; 1790 1791 // (X != MIN) && (X > Y) --> X > Y 1792 // (X == MIN) || (X <= Y) --> X <= Y 1793 if (MinMaxC.isMinValue()) 1794 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT) 1795 return Cmp1; 1796 1797 return nullptr; 1798 } 1799 1800 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1801 const SimplifyQuery &Q) { 1802 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q)) 1803 return X; 1804 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q)) 1805 return X; 1806 1807 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1808 return X; 1809 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1810 return X; 1811 1812 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1813 return X; 1814 1815 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true)) 1816 return X; 1817 1818 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1819 return X; 1820 1821 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1822 return X; 1823 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1824 return X; 1825 1826 return nullptr; 1827 } 1828 1829 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1830 const InstrInfoQuery &IIQ) { 1831 // (icmp (add V, C0), C1) | (icmp V, C0) 1832 ICmpInst::Predicate Pred0, Pred1; 1833 const APInt *C0, *C1; 1834 Value *V; 1835 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1836 return nullptr; 1837 1838 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1839 return nullptr; 1840 1841 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1842 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1843 return nullptr; 1844 1845 Type *ITy = Op0->getType(); 1846 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1847 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1848 1849 const APInt Delta = *C1 - *C0; 1850 if (C0->isStrictlyPositive()) { 1851 if (Delta == 2) { 1852 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1853 return getTrue(ITy); 1854 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1855 return getTrue(ITy); 1856 } 1857 if (Delta == 1) { 1858 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1859 return getTrue(ITy); 1860 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1861 return getTrue(ITy); 1862 } 1863 } 1864 if (C0->getBoolValue() && isNUW) { 1865 if (Delta == 2) 1866 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1867 return getTrue(ITy); 1868 if (Delta == 1) 1869 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1870 return getTrue(ITy); 1871 } 1872 1873 return nullptr; 1874 } 1875 1876 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1877 const SimplifyQuery &Q) { 1878 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q)) 1879 return X; 1880 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q)) 1881 return X; 1882 1883 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1884 return X; 1885 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1886 return X; 1887 1888 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1889 return X; 1890 1891 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false)) 1892 return X; 1893 1894 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1895 return X; 1896 1897 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1898 return X; 1899 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1900 return X; 1901 1902 return nullptr; 1903 } 1904 1905 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, 1906 FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1907 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1908 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1909 if (LHS0->getType() != RHS0->getType()) 1910 return nullptr; 1911 1912 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1913 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1914 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1915 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1916 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1917 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1918 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1919 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1920 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1921 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1922 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1923 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1924 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1))) 1925 return RHS; 1926 1927 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1928 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1929 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1930 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1931 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1932 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1933 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1934 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1935 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1936 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1))) 1937 return LHS; 1938 } 1939 1940 return nullptr; 1941 } 1942 1943 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, 1944 Value *Op0, Value *Op1, bool IsAnd) { 1945 // Look through casts of the 'and' operands to find compares. 1946 auto *Cast0 = dyn_cast<CastInst>(Op0); 1947 auto *Cast1 = dyn_cast<CastInst>(Op1); 1948 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1949 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1950 Op0 = Cast0->getOperand(0); 1951 Op1 = Cast1->getOperand(0); 1952 } 1953 1954 Value *V = nullptr; 1955 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1956 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1957 if (ICmp0 && ICmp1) 1958 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q) 1959 : simplifyOrOfICmps(ICmp0, ICmp1, Q); 1960 1961 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1962 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1963 if (FCmp0 && FCmp1) 1964 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd); 1965 1966 if (!V) 1967 return nullptr; 1968 if (!Cast0) 1969 return V; 1970 1971 // If we looked through casts, we can only handle a constant simplification 1972 // because we are not allowed to create a cast instruction here. 1973 if (auto *C = dyn_cast<Constant>(V)) 1974 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1975 1976 return nullptr; 1977 } 1978 1979 /// Given a bitwise logic op, check if the operands are add/sub with a common 1980 /// source value and inverted constant (identity: C - X -> ~(X + ~C)). 1981 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1, 1982 Instruction::BinaryOps Opcode) { 1983 assert(Op0->getType() == Op1->getType() && "Mismatched binop types"); 1984 assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op"); 1985 Value *X; 1986 Constant *C1, *C2; 1987 if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) && 1988 match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) || 1989 (match(Op1, m_Add(m_Value(X), m_Constant(C1))) && 1990 match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) { 1991 if (ConstantExpr::getNot(C1) == C2) { 1992 // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0 1993 // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1 1994 // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1 1995 Type *Ty = Op0->getType(); 1996 return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty) 1997 : ConstantInt::getAllOnesValue(Ty); 1998 } 1999 } 2000 return nullptr; 2001 } 2002 2003 /// Given operands for an And, see if we can fold the result. 2004 /// If not, this returns null. 2005 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2006 unsigned MaxRecurse) { 2007 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 2008 return C; 2009 2010 // X & poison -> poison 2011 if (isa<PoisonValue>(Op1)) 2012 return Op1; 2013 2014 // X & undef -> 0 2015 if (Q.isUndefValue(Op1)) 2016 return Constant::getNullValue(Op0->getType()); 2017 2018 // X & X = X 2019 if (Op0 == Op1) 2020 return Op0; 2021 2022 // X & 0 = 0 2023 if (match(Op1, m_Zero())) 2024 return Constant::getNullValue(Op0->getType()); 2025 2026 // X & -1 = X 2027 if (match(Op1, m_AllOnes())) 2028 return Op0; 2029 2030 // A & ~A = ~A & A = 0 2031 if (match(Op0, m_Not(m_Specific(Op1))) || 2032 match(Op1, m_Not(m_Specific(Op0)))) 2033 return Constant::getNullValue(Op0->getType()); 2034 2035 // (A | ?) & A = A 2036 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 2037 return Op1; 2038 2039 // A & (A | ?) = A 2040 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 2041 return Op0; 2042 2043 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And)) 2044 return V; 2045 2046 // A mask that only clears known zeros of a shifted value is a no-op. 2047 Value *X; 2048 const APInt *Mask; 2049 const APInt *ShAmt; 2050 if (match(Op1, m_APInt(Mask))) { 2051 // If all bits in the inverted and shifted mask are clear: 2052 // and (shl X, ShAmt), Mask --> shl X, ShAmt 2053 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 2054 (~(*Mask)).lshr(*ShAmt).isNullValue()) 2055 return Op0; 2056 2057 // If all bits in the inverted and shifted mask are clear: 2058 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 2059 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 2060 (~(*Mask)).shl(*ShAmt).isNullValue()) 2061 return Op0; 2062 } 2063 2064 // If we have a multiplication overflow check that is being 'and'ed with a 2065 // check that one of the multipliers is not zero, we can omit the 'and', and 2066 // only keep the overflow check. 2067 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true)) 2068 return Op1; 2069 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, true)) 2070 return Op0; 2071 2072 // A & (-A) = A if A is a power of two or zero. 2073 if (match(Op0, m_Neg(m_Specific(Op1))) || 2074 match(Op1, m_Neg(m_Specific(Op0)))) { 2075 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2076 Q.DT)) 2077 return Op0; 2078 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2079 Q.DT)) 2080 return Op1; 2081 } 2082 2083 // This is a similar pattern used for checking if a value is a power-of-2: 2084 // (A - 1) & A --> 0 (if A is a power-of-2 or 0) 2085 // A & (A - 1) --> 0 (if A is a power-of-2 or 0) 2086 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) && 2087 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2088 return Constant::getNullValue(Op1->getType()); 2089 if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) && 2090 isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2091 return Constant::getNullValue(Op0->getType()); 2092 2093 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 2094 return V; 2095 2096 // Try some generic simplifications for associative operations. 2097 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 2098 MaxRecurse)) 2099 return V; 2100 2101 // And distributes over Or. Try some generic simplifications based on this. 2102 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2103 Instruction::Or, Q, MaxRecurse)) 2104 return V; 2105 2106 // And distributes over Xor. Try some generic simplifications based on this. 2107 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2108 Instruction::Xor, Q, MaxRecurse)) 2109 return V; 2110 2111 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2112 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2113 // A & (A && B) -> A && B 2114 if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero()))) 2115 return Op1; 2116 else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero()))) 2117 return Op0; 2118 } 2119 // If the operation is with the result of a select instruction, check 2120 // whether operating on either branch of the select always yields the same 2121 // value. 2122 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 2123 MaxRecurse)) 2124 return V; 2125 } 2126 2127 // If the operation is with the result of a phi instruction, check whether 2128 // operating on all incoming values of the phi always yields the same value. 2129 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2130 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 2131 MaxRecurse)) 2132 return V; 2133 2134 // Assuming the effective width of Y is not larger than A, i.e. all bits 2135 // from X and Y are disjoint in (X << A) | Y, 2136 // if the mask of this AND op covers all bits of X or Y, while it covers 2137 // no bits from the other, we can bypass this AND op. E.g., 2138 // ((X << A) | Y) & Mask -> Y, 2139 // if Mask = ((1 << effective_width_of(Y)) - 1) 2140 // ((X << A) | Y) & Mask -> X << A, 2141 // if Mask = ((1 << effective_width_of(X)) - 1) << A 2142 // SimplifyDemandedBits in InstCombine can optimize the general case. 2143 // This pattern aims to help other passes for a common case. 2144 Value *Y, *XShifted; 2145 if (match(Op1, m_APInt(Mask)) && 2146 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 2147 m_Value(XShifted)), 2148 m_Value(Y)))) { 2149 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 2150 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 2151 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2152 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 2153 if (EffWidthY <= ShftCnt) { 2154 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, 2155 Q.DT); 2156 const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros(); 2157 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 2158 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 2159 // If the mask is extracting all bits from X or Y as is, we can skip 2160 // this AND op. 2161 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 2162 return Y; 2163 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 2164 return XShifted; 2165 } 2166 } 2167 2168 return nullptr; 2169 } 2170 2171 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2172 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 2173 } 2174 2175 /// Given operands for an Or, see if we can fold the result. 2176 /// If not, this returns null. 2177 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2178 unsigned MaxRecurse) { 2179 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 2180 return C; 2181 2182 // X | poison -> poison 2183 if (isa<PoisonValue>(Op1)) 2184 return Op1; 2185 2186 // X | undef -> -1 2187 // X | -1 = -1 2188 // Do not return Op1 because it may contain undef elements if it's a vector. 2189 if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes())) 2190 return Constant::getAllOnesValue(Op0->getType()); 2191 2192 // X | X = X 2193 // X | 0 = X 2194 if (Op0 == Op1 || match(Op1, m_Zero())) 2195 return Op0; 2196 2197 // A | ~A = ~A | A = -1 2198 if (match(Op0, m_Not(m_Specific(Op1))) || 2199 match(Op1, m_Not(m_Specific(Op0)))) 2200 return Constant::getAllOnesValue(Op0->getType()); 2201 2202 // (A & ?) | A = A 2203 if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) 2204 return Op1; 2205 2206 // A | (A & ?) = A 2207 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) 2208 return Op0; 2209 2210 // ~(A & ?) | A = -1 2211 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 2212 return Constant::getAllOnesValue(Op1->getType()); 2213 2214 // A | ~(A & ?) = -1 2215 if (match(Op1, m_Not(m_c_And(m_Specific(Op0), m_Value())))) 2216 return Constant::getAllOnesValue(Op0->getType()); 2217 2218 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or)) 2219 return V; 2220 2221 Value *A, *B, *NotA; 2222 // (A & ~B) | (A ^ B) -> (A ^ B) 2223 // (~B & A) | (A ^ B) -> (A ^ B) 2224 // (A & ~B) | (B ^ A) -> (B ^ A) 2225 // (~B & A) | (B ^ A) -> (B ^ A) 2226 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 2227 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 2228 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 2229 return Op1; 2230 2231 // Commute the 'or' operands. 2232 // (A ^ B) | (A & ~B) -> (A ^ B) 2233 // (A ^ B) | (~B & A) -> (A ^ B) 2234 // (B ^ A) | (A & ~B) -> (B ^ A) 2235 // (B ^ A) | (~B & A) -> (B ^ A) 2236 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 2237 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 2238 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 2239 return Op0; 2240 2241 // (A & B) | (~A ^ B) -> (~A ^ B) 2242 // (B & A) | (~A ^ B) -> (~A ^ B) 2243 // (A & B) | (B ^ ~A) -> (B ^ ~A) 2244 // (B & A) | (B ^ ~A) -> (B ^ ~A) 2245 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 2246 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 2247 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 2248 return Op1; 2249 2250 // Commute the 'or' operands. 2251 // (~A ^ B) | (A & B) -> (~A ^ B) 2252 // (~A ^ B) | (B & A) -> (~A ^ B) 2253 // (B ^ ~A) | (A & B) -> (B ^ ~A) 2254 // (B ^ ~A) | (B & A) -> (B ^ ~A) 2255 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 2256 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 2257 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 2258 return Op0; 2259 2260 // (~A & B) | ~(A | B) --> ~A 2261 // (~A & B) | ~(B | A) --> ~A 2262 // (B & ~A) | ~(A | B) --> ~A 2263 // (B & ~A) | ~(B | A) --> ~A 2264 if (match(Op0, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))), 2265 m_Value(B))) && 2266 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 2267 return NotA; 2268 2269 // Commute the 'or' operands. 2270 // ~(A | B) | (~A & B) --> ~A 2271 // ~(B | A) | (~A & B) --> ~A 2272 // ~(A | B) | (B & ~A) --> ~A 2273 // ~(B | A) | (B & ~A) --> ~A 2274 if (match(Op1, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))), 2275 m_Value(B))) && 2276 match(Op0, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 2277 return NotA; 2278 2279 // Rotated -1 is still -1: 2280 // (-1 << X) | (-1 >> (C - X)) --> -1 2281 // (-1 >> X) | (-1 << (C - X)) --> -1 2282 // ...with C <= bitwidth (and commuted variants). 2283 Value *X, *Y; 2284 if ((match(Op0, m_Shl(m_AllOnes(), m_Value(X))) && 2285 match(Op1, m_LShr(m_AllOnes(), m_Value(Y)))) || 2286 (match(Op1, m_Shl(m_AllOnes(), m_Value(X))) && 2287 match(Op0, m_LShr(m_AllOnes(), m_Value(Y))))) { 2288 const APInt *C; 2289 if ((match(X, m_Sub(m_APInt(C), m_Specific(Y))) || 2290 match(Y, m_Sub(m_APInt(C), m_Specific(X)))) && 2291 C->ule(X->getType()->getScalarSizeInBits())) { 2292 return ConstantInt::getAllOnesValue(X->getType()); 2293 } 2294 } 2295 2296 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 2297 return V; 2298 2299 // If we have a multiplication overflow check that is being 'and'ed with a 2300 // check that one of the multipliers is not zero, we can omit the 'and', and 2301 // only keep the overflow check. 2302 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false)) 2303 return Op1; 2304 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false)) 2305 return Op0; 2306 2307 // Try some generic simplifications for associative operations. 2308 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 2309 MaxRecurse)) 2310 return V; 2311 2312 // Or distributes over And. Try some generic simplifications based on this. 2313 if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1, 2314 Instruction::And, Q, MaxRecurse)) 2315 return V; 2316 2317 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2318 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2319 // A | (A || B) -> A || B 2320 if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value()))) 2321 return Op1; 2322 else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value()))) 2323 return Op0; 2324 } 2325 // If the operation is with the result of a select instruction, check 2326 // whether operating on either branch of the select always yields the same 2327 // value. 2328 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 2329 MaxRecurse)) 2330 return V; 2331 } 2332 2333 // (A & C1)|(B & C2) 2334 const APInt *C1, *C2; 2335 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2336 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2337 if (*C1 == ~*C2) { 2338 // (A & C1)|(B & C2) 2339 // If we have: ((V + N) & C1) | (V & C2) 2340 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2341 // replace with V+N. 2342 Value *N; 2343 if (C2->isMask() && // C2 == 0+1+ 2344 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2345 // Add commutes, try both ways. 2346 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2347 return A; 2348 } 2349 // Or commutes, try both ways. 2350 if (C1->isMask() && 2351 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2352 // Add commutes, try both ways. 2353 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2354 return B; 2355 } 2356 } 2357 } 2358 2359 // If the operation is with the result of a phi instruction, check whether 2360 // operating on all incoming values of the phi always yields the same value. 2361 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2362 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2363 return V; 2364 2365 return nullptr; 2366 } 2367 2368 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2369 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 2370 } 2371 2372 /// Given operands for a Xor, see if we can fold the result. 2373 /// If not, this returns null. 2374 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2375 unsigned MaxRecurse) { 2376 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2377 return C; 2378 2379 // A ^ undef -> undef 2380 if (Q.isUndefValue(Op1)) 2381 return Op1; 2382 2383 // A ^ 0 = A 2384 if (match(Op1, m_Zero())) 2385 return Op0; 2386 2387 // A ^ A = 0 2388 if (Op0 == Op1) 2389 return Constant::getNullValue(Op0->getType()); 2390 2391 // A ^ ~A = ~A ^ A = -1 2392 if (match(Op0, m_Not(m_Specific(Op1))) || 2393 match(Op1, m_Not(m_Specific(Op0)))) 2394 return Constant::getAllOnesValue(Op0->getType()); 2395 2396 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor)) 2397 return V; 2398 2399 // Try some generic simplifications for associative operations. 2400 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 2401 MaxRecurse)) 2402 return V; 2403 2404 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2405 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2406 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2407 // only if B and C are equal. If B and C are equal then (since we assume 2408 // that operands have already been simplified) "select(cond, B, C)" should 2409 // have been simplified to the common value of B and C already. Analysing 2410 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2411 // for threading over phi nodes. 2412 2413 return nullptr; 2414 } 2415 2416 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2417 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 2418 } 2419 2420 2421 static Type *GetCompareTy(Value *Op) { 2422 return CmpInst::makeCmpResultType(Op->getType()); 2423 } 2424 2425 /// Rummage around inside V looking for something equivalent to the comparison 2426 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2427 /// Helper function for analyzing max/min idioms. 2428 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2429 Value *LHS, Value *RHS) { 2430 SelectInst *SI = dyn_cast<SelectInst>(V); 2431 if (!SI) 2432 return nullptr; 2433 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2434 if (!Cmp) 2435 return nullptr; 2436 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2437 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2438 return Cmp; 2439 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2440 LHS == CmpRHS && RHS == CmpLHS) 2441 return Cmp; 2442 return nullptr; 2443 } 2444 2445 // A significant optimization not implemented here is assuming that alloca 2446 // addresses are not equal to incoming argument values. They don't *alias*, 2447 // as we say, but that doesn't mean they aren't equal, so we take a 2448 // conservative approach. 2449 // 2450 // This is inspired in part by C++11 5.10p1: 2451 // "Two pointers of the same type compare equal if and only if they are both 2452 // null, both point to the same function, or both represent the same 2453 // address." 2454 // 2455 // This is pretty permissive. 2456 // 2457 // It's also partly due to C11 6.5.9p6: 2458 // "Two pointers compare equal if and only if both are null pointers, both are 2459 // pointers to the same object (including a pointer to an object and a 2460 // subobject at its beginning) or function, both are pointers to one past the 2461 // last element of the same array object, or one is a pointer to one past the 2462 // end of one array object and the other is a pointer to the start of a 2463 // different array object that happens to immediately follow the first array 2464 // object in the address space.) 2465 // 2466 // C11's version is more restrictive, however there's no reason why an argument 2467 // couldn't be a one-past-the-end value for a stack object in the caller and be 2468 // equal to the beginning of a stack object in the callee. 2469 // 2470 // If the C and C++ standards are ever made sufficiently restrictive in this 2471 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2472 // this optimization. 2473 static Constant * 2474 computePointerICmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 2475 const SimplifyQuery &Q) { 2476 const DataLayout &DL = Q.DL; 2477 const TargetLibraryInfo *TLI = Q.TLI; 2478 const DominatorTree *DT = Q.DT; 2479 const Instruction *CxtI = Q.CxtI; 2480 const InstrInfoQuery &IIQ = Q.IIQ; 2481 2482 // First, skip past any trivial no-ops. 2483 LHS = LHS->stripPointerCasts(); 2484 RHS = RHS->stripPointerCasts(); 2485 2486 // A non-null pointer is not equal to a null pointer. 2487 if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) && 2488 llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, 2489 IIQ.UseInstrInfo)) 2490 return ConstantInt::get(GetCompareTy(LHS), 2491 !CmpInst::isTrueWhenEqual(Pred)); 2492 2493 // We can only fold certain predicates on pointer comparisons. 2494 switch (Pred) { 2495 default: 2496 return nullptr; 2497 2498 // Equality comaprisons are easy to fold. 2499 case CmpInst::ICMP_EQ: 2500 case CmpInst::ICMP_NE: 2501 break; 2502 2503 // We can only handle unsigned relational comparisons because 'inbounds' on 2504 // a GEP only protects against unsigned wrapping. 2505 case CmpInst::ICMP_UGT: 2506 case CmpInst::ICMP_UGE: 2507 case CmpInst::ICMP_ULT: 2508 case CmpInst::ICMP_ULE: 2509 // However, we have to switch them to their signed variants to handle 2510 // negative indices from the base pointer. 2511 Pred = ICmpInst::getSignedPredicate(Pred); 2512 break; 2513 } 2514 2515 // Strip off any constant offsets so that we can reason about them. 2516 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2517 // here and compare base addresses like AliasAnalysis does, however there are 2518 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2519 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2520 // doesn't need to guarantee pointer inequality when it says NoAlias. 2521 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2522 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2523 2524 // If LHS and RHS are related via constant offsets to the same base 2525 // value, we can replace it with an icmp which just compares the offsets. 2526 if (LHS == RHS) 2527 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2528 2529 // Various optimizations for (in)equality comparisons. 2530 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2531 // Different non-empty allocations that exist at the same time have 2532 // different addresses (if the program can tell). Global variables always 2533 // exist, so they always exist during the lifetime of each other and all 2534 // allocas. Two different allocas usually have different addresses... 2535 // 2536 // However, if there's an @llvm.stackrestore dynamically in between two 2537 // allocas, they may have the same address. It's tempting to reduce the 2538 // scope of the problem by only looking at *static* allocas here. That would 2539 // cover the majority of allocas while significantly reducing the likelihood 2540 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2541 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2542 // an entry block. Also, if we have a block that's not attached to a 2543 // function, we can't tell if it's "static" under the current definition. 2544 // Theoretically, this problem could be fixed by creating a new kind of 2545 // instruction kind specifically for static allocas. Such a new instruction 2546 // could be required to be at the top of the entry block, thus preventing it 2547 // from being subject to a @llvm.stackrestore. Instcombine could even 2548 // convert regular allocas into these special allocas. It'd be nifty. 2549 // However, until then, this problem remains open. 2550 // 2551 // So, we'll assume that two non-empty allocas have different addresses 2552 // for now. 2553 // 2554 // With all that, if the offsets are within the bounds of their allocations 2555 // (and not one-past-the-end! so we can't use inbounds!), and their 2556 // allocations aren't the same, the pointers are not equal. 2557 // 2558 // Note that it's not necessary to check for LHS being a global variable 2559 // address, due to canonicalization and constant folding. 2560 if (isa<AllocaInst>(LHS) && 2561 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2562 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2563 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2564 uint64_t LHSSize, RHSSize; 2565 ObjectSizeOpts Opts; 2566 Opts.NullIsUnknownSize = 2567 NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction()); 2568 if (LHSOffsetCI && RHSOffsetCI && 2569 getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2570 getObjectSize(RHS, RHSSize, DL, TLI, Opts)) { 2571 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2572 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2573 if (!LHSOffsetValue.isNegative() && 2574 !RHSOffsetValue.isNegative() && 2575 LHSOffsetValue.ult(LHSSize) && 2576 RHSOffsetValue.ult(RHSSize)) { 2577 return ConstantInt::get(GetCompareTy(LHS), 2578 !CmpInst::isTrueWhenEqual(Pred)); 2579 } 2580 } 2581 2582 // Repeat the above check but this time without depending on DataLayout 2583 // or being able to compute a precise size. 2584 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2585 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2586 LHSOffset->isNullValue() && 2587 RHSOffset->isNullValue()) 2588 return ConstantInt::get(GetCompareTy(LHS), 2589 !CmpInst::isTrueWhenEqual(Pred)); 2590 } 2591 2592 // Even if an non-inbounds GEP occurs along the path we can still optimize 2593 // equality comparisons concerning the result. We avoid walking the whole 2594 // chain again by starting where the last calls to 2595 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2596 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2597 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2598 if (LHS == RHS) 2599 return ConstantExpr::getICmp(Pred, 2600 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2601 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2602 2603 // If one side of the equality comparison must come from a noalias call 2604 // (meaning a system memory allocation function), and the other side must 2605 // come from a pointer that cannot overlap with dynamically-allocated 2606 // memory within the lifetime of the current function (allocas, byval 2607 // arguments, globals), then determine the comparison result here. 2608 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; 2609 getUnderlyingObjects(LHS, LHSUObjs); 2610 getUnderlyingObjects(RHS, RHSUObjs); 2611 2612 // Is the set of underlying objects all noalias calls? 2613 auto IsNAC = [](ArrayRef<const Value *> Objects) { 2614 return all_of(Objects, isNoAliasCall); 2615 }; 2616 2617 // Is the set of underlying objects all things which must be disjoint from 2618 // noalias calls. For allocas, we consider only static ones (dynamic 2619 // allocas might be transformed into calls to malloc not simultaneously 2620 // live with the compared-to allocation). For globals, we exclude symbols 2621 // that might be resolve lazily to symbols in another dynamically-loaded 2622 // library (and, thus, could be malloc'ed by the implementation). 2623 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { 2624 return all_of(Objects, [](const Value *V) { 2625 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2626 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2627 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2628 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2629 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2630 !GV->isThreadLocal(); 2631 if (const Argument *A = dyn_cast<Argument>(V)) 2632 return A->hasByValAttr(); 2633 return false; 2634 }); 2635 }; 2636 2637 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2638 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2639 return ConstantInt::get(GetCompareTy(LHS), 2640 !CmpInst::isTrueWhenEqual(Pred)); 2641 2642 // Fold comparisons for non-escaping pointer even if the allocation call 2643 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2644 // dynamic allocation call could be either of the operands. 2645 Value *MI = nullptr; 2646 if (isAllocLikeFn(LHS, TLI) && 2647 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2648 MI = LHS; 2649 else if (isAllocLikeFn(RHS, TLI) && 2650 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2651 MI = RHS; 2652 // FIXME: We should also fold the compare when the pointer escapes, but the 2653 // compare dominates the pointer escape 2654 if (MI && !PointerMayBeCaptured(MI, true, true)) 2655 return ConstantInt::get(GetCompareTy(LHS), 2656 CmpInst::isFalseWhenEqual(Pred)); 2657 } 2658 2659 // Otherwise, fail. 2660 return nullptr; 2661 } 2662 2663 /// Fold an icmp when its operands have i1 scalar type. 2664 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2665 Value *RHS, const SimplifyQuery &Q) { 2666 Type *ITy = GetCompareTy(LHS); // The return type. 2667 Type *OpTy = LHS->getType(); // The operand type. 2668 if (!OpTy->isIntOrIntVectorTy(1)) 2669 return nullptr; 2670 2671 // A boolean compared to true/false can be simplified in 14 out of the 20 2672 // (10 predicates * 2 constants) possible combinations. Cases not handled here 2673 // require a 'not' of the LHS, so those must be transformed in InstCombine. 2674 if (match(RHS, m_Zero())) { 2675 switch (Pred) { 2676 case CmpInst::ICMP_NE: // X != 0 -> X 2677 case CmpInst::ICMP_UGT: // X >u 0 -> X 2678 case CmpInst::ICMP_SLT: // X <s 0 -> X 2679 return LHS; 2680 2681 case CmpInst::ICMP_ULT: // X <u 0 -> false 2682 case CmpInst::ICMP_SGT: // X >s 0 -> false 2683 return getFalse(ITy); 2684 2685 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2686 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2687 return getTrue(ITy); 2688 2689 default: break; 2690 } 2691 } else if (match(RHS, m_One())) { 2692 switch (Pred) { 2693 case CmpInst::ICMP_EQ: // X == 1 -> X 2694 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2695 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2696 return LHS; 2697 2698 case CmpInst::ICMP_UGT: // X >u 1 -> false 2699 case CmpInst::ICMP_SLT: // X <s -1 -> false 2700 return getFalse(ITy); 2701 2702 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2703 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2704 return getTrue(ITy); 2705 2706 default: break; 2707 } 2708 } 2709 2710 switch (Pred) { 2711 default: 2712 break; 2713 case ICmpInst::ICMP_UGE: 2714 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2715 return getTrue(ITy); 2716 break; 2717 case ICmpInst::ICMP_SGE: 2718 /// For signed comparison, the values for an i1 are 0 and -1 2719 /// respectively. This maps into a truth table of: 2720 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2721 /// 0 | 0 | 1 (0 >= 0) | 1 2722 /// 0 | 1 | 1 (0 >= -1) | 1 2723 /// 1 | 0 | 0 (-1 >= 0) | 0 2724 /// 1 | 1 | 1 (-1 >= -1) | 1 2725 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2726 return getTrue(ITy); 2727 break; 2728 case ICmpInst::ICMP_ULE: 2729 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2730 return getTrue(ITy); 2731 break; 2732 } 2733 2734 return nullptr; 2735 } 2736 2737 /// Try hard to fold icmp with zero RHS because this is a common case. 2738 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2739 Value *RHS, const SimplifyQuery &Q) { 2740 if (!match(RHS, m_Zero())) 2741 return nullptr; 2742 2743 Type *ITy = GetCompareTy(LHS); // The return type. 2744 switch (Pred) { 2745 default: 2746 llvm_unreachable("Unknown ICmp predicate!"); 2747 case ICmpInst::ICMP_ULT: 2748 return getFalse(ITy); 2749 case ICmpInst::ICMP_UGE: 2750 return getTrue(ITy); 2751 case ICmpInst::ICMP_EQ: 2752 case ICmpInst::ICMP_ULE: 2753 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2754 return getFalse(ITy); 2755 break; 2756 case ICmpInst::ICMP_NE: 2757 case ICmpInst::ICMP_UGT: 2758 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2759 return getTrue(ITy); 2760 break; 2761 case ICmpInst::ICMP_SLT: { 2762 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2763 if (LHSKnown.isNegative()) 2764 return getTrue(ITy); 2765 if (LHSKnown.isNonNegative()) 2766 return getFalse(ITy); 2767 break; 2768 } 2769 case ICmpInst::ICMP_SLE: { 2770 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2771 if (LHSKnown.isNegative()) 2772 return getTrue(ITy); 2773 if (LHSKnown.isNonNegative() && 2774 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2775 return getFalse(ITy); 2776 break; 2777 } 2778 case ICmpInst::ICMP_SGE: { 2779 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2780 if (LHSKnown.isNegative()) 2781 return getFalse(ITy); 2782 if (LHSKnown.isNonNegative()) 2783 return getTrue(ITy); 2784 break; 2785 } 2786 case ICmpInst::ICMP_SGT: { 2787 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2788 if (LHSKnown.isNegative()) 2789 return getFalse(ITy); 2790 if (LHSKnown.isNonNegative() && 2791 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2792 return getTrue(ITy); 2793 break; 2794 } 2795 } 2796 2797 return nullptr; 2798 } 2799 2800 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2801 Value *RHS, const InstrInfoQuery &IIQ) { 2802 Type *ITy = GetCompareTy(RHS); // The return type. 2803 2804 Value *X; 2805 // Sign-bit checks can be optimized to true/false after unsigned 2806 // floating-point casts: 2807 // icmp slt (bitcast (uitofp X)), 0 --> false 2808 // icmp sgt (bitcast (uitofp X)), -1 --> true 2809 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 2810 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 2811 return ConstantInt::getFalse(ITy); 2812 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 2813 return ConstantInt::getTrue(ITy); 2814 } 2815 2816 const APInt *C; 2817 if (!match(RHS, m_APIntAllowUndef(C))) 2818 return nullptr; 2819 2820 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2821 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2822 if (RHS_CR.isEmptySet()) 2823 return ConstantInt::getFalse(ITy); 2824 if (RHS_CR.isFullSet()) 2825 return ConstantInt::getTrue(ITy); 2826 2827 ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo); 2828 if (!LHS_CR.isFullSet()) { 2829 if (RHS_CR.contains(LHS_CR)) 2830 return ConstantInt::getTrue(ITy); 2831 if (RHS_CR.inverse().contains(LHS_CR)) 2832 return ConstantInt::getFalse(ITy); 2833 } 2834 2835 // (mul nuw/nsw X, MulC) != C --> true (if C is not a multiple of MulC) 2836 // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC) 2837 const APInt *MulC; 2838 if (ICmpInst::isEquality(Pred) && 2839 ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2840 *MulC != 0 && C->urem(*MulC) != 0) || 2841 (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2842 *MulC != 0 && C->srem(*MulC) != 0))) 2843 return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE); 2844 2845 return nullptr; 2846 } 2847 2848 static Value *simplifyICmpWithBinOpOnLHS( 2849 CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS, 2850 const SimplifyQuery &Q, unsigned MaxRecurse) { 2851 Type *ITy = GetCompareTy(RHS); // The return type. 2852 2853 Value *Y = nullptr; 2854 // icmp pred (or X, Y), X 2855 if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2856 if (Pred == ICmpInst::ICMP_ULT) 2857 return getFalse(ITy); 2858 if (Pred == ICmpInst::ICMP_UGE) 2859 return getTrue(ITy); 2860 2861 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2862 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2863 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2864 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2865 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2866 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2867 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2868 } 2869 } 2870 2871 // icmp pred (and X, Y), X 2872 if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2873 if (Pred == ICmpInst::ICMP_UGT) 2874 return getFalse(ITy); 2875 if (Pred == ICmpInst::ICMP_ULE) 2876 return getTrue(ITy); 2877 } 2878 2879 // icmp pred (urem X, Y), Y 2880 if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2881 switch (Pred) { 2882 default: 2883 break; 2884 case ICmpInst::ICMP_SGT: 2885 case ICmpInst::ICMP_SGE: { 2886 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2887 if (!Known.isNonNegative()) 2888 break; 2889 LLVM_FALLTHROUGH; 2890 } 2891 case ICmpInst::ICMP_EQ: 2892 case ICmpInst::ICMP_UGT: 2893 case ICmpInst::ICMP_UGE: 2894 return getFalse(ITy); 2895 case ICmpInst::ICMP_SLT: 2896 case ICmpInst::ICMP_SLE: { 2897 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2898 if (!Known.isNonNegative()) 2899 break; 2900 LLVM_FALLTHROUGH; 2901 } 2902 case ICmpInst::ICMP_NE: 2903 case ICmpInst::ICMP_ULT: 2904 case ICmpInst::ICMP_ULE: 2905 return getTrue(ITy); 2906 } 2907 } 2908 2909 // icmp pred (urem X, Y), X 2910 if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) { 2911 if (Pred == ICmpInst::ICMP_ULE) 2912 return getTrue(ITy); 2913 if (Pred == ICmpInst::ICMP_UGT) 2914 return getFalse(ITy); 2915 } 2916 2917 // x >> y <=u x 2918 // x udiv y <=u x. 2919 if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2920 match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) { 2921 // icmp pred (X op Y), X 2922 if (Pred == ICmpInst::ICMP_UGT) 2923 return getFalse(ITy); 2924 if (Pred == ICmpInst::ICMP_ULE) 2925 return getTrue(ITy); 2926 } 2927 2928 // (x*C1)/C2 <= x for C1 <= C2. 2929 // This holds even if the multiplication overflows: Assume that x != 0 and 2930 // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and 2931 // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x. 2932 // 2933 // Additionally, either the multiplication and division might be represented 2934 // as shifts: 2935 // (x*C1)>>C2 <= x for C1 < 2**C2. 2936 // (x<<C1)/C2 <= x for 2**C1 < C2. 2937 const APInt *C1, *C2; 2938 if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 2939 C1->ule(*C2)) || 2940 (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 2941 C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) || 2942 (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 2943 (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) { 2944 if (Pred == ICmpInst::ICMP_UGT) 2945 return getFalse(ITy); 2946 if (Pred == ICmpInst::ICMP_ULE) 2947 return getTrue(ITy); 2948 } 2949 2950 return nullptr; 2951 } 2952 2953 2954 // If only one of the icmp's operands has NSW flags, try to prove that: 2955 // 2956 // icmp slt (x + C1), (x +nsw C2) 2957 // 2958 // is equivalent to: 2959 // 2960 // icmp slt C1, C2 2961 // 2962 // which is true if x + C2 has the NSW flags set and: 2963 // *) C1 < C2 && C1 >= 0, or 2964 // *) C2 < C1 && C1 <= 0. 2965 // 2966 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS, 2967 Value *RHS) { 2968 // TODO: only support icmp slt for now. 2969 if (Pred != CmpInst::ICMP_SLT) 2970 return false; 2971 2972 // Canonicalize nsw add as RHS. 2973 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 2974 std::swap(LHS, RHS); 2975 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 2976 return false; 2977 2978 Value *X; 2979 const APInt *C1, *C2; 2980 if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) || 2981 !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2)))) 2982 return false; 2983 2984 return (C1->slt(*C2) && C1->isNonNegative()) || 2985 (C2->slt(*C1) && C1->isNonPositive()); 2986 } 2987 2988 2989 /// TODO: A large part of this logic is duplicated in InstCombine's 2990 /// foldICmpBinOp(). We should be able to share that and avoid the code 2991 /// duplication. 2992 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 2993 Value *RHS, const SimplifyQuery &Q, 2994 unsigned MaxRecurse) { 2995 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2996 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2997 if (MaxRecurse && (LBO || RBO)) { 2998 // Analyze the case when either LHS or RHS is an add instruction. 2999 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3000 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 3001 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 3002 if (LBO && LBO->getOpcode() == Instruction::Add) { 3003 A = LBO->getOperand(0); 3004 B = LBO->getOperand(1); 3005 NoLHSWrapProblem = 3006 ICmpInst::isEquality(Pred) || 3007 (CmpInst::isUnsigned(Pred) && 3008 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 3009 (CmpInst::isSigned(Pred) && 3010 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 3011 } 3012 if (RBO && RBO->getOpcode() == Instruction::Add) { 3013 C = RBO->getOperand(0); 3014 D = RBO->getOperand(1); 3015 NoRHSWrapProblem = 3016 ICmpInst::isEquality(Pred) || 3017 (CmpInst::isUnsigned(Pred) && 3018 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 3019 (CmpInst::isSigned(Pred) && 3020 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 3021 } 3022 3023 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 3024 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 3025 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 3026 Constant::getNullValue(RHS->getType()), Q, 3027 MaxRecurse - 1)) 3028 return V; 3029 3030 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 3031 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 3032 if (Value *V = 3033 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 3034 C == LHS ? D : C, Q, MaxRecurse - 1)) 3035 return V; 3036 3037 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 3038 bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) || 3039 trySimplifyICmpWithAdds(Pred, LHS, RHS); 3040 if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) { 3041 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3042 Value *Y, *Z; 3043 if (A == C) { 3044 // C + B == C + D -> B == D 3045 Y = B; 3046 Z = D; 3047 } else if (A == D) { 3048 // D + B == C + D -> B == C 3049 Y = B; 3050 Z = C; 3051 } else if (B == C) { 3052 // A + C == C + D -> A == D 3053 Y = A; 3054 Z = D; 3055 } else { 3056 assert(B == D); 3057 // A + D == C + D -> A == C 3058 Y = A; 3059 Z = C; 3060 } 3061 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 3062 return V; 3063 } 3064 } 3065 3066 if (LBO) 3067 if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse)) 3068 return V; 3069 3070 if (RBO) 3071 if (Value *V = simplifyICmpWithBinOpOnLHS( 3072 ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse)) 3073 return V; 3074 3075 // 0 - (zext X) pred C 3076 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 3077 const APInt *C; 3078 if (match(RHS, m_APInt(C))) { 3079 if (C->isStrictlyPositive()) { 3080 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE) 3081 return ConstantInt::getTrue(GetCompareTy(RHS)); 3082 if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ) 3083 return ConstantInt::getFalse(GetCompareTy(RHS)); 3084 } 3085 if (C->isNonNegative()) { 3086 if (Pred == ICmpInst::ICMP_SLE) 3087 return ConstantInt::getTrue(GetCompareTy(RHS)); 3088 if (Pred == ICmpInst::ICMP_SGT) 3089 return ConstantInt::getFalse(GetCompareTy(RHS)); 3090 } 3091 } 3092 } 3093 3094 // If C2 is a power-of-2 and C is not: 3095 // (C2 << X) == C --> false 3096 // (C2 << X) != C --> true 3097 const APInt *C; 3098 if (match(LHS, m_Shl(m_Power2(), m_Value())) && 3099 match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) { 3100 // C2 << X can equal zero in some circumstances. 3101 // This simplification might be unsafe if C is zero. 3102 // 3103 // We know it is safe if: 3104 // - The shift is nsw. We can't shift out the one bit. 3105 // - The shift is nuw. We can't shift out the one bit. 3106 // - C2 is one. 3107 // - C isn't zero. 3108 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3109 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3110 match(LHS, m_Shl(m_One(), m_Value())) || !C->isNullValue()) { 3111 if (Pred == ICmpInst::ICMP_EQ) 3112 return ConstantInt::getFalse(GetCompareTy(RHS)); 3113 if (Pred == ICmpInst::ICMP_NE) 3114 return ConstantInt::getTrue(GetCompareTy(RHS)); 3115 } 3116 } 3117 3118 // TODO: This is overly constrained. LHS can be any power-of-2. 3119 // (1 << X) >u 0x8000 --> false 3120 // (1 << X) <=u 0x8000 --> true 3121 if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) { 3122 if (Pred == ICmpInst::ICMP_UGT) 3123 return ConstantInt::getFalse(GetCompareTy(RHS)); 3124 if (Pred == ICmpInst::ICMP_ULE) 3125 return ConstantInt::getTrue(GetCompareTy(RHS)); 3126 } 3127 3128 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 3129 LBO->getOperand(1) == RBO->getOperand(1)) { 3130 switch (LBO->getOpcode()) { 3131 default: 3132 break; 3133 case Instruction::UDiv: 3134 case Instruction::LShr: 3135 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 3136 !Q.IIQ.isExact(RBO)) 3137 break; 3138 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3139 RBO->getOperand(0), Q, MaxRecurse - 1)) 3140 return V; 3141 break; 3142 case Instruction::SDiv: 3143 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 3144 !Q.IIQ.isExact(RBO)) 3145 break; 3146 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3147 RBO->getOperand(0), Q, MaxRecurse - 1)) 3148 return V; 3149 break; 3150 case Instruction::AShr: 3151 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 3152 break; 3153 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3154 RBO->getOperand(0), Q, MaxRecurse - 1)) 3155 return V; 3156 break; 3157 case Instruction::Shl: { 3158 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 3159 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 3160 if (!NUW && !NSW) 3161 break; 3162 if (!NSW && ICmpInst::isSigned(Pred)) 3163 break; 3164 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3165 RBO->getOperand(0), Q, MaxRecurse - 1)) 3166 return V; 3167 break; 3168 } 3169 } 3170 } 3171 return nullptr; 3172 } 3173 3174 /// Simplify integer comparisons where at least one operand of the compare 3175 /// matches an integer min/max idiom. 3176 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 3177 Value *RHS, const SimplifyQuery &Q, 3178 unsigned MaxRecurse) { 3179 Type *ITy = GetCompareTy(LHS); // The return type. 3180 Value *A, *B; 3181 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 3182 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 3183 3184 // Signed variants on "max(a,b)>=a -> true". 3185 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3186 if (A != RHS) 3187 std::swap(A, B); // smax(A, B) pred A. 3188 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3189 // We analyze this as smax(A, B) pred A. 3190 P = Pred; 3191 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 3192 (A == LHS || B == LHS)) { 3193 if (A != LHS) 3194 std::swap(A, B); // A pred smax(A, B). 3195 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3196 // We analyze this as smax(A, B) swapped-pred A. 3197 P = CmpInst::getSwappedPredicate(Pred); 3198 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3199 (A == RHS || B == RHS)) { 3200 if (A != RHS) 3201 std::swap(A, B); // smin(A, B) pred A. 3202 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3203 // We analyze this as smax(-A, -B) swapped-pred -A. 3204 // Note that we do not need to actually form -A or -B thanks to EqP. 3205 P = CmpInst::getSwappedPredicate(Pred); 3206 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 3207 (A == LHS || B == LHS)) { 3208 if (A != LHS) 3209 std::swap(A, B); // A pred smin(A, B). 3210 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3211 // We analyze this as smax(-A, -B) pred -A. 3212 // Note that we do not need to actually form -A or -B thanks to EqP. 3213 P = Pred; 3214 } 3215 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3216 // Cases correspond to "max(A, B) p A". 3217 switch (P) { 3218 default: 3219 break; 3220 case CmpInst::ICMP_EQ: 3221 case CmpInst::ICMP_SLE: 3222 // Equivalent to "A EqP B". This may be the same as the condition tested 3223 // in the max/min; if so, we can just return that. 3224 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3225 return V; 3226 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3227 return V; 3228 // Otherwise, see if "A EqP B" simplifies. 3229 if (MaxRecurse) 3230 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3231 return V; 3232 break; 3233 case CmpInst::ICMP_NE: 3234 case CmpInst::ICMP_SGT: { 3235 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3236 // Equivalent to "A InvEqP B". This may be the same as the condition 3237 // tested in the max/min; if so, we can just return that. 3238 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3239 return V; 3240 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3241 return V; 3242 // Otherwise, see if "A InvEqP B" simplifies. 3243 if (MaxRecurse) 3244 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3245 return V; 3246 break; 3247 } 3248 case CmpInst::ICMP_SGE: 3249 // Always true. 3250 return getTrue(ITy); 3251 case CmpInst::ICMP_SLT: 3252 // Always false. 3253 return getFalse(ITy); 3254 } 3255 } 3256 3257 // Unsigned variants on "max(a,b)>=a -> true". 3258 P = CmpInst::BAD_ICMP_PREDICATE; 3259 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3260 if (A != RHS) 3261 std::swap(A, B); // umax(A, B) pred A. 3262 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3263 // We analyze this as umax(A, B) pred A. 3264 P = Pred; 3265 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 3266 (A == LHS || B == LHS)) { 3267 if (A != LHS) 3268 std::swap(A, B); // A pred umax(A, B). 3269 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3270 // We analyze this as umax(A, B) swapped-pred A. 3271 P = CmpInst::getSwappedPredicate(Pred); 3272 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3273 (A == RHS || B == RHS)) { 3274 if (A != RHS) 3275 std::swap(A, B); // umin(A, B) pred A. 3276 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3277 // We analyze this as umax(-A, -B) swapped-pred -A. 3278 // Note that we do not need to actually form -A or -B thanks to EqP. 3279 P = CmpInst::getSwappedPredicate(Pred); 3280 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3281 (A == LHS || B == LHS)) { 3282 if (A != LHS) 3283 std::swap(A, B); // A pred umin(A, B). 3284 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3285 // We analyze this as umax(-A, -B) pred -A. 3286 // Note that we do not need to actually form -A or -B thanks to EqP. 3287 P = Pred; 3288 } 3289 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3290 // Cases correspond to "max(A, B) p A". 3291 switch (P) { 3292 default: 3293 break; 3294 case CmpInst::ICMP_EQ: 3295 case CmpInst::ICMP_ULE: 3296 // Equivalent to "A EqP B". This may be the same as the condition tested 3297 // in the max/min; if so, we can just return that. 3298 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3299 return V; 3300 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3301 return V; 3302 // Otherwise, see if "A EqP B" simplifies. 3303 if (MaxRecurse) 3304 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3305 return V; 3306 break; 3307 case CmpInst::ICMP_NE: 3308 case CmpInst::ICMP_UGT: { 3309 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3310 // Equivalent to "A InvEqP B". This may be the same as the condition 3311 // tested in the max/min; if so, we can just return that. 3312 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3313 return V; 3314 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3315 return V; 3316 // Otherwise, see if "A InvEqP B" simplifies. 3317 if (MaxRecurse) 3318 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3319 return V; 3320 break; 3321 } 3322 case CmpInst::ICMP_UGE: 3323 return getTrue(ITy); 3324 case CmpInst::ICMP_ULT: 3325 return getFalse(ITy); 3326 } 3327 } 3328 3329 // Comparing 1 each of min/max with a common operand? 3330 // Canonicalize min operand to RHS. 3331 if (match(LHS, m_UMin(m_Value(), m_Value())) || 3332 match(LHS, m_SMin(m_Value(), m_Value()))) { 3333 std::swap(LHS, RHS); 3334 Pred = ICmpInst::getSwappedPredicate(Pred); 3335 } 3336 3337 Value *C, *D; 3338 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3339 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3340 (A == C || A == D || B == C || B == D)) { 3341 // smax(A, B) >=s smin(A, D) --> true 3342 if (Pred == CmpInst::ICMP_SGE) 3343 return getTrue(ITy); 3344 // smax(A, B) <s smin(A, D) --> false 3345 if (Pred == CmpInst::ICMP_SLT) 3346 return getFalse(ITy); 3347 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3348 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3349 (A == C || A == D || B == C || B == D)) { 3350 // umax(A, B) >=u umin(A, D) --> true 3351 if (Pred == CmpInst::ICMP_UGE) 3352 return getTrue(ITy); 3353 // umax(A, B) <u umin(A, D) --> false 3354 if (Pred == CmpInst::ICMP_ULT) 3355 return getFalse(ITy); 3356 } 3357 3358 return nullptr; 3359 } 3360 3361 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate, 3362 Value *LHS, Value *RHS, 3363 const SimplifyQuery &Q) { 3364 // Gracefully handle instructions that have not been inserted yet. 3365 if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent()) 3366 return nullptr; 3367 3368 for (Value *AssumeBaseOp : {LHS, RHS}) { 3369 for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) { 3370 if (!AssumeVH) 3371 continue; 3372 3373 CallInst *Assume = cast<CallInst>(AssumeVH); 3374 if (Optional<bool> Imp = 3375 isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS, 3376 Q.DL)) 3377 if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT)) 3378 return ConstantInt::get(GetCompareTy(LHS), *Imp); 3379 } 3380 } 3381 3382 return nullptr; 3383 } 3384 3385 /// Given operands for an ICmpInst, see if we can fold the result. 3386 /// If not, this returns null. 3387 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3388 const SimplifyQuery &Q, unsigned MaxRecurse) { 3389 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3390 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3391 3392 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3393 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3394 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3395 3396 // If we have a constant, make sure it is on the RHS. 3397 std::swap(LHS, RHS); 3398 Pred = CmpInst::getSwappedPredicate(Pred); 3399 } 3400 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); 3401 3402 Type *ITy = GetCompareTy(LHS); // The return type. 3403 3404 // icmp poison, X -> poison 3405 if (isa<PoisonValue>(RHS)) 3406 return PoisonValue::get(ITy); 3407 3408 // For EQ and NE, we can always pick a value for the undef to make the 3409 // predicate pass or fail, so we can return undef. 3410 // Matches behavior in llvm::ConstantFoldCompareInstruction. 3411 if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred)) 3412 return UndefValue::get(ITy); 3413 3414 // icmp X, X -> true/false 3415 // icmp X, undef -> true/false because undef could be X. 3416 if (LHS == RHS || Q.isUndefValue(RHS)) 3417 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3418 3419 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3420 return V; 3421 3422 // TODO: Sink/common this with other potentially expensive calls that use 3423 // ValueTracking? See comment below for isKnownNonEqual(). 3424 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3425 return V; 3426 3427 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3428 return V; 3429 3430 // If both operands have range metadata, use the metadata 3431 // to simplify the comparison. 3432 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3433 auto RHS_Instr = cast<Instruction>(RHS); 3434 auto LHS_Instr = cast<Instruction>(LHS); 3435 3436 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && 3437 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { 3438 auto RHS_CR = getConstantRangeFromMetadata( 3439 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3440 auto LHS_CR = getConstantRangeFromMetadata( 3441 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3442 3443 if (LHS_CR.icmp(Pred, RHS_CR)) 3444 return ConstantInt::getTrue(RHS->getContext()); 3445 3446 if (LHS_CR.icmp(CmpInst::getInversePredicate(Pred), RHS_CR)) 3447 return ConstantInt::getFalse(RHS->getContext()); 3448 } 3449 } 3450 3451 // Compare of cast, for example (zext X) != 0 -> X != 0 3452 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3453 Instruction *LI = cast<CastInst>(LHS); 3454 Value *SrcOp = LI->getOperand(0); 3455 Type *SrcTy = SrcOp->getType(); 3456 Type *DstTy = LI->getType(); 3457 3458 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3459 // if the integer type is the same size as the pointer type. 3460 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3461 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3462 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3463 // Transfer the cast to the constant. 3464 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3465 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3466 Q, MaxRecurse-1)) 3467 return V; 3468 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3469 if (RI->getOperand(0)->getType() == SrcTy) 3470 // Compare without the cast. 3471 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3472 Q, MaxRecurse-1)) 3473 return V; 3474 } 3475 } 3476 3477 if (isa<ZExtInst>(LHS)) { 3478 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3479 // same type. 3480 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3481 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3482 // Compare X and Y. Note that signed predicates become unsigned. 3483 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3484 SrcOp, RI->getOperand(0), Q, 3485 MaxRecurse-1)) 3486 return V; 3487 } 3488 // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true. 3489 else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3490 if (SrcOp == RI->getOperand(0)) { 3491 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE) 3492 return ConstantInt::getTrue(ITy); 3493 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT) 3494 return ConstantInt::getFalse(ITy); 3495 } 3496 } 3497 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3498 // too. If not, then try to deduce the result of the comparison. 3499 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3500 // Compute the constant that would happen if we truncated to SrcTy then 3501 // reextended to DstTy. 3502 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3503 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3504 3505 // If the re-extended constant didn't change then this is effectively 3506 // also a case of comparing two zero-extended values. 3507 if (RExt == CI && MaxRecurse) 3508 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3509 SrcOp, Trunc, Q, MaxRecurse-1)) 3510 return V; 3511 3512 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3513 // there. Use this to work out the result of the comparison. 3514 if (RExt != CI) { 3515 switch (Pred) { 3516 default: llvm_unreachable("Unknown ICmp predicate!"); 3517 // LHS <u RHS. 3518 case ICmpInst::ICMP_EQ: 3519 case ICmpInst::ICMP_UGT: 3520 case ICmpInst::ICMP_UGE: 3521 return ConstantInt::getFalse(CI->getContext()); 3522 3523 case ICmpInst::ICMP_NE: 3524 case ICmpInst::ICMP_ULT: 3525 case ICmpInst::ICMP_ULE: 3526 return ConstantInt::getTrue(CI->getContext()); 3527 3528 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3529 // is non-negative then LHS <s RHS. 3530 case ICmpInst::ICMP_SGT: 3531 case ICmpInst::ICMP_SGE: 3532 return CI->getValue().isNegative() ? 3533 ConstantInt::getTrue(CI->getContext()) : 3534 ConstantInt::getFalse(CI->getContext()); 3535 3536 case ICmpInst::ICMP_SLT: 3537 case ICmpInst::ICMP_SLE: 3538 return CI->getValue().isNegative() ? 3539 ConstantInt::getFalse(CI->getContext()) : 3540 ConstantInt::getTrue(CI->getContext()); 3541 } 3542 } 3543 } 3544 } 3545 3546 if (isa<SExtInst>(LHS)) { 3547 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3548 // same type. 3549 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3550 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3551 // Compare X and Y. Note that the predicate does not change. 3552 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3553 Q, MaxRecurse-1)) 3554 return V; 3555 } 3556 // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true. 3557 else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3558 if (SrcOp == RI->getOperand(0)) { 3559 if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE) 3560 return ConstantInt::getTrue(ITy); 3561 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT) 3562 return ConstantInt::getFalse(ITy); 3563 } 3564 } 3565 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3566 // too. If not, then try to deduce the result of the comparison. 3567 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3568 // Compute the constant that would happen if we truncated to SrcTy then 3569 // reextended to DstTy. 3570 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3571 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3572 3573 // If the re-extended constant didn't change then this is effectively 3574 // also a case of comparing two sign-extended values. 3575 if (RExt == CI && MaxRecurse) 3576 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3577 return V; 3578 3579 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3580 // bits there. Use this to work out the result of the comparison. 3581 if (RExt != CI) { 3582 switch (Pred) { 3583 default: llvm_unreachable("Unknown ICmp predicate!"); 3584 case ICmpInst::ICMP_EQ: 3585 return ConstantInt::getFalse(CI->getContext()); 3586 case ICmpInst::ICMP_NE: 3587 return ConstantInt::getTrue(CI->getContext()); 3588 3589 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3590 // LHS >s RHS. 3591 case ICmpInst::ICMP_SGT: 3592 case ICmpInst::ICMP_SGE: 3593 return CI->getValue().isNegative() ? 3594 ConstantInt::getTrue(CI->getContext()) : 3595 ConstantInt::getFalse(CI->getContext()); 3596 case ICmpInst::ICMP_SLT: 3597 case ICmpInst::ICMP_SLE: 3598 return CI->getValue().isNegative() ? 3599 ConstantInt::getFalse(CI->getContext()) : 3600 ConstantInt::getTrue(CI->getContext()); 3601 3602 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3603 // LHS >u RHS. 3604 case ICmpInst::ICMP_UGT: 3605 case ICmpInst::ICMP_UGE: 3606 // Comparison is true iff the LHS <s 0. 3607 if (MaxRecurse) 3608 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3609 Constant::getNullValue(SrcTy), 3610 Q, MaxRecurse-1)) 3611 return V; 3612 break; 3613 case ICmpInst::ICMP_ULT: 3614 case ICmpInst::ICMP_ULE: 3615 // Comparison is true iff the LHS >=s 0. 3616 if (MaxRecurse) 3617 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3618 Constant::getNullValue(SrcTy), 3619 Q, MaxRecurse-1)) 3620 return V; 3621 break; 3622 } 3623 } 3624 } 3625 } 3626 } 3627 3628 // icmp eq|ne X, Y -> false|true if X != Y 3629 // This is potentially expensive, and we have already computedKnownBits for 3630 // compares with 0 above here, so only try this for a non-zero compare. 3631 if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) && 3632 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 3633 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3634 } 3635 3636 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3637 return V; 3638 3639 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3640 return V; 3641 3642 if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q)) 3643 return V; 3644 3645 // Simplify comparisons of related pointers using a powerful, recursive 3646 // GEP-walk when we have target data available.. 3647 if (LHS->getType()->isPointerTy()) 3648 if (auto *C = computePointerICmp(Pred, LHS, RHS, Q)) 3649 return C; 3650 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3651 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3652 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3653 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3654 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3655 Q.DL.getTypeSizeInBits(CRHS->getType())) 3656 if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(), 3657 CRHS->getPointerOperand(), Q)) 3658 return C; 3659 3660 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3661 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3662 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3663 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3664 (ICmpInst::isEquality(Pred) || 3665 (GLHS->isInBounds() && GRHS->isInBounds() && 3666 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3667 // The bases are equal and the indices are constant. Build a constant 3668 // expression GEP with the same indices and a null base pointer to see 3669 // what constant folding can make out of it. 3670 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3671 SmallVector<Value *, 4> IndicesLHS(GLHS->indices()); 3672 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3673 GLHS->getSourceElementType(), Null, IndicesLHS); 3674 3675 SmallVector<Value *, 4> IndicesRHS(GRHS->indices()); 3676 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3677 GLHS->getSourceElementType(), Null, IndicesRHS); 3678 Constant *NewICmp = ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3679 return ConstantFoldConstant(NewICmp, Q.DL); 3680 } 3681 } 3682 } 3683 3684 // If the comparison is with the result of a select instruction, check whether 3685 // comparing with either branch of the select always yields the same value. 3686 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3687 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3688 return V; 3689 3690 // If the comparison is with the result of a phi instruction, check whether 3691 // doing the compare with each incoming phi value yields a common result. 3692 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3693 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3694 return V; 3695 3696 return nullptr; 3697 } 3698 3699 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3700 const SimplifyQuery &Q) { 3701 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3702 } 3703 3704 /// Given operands for an FCmpInst, see if we can fold the result. 3705 /// If not, this returns null. 3706 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3707 FastMathFlags FMF, const SimplifyQuery &Q, 3708 unsigned MaxRecurse) { 3709 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3710 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3711 3712 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3713 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3714 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3715 3716 // If we have a constant, make sure it is on the RHS. 3717 std::swap(LHS, RHS); 3718 Pred = CmpInst::getSwappedPredicate(Pred); 3719 } 3720 3721 // Fold trivial predicates. 3722 Type *RetTy = GetCompareTy(LHS); 3723 if (Pred == FCmpInst::FCMP_FALSE) 3724 return getFalse(RetTy); 3725 if (Pred == FCmpInst::FCMP_TRUE) 3726 return getTrue(RetTy); 3727 3728 // Fold (un)ordered comparison if we can determine there are no NaNs. 3729 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) 3730 if (FMF.noNaNs() || 3731 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI))) 3732 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 3733 3734 // NaN is unordered; NaN is not ordered. 3735 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && 3736 "Comparison must be either ordered or unordered"); 3737 if (match(RHS, m_NaN())) 3738 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3739 3740 // fcmp pred x, poison and fcmp pred poison, x 3741 // fold to poison 3742 if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS)) 3743 return PoisonValue::get(RetTy); 3744 3745 // fcmp pred x, undef and fcmp pred undef, x 3746 // fold to true if unordered, false if ordered 3747 if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) { 3748 // Choosing NaN for the undef will always make unordered comparison succeed 3749 // and ordered comparison fail. 3750 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3751 } 3752 3753 // fcmp x,x -> true/false. Not all compares are foldable. 3754 if (LHS == RHS) { 3755 if (CmpInst::isTrueWhenEqual(Pred)) 3756 return getTrue(RetTy); 3757 if (CmpInst::isFalseWhenEqual(Pred)) 3758 return getFalse(RetTy); 3759 } 3760 3761 // Handle fcmp with constant RHS. 3762 // TODO: Use match with a specific FP value, so these work with vectors with 3763 // undef lanes. 3764 const APFloat *C; 3765 if (match(RHS, m_APFloat(C))) { 3766 // Check whether the constant is an infinity. 3767 if (C->isInfinity()) { 3768 if (C->isNegative()) { 3769 switch (Pred) { 3770 case FCmpInst::FCMP_OLT: 3771 // No value is ordered and less than negative infinity. 3772 return getFalse(RetTy); 3773 case FCmpInst::FCMP_UGE: 3774 // All values are unordered with or at least negative infinity. 3775 return getTrue(RetTy); 3776 default: 3777 break; 3778 } 3779 } else { 3780 switch (Pred) { 3781 case FCmpInst::FCMP_OGT: 3782 // No value is ordered and greater than infinity. 3783 return getFalse(RetTy); 3784 case FCmpInst::FCMP_ULE: 3785 // All values are unordered with and at most infinity. 3786 return getTrue(RetTy); 3787 default: 3788 break; 3789 } 3790 } 3791 3792 // LHS == Inf 3793 if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI)) 3794 return getFalse(RetTy); 3795 // LHS != Inf 3796 if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI)) 3797 return getTrue(RetTy); 3798 // LHS == Inf || LHS == NaN 3799 if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) && 3800 isKnownNeverNaN(LHS, Q.TLI)) 3801 return getFalse(RetTy); 3802 // LHS != Inf && LHS != NaN 3803 if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) && 3804 isKnownNeverNaN(LHS, Q.TLI)) 3805 return getTrue(RetTy); 3806 } 3807 if (C->isNegative() && !C->isNegZero()) { 3808 assert(!C->isNaN() && "Unexpected NaN constant!"); 3809 // TODO: We can catch more cases by using a range check rather than 3810 // relying on CannotBeOrderedLessThanZero. 3811 switch (Pred) { 3812 case FCmpInst::FCMP_UGE: 3813 case FCmpInst::FCMP_UGT: 3814 case FCmpInst::FCMP_UNE: 3815 // (X >= 0) implies (X > C) when (C < 0) 3816 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3817 return getTrue(RetTy); 3818 break; 3819 case FCmpInst::FCMP_OEQ: 3820 case FCmpInst::FCMP_OLE: 3821 case FCmpInst::FCMP_OLT: 3822 // (X >= 0) implies !(X < C) when (C < 0) 3823 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3824 return getFalse(RetTy); 3825 break; 3826 default: 3827 break; 3828 } 3829 } 3830 3831 // Check comparison of [minnum/maxnum with constant] with other constant. 3832 const APFloat *C2; 3833 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) && 3834 *C2 < *C) || 3835 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) && 3836 *C2 > *C)) { 3837 bool IsMaxNum = 3838 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum; 3839 // The ordered relationship and minnum/maxnum guarantee that we do not 3840 // have NaN constants, so ordered/unordered preds are handled the same. 3841 switch (Pred) { 3842 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ: 3843 // minnum(X, LesserC) == C --> false 3844 // maxnum(X, GreaterC) == C --> false 3845 return getFalse(RetTy); 3846 case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE: 3847 // minnum(X, LesserC) != C --> true 3848 // maxnum(X, GreaterC) != C --> true 3849 return getTrue(RetTy); 3850 case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE: 3851 case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT: 3852 // minnum(X, LesserC) >= C --> false 3853 // minnum(X, LesserC) > C --> false 3854 // maxnum(X, GreaterC) >= C --> true 3855 // maxnum(X, GreaterC) > C --> true 3856 return ConstantInt::get(RetTy, IsMaxNum); 3857 case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE: 3858 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT: 3859 // minnum(X, LesserC) <= C --> true 3860 // minnum(X, LesserC) < C --> true 3861 // maxnum(X, GreaterC) <= C --> false 3862 // maxnum(X, GreaterC) < C --> false 3863 return ConstantInt::get(RetTy, !IsMaxNum); 3864 default: 3865 // TRUE/FALSE/ORD/UNO should be handled before this. 3866 llvm_unreachable("Unexpected fcmp predicate"); 3867 } 3868 } 3869 } 3870 3871 if (match(RHS, m_AnyZeroFP())) { 3872 switch (Pred) { 3873 case FCmpInst::FCMP_OGE: 3874 case FCmpInst::FCMP_ULT: 3875 // Positive or zero X >= 0.0 --> true 3876 // Positive or zero X < 0.0 --> false 3877 if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) && 3878 CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3879 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy); 3880 break; 3881 case FCmpInst::FCMP_UGE: 3882 case FCmpInst::FCMP_OLT: 3883 // Positive or zero or nan X >= 0.0 --> true 3884 // Positive or zero or nan X < 0.0 --> false 3885 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3886 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy); 3887 break; 3888 default: 3889 break; 3890 } 3891 } 3892 3893 // If the comparison is with the result of a select instruction, check whether 3894 // comparing with either branch of the select always yields the same value. 3895 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3896 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3897 return V; 3898 3899 // If the comparison is with the result of a phi instruction, check whether 3900 // doing the compare with each incoming phi value yields a common result. 3901 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3902 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3903 return V; 3904 3905 return nullptr; 3906 } 3907 3908 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3909 FastMathFlags FMF, const SimplifyQuery &Q) { 3910 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 3911 } 3912 3913 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3914 const SimplifyQuery &Q, 3915 bool AllowRefinement, 3916 unsigned MaxRecurse) { 3917 assert(!Op->getType()->isVectorTy() && "This is not safe for vectors"); 3918 3919 // Trivial replacement. 3920 if (V == Op) 3921 return RepOp; 3922 3923 // We cannot replace a constant, and shouldn't even try. 3924 if (isa<Constant>(Op)) 3925 return nullptr; 3926 3927 auto *I = dyn_cast<Instruction>(V); 3928 if (!I || !is_contained(I->operands(), Op)) 3929 return nullptr; 3930 3931 // Replace Op with RepOp in instruction operands. 3932 SmallVector<Value *, 8> NewOps(I->getNumOperands()); 3933 transform(I->operands(), NewOps.begin(), 3934 [&](Value *V) { return V == Op ? RepOp : V; }); 3935 3936 if (!AllowRefinement) { 3937 // General InstSimplify functions may refine the result, e.g. by returning 3938 // a constant for a potentially poison value. To avoid this, implement only 3939 // a few non-refining but profitable transforms here. 3940 3941 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3942 unsigned Opcode = BO->getOpcode(); 3943 // id op x -> x, x op id -> x 3944 if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType())) 3945 return NewOps[1]; 3946 if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(), 3947 /* RHS */ true)) 3948 return NewOps[0]; 3949 3950 // x & x -> x, x | x -> x 3951 if ((Opcode == Instruction::And || Opcode == Instruction::Or) && 3952 NewOps[0] == NewOps[1]) 3953 return NewOps[0]; 3954 } 3955 3956 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 3957 // getelementptr x, 0 -> x 3958 if (NewOps.size() == 2 && match(NewOps[1], m_Zero()) && 3959 !GEP->isInBounds()) 3960 return NewOps[0]; 3961 } 3962 } else if (MaxRecurse) { 3963 // The simplification queries below may return the original value. Consider: 3964 // %div = udiv i32 %arg, %arg2 3965 // %mul = mul nsw i32 %div, %arg2 3966 // %cmp = icmp eq i32 %mul, %arg 3967 // %sel = select i1 %cmp, i32 %div, i32 undef 3968 // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which 3969 // simplifies back to %arg. This can only happen because %mul does not 3970 // dominate %div. To ensure a consistent return value contract, we make sure 3971 // that this case returns nullptr as well. 3972 auto PreventSelfSimplify = [V](Value *Simplified) { 3973 return Simplified != V ? Simplified : nullptr; 3974 }; 3975 3976 if (auto *B = dyn_cast<BinaryOperator>(I)) 3977 return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), NewOps[0], 3978 NewOps[1], Q, MaxRecurse - 1)); 3979 3980 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3981 return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), NewOps[0], 3982 NewOps[1], Q, MaxRecurse - 1)); 3983 3984 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 3985 return PreventSelfSimplify(SimplifyGEPInst(GEP->getSourceElementType(), 3986 NewOps, GEP->isInBounds(), Q, 3987 MaxRecurse - 1)); 3988 3989 if (isa<SelectInst>(I)) 3990 return PreventSelfSimplify( 3991 SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q, 3992 MaxRecurse - 1)); 3993 // TODO: We could hand off more cases to instsimplify here. 3994 } 3995 3996 // If all operands are constant after substituting Op for RepOp then we can 3997 // constant fold the instruction. 3998 SmallVector<Constant *, 8> ConstOps; 3999 for (Value *NewOp : NewOps) { 4000 if (Constant *ConstOp = dyn_cast<Constant>(NewOp)) 4001 ConstOps.push_back(ConstOp); 4002 else 4003 return nullptr; 4004 } 4005 4006 // Consider: 4007 // %cmp = icmp eq i32 %x, 2147483647 4008 // %add = add nsw i32 %x, 1 4009 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 4010 // 4011 // We can't replace %sel with %add unless we strip away the flags (which 4012 // will be done in InstCombine). 4013 // TODO: This may be unsound, because it only catches some forms of 4014 // refinement. 4015 if (!AllowRefinement && canCreatePoison(cast<Operator>(I))) 4016 return nullptr; 4017 4018 if (CmpInst *C = dyn_cast<CmpInst>(I)) 4019 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 4020 ConstOps[1], Q.DL, Q.TLI); 4021 4022 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 4023 if (!LI->isVolatile()) 4024 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 4025 4026 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 4027 } 4028 4029 Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 4030 const SimplifyQuery &Q, 4031 bool AllowRefinement) { 4032 return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement, 4033 RecursionLimit); 4034 } 4035 4036 /// Try to simplify a select instruction when its condition operand is an 4037 /// integer comparison where one operand of the compare is a constant. 4038 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 4039 const APInt *Y, bool TrueWhenUnset) { 4040 const APInt *C; 4041 4042 // (X & Y) == 0 ? X & ~Y : X --> X 4043 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 4044 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 4045 *Y == ~*C) 4046 return TrueWhenUnset ? FalseVal : TrueVal; 4047 4048 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 4049 // (X & Y) != 0 ? X : X & ~Y --> X 4050 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 4051 *Y == ~*C) 4052 return TrueWhenUnset ? FalseVal : TrueVal; 4053 4054 if (Y->isPowerOf2()) { 4055 // (X & Y) == 0 ? X | Y : X --> X | Y 4056 // (X & Y) != 0 ? X | Y : X --> X 4057 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 4058 *Y == *C) 4059 return TrueWhenUnset ? TrueVal : FalseVal; 4060 4061 // (X & Y) == 0 ? X : X | Y --> X 4062 // (X & Y) != 0 ? X : X | Y --> X | Y 4063 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 4064 *Y == *C) 4065 return TrueWhenUnset ? TrueVal : FalseVal; 4066 } 4067 4068 return nullptr; 4069 } 4070 4071 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 4072 /// eq/ne. 4073 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 4074 ICmpInst::Predicate Pred, 4075 Value *TrueVal, Value *FalseVal) { 4076 Value *X; 4077 APInt Mask; 4078 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 4079 return nullptr; 4080 4081 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 4082 Pred == ICmpInst::ICMP_EQ); 4083 } 4084 4085 /// Try to simplify a select instruction when its condition operand is an 4086 /// integer comparison. 4087 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 4088 Value *FalseVal, const SimplifyQuery &Q, 4089 unsigned MaxRecurse) { 4090 ICmpInst::Predicate Pred; 4091 Value *CmpLHS, *CmpRHS; 4092 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 4093 return nullptr; 4094 4095 // Canonicalize ne to eq predicate. 4096 if (Pred == ICmpInst::ICMP_NE) { 4097 Pred = ICmpInst::ICMP_EQ; 4098 std::swap(TrueVal, FalseVal); 4099 } 4100 4101 // Check for integer min/max with a limit constant: 4102 // X > MIN_INT ? X : MIN_INT --> X 4103 // X < MAX_INT ? X : MAX_INT --> X 4104 if (TrueVal->getType()->isIntOrIntVectorTy()) { 4105 Value *X, *Y; 4106 SelectPatternFlavor SPF = 4107 matchDecomposedSelectPattern(cast<ICmpInst>(CondVal), TrueVal, FalseVal, 4108 X, Y).Flavor; 4109 if (SelectPatternResult::isMinOrMax(SPF) && Pred == getMinMaxPred(SPF)) { 4110 APInt LimitC = getMinMaxLimit(getInverseMinMaxFlavor(SPF), 4111 X->getType()->getScalarSizeInBits()); 4112 if (match(Y, m_SpecificInt(LimitC))) 4113 return X; 4114 } 4115 } 4116 4117 if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) { 4118 Value *X; 4119 const APInt *Y; 4120 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 4121 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 4122 /*TrueWhenUnset=*/true)) 4123 return V; 4124 4125 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. 4126 Value *ShAmt; 4127 auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)), 4128 m_FShr(m_Value(), m_Value(X), m_Value(ShAmt))); 4129 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 4130 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 4131 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt) 4132 return X; 4133 4134 // Test for a zero-shift-guard-op around rotates. These are used to 4135 // avoid UB from oversized shifts in raw IR rotate patterns, but the 4136 // intrinsics do not have that problem. 4137 // We do not allow this transform for the general funnel shift case because 4138 // that would not preserve the poison safety of the original code. 4139 auto isRotate = 4140 m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)), 4141 m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt))); 4142 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) 4143 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) 4144 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && 4145 Pred == ICmpInst::ICMP_EQ) 4146 return FalseVal; 4147 4148 // X == 0 ? abs(X) : -abs(X) --> -abs(X) 4149 // X == 0 ? -abs(X) : abs(X) --> abs(X) 4150 if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) && 4151 match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))) 4152 return FalseVal; 4153 if (match(TrueVal, 4154 m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) && 4155 match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) 4156 return FalseVal; 4157 } 4158 4159 // Check for other compares that behave like bit test. 4160 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 4161 TrueVal, FalseVal)) 4162 return V; 4163 4164 // If we have a scalar equality comparison, then we know the value in one of 4165 // the arms of the select. See if substituting this value into the arm and 4166 // simplifying the result yields the same value as the other arm. 4167 // Note that the equivalence/replacement opportunity does not hold for vectors 4168 // because each element of a vector select is chosen independently. 4169 if (Pred == ICmpInst::ICMP_EQ && !CondVal->getType()->isVectorTy()) { 4170 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, 4171 /* AllowRefinement */ false, MaxRecurse) == 4172 TrueVal || 4173 simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, 4174 /* AllowRefinement */ false, MaxRecurse) == 4175 TrueVal) 4176 return FalseVal; 4177 if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, 4178 /* AllowRefinement */ true, MaxRecurse) == 4179 FalseVal || 4180 simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, 4181 /* AllowRefinement */ true, MaxRecurse) == 4182 FalseVal) 4183 return FalseVal; 4184 } 4185 4186 return nullptr; 4187 } 4188 4189 /// Try to simplify a select instruction when its condition operand is a 4190 /// floating-point comparison. 4191 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, 4192 const SimplifyQuery &Q) { 4193 FCmpInst::Predicate Pred; 4194 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && 4195 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) 4196 return nullptr; 4197 4198 // This transform is safe if we do not have (do not care about) -0.0 or if 4199 // at least one operand is known to not be -0.0. Otherwise, the select can 4200 // change the sign of a zero operand. 4201 bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) && 4202 Q.CxtI->hasNoSignedZeros(); 4203 const APFloat *C; 4204 if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) || 4205 (match(F, m_APFloat(C)) && C->isNonZero())) { 4206 // (T == F) ? T : F --> F 4207 // (F == T) ? T : F --> F 4208 if (Pred == FCmpInst::FCMP_OEQ) 4209 return F; 4210 4211 // (T != F) ? T : F --> T 4212 // (F != T) ? T : F --> T 4213 if (Pred == FCmpInst::FCMP_UNE) 4214 return T; 4215 } 4216 4217 return nullptr; 4218 } 4219 4220 /// Given operands for a SelectInst, see if we can fold the result. 4221 /// If not, this returns null. 4222 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4223 const SimplifyQuery &Q, unsigned MaxRecurse) { 4224 if (auto *CondC = dyn_cast<Constant>(Cond)) { 4225 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 4226 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 4227 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); 4228 4229 // select poison, X, Y -> poison 4230 if (isa<PoisonValue>(CondC)) 4231 return PoisonValue::get(TrueVal->getType()); 4232 4233 // select undef, X, Y -> X or Y 4234 if (Q.isUndefValue(CondC)) 4235 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 4236 4237 // select true, X, Y --> X 4238 // select false, X, Y --> Y 4239 // For vectors, allow undef/poison elements in the condition to match the 4240 // defined elements, so we can eliminate the select. 4241 if (match(CondC, m_One())) 4242 return TrueVal; 4243 if (match(CondC, m_Zero())) 4244 return FalseVal; 4245 } 4246 4247 // select i1 Cond, i1 true, i1 false --> i1 Cond 4248 assert(Cond->getType()->isIntOrIntVectorTy(1) && 4249 "Select must have bool or bool vector condition"); 4250 assert(TrueVal->getType() == FalseVal->getType() && 4251 "Select must have same types for true/false ops"); 4252 if (Cond->getType() == TrueVal->getType() && 4253 match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt())) 4254 return Cond; 4255 4256 // select ?, X, X -> X 4257 if (TrueVal == FalseVal) 4258 return TrueVal; 4259 4260 // If the true or false value is poison, we can fold to the other value. 4261 // If the true or false value is undef, we can fold to the other value as 4262 // long as the other value isn't poison. 4263 // select ?, poison, X -> X 4264 // select ?, undef, X -> X 4265 if (isa<PoisonValue>(TrueVal) || 4266 (Q.isUndefValue(TrueVal) && 4267 isGuaranteedNotToBePoison(FalseVal, Q.AC, Q.CxtI, Q.DT))) 4268 return FalseVal; 4269 // select ?, X, poison -> X 4270 // select ?, X, undef -> X 4271 if (isa<PoisonValue>(FalseVal) || 4272 (Q.isUndefValue(FalseVal) && 4273 isGuaranteedNotToBePoison(TrueVal, Q.AC, Q.CxtI, Q.DT))) 4274 return TrueVal; 4275 4276 // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC'' 4277 Constant *TrueC, *FalseC; 4278 if (isa<FixedVectorType>(TrueVal->getType()) && 4279 match(TrueVal, m_Constant(TrueC)) && 4280 match(FalseVal, m_Constant(FalseC))) { 4281 unsigned NumElts = 4282 cast<FixedVectorType>(TrueC->getType())->getNumElements(); 4283 SmallVector<Constant *, 16> NewC; 4284 for (unsigned i = 0; i != NumElts; ++i) { 4285 // Bail out on incomplete vector constants. 4286 Constant *TEltC = TrueC->getAggregateElement(i); 4287 Constant *FEltC = FalseC->getAggregateElement(i); 4288 if (!TEltC || !FEltC) 4289 break; 4290 4291 // If the elements match (undef or not), that value is the result. If only 4292 // one element is undef, choose the defined element as the safe result. 4293 if (TEltC == FEltC) 4294 NewC.push_back(TEltC); 4295 else if (isa<PoisonValue>(TEltC) || 4296 (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC))) 4297 NewC.push_back(FEltC); 4298 else if (isa<PoisonValue>(FEltC) || 4299 (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC))) 4300 NewC.push_back(TEltC); 4301 else 4302 break; 4303 } 4304 if (NewC.size() == NumElts) 4305 return ConstantVector::get(NewC); 4306 } 4307 4308 if (Value *V = 4309 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 4310 return V; 4311 4312 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q)) 4313 return V; 4314 4315 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 4316 return V; 4317 4318 Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 4319 if (Imp) 4320 return *Imp ? TrueVal : FalseVal; 4321 4322 return nullptr; 4323 } 4324 4325 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4326 const SimplifyQuery &Q) { 4327 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 4328 } 4329 4330 /// Given operands for an GetElementPtrInst, see if we can fold the result. 4331 /// If not, this returns null. 4332 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, bool InBounds, 4333 const SimplifyQuery &Q, unsigned) { 4334 // The type of the GEP pointer operand. 4335 unsigned AS = 4336 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 4337 4338 // getelementptr P -> P. 4339 if (Ops.size() == 1) 4340 return Ops[0]; 4341 4342 // Compute the (pointer) type returned by the GEP instruction. 4343 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 4344 Type *GEPTy = PointerType::get(LastType, AS); 4345 for (Value *Op : Ops) { 4346 // If one of the operands is a vector, the result type is a vector of 4347 // pointers. All vector operands must have the same number of elements. 4348 if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) { 4349 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4350 break; 4351 } 4352 } 4353 4354 // getelementptr poison, idx -> poison 4355 // getelementptr baseptr, poison -> poison 4356 if (any_of(Ops, [](const auto *V) { return isa<PoisonValue>(V); })) 4357 return PoisonValue::get(GEPTy); 4358 4359 if (Q.isUndefValue(Ops[0])) 4360 return UndefValue::get(GEPTy); 4361 4362 bool IsScalableVec = 4363 isa<ScalableVectorType>(SrcTy) || any_of(Ops, [](const Value *V) { 4364 return isa<ScalableVectorType>(V->getType()); 4365 }); 4366 4367 if (Ops.size() == 2) { 4368 // getelementptr P, 0 -> P. 4369 if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy) 4370 return Ops[0]; 4371 4372 Type *Ty = SrcTy; 4373 if (!IsScalableVec && Ty->isSized()) { 4374 Value *P; 4375 uint64_t C; 4376 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 4377 // getelementptr P, N -> P if P points to a type of zero size. 4378 if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy) 4379 return Ops[0]; 4380 4381 // The following transforms are only safe if the ptrtoint cast 4382 // doesn't truncate the pointers. 4383 if (Ops[1]->getType()->getScalarSizeInBits() == 4384 Q.DL.getPointerSizeInBits(AS)) { 4385 auto CanSimplify = [GEPTy, &P, V = Ops[0]]() -> bool { 4386 return P->getType() == GEPTy && 4387 getUnderlyingObject(P) == getUnderlyingObject(V); 4388 }; 4389 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 4390 if (TyAllocSize == 1 && 4391 match(Ops[1], m_Sub(m_PtrToInt(m_Value(P)), 4392 m_PtrToInt(m_Specific(Ops[0])))) && 4393 CanSimplify()) 4394 return P; 4395 4396 // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of 4397 // size 1 << C. 4398 if (match(Ops[1], m_AShr(m_Sub(m_PtrToInt(m_Value(P)), 4399 m_PtrToInt(m_Specific(Ops[0]))), 4400 m_ConstantInt(C))) && 4401 TyAllocSize == 1ULL << C && CanSimplify()) 4402 return P; 4403 4404 // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of 4405 // size C. 4406 if (match(Ops[1], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)), 4407 m_PtrToInt(m_Specific(Ops[0]))), 4408 m_SpecificInt(TyAllocSize))) && 4409 CanSimplify()) 4410 return P; 4411 } 4412 } 4413 } 4414 4415 if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 && 4416 all_of(Ops.slice(1).drop_back(1), 4417 [](Value *Idx) { return match(Idx, m_Zero()); })) { 4418 unsigned IdxWidth = 4419 Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 4420 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) { 4421 APInt BasePtrOffset(IdxWidth, 0); 4422 Value *StrippedBasePtr = 4423 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 4424 BasePtrOffset); 4425 4426 // Avoid creating inttoptr of zero here: While LLVMs treatment of 4427 // inttoptr is generally conservative, this particular case is folded to 4428 // a null pointer, which will have incorrect provenance. 4429 4430 // gep (gep V, C), (sub 0, V) -> C 4431 if (match(Ops.back(), 4432 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) && 4433 !BasePtrOffset.isNullValue()) { 4434 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 4435 return ConstantExpr::getIntToPtr(CI, GEPTy); 4436 } 4437 // gep (gep V, C), (xor V, -1) -> C-1 4438 if (match(Ops.back(), 4439 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) && 4440 !BasePtrOffset.isOneValue()) { 4441 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 4442 return ConstantExpr::getIntToPtr(CI, GEPTy); 4443 } 4444 } 4445 } 4446 4447 // Check to see if this is constant foldable. 4448 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 4449 return nullptr; 4450 4451 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 4452 Ops.slice(1), InBounds); 4453 return ConstantFoldConstant(CE, Q.DL); 4454 } 4455 4456 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, bool InBounds, 4457 const SimplifyQuery &Q) { 4458 return ::SimplifyGEPInst(SrcTy, Ops, InBounds, Q, RecursionLimit); 4459 } 4460 4461 /// Given operands for an InsertValueInst, see if we can fold the result. 4462 /// If not, this returns null. 4463 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 4464 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 4465 unsigned) { 4466 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 4467 if (Constant *CVal = dyn_cast<Constant>(Val)) 4468 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 4469 4470 // insertvalue x, undef, n -> x 4471 if (Q.isUndefValue(Val)) 4472 return Agg; 4473 4474 // insertvalue x, (extractvalue y, n), n 4475 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 4476 if (EV->getAggregateOperand()->getType() == Agg->getType() && 4477 EV->getIndices() == Idxs) { 4478 // insertvalue undef, (extractvalue y, n), n -> y 4479 if (Q.isUndefValue(Agg)) 4480 return EV->getAggregateOperand(); 4481 4482 // insertvalue y, (extractvalue y, n), n -> y 4483 if (Agg == EV->getAggregateOperand()) 4484 return Agg; 4485 } 4486 4487 return nullptr; 4488 } 4489 4490 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 4491 ArrayRef<unsigned> Idxs, 4492 const SimplifyQuery &Q) { 4493 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 4494 } 4495 4496 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 4497 const SimplifyQuery &Q) { 4498 // Try to constant fold. 4499 auto *VecC = dyn_cast<Constant>(Vec); 4500 auto *ValC = dyn_cast<Constant>(Val); 4501 auto *IdxC = dyn_cast<Constant>(Idx); 4502 if (VecC && ValC && IdxC) 4503 return ConstantExpr::getInsertElement(VecC, ValC, IdxC); 4504 4505 // For fixed-length vector, fold into poison if index is out of bounds. 4506 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 4507 if (isa<FixedVectorType>(Vec->getType()) && 4508 CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements())) 4509 return PoisonValue::get(Vec->getType()); 4510 } 4511 4512 // If index is undef, it might be out of bounds (see above case) 4513 if (Q.isUndefValue(Idx)) 4514 return PoisonValue::get(Vec->getType()); 4515 4516 // If the scalar is poison, or it is undef and there is no risk of 4517 // propagating poison from the vector value, simplify to the vector value. 4518 if (isa<PoisonValue>(Val) || 4519 (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec))) 4520 return Vec; 4521 4522 // If we are extracting a value from a vector, then inserting it into the same 4523 // place, that's the input vector: 4524 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec 4525 if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx)))) 4526 return Vec; 4527 4528 return nullptr; 4529 } 4530 4531 /// Given operands for an ExtractValueInst, see if we can fold the result. 4532 /// If not, this returns null. 4533 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4534 const SimplifyQuery &, unsigned) { 4535 if (auto *CAgg = dyn_cast<Constant>(Agg)) 4536 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 4537 4538 // extractvalue x, (insertvalue y, elt, n), n -> elt 4539 unsigned NumIdxs = Idxs.size(); 4540 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 4541 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 4542 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 4543 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 4544 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 4545 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 4546 Idxs.slice(0, NumCommonIdxs)) { 4547 if (NumIdxs == NumInsertValueIdxs) 4548 return IVI->getInsertedValueOperand(); 4549 break; 4550 } 4551 } 4552 4553 return nullptr; 4554 } 4555 4556 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4557 const SimplifyQuery &Q) { 4558 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 4559 } 4560 4561 /// Given operands for an ExtractElementInst, see if we can fold the result. 4562 /// If not, this returns null. 4563 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, 4564 const SimplifyQuery &Q, unsigned) { 4565 auto *VecVTy = cast<VectorType>(Vec->getType()); 4566 if (auto *CVec = dyn_cast<Constant>(Vec)) { 4567 if (auto *CIdx = dyn_cast<Constant>(Idx)) 4568 return ConstantExpr::getExtractElement(CVec, CIdx); 4569 4570 if (Q.isUndefValue(Vec)) 4571 return UndefValue::get(VecVTy->getElementType()); 4572 } 4573 4574 // An undef extract index can be arbitrarily chosen to be an out-of-range 4575 // index value, which would result in the instruction being poison. 4576 if (Q.isUndefValue(Idx)) 4577 return PoisonValue::get(VecVTy->getElementType()); 4578 4579 // If extracting a specified index from the vector, see if we can recursively 4580 // find a previously computed scalar that was inserted into the vector. 4581 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 4582 // For fixed-length vector, fold into undef if index is out of bounds. 4583 unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue(); 4584 if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts)) 4585 return PoisonValue::get(VecVTy->getElementType()); 4586 // Handle case where an element is extracted from a splat. 4587 if (IdxC->getValue().ult(MinNumElts)) 4588 if (auto *Splat = getSplatValue(Vec)) 4589 return Splat; 4590 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4591 return Elt; 4592 } else { 4593 // The index is not relevant if our vector is a splat. 4594 if (Value *Splat = getSplatValue(Vec)) 4595 return Splat; 4596 } 4597 return nullptr; 4598 } 4599 4600 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 4601 const SimplifyQuery &Q) { 4602 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 4603 } 4604 4605 /// See if we can fold the given phi. If not, returns null. 4606 static Value *SimplifyPHINode(PHINode *PN, ArrayRef<Value *> IncomingValues, 4607 const SimplifyQuery &Q) { 4608 // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE 4609 // here, because the PHI we may succeed simplifying to was not 4610 // def-reachable from the original PHI! 4611 4612 // If all of the PHI's incoming values are the same then replace the PHI node 4613 // with the common value. 4614 Value *CommonValue = nullptr; 4615 bool HasUndefInput = false; 4616 for (Value *Incoming : IncomingValues) { 4617 // If the incoming value is the phi node itself, it can safely be skipped. 4618 if (Incoming == PN) continue; 4619 if (Q.isUndefValue(Incoming)) { 4620 // Remember that we saw an undef value, but otherwise ignore them. 4621 HasUndefInput = true; 4622 continue; 4623 } 4624 if (CommonValue && Incoming != CommonValue) 4625 return nullptr; // Not the same, bail out. 4626 CommonValue = Incoming; 4627 } 4628 4629 // If CommonValue is null then all of the incoming values were either undef or 4630 // equal to the phi node itself. 4631 if (!CommonValue) 4632 return UndefValue::get(PN->getType()); 4633 4634 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4635 // instruction, we cannot return X as the result of the PHI node unless it 4636 // dominates the PHI block. 4637 if (HasUndefInput) 4638 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4639 4640 return CommonValue; 4641 } 4642 4643 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4644 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 4645 if (auto *C = dyn_cast<Constant>(Op)) 4646 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4647 4648 if (auto *CI = dyn_cast<CastInst>(Op)) { 4649 auto *Src = CI->getOperand(0); 4650 Type *SrcTy = Src->getType(); 4651 Type *MidTy = CI->getType(); 4652 Type *DstTy = Ty; 4653 if (Src->getType() == Ty) { 4654 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4655 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4656 Type *SrcIntPtrTy = 4657 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4658 Type *MidIntPtrTy = 4659 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4660 Type *DstIntPtrTy = 4661 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4662 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4663 SrcIntPtrTy, MidIntPtrTy, 4664 DstIntPtrTy) == Instruction::BitCast) 4665 return Src; 4666 } 4667 } 4668 4669 // bitcast x -> x 4670 if (CastOpc == Instruction::BitCast) 4671 if (Op->getType() == Ty) 4672 return Op; 4673 4674 return nullptr; 4675 } 4676 4677 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4678 const SimplifyQuery &Q) { 4679 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4680 } 4681 4682 /// For the given destination element of a shuffle, peek through shuffles to 4683 /// match a root vector source operand that contains that element in the same 4684 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4685 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4686 int MaskVal, Value *RootVec, 4687 unsigned MaxRecurse) { 4688 if (!MaxRecurse--) 4689 return nullptr; 4690 4691 // Bail out if any mask value is undefined. That kind of shuffle may be 4692 // simplified further based on demanded bits or other folds. 4693 if (MaskVal == -1) 4694 return nullptr; 4695 4696 // The mask value chooses which source operand we need to look at next. 4697 int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements(); 4698 int RootElt = MaskVal; 4699 Value *SourceOp = Op0; 4700 if (MaskVal >= InVecNumElts) { 4701 RootElt = MaskVal - InVecNumElts; 4702 SourceOp = Op1; 4703 } 4704 4705 // If the source operand is a shuffle itself, look through it to find the 4706 // matching root vector. 4707 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4708 return foldIdentityShuffles( 4709 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4710 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4711 } 4712 4713 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4714 // size? 4715 4716 // The source operand is not a shuffle. Initialize the root vector value for 4717 // this shuffle if that has not been done yet. 4718 if (!RootVec) 4719 RootVec = SourceOp; 4720 4721 // Give up as soon as a source operand does not match the existing root value. 4722 if (RootVec != SourceOp) 4723 return nullptr; 4724 4725 // The element must be coming from the same lane in the source vector 4726 // (although it may have crossed lanes in intermediate shuffles). 4727 if (RootElt != DestElt) 4728 return nullptr; 4729 4730 return RootVec; 4731 } 4732 4733 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4734 ArrayRef<int> Mask, Type *RetTy, 4735 const SimplifyQuery &Q, 4736 unsigned MaxRecurse) { 4737 if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; })) 4738 return UndefValue::get(RetTy); 4739 4740 auto *InVecTy = cast<VectorType>(Op0->getType()); 4741 unsigned MaskNumElts = Mask.size(); 4742 ElementCount InVecEltCount = InVecTy->getElementCount(); 4743 4744 bool Scalable = InVecEltCount.isScalable(); 4745 4746 SmallVector<int, 32> Indices; 4747 Indices.assign(Mask.begin(), Mask.end()); 4748 4749 // Canonicalization: If mask does not select elements from an input vector, 4750 // replace that input vector with poison. 4751 if (!Scalable) { 4752 bool MaskSelects0 = false, MaskSelects1 = false; 4753 unsigned InVecNumElts = InVecEltCount.getKnownMinValue(); 4754 for (unsigned i = 0; i != MaskNumElts; ++i) { 4755 if (Indices[i] == -1) 4756 continue; 4757 if ((unsigned)Indices[i] < InVecNumElts) 4758 MaskSelects0 = true; 4759 else 4760 MaskSelects1 = true; 4761 } 4762 if (!MaskSelects0) 4763 Op0 = PoisonValue::get(InVecTy); 4764 if (!MaskSelects1) 4765 Op1 = PoisonValue::get(InVecTy); 4766 } 4767 4768 auto *Op0Const = dyn_cast<Constant>(Op0); 4769 auto *Op1Const = dyn_cast<Constant>(Op1); 4770 4771 // If all operands are constant, constant fold the shuffle. This 4772 // transformation depends on the value of the mask which is not known at 4773 // compile time for scalable vectors 4774 if (Op0Const && Op1Const) 4775 return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask); 4776 4777 // Canonicalization: if only one input vector is constant, it shall be the 4778 // second one. This transformation depends on the value of the mask which 4779 // is not known at compile time for scalable vectors 4780 if (!Scalable && Op0Const && !Op1Const) { 4781 std::swap(Op0, Op1); 4782 ShuffleVectorInst::commuteShuffleMask(Indices, 4783 InVecEltCount.getKnownMinValue()); 4784 } 4785 4786 // A splat of an inserted scalar constant becomes a vector constant: 4787 // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...> 4788 // NOTE: We may have commuted above, so analyze the updated Indices, not the 4789 // original mask constant. 4790 // NOTE: This transformation depends on the value of the mask which is not 4791 // known at compile time for scalable vectors 4792 Constant *C; 4793 ConstantInt *IndexC; 4794 if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C), 4795 m_ConstantInt(IndexC)))) { 4796 // Match a splat shuffle mask of the insert index allowing undef elements. 4797 int InsertIndex = IndexC->getZExtValue(); 4798 if (all_of(Indices, [InsertIndex](int MaskElt) { 4799 return MaskElt == InsertIndex || MaskElt == -1; 4800 })) { 4801 assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat"); 4802 4803 // Shuffle mask undefs become undefined constant result elements. 4804 SmallVector<Constant *, 16> VecC(MaskNumElts, C); 4805 for (unsigned i = 0; i != MaskNumElts; ++i) 4806 if (Indices[i] == -1) 4807 VecC[i] = UndefValue::get(C->getType()); 4808 return ConstantVector::get(VecC); 4809 } 4810 } 4811 4812 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4813 // value type is same as the input vectors' type. 4814 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4815 if (Q.isUndefValue(Op1) && RetTy == InVecTy && 4816 is_splat(OpShuf->getShuffleMask())) 4817 return Op0; 4818 4819 // All remaining transformation depend on the value of the mask, which is 4820 // not known at compile time for scalable vectors. 4821 if (Scalable) 4822 return nullptr; 4823 4824 // Don't fold a shuffle with undef mask elements. This may get folded in a 4825 // better way using demanded bits or other analysis. 4826 // TODO: Should we allow this? 4827 if (is_contained(Indices, -1)) 4828 return nullptr; 4829 4830 // Check if every element of this shuffle can be mapped back to the 4831 // corresponding element of a single root vector. If so, we don't need this 4832 // shuffle. This handles simple identity shuffles as well as chains of 4833 // shuffles that may widen/narrow and/or move elements across lanes and back. 4834 Value *RootVec = nullptr; 4835 for (unsigned i = 0; i != MaskNumElts; ++i) { 4836 // Note that recursion is limited for each vector element, so if any element 4837 // exceeds the limit, this will fail to simplify. 4838 RootVec = 4839 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4840 4841 // We can't replace a widening/narrowing shuffle with one of its operands. 4842 if (!RootVec || RootVec->getType() != RetTy) 4843 return nullptr; 4844 } 4845 return RootVec; 4846 } 4847 4848 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4849 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4850 ArrayRef<int> Mask, Type *RetTy, 4851 const SimplifyQuery &Q) { 4852 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4853 } 4854 4855 static Constant *foldConstant(Instruction::UnaryOps Opcode, 4856 Value *&Op, const SimplifyQuery &Q) { 4857 if (auto *C = dyn_cast<Constant>(Op)) 4858 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); 4859 return nullptr; 4860 } 4861 4862 /// Given the operand for an FNeg, see if we can fold the result. If not, this 4863 /// returns null. 4864 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, 4865 const SimplifyQuery &Q, unsigned MaxRecurse) { 4866 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) 4867 return C; 4868 4869 Value *X; 4870 // fneg (fneg X) ==> X 4871 if (match(Op, m_FNeg(m_Value(X)))) 4872 return X; 4873 4874 return nullptr; 4875 } 4876 4877 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF, 4878 const SimplifyQuery &Q) { 4879 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); 4880 } 4881 4882 static Constant *propagateNaN(Constant *In) { 4883 // If the input is a vector with undef elements, just return a default NaN. 4884 if (!In->isNaN()) 4885 return ConstantFP::getNaN(In->getType()); 4886 4887 // Propagate the existing NaN constant when possible. 4888 // TODO: Should we quiet a signaling NaN? 4889 return In; 4890 } 4891 4892 /// Perform folds that are common to any floating-point operation. This implies 4893 /// transforms based on poison/undef/NaN because the operation itself makes no 4894 /// difference to the result. 4895 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF, 4896 const SimplifyQuery &Q, 4897 fp::ExceptionBehavior ExBehavior, 4898 RoundingMode Rounding) { 4899 // Poison is independent of anything else. It always propagates from an 4900 // operand to a math result. 4901 if (any_of(Ops, [](Value *V) { return match(V, m_Poison()); })) 4902 return PoisonValue::get(Ops[0]->getType()); 4903 4904 for (Value *V : Ops) { 4905 bool IsNan = match(V, m_NaN()); 4906 bool IsInf = match(V, m_Inf()); 4907 bool IsUndef = Q.isUndefValue(V); 4908 4909 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 4910 // (an undef operand can be chosen to be Nan/Inf), then the result of 4911 // this operation is poison. 4912 if (FMF.noNaNs() && (IsNan || IsUndef)) 4913 return PoisonValue::get(V->getType()); 4914 if (FMF.noInfs() && (IsInf || IsUndef)) 4915 return PoisonValue::get(V->getType()); 4916 4917 if (isDefaultFPEnvironment(ExBehavior, Rounding)) { 4918 if (IsUndef || IsNan) 4919 return propagateNaN(cast<Constant>(V)); 4920 } else if (ExBehavior != fp::ebStrict) { 4921 if (IsNan) 4922 return propagateNaN(cast<Constant>(V)); 4923 } 4924 } 4925 return nullptr; 4926 } 4927 4928 /// Given operands for an FAdd, see if we can fold the result. If not, this 4929 /// returns null. 4930 static Value * 4931 SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4932 const SimplifyQuery &Q, unsigned MaxRecurse, 4933 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 4934 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 4935 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 4936 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 4937 return C; 4938 4939 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 4940 return C; 4941 4942 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 4943 return nullptr; 4944 4945 // fadd X, -0 ==> X 4946 if (match(Op1, m_NegZeroFP())) 4947 return Op0; 4948 4949 // fadd X, 0 ==> X, when we know X is not -0 4950 if (match(Op1, m_PosZeroFP()) && 4951 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4952 return Op0; 4953 4954 // With nnan: -X + X --> 0.0 (and commuted variant) 4955 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 4956 // Negative zeros are allowed because we always end up with positive zero: 4957 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4958 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4959 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 4960 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 4961 if (FMF.noNaNs()) { 4962 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 4963 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) 4964 return ConstantFP::getNullValue(Op0->getType()); 4965 4966 if (match(Op0, m_FNeg(m_Specific(Op1))) || 4967 match(Op1, m_FNeg(m_Specific(Op0)))) 4968 return ConstantFP::getNullValue(Op0->getType()); 4969 } 4970 4971 // (X - Y) + Y --> X 4972 // Y + (X - Y) --> X 4973 Value *X; 4974 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4975 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 4976 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 4977 return X; 4978 4979 return nullptr; 4980 } 4981 4982 /// Given operands for an FSub, see if we can fold the result. If not, this 4983 /// returns null. 4984 static Value * 4985 SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4986 const SimplifyQuery &Q, unsigned MaxRecurse, 4987 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 4988 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 4989 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 4990 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 4991 return C; 4992 4993 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 4994 return C; 4995 4996 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 4997 return nullptr; 4998 4999 // fsub X, +0 ==> X 5000 if (match(Op1, m_PosZeroFP())) 5001 return Op0; 5002 5003 // fsub X, -0 ==> X, when we know X is not -0 5004 if (match(Op1, m_NegZeroFP()) && 5005 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 5006 return Op0; 5007 5008 // fsub -0.0, (fsub -0.0, X) ==> X 5009 // fsub -0.0, (fneg X) ==> X 5010 Value *X; 5011 if (match(Op0, m_NegZeroFP()) && 5012 match(Op1, m_FNeg(m_Value(X)))) 5013 return X; 5014 5015 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 5016 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. 5017 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 5018 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) || 5019 match(Op1, m_FNeg(m_Value(X))))) 5020 return X; 5021 5022 // fsub nnan x, x ==> 0.0 5023 if (FMF.noNaNs() && Op0 == Op1) 5024 return Constant::getNullValue(Op0->getType()); 5025 5026 // Y - (Y - X) --> X 5027 // (X + Y) - Y --> X 5028 if (FMF.noSignedZeros() && FMF.allowReassoc() && 5029 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 5030 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 5031 return X; 5032 5033 return nullptr; 5034 } 5035 5036 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5037 const SimplifyQuery &Q, unsigned MaxRecurse, 5038 fp::ExceptionBehavior ExBehavior, 5039 RoundingMode Rounding) { 5040 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5041 return C; 5042 5043 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5044 return nullptr; 5045 5046 // fmul X, 1.0 ==> X 5047 if (match(Op1, m_FPOne())) 5048 return Op0; 5049 5050 // fmul 1.0, X ==> X 5051 if (match(Op0, m_FPOne())) 5052 return Op1; 5053 5054 // fmul nnan nsz X, 0 ==> 0 5055 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) 5056 return ConstantFP::getNullValue(Op0->getType()); 5057 5058 // fmul nnan nsz 0, X ==> 0 5059 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5060 return ConstantFP::getNullValue(Op1->getType()); 5061 5062 // sqrt(X) * sqrt(X) --> X, if we can: 5063 // 1. Remove the intermediate rounding (reassociate). 5064 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 5065 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 5066 Value *X; 5067 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && 5068 FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros()) 5069 return X; 5070 5071 return nullptr; 5072 } 5073 5074 /// Given the operands for an FMul, see if we can fold the result 5075 static Value * 5076 SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5077 const SimplifyQuery &Q, unsigned MaxRecurse, 5078 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5079 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5080 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5081 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 5082 return C; 5083 5084 // Now apply simplifications that do not require rounding. 5085 return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding); 5086 } 5087 5088 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5089 const SimplifyQuery &Q, 5090 fp::ExceptionBehavior ExBehavior, 5091 RoundingMode Rounding) { 5092 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5093 Rounding); 5094 } 5095 5096 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5097 const SimplifyQuery &Q, 5098 fp::ExceptionBehavior ExBehavior, 5099 RoundingMode Rounding) { 5100 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5101 Rounding); 5102 } 5103 5104 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5105 const SimplifyQuery &Q, 5106 fp::ExceptionBehavior ExBehavior, 5107 RoundingMode Rounding) { 5108 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5109 Rounding); 5110 } 5111 5112 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5113 const SimplifyQuery &Q, 5114 fp::ExceptionBehavior ExBehavior, 5115 RoundingMode Rounding) { 5116 return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5117 Rounding); 5118 } 5119 5120 static Value * 5121 SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5122 const SimplifyQuery &Q, unsigned, 5123 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5124 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5125 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5126 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 5127 return C; 5128 5129 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5130 return C; 5131 5132 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5133 return nullptr; 5134 5135 // X / 1.0 -> X 5136 if (match(Op1, m_FPOne())) 5137 return Op0; 5138 5139 // 0 / X -> 0 5140 // Requires that NaNs are off (X could be zero) and signed zeroes are 5141 // ignored (X could be positive or negative, so the output sign is unknown). 5142 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5143 return ConstantFP::getNullValue(Op0->getType()); 5144 5145 if (FMF.noNaNs()) { 5146 // X / X -> 1.0 is legal when NaNs are ignored. 5147 // We can ignore infinities because INF/INF is NaN. 5148 if (Op0 == Op1) 5149 return ConstantFP::get(Op0->getType(), 1.0); 5150 5151 // (X * Y) / Y --> X if we can reassociate to the above form. 5152 Value *X; 5153 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 5154 return X; 5155 5156 // -X / X -> -1.0 and 5157 // X / -X -> -1.0 are legal when NaNs are ignored. 5158 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 5159 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 5160 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 5161 return ConstantFP::get(Op0->getType(), -1.0); 5162 } 5163 5164 return nullptr; 5165 } 5166 5167 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5168 const SimplifyQuery &Q, 5169 fp::ExceptionBehavior ExBehavior, 5170 RoundingMode Rounding) { 5171 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5172 Rounding); 5173 } 5174 5175 static Value * 5176 SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5177 const SimplifyQuery &Q, unsigned, 5178 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5179 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5180 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5181 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 5182 return C; 5183 5184 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5185 return C; 5186 5187 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5188 return nullptr; 5189 5190 // Unlike fdiv, the result of frem always matches the sign of the dividend. 5191 // The constant match may include undef elements in a vector, so return a full 5192 // zero constant as the result. 5193 if (FMF.noNaNs()) { 5194 // +0 % X -> 0 5195 if (match(Op0, m_PosZeroFP())) 5196 return ConstantFP::getNullValue(Op0->getType()); 5197 // -0 % X -> -0 5198 if (match(Op0, m_NegZeroFP())) 5199 return ConstantFP::getNegativeZero(Op0->getType()); 5200 } 5201 5202 return nullptr; 5203 } 5204 5205 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5206 const SimplifyQuery &Q, 5207 fp::ExceptionBehavior ExBehavior, 5208 RoundingMode Rounding) { 5209 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5210 Rounding); 5211 } 5212 5213 //=== Helper functions for higher up the class hierarchy. 5214 5215 /// Given the operand for a UnaryOperator, see if we can fold the result. 5216 /// If not, this returns null. 5217 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, 5218 unsigned MaxRecurse) { 5219 switch (Opcode) { 5220 case Instruction::FNeg: 5221 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); 5222 default: 5223 llvm_unreachable("Unexpected opcode"); 5224 } 5225 } 5226 5227 /// Given the operand for a UnaryOperator, see if we can fold the result. 5228 /// If not, this returns null. 5229 /// Try to use FastMathFlags when folding the result. 5230 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, 5231 const FastMathFlags &FMF, 5232 const SimplifyQuery &Q, unsigned MaxRecurse) { 5233 switch (Opcode) { 5234 case Instruction::FNeg: 5235 return simplifyFNegInst(Op, FMF, Q, MaxRecurse); 5236 default: 5237 return simplifyUnOp(Opcode, Op, Q, MaxRecurse); 5238 } 5239 } 5240 5241 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { 5242 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit); 5243 } 5244 5245 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, 5246 const SimplifyQuery &Q) { 5247 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); 5248 } 5249 5250 /// Given operands for a BinaryOperator, see if we can fold the result. 5251 /// If not, this returns null. 5252 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5253 const SimplifyQuery &Q, unsigned MaxRecurse) { 5254 switch (Opcode) { 5255 case Instruction::Add: 5256 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 5257 case Instruction::Sub: 5258 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 5259 case Instruction::Mul: 5260 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 5261 case Instruction::SDiv: 5262 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 5263 case Instruction::UDiv: 5264 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 5265 case Instruction::SRem: 5266 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 5267 case Instruction::URem: 5268 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 5269 case Instruction::Shl: 5270 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 5271 case Instruction::LShr: 5272 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 5273 case Instruction::AShr: 5274 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 5275 case Instruction::And: 5276 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 5277 case Instruction::Or: 5278 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 5279 case Instruction::Xor: 5280 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 5281 case Instruction::FAdd: 5282 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5283 case Instruction::FSub: 5284 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5285 case Instruction::FMul: 5286 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5287 case Instruction::FDiv: 5288 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5289 case Instruction::FRem: 5290 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5291 default: 5292 llvm_unreachable("Unexpected opcode"); 5293 } 5294 } 5295 5296 /// Given operands for a BinaryOperator, see if we can fold the result. 5297 /// If not, this returns null. 5298 /// Try to use FastMathFlags when folding the result. 5299 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5300 const FastMathFlags &FMF, const SimplifyQuery &Q, 5301 unsigned MaxRecurse) { 5302 switch (Opcode) { 5303 case Instruction::FAdd: 5304 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 5305 case Instruction::FSub: 5306 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 5307 case Instruction::FMul: 5308 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 5309 case Instruction::FDiv: 5310 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 5311 default: 5312 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 5313 } 5314 } 5315 5316 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5317 const SimplifyQuery &Q) { 5318 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 5319 } 5320 5321 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5322 FastMathFlags FMF, const SimplifyQuery &Q) { 5323 return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 5324 } 5325 5326 /// Given operands for a CmpInst, see if we can fold the result. 5327 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5328 const SimplifyQuery &Q, unsigned MaxRecurse) { 5329 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 5330 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 5331 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5332 } 5333 5334 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5335 const SimplifyQuery &Q) { 5336 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 5337 } 5338 5339 static bool IsIdempotent(Intrinsic::ID ID) { 5340 switch (ID) { 5341 default: return false; 5342 5343 // Unary idempotent: f(f(x)) = f(x) 5344 case Intrinsic::fabs: 5345 case Intrinsic::floor: 5346 case Intrinsic::ceil: 5347 case Intrinsic::trunc: 5348 case Intrinsic::rint: 5349 case Intrinsic::nearbyint: 5350 case Intrinsic::round: 5351 case Intrinsic::roundeven: 5352 case Intrinsic::canonicalize: 5353 return true; 5354 } 5355 } 5356 5357 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 5358 const DataLayout &DL) { 5359 GlobalValue *PtrSym; 5360 APInt PtrOffset; 5361 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 5362 return nullptr; 5363 5364 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 5365 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 5366 Type *Int32PtrTy = Int32Ty->getPointerTo(); 5367 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 5368 5369 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 5370 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 5371 return nullptr; 5372 5373 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 5374 if (OffsetInt % 4 != 0) 5375 return nullptr; 5376 5377 Constant *C = ConstantExpr::getGetElementPtr( 5378 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 5379 ConstantInt::get(Int64Ty, OffsetInt / 4)); 5380 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 5381 if (!Loaded) 5382 return nullptr; 5383 5384 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 5385 if (!LoadedCE) 5386 return nullptr; 5387 5388 if (LoadedCE->getOpcode() == Instruction::Trunc) { 5389 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5390 if (!LoadedCE) 5391 return nullptr; 5392 } 5393 5394 if (LoadedCE->getOpcode() != Instruction::Sub) 5395 return nullptr; 5396 5397 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5398 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 5399 return nullptr; 5400 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 5401 5402 Constant *LoadedRHS = LoadedCE->getOperand(1); 5403 GlobalValue *LoadedRHSSym; 5404 APInt LoadedRHSOffset; 5405 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 5406 DL) || 5407 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 5408 return nullptr; 5409 5410 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 5411 } 5412 5413 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 5414 const SimplifyQuery &Q) { 5415 // Idempotent functions return the same result when called repeatedly. 5416 Intrinsic::ID IID = F->getIntrinsicID(); 5417 if (IsIdempotent(IID)) 5418 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 5419 if (II->getIntrinsicID() == IID) 5420 return II; 5421 5422 Value *X; 5423 switch (IID) { 5424 case Intrinsic::fabs: 5425 if (SignBitMustBeZero(Op0, Q.TLI)) return Op0; 5426 break; 5427 case Intrinsic::bswap: 5428 // bswap(bswap(x)) -> x 5429 if (match(Op0, m_BSwap(m_Value(X)))) return X; 5430 break; 5431 case Intrinsic::bitreverse: 5432 // bitreverse(bitreverse(x)) -> x 5433 if (match(Op0, m_BitReverse(m_Value(X)))) return X; 5434 break; 5435 case Intrinsic::ctpop: { 5436 // If everything but the lowest bit is zero, that bit is the pop-count. Ex: 5437 // ctpop(and X, 1) --> and X, 1 5438 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 5439 if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1), 5440 Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 5441 return Op0; 5442 break; 5443 } 5444 case Intrinsic::exp: 5445 // exp(log(x)) -> x 5446 if (Q.CxtI->hasAllowReassoc() && 5447 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X; 5448 break; 5449 case Intrinsic::exp2: 5450 // exp2(log2(x)) -> x 5451 if (Q.CxtI->hasAllowReassoc() && 5452 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X; 5453 break; 5454 case Intrinsic::log: 5455 // log(exp(x)) -> x 5456 if (Q.CxtI->hasAllowReassoc() && 5457 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X; 5458 break; 5459 case Intrinsic::log2: 5460 // log2(exp2(x)) -> x 5461 if (Q.CxtI->hasAllowReassoc() && 5462 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || 5463 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), 5464 m_Value(X))))) return X; 5465 break; 5466 case Intrinsic::log10: 5467 // log10(pow(10.0, x)) -> x 5468 if (Q.CxtI->hasAllowReassoc() && 5469 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), 5470 m_Value(X)))) return X; 5471 break; 5472 case Intrinsic::floor: 5473 case Intrinsic::trunc: 5474 case Intrinsic::ceil: 5475 case Intrinsic::round: 5476 case Intrinsic::roundeven: 5477 case Intrinsic::nearbyint: 5478 case Intrinsic::rint: { 5479 // floor (sitofp x) -> sitofp x 5480 // floor (uitofp x) -> uitofp x 5481 // 5482 // Converting from int always results in a finite integral number or 5483 // infinity. For either of those inputs, these rounding functions always 5484 // return the same value, so the rounding can be eliminated. 5485 if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) 5486 return Op0; 5487 break; 5488 } 5489 case Intrinsic::experimental_vector_reverse: 5490 // experimental.vector.reverse(experimental.vector.reverse(x)) -> x 5491 if (match(Op0, 5492 m_Intrinsic<Intrinsic::experimental_vector_reverse>(m_Value(X)))) 5493 return X; 5494 // experimental.vector.reverse(splat(X)) -> splat(X) 5495 if (isSplatValue(Op0)) 5496 return Op0; 5497 break; 5498 default: 5499 break; 5500 } 5501 5502 return nullptr; 5503 } 5504 5505 static APInt getMaxMinLimit(Intrinsic::ID IID, unsigned BitWidth) { 5506 switch (IID) { 5507 case Intrinsic::smax: return APInt::getSignedMaxValue(BitWidth); 5508 case Intrinsic::smin: return APInt::getSignedMinValue(BitWidth); 5509 case Intrinsic::umax: return APInt::getMaxValue(BitWidth); 5510 case Intrinsic::umin: return APInt::getMinValue(BitWidth); 5511 default: llvm_unreachable("Unexpected intrinsic"); 5512 } 5513 } 5514 5515 static ICmpInst::Predicate getMaxMinPredicate(Intrinsic::ID IID) { 5516 switch (IID) { 5517 case Intrinsic::smax: return ICmpInst::ICMP_SGE; 5518 case Intrinsic::smin: return ICmpInst::ICMP_SLE; 5519 case Intrinsic::umax: return ICmpInst::ICMP_UGE; 5520 case Intrinsic::umin: return ICmpInst::ICMP_ULE; 5521 default: llvm_unreachable("Unexpected intrinsic"); 5522 } 5523 } 5524 5525 /// Given a min/max intrinsic, see if it can be removed based on having an 5526 /// operand that is another min/max intrinsic with shared operand(s). The caller 5527 /// is expected to swap the operand arguments to handle commutation. 5528 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) { 5529 Value *X, *Y; 5530 if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y)))) 5531 return nullptr; 5532 5533 auto *MM0 = dyn_cast<IntrinsicInst>(Op0); 5534 if (!MM0) 5535 return nullptr; 5536 Intrinsic::ID IID0 = MM0->getIntrinsicID(); 5537 5538 if (Op1 == X || Op1 == Y || 5539 match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) { 5540 // max (max X, Y), X --> max X, Y 5541 if (IID0 == IID) 5542 return MM0; 5543 // max (min X, Y), X --> X 5544 if (IID0 == getInverseMinMaxIntrinsic(IID)) 5545 return Op1; 5546 } 5547 return nullptr; 5548 } 5549 5550 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, 5551 const SimplifyQuery &Q) { 5552 Intrinsic::ID IID = F->getIntrinsicID(); 5553 Type *ReturnType = F->getReturnType(); 5554 unsigned BitWidth = ReturnType->getScalarSizeInBits(); 5555 switch (IID) { 5556 case Intrinsic::abs: 5557 // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here. 5558 // It is always ok to pick the earlier abs. We'll just lose nsw if its only 5559 // on the outer abs. 5560 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value()))) 5561 return Op0; 5562 break; 5563 5564 case Intrinsic::cttz: { 5565 Value *X; 5566 if (match(Op0, m_Shl(m_One(), m_Value(X)))) 5567 return X; 5568 break; 5569 } 5570 case Intrinsic::ctlz: { 5571 Value *X; 5572 if (match(Op0, m_LShr(m_Negative(), m_Value(X)))) 5573 return X; 5574 if (match(Op0, m_AShr(m_Negative(), m_Value()))) 5575 return Constant::getNullValue(ReturnType); 5576 break; 5577 } 5578 case Intrinsic::smax: 5579 case Intrinsic::smin: 5580 case Intrinsic::umax: 5581 case Intrinsic::umin: { 5582 // If the arguments are the same, this is a no-op. 5583 if (Op0 == Op1) 5584 return Op0; 5585 5586 // Canonicalize constant operand as Op1. 5587 if (isa<Constant>(Op0)) 5588 std::swap(Op0, Op1); 5589 5590 // Assume undef is the limit value. 5591 if (Q.isUndefValue(Op1)) 5592 return ConstantInt::get(ReturnType, getMaxMinLimit(IID, BitWidth)); 5593 5594 const APInt *C; 5595 if (match(Op1, m_APIntAllowUndef(C))) { 5596 // Clamp to limit value. For example: 5597 // umax(i8 %x, i8 255) --> 255 5598 if (*C == getMaxMinLimit(IID, BitWidth)) 5599 return ConstantInt::get(ReturnType, *C); 5600 5601 // If the constant op is the opposite of the limit value, the other must 5602 // be larger/smaller or equal. For example: 5603 // umin(i8 %x, i8 255) --> %x 5604 if (*C == getMaxMinLimit(getInverseMinMaxIntrinsic(IID), BitWidth)) 5605 return Op0; 5606 5607 // Remove nested call if constant operands allow it. Example: 5608 // max (max X, 7), 5 -> max X, 7 5609 auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0); 5610 if (MinMax0 && MinMax0->getIntrinsicID() == IID) { 5611 // TODO: loosen undef/splat restrictions for vector constants. 5612 Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1); 5613 const APInt *InnerC; 5614 if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) && 5615 ((IID == Intrinsic::smax && InnerC->sge(*C)) || 5616 (IID == Intrinsic::smin && InnerC->sle(*C)) || 5617 (IID == Intrinsic::umax && InnerC->uge(*C)) || 5618 (IID == Intrinsic::umin && InnerC->ule(*C)))) 5619 return Op0; 5620 } 5621 } 5622 5623 if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1)) 5624 return V; 5625 if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0)) 5626 return V; 5627 5628 ICmpInst::Predicate Pred = getMaxMinPredicate(IID); 5629 if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit)) 5630 return Op0; 5631 if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit)) 5632 return Op1; 5633 5634 if (Optional<bool> Imp = 5635 isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL)) 5636 return *Imp ? Op0 : Op1; 5637 if (Optional<bool> Imp = 5638 isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL)) 5639 return *Imp ? Op1 : Op0; 5640 5641 break; 5642 } 5643 case Intrinsic::usub_with_overflow: 5644 case Intrinsic::ssub_with_overflow: 5645 // X - X -> { 0, false } 5646 // X - undef -> { 0, false } 5647 // undef - X -> { 0, false } 5648 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5649 return Constant::getNullValue(ReturnType); 5650 break; 5651 case Intrinsic::uadd_with_overflow: 5652 case Intrinsic::sadd_with_overflow: 5653 // X + undef -> { -1, false } 5654 // undef + x -> { -1, false } 5655 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) { 5656 return ConstantStruct::get( 5657 cast<StructType>(ReturnType), 5658 {Constant::getAllOnesValue(ReturnType->getStructElementType(0)), 5659 Constant::getNullValue(ReturnType->getStructElementType(1))}); 5660 } 5661 break; 5662 case Intrinsic::umul_with_overflow: 5663 case Intrinsic::smul_with_overflow: 5664 // 0 * X -> { 0, false } 5665 // X * 0 -> { 0, false } 5666 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 5667 return Constant::getNullValue(ReturnType); 5668 // undef * X -> { 0, false } 5669 // X * undef -> { 0, false } 5670 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5671 return Constant::getNullValue(ReturnType); 5672 break; 5673 case Intrinsic::uadd_sat: 5674 // sat(MAX + X) -> MAX 5675 // sat(X + MAX) -> MAX 5676 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 5677 return Constant::getAllOnesValue(ReturnType); 5678 LLVM_FALLTHROUGH; 5679 case Intrinsic::sadd_sat: 5680 // sat(X + undef) -> -1 5681 // sat(undef + X) -> -1 5682 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 5683 // For signed: Assume undef is ~X, in which case X + ~X = -1. 5684 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5685 return Constant::getAllOnesValue(ReturnType); 5686 5687 // X + 0 -> X 5688 if (match(Op1, m_Zero())) 5689 return Op0; 5690 // 0 + X -> X 5691 if (match(Op0, m_Zero())) 5692 return Op1; 5693 break; 5694 case Intrinsic::usub_sat: 5695 // sat(0 - X) -> 0, sat(X - MAX) -> 0 5696 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 5697 return Constant::getNullValue(ReturnType); 5698 LLVM_FALLTHROUGH; 5699 case Intrinsic::ssub_sat: 5700 // X - X -> 0, X - undef -> 0, undef - X -> 0 5701 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5702 return Constant::getNullValue(ReturnType); 5703 // X - 0 -> X 5704 if (match(Op1, m_Zero())) 5705 return Op0; 5706 break; 5707 case Intrinsic::load_relative: 5708 if (auto *C0 = dyn_cast<Constant>(Op0)) 5709 if (auto *C1 = dyn_cast<Constant>(Op1)) 5710 return SimplifyRelativeLoad(C0, C1, Q.DL); 5711 break; 5712 case Intrinsic::powi: 5713 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 5714 // powi(x, 0) -> 1.0 5715 if (Power->isZero()) 5716 return ConstantFP::get(Op0->getType(), 1.0); 5717 // powi(x, 1) -> x 5718 if (Power->isOne()) 5719 return Op0; 5720 } 5721 break; 5722 case Intrinsic::copysign: 5723 // copysign X, X --> X 5724 if (Op0 == Op1) 5725 return Op0; 5726 // copysign -X, X --> X 5727 // copysign X, -X --> -X 5728 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5729 match(Op1, m_FNeg(m_Specific(Op0)))) 5730 return Op1; 5731 break; 5732 case Intrinsic::maxnum: 5733 case Intrinsic::minnum: 5734 case Intrinsic::maximum: 5735 case Intrinsic::minimum: { 5736 // If the arguments are the same, this is a no-op. 5737 if (Op0 == Op1) return Op0; 5738 5739 // Canonicalize constant operand as Op1. 5740 if (isa<Constant>(Op0)) 5741 std::swap(Op0, Op1); 5742 5743 // If an argument is undef, return the other argument. 5744 if (Q.isUndefValue(Op1)) 5745 return Op0; 5746 5747 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 5748 bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum; 5749 5750 // minnum(X, nan) -> X 5751 // maxnum(X, nan) -> X 5752 // minimum(X, nan) -> nan 5753 // maximum(X, nan) -> nan 5754 if (match(Op1, m_NaN())) 5755 return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0; 5756 5757 // In the following folds, inf can be replaced with the largest finite 5758 // float, if the ninf flag is set. 5759 const APFloat *C; 5760 if (match(Op1, m_APFloat(C)) && 5761 (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) { 5762 // minnum(X, -inf) -> -inf 5763 // maxnum(X, +inf) -> +inf 5764 // minimum(X, -inf) -> -inf if nnan 5765 // maximum(X, +inf) -> +inf if nnan 5766 if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs())) 5767 return ConstantFP::get(ReturnType, *C); 5768 5769 // minnum(X, +inf) -> X if nnan 5770 // maxnum(X, -inf) -> X if nnan 5771 // minimum(X, +inf) -> X 5772 // maximum(X, -inf) -> X 5773 if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs())) 5774 return Op0; 5775 } 5776 5777 // Min/max of the same operation with common operand: 5778 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 5779 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0)) 5780 if (M0->getIntrinsicID() == IID && 5781 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1)) 5782 return Op0; 5783 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1)) 5784 if (M1->getIntrinsicID() == IID && 5785 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0)) 5786 return Op1; 5787 5788 break; 5789 } 5790 case Intrinsic::experimental_vector_extract: { 5791 Type *ReturnType = F->getReturnType(); 5792 5793 // (extract_vector (insert_vector _, X, 0), 0) -> X 5794 unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue(); 5795 Value *X = nullptr; 5796 if (match(Op0, m_Intrinsic<Intrinsic::experimental_vector_insert>( 5797 m_Value(), m_Value(X), m_Zero())) && 5798 IdxN == 0 && X->getType() == ReturnType) 5799 return X; 5800 5801 break; 5802 } 5803 default: 5804 break; 5805 } 5806 5807 return nullptr; 5808 } 5809 5810 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) { 5811 5812 unsigned NumOperands = Call->getNumArgOperands(); 5813 Function *F = cast<Function>(Call->getCalledFunction()); 5814 Intrinsic::ID IID = F->getIntrinsicID(); 5815 5816 // Most of the intrinsics with no operands have some kind of side effect. 5817 // Don't simplify. 5818 if (!NumOperands) { 5819 switch (IID) { 5820 case Intrinsic::vscale: { 5821 // Call may not be inserted into the IR yet at point of calling simplify. 5822 if (!Call->getParent() || !Call->getParent()->getParent()) 5823 return nullptr; 5824 auto Attr = Call->getFunction()->getFnAttribute(Attribute::VScaleRange); 5825 if (!Attr.isValid()) 5826 return nullptr; 5827 unsigned VScaleMin, VScaleMax; 5828 std::tie(VScaleMin, VScaleMax) = Attr.getVScaleRangeArgs(); 5829 if (VScaleMin == VScaleMax && VScaleMax != 0) 5830 return ConstantInt::get(F->getReturnType(), VScaleMin); 5831 return nullptr; 5832 } 5833 default: 5834 return nullptr; 5835 } 5836 } 5837 5838 if (NumOperands == 1) 5839 return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q); 5840 5841 if (NumOperands == 2) 5842 return simplifyBinaryIntrinsic(F, Call->getArgOperand(0), 5843 Call->getArgOperand(1), Q); 5844 5845 // Handle intrinsics with 3 or more arguments. 5846 switch (IID) { 5847 case Intrinsic::masked_load: 5848 case Intrinsic::masked_gather: { 5849 Value *MaskArg = Call->getArgOperand(2); 5850 Value *PassthruArg = Call->getArgOperand(3); 5851 // If the mask is all zeros or undef, the "passthru" argument is the result. 5852 if (maskIsAllZeroOrUndef(MaskArg)) 5853 return PassthruArg; 5854 return nullptr; 5855 } 5856 case Intrinsic::fshl: 5857 case Intrinsic::fshr: { 5858 Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1), 5859 *ShAmtArg = Call->getArgOperand(2); 5860 5861 // If both operands are undef, the result is undef. 5862 if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1)) 5863 return UndefValue::get(F->getReturnType()); 5864 5865 // If shift amount is undef, assume it is zero. 5866 if (Q.isUndefValue(ShAmtArg)) 5867 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5868 5869 const APInt *ShAmtC; 5870 if (match(ShAmtArg, m_APInt(ShAmtC))) { 5871 // If there's effectively no shift, return the 1st arg or 2nd arg. 5872 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 5873 if (ShAmtC->urem(BitWidth).isNullValue()) 5874 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5875 } 5876 5877 // Rotating zero by anything is zero. 5878 if (match(Op0, m_Zero()) && match(Op1, m_Zero())) 5879 return ConstantInt::getNullValue(F->getReturnType()); 5880 5881 // Rotating -1 by anything is -1. 5882 if (match(Op0, m_AllOnes()) && match(Op1, m_AllOnes())) 5883 return ConstantInt::getAllOnesValue(F->getReturnType()); 5884 5885 return nullptr; 5886 } 5887 case Intrinsic::experimental_constrained_fma: { 5888 Value *Op0 = Call->getArgOperand(0); 5889 Value *Op1 = Call->getArgOperand(1); 5890 Value *Op2 = Call->getArgOperand(2); 5891 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 5892 if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, 5893 FPI->getExceptionBehavior().getValue(), 5894 FPI->getRoundingMode().getValue())) 5895 return V; 5896 return nullptr; 5897 } 5898 case Intrinsic::fma: 5899 case Intrinsic::fmuladd: { 5900 Value *Op0 = Call->getArgOperand(0); 5901 Value *Op1 = Call->getArgOperand(1); 5902 Value *Op2 = Call->getArgOperand(2); 5903 if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, fp::ebIgnore, 5904 RoundingMode::NearestTiesToEven)) 5905 return V; 5906 return nullptr; 5907 } 5908 case Intrinsic::smul_fix: 5909 case Intrinsic::smul_fix_sat: { 5910 Value *Op0 = Call->getArgOperand(0); 5911 Value *Op1 = Call->getArgOperand(1); 5912 Value *Op2 = Call->getArgOperand(2); 5913 Type *ReturnType = F->getReturnType(); 5914 5915 // Canonicalize constant operand as Op1 (ConstantFolding handles the case 5916 // when both Op0 and Op1 are constant so we do not care about that special 5917 // case here). 5918 if (isa<Constant>(Op0)) 5919 std::swap(Op0, Op1); 5920 5921 // X * 0 -> 0 5922 if (match(Op1, m_Zero())) 5923 return Constant::getNullValue(ReturnType); 5924 5925 // X * undef -> 0 5926 if (Q.isUndefValue(Op1)) 5927 return Constant::getNullValue(ReturnType); 5928 5929 // X * (1 << Scale) -> X 5930 APInt ScaledOne = 5931 APInt::getOneBitSet(ReturnType->getScalarSizeInBits(), 5932 cast<ConstantInt>(Op2)->getZExtValue()); 5933 if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne))) 5934 return Op0; 5935 5936 return nullptr; 5937 } 5938 case Intrinsic::experimental_vector_insert: { 5939 Value *Vec = Call->getArgOperand(0); 5940 Value *SubVec = Call->getArgOperand(1); 5941 Value *Idx = Call->getArgOperand(2); 5942 Type *ReturnType = F->getReturnType(); 5943 5944 // (insert_vector Y, (extract_vector X, 0), 0) -> X 5945 // where: Y is X, or Y is undef 5946 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 5947 Value *X = nullptr; 5948 if (match(SubVec, m_Intrinsic<Intrinsic::experimental_vector_extract>( 5949 m_Value(X), m_Zero())) && 5950 (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 && 5951 X->getType() == ReturnType) 5952 return X; 5953 5954 return nullptr; 5955 } 5956 case Intrinsic::experimental_constrained_fadd: { 5957 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 5958 return SimplifyFAddInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 5959 FPI->getFastMathFlags(), Q, 5960 FPI->getExceptionBehavior().getValue(), 5961 FPI->getRoundingMode().getValue()); 5962 break; 5963 } 5964 case Intrinsic::experimental_constrained_fsub: { 5965 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 5966 return SimplifyFSubInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 5967 FPI->getFastMathFlags(), Q, 5968 FPI->getExceptionBehavior().getValue(), 5969 FPI->getRoundingMode().getValue()); 5970 break; 5971 } 5972 case Intrinsic::experimental_constrained_fmul: { 5973 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 5974 return SimplifyFMulInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 5975 FPI->getFastMathFlags(), Q, 5976 FPI->getExceptionBehavior().getValue(), 5977 FPI->getRoundingMode().getValue()); 5978 break; 5979 } 5980 case Intrinsic::experimental_constrained_fdiv: { 5981 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 5982 return SimplifyFDivInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 5983 FPI->getFastMathFlags(), Q, 5984 FPI->getExceptionBehavior().getValue(), 5985 FPI->getRoundingMode().getValue()); 5986 break; 5987 } 5988 case Intrinsic::experimental_constrained_frem: { 5989 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 5990 return SimplifyFRemInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 5991 FPI->getFastMathFlags(), Q, 5992 FPI->getExceptionBehavior().getValue(), 5993 FPI->getRoundingMode().getValue()); 5994 break; 5995 } 5996 default: 5997 return nullptr; 5998 } 5999 } 6000 6001 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) { 6002 auto *F = dyn_cast<Function>(Call->getCalledOperand()); 6003 if (!F || !canConstantFoldCallTo(Call, F)) 6004 return nullptr; 6005 6006 SmallVector<Constant *, 4> ConstantArgs; 6007 unsigned NumArgs = Call->getNumArgOperands(); 6008 ConstantArgs.reserve(NumArgs); 6009 for (auto &Arg : Call->args()) { 6010 Constant *C = dyn_cast<Constant>(&Arg); 6011 if (!C) { 6012 if (isa<MetadataAsValue>(Arg.get())) 6013 continue; 6014 return nullptr; 6015 } 6016 ConstantArgs.push_back(C); 6017 } 6018 6019 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); 6020 } 6021 6022 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) { 6023 // musttail calls can only be simplified if they are also DCEd. 6024 // As we can't guarantee this here, don't simplify them. 6025 if (Call->isMustTailCall()) 6026 return nullptr; 6027 6028 // call undef -> poison 6029 // call null -> poison 6030 Value *Callee = Call->getCalledOperand(); 6031 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee)) 6032 return PoisonValue::get(Call->getType()); 6033 6034 if (Value *V = tryConstantFoldCall(Call, Q)) 6035 return V; 6036 6037 auto *F = dyn_cast<Function>(Callee); 6038 if (F && F->isIntrinsic()) 6039 if (Value *Ret = simplifyIntrinsic(Call, Q)) 6040 return Ret; 6041 6042 return nullptr; 6043 } 6044 6045 /// Given operands for a Freeze, see if we can fold the result. 6046 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 6047 // Use a utility function defined in ValueTracking. 6048 if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT)) 6049 return Op0; 6050 // We have room for improvement. 6051 return nullptr; 6052 } 6053 6054 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 6055 return ::SimplifyFreezeInst(Op0, Q); 6056 } 6057 6058 static Constant *ConstructLoadOperandConstant(Value *Op) { 6059 SmallVector<Value *, 4> Worklist; 6060 // Invalid IR in unreachable code may contain self-referential values. Don't infinitely loop. 6061 SmallPtrSet<Value *, 4> Visited; 6062 Worklist.push_back(Op); 6063 while (true) { 6064 Value *CurOp = Worklist.back(); 6065 if (!Visited.insert(CurOp).second) 6066 return nullptr; 6067 if (isa<Constant>(CurOp)) 6068 break; 6069 if (auto *BC = dyn_cast<BitCastOperator>(CurOp)) { 6070 Worklist.push_back(BC->getOperand(0)); 6071 } else if (auto *GEP = dyn_cast<GEPOperator>(CurOp)) { 6072 for (unsigned I = 1; I != GEP->getNumOperands(); ++I) { 6073 if (!isa<Constant>(GEP->getOperand(I))) 6074 return nullptr; 6075 } 6076 Worklist.push_back(GEP->getOperand(0)); 6077 } else if (auto *II = dyn_cast<IntrinsicInst>(CurOp)) { 6078 if (II->isLaunderOrStripInvariantGroup()) 6079 Worklist.push_back(II->getOperand(0)); 6080 else 6081 return nullptr; 6082 } else { 6083 return nullptr; 6084 } 6085 } 6086 6087 Constant *NewOp = cast<Constant>(Worklist.pop_back_val()); 6088 while (!Worklist.empty()) { 6089 Value *CurOp = Worklist.pop_back_val(); 6090 if (isa<BitCastOperator>(CurOp)) { 6091 NewOp = ConstantExpr::getBitCast(NewOp, CurOp->getType()); 6092 } else if (auto *GEP = dyn_cast<GEPOperator>(CurOp)) { 6093 SmallVector<Constant *> Idxs; 6094 Idxs.reserve(GEP->getNumOperands() - 1); 6095 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I) { 6096 Idxs.push_back(cast<Constant>(GEP->getOperand(I))); 6097 } 6098 NewOp = ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), NewOp, 6099 Idxs, GEP->isInBounds(), 6100 GEP->getInRangeIndex()); 6101 } else { 6102 assert(isa<IntrinsicInst>(CurOp) && 6103 cast<IntrinsicInst>(CurOp)->isLaunderOrStripInvariantGroup() && 6104 "expected invariant group intrinsic"); 6105 NewOp = ConstantExpr::getBitCast(NewOp, CurOp->getType()); 6106 } 6107 } 6108 return NewOp; 6109 } 6110 6111 static Value *SimplifyLoadInst(LoadInst *LI, Value *PtrOp, 6112 const SimplifyQuery &Q) { 6113 if (LI->isVolatile()) 6114 return nullptr; 6115 6116 // Try to make the load operand a constant, specifically handle 6117 // invariant.group intrinsics. 6118 auto *PtrOpC = dyn_cast<Constant>(PtrOp); 6119 if (!PtrOpC) 6120 PtrOpC = ConstructLoadOperandConstant(PtrOp); 6121 6122 if (PtrOpC) 6123 return ConstantFoldLoadFromConstPtr(PtrOpC, LI->getType(), Q.DL); 6124 6125 return nullptr; 6126 } 6127 6128 /// See if we can compute a simplified version of this instruction. 6129 /// If not, this returns null. 6130 6131 static Value *simplifyInstructionWithOperands(Instruction *I, 6132 ArrayRef<Value *> NewOps, 6133 const SimplifyQuery &SQ, 6134 OptimizationRemarkEmitter *ORE) { 6135 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 6136 Value *Result = nullptr; 6137 6138 switch (I->getOpcode()) { 6139 default: 6140 if (llvm::all_of(NewOps, [](Value *V) { return isa<Constant>(V); })) { 6141 SmallVector<Constant *, 8> NewConstOps(NewOps.size()); 6142 transform(NewOps, NewConstOps.begin(), 6143 [](Value *V) { return cast<Constant>(V); }); 6144 Result = ConstantFoldInstOperands(I, NewConstOps, Q.DL, Q.TLI); 6145 } 6146 break; 6147 case Instruction::FNeg: 6148 Result = SimplifyFNegInst(NewOps[0], I->getFastMathFlags(), Q); 6149 break; 6150 case Instruction::FAdd: 6151 Result = SimplifyFAddInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6152 break; 6153 case Instruction::Add: 6154 Result = SimplifyAddInst( 6155 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6156 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6157 break; 6158 case Instruction::FSub: 6159 Result = SimplifyFSubInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6160 break; 6161 case Instruction::Sub: 6162 Result = SimplifySubInst( 6163 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6164 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6165 break; 6166 case Instruction::FMul: 6167 Result = SimplifyFMulInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6168 break; 6169 case Instruction::Mul: 6170 Result = SimplifyMulInst(NewOps[0], NewOps[1], Q); 6171 break; 6172 case Instruction::SDiv: 6173 Result = SimplifySDivInst(NewOps[0], NewOps[1], Q); 6174 break; 6175 case Instruction::UDiv: 6176 Result = SimplifyUDivInst(NewOps[0], NewOps[1], Q); 6177 break; 6178 case Instruction::FDiv: 6179 Result = SimplifyFDivInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6180 break; 6181 case Instruction::SRem: 6182 Result = SimplifySRemInst(NewOps[0], NewOps[1], Q); 6183 break; 6184 case Instruction::URem: 6185 Result = SimplifyURemInst(NewOps[0], NewOps[1], Q); 6186 break; 6187 case Instruction::FRem: 6188 Result = SimplifyFRemInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6189 break; 6190 case Instruction::Shl: 6191 Result = SimplifyShlInst( 6192 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6193 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6194 break; 6195 case Instruction::LShr: 6196 Result = SimplifyLShrInst(NewOps[0], NewOps[1], 6197 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 6198 break; 6199 case Instruction::AShr: 6200 Result = SimplifyAShrInst(NewOps[0], NewOps[1], 6201 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 6202 break; 6203 case Instruction::And: 6204 Result = SimplifyAndInst(NewOps[0], NewOps[1], Q); 6205 break; 6206 case Instruction::Or: 6207 Result = SimplifyOrInst(NewOps[0], NewOps[1], Q); 6208 break; 6209 case Instruction::Xor: 6210 Result = SimplifyXorInst(NewOps[0], NewOps[1], Q); 6211 break; 6212 case Instruction::ICmp: 6213 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), NewOps[0], 6214 NewOps[1], Q); 6215 break; 6216 case Instruction::FCmp: 6217 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), NewOps[0], 6218 NewOps[1], I->getFastMathFlags(), Q); 6219 break; 6220 case Instruction::Select: 6221 Result = SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q); 6222 break; 6223 case Instruction::GetElementPtr: { 6224 auto *GEPI = cast<GetElementPtrInst>(I); 6225 Result = SimplifyGEPInst(GEPI->getSourceElementType(), NewOps, 6226 GEPI->isInBounds(), Q); 6227 break; 6228 } 6229 case Instruction::InsertValue: { 6230 InsertValueInst *IV = cast<InsertValueInst>(I); 6231 Result = SimplifyInsertValueInst(NewOps[0], NewOps[1], IV->getIndices(), Q); 6232 break; 6233 } 6234 case Instruction::InsertElement: { 6235 Result = SimplifyInsertElementInst(NewOps[0], NewOps[1], NewOps[2], Q); 6236 break; 6237 } 6238 case Instruction::ExtractValue: { 6239 auto *EVI = cast<ExtractValueInst>(I); 6240 Result = SimplifyExtractValueInst(NewOps[0], EVI->getIndices(), Q); 6241 break; 6242 } 6243 case Instruction::ExtractElement: { 6244 Result = SimplifyExtractElementInst(NewOps[0], NewOps[1], Q); 6245 break; 6246 } 6247 case Instruction::ShuffleVector: { 6248 auto *SVI = cast<ShuffleVectorInst>(I); 6249 Result = SimplifyShuffleVectorInst( 6250 NewOps[0], NewOps[1], SVI->getShuffleMask(), SVI->getType(), Q); 6251 break; 6252 } 6253 case Instruction::PHI: 6254 Result = SimplifyPHINode(cast<PHINode>(I), NewOps, Q); 6255 break; 6256 case Instruction::Call: { 6257 // TODO: Use NewOps 6258 Result = SimplifyCall(cast<CallInst>(I), Q); 6259 break; 6260 } 6261 case Instruction::Freeze: 6262 Result = llvm::SimplifyFreezeInst(NewOps[0], Q); 6263 break; 6264 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 6265 #include "llvm/IR/Instruction.def" 6266 #undef HANDLE_CAST_INST 6267 Result = SimplifyCastInst(I->getOpcode(), NewOps[0], I->getType(), Q); 6268 break; 6269 case Instruction::Alloca: 6270 // No simplifications for Alloca and it can't be constant folded. 6271 Result = nullptr; 6272 break; 6273 case Instruction::Load: 6274 Result = SimplifyLoadInst(cast<LoadInst>(I), NewOps[0], Q); 6275 break; 6276 } 6277 6278 /// If called on unreachable code, the above logic may report that the 6279 /// instruction simplified to itself. Make life easier for users by 6280 /// detecting that case here, returning a safe value instead. 6281 return Result == I ? UndefValue::get(I->getType()) : Result; 6282 } 6283 6284 Value *llvm::SimplifyInstructionWithOperands(Instruction *I, 6285 ArrayRef<Value *> NewOps, 6286 const SimplifyQuery &SQ, 6287 OptimizationRemarkEmitter *ORE) { 6288 assert(NewOps.size() == I->getNumOperands() && 6289 "Number of operands should match the instruction!"); 6290 return ::simplifyInstructionWithOperands(I, NewOps, SQ, ORE); 6291 } 6292 6293 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 6294 OptimizationRemarkEmitter *ORE) { 6295 SmallVector<Value *, 8> Ops(I->operands()); 6296 return ::simplifyInstructionWithOperands(I, Ops, SQ, ORE); 6297 } 6298 6299 /// Implementation of recursive simplification through an instruction's 6300 /// uses. 6301 /// 6302 /// This is the common implementation of the recursive simplification routines. 6303 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 6304 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 6305 /// instructions to process and attempt to simplify it using 6306 /// InstructionSimplify. Recursively visited users which could not be 6307 /// simplified themselves are to the optional UnsimplifiedUsers set for 6308 /// further processing by the caller. 6309 /// 6310 /// This routine returns 'true' only when *it* simplifies something. The passed 6311 /// in simplified value does not count toward this. 6312 static bool replaceAndRecursivelySimplifyImpl( 6313 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6314 const DominatorTree *DT, AssumptionCache *AC, 6315 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) { 6316 bool Simplified = false; 6317 SmallSetVector<Instruction *, 8> Worklist; 6318 const DataLayout &DL = I->getModule()->getDataLayout(); 6319 6320 // If we have an explicit value to collapse to, do that round of the 6321 // simplification loop by hand initially. 6322 if (SimpleV) { 6323 for (User *U : I->users()) 6324 if (U != I) 6325 Worklist.insert(cast<Instruction>(U)); 6326 6327 // Replace the instruction with its simplified value. 6328 I->replaceAllUsesWith(SimpleV); 6329 6330 // Gracefully handle edge cases where the instruction is not wired into any 6331 // parent block. 6332 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 6333 !I->mayHaveSideEffects()) 6334 I->eraseFromParent(); 6335 } else { 6336 Worklist.insert(I); 6337 } 6338 6339 // Note that we must test the size on each iteration, the worklist can grow. 6340 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 6341 I = Worklist[Idx]; 6342 6343 // See if this instruction simplifies. 6344 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 6345 if (!SimpleV) { 6346 if (UnsimplifiedUsers) 6347 UnsimplifiedUsers->insert(I); 6348 continue; 6349 } 6350 6351 Simplified = true; 6352 6353 // Stash away all the uses of the old instruction so we can check them for 6354 // recursive simplifications after a RAUW. This is cheaper than checking all 6355 // uses of To on the recursive step in most cases. 6356 for (User *U : I->users()) 6357 Worklist.insert(cast<Instruction>(U)); 6358 6359 // Replace the instruction with its simplified value. 6360 I->replaceAllUsesWith(SimpleV); 6361 6362 // Gracefully handle edge cases where the instruction is not wired into any 6363 // parent block. 6364 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 6365 !I->mayHaveSideEffects()) 6366 I->eraseFromParent(); 6367 } 6368 return Simplified; 6369 } 6370 6371 bool llvm::replaceAndRecursivelySimplify( 6372 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6373 const DominatorTree *DT, AssumptionCache *AC, 6374 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) { 6375 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 6376 assert(SimpleV && "Must provide a simplified value."); 6377 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC, 6378 UnsimplifiedUsers); 6379 } 6380 6381 namespace llvm { 6382 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 6383 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 6384 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 6385 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 6386 auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr; 6387 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 6388 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 6389 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6390 } 6391 6392 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 6393 const DataLayout &DL) { 6394 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 6395 } 6396 6397 template <class T, class... TArgs> 6398 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 6399 Function &F) { 6400 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 6401 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 6402 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 6403 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6404 } 6405 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 6406 Function &); 6407 } 6408