1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements routines for folding instructions into simpler forms
10 // that do not require creating new instructions.  This does constant folding
11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
13 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
14 // simplified: This is usually true and assuming it simplifies the logic (if
15 // they have not been simplified then results are correct but maybe suboptimal).
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Analysis/InstructionSimplify.h"
20 
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/CmpInstAnalysis.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/LoopAnalysisManager.h"
31 #include "llvm/Analysis/MemoryBuiltins.h"
32 #include "llvm/Analysis/OverflowInstAnalysis.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/IR/ConstantRange.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/GetElementPtrTypeIterator.h"
39 #include "llvm/IR/GlobalAlias.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/Operator.h"
43 #include "llvm/IR/PatternMatch.h"
44 #include "llvm/IR/ValueHandle.h"
45 #include "llvm/Support/KnownBits.h"
46 #include <algorithm>
47 using namespace llvm;
48 using namespace llvm::PatternMatch;
49 
50 #define DEBUG_TYPE "instsimplify"
51 
52 enum { RecursionLimit = 3 };
53 
54 STATISTIC(NumExpand,  "Number of expansions");
55 STATISTIC(NumReassoc, "Number of reassociations");
56 
57 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned);
58 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned);
59 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &,
60                              const SimplifyQuery &, unsigned);
61 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
62                             unsigned);
63 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &,
64                             const SimplifyQuery &, unsigned);
65 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
66                               unsigned);
67 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
68                                const SimplifyQuery &Q, unsigned MaxRecurse);
69 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
70 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned);
71 static Value *SimplifyCastInst(unsigned, Value *, Type *,
72                                const SimplifyQuery &, unsigned);
73 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, bool,
74                               const SimplifyQuery &, unsigned);
75 static Value *SimplifySelectInst(Value *, Value *, Value *,
76                                  const SimplifyQuery &, unsigned);
77 
78 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal,
79                                      Value *FalseVal) {
80   BinaryOperator::BinaryOps BinOpCode;
81   if (auto *BO = dyn_cast<BinaryOperator>(Cond))
82     BinOpCode = BO->getOpcode();
83   else
84     return nullptr;
85 
86   CmpInst::Predicate ExpectedPred, Pred1, Pred2;
87   if (BinOpCode == BinaryOperator::Or) {
88     ExpectedPred = ICmpInst::ICMP_NE;
89   } else if (BinOpCode == BinaryOperator::And) {
90     ExpectedPred = ICmpInst::ICMP_EQ;
91   } else
92     return nullptr;
93 
94   // %A = icmp eq %TV, %FV
95   // %B = icmp eq %X, %Y (and one of these is a select operand)
96   // %C = and %A, %B
97   // %D = select %C, %TV, %FV
98   // -->
99   // %FV
100 
101   // %A = icmp ne %TV, %FV
102   // %B = icmp ne %X, %Y (and one of these is a select operand)
103   // %C = or %A, %B
104   // %D = select %C, %TV, %FV
105   // -->
106   // %TV
107   Value *X, *Y;
108   if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal),
109                                       m_Specific(FalseVal)),
110                              m_ICmp(Pred2, m_Value(X), m_Value(Y)))) ||
111       Pred1 != Pred2 || Pred1 != ExpectedPred)
112     return nullptr;
113 
114   if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal)
115     return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal;
116 
117   return nullptr;
118 }
119 
120 /// For a boolean type or a vector of boolean type, return false or a vector
121 /// with every element false.
122 static Constant *getFalse(Type *Ty) {
123   return ConstantInt::getFalse(Ty);
124 }
125 
126 /// For a boolean type or a vector of boolean type, return true or a vector
127 /// with every element true.
128 static Constant *getTrue(Type *Ty) {
129   return ConstantInt::getTrue(Ty);
130 }
131 
132 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
133 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
134                           Value *RHS) {
135   CmpInst *Cmp = dyn_cast<CmpInst>(V);
136   if (!Cmp)
137     return false;
138   CmpInst::Predicate CPred = Cmp->getPredicate();
139   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
140   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
141     return true;
142   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
143     CRHS == LHS;
144 }
145 
146 /// Simplify comparison with true or false branch of select:
147 ///  %sel = select i1 %cond, i32 %tv, i32 %fv
148 ///  %cmp = icmp sle i32 %sel, %rhs
149 /// Compose new comparison by substituting %sel with either %tv or %fv
150 /// and see if it simplifies.
151 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS,
152                                  Value *RHS, Value *Cond,
153                                  const SimplifyQuery &Q, unsigned MaxRecurse,
154                                  Constant *TrueOrFalse) {
155   Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse);
156   if (SimplifiedCmp == Cond) {
157     // %cmp simplified to the select condition (%cond).
158     return TrueOrFalse;
159   } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) {
160     // It didn't simplify. However, if composed comparison is equivalent
161     // to the select condition (%cond) then we can replace it.
162     return TrueOrFalse;
163   }
164   return SimplifiedCmp;
165 }
166 
167 /// Simplify comparison with true branch of select
168 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS,
169                                      Value *RHS, Value *Cond,
170                                      const SimplifyQuery &Q,
171                                      unsigned MaxRecurse) {
172   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
173                             getTrue(Cond->getType()));
174 }
175 
176 /// Simplify comparison with false branch of select
177 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS,
178                                       Value *RHS, Value *Cond,
179                                       const SimplifyQuery &Q,
180                                       unsigned MaxRecurse) {
181   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
182                             getFalse(Cond->getType()));
183 }
184 
185 /// We know comparison with both branches of select can be simplified, but they
186 /// are not equal. This routine handles some logical simplifications.
187 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp,
188                                                Value *Cond,
189                                                const SimplifyQuery &Q,
190                                                unsigned MaxRecurse) {
191   // If the false value simplified to false, then the result of the compare
192   // is equal to "Cond && TCmp".  This also catches the case when the false
193   // value simplified to false and the true value to true, returning "Cond".
194   // Folding select to and/or isn't poison-safe in general; impliesPoison
195   // checks whether folding it does not convert a well-defined value into
196   // poison.
197   if (match(FCmp, m_Zero()) && impliesPoison(TCmp, Cond))
198     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
199       return V;
200   // If the true value simplified to true, then the result of the compare
201   // is equal to "Cond || FCmp".
202   if (match(TCmp, m_One()) && impliesPoison(FCmp, Cond))
203     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
204       return V;
205   // Finally, if the false value simplified to true and the true value to
206   // false, then the result of the compare is equal to "!Cond".
207   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
208     if (Value *V = SimplifyXorInst(
209             Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse))
210       return V;
211   return nullptr;
212 }
213 
214 /// Does the given value dominate the specified phi node?
215 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
216   Instruction *I = dyn_cast<Instruction>(V);
217   if (!I)
218     // Arguments and constants dominate all instructions.
219     return true;
220 
221   // If we are processing instructions (and/or basic blocks) that have not been
222   // fully added to a function, the parent nodes may still be null. Simply
223   // return the conservative answer in these cases.
224   if (!I->getParent() || !P->getParent() || !I->getFunction())
225     return false;
226 
227   // If we have a DominatorTree then do a precise test.
228   if (DT)
229     return DT->dominates(I, P);
230 
231   // Otherwise, if the instruction is in the entry block and is not an invoke,
232   // then it obviously dominates all phi nodes.
233   if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) &&
234       !isa<CallBrInst>(I))
235     return true;
236 
237   return false;
238 }
239 
240 /// Try to simplify a binary operator of form "V op OtherOp" where V is
241 /// "(B0 opex B1)" by distributing 'op' across 'opex' as
242 /// "(B0 op OtherOp) opex (B1 op OtherOp)".
243 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V,
244                           Value *OtherOp, Instruction::BinaryOps OpcodeToExpand,
245                           const SimplifyQuery &Q, unsigned MaxRecurse) {
246   auto *B = dyn_cast<BinaryOperator>(V);
247   if (!B || B->getOpcode() != OpcodeToExpand)
248     return nullptr;
249   Value *B0 = B->getOperand(0), *B1 = B->getOperand(1);
250   Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(),
251                            MaxRecurse);
252   if (!L)
253     return nullptr;
254   Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(),
255                            MaxRecurse);
256   if (!R)
257     return nullptr;
258 
259   // Does the expanded pair of binops simplify to the existing binop?
260   if ((L == B0 && R == B1) ||
261       (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) {
262     ++NumExpand;
263     return B;
264   }
265 
266   // Otherwise, return "L op' R" if it simplifies.
267   Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse);
268   if (!S)
269     return nullptr;
270 
271   ++NumExpand;
272   return S;
273 }
274 
275 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by
276 /// distributing op over op'.
277 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode,
278                                      Value *L, Value *R,
279                                      Instruction::BinaryOps OpcodeToExpand,
280                                      const SimplifyQuery &Q,
281                                      unsigned MaxRecurse) {
282   // Recursion is always used, so bail out at once if we already hit the limit.
283   if (!MaxRecurse--)
284     return nullptr;
285 
286   if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse))
287     return V;
288   if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse))
289     return V;
290   return nullptr;
291 }
292 
293 /// Generic simplifications for associative binary operations.
294 /// Returns the simpler value, or null if none was found.
295 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
296                                        Value *LHS, Value *RHS,
297                                        const SimplifyQuery &Q,
298                                        unsigned MaxRecurse) {
299   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
300 
301   // Recursion is always used, so bail out at once if we already hit the limit.
302   if (!MaxRecurse--)
303     return nullptr;
304 
305   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
306   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
307 
308   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
309   if (Op0 && Op0->getOpcode() == Opcode) {
310     Value *A = Op0->getOperand(0);
311     Value *B = Op0->getOperand(1);
312     Value *C = RHS;
313 
314     // Does "B op C" simplify?
315     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
316       // It does!  Return "A op V" if it simplifies or is already available.
317       // If V equals B then "A op V" is just the LHS.
318       if (V == B) return LHS;
319       // Otherwise return "A op V" if it simplifies.
320       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
321         ++NumReassoc;
322         return W;
323       }
324     }
325   }
326 
327   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
328   if (Op1 && Op1->getOpcode() == Opcode) {
329     Value *A = LHS;
330     Value *B = Op1->getOperand(0);
331     Value *C = Op1->getOperand(1);
332 
333     // Does "A op B" simplify?
334     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
335       // It does!  Return "V op C" if it simplifies or is already available.
336       // If V equals B then "V op C" is just the RHS.
337       if (V == B) return RHS;
338       // Otherwise return "V op C" if it simplifies.
339       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
340         ++NumReassoc;
341         return W;
342       }
343     }
344   }
345 
346   // The remaining transforms require commutativity as well as associativity.
347   if (!Instruction::isCommutative(Opcode))
348     return nullptr;
349 
350   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
351   if (Op0 && Op0->getOpcode() == Opcode) {
352     Value *A = Op0->getOperand(0);
353     Value *B = Op0->getOperand(1);
354     Value *C = RHS;
355 
356     // Does "C op A" simplify?
357     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
358       // It does!  Return "V op B" if it simplifies or is already available.
359       // If V equals A then "V op B" is just the LHS.
360       if (V == A) return LHS;
361       // Otherwise return "V op B" if it simplifies.
362       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
363         ++NumReassoc;
364         return W;
365       }
366     }
367   }
368 
369   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
370   if (Op1 && Op1->getOpcode() == Opcode) {
371     Value *A = LHS;
372     Value *B = Op1->getOperand(0);
373     Value *C = Op1->getOperand(1);
374 
375     // Does "C op A" simplify?
376     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
377       // It does!  Return "B op V" if it simplifies or is already available.
378       // If V equals C then "B op V" is just the RHS.
379       if (V == C) return RHS;
380       // Otherwise return "B op V" if it simplifies.
381       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
382         ++NumReassoc;
383         return W;
384       }
385     }
386   }
387 
388   return nullptr;
389 }
390 
391 /// In the case of a binary operation with a select instruction as an operand,
392 /// try to simplify the binop by seeing whether evaluating it on both branches
393 /// of the select results in the same value. Returns the common value if so,
394 /// otherwise returns null.
395 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
396                                     Value *RHS, const SimplifyQuery &Q,
397                                     unsigned MaxRecurse) {
398   // Recursion is always used, so bail out at once if we already hit the limit.
399   if (!MaxRecurse--)
400     return nullptr;
401 
402   SelectInst *SI;
403   if (isa<SelectInst>(LHS)) {
404     SI = cast<SelectInst>(LHS);
405   } else {
406     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
407     SI = cast<SelectInst>(RHS);
408   }
409 
410   // Evaluate the BinOp on the true and false branches of the select.
411   Value *TV;
412   Value *FV;
413   if (SI == LHS) {
414     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
415     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
416   } else {
417     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
418     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
419   }
420 
421   // If they simplified to the same value, then return the common value.
422   // If they both failed to simplify then return null.
423   if (TV == FV)
424     return TV;
425 
426   // If one branch simplified to undef, return the other one.
427   if (TV && Q.isUndefValue(TV))
428     return FV;
429   if (FV && Q.isUndefValue(FV))
430     return TV;
431 
432   // If applying the operation did not change the true and false select values,
433   // then the result of the binop is the select itself.
434   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
435     return SI;
436 
437   // If one branch simplified and the other did not, and the simplified
438   // value is equal to the unsimplified one, return the simplified value.
439   // For example, select (cond, X, X & Z) & Z -> X & Z.
440   if ((FV && !TV) || (TV && !FV)) {
441     // Check that the simplified value has the form "X op Y" where "op" is the
442     // same as the original operation.
443     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
444     if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) {
445       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
446       // We already know that "op" is the same as for the simplified value.  See
447       // if the operands match too.  If so, return the simplified value.
448       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
449       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
450       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
451       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
452           Simplified->getOperand(1) == UnsimplifiedRHS)
453         return Simplified;
454       if (Simplified->isCommutative() &&
455           Simplified->getOperand(1) == UnsimplifiedLHS &&
456           Simplified->getOperand(0) == UnsimplifiedRHS)
457         return Simplified;
458     }
459   }
460 
461   return nullptr;
462 }
463 
464 /// In the case of a comparison with a select instruction, try to simplify the
465 /// comparison by seeing whether both branches of the select result in the same
466 /// value. Returns the common value if so, otherwise returns null.
467 /// For example, if we have:
468 ///  %tmp = select i1 %cmp, i32 1, i32 2
469 ///  %cmp1 = icmp sle i32 %tmp, 3
470 /// We can simplify %cmp1 to true, because both branches of select are
471 /// less than 3. We compose new comparison by substituting %tmp with both
472 /// branches of select and see if it can be simplified.
473 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
474                                   Value *RHS, const SimplifyQuery &Q,
475                                   unsigned MaxRecurse) {
476   // Recursion is always used, so bail out at once if we already hit the limit.
477   if (!MaxRecurse--)
478     return nullptr;
479 
480   // Make sure the select is on the LHS.
481   if (!isa<SelectInst>(LHS)) {
482     std::swap(LHS, RHS);
483     Pred = CmpInst::getSwappedPredicate(Pred);
484   }
485   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
486   SelectInst *SI = cast<SelectInst>(LHS);
487   Value *Cond = SI->getCondition();
488   Value *TV = SI->getTrueValue();
489   Value *FV = SI->getFalseValue();
490 
491   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
492   // Does "cmp TV, RHS" simplify?
493   Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse);
494   if (!TCmp)
495     return nullptr;
496 
497   // Does "cmp FV, RHS" simplify?
498   Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse);
499   if (!FCmp)
500     return nullptr;
501 
502   // If both sides simplified to the same value, then use it as the result of
503   // the original comparison.
504   if (TCmp == FCmp)
505     return TCmp;
506 
507   // The remaining cases only make sense if the select condition has the same
508   // type as the result of the comparison, so bail out if this is not so.
509   if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy())
510     return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse);
511 
512   return nullptr;
513 }
514 
515 /// In the case of a binary operation with an operand that is a PHI instruction,
516 /// try to simplify the binop by seeing whether evaluating it on the incoming
517 /// phi values yields the same result for every value. If so returns the common
518 /// value, otherwise returns null.
519 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
520                                  Value *RHS, const SimplifyQuery &Q,
521                                  unsigned MaxRecurse) {
522   // Recursion is always used, so bail out at once if we already hit the limit.
523   if (!MaxRecurse--)
524     return nullptr;
525 
526   PHINode *PI;
527   if (isa<PHINode>(LHS)) {
528     PI = cast<PHINode>(LHS);
529     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
530     if (!valueDominatesPHI(RHS, PI, Q.DT))
531       return nullptr;
532   } else {
533     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
534     PI = cast<PHINode>(RHS);
535     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
536     if (!valueDominatesPHI(LHS, PI, Q.DT))
537       return nullptr;
538   }
539 
540   // Evaluate the BinOp on the incoming phi values.
541   Value *CommonValue = nullptr;
542   for (Value *Incoming : PI->incoming_values()) {
543     // If the incoming value is the phi node itself, it can safely be skipped.
544     if (Incoming == PI) continue;
545     Value *V = PI == LHS ?
546       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
547       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
548     // If the operation failed to simplify, or simplified to a different value
549     // to previously, then give up.
550     if (!V || (CommonValue && V != CommonValue))
551       return nullptr;
552     CommonValue = V;
553   }
554 
555   return CommonValue;
556 }
557 
558 /// In the case of a comparison with a PHI instruction, try to simplify the
559 /// comparison by seeing whether comparing with all of the incoming phi values
560 /// yields the same result every time. If so returns the common result,
561 /// otherwise returns null.
562 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
563                                const SimplifyQuery &Q, unsigned MaxRecurse) {
564   // Recursion is always used, so bail out at once if we already hit the limit.
565   if (!MaxRecurse--)
566     return nullptr;
567 
568   // Make sure the phi is on the LHS.
569   if (!isa<PHINode>(LHS)) {
570     std::swap(LHS, RHS);
571     Pred = CmpInst::getSwappedPredicate(Pred);
572   }
573   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
574   PHINode *PI = cast<PHINode>(LHS);
575 
576   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
577   if (!valueDominatesPHI(RHS, PI, Q.DT))
578     return nullptr;
579 
580   // Evaluate the BinOp on the incoming phi values.
581   Value *CommonValue = nullptr;
582   for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) {
583     Value *Incoming = PI->getIncomingValue(u);
584     Instruction *InTI = PI->getIncomingBlock(u)->getTerminator();
585     // If the incoming value is the phi node itself, it can safely be skipped.
586     if (Incoming == PI) continue;
587     // Change the context instruction to the "edge" that flows into the phi.
588     // This is important because that is where incoming is actually "evaluated"
589     // even though it is used later somewhere else.
590     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI),
591                                MaxRecurse);
592     // If the operation failed to simplify, or simplified to a different value
593     // to previously, then give up.
594     if (!V || (CommonValue && V != CommonValue))
595       return nullptr;
596     CommonValue = V;
597   }
598 
599   return CommonValue;
600 }
601 
602 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
603                                        Value *&Op0, Value *&Op1,
604                                        const SimplifyQuery &Q) {
605   if (auto *CLHS = dyn_cast<Constant>(Op0)) {
606     if (auto *CRHS = dyn_cast<Constant>(Op1))
607       return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
608 
609     // Canonicalize the constant to the RHS if this is a commutative operation.
610     if (Instruction::isCommutative(Opcode))
611       std::swap(Op0, Op1);
612   }
613   return nullptr;
614 }
615 
616 /// Given operands for an Add, see if we can fold the result.
617 /// If not, this returns null.
618 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
619                               const SimplifyQuery &Q, unsigned MaxRecurse) {
620   if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
621     return C;
622 
623   // X + poison -> poison
624   if (isa<PoisonValue>(Op1))
625     return Op1;
626 
627   // X + undef -> undef
628   if (Q.isUndefValue(Op1))
629     return Op1;
630 
631   // X + 0 -> X
632   if (match(Op1, m_Zero()))
633     return Op0;
634 
635   // If two operands are negative, return 0.
636   if (isKnownNegation(Op0, Op1))
637     return Constant::getNullValue(Op0->getType());
638 
639   // X + (Y - X) -> Y
640   // (Y - X) + X -> Y
641   // Eg: X + -X -> 0
642   Value *Y = nullptr;
643   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
644       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
645     return Y;
646 
647   // X + ~X -> -1   since   ~X = -X-1
648   Type *Ty = Op0->getType();
649   if (match(Op0, m_Not(m_Specific(Op1))) ||
650       match(Op1, m_Not(m_Specific(Op0))))
651     return Constant::getAllOnesValue(Ty);
652 
653   // add nsw/nuw (xor Y, signmask), signmask --> Y
654   // The no-wrapping add guarantees that the top bit will be set by the add.
655   // Therefore, the xor must be clearing the already set sign bit of Y.
656   if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) &&
657       match(Op0, m_Xor(m_Value(Y), m_SignMask())))
658     return Y;
659 
660   // add nuw %x, -1  ->  -1, because %x can only be 0.
661   if (IsNUW && match(Op1, m_AllOnes()))
662     return Op1; // Which is -1.
663 
664   /// i1 add -> xor.
665   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
666     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
667       return V;
668 
669   // Try some generic simplifications for associative operations.
670   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
671                                           MaxRecurse))
672     return V;
673 
674   // Threading Add over selects and phi nodes is pointless, so don't bother.
675   // Threading over the select in "A + select(cond, B, C)" means evaluating
676   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
677   // only if B and C are equal.  If B and C are equal then (since we assume
678   // that operands have already been simplified) "select(cond, B, C)" should
679   // have been simplified to the common value of B and C already.  Analysing
680   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
681   // for threading over phi nodes.
682 
683   return nullptr;
684 }
685 
686 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
687                              const SimplifyQuery &Query) {
688   return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit);
689 }
690 
691 /// Compute the base pointer and cumulative constant offsets for V.
692 ///
693 /// This strips all constant offsets off of V, leaving it the base pointer, and
694 /// accumulates the total constant offset applied in the returned constant. It
695 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
696 /// no constant offsets applied.
697 ///
698 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
699 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
700 /// folding.
701 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
702                                                 bool AllowNonInbounds = false) {
703   assert(V->getType()->isPtrOrPtrVectorTy());
704 
705   APInt Offset = APInt::getZero(DL.getIndexTypeSizeInBits(V->getType()));
706 
707   V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds);
708   // As that strip may trace through `addrspacecast`, need to sext or trunc
709   // the offset calculated.
710   Type *IntIdxTy = DL.getIndexType(V->getType())->getScalarType();
711   Offset = Offset.sextOrTrunc(IntIdxTy->getIntegerBitWidth());
712 
713   Constant *OffsetIntPtr = ConstantInt::get(IntIdxTy, Offset);
714   if (VectorType *VecTy = dyn_cast<VectorType>(V->getType()))
715     return ConstantVector::getSplat(VecTy->getElementCount(), OffsetIntPtr);
716   return OffsetIntPtr;
717 }
718 
719 /// Compute the constant difference between two pointer values.
720 /// If the difference is not a constant, returns zero.
721 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
722                                           Value *RHS) {
723   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
724   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
725 
726   // If LHS and RHS are not related via constant offsets to the same base
727   // value, there is nothing we can do here.
728   if (LHS != RHS)
729     return nullptr;
730 
731   // Otherwise, the difference of LHS - RHS can be computed as:
732   //    LHS - RHS
733   //  = (LHSOffset + Base) - (RHSOffset + Base)
734   //  = LHSOffset - RHSOffset
735   return ConstantExpr::getSub(LHSOffset, RHSOffset);
736 }
737 
738 /// Given operands for a Sub, see if we can fold the result.
739 /// If not, this returns null.
740 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
741                               const SimplifyQuery &Q, unsigned MaxRecurse) {
742   if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
743     return C;
744 
745   // X - poison -> poison
746   // poison - X -> poison
747   if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1))
748     return PoisonValue::get(Op0->getType());
749 
750   // X - undef -> undef
751   // undef - X -> undef
752   if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
753     return UndefValue::get(Op0->getType());
754 
755   // X - 0 -> X
756   if (match(Op1, m_Zero()))
757     return Op0;
758 
759   // X - X -> 0
760   if (Op0 == Op1)
761     return Constant::getNullValue(Op0->getType());
762 
763   // Is this a negation?
764   if (match(Op0, m_Zero())) {
765     // 0 - X -> 0 if the sub is NUW.
766     if (isNUW)
767       return Constant::getNullValue(Op0->getType());
768 
769     KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
770     if (Known.Zero.isMaxSignedValue()) {
771       // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
772       // Op1 must be 0 because negating the minimum signed value is undefined.
773       if (isNSW)
774         return Constant::getNullValue(Op0->getType());
775 
776       // 0 - X -> X if X is 0 or the minimum signed value.
777       return Op1;
778     }
779   }
780 
781   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
782   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
783   Value *X = nullptr, *Y = nullptr, *Z = Op1;
784   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
785     // See if "V === Y - Z" simplifies.
786     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
787       // It does!  Now see if "X + V" simplifies.
788       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
789         // It does, we successfully reassociated!
790         ++NumReassoc;
791         return W;
792       }
793     // See if "V === X - Z" simplifies.
794     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
795       // It does!  Now see if "Y + V" simplifies.
796       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
797         // It does, we successfully reassociated!
798         ++NumReassoc;
799         return W;
800       }
801   }
802 
803   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
804   // For example, X - (X + 1) -> -1
805   X = Op0;
806   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
807     // See if "V === X - Y" simplifies.
808     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
809       // It does!  Now see if "V - Z" simplifies.
810       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
811         // It does, we successfully reassociated!
812         ++NumReassoc;
813         return W;
814       }
815     // See if "V === X - Z" simplifies.
816     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
817       // It does!  Now see if "V - Y" simplifies.
818       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
819         // It does, we successfully reassociated!
820         ++NumReassoc;
821         return W;
822       }
823   }
824 
825   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
826   // For example, X - (X - Y) -> Y.
827   Z = Op0;
828   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
829     // See if "V === Z - X" simplifies.
830     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
831       // It does!  Now see if "V + Y" simplifies.
832       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
833         // It does, we successfully reassociated!
834         ++NumReassoc;
835         return W;
836       }
837 
838   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
839   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
840       match(Op1, m_Trunc(m_Value(Y))))
841     if (X->getType() == Y->getType())
842       // See if "V === X - Y" simplifies.
843       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
844         // It does!  Now see if "trunc V" simplifies.
845         if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
846                                         Q, MaxRecurse - 1))
847           // It does, return the simplified "trunc V".
848           return W;
849 
850   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
851   if (match(Op0, m_PtrToInt(m_Value(X))) &&
852       match(Op1, m_PtrToInt(m_Value(Y))))
853     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
854       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
855 
856   // i1 sub -> xor.
857   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
858     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
859       return V;
860 
861   // Threading Sub over selects and phi nodes is pointless, so don't bother.
862   // Threading over the select in "A - select(cond, B, C)" means evaluating
863   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
864   // only if B and C are equal.  If B and C are equal then (since we assume
865   // that operands have already been simplified) "select(cond, B, C)" should
866   // have been simplified to the common value of B and C already.  Analysing
867   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
868   // for threading over phi nodes.
869 
870   return nullptr;
871 }
872 
873 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
874                              const SimplifyQuery &Q) {
875   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
876 }
877 
878 /// Given operands for a Mul, see if we can fold the result.
879 /// If not, this returns null.
880 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
881                               unsigned MaxRecurse) {
882   if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
883     return C;
884 
885   // X * poison -> poison
886   if (isa<PoisonValue>(Op1))
887     return Op1;
888 
889   // X * undef -> 0
890   // X * 0 -> 0
891   if (Q.isUndefValue(Op1) || match(Op1, m_Zero()))
892     return Constant::getNullValue(Op0->getType());
893 
894   // X * 1 -> X
895   if (match(Op1, m_One()))
896     return Op0;
897 
898   // (X / Y) * Y -> X if the division is exact.
899   Value *X = nullptr;
900   if (Q.IIQ.UseInstrInfo &&
901       (match(Op0,
902              m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) ||     // (X / Y) * Y
903        match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y)
904     return X;
905 
906   // i1 mul -> and.
907   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
908     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
909       return V;
910 
911   // Try some generic simplifications for associative operations.
912   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
913                                           MaxRecurse))
914     return V;
915 
916   // Mul distributes over Add. Try some generic simplifications based on this.
917   if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1,
918                                         Instruction::Add, Q, MaxRecurse))
919     return V;
920 
921   // If the operation is with the result of a select instruction, check whether
922   // operating on either branch of the select always yields the same value.
923   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
924     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
925                                          MaxRecurse))
926       return V;
927 
928   // If the operation is with the result of a phi instruction, check whether
929   // operating on all incoming values of the phi always yields the same value.
930   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
931     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
932                                       MaxRecurse))
933       return V;
934 
935   return nullptr;
936 }
937 
938 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
939   return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit);
940 }
941 
942 /// Check for common or similar folds of integer division or integer remainder.
943 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
944 static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0,
945                              Value *Op1, const SimplifyQuery &Q) {
946   bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv);
947   bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem);
948 
949   Type *Ty = Op0->getType();
950 
951   // X / undef -> poison
952   // X % undef -> poison
953   if (Q.isUndefValue(Op1))
954     return PoisonValue::get(Ty);
955 
956   // X / 0 -> poison
957   // X % 0 -> poison
958   // We don't need to preserve faults!
959   if (match(Op1, m_Zero()))
960     return PoisonValue::get(Ty);
961 
962   // If any element of a constant divisor fixed width vector is zero or undef
963   // the behavior is undefined and we can fold the whole op to poison.
964   auto *Op1C = dyn_cast<Constant>(Op1);
965   auto *VTy = dyn_cast<FixedVectorType>(Ty);
966   if (Op1C && VTy) {
967     unsigned NumElts = VTy->getNumElements();
968     for (unsigned i = 0; i != NumElts; ++i) {
969       Constant *Elt = Op1C->getAggregateElement(i);
970       if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt)))
971         return PoisonValue::get(Ty);
972     }
973   }
974 
975   // poison / X -> poison
976   // poison % X -> poison
977   if (isa<PoisonValue>(Op0))
978     return Op0;
979 
980   // undef / X -> 0
981   // undef % X -> 0
982   if (Q.isUndefValue(Op0))
983     return Constant::getNullValue(Ty);
984 
985   // 0 / X -> 0
986   // 0 % X -> 0
987   if (match(Op0, m_Zero()))
988     return Constant::getNullValue(Op0->getType());
989 
990   // X / X -> 1
991   // X % X -> 0
992   if (Op0 == Op1)
993     return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
994 
995   // X / 1 -> X
996   // X % 1 -> 0
997   // If this is a boolean op (single-bit element type), we can't have
998   // division-by-zero or remainder-by-zero, so assume the divisor is 1.
999   // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1.
1000   Value *X;
1001   if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) ||
1002       (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1003     return IsDiv ? Op0 : Constant::getNullValue(Ty);
1004 
1005   // If X * Y does not overflow, then:
1006   //   X * Y / Y -> X
1007   //   X * Y % Y -> 0
1008   if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) {
1009     auto *Mul = cast<OverflowingBinaryOperator>(Op0);
1010     // The multiplication can't overflow if it is defined not to, or if
1011     // X == A / Y for some A.
1012     if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) ||
1013         (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) ||
1014         (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) ||
1015         (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) {
1016       return IsDiv ? X : Constant::getNullValue(Op0->getType());
1017     }
1018   }
1019 
1020   return nullptr;
1021 }
1022 
1023 /// Given a predicate and two operands, return true if the comparison is true.
1024 /// This is a helper for div/rem simplification where we return some other value
1025 /// when we can prove a relationship between the operands.
1026 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
1027                        const SimplifyQuery &Q, unsigned MaxRecurse) {
1028   Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
1029   Constant *C = dyn_cast_or_null<Constant>(V);
1030   return (C && C->isAllOnesValue());
1031 }
1032 
1033 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
1034 /// to simplify X % Y to X.
1035 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
1036                       unsigned MaxRecurse, bool IsSigned) {
1037   // Recursion is always used, so bail out at once if we already hit the limit.
1038   if (!MaxRecurse--)
1039     return false;
1040 
1041   if (IsSigned) {
1042     // |X| / |Y| --> 0
1043     //
1044     // We require that 1 operand is a simple constant. That could be extended to
1045     // 2 variables if we computed the sign bit for each.
1046     //
1047     // Make sure that a constant is not the minimum signed value because taking
1048     // the abs() of that is undefined.
1049     Type *Ty = X->getType();
1050     const APInt *C;
1051     if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
1052       // Is the variable divisor magnitude always greater than the constant
1053       // dividend magnitude?
1054       // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
1055       Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
1056       Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
1057       if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
1058           isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
1059         return true;
1060     }
1061     if (match(Y, m_APInt(C))) {
1062       // Special-case: we can't take the abs() of a minimum signed value. If
1063       // that's the divisor, then all we have to do is prove that the dividend
1064       // is also not the minimum signed value.
1065       if (C->isMinSignedValue())
1066         return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
1067 
1068       // Is the variable dividend magnitude always less than the constant
1069       // divisor magnitude?
1070       // |X| < |C| --> X > -abs(C) and X < abs(C)
1071       Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
1072       Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
1073       if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
1074           isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
1075         return true;
1076     }
1077     return false;
1078   }
1079 
1080   // IsSigned == false.
1081   // Is the dividend unsigned less than the divisor?
1082   return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
1083 }
1084 
1085 /// These are simplifications common to SDiv and UDiv.
1086 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1087                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1088   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1089     return C;
1090 
1091   if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q))
1092     return V;
1093 
1094   bool IsSigned = Opcode == Instruction::SDiv;
1095 
1096   // (X rem Y) / Y -> 0
1097   if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1098       (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1099     return Constant::getNullValue(Op0->getType());
1100 
1101   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1102   ConstantInt *C1, *C2;
1103   if (!IsSigned && match(Op0, m_UDiv(m_Value(), m_ConstantInt(C1))) &&
1104       match(Op1, m_ConstantInt(C2))) {
1105     bool Overflow;
1106     (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
1107     if (Overflow)
1108       return Constant::getNullValue(Op0->getType());
1109   }
1110 
1111   // If the operation is with the result of a select instruction, check whether
1112   // operating on either branch of the select always yields the same value.
1113   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1114     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1115       return V;
1116 
1117   // If the operation is with the result of a phi instruction, check whether
1118   // operating on all incoming values of the phi always yields the same value.
1119   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1120     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1121       return V;
1122 
1123   if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
1124     return Constant::getNullValue(Op0->getType());
1125 
1126   return nullptr;
1127 }
1128 
1129 /// These are simplifications common to SRem and URem.
1130 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1131                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1132   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1133     return C;
1134 
1135   if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q))
1136     return V;
1137 
1138   // (X % Y) % Y -> X % Y
1139   if ((Opcode == Instruction::SRem &&
1140        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1141       (Opcode == Instruction::URem &&
1142        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1143     return Op0;
1144 
1145   // (X << Y) % X -> 0
1146   if (Q.IIQ.UseInstrInfo &&
1147       ((Opcode == Instruction::SRem &&
1148         match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) ||
1149        (Opcode == Instruction::URem &&
1150         match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))))
1151     return Constant::getNullValue(Op0->getType());
1152 
1153   // If the operation is with the result of a select instruction, check whether
1154   // operating on either branch of the select always yields the same value.
1155   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1156     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1157       return V;
1158 
1159   // If the operation is with the result of a phi instruction, check whether
1160   // operating on all incoming values of the phi always yields the same value.
1161   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1162     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1163       return V;
1164 
1165   // If X / Y == 0, then X % Y == X.
1166   if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem))
1167     return Op0;
1168 
1169   return nullptr;
1170 }
1171 
1172 /// Given operands for an SDiv, see if we can fold the result.
1173 /// If not, this returns null.
1174 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1175                                unsigned MaxRecurse) {
1176   // If two operands are negated and no signed overflow, return -1.
1177   if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true))
1178     return Constant::getAllOnesValue(Op0->getType());
1179 
1180   return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse);
1181 }
1182 
1183 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1184   return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit);
1185 }
1186 
1187 /// Given operands for a UDiv, see if we can fold the result.
1188 /// If not, this returns null.
1189 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1190                                unsigned MaxRecurse) {
1191   return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse);
1192 }
1193 
1194 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1195   return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit);
1196 }
1197 
1198 /// Given operands for an SRem, see if we can fold the result.
1199 /// If not, this returns null.
1200 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1201                                unsigned MaxRecurse) {
1202   // If the divisor is 0, the result is undefined, so assume the divisor is -1.
1203   // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
1204   Value *X;
1205   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1206     return ConstantInt::getNullValue(Op0->getType());
1207 
1208   // If the two operands are negated, return 0.
1209   if (isKnownNegation(Op0, Op1))
1210     return ConstantInt::getNullValue(Op0->getType());
1211 
1212   return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
1213 }
1214 
1215 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1216   return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit);
1217 }
1218 
1219 /// Given operands for a URem, see if we can fold the result.
1220 /// If not, this returns null.
1221 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1222                                unsigned MaxRecurse) {
1223   return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
1224 }
1225 
1226 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1227   return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit);
1228 }
1229 
1230 /// Returns true if a shift by \c Amount always yields poison.
1231 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) {
1232   Constant *C = dyn_cast<Constant>(Amount);
1233   if (!C)
1234     return false;
1235 
1236   // X shift by undef -> poison because it may shift by the bitwidth.
1237   if (Q.isUndefValue(C))
1238     return true;
1239 
1240   // Shifting by the bitwidth or more is undefined.
1241   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1242     if (CI->getValue().uge(CI->getType()->getScalarSizeInBits()))
1243       return true;
1244 
1245   // If all lanes of a vector shift are undefined the whole shift is.
1246   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1247     for (unsigned I = 0,
1248                   E = cast<FixedVectorType>(C->getType())->getNumElements();
1249          I != E; ++I)
1250       if (!isPoisonShift(C->getAggregateElement(I), Q))
1251         return false;
1252     return true;
1253   }
1254 
1255   return false;
1256 }
1257 
1258 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1259 /// If not, this returns null.
1260 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
1261                             Value *Op1, bool IsNSW, const SimplifyQuery &Q,
1262                             unsigned MaxRecurse) {
1263   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1264     return C;
1265 
1266   // poison shift by X -> poison
1267   if (isa<PoisonValue>(Op0))
1268     return Op0;
1269 
1270   // 0 shift by X -> 0
1271   if (match(Op0, m_Zero()))
1272     return Constant::getNullValue(Op0->getType());
1273 
1274   // X shift by 0 -> X
1275   // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
1276   // would be poison.
1277   Value *X;
1278   if (match(Op1, m_Zero()) ||
1279       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1280     return Op0;
1281 
1282   // Fold undefined shifts.
1283   if (isPoisonShift(Op1, Q))
1284     return PoisonValue::get(Op0->getType());
1285 
1286   // If the operation is with the result of a select instruction, check whether
1287   // operating on either branch of the select always yields the same value.
1288   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1289     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1290       return V;
1291 
1292   // If the operation is with the result of a phi instruction, check whether
1293   // operating on all incoming values of the phi always yields the same value.
1294   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1295     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1296       return V;
1297 
1298   // If any bits in the shift amount make that value greater than or equal to
1299   // the number of bits in the type, the shift is undefined.
1300   KnownBits KnownAmt = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1301   if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth()))
1302     return PoisonValue::get(Op0->getType());
1303 
1304   // If all valid bits in the shift amount are known zero, the first operand is
1305   // unchanged.
1306   unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth());
1307   if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits)
1308     return Op0;
1309 
1310   // Check for nsw shl leading to a poison value.
1311   if (IsNSW) {
1312     assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction");
1313     KnownBits KnownVal = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1314     KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt);
1315 
1316     if (KnownVal.Zero.isSignBitSet())
1317       KnownShl.Zero.setSignBit();
1318     if (KnownVal.One.isSignBitSet())
1319       KnownShl.One.setSignBit();
1320 
1321     if (KnownShl.hasConflict())
1322       return PoisonValue::get(Op0->getType());
1323   }
1324 
1325   return nullptr;
1326 }
1327 
1328 /// Given operands for an Shl, LShr or AShr, see if we can
1329 /// fold the result.  If not, this returns null.
1330 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
1331                                  Value *Op1, bool isExact, const SimplifyQuery &Q,
1332                                  unsigned MaxRecurse) {
1333   if (Value *V =
1334           SimplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse))
1335     return V;
1336 
1337   // X >> X -> 0
1338   if (Op0 == Op1)
1339     return Constant::getNullValue(Op0->getType());
1340 
1341   // undef >> X -> 0
1342   // undef >> X -> undef (if it's exact)
1343   if (Q.isUndefValue(Op0))
1344     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1345 
1346   // The low bit cannot be shifted out of an exact shift if it is set.
1347   if (isExact) {
1348     KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1349     if (Op0Known.One[0])
1350       return Op0;
1351   }
1352 
1353   return nullptr;
1354 }
1355 
1356 /// Given operands for an Shl, see if we can fold the result.
1357 /// If not, this returns null.
1358 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1359                               const SimplifyQuery &Q, unsigned MaxRecurse) {
1360   if (Value *V =
1361           SimplifyShift(Instruction::Shl, Op0, Op1, isNSW, Q, MaxRecurse))
1362     return V;
1363 
1364   // undef << X -> 0
1365   // undef << X -> undef if (if it's NSW/NUW)
1366   if (Q.isUndefValue(Op0))
1367     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1368 
1369   // (X >> A) << A -> X
1370   Value *X;
1371   if (Q.IIQ.UseInstrInfo &&
1372       match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1373     return X;
1374 
1375   // shl nuw i8 C, %x  ->  C  iff C has sign bit set.
1376   if (isNUW && match(Op0, m_Negative()))
1377     return Op0;
1378   // NOTE: could use computeKnownBits() / LazyValueInfo,
1379   // but the cost-benefit analysis suggests it isn't worth it.
1380 
1381   return nullptr;
1382 }
1383 
1384 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1385                              const SimplifyQuery &Q) {
1386   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
1387 }
1388 
1389 /// Given operands for an LShr, see if we can fold the result.
1390 /// If not, this returns null.
1391 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1392                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1393   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1394                                     MaxRecurse))
1395       return V;
1396 
1397   // (X << A) >> A -> X
1398   Value *X;
1399   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1400     return X;
1401 
1402   // ((X << A) | Y) >> A -> X  if effective width of Y is not larger than A.
1403   // We can return X as we do in the above case since OR alters no bits in X.
1404   // SimplifyDemandedBits in InstCombine can do more general optimization for
1405   // bit manipulation. This pattern aims to provide opportunities for other
1406   // optimizers by supporting a simple but common case in InstSimplify.
1407   Value *Y;
1408   const APInt *ShRAmt, *ShLAmt;
1409   if (match(Op1, m_APInt(ShRAmt)) &&
1410       match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) &&
1411       *ShRAmt == *ShLAmt) {
1412     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1413     const unsigned EffWidthY = YKnown.countMaxActiveBits();
1414     if (ShRAmt->uge(EffWidthY))
1415       return X;
1416   }
1417 
1418   return nullptr;
1419 }
1420 
1421 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1422                               const SimplifyQuery &Q) {
1423   return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1424 }
1425 
1426 /// Given operands for an AShr, see if we can fold the result.
1427 /// If not, this returns null.
1428 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1429                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1430   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1431                                     MaxRecurse))
1432     return V;
1433 
1434   // -1 >>a X --> -1
1435   // (-1 << X) a>> X --> -1
1436   // Do not return Op0 because it may contain undef elements if it's a vector.
1437   if (match(Op0, m_AllOnes()) ||
1438       match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1))))
1439     return Constant::getAllOnesValue(Op0->getType());
1440 
1441   // (X << A) >> A -> X
1442   Value *X;
1443   if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1444     return X;
1445 
1446   // Arithmetic shifting an all-sign-bit value is a no-op.
1447   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1448   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1449     return Op0;
1450 
1451   return nullptr;
1452 }
1453 
1454 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1455                               const SimplifyQuery &Q) {
1456   return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1457 }
1458 
1459 /// Commuted variants are assumed to be handled by calling this function again
1460 /// with the parameters swapped.
1461 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1462                                          ICmpInst *UnsignedICmp, bool IsAnd,
1463                                          const SimplifyQuery &Q) {
1464   Value *X, *Y;
1465 
1466   ICmpInst::Predicate EqPred;
1467   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1468       !ICmpInst::isEquality(EqPred))
1469     return nullptr;
1470 
1471   ICmpInst::Predicate UnsignedPred;
1472 
1473   Value *A, *B;
1474   // Y = (A - B);
1475   if (match(Y, m_Sub(m_Value(A), m_Value(B)))) {
1476     if (match(UnsignedICmp,
1477               m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) &&
1478         ICmpInst::isUnsigned(UnsignedPred)) {
1479       // A >=/<= B || (A - B) != 0  <-->  true
1480       if ((UnsignedPred == ICmpInst::ICMP_UGE ||
1481            UnsignedPred == ICmpInst::ICMP_ULE) &&
1482           EqPred == ICmpInst::ICMP_NE && !IsAnd)
1483         return ConstantInt::getTrue(UnsignedICmp->getType());
1484       // A </> B && (A - B) == 0  <-->  false
1485       if ((UnsignedPred == ICmpInst::ICMP_ULT ||
1486            UnsignedPred == ICmpInst::ICMP_UGT) &&
1487           EqPred == ICmpInst::ICMP_EQ && IsAnd)
1488         return ConstantInt::getFalse(UnsignedICmp->getType());
1489 
1490       // A </> B && (A - B) != 0  <-->  A </> B
1491       // A </> B || (A - B) != 0  <-->  (A - B) != 0
1492       if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT ||
1493                                           UnsignedPred == ICmpInst::ICMP_UGT))
1494         return IsAnd ? UnsignedICmp : ZeroICmp;
1495 
1496       // A <=/>= B && (A - B) == 0  <-->  (A - B) == 0
1497       // A <=/>= B || (A - B) == 0  <-->  A <=/>= B
1498       if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE ||
1499                                           UnsignedPred == ICmpInst::ICMP_UGE))
1500         return IsAnd ? ZeroICmp : UnsignedICmp;
1501     }
1502 
1503     // Given  Y = (A - B)
1504     //   Y >= A && Y != 0  --> Y >= A  iff B != 0
1505     //   Y <  A || Y == 0  --> Y <  A  iff B != 0
1506     if (match(UnsignedICmp,
1507               m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) {
1508       if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd &&
1509           EqPred == ICmpInst::ICMP_NE &&
1510           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1511         return UnsignedICmp;
1512       if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd &&
1513           EqPred == ICmpInst::ICMP_EQ &&
1514           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1515         return UnsignedICmp;
1516     }
1517   }
1518 
1519   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1520       ICmpInst::isUnsigned(UnsignedPred))
1521     ;
1522   else if (match(UnsignedICmp,
1523                  m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) &&
1524            ICmpInst::isUnsigned(UnsignedPred))
1525     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1526   else
1527     return nullptr;
1528 
1529   // X > Y && Y == 0  -->  Y == 0  iff X != 0
1530   // X > Y || Y == 0  -->  X > Y   iff X != 0
1531   if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1532       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1533     return IsAnd ? ZeroICmp : UnsignedICmp;
1534 
1535   // X <= Y && Y != 0  -->  X <= Y  iff X != 0
1536   // X <= Y || Y != 0  -->  Y != 0  iff X != 0
1537   if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
1538       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1539     return IsAnd ? UnsignedICmp : ZeroICmp;
1540 
1541   // The transforms below here are expected to be handled more generally with
1542   // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's
1543   // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap,
1544   // these are candidates for removal.
1545 
1546   // X < Y && Y != 0  -->  X < Y
1547   // X < Y || Y != 0  -->  Y != 0
1548   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1549     return IsAnd ? UnsignedICmp : ZeroICmp;
1550 
1551   // X >= Y && Y == 0  -->  Y == 0
1552   // X >= Y || Y == 0  -->  X >= Y
1553   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ)
1554     return IsAnd ? ZeroICmp : UnsignedICmp;
1555 
1556   // X < Y && Y == 0  -->  false
1557   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1558       IsAnd)
1559     return getFalse(UnsignedICmp->getType());
1560 
1561   // X >= Y || Y != 0  -->  true
1562   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE &&
1563       !IsAnd)
1564     return getTrue(UnsignedICmp->getType());
1565 
1566   return nullptr;
1567 }
1568 
1569 /// Commuted variants are assumed to be handled by calling this function again
1570 /// with the parameters swapped.
1571 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1572   ICmpInst::Predicate Pred0, Pred1;
1573   Value *A ,*B;
1574   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1575       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1576     return nullptr;
1577 
1578   // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
1579   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1580   // can eliminate Op1 from this 'and'.
1581   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1582     return Op0;
1583 
1584   // Check for any combination of predicates that are guaranteed to be disjoint.
1585   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1586       (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
1587       (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
1588       (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
1589     return getFalse(Op0->getType());
1590 
1591   return nullptr;
1592 }
1593 
1594 /// Commuted variants are assumed to be handled by calling this function again
1595 /// with the parameters swapped.
1596 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1597   ICmpInst::Predicate Pred0, Pred1;
1598   Value *A ,*B;
1599   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1600       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1601     return nullptr;
1602 
1603   // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
1604   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1605   // can eliminate Op0 from this 'or'.
1606   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1607     return Op1;
1608 
1609   // Check for any combination of predicates that cover the entire range of
1610   // possibilities.
1611   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1612       (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
1613       (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
1614       (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
1615     return getTrue(Op0->getType());
1616 
1617   return nullptr;
1618 }
1619 
1620 /// Test if a pair of compares with a shared operand and 2 constants has an
1621 /// empty set intersection, full set union, or if one compare is a superset of
1622 /// the other.
1623 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
1624                                                 bool IsAnd) {
1625   // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
1626   if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
1627     return nullptr;
1628 
1629   const APInt *C0, *C1;
1630   if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
1631       !match(Cmp1->getOperand(1), m_APInt(C1)))
1632     return nullptr;
1633 
1634   auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
1635   auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
1636 
1637   // For and-of-compares, check if the intersection is empty:
1638   // (icmp X, C0) && (icmp X, C1) --> empty set --> false
1639   if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1640     return getFalse(Cmp0->getType());
1641 
1642   // For or-of-compares, check if the union is full:
1643   // (icmp X, C0) || (icmp X, C1) --> full set --> true
1644   if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1645     return getTrue(Cmp0->getType());
1646 
1647   // Is one range a superset of the other?
1648   // If this is and-of-compares, take the smaller set:
1649   // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
1650   // If this is or-of-compares, take the larger set:
1651   // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
1652   if (Range0.contains(Range1))
1653     return IsAnd ? Cmp1 : Cmp0;
1654   if (Range1.contains(Range0))
1655     return IsAnd ? Cmp0 : Cmp1;
1656 
1657   return nullptr;
1658 }
1659 
1660 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1,
1661                                            bool IsAnd) {
1662   ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate();
1663   if (!match(Cmp0->getOperand(1), m_Zero()) ||
1664       !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1)
1665     return nullptr;
1666 
1667   if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ))
1668     return nullptr;
1669 
1670   // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
1671   Value *X = Cmp0->getOperand(0);
1672   Value *Y = Cmp1->getOperand(0);
1673 
1674   // If one of the compares is a masked version of a (not) null check, then
1675   // that compare implies the other, so we eliminate the other. Optionally, look
1676   // through a pointer-to-int cast to match a null check of a pointer type.
1677 
1678   // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
1679   // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
1680   // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
1681   // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
1682   if (match(Y, m_c_And(m_Specific(X), m_Value())) ||
1683       match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value())))
1684     return Cmp1;
1685 
1686   // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
1687   // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
1688   // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
1689   // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
1690   if (match(X, m_c_And(m_Specific(Y), m_Value())) ||
1691       match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value())))
1692     return Cmp0;
1693 
1694   return nullptr;
1695 }
1696 
1697 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1698                                         const InstrInfoQuery &IIQ) {
1699   // (icmp (add V, C0), C1) & (icmp V, C0)
1700   ICmpInst::Predicate Pred0, Pred1;
1701   const APInt *C0, *C1;
1702   Value *V;
1703   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1704     return nullptr;
1705 
1706   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1707     return nullptr;
1708 
1709   auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0));
1710   if (AddInst->getOperand(1) != Op1->getOperand(1))
1711     return nullptr;
1712 
1713   Type *ITy = Op0->getType();
1714   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1715   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1716 
1717   const APInt Delta = *C1 - *C0;
1718   if (C0->isStrictlyPositive()) {
1719     if (Delta == 2) {
1720       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1721         return getFalse(ITy);
1722       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1723         return getFalse(ITy);
1724     }
1725     if (Delta == 1) {
1726       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1727         return getFalse(ITy);
1728       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1729         return getFalse(ITy);
1730     }
1731   }
1732   if (C0->getBoolValue() && isNUW) {
1733     if (Delta == 2)
1734       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1735         return getFalse(ITy);
1736     if (Delta == 1)
1737       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1738         return getFalse(ITy);
1739   }
1740 
1741   return nullptr;
1742 }
1743 
1744 /// Try to eliminate compares with signed or unsigned min/max constants.
1745 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1,
1746                                                  bool IsAnd) {
1747   // Canonicalize an equality compare as Cmp0.
1748   if (Cmp1->isEquality())
1749     std::swap(Cmp0, Cmp1);
1750   if (!Cmp0->isEquality())
1751     return nullptr;
1752 
1753   // The non-equality compare must include a common operand (X). Canonicalize
1754   // the common operand as operand 0 (the predicate is swapped if the common
1755   // operand was operand 1).
1756   ICmpInst::Predicate Pred0 = Cmp0->getPredicate();
1757   Value *X = Cmp0->getOperand(0);
1758   ICmpInst::Predicate Pred1;
1759   bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value()));
1760   if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value())))
1761     return nullptr;
1762   if (ICmpInst::isEquality(Pred1))
1763     return nullptr;
1764 
1765   // The equality compare must be against a constant. Flip bits if we matched
1766   // a bitwise not. Convert a null pointer constant to an integer zero value.
1767   APInt MinMaxC;
1768   const APInt *C;
1769   if (match(Cmp0->getOperand(1), m_APInt(C)))
1770     MinMaxC = HasNotOp ? ~*C : *C;
1771   else if (isa<ConstantPointerNull>(Cmp0->getOperand(1)))
1772     MinMaxC = APInt::getZero(8);
1773   else
1774     return nullptr;
1775 
1776   // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1.
1777   if (!IsAnd) {
1778     Pred0 = ICmpInst::getInversePredicate(Pred0);
1779     Pred1 = ICmpInst::getInversePredicate(Pred1);
1780   }
1781 
1782   // Normalize to unsigned compare and unsigned min/max value.
1783   // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255
1784   if (ICmpInst::isSigned(Pred1)) {
1785     Pred1 = ICmpInst::getUnsignedPredicate(Pred1);
1786     MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth());
1787   }
1788 
1789   // (X != MAX) && (X < Y) --> X < Y
1790   // (X == MAX) || (X >= Y) --> X >= Y
1791   if (MinMaxC.isMaxValue())
1792     if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT)
1793       return Cmp1;
1794 
1795   // (X != MIN) && (X > Y) -->  X > Y
1796   // (X == MIN) || (X <= Y) --> X <= Y
1797   if (MinMaxC.isMinValue())
1798     if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT)
1799       return Cmp1;
1800 
1801   return nullptr;
1802 }
1803 
1804 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1805                                  const SimplifyQuery &Q) {
1806   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q))
1807     return X;
1808   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q))
1809     return X;
1810 
1811   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
1812     return X;
1813   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
1814     return X;
1815 
1816   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
1817     return X;
1818 
1819   if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true))
1820     return X;
1821 
1822   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true))
1823     return X;
1824 
1825   if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1826     return X;
1827   if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1828     return X;
1829 
1830   return nullptr;
1831 }
1832 
1833 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1834                                        const InstrInfoQuery &IIQ) {
1835   // (icmp (add V, C0), C1) | (icmp V, C0)
1836   ICmpInst::Predicate Pred0, Pred1;
1837   const APInt *C0, *C1;
1838   Value *V;
1839   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1840     return nullptr;
1841 
1842   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1843     return nullptr;
1844 
1845   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1846   if (AddInst->getOperand(1) != Op1->getOperand(1))
1847     return nullptr;
1848 
1849   Type *ITy = Op0->getType();
1850   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1851   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1852 
1853   const APInt Delta = *C1 - *C0;
1854   if (C0->isStrictlyPositive()) {
1855     if (Delta == 2) {
1856       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1857         return getTrue(ITy);
1858       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1859         return getTrue(ITy);
1860     }
1861     if (Delta == 1) {
1862       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1863         return getTrue(ITy);
1864       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1865         return getTrue(ITy);
1866     }
1867   }
1868   if (C0->getBoolValue() && isNUW) {
1869     if (Delta == 2)
1870       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1871         return getTrue(ITy);
1872     if (Delta == 1)
1873       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1874         return getTrue(ITy);
1875   }
1876 
1877   return nullptr;
1878 }
1879 
1880 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1881                                 const SimplifyQuery &Q) {
1882   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q))
1883     return X;
1884   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q))
1885     return X;
1886 
1887   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
1888     return X;
1889   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
1890     return X;
1891 
1892   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
1893     return X;
1894 
1895   if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false))
1896     return X;
1897 
1898   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false))
1899     return X;
1900 
1901   if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1902     return X;
1903   if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1904     return X;
1905 
1906   return nullptr;
1907 }
1908 
1909 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI,
1910                                    FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
1911   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1912   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1913   if (LHS0->getType() != RHS0->getType())
1914     return nullptr;
1915 
1916   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1917   if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1918       (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
1919     // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
1920     // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
1921     // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
1922     // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
1923     // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
1924     // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
1925     // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
1926     // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
1927     if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) ||
1928         (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1)))
1929       return RHS;
1930 
1931     // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
1932     // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
1933     // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
1934     // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
1935     // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
1936     // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
1937     // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
1938     // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
1939     if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) ||
1940         (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1)))
1941       return LHS;
1942   }
1943 
1944   return nullptr;
1945 }
1946 
1947 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q,
1948                                   Value *Op0, Value *Op1, bool IsAnd) {
1949   // Look through casts of the 'and' operands to find compares.
1950   auto *Cast0 = dyn_cast<CastInst>(Op0);
1951   auto *Cast1 = dyn_cast<CastInst>(Op1);
1952   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1953       Cast0->getSrcTy() == Cast1->getSrcTy()) {
1954     Op0 = Cast0->getOperand(0);
1955     Op1 = Cast1->getOperand(0);
1956   }
1957 
1958   Value *V = nullptr;
1959   auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
1960   auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
1961   if (ICmp0 && ICmp1)
1962     V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q)
1963               : simplifyOrOfICmps(ICmp0, ICmp1, Q);
1964 
1965   auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
1966   auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
1967   if (FCmp0 && FCmp1)
1968     V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd);
1969 
1970   if (!V)
1971     return nullptr;
1972   if (!Cast0)
1973     return V;
1974 
1975   // If we looked through casts, we can only handle a constant simplification
1976   // because we are not allowed to create a cast instruction here.
1977   if (auto *C = dyn_cast<Constant>(V))
1978     return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
1979 
1980   return nullptr;
1981 }
1982 
1983 /// Given a bitwise logic op, check if the operands are add/sub with a common
1984 /// source value and inverted constant (identity: C - X -> ~(X + ~C)).
1985 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1,
1986                                     Instruction::BinaryOps Opcode) {
1987   assert(Op0->getType() == Op1->getType() && "Mismatched binop types");
1988   assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op");
1989   Value *X;
1990   Constant *C1, *C2;
1991   if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) &&
1992        match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) ||
1993       (match(Op1, m_Add(m_Value(X), m_Constant(C1))) &&
1994        match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) {
1995     if (ConstantExpr::getNot(C1) == C2) {
1996       // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0
1997       // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1
1998       // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1
1999       Type *Ty = Op0->getType();
2000       return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty)
2001                                         : ConstantInt::getAllOnesValue(Ty);
2002     }
2003   }
2004   return nullptr;
2005 }
2006 
2007 /// Given operands for an And, see if we can fold the result.
2008 /// If not, this returns null.
2009 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2010                               unsigned MaxRecurse) {
2011   if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
2012     return C;
2013 
2014   // X & poison -> poison
2015   if (isa<PoisonValue>(Op1))
2016     return Op1;
2017 
2018   // X & undef -> 0
2019   if (Q.isUndefValue(Op1))
2020     return Constant::getNullValue(Op0->getType());
2021 
2022   // X & X = X
2023   if (Op0 == Op1)
2024     return Op0;
2025 
2026   // X & 0 = 0
2027   if (match(Op1, m_Zero()))
2028     return Constant::getNullValue(Op0->getType());
2029 
2030   // X & -1 = X
2031   if (match(Op1, m_AllOnes()))
2032     return Op0;
2033 
2034   // A & ~A  =  ~A & A  =  0
2035   if (match(Op0, m_Not(m_Specific(Op1))) ||
2036       match(Op1, m_Not(m_Specific(Op0))))
2037     return Constant::getNullValue(Op0->getType());
2038 
2039   // (A | ?) & A = A
2040   if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
2041     return Op1;
2042 
2043   // A & (A | ?) = A
2044   if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
2045     return Op0;
2046 
2047   // (X | Y) & (X | ~Y) --> X (commuted 8 ways)
2048   Value *X, *Y;
2049   if (match(Op0, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) &&
2050       match(Op1, m_c_Or(m_Deferred(X), m_Deferred(Y))))
2051     return X;
2052   if (match(Op1, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) &&
2053       match(Op0, m_c_Or(m_Deferred(X), m_Deferred(Y))))
2054     return X;
2055 
2056   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And))
2057     return V;
2058 
2059   // A mask that only clears known zeros of a shifted value is a no-op.
2060   const APInt *Mask;
2061   const APInt *ShAmt;
2062   if (match(Op1, m_APInt(Mask))) {
2063     // If all bits in the inverted and shifted mask are clear:
2064     // and (shl X, ShAmt), Mask --> shl X, ShAmt
2065     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
2066         (~(*Mask)).lshr(*ShAmt).isZero())
2067       return Op0;
2068 
2069     // If all bits in the inverted and shifted mask are clear:
2070     // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
2071     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
2072         (~(*Mask)).shl(*ShAmt).isZero())
2073       return Op0;
2074   }
2075 
2076   // If we have a multiplication overflow check that is being 'and'ed with a
2077   // check that one of the multipliers is not zero, we can omit the 'and', and
2078   // only keep the overflow check.
2079   if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true))
2080     return Op1;
2081   if (isCheckForZeroAndMulWithOverflow(Op1, Op0, true))
2082     return Op0;
2083 
2084   // A & (-A) = A if A is a power of two or zero.
2085   if (match(Op0, m_Neg(m_Specific(Op1))) ||
2086       match(Op1, m_Neg(m_Specific(Op0)))) {
2087     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2088                                Q.DT))
2089       return Op0;
2090     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2091                                Q.DT))
2092       return Op1;
2093   }
2094 
2095   // This is a similar pattern used for checking if a value is a power-of-2:
2096   // (A - 1) & A --> 0 (if A is a power-of-2 or 0)
2097   // A & (A - 1) --> 0 (if A is a power-of-2 or 0)
2098   if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) &&
2099       isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2100     return Constant::getNullValue(Op1->getType());
2101   if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) &&
2102       isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2103     return Constant::getNullValue(Op0->getType());
2104 
2105   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true))
2106     return V;
2107 
2108   // Try some generic simplifications for associative operations.
2109   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
2110                                           MaxRecurse))
2111     return V;
2112 
2113   // And distributes over Or.  Try some generic simplifications based on this.
2114   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2115                                         Instruction::Or, Q, MaxRecurse))
2116     return V;
2117 
2118   // And distributes over Xor.  Try some generic simplifications based on this.
2119   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2120                                         Instruction::Xor, Q, MaxRecurse))
2121     return V;
2122 
2123   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2124     if (Op0->getType()->isIntOrIntVectorTy(1)) {
2125       // A & (A && B) -> A && B
2126       if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero())))
2127         return Op1;
2128       else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero())))
2129         return Op0;
2130     }
2131     // If the operation is with the result of a select instruction, check
2132     // whether operating on either branch of the select always yields the same
2133     // value.
2134     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
2135                                          MaxRecurse))
2136       return V;
2137   }
2138 
2139   // If the operation is with the result of a phi instruction, check whether
2140   // operating on all incoming values of the phi always yields the same value.
2141   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2142     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
2143                                       MaxRecurse))
2144       return V;
2145 
2146   // Assuming the effective width of Y is not larger than A, i.e. all bits
2147   // from X and Y are disjoint in (X << A) | Y,
2148   // if the mask of this AND op covers all bits of X or Y, while it covers
2149   // no bits from the other, we can bypass this AND op. E.g.,
2150   // ((X << A) | Y) & Mask -> Y,
2151   //     if Mask = ((1 << effective_width_of(Y)) - 1)
2152   // ((X << A) | Y) & Mask -> X << A,
2153   //     if Mask = ((1 << effective_width_of(X)) - 1) << A
2154   // SimplifyDemandedBits in InstCombine can optimize the general case.
2155   // This pattern aims to help other passes for a common case.
2156   Value *XShifted;
2157   if (match(Op1, m_APInt(Mask)) &&
2158       match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)),
2159                                      m_Value(XShifted)),
2160                         m_Value(Y)))) {
2161     const unsigned Width = Op0->getType()->getScalarSizeInBits();
2162     const unsigned ShftCnt = ShAmt->getLimitedValue(Width);
2163     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2164     const unsigned EffWidthY = YKnown.countMaxActiveBits();
2165     if (EffWidthY <= ShftCnt) {
2166       const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI,
2167                                                 Q.DT);
2168       const unsigned EffWidthX = XKnown.countMaxActiveBits();
2169       const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY);
2170       const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt;
2171       // If the mask is extracting all bits from X or Y as is, we can skip
2172       // this AND op.
2173       if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask))
2174         return Y;
2175       if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask))
2176         return XShifted;
2177     }
2178   }
2179 
2180   // ((X | Y) ^ X ) & ((X | Y) ^ Y) --> 0
2181   // ((X | Y) ^ Y ) & ((X | Y) ^ X) --> 0
2182   BinaryOperator *Or;
2183   if (match(Op0, m_c_Xor(m_Value(X),
2184                          m_CombineAnd(m_BinOp(Or),
2185                                       m_c_Or(m_Deferred(X), m_Value(Y))))) &&
2186       match(Op1, m_c_Xor(m_Specific(Or), m_Specific(Y))))
2187     return Constant::getNullValue(Op0->getType());
2188 
2189   return nullptr;
2190 }
2191 
2192 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2193   return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit);
2194 }
2195 
2196 static Value *simplifyOrLogic(Value *X, Value *Y) {
2197   assert(X->getType() == Y->getType() && "Expected same type for 'or' ops");
2198   Type *Ty = X->getType();
2199 
2200   // X | ~X --> -1
2201   if (match(Y, m_Not(m_Specific(X))))
2202     return ConstantInt::getAllOnesValue(Ty);
2203 
2204   // X | ~(X & ?) = -1
2205   if (match(Y, m_Not(m_c_And(m_Specific(X), m_Value()))))
2206     return ConstantInt::getAllOnesValue(Ty);
2207 
2208   // X | (X & ?) --> X
2209   if (match(Y, m_c_And(m_Specific(X), m_Value())))
2210     return X;
2211 
2212   Value *A, *B;
2213 
2214   // (A ^ B) | (A | B) --> A | B
2215   // (A ^ B) | (B | A) --> B | A
2216   if (match(X, m_Xor(m_Value(A), m_Value(B))) &&
2217       match(Y, m_c_Or(m_Specific(A), m_Specific(B))))
2218     return Y;
2219 
2220   // ~(A ^ B) | (A | B) --> -1
2221   // ~(A ^ B) | (B | A) --> -1
2222   if (match(X, m_Not(m_Xor(m_Value(A), m_Value(B)))) &&
2223       match(Y, m_c_Or(m_Specific(A), m_Specific(B))))
2224     return ConstantInt::getAllOnesValue(Ty);
2225 
2226   // (A & ~B) | (A ^ B) --> A ^ B
2227   // (~B & A) | (A ^ B) --> A ^ B
2228   // (A & ~B) | (B ^ A) --> B ^ A
2229   // (~B & A) | (B ^ A) --> B ^ A
2230   if (match(X, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
2231       match(Y, m_c_Xor(m_Specific(A), m_Specific(B))))
2232     return Y;
2233 
2234   // (~A ^ B) | (A & B) --> ~A ^ B
2235   // (B ^ ~A) | (A & B) --> B ^ ~A
2236   // (~A ^ B) | (B & A) --> ~A ^ B
2237   // (B ^ ~A) | (B & A) --> B ^ ~A
2238   if (match(X, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
2239       match(Y, m_c_And(m_Specific(A), m_Specific(B))))
2240     return X;
2241 
2242   // (~A | B) | (A ^ B) --> -1
2243   // (~A | B) | (B ^ A) --> -1
2244   // (B | ~A) | (A ^ B) --> -1
2245   // (B | ~A) | (B ^ A) --> -1
2246   if (match(X, m_c_Or(m_Not(m_Value(A)), m_Value(B))) &&
2247       match(Y, m_c_Xor(m_Specific(A), m_Specific(B))))
2248     return ConstantInt::getAllOnesValue(Ty);
2249 
2250   // (~A & B) | ~(A | B) --> ~A
2251   // (~A & B) | ~(B | A) --> ~A
2252   // (B & ~A) | ~(A | B) --> ~A
2253   // (B & ~A) | ~(B | A) --> ~A
2254   Value *NotA;
2255   if (match(X,
2256             m_c_And(m_CombineAnd(m_Value(NotA), m_NotForbidUndef(m_Value(A))),
2257                     m_Value(B))) &&
2258       match(Y, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
2259     return NotA;
2260 
2261   // ~(A ^ B) | (A & B) --> ~(A & B)
2262   // ~(A ^ B) | (B & A) --> ~(A & B)
2263   Value *NotAB;
2264   if (match(X, m_CombineAnd(m_NotForbidUndef(m_Xor(m_Value(A), m_Value(B))),
2265                             m_Value(NotAB))) &&
2266       match(Y, m_c_And(m_Specific(A), m_Specific(B))))
2267     return NotAB;
2268 
2269   return nullptr;
2270 }
2271 
2272 /// Given operands for an Or, see if we can fold the result.
2273 /// If not, this returns null.
2274 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2275                              unsigned MaxRecurse) {
2276   if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
2277     return C;
2278 
2279   // X | poison -> poison
2280   if (isa<PoisonValue>(Op1))
2281     return Op1;
2282 
2283   // X | undef -> -1
2284   // X | -1 = -1
2285   // Do not return Op1 because it may contain undef elements if it's a vector.
2286   if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes()))
2287     return Constant::getAllOnesValue(Op0->getType());
2288 
2289   // X | X = X
2290   // X | 0 = X
2291   if (Op0 == Op1 || match(Op1, m_Zero()))
2292     return Op0;
2293 
2294   if (Value *R = simplifyOrLogic(Op0, Op1))
2295     return R;
2296   if (Value *R = simplifyOrLogic(Op1, Op0))
2297     return R;
2298 
2299   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or))
2300     return V;
2301 
2302   // Rotated -1 is still -1:
2303   // (-1 << X) | (-1 >> (C - X)) --> -1
2304   // (-1 >> X) | (-1 << (C - X)) --> -1
2305   // ...with C <= bitwidth (and commuted variants).
2306   Value *X, *Y;
2307   if ((match(Op0, m_Shl(m_AllOnes(), m_Value(X))) &&
2308        match(Op1, m_LShr(m_AllOnes(), m_Value(Y)))) ||
2309       (match(Op1, m_Shl(m_AllOnes(), m_Value(X))) &&
2310        match(Op0, m_LShr(m_AllOnes(), m_Value(Y))))) {
2311     const APInt *C;
2312     if ((match(X, m_Sub(m_APInt(C), m_Specific(Y))) ||
2313          match(Y, m_Sub(m_APInt(C), m_Specific(X)))) &&
2314         C->ule(X->getType()->getScalarSizeInBits())) {
2315       return ConstantInt::getAllOnesValue(X->getType());
2316     }
2317   }
2318 
2319   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false))
2320     return V;
2321 
2322   // If we have a multiplication overflow check that is being 'and'ed with a
2323   // check that one of the multipliers is not zero, we can omit the 'and', and
2324   // only keep the overflow check.
2325   if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false))
2326     return Op1;
2327   if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false))
2328     return Op0;
2329 
2330   // Try some generic simplifications for associative operations.
2331   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
2332                                           MaxRecurse))
2333     return V;
2334 
2335   // Or distributes over And.  Try some generic simplifications based on this.
2336   if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1,
2337                                         Instruction::And, Q, MaxRecurse))
2338     return V;
2339 
2340   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2341     if (Op0->getType()->isIntOrIntVectorTy(1)) {
2342       // A | (A || B) -> A || B
2343       if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value())))
2344         return Op1;
2345       else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value())))
2346         return Op0;
2347     }
2348     // If the operation is with the result of a select instruction, check
2349     // whether operating on either branch of the select always yields the same
2350     // value.
2351     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
2352                                          MaxRecurse))
2353       return V;
2354   }
2355 
2356   // (A & C1)|(B & C2)
2357   Value *A, *B;
2358   const APInt *C1, *C2;
2359   if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
2360       match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
2361     if (*C1 == ~*C2) {
2362       // (A & C1)|(B & C2)
2363       // If we have: ((V + N) & C1) | (V & C2)
2364       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2365       // replace with V+N.
2366       Value *N;
2367       if (C2->isMask() && // C2 == 0+1+
2368           match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
2369         // Add commutes, try both ways.
2370         if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2371           return A;
2372       }
2373       // Or commutes, try both ways.
2374       if (C1->isMask() &&
2375           match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
2376         // Add commutes, try both ways.
2377         if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2378           return B;
2379       }
2380     }
2381   }
2382 
2383   // If the operation is with the result of a phi instruction, check whether
2384   // operating on all incoming values of the phi always yields the same value.
2385   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2386     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2387       return V;
2388 
2389   return nullptr;
2390 }
2391 
2392 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2393   return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit);
2394 }
2395 
2396 /// Given operands for a Xor, see if we can fold the result.
2397 /// If not, this returns null.
2398 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2399                               unsigned MaxRecurse) {
2400   if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
2401     return C;
2402 
2403   // A ^ undef -> undef
2404   if (Q.isUndefValue(Op1))
2405     return Op1;
2406 
2407   // A ^ 0 = A
2408   if (match(Op1, m_Zero()))
2409     return Op0;
2410 
2411   // A ^ A = 0
2412   if (Op0 == Op1)
2413     return Constant::getNullValue(Op0->getType());
2414 
2415   // A ^ ~A  =  ~A ^ A  =  -1
2416   if (match(Op0, m_Not(m_Specific(Op1))) ||
2417       match(Op1, m_Not(m_Specific(Op0))))
2418     return Constant::getAllOnesValue(Op0->getType());
2419 
2420   auto foldAndOrNot = [](Value *X, Value *Y) -> Value * {
2421     Value *A, *B;
2422     // (~A & B) ^ (A | B) --> A -- There are 8 commuted variants.
2423     if (match(X, m_c_And(m_Not(m_Value(A)), m_Value(B))) &&
2424         match(Y, m_c_Or(m_Specific(A), m_Specific(B))))
2425       return A;
2426 
2427     // (~A | B) ^ (A & B) --> ~A -- There are 8 commuted variants.
2428     // The 'not' op must contain a complete -1 operand (no undef elements for
2429     // vector) for the transform to be safe.
2430     Value *NotA;
2431     if (match(X,
2432               m_c_Or(m_CombineAnd(m_NotForbidUndef(m_Value(A)), m_Value(NotA)),
2433                      m_Value(B))) &&
2434         match(Y, m_c_And(m_Specific(A), m_Specific(B))))
2435       return NotA;
2436 
2437     return nullptr;
2438   };
2439   if (Value *R = foldAndOrNot(Op0, Op1))
2440     return R;
2441   if (Value *R = foldAndOrNot(Op1, Op0))
2442     return R;
2443 
2444   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor))
2445     return V;
2446 
2447   // Try some generic simplifications for associative operations.
2448   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
2449                                           MaxRecurse))
2450     return V;
2451 
2452   // Threading Xor over selects and phi nodes is pointless, so don't bother.
2453   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
2454   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
2455   // only if B and C are equal.  If B and C are equal then (since we assume
2456   // that operands have already been simplified) "select(cond, B, C)" should
2457   // have been simplified to the common value of B and C already.  Analysing
2458   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
2459   // for threading over phi nodes.
2460 
2461   return nullptr;
2462 }
2463 
2464 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2465   return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit);
2466 }
2467 
2468 
2469 static Type *GetCompareTy(Value *Op) {
2470   return CmpInst::makeCmpResultType(Op->getType());
2471 }
2472 
2473 /// Rummage around inside V looking for something equivalent to the comparison
2474 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
2475 /// Helper function for analyzing max/min idioms.
2476 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
2477                                          Value *LHS, Value *RHS) {
2478   SelectInst *SI = dyn_cast<SelectInst>(V);
2479   if (!SI)
2480     return nullptr;
2481   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2482   if (!Cmp)
2483     return nullptr;
2484   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2485   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
2486     return Cmp;
2487   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
2488       LHS == CmpRHS && RHS == CmpLHS)
2489     return Cmp;
2490   return nullptr;
2491 }
2492 
2493 // A significant optimization not implemented here is assuming that alloca
2494 // addresses are not equal to incoming argument values. They don't *alias*,
2495 // as we say, but that doesn't mean they aren't equal, so we take a
2496 // conservative approach.
2497 //
2498 // This is inspired in part by C++11 5.10p1:
2499 //   "Two pointers of the same type compare equal if and only if they are both
2500 //    null, both point to the same function, or both represent the same
2501 //    address."
2502 //
2503 // This is pretty permissive.
2504 //
2505 // It's also partly due to C11 6.5.9p6:
2506 //   "Two pointers compare equal if and only if both are null pointers, both are
2507 //    pointers to the same object (including a pointer to an object and a
2508 //    subobject at its beginning) or function, both are pointers to one past the
2509 //    last element of the same array object, or one is a pointer to one past the
2510 //    end of one array object and the other is a pointer to the start of a
2511 //    different array object that happens to immediately follow the first array
2512 //    object in the address space.)
2513 //
2514 // C11's version is more restrictive, however there's no reason why an argument
2515 // couldn't be a one-past-the-end value for a stack object in the caller and be
2516 // equal to the beginning of a stack object in the callee.
2517 //
2518 // If the C and C++ standards are ever made sufficiently restrictive in this
2519 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2520 // this optimization.
2521 static Constant *
2522 computePointerICmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
2523                    const SimplifyQuery &Q) {
2524   const DataLayout &DL = Q.DL;
2525   const TargetLibraryInfo *TLI = Q.TLI;
2526   const DominatorTree *DT = Q.DT;
2527   const Instruction *CxtI = Q.CxtI;
2528   const InstrInfoQuery &IIQ = Q.IIQ;
2529 
2530   // First, skip past any trivial no-ops.
2531   LHS = LHS->stripPointerCasts();
2532   RHS = RHS->stripPointerCasts();
2533 
2534   // A non-null pointer is not equal to a null pointer.
2535   if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) &&
2536       llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr,
2537                            IIQ.UseInstrInfo))
2538     return ConstantInt::get(GetCompareTy(LHS),
2539                             !CmpInst::isTrueWhenEqual(Pred));
2540 
2541   // We can only fold certain predicates on pointer comparisons.
2542   switch (Pred) {
2543   default:
2544     return nullptr;
2545 
2546     // Equality comaprisons are easy to fold.
2547   case CmpInst::ICMP_EQ:
2548   case CmpInst::ICMP_NE:
2549     break;
2550 
2551     // We can only handle unsigned relational comparisons because 'inbounds' on
2552     // a GEP only protects against unsigned wrapping.
2553   case CmpInst::ICMP_UGT:
2554   case CmpInst::ICMP_UGE:
2555   case CmpInst::ICMP_ULT:
2556   case CmpInst::ICMP_ULE:
2557     // However, we have to switch them to their signed variants to handle
2558     // negative indices from the base pointer.
2559     Pred = ICmpInst::getSignedPredicate(Pred);
2560     break;
2561   }
2562 
2563   // Strip off any constant offsets so that we can reason about them.
2564   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2565   // here and compare base addresses like AliasAnalysis does, however there are
2566   // numerous hazards. AliasAnalysis and its utilities rely on special rules
2567   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2568   // doesn't need to guarantee pointer inequality when it says NoAlias.
2569   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
2570   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
2571 
2572   // If LHS and RHS are related via constant offsets to the same base
2573   // value, we can replace it with an icmp which just compares the offsets.
2574   if (LHS == RHS)
2575     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
2576 
2577   // Various optimizations for (in)equality comparisons.
2578   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2579     // Different non-empty allocations that exist at the same time have
2580     // different addresses (if the program can tell). Global variables always
2581     // exist, so they always exist during the lifetime of each other and all
2582     // allocas. Two different allocas usually have different addresses...
2583     //
2584     // However, if there's an @llvm.stackrestore dynamically in between two
2585     // allocas, they may have the same address. It's tempting to reduce the
2586     // scope of the problem by only looking at *static* allocas here. That would
2587     // cover the majority of allocas while significantly reducing the likelihood
2588     // of having an @llvm.stackrestore pop up in the middle. However, it's not
2589     // actually impossible for an @llvm.stackrestore to pop up in the middle of
2590     // an entry block. Also, if we have a block that's not attached to a
2591     // function, we can't tell if it's "static" under the current definition.
2592     // Theoretically, this problem could be fixed by creating a new kind of
2593     // instruction kind specifically for static allocas. Such a new instruction
2594     // could be required to be at the top of the entry block, thus preventing it
2595     // from being subject to a @llvm.stackrestore. Instcombine could even
2596     // convert regular allocas into these special allocas. It'd be nifty.
2597     // However, until then, this problem remains open.
2598     //
2599     // So, we'll assume that two non-empty allocas have different addresses
2600     // for now.
2601     //
2602     // With all that, if the offsets are within the bounds of their allocations
2603     // (and not one-past-the-end! so we can't use inbounds!), and their
2604     // allocations aren't the same, the pointers are not equal.
2605     //
2606     // Note that it's not necessary to check for LHS being a global variable
2607     // address, due to canonicalization and constant folding.
2608     if (isa<AllocaInst>(LHS) &&
2609         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2610       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2611       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2612       uint64_t LHSSize, RHSSize;
2613       ObjectSizeOpts Opts;
2614       Opts.NullIsUnknownSize =
2615           NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction());
2616       if (LHSOffsetCI && RHSOffsetCI &&
2617           getObjectSize(LHS, LHSSize, DL, TLI, Opts) &&
2618           getObjectSize(RHS, RHSSize, DL, TLI, Opts)) {
2619         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2620         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2621         if (!LHSOffsetValue.isNegative() &&
2622             !RHSOffsetValue.isNegative() &&
2623             LHSOffsetValue.ult(LHSSize) &&
2624             RHSOffsetValue.ult(RHSSize)) {
2625           return ConstantInt::get(GetCompareTy(LHS),
2626                                   !CmpInst::isTrueWhenEqual(Pred));
2627         }
2628       }
2629 
2630       // Repeat the above check but this time without depending on DataLayout
2631       // or being able to compute a precise size.
2632       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2633           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2634           LHSOffset->isNullValue() &&
2635           RHSOffset->isNullValue())
2636         return ConstantInt::get(GetCompareTy(LHS),
2637                                 !CmpInst::isTrueWhenEqual(Pred));
2638     }
2639 
2640     // Even if an non-inbounds GEP occurs along the path we can still optimize
2641     // equality comparisons concerning the result. We avoid walking the whole
2642     // chain again by starting where the last calls to
2643     // stripAndComputeConstantOffsets left off and accumulate the offsets.
2644     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2645     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2646     if (LHS == RHS)
2647       return ConstantExpr::getICmp(Pred,
2648                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2649                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2650 
2651     // If one side of the equality comparison must come from a noalias call
2652     // (meaning a system memory allocation function), and the other side must
2653     // come from a pointer that cannot overlap with dynamically-allocated
2654     // memory within the lifetime of the current function (allocas, byval
2655     // arguments, globals), then determine the comparison result here.
2656     SmallVector<const Value *, 8> LHSUObjs, RHSUObjs;
2657     getUnderlyingObjects(LHS, LHSUObjs);
2658     getUnderlyingObjects(RHS, RHSUObjs);
2659 
2660     // Is the set of underlying objects all noalias calls?
2661     auto IsNAC = [](ArrayRef<const Value *> Objects) {
2662       return all_of(Objects, isNoAliasCall);
2663     };
2664 
2665     // Is the set of underlying objects all things which must be disjoint from
2666     // noalias calls. For allocas, we consider only static ones (dynamic
2667     // allocas might be transformed into calls to malloc not simultaneously
2668     // live with the compared-to allocation). For globals, we exclude symbols
2669     // that might be resolve lazily to symbols in another dynamically-loaded
2670     // library (and, thus, could be malloc'ed by the implementation).
2671     auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) {
2672       return all_of(Objects, [](const Value *V) {
2673         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2674           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2675         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2676           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2677                   GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2678                  !GV->isThreadLocal();
2679         if (const Argument *A = dyn_cast<Argument>(V))
2680           return A->hasByValAttr();
2681         return false;
2682       });
2683     };
2684 
2685     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2686         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2687         return ConstantInt::get(GetCompareTy(LHS),
2688                                 !CmpInst::isTrueWhenEqual(Pred));
2689 
2690     // Fold comparisons for non-escaping pointer even if the allocation call
2691     // cannot be elided. We cannot fold malloc comparison to null. Also, the
2692     // dynamic allocation call could be either of the operands.
2693     Value *MI = nullptr;
2694     if (isAllocLikeFn(LHS, TLI) &&
2695         llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT))
2696       MI = LHS;
2697     else if (isAllocLikeFn(RHS, TLI) &&
2698              llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT))
2699       MI = RHS;
2700     // FIXME: We should also fold the compare when the pointer escapes, but the
2701     // compare dominates the pointer escape
2702     if (MI && !PointerMayBeCaptured(MI, true, true))
2703       return ConstantInt::get(GetCompareTy(LHS),
2704                               CmpInst::isFalseWhenEqual(Pred));
2705   }
2706 
2707   // Otherwise, fail.
2708   return nullptr;
2709 }
2710 
2711 /// Fold an icmp when its operands have i1 scalar type.
2712 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
2713                                   Value *RHS, const SimplifyQuery &Q) {
2714   Type *ITy = GetCompareTy(LHS); // The return type.
2715   Type *OpTy = LHS->getType();   // The operand type.
2716   if (!OpTy->isIntOrIntVectorTy(1))
2717     return nullptr;
2718 
2719   // A boolean compared to true/false can be reduced in 14 out of the 20
2720   // (10 predicates * 2 constants) possible combinations. The other
2721   // 6 cases require a 'not' of the LHS.
2722 
2723   auto ExtractNotLHS = [](Value *V) -> Value * {
2724     Value *X;
2725     if (match(V, m_Not(m_Value(X))))
2726       return X;
2727     return nullptr;
2728   };
2729 
2730   if (match(RHS, m_Zero())) {
2731     switch (Pred) {
2732     case CmpInst::ICMP_NE:  // X !=  0 -> X
2733     case CmpInst::ICMP_UGT: // X >u  0 -> X
2734     case CmpInst::ICMP_SLT: // X <s  0 -> X
2735       return LHS;
2736 
2737     case CmpInst::ICMP_EQ:  // not(X) ==  0 -> X != 0 -> X
2738     case CmpInst::ICMP_ULE: // not(X) <=u 0 -> X >u 0 -> X
2739     case CmpInst::ICMP_SGE: // not(X) >=s 0 -> X <s 0 -> X
2740       if (Value *X = ExtractNotLHS(LHS))
2741         return X;
2742       break;
2743 
2744     case CmpInst::ICMP_ULT: // X <u  0 -> false
2745     case CmpInst::ICMP_SGT: // X >s  0 -> false
2746       return getFalse(ITy);
2747 
2748     case CmpInst::ICMP_UGE: // X >=u 0 -> true
2749     case CmpInst::ICMP_SLE: // X <=s 0 -> true
2750       return getTrue(ITy);
2751 
2752     default: break;
2753     }
2754   } else if (match(RHS, m_One())) {
2755     switch (Pred) {
2756     case CmpInst::ICMP_EQ:  // X ==   1 -> X
2757     case CmpInst::ICMP_UGE: // X >=u  1 -> X
2758     case CmpInst::ICMP_SLE: // X <=s -1 -> X
2759       return LHS;
2760 
2761     case CmpInst::ICMP_NE:  // not(X) !=  1 -> X ==   1 -> X
2762     case CmpInst::ICMP_ULT: // not(X) <=u 1 -> X >=u  1 -> X
2763     case CmpInst::ICMP_SGT: // not(X) >s  1 -> X <=s -1 -> X
2764       if (Value *X = ExtractNotLHS(LHS))
2765         return X;
2766       break;
2767 
2768     case CmpInst::ICMP_UGT: // X >u   1 -> false
2769     case CmpInst::ICMP_SLT: // X <s  -1 -> false
2770       return getFalse(ITy);
2771 
2772     case CmpInst::ICMP_ULE: // X <=u  1 -> true
2773     case CmpInst::ICMP_SGE: // X >=s -1 -> true
2774       return getTrue(ITy);
2775 
2776     default: break;
2777     }
2778   }
2779 
2780   switch (Pred) {
2781   default:
2782     break;
2783   case ICmpInst::ICMP_UGE:
2784     if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
2785       return getTrue(ITy);
2786     break;
2787   case ICmpInst::ICMP_SGE:
2788     /// For signed comparison, the values for an i1 are 0 and -1
2789     /// respectively. This maps into a truth table of:
2790     /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
2791     ///  0  |  0  |  1 (0 >= 0)   |  1
2792     ///  0  |  1  |  1 (0 >= -1)  |  1
2793     ///  1  |  0  |  0 (-1 >= 0)  |  0
2794     ///  1  |  1  |  1 (-1 >= -1) |  1
2795     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2796       return getTrue(ITy);
2797     break;
2798   case ICmpInst::ICMP_ULE:
2799     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2800       return getTrue(ITy);
2801     break;
2802   }
2803 
2804   return nullptr;
2805 }
2806 
2807 /// Try hard to fold icmp with zero RHS because this is a common case.
2808 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
2809                                    Value *RHS, const SimplifyQuery &Q) {
2810   if (!match(RHS, m_Zero()))
2811     return nullptr;
2812 
2813   Type *ITy = GetCompareTy(LHS); // The return type.
2814   switch (Pred) {
2815   default:
2816     llvm_unreachable("Unknown ICmp predicate!");
2817   case ICmpInst::ICMP_ULT:
2818     return getFalse(ITy);
2819   case ICmpInst::ICMP_UGE:
2820     return getTrue(ITy);
2821   case ICmpInst::ICMP_EQ:
2822   case ICmpInst::ICMP_ULE:
2823     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2824       return getFalse(ITy);
2825     break;
2826   case ICmpInst::ICMP_NE:
2827   case ICmpInst::ICMP_UGT:
2828     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2829       return getTrue(ITy);
2830     break;
2831   case ICmpInst::ICMP_SLT: {
2832     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2833     if (LHSKnown.isNegative())
2834       return getTrue(ITy);
2835     if (LHSKnown.isNonNegative())
2836       return getFalse(ITy);
2837     break;
2838   }
2839   case ICmpInst::ICMP_SLE: {
2840     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2841     if (LHSKnown.isNegative())
2842       return getTrue(ITy);
2843     if (LHSKnown.isNonNegative() &&
2844         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2845       return getFalse(ITy);
2846     break;
2847   }
2848   case ICmpInst::ICMP_SGE: {
2849     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2850     if (LHSKnown.isNegative())
2851       return getFalse(ITy);
2852     if (LHSKnown.isNonNegative())
2853       return getTrue(ITy);
2854     break;
2855   }
2856   case ICmpInst::ICMP_SGT: {
2857     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2858     if (LHSKnown.isNegative())
2859       return getFalse(ITy);
2860     if (LHSKnown.isNonNegative() &&
2861         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2862       return getTrue(ITy);
2863     break;
2864   }
2865   }
2866 
2867   return nullptr;
2868 }
2869 
2870 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
2871                                        Value *RHS, const InstrInfoQuery &IIQ) {
2872   Type *ITy = GetCompareTy(RHS); // The return type.
2873 
2874   Value *X;
2875   // Sign-bit checks can be optimized to true/false after unsigned
2876   // floating-point casts:
2877   // icmp slt (bitcast (uitofp X)),  0 --> false
2878   // icmp sgt (bitcast (uitofp X)), -1 --> true
2879   if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) {
2880     if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero()))
2881       return ConstantInt::getFalse(ITy);
2882     if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes()))
2883       return ConstantInt::getTrue(ITy);
2884   }
2885 
2886   const APInt *C;
2887   if (!match(RHS, m_APIntAllowUndef(C)))
2888     return nullptr;
2889 
2890   // Rule out tautological comparisons (eg., ult 0 or uge 0).
2891   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2892   if (RHS_CR.isEmptySet())
2893     return ConstantInt::getFalse(ITy);
2894   if (RHS_CR.isFullSet())
2895     return ConstantInt::getTrue(ITy);
2896 
2897   ConstantRange LHS_CR =
2898       computeConstantRange(LHS, CmpInst::isSigned(Pred), IIQ.UseInstrInfo);
2899   if (!LHS_CR.isFullSet()) {
2900     if (RHS_CR.contains(LHS_CR))
2901       return ConstantInt::getTrue(ITy);
2902     if (RHS_CR.inverse().contains(LHS_CR))
2903       return ConstantInt::getFalse(ITy);
2904   }
2905 
2906   // (mul nuw/nsw X, MulC) != C --> true  (if C is not a multiple of MulC)
2907   // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC)
2908   const APInt *MulC;
2909   if (ICmpInst::isEquality(Pred) &&
2910       ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
2911         *MulC != 0 && C->urem(*MulC) != 0) ||
2912        (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
2913         *MulC != 0 && C->srem(*MulC) != 0)))
2914     return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE);
2915 
2916   return nullptr;
2917 }
2918 
2919 static Value *simplifyICmpWithBinOpOnLHS(
2920     CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS,
2921     const SimplifyQuery &Q, unsigned MaxRecurse) {
2922   Type *ITy = GetCompareTy(RHS); // The return type.
2923 
2924   Value *Y = nullptr;
2925   // icmp pred (or X, Y), X
2926   if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
2927     if (Pred == ICmpInst::ICMP_ULT)
2928       return getFalse(ITy);
2929     if (Pred == ICmpInst::ICMP_UGE)
2930       return getTrue(ITy);
2931 
2932     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2933       KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2934       KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2935       if (RHSKnown.isNonNegative() && YKnown.isNegative())
2936         return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
2937       if (RHSKnown.isNegative() || YKnown.isNonNegative())
2938         return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
2939     }
2940   }
2941 
2942   // icmp pred (and X, Y), X
2943   if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
2944     if (Pred == ICmpInst::ICMP_UGT)
2945       return getFalse(ITy);
2946     if (Pred == ICmpInst::ICMP_ULE)
2947       return getTrue(ITy);
2948   }
2949 
2950   // icmp pred (urem X, Y), Y
2951   if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2952     switch (Pred) {
2953     default:
2954       break;
2955     case ICmpInst::ICMP_SGT:
2956     case ICmpInst::ICMP_SGE: {
2957       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2958       if (!Known.isNonNegative())
2959         break;
2960       LLVM_FALLTHROUGH;
2961     }
2962     case ICmpInst::ICMP_EQ:
2963     case ICmpInst::ICMP_UGT:
2964     case ICmpInst::ICMP_UGE:
2965       return getFalse(ITy);
2966     case ICmpInst::ICMP_SLT:
2967     case ICmpInst::ICMP_SLE: {
2968       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2969       if (!Known.isNonNegative())
2970         break;
2971       LLVM_FALLTHROUGH;
2972     }
2973     case ICmpInst::ICMP_NE:
2974     case ICmpInst::ICMP_ULT:
2975     case ICmpInst::ICMP_ULE:
2976       return getTrue(ITy);
2977     }
2978   }
2979 
2980   // icmp pred (urem X, Y), X
2981   if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) {
2982     if (Pred == ICmpInst::ICMP_ULE)
2983       return getTrue(ITy);
2984     if (Pred == ICmpInst::ICMP_UGT)
2985       return getFalse(ITy);
2986   }
2987 
2988   // x >>u y <=u x --> true.
2989   // x >>u y >u  x --> false.
2990   // x udiv y <=u x --> true.
2991   // x udiv y >u  x --> false.
2992   if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
2993       match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
2994     // icmp pred (X op Y), X
2995     if (Pred == ICmpInst::ICMP_UGT)
2996       return getFalse(ITy);
2997     if (Pred == ICmpInst::ICMP_ULE)
2998       return getTrue(ITy);
2999   }
3000 
3001   // If x is nonzero:
3002   // x >>u C <u  x --> true  for C != 0.
3003   // x >>u C !=  x --> true  for C != 0.
3004   // x >>u C >=u x --> false for C != 0.
3005   // x >>u C ==  x --> false for C != 0.
3006   // x udiv C <u  x --> true  for C != 1.
3007   // x udiv C !=  x --> true  for C != 1.
3008   // x udiv C >=u x --> false for C != 1.
3009   // x udiv C ==  x --> false for C != 1.
3010   // TODO: allow non-constant shift amount/divisor
3011   const APInt *C;
3012   if ((match(LBO, m_LShr(m_Specific(RHS), m_APInt(C))) && *C != 0) ||
3013       (match(LBO, m_UDiv(m_Specific(RHS), m_APInt(C))) && *C != 1)) {
3014     if (isKnownNonZero(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) {
3015       switch (Pred) {
3016       default:
3017         break;
3018       case ICmpInst::ICMP_EQ:
3019       case ICmpInst::ICMP_UGE:
3020         return getFalse(ITy);
3021       case ICmpInst::ICMP_NE:
3022       case ICmpInst::ICMP_ULT:
3023         return getTrue(ITy);
3024       case ICmpInst::ICMP_UGT:
3025       case ICmpInst::ICMP_ULE:
3026         // UGT/ULE are handled by the more general case just above
3027         llvm_unreachable("Unexpected UGT/ULE, should have been handled");
3028       }
3029     }
3030   }
3031 
3032   // (x*C1)/C2 <= x for C1 <= C2.
3033   // This holds even if the multiplication overflows: Assume that x != 0 and
3034   // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and
3035   // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x.
3036   //
3037   // Additionally, either the multiplication and division might be represented
3038   // as shifts:
3039   // (x*C1)>>C2 <= x for C1 < 2**C2.
3040   // (x<<C1)/C2 <= x for 2**C1 < C2.
3041   const APInt *C1, *C2;
3042   if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
3043        C1->ule(*C2)) ||
3044       (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
3045        C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) ||
3046       (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
3047        (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) {
3048     if (Pred == ICmpInst::ICMP_UGT)
3049       return getFalse(ITy);
3050     if (Pred == ICmpInst::ICMP_ULE)
3051       return getTrue(ITy);
3052   }
3053 
3054   return nullptr;
3055 }
3056 
3057 
3058 // If only one of the icmp's operands has NSW flags, try to prove that:
3059 //
3060 //   icmp slt (x + C1), (x +nsw C2)
3061 //
3062 // is equivalent to:
3063 //
3064 //   icmp slt C1, C2
3065 //
3066 // which is true if x + C2 has the NSW flags set and:
3067 // *) C1 < C2 && C1 >= 0, or
3068 // *) C2 < C1 && C1 <= 0.
3069 //
3070 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS,
3071                                     Value *RHS) {
3072   // TODO: only support icmp slt for now.
3073   if (Pred != CmpInst::ICMP_SLT)
3074     return false;
3075 
3076   // Canonicalize nsw add as RHS.
3077   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
3078     std::swap(LHS, RHS);
3079   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
3080     return false;
3081 
3082   Value *X;
3083   const APInt *C1, *C2;
3084   if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) ||
3085       !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2))))
3086     return false;
3087 
3088   return (C1->slt(*C2) && C1->isNonNegative()) ||
3089          (C2->slt(*C1) && C1->isNonPositive());
3090 }
3091 
3092 
3093 /// TODO: A large part of this logic is duplicated in InstCombine's
3094 /// foldICmpBinOp(). We should be able to share that and avoid the code
3095 /// duplication.
3096 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
3097                                     Value *RHS, const SimplifyQuery &Q,
3098                                     unsigned MaxRecurse) {
3099   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
3100   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
3101   if (MaxRecurse && (LBO || RBO)) {
3102     // Analyze the case when either LHS or RHS is an add instruction.
3103     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3104     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
3105     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
3106     if (LBO && LBO->getOpcode() == Instruction::Add) {
3107       A = LBO->getOperand(0);
3108       B = LBO->getOperand(1);
3109       NoLHSWrapProblem =
3110           ICmpInst::isEquality(Pred) ||
3111           (CmpInst::isUnsigned(Pred) &&
3112            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) ||
3113           (CmpInst::isSigned(Pred) &&
3114            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)));
3115     }
3116     if (RBO && RBO->getOpcode() == Instruction::Add) {
3117       C = RBO->getOperand(0);
3118       D = RBO->getOperand(1);
3119       NoRHSWrapProblem =
3120           ICmpInst::isEquality(Pred) ||
3121           (CmpInst::isUnsigned(Pred) &&
3122            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) ||
3123           (CmpInst::isSigned(Pred) &&
3124            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO)));
3125     }
3126 
3127     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
3128     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
3129       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
3130                                       Constant::getNullValue(RHS->getType()), Q,
3131                                       MaxRecurse - 1))
3132         return V;
3133 
3134     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
3135     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
3136       if (Value *V =
3137               SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
3138                                C == LHS ? D : C, Q, MaxRecurse - 1))
3139         return V;
3140 
3141     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
3142     bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) ||
3143                        trySimplifyICmpWithAdds(Pred, LHS, RHS);
3144     if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) {
3145       // Determine Y and Z in the form icmp (X+Y), (X+Z).
3146       Value *Y, *Z;
3147       if (A == C) {
3148         // C + B == C + D  ->  B == D
3149         Y = B;
3150         Z = D;
3151       } else if (A == D) {
3152         // D + B == C + D  ->  B == C
3153         Y = B;
3154         Z = C;
3155       } else if (B == C) {
3156         // A + C == C + D  ->  A == D
3157         Y = A;
3158         Z = D;
3159       } else {
3160         assert(B == D);
3161         // A + D == C + D  ->  A == C
3162         Y = A;
3163         Z = C;
3164       }
3165       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
3166         return V;
3167     }
3168   }
3169 
3170   if (LBO)
3171     if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse))
3172       return V;
3173 
3174   if (RBO)
3175     if (Value *V = simplifyICmpWithBinOpOnLHS(
3176             ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse))
3177       return V;
3178 
3179   // 0 - (zext X) pred C
3180   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
3181     const APInt *C;
3182     if (match(RHS, m_APInt(C))) {
3183       if (C->isStrictlyPositive()) {
3184         if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE)
3185           return ConstantInt::getTrue(GetCompareTy(RHS));
3186         if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ)
3187           return ConstantInt::getFalse(GetCompareTy(RHS));
3188       }
3189       if (C->isNonNegative()) {
3190         if (Pred == ICmpInst::ICMP_SLE)
3191           return ConstantInt::getTrue(GetCompareTy(RHS));
3192         if (Pred == ICmpInst::ICMP_SGT)
3193           return ConstantInt::getFalse(GetCompareTy(RHS));
3194       }
3195     }
3196   }
3197 
3198   //   If C2 is a power-of-2 and C is not:
3199   //   (C2 << X) == C --> false
3200   //   (C2 << X) != C --> true
3201   const APInt *C;
3202   if (match(LHS, m_Shl(m_Power2(), m_Value())) &&
3203       match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) {
3204     // C2 << X can equal zero in some circumstances.
3205     // This simplification might be unsafe if C is zero.
3206     //
3207     // We know it is safe if:
3208     // - The shift is nsw. We can't shift out the one bit.
3209     // - The shift is nuw. We can't shift out the one bit.
3210     // - C2 is one.
3211     // - C isn't zero.
3212     if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3213         Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3214         match(LHS, m_Shl(m_One(), m_Value())) || !C->isZero()) {
3215       if (Pred == ICmpInst::ICMP_EQ)
3216         return ConstantInt::getFalse(GetCompareTy(RHS));
3217       if (Pred == ICmpInst::ICMP_NE)
3218         return ConstantInt::getTrue(GetCompareTy(RHS));
3219     }
3220   }
3221 
3222   // TODO: This is overly constrained. LHS can be any power-of-2.
3223   // (1 << X)  >u 0x8000 --> false
3224   // (1 << X) <=u 0x8000 --> true
3225   if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) {
3226     if (Pred == ICmpInst::ICMP_UGT)
3227       return ConstantInt::getFalse(GetCompareTy(RHS));
3228     if (Pred == ICmpInst::ICMP_ULE)
3229       return ConstantInt::getTrue(GetCompareTy(RHS));
3230   }
3231 
3232   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
3233       LBO->getOperand(1) == RBO->getOperand(1)) {
3234     switch (LBO->getOpcode()) {
3235     default:
3236       break;
3237     case Instruction::UDiv:
3238     case Instruction::LShr:
3239       if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) ||
3240           !Q.IIQ.isExact(RBO))
3241         break;
3242       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3243                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3244           return V;
3245       break;
3246     case Instruction::SDiv:
3247       if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) ||
3248           !Q.IIQ.isExact(RBO))
3249         break;
3250       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3251                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3252         return V;
3253       break;
3254     case Instruction::AShr:
3255       if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO))
3256         break;
3257       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3258                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3259         return V;
3260       break;
3261     case Instruction::Shl: {
3262       bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO);
3263       bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO);
3264       if (!NUW && !NSW)
3265         break;
3266       if (!NSW && ICmpInst::isSigned(Pred))
3267         break;
3268       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3269                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3270         return V;
3271       break;
3272     }
3273     }
3274   }
3275   return nullptr;
3276 }
3277 
3278 /// Simplify integer comparisons where at least one operand of the compare
3279 /// matches an integer min/max idiom.
3280 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
3281                                      Value *RHS, const SimplifyQuery &Q,
3282                                      unsigned MaxRecurse) {
3283   Type *ITy = GetCompareTy(LHS); // The return type.
3284   Value *A, *B;
3285   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
3286   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
3287 
3288   // Signed variants on "max(a,b)>=a -> true".
3289   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3290     if (A != RHS)
3291       std::swap(A, B);       // smax(A, B) pred A.
3292     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3293     // We analyze this as smax(A, B) pred A.
3294     P = Pred;
3295   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
3296              (A == LHS || B == LHS)) {
3297     if (A != LHS)
3298       std::swap(A, B);       // A pred smax(A, B).
3299     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3300     // We analyze this as smax(A, B) swapped-pred A.
3301     P = CmpInst::getSwappedPredicate(Pred);
3302   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3303              (A == RHS || B == RHS)) {
3304     if (A != RHS)
3305       std::swap(A, B);       // smin(A, B) pred A.
3306     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3307     // We analyze this as smax(-A, -B) swapped-pred -A.
3308     // Note that we do not need to actually form -A or -B thanks to EqP.
3309     P = CmpInst::getSwappedPredicate(Pred);
3310   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
3311              (A == LHS || B == LHS)) {
3312     if (A != LHS)
3313       std::swap(A, B);       // A pred smin(A, B).
3314     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3315     // We analyze this as smax(-A, -B) pred -A.
3316     // Note that we do not need to actually form -A or -B thanks to EqP.
3317     P = Pred;
3318   }
3319   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3320     // Cases correspond to "max(A, B) p A".
3321     switch (P) {
3322     default:
3323       break;
3324     case CmpInst::ICMP_EQ:
3325     case CmpInst::ICMP_SLE:
3326       // Equivalent to "A EqP B".  This may be the same as the condition tested
3327       // in the max/min; if so, we can just return that.
3328       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3329         return V;
3330       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3331         return V;
3332       // Otherwise, see if "A EqP B" simplifies.
3333       if (MaxRecurse)
3334         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3335           return V;
3336       break;
3337     case CmpInst::ICMP_NE:
3338     case CmpInst::ICMP_SGT: {
3339       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3340       // Equivalent to "A InvEqP B".  This may be the same as the condition
3341       // tested in the max/min; if so, we can just return that.
3342       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3343         return V;
3344       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3345         return V;
3346       // Otherwise, see if "A InvEqP B" simplifies.
3347       if (MaxRecurse)
3348         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3349           return V;
3350       break;
3351     }
3352     case CmpInst::ICMP_SGE:
3353       // Always true.
3354       return getTrue(ITy);
3355     case CmpInst::ICMP_SLT:
3356       // Always false.
3357       return getFalse(ITy);
3358     }
3359   }
3360 
3361   // Unsigned variants on "max(a,b)>=a -> true".
3362   P = CmpInst::BAD_ICMP_PREDICATE;
3363   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3364     if (A != RHS)
3365       std::swap(A, B);       // umax(A, B) pred A.
3366     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3367     // We analyze this as umax(A, B) pred A.
3368     P = Pred;
3369   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
3370              (A == LHS || B == LHS)) {
3371     if (A != LHS)
3372       std::swap(A, B);       // A pred umax(A, B).
3373     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3374     // We analyze this as umax(A, B) swapped-pred A.
3375     P = CmpInst::getSwappedPredicate(Pred);
3376   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3377              (A == RHS || B == RHS)) {
3378     if (A != RHS)
3379       std::swap(A, B);       // umin(A, B) pred A.
3380     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3381     // We analyze this as umax(-A, -B) swapped-pred -A.
3382     // Note that we do not need to actually form -A or -B thanks to EqP.
3383     P = CmpInst::getSwappedPredicate(Pred);
3384   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
3385              (A == LHS || B == LHS)) {
3386     if (A != LHS)
3387       std::swap(A, B);       // A pred umin(A, B).
3388     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3389     // We analyze this as umax(-A, -B) pred -A.
3390     // Note that we do not need to actually form -A or -B thanks to EqP.
3391     P = Pred;
3392   }
3393   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3394     // Cases correspond to "max(A, B) p A".
3395     switch (P) {
3396     default:
3397       break;
3398     case CmpInst::ICMP_EQ:
3399     case CmpInst::ICMP_ULE:
3400       // Equivalent to "A EqP B".  This may be the same as the condition tested
3401       // in the max/min; if so, we can just return that.
3402       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3403         return V;
3404       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3405         return V;
3406       // Otherwise, see if "A EqP B" simplifies.
3407       if (MaxRecurse)
3408         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3409           return V;
3410       break;
3411     case CmpInst::ICMP_NE:
3412     case CmpInst::ICMP_UGT: {
3413       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3414       // Equivalent to "A InvEqP B".  This may be the same as the condition
3415       // tested in the max/min; if so, we can just return that.
3416       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3417         return V;
3418       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3419         return V;
3420       // Otherwise, see if "A InvEqP B" simplifies.
3421       if (MaxRecurse)
3422         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3423           return V;
3424       break;
3425     }
3426     case CmpInst::ICMP_UGE:
3427       return getTrue(ITy);
3428     case CmpInst::ICMP_ULT:
3429       return getFalse(ITy);
3430     }
3431   }
3432 
3433   // Comparing 1 each of min/max with a common operand?
3434   // Canonicalize min operand to RHS.
3435   if (match(LHS, m_UMin(m_Value(), m_Value())) ||
3436       match(LHS, m_SMin(m_Value(), m_Value()))) {
3437     std::swap(LHS, RHS);
3438     Pred = ICmpInst::getSwappedPredicate(Pred);
3439   }
3440 
3441   Value *C, *D;
3442   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
3443       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
3444       (A == C || A == D || B == C || B == D)) {
3445     // smax(A, B) >=s smin(A, D) --> true
3446     if (Pred == CmpInst::ICMP_SGE)
3447       return getTrue(ITy);
3448     // smax(A, B) <s smin(A, D) --> false
3449     if (Pred == CmpInst::ICMP_SLT)
3450       return getFalse(ITy);
3451   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3452              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3453              (A == C || A == D || B == C || B == D)) {
3454     // umax(A, B) >=u umin(A, D) --> true
3455     if (Pred == CmpInst::ICMP_UGE)
3456       return getTrue(ITy);
3457     // umax(A, B) <u umin(A, D) --> false
3458     if (Pred == CmpInst::ICMP_ULT)
3459       return getFalse(ITy);
3460   }
3461 
3462   return nullptr;
3463 }
3464 
3465 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate,
3466                                                Value *LHS, Value *RHS,
3467                                                const SimplifyQuery &Q) {
3468   // Gracefully handle instructions that have not been inserted yet.
3469   if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent())
3470     return nullptr;
3471 
3472   for (Value *AssumeBaseOp : {LHS, RHS}) {
3473     for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) {
3474       if (!AssumeVH)
3475         continue;
3476 
3477       CallInst *Assume = cast<CallInst>(AssumeVH);
3478       if (Optional<bool> Imp =
3479               isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS,
3480                                  Q.DL))
3481         if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT))
3482           return ConstantInt::get(GetCompareTy(LHS), *Imp);
3483     }
3484   }
3485 
3486   return nullptr;
3487 }
3488 
3489 /// Given operands for an ICmpInst, see if we can fold the result.
3490 /// If not, this returns null.
3491 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3492                                const SimplifyQuery &Q, unsigned MaxRecurse) {
3493   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3494   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
3495 
3496   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3497     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3498       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3499 
3500     // If we have a constant, make sure it is on the RHS.
3501     std::swap(LHS, RHS);
3502     Pred = CmpInst::getSwappedPredicate(Pred);
3503   }
3504   assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X");
3505 
3506   Type *ITy = GetCompareTy(LHS); // The return type.
3507 
3508   // icmp poison, X -> poison
3509   if (isa<PoisonValue>(RHS))
3510     return PoisonValue::get(ITy);
3511 
3512   // For EQ and NE, we can always pick a value for the undef to make the
3513   // predicate pass or fail, so we can return undef.
3514   // Matches behavior in llvm::ConstantFoldCompareInstruction.
3515   if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred))
3516     return UndefValue::get(ITy);
3517 
3518   // icmp X, X -> true/false
3519   // icmp X, undef -> true/false because undef could be X.
3520   if (LHS == RHS || Q.isUndefValue(RHS))
3521     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
3522 
3523   if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
3524     return V;
3525 
3526   // TODO: Sink/common this with other potentially expensive calls that use
3527   //       ValueTracking? See comment below for isKnownNonEqual().
3528   if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
3529     return V;
3530 
3531   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ))
3532     return V;
3533 
3534   // If both operands have range metadata, use the metadata
3535   // to simplify the comparison.
3536   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
3537     auto RHS_Instr = cast<Instruction>(RHS);
3538     auto LHS_Instr = cast<Instruction>(LHS);
3539 
3540     if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) &&
3541         Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) {
3542       auto RHS_CR = getConstantRangeFromMetadata(
3543           *RHS_Instr->getMetadata(LLVMContext::MD_range));
3544       auto LHS_CR = getConstantRangeFromMetadata(
3545           *LHS_Instr->getMetadata(LLVMContext::MD_range));
3546 
3547       if (LHS_CR.icmp(Pred, RHS_CR))
3548         return ConstantInt::getTrue(RHS->getContext());
3549 
3550       if (LHS_CR.icmp(CmpInst::getInversePredicate(Pred), RHS_CR))
3551         return ConstantInt::getFalse(RHS->getContext());
3552     }
3553   }
3554 
3555   // Compare of cast, for example (zext X) != 0 -> X != 0
3556   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
3557     Instruction *LI = cast<CastInst>(LHS);
3558     Value *SrcOp = LI->getOperand(0);
3559     Type *SrcTy = SrcOp->getType();
3560     Type *DstTy = LI->getType();
3561 
3562     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3563     // if the integer type is the same size as the pointer type.
3564     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3565         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
3566       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
3567         // Transfer the cast to the constant.
3568         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
3569                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
3570                                         Q, MaxRecurse-1))
3571           return V;
3572       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3573         if (RI->getOperand(0)->getType() == SrcTy)
3574           // Compare without the cast.
3575           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3576                                           Q, MaxRecurse-1))
3577             return V;
3578       }
3579     }
3580 
3581     if (isa<ZExtInst>(LHS)) {
3582       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3583       // same type.
3584       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3585         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3586           // Compare X and Y.  Note that signed predicates become unsigned.
3587           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3588                                           SrcOp, RI->getOperand(0), Q,
3589                                           MaxRecurse-1))
3590             return V;
3591       }
3592       // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true.
3593       else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3594         if (SrcOp == RI->getOperand(0)) {
3595           if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE)
3596             return ConstantInt::getTrue(ITy);
3597           if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT)
3598             return ConstantInt::getFalse(ITy);
3599         }
3600       }
3601       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3602       // too.  If not, then try to deduce the result of the comparison.
3603       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3604         // Compute the constant that would happen if we truncated to SrcTy then
3605         // reextended to DstTy.
3606         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3607         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
3608 
3609         // If the re-extended constant didn't change then this is effectively
3610         // also a case of comparing two zero-extended values.
3611         if (RExt == CI && MaxRecurse)
3612           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3613                                         SrcOp, Trunc, Q, MaxRecurse-1))
3614             return V;
3615 
3616         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3617         // there.  Use this to work out the result of the comparison.
3618         if (RExt != CI) {
3619           switch (Pred) {
3620           default: llvm_unreachable("Unknown ICmp predicate!");
3621           // LHS <u RHS.
3622           case ICmpInst::ICMP_EQ:
3623           case ICmpInst::ICMP_UGT:
3624           case ICmpInst::ICMP_UGE:
3625             return ConstantInt::getFalse(CI->getContext());
3626 
3627           case ICmpInst::ICMP_NE:
3628           case ICmpInst::ICMP_ULT:
3629           case ICmpInst::ICMP_ULE:
3630             return ConstantInt::getTrue(CI->getContext());
3631 
3632           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
3633           // is non-negative then LHS <s RHS.
3634           case ICmpInst::ICMP_SGT:
3635           case ICmpInst::ICMP_SGE:
3636             return CI->getValue().isNegative() ?
3637               ConstantInt::getTrue(CI->getContext()) :
3638               ConstantInt::getFalse(CI->getContext());
3639 
3640           case ICmpInst::ICMP_SLT:
3641           case ICmpInst::ICMP_SLE:
3642             return CI->getValue().isNegative() ?
3643               ConstantInt::getFalse(CI->getContext()) :
3644               ConstantInt::getTrue(CI->getContext());
3645           }
3646         }
3647       }
3648     }
3649 
3650     if (isa<SExtInst>(LHS)) {
3651       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3652       // same type.
3653       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3654         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3655           // Compare X and Y.  Note that the predicate does not change.
3656           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3657                                           Q, MaxRecurse-1))
3658             return V;
3659       }
3660       // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true.
3661       else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3662         if (SrcOp == RI->getOperand(0)) {
3663           if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE)
3664             return ConstantInt::getTrue(ITy);
3665           if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT)
3666             return ConstantInt::getFalse(ITy);
3667         }
3668       }
3669       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3670       // too.  If not, then try to deduce the result of the comparison.
3671       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3672         // Compute the constant that would happen if we truncated to SrcTy then
3673         // reextended to DstTy.
3674         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3675         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
3676 
3677         // If the re-extended constant didn't change then this is effectively
3678         // also a case of comparing two sign-extended values.
3679         if (RExt == CI && MaxRecurse)
3680           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
3681             return V;
3682 
3683         // Otherwise the upper bits of LHS are all equal, while RHS has varying
3684         // bits there.  Use this to work out the result of the comparison.
3685         if (RExt != CI) {
3686           switch (Pred) {
3687           default: llvm_unreachable("Unknown ICmp predicate!");
3688           case ICmpInst::ICMP_EQ:
3689             return ConstantInt::getFalse(CI->getContext());
3690           case ICmpInst::ICMP_NE:
3691             return ConstantInt::getTrue(CI->getContext());
3692 
3693           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
3694           // LHS >s RHS.
3695           case ICmpInst::ICMP_SGT:
3696           case ICmpInst::ICMP_SGE:
3697             return CI->getValue().isNegative() ?
3698               ConstantInt::getTrue(CI->getContext()) :
3699               ConstantInt::getFalse(CI->getContext());
3700           case ICmpInst::ICMP_SLT:
3701           case ICmpInst::ICMP_SLE:
3702             return CI->getValue().isNegative() ?
3703               ConstantInt::getFalse(CI->getContext()) :
3704               ConstantInt::getTrue(CI->getContext());
3705 
3706           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
3707           // LHS >u RHS.
3708           case ICmpInst::ICMP_UGT:
3709           case ICmpInst::ICMP_UGE:
3710             // Comparison is true iff the LHS <s 0.
3711             if (MaxRecurse)
3712               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3713                                               Constant::getNullValue(SrcTy),
3714                                               Q, MaxRecurse-1))
3715                 return V;
3716             break;
3717           case ICmpInst::ICMP_ULT:
3718           case ICmpInst::ICMP_ULE:
3719             // Comparison is true iff the LHS >=s 0.
3720             if (MaxRecurse)
3721               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3722                                               Constant::getNullValue(SrcTy),
3723                                               Q, MaxRecurse-1))
3724                 return V;
3725             break;
3726           }
3727         }
3728       }
3729     }
3730   }
3731 
3732   // icmp eq|ne X, Y -> false|true if X != Y
3733   // This is potentially expensive, and we have already computedKnownBits for
3734   // compares with 0 above here, so only try this for a non-zero compare.
3735   if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) &&
3736       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) {
3737     return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
3738   }
3739 
3740   if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
3741     return V;
3742 
3743   if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
3744     return V;
3745 
3746   if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q))
3747     return V;
3748 
3749   // Simplify comparisons of related pointers using a powerful, recursive
3750   // GEP-walk when we have target data available..
3751   if (LHS->getType()->isPointerTy())
3752     if (auto *C = computePointerICmp(Pred, LHS, RHS, Q))
3753       return C;
3754   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3755     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3756       if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3757               Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3758           Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3759               Q.DL.getTypeSizeInBits(CRHS->getType()))
3760         if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(),
3761                                          CRHS->getPointerOperand(), Q))
3762           return C;
3763 
3764   // If the comparison is with the result of a select instruction, check whether
3765   // comparing with either branch of the select always yields the same value.
3766   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3767     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3768       return V;
3769 
3770   // If the comparison is with the result of a phi instruction, check whether
3771   // doing the compare with each incoming phi value yields a common result.
3772   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3773     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3774       return V;
3775 
3776   return nullptr;
3777 }
3778 
3779 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3780                               const SimplifyQuery &Q) {
3781   return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
3782 }
3783 
3784 /// Given operands for an FCmpInst, see if we can fold the result.
3785 /// If not, this returns null.
3786 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3787                                FastMathFlags FMF, const SimplifyQuery &Q,
3788                                unsigned MaxRecurse) {
3789   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3790   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3791 
3792   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3793     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3794       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3795 
3796     // If we have a constant, make sure it is on the RHS.
3797     std::swap(LHS, RHS);
3798     Pred = CmpInst::getSwappedPredicate(Pred);
3799   }
3800 
3801   // Fold trivial predicates.
3802   Type *RetTy = GetCompareTy(LHS);
3803   if (Pred == FCmpInst::FCMP_FALSE)
3804     return getFalse(RetTy);
3805   if (Pred == FCmpInst::FCMP_TRUE)
3806     return getTrue(RetTy);
3807 
3808   // Fold (un)ordered comparison if we can determine there are no NaNs.
3809   if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD)
3810     if (FMF.noNaNs() ||
3811         (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI)))
3812       return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD);
3813 
3814   // NaN is unordered; NaN is not ordered.
3815   assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) &&
3816          "Comparison must be either ordered or unordered");
3817   if (match(RHS, m_NaN()))
3818     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3819 
3820   // fcmp pred x, poison and  fcmp pred poison, x
3821   // fold to poison
3822   if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS))
3823     return PoisonValue::get(RetTy);
3824 
3825   // fcmp pred x, undef  and  fcmp pred undef, x
3826   // fold to true if unordered, false if ordered
3827   if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) {
3828     // Choosing NaN for the undef will always make unordered comparison succeed
3829     // and ordered comparison fail.
3830     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3831   }
3832 
3833   // fcmp x,x -> true/false.  Not all compares are foldable.
3834   if (LHS == RHS) {
3835     if (CmpInst::isTrueWhenEqual(Pred))
3836       return getTrue(RetTy);
3837     if (CmpInst::isFalseWhenEqual(Pred))
3838       return getFalse(RetTy);
3839   }
3840 
3841   // Handle fcmp with constant RHS.
3842   // TODO: Use match with a specific FP value, so these work with vectors with
3843   // undef lanes.
3844   const APFloat *C;
3845   if (match(RHS, m_APFloat(C))) {
3846     // Check whether the constant is an infinity.
3847     if (C->isInfinity()) {
3848       if (C->isNegative()) {
3849         switch (Pred) {
3850         case FCmpInst::FCMP_OLT:
3851           // No value is ordered and less than negative infinity.
3852           return getFalse(RetTy);
3853         case FCmpInst::FCMP_UGE:
3854           // All values are unordered with or at least negative infinity.
3855           return getTrue(RetTy);
3856         default:
3857           break;
3858         }
3859       } else {
3860         switch (Pred) {
3861         case FCmpInst::FCMP_OGT:
3862           // No value is ordered and greater than infinity.
3863           return getFalse(RetTy);
3864         case FCmpInst::FCMP_ULE:
3865           // All values are unordered with and at most infinity.
3866           return getTrue(RetTy);
3867         default:
3868           break;
3869         }
3870       }
3871 
3872       // LHS == Inf
3873       if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI))
3874         return getFalse(RetTy);
3875       // LHS != Inf
3876       if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI))
3877         return getTrue(RetTy);
3878       // LHS == Inf || LHS == NaN
3879       if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) &&
3880           isKnownNeverNaN(LHS, Q.TLI))
3881         return getFalse(RetTy);
3882       // LHS != Inf && LHS != NaN
3883       if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) &&
3884           isKnownNeverNaN(LHS, Q.TLI))
3885         return getTrue(RetTy);
3886     }
3887     if (C->isNegative() && !C->isNegZero()) {
3888       assert(!C->isNaN() && "Unexpected NaN constant!");
3889       // TODO: We can catch more cases by using a range check rather than
3890       //       relying on CannotBeOrderedLessThanZero.
3891       switch (Pred) {
3892       case FCmpInst::FCMP_UGE:
3893       case FCmpInst::FCMP_UGT:
3894       case FCmpInst::FCMP_UNE:
3895         // (X >= 0) implies (X > C) when (C < 0)
3896         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3897           return getTrue(RetTy);
3898         break;
3899       case FCmpInst::FCMP_OEQ:
3900       case FCmpInst::FCMP_OLE:
3901       case FCmpInst::FCMP_OLT:
3902         // (X >= 0) implies !(X < C) when (C < 0)
3903         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3904           return getFalse(RetTy);
3905         break;
3906       default:
3907         break;
3908       }
3909     }
3910 
3911     // Check comparison of [minnum/maxnum with constant] with other constant.
3912     const APFloat *C2;
3913     if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) &&
3914          *C2 < *C) ||
3915         (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) &&
3916          *C2 > *C)) {
3917       bool IsMaxNum =
3918           cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum;
3919       // The ordered relationship and minnum/maxnum guarantee that we do not
3920       // have NaN constants, so ordered/unordered preds are handled the same.
3921       switch (Pred) {
3922       case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ:
3923         // minnum(X, LesserC)  == C --> false
3924         // maxnum(X, GreaterC) == C --> false
3925         return getFalse(RetTy);
3926       case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE:
3927         // minnum(X, LesserC)  != C --> true
3928         // maxnum(X, GreaterC) != C --> true
3929         return getTrue(RetTy);
3930       case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE:
3931       case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT:
3932         // minnum(X, LesserC)  >= C --> false
3933         // minnum(X, LesserC)  >  C --> false
3934         // maxnum(X, GreaterC) >= C --> true
3935         // maxnum(X, GreaterC) >  C --> true
3936         return ConstantInt::get(RetTy, IsMaxNum);
3937       case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE:
3938       case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT:
3939         // minnum(X, LesserC)  <= C --> true
3940         // minnum(X, LesserC)  <  C --> true
3941         // maxnum(X, GreaterC) <= C --> false
3942         // maxnum(X, GreaterC) <  C --> false
3943         return ConstantInt::get(RetTy, !IsMaxNum);
3944       default:
3945         // TRUE/FALSE/ORD/UNO should be handled before this.
3946         llvm_unreachable("Unexpected fcmp predicate");
3947       }
3948     }
3949   }
3950 
3951   if (match(RHS, m_AnyZeroFP())) {
3952     switch (Pred) {
3953     case FCmpInst::FCMP_OGE:
3954     case FCmpInst::FCMP_ULT:
3955       // Positive or zero X >= 0.0 --> true
3956       // Positive or zero X <  0.0 --> false
3957       if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) &&
3958           CannotBeOrderedLessThanZero(LHS, Q.TLI))
3959         return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy);
3960       break;
3961     case FCmpInst::FCMP_UGE:
3962     case FCmpInst::FCMP_OLT:
3963       // Positive or zero or nan X >= 0.0 --> true
3964       // Positive or zero or nan X <  0.0 --> false
3965       if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3966         return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy);
3967       break;
3968     default:
3969       break;
3970     }
3971   }
3972 
3973   // If the comparison is with the result of a select instruction, check whether
3974   // comparing with either branch of the select always yields the same value.
3975   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3976     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3977       return V;
3978 
3979   // If the comparison is with the result of a phi instruction, check whether
3980   // doing the compare with each incoming phi value yields a common result.
3981   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3982     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3983       return V;
3984 
3985   return nullptr;
3986 }
3987 
3988 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3989                               FastMathFlags FMF, const SimplifyQuery &Q) {
3990   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
3991 }
3992 
3993 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3994                                      const SimplifyQuery &Q,
3995                                      bool AllowRefinement,
3996                                      unsigned MaxRecurse) {
3997   assert(!Op->getType()->isVectorTy() && "This is not safe for vectors");
3998 
3999   // Trivial replacement.
4000   if (V == Op)
4001     return RepOp;
4002 
4003   // We cannot replace a constant, and shouldn't even try.
4004   if (isa<Constant>(Op))
4005     return nullptr;
4006 
4007   auto *I = dyn_cast<Instruction>(V);
4008   if (!I || !is_contained(I->operands(), Op))
4009     return nullptr;
4010 
4011   // Replace Op with RepOp in instruction operands.
4012   SmallVector<Value *, 8> NewOps(I->getNumOperands());
4013   transform(I->operands(), NewOps.begin(),
4014             [&](Value *V) { return V == Op ? RepOp : V; });
4015 
4016   if (!AllowRefinement) {
4017     // General InstSimplify functions may refine the result, e.g. by returning
4018     // a constant for a potentially poison value. To avoid this, implement only
4019     // a few non-refining but profitable transforms here.
4020 
4021     if (auto *BO = dyn_cast<BinaryOperator>(I)) {
4022       unsigned Opcode = BO->getOpcode();
4023       // id op x -> x, x op id -> x
4024       if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType()))
4025         return NewOps[1];
4026       if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(),
4027                                                       /* RHS */ true))
4028         return NewOps[0];
4029 
4030       // x & x -> x, x | x -> x
4031       if ((Opcode == Instruction::And || Opcode == Instruction::Or) &&
4032           NewOps[0] == NewOps[1])
4033         return NewOps[0];
4034     }
4035 
4036     if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
4037       // getelementptr x, 0 -> x
4038       if (NewOps.size() == 2 && match(NewOps[1], m_Zero()) &&
4039           !GEP->isInBounds())
4040         return NewOps[0];
4041     }
4042   } else if (MaxRecurse) {
4043     // The simplification queries below may return the original value. Consider:
4044     //   %div = udiv i32 %arg, %arg2
4045     //   %mul = mul nsw i32 %div, %arg2
4046     //   %cmp = icmp eq i32 %mul, %arg
4047     //   %sel = select i1 %cmp, i32 %div, i32 undef
4048     // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which
4049     // simplifies back to %arg. This can only happen because %mul does not
4050     // dominate %div. To ensure a consistent return value contract, we make sure
4051     // that this case returns nullptr as well.
4052     auto PreventSelfSimplify = [V](Value *Simplified) {
4053       return Simplified != V ? Simplified : nullptr;
4054     };
4055 
4056     if (auto *B = dyn_cast<BinaryOperator>(I))
4057       return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), NewOps[0],
4058                                                NewOps[1], Q, MaxRecurse - 1));
4059 
4060     if (CmpInst *C = dyn_cast<CmpInst>(I))
4061       return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), NewOps[0],
4062                                                  NewOps[1], Q, MaxRecurse - 1));
4063 
4064     if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
4065       return PreventSelfSimplify(SimplifyGEPInst(GEP->getSourceElementType(),
4066                                                  NewOps, GEP->isInBounds(), Q,
4067                                                  MaxRecurse - 1));
4068 
4069     if (isa<SelectInst>(I))
4070       return PreventSelfSimplify(
4071           SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q,
4072                              MaxRecurse - 1));
4073     // TODO: We could hand off more cases to instsimplify here.
4074   }
4075 
4076   // If all operands are constant after substituting Op for RepOp then we can
4077   // constant fold the instruction.
4078   SmallVector<Constant *, 8> ConstOps;
4079   for (Value *NewOp : NewOps) {
4080     if (Constant *ConstOp = dyn_cast<Constant>(NewOp))
4081       ConstOps.push_back(ConstOp);
4082     else
4083       return nullptr;
4084   }
4085 
4086   // Consider:
4087   //   %cmp = icmp eq i32 %x, 2147483647
4088   //   %add = add nsw i32 %x, 1
4089   //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
4090   //
4091   // We can't replace %sel with %add unless we strip away the flags (which
4092   // will be done in InstCombine).
4093   // TODO: This may be unsound, because it only catches some forms of
4094   // refinement.
4095   if (!AllowRefinement && canCreatePoison(cast<Operator>(I)))
4096     return nullptr;
4097 
4098   if (CmpInst *C = dyn_cast<CmpInst>(I))
4099     return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
4100                                            ConstOps[1], Q.DL, Q.TLI);
4101 
4102   if (LoadInst *LI = dyn_cast<LoadInst>(I))
4103     if (!LI->isVolatile())
4104       return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
4105 
4106   return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
4107 }
4108 
4109 Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
4110                                     const SimplifyQuery &Q,
4111                                     bool AllowRefinement) {
4112   return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement,
4113                                   RecursionLimit);
4114 }
4115 
4116 /// Try to simplify a select instruction when its condition operand is an
4117 /// integer comparison where one operand of the compare is a constant.
4118 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
4119                                     const APInt *Y, bool TrueWhenUnset) {
4120   const APInt *C;
4121 
4122   // (X & Y) == 0 ? X & ~Y : X  --> X
4123   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
4124   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
4125       *Y == ~*C)
4126     return TrueWhenUnset ? FalseVal : TrueVal;
4127 
4128   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
4129   // (X & Y) != 0 ? X : X & ~Y  --> X
4130   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
4131       *Y == ~*C)
4132     return TrueWhenUnset ? FalseVal : TrueVal;
4133 
4134   if (Y->isPowerOf2()) {
4135     // (X & Y) == 0 ? X | Y : X  --> X | Y
4136     // (X & Y) != 0 ? X | Y : X  --> X
4137     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
4138         *Y == *C)
4139       return TrueWhenUnset ? TrueVal : FalseVal;
4140 
4141     // (X & Y) == 0 ? X : X | Y  --> X
4142     // (X & Y) != 0 ? X : X | Y  --> X | Y
4143     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
4144         *Y == *C)
4145       return TrueWhenUnset ? TrueVal : FalseVal;
4146   }
4147 
4148   return nullptr;
4149 }
4150 
4151 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
4152 /// eq/ne.
4153 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
4154                                            ICmpInst::Predicate Pred,
4155                                            Value *TrueVal, Value *FalseVal) {
4156   Value *X;
4157   APInt Mask;
4158   if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
4159     return nullptr;
4160 
4161   return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
4162                                Pred == ICmpInst::ICMP_EQ);
4163 }
4164 
4165 /// Try to simplify a select instruction when its condition operand is an
4166 /// integer comparison.
4167 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
4168                                          Value *FalseVal, const SimplifyQuery &Q,
4169                                          unsigned MaxRecurse) {
4170   ICmpInst::Predicate Pred;
4171   Value *CmpLHS, *CmpRHS;
4172   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
4173     return nullptr;
4174 
4175   // Canonicalize ne to eq predicate.
4176   if (Pred == ICmpInst::ICMP_NE) {
4177     Pred = ICmpInst::ICMP_EQ;
4178     std::swap(TrueVal, FalseVal);
4179   }
4180 
4181   // Check for integer min/max with a limit constant:
4182   // X > MIN_INT ? X : MIN_INT --> X
4183   // X < MAX_INT ? X : MAX_INT --> X
4184   if (TrueVal->getType()->isIntOrIntVectorTy()) {
4185     Value *X, *Y;
4186     SelectPatternFlavor SPF =
4187         matchDecomposedSelectPattern(cast<ICmpInst>(CondVal), TrueVal, FalseVal,
4188                                      X, Y).Flavor;
4189     if (SelectPatternResult::isMinOrMax(SPF) && Pred == getMinMaxPred(SPF)) {
4190       APInt LimitC = getMinMaxLimit(getInverseMinMaxFlavor(SPF),
4191                                     X->getType()->getScalarSizeInBits());
4192       if (match(Y, m_SpecificInt(LimitC)))
4193         return X;
4194     }
4195   }
4196 
4197   if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) {
4198     Value *X;
4199     const APInt *Y;
4200     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
4201       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
4202                                            /*TrueWhenUnset=*/true))
4203         return V;
4204 
4205     // Test for a bogus zero-shift-guard-op around funnel-shift or rotate.
4206     Value *ShAmt;
4207     auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)),
4208                              m_FShr(m_Value(), m_Value(X), m_Value(ShAmt)));
4209     // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X
4210     // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X
4211     if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt)
4212       return X;
4213 
4214     // Test for a zero-shift-guard-op around rotates. These are used to
4215     // avoid UB from oversized shifts in raw IR rotate patterns, but the
4216     // intrinsics do not have that problem.
4217     // We do not allow this transform for the general funnel shift case because
4218     // that would not preserve the poison safety of the original code.
4219     auto isRotate =
4220         m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)),
4221                     m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt)));
4222     // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt)
4223     // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt)
4224     if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt &&
4225         Pred == ICmpInst::ICMP_EQ)
4226       return FalseVal;
4227 
4228     // X == 0 ? abs(X) : -abs(X) --> -abs(X)
4229     // X == 0 ? -abs(X) : abs(X) --> abs(X)
4230     if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) &&
4231         match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))))
4232       return FalseVal;
4233     if (match(TrueVal,
4234               m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) &&
4235         match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))
4236       return FalseVal;
4237   }
4238 
4239   // Check for other compares that behave like bit test.
4240   if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred,
4241                                               TrueVal, FalseVal))
4242     return V;
4243 
4244   // If we have a scalar equality comparison, then we know the value in one of
4245   // the arms of the select. See if substituting this value into the arm and
4246   // simplifying the result yields the same value as the other arm.
4247   // Note that the equivalence/replacement opportunity does not hold for vectors
4248   // because each element of a vector select is chosen independently.
4249   if (Pred == ICmpInst::ICMP_EQ && !CondVal->getType()->isVectorTy()) {
4250     if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q,
4251                                /* AllowRefinement */ false, MaxRecurse) ==
4252             TrueVal ||
4253         simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q,
4254                                /* AllowRefinement */ false, MaxRecurse) ==
4255             TrueVal)
4256       return FalseVal;
4257     if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q,
4258                                /* AllowRefinement */ true, MaxRecurse) ==
4259             FalseVal ||
4260         simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q,
4261                                /* AllowRefinement */ true, MaxRecurse) ==
4262             FalseVal)
4263       return FalseVal;
4264   }
4265 
4266   return nullptr;
4267 }
4268 
4269 /// Try to simplify a select instruction when its condition operand is a
4270 /// floating-point comparison.
4271 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F,
4272                                      const SimplifyQuery &Q) {
4273   FCmpInst::Predicate Pred;
4274   if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) &&
4275       !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T))))
4276     return nullptr;
4277 
4278   // This transform is safe if we do not have (do not care about) -0.0 or if
4279   // at least one operand is known to not be -0.0. Otherwise, the select can
4280   // change the sign of a zero operand.
4281   bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) &&
4282                           Q.CxtI->hasNoSignedZeros();
4283   const APFloat *C;
4284   if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) ||
4285                           (match(F, m_APFloat(C)) && C->isNonZero())) {
4286     // (T == F) ? T : F --> F
4287     // (F == T) ? T : F --> F
4288     if (Pred == FCmpInst::FCMP_OEQ)
4289       return F;
4290 
4291     // (T != F) ? T : F --> T
4292     // (F != T) ? T : F --> T
4293     if (Pred == FCmpInst::FCMP_UNE)
4294       return T;
4295   }
4296 
4297   return nullptr;
4298 }
4299 
4300 /// Given operands for a SelectInst, see if we can fold the result.
4301 /// If not, this returns null.
4302 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4303                                  const SimplifyQuery &Q, unsigned MaxRecurse) {
4304   if (auto *CondC = dyn_cast<Constant>(Cond)) {
4305     if (auto *TrueC = dyn_cast<Constant>(TrueVal))
4306       if (auto *FalseC = dyn_cast<Constant>(FalseVal))
4307         return ConstantFoldSelectInstruction(CondC, TrueC, FalseC);
4308 
4309     // select poison, X, Y -> poison
4310     if (isa<PoisonValue>(CondC))
4311       return PoisonValue::get(TrueVal->getType());
4312 
4313     // select undef, X, Y -> X or Y
4314     if (Q.isUndefValue(CondC))
4315       return isa<Constant>(FalseVal) ? FalseVal : TrueVal;
4316 
4317     // select true,  X, Y --> X
4318     // select false, X, Y --> Y
4319     // For vectors, allow undef/poison elements in the condition to match the
4320     // defined elements, so we can eliminate the select.
4321     if (match(CondC, m_One()))
4322       return TrueVal;
4323     if (match(CondC, m_Zero()))
4324       return FalseVal;
4325   }
4326 
4327   assert(Cond->getType()->isIntOrIntVectorTy(1) &&
4328          "Select must have bool or bool vector condition");
4329   assert(TrueVal->getType() == FalseVal->getType() &&
4330          "Select must have same types for true/false ops");
4331 
4332   if (Cond->getType() == TrueVal->getType()) {
4333     // select i1 Cond, i1 true, i1 false --> i1 Cond
4334     if (match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt()))
4335       return Cond;
4336 
4337     // (X || Y) && (X || !Y) --> X (commuted 8 ways)
4338     Value *X, *Y;
4339     if (match(FalseVal, m_ZeroInt())) {
4340       if (match(Cond, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) &&
4341           match(TrueVal, m_c_LogicalOr(m_Specific(X), m_Specific(Y))))
4342         return X;
4343       if (match(TrueVal, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) &&
4344           match(Cond, m_c_LogicalOr(m_Specific(X), m_Specific(Y))))
4345         return X;
4346     }
4347   }
4348 
4349   // select ?, X, X -> X
4350   if (TrueVal == FalseVal)
4351     return TrueVal;
4352 
4353   // If the true or false value is poison, we can fold to the other value.
4354   // If the true or false value is undef, we can fold to the other value as
4355   // long as the other value isn't poison.
4356   // select ?, poison, X -> X
4357   // select ?, undef,  X -> X
4358   if (isa<PoisonValue>(TrueVal) ||
4359       (Q.isUndefValue(TrueVal) &&
4360        isGuaranteedNotToBePoison(FalseVal, Q.AC, Q.CxtI, Q.DT)))
4361     return FalseVal;
4362   // select ?, X, poison -> X
4363   // select ?, X, undef  -> X
4364   if (isa<PoisonValue>(FalseVal) ||
4365       (Q.isUndefValue(FalseVal) &&
4366        isGuaranteedNotToBePoison(TrueVal, Q.AC, Q.CxtI, Q.DT)))
4367     return TrueVal;
4368 
4369   // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC''
4370   Constant *TrueC, *FalseC;
4371   if (isa<FixedVectorType>(TrueVal->getType()) &&
4372       match(TrueVal, m_Constant(TrueC)) &&
4373       match(FalseVal, m_Constant(FalseC))) {
4374     unsigned NumElts =
4375         cast<FixedVectorType>(TrueC->getType())->getNumElements();
4376     SmallVector<Constant *, 16> NewC;
4377     for (unsigned i = 0; i != NumElts; ++i) {
4378       // Bail out on incomplete vector constants.
4379       Constant *TEltC = TrueC->getAggregateElement(i);
4380       Constant *FEltC = FalseC->getAggregateElement(i);
4381       if (!TEltC || !FEltC)
4382         break;
4383 
4384       // If the elements match (undef or not), that value is the result. If only
4385       // one element is undef, choose the defined element as the safe result.
4386       if (TEltC == FEltC)
4387         NewC.push_back(TEltC);
4388       else if (isa<PoisonValue>(TEltC) ||
4389                (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC)))
4390         NewC.push_back(FEltC);
4391       else if (isa<PoisonValue>(FEltC) ||
4392                (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC)))
4393         NewC.push_back(TEltC);
4394       else
4395         break;
4396     }
4397     if (NewC.size() == NumElts)
4398       return ConstantVector::get(NewC);
4399   }
4400 
4401   if (Value *V =
4402           simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse))
4403     return V;
4404 
4405   if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q))
4406     return V;
4407 
4408   if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal))
4409     return V;
4410 
4411   Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL);
4412   if (Imp)
4413     return *Imp ? TrueVal : FalseVal;
4414 
4415   return nullptr;
4416 }
4417 
4418 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4419                                 const SimplifyQuery &Q) {
4420   return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
4421 }
4422 
4423 /// Given operands for an GetElementPtrInst, see if we can fold the result.
4424 /// If not, this returns null.
4425 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, bool InBounds,
4426                               const SimplifyQuery &Q, unsigned) {
4427   // The type of the GEP pointer operand.
4428   unsigned AS =
4429       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
4430 
4431   // getelementptr P -> P.
4432   if (Ops.size() == 1)
4433     return Ops[0];
4434 
4435   // Compute the (pointer) type returned by the GEP instruction.
4436   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
4437   Type *GEPTy = PointerType::get(LastType, AS);
4438   for (Value *Op : Ops) {
4439     // If one of the operands is a vector, the result type is a vector of
4440     // pointers. All vector operands must have the same number of elements.
4441     if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) {
4442       GEPTy = VectorType::get(GEPTy, VT->getElementCount());
4443       break;
4444     }
4445   }
4446 
4447   // getelementptr poison, idx -> poison
4448   // getelementptr baseptr, poison -> poison
4449   if (any_of(Ops, [](const auto *V) { return isa<PoisonValue>(V); }))
4450     return PoisonValue::get(GEPTy);
4451 
4452   if (Q.isUndefValue(Ops[0]))
4453     return UndefValue::get(GEPTy);
4454 
4455   bool IsScalableVec =
4456       isa<ScalableVectorType>(SrcTy) || any_of(Ops, [](const Value *V) {
4457         return isa<ScalableVectorType>(V->getType());
4458       });
4459 
4460   if (Ops.size() == 2) {
4461     // getelementptr P, 0 -> P.
4462     if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy)
4463       return Ops[0];
4464 
4465     Type *Ty = SrcTy;
4466     if (!IsScalableVec && Ty->isSized()) {
4467       Value *P;
4468       uint64_t C;
4469       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
4470       // getelementptr P, N -> P if P points to a type of zero size.
4471       if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy)
4472         return Ops[0];
4473 
4474       // The following transforms are only safe if the ptrtoint cast
4475       // doesn't truncate the pointers.
4476       if (Ops[1]->getType()->getScalarSizeInBits() ==
4477           Q.DL.getPointerSizeInBits(AS)) {
4478         auto CanSimplify = [GEPTy, &P, V = Ops[0]]() -> bool {
4479           return P->getType() == GEPTy &&
4480                  getUnderlyingObject(P) == getUnderlyingObject(V);
4481         };
4482         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
4483         if (TyAllocSize == 1 &&
4484             match(Ops[1], m_Sub(m_PtrToInt(m_Value(P)),
4485                                 m_PtrToInt(m_Specific(Ops[0])))) &&
4486             CanSimplify())
4487           return P;
4488 
4489         // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of
4490         // size 1 << C.
4491         if (match(Ops[1], m_AShr(m_Sub(m_PtrToInt(m_Value(P)),
4492                                        m_PtrToInt(m_Specific(Ops[0]))),
4493                                  m_ConstantInt(C))) &&
4494             TyAllocSize == 1ULL << C && CanSimplify())
4495           return P;
4496 
4497         // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of
4498         // size C.
4499         if (match(Ops[1], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)),
4500                                        m_PtrToInt(m_Specific(Ops[0]))),
4501                                  m_SpecificInt(TyAllocSize))) &&
4502             CanSimplify())
4503           return P;
4504       }
4505     }
4506   }
4507 
4508   if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 &&
4509       all_of(Ops.slice(1).drop_back(1),
4510              [](Value *Idx) { return match(Idx, m_Zero()); })) {
4511     unsigned IdxWidth =
4512         Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
4513     if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) {
4514       APInt BasePtrOffset(IdxWidth, 0);
4515       Value *StrippedBasePtr =
4516           Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
4517                                                             BasePtrOffset);
4518 
4519       // Avoid creating inttoptr of zero here: While LLVMs treatment of
4520       // inttoptr is generally conservative, this particular case is folded to
4521       // a null pointer, which will have incorrect provenance.
4522 
4523       // gep (gep V, C), (sub 0, V) -> C
4524       if (match(Ops.back(),
4525                 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) &&
4526           !BasePtrOffset.isZero()) {
4527         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
4528         return ConstantExpr::getIntToPtr(CI, GEPTy);
4529       }
4530       // gep (gep V, C), (xor V, -1) -> C-1
4531       if (match(Ops.back(),
4532                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) &&
4533           !BasePtrOffset.isOne()) {
4534         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
4535         return ConstantExpr::getIntToPtr(CI, GEPTy);
4536       }
4537     }
4538   }
4539 
4540   // Check to see if this is constant foldable.
4541   if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); }))
4542     return nullptr;
4543 
4544   auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
4545                                             Ops.slice(1), InBounds);
4546   return ConstantFoldConstant(CE, Q.DL);
4547 }
4548 
4549 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, bool InBounds,
4550                              const SimplifyQuery &Q) {
4551   return ::SimplifyGEPInst(SrcTy, Ops, InBounds, Q, RecursionLimit);
4552 }
4553 
4554 /// Given operands for an InsertValueInst, see if we can fold the result.
4555 /// If not, this returns null.
4556 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
4557                                       ArrayRef<unsigned> Idxs, const SimplifyQuery &Q,
4558                                       unsigned) {
4559   if (Constant *CAgg = dyn_cast<Constant>(Agg))
4560     if (Constant *CVal = dyn_cast<Constant>(Val))
4561       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
4562 
4563   // insertvalue x, undef, n -> x
4564   if (Q.isUndefValue(Val))
4565     return Agg;
4566 
4567   // insertvalue x, (extractvalue y, n), n
4568   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
4569     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
4570         EV->getIndices() == Idxs) {
4571       // insertvalue undef, (extractvalue y, n), n -> y
4572       if (Q.isUndefValue(Agg))
4573         return EV->getAggregateOperand();
4574 
4575       // insertvalue y, (extractvalue y, n), n -> y
4576       if (Agg == EV->getAggregateOperand())
4577         return Agg;
4578     }
4579 
4580   return nullptr;
4581 }
4582 
4583 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
4584                                      ArrayRef<unsigned> Idxs,
4585                                      const SimplifyQuery &Q) {
4586   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
4587 }
4588 
4589 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx,
4590                                        const SimplifyQuery &Q) {
4591   // Try to constant fold.
4592   auto *VecC = dyn_cast<Constant>(Vec);
4593   auto *ValC = dyn_cast<Constant>(Val);
4594   auto *IdxC = dyn_cast<Constant>(Idx);
4595   if (VecC && ValC && IdxC)
4596     return ConstantExpr::getInsertElement(VecC, ValC, IdxC);
4597 
4598   // For fixed-length vector, fold into poison if index is out of bounds.
4599   if (auto *CI = dyn_cast<ConstantInt>(Idx)) {
4600     if (isa<FixedVectorType>(Vec->getType()) &&
4601         CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements()))
4602       return PoisonValue::get(Vec->getType());
4603   }
4604 
4605   // If index is undef, it might be out of bounds (see above case)
4606   if (Q.isUndefValue(Idx))
4607     return PoisonValue::get(Vec->getType());
4608 
4609   // If the scalar is poison, or it is undef and there is no risk of
4610   // propagating poison from the vector value, simplify to the vector value.
4611   if (isa<PoisonValue>(Val) ||
4612       (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec)))
4613     return Vec;
4614 
4615   // If we are extracting a value from a vector, then inserting it into the same
4616   // place, that's the input vector:
4617   // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec
4618   if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx))))
4619     return Vec;
4620 
4621   return nullptr;
4622 }
4623 
4624 /// Given operands for an ExtractValueInst, see if we can fold the result.
4625 /// If not, this returns null.
4626 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4627                                        const SimplifyQuery &, unsigned) {
4628   if (auto *CAgg = dyn_cast<Constant>(Agg))
4629     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
4630 
4631   // extractvalue x, (insertvalue y, elt, n), n -> elt
4632   unsigned NumIdxs = Idxs.size();
4633   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
4634        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
4635     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
4636     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
4637     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
4638     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
4639         Idxs.slice(0, NumCommonIdxs)) {
4640       if (NumIdxs == NumInsertValueIdxs)
4641         return IVI->getInsertedValueOperand();
4642       break;
4643     }
4644   }
4645 
4646   return nullptr;
4647 }
4648 
4649 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4650                                       const SimplifyQuery &Q) {
4651   return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
4652 }
4653 
4654 /// Given operands for an ExtractElementInst, see if we can fold the result.
4655 /// If not, this returns null.
4656 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx,
4657                                          const SimplifyQuery &Q, unsigned) {
4658   auto *VecVTy = cast<VectorType>(Vec->getType());
4659   if (auto *CVec = dyn_cast<Constant>(Vec)) {
4660     if (auto *CIdx = dyn_cast<Constant>(Idx))
4661       return ConstantExpr::getExtractElement(CVec, CIdx);
4662 
4663     if (Q.isUndefValue(Vec))
4664       return UndefValue::get(VecVTy->getElementType());
4665   }
4666 
4667   // An undef extract index can be arbitrarily chosen to be an out-of-range
4668   // index value, which would result in the instruction being poison.
4669   if (Q.isUndefValue(Idx))
4670     return PoisonValue::get(VecVTy->getElementType());
4671 
4672   // If extracting a specified index from the vector, see if we can recursively
4673   // find a previously computed scalar that was inserted into the vector.
4674   if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) {
4675     // For fixed-length vector, fold into undef if index is out of bounds.
4676     unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue();
4677     if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts))
4678       return PoisonValue::get(VecVTy->getElementType());
4679     // Handle case where an element is extracted from a splat.
4680     if (IdxC->getValue().ult(MinNumElts))
4681       if (auto *Splat = getSplatValue(Vec))
4682         return Splat;
4683     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
4684       return Elt;
4685   } else {
4686     // The index is not relevant if our vector is a splat.
4687     if (Value *Splat = getSplatValue(Vec))
4688       return Splat;
4689   }
4690   return nullptr;
4691 }
4692 
4693 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx,
4694                                         const SimplifyQuery &Q) {
4695   return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
4696 }
4697 
4698 /// See if we can fold the given phi. If not, returns null.
4699 static Value *SimplifyPHINode(PHINode *PN, ArrayRef<Value *> IncomingValues,
4700                               const SimplifyQuery &Q) {
4701   // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE
4702   //          here, because the PHI we may succeed simplifying to was not
4703   //          def-reachable from the original PHI!
4704 
4705   // If all of the PHI's incoming values are the same then replace the PHI node
4706   // with the common value.
4707   Value *CommonValue = nullptr;
4708   bool HasUndefInput = false;
4709   for (Value *Incoming : IncomingValues) {
4710     // If the incoming value is the phi node itself, it can safely be skipped.
4711     if (Incoming == PN) continue;
4712     if (Q.isUndefValue(Incoming)) {
4713       // Remember that we saw an undef value, but otherwise ignore them.
4714       HasUndefInput = true;
4715       continue;
4716     }
4717     if (CommonValue && Incoming != CommonValue)
4718       return nullptr;  // Not the same, bail out.
4719     CommonValue = Incoming;
4720   }
4721 
4722   // If CommonValue is null then all of the incoming values were either undef or
4723   // equal to the phi node itself.
4724   if (!CommonValue)
4725     return UndefValue::get(PN->getType());
4726 
4727   // If we have a PHI node like phi(X, undef, X), where X is defined by some
4728   // instruction, we cannot return X as the result of the PHI node unless it
4729   // dominates the PHI block.
4730   if (HasUndefInput)
4731     return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
4732 
4733   return CommonValue;
4734 }
4735 
4736 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
4737                                Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) {
4738   if (auto *C = dyn_cast<Constant>(Op))
4739     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
4740 
4741   if (auto *CI = dyn_cast<CastInst>(Op)) {
4742     auto *Src = CI->getOperand(0);
4743     Type *SrcTy = Src->getType();
4744     Type *MidTy = CI->getType();
4745     Type *DstTy = Ty;
4746     if (Src->getType() == Ty) {
4747       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
4748       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
4749       Type *SrcIntPtrTy =
4750           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
4751       Type *MidIntPtrTy =
4752           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
4753       Type *DstIntPtrTy =
4754           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
4755       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
4756                                          SrcIntPtrTy, MidIntPtrTy,
4757                                          DstIntPtrTy) == Instruction::BitCast)
4758         return Src;
4759     }
4760   }
4761 
4762   // bitcast x -> x
4763   if (CastOpc == Instruction::BitCast)
4764     if (Op->getType() == Ty)
4765       return Op;
4766 
4767   return nullptr;
4768 }
4769 
4770 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
4771                               const SimplifyQuery &Q) {
4772   return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
4773 }
4774 
4775 /// For the given destination element of a shuffle, peek through shuffles to
4776 /// match a root vector source operand that contains that element in the same
4777 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
4778 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
4779                                    int MaskVal, Value *RootVec,
4780                                    unsigned MaxRecurse) {
4781   if (!MaxRecurse--)
4782     return nullptr;
4783 
4784   // Bail out if any mask value is undefined. That kind of shuffle may be
4785   // simplified further based on demanded bits or other folds.
4786   if (MaskVal == -1)
4787     return nullptr;
4788 
4789   // The mask value chooses which source operand we need to look at next.
4790   int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements();
4791   int RootElt = MaskVal;
4792   Value *SourceOp = Op0;
4793   if (MaskVal >= InVecNumElts) {
4794     RootElt = MaskVal - InVecNumElts;
4795     SourceOp = Op1;
4796   }
4797 
4798   // If the source operand is a shuffle itself, look through it to find the
4799   // matching root vector.
4800   if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
4801     return foldIdentityShuffles(
4802         DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
4803         SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
4804   }
4805 
4806   // TODO: Look through bitcasts? What if the bitcast changes the vector element
4807   // size?
4808 
4809   // The source operand is not a shuffle. Initialize the root vector value for
4810   // this shuffle if that has not been done yet.
4811   if (!RootVec)
4812     RootVec = SourceOp;
4813 
4814   // Give up as soon as a source operand does not match the existing root value.
4815   if (RootVec != SourceOp)
4816     return nullptr;
4817 
4818   // The element must be coming from the same lane in the source vector
4819   // (although it may have crossed lanes in intermediate shuffles).
4820   if (RootElt != DestElt)
4821     return nullptr;
4822 
4823   return RootVec;
4824 }
4825 
4826 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1,
4827                                         ArrayRef<int> Mask, Type *RetTy,
4828                                         const SimplifyQuery &Q,
4829                                         unsigned MaxRecurse) {
4830   if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; }))
4831     return UndefValue::get(RetTy);
4832 
4833   auto *InVecTy = cast<VectorType>(Op0->getType());
4834   unsigned MaskNumElts = Mask.size();
4835   ElementCount InVecEltCount = InVecTy->getElementCount();
4836 
4837   bool Scalable = InVecEltCount.isScalable();
4838 
4839   SmallVector<int, 32> Indices;
4840   Indices.assign(Mask.begin(), Mask.end());
4841 
4842   // Canonicalization: If mask does not select elements from an input vector,
4843   // replace that input vector with poison.
4844   if (!Scalable) {
4845     bool MaskSelects0 = false, MaskSelects1 = false;
4846     unsigned InVecNumElts = InVecEltCount.getKnownMinValue();
4847     for (unsigned i = 0; i != MaskNumElts; ++i) {
4848       if (Indices[i] == -1)
4849         continue;
4850       if ((unsigned)Indices[i] < InVecNumElts)
4851         MaskSelects0 = true;
4852       else
4853         MaskSelects1 = true;
4854     }
4855     if (!MaskSelects0)
4856       Op0 = PoisonValue::get(InVecTy);
4857     if (!MaskSelects1)
4858       Op1 = PoisonValue::get(InVecTy);
4859   }
4860 
4861   auto *Op0Const = dyn_cast<Constant>(Op0);
4862   auto *Op1Const = dyn_cast<Constant>(Op1);
4863 
4864   // If all operands are constant, constant fold the shuffle. This
4865   // transformation depends on the value of the mask which is not known at
4866   // compile time for scalable vectors
4867   if (Op0Const && Op1Const)
4868     return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask);
4869 
4870   // Canonicalization: if only one input vector is constant, it shall be the
4871   // second one. This transformation depends on the value of the mask which
4872   // is not known at compile time for scalable vectors
4873   if (!Scalable && Op0Const && !Op1Const) {
4874     std::swap(Op0, Op1);
4875     ShuffleVectorInst::commuteShuffleMask(Indices,
4876                                           InVecEltCount.getKnownMinValue());
4877   }
4878 
4879   // A splat of an inserted scalar constant becomes a vector constant:
4880   // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...>
4881   // NOTE: We may have commuted above, so analyze the updated Indices, not the
4882   //       original mask constant.
4883   // NOTE: This transformation depends on the value of the mask which is not
4884   // known at compile time for scalable vectors
4885   Constant *C;
4886   ConstantInt *IndexC;
4887   if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C),
4888                                           m_ConstantInt(IndexC)))) {
4889     // Match a splat shuffle mask of the insert index allowing undef elements.
4890     int InsertIndex = IndexC->getZExtValue();
4891     if (all_of(Indices, [InsertIndex](int MaskElt) {
4892           return MaskElt == InsertIndex || MaskElt == -1;
4893         })) {
4894       assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat");
4895 
4896       // Shuffle mask undefs become undefined constant result elements.
4897       SmallVector<Constant *, 16> VecC(MaskNumElts, C);
4898       for (unsigned i = 0; i != MaskNumElts; ++i)
4899         if (Indices[i] == -1)
4900           VecC[i] = UndefValue::get(C->getType());
4901       return ConstantVector::get(VecC);
4902     }
4903   }
4904 
4905   // A shuffle of a splat is always the splat itself. Legal if the shuffle's
4906   // value type is same as the input vectors' type.
4907   if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
4908     if (Q.isUndefValue(Op1) && RetTy == InVecTy &&
4909         is_splat(OpShuf->getShuffleMask()))
4910       return Op0;
4911 
4912   // All remaining transformation depend on the value of the mask, which is
4913   // not known at compile time for scalable vectors.
4914   if (Scalable)
4915     return nullptr;
4916 
4917   // Don't fold a shuffle with undef mask elements. This may get folded in a
4918   // better way using demanded bits or other analysis.
4919   // TODO: Should we allow this?
4920   if (is_contained(Indices, -1))
4921     return nullptr;
4922 
4923   // Check if every element of this shuffle can be mapped back to the
4924   // corresponding element of a single root vector. If so, we don't need this
4925   // shuffle. This handles simple identity shuffles as well as chains of
4926   // shuffles that may widen/narrow and/or move elements across lanes and back.
4927   Value *RootVec = nullptr;
4928   for (unsigned i = 0; i != MaskNumElts; ++i) {
4929     // Note that recursion is limited for each vector element, so if any element
4930     // exceeds the limit, this will fail to simplify.
4931     RootVec =
4932         foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
4933 
4934     // We can't replace a widening/narrowing shuffle with one of its operands.
4935     if (!RootVec || RootVec->getType() != RetTy)
4936       return nullptr;
4937   }
4938   return RootVec;
4939 }
4940 
4941 /// Given operands for a ShuffleVectorInst, fold the result or return null.
4942 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1,
4943                                        ArrayRef<int> Mask, Type *RetTy,
4944                                        const SimplifyQuery &Q) {
4945   return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
4946 }
4947 
4948 static Constant *foldConstant(Instruction::UnaryOps Opcode,
4949                               Value *&Op, const SimplifyQuery &Q) {
4950   if (auto *C = dyn_cast<Constant>(Op))
4951     return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL);
4952   return nullptr;
4953 }
4954 
4955 /// Given the operand for an FNeg, see if we can fold the result.  If not, this
4956 /// returns null.
4957 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF,
4958                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4959   if (Constant *C = foldConstant(Instruction::FNeg, Op, Q))
4960     return C;
4961 
4962   Value *X;
4963   // fneg (fneg X) ==> X
4964   if (match(Op, m_FNeg(m_Value(X))))
4965     return X;
4966 
4967   return nullptr;
4968 }
4969 
4970 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF,
4971                               const SimplifyQuery &Q) {
4972   return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit);
4973 }
4974 
4975 static Constant *propagateNaN(Constant *In) {
4976   // If the input is a vector with undef elements, just return a default NaN.
4977   if (!In->isNaN())
4978     return ConstantFP::getNaN(In->getType());
4979 
4980   // Propagate the existing NaN constant when possible.
4981   // TODO: Should we quiet a signaling NaN?
4982   return In;
4983 }
4984 
4985 /// Perform folds that are common to any floating-point operation. This implies
4986 /// transforms based on poison/undef/NaN because the operation itself makes no
4987 /// difference to the result.
4988 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF,
4989                               const SimplifyQuery &Q,
4990                               fp::ExceptionBehavior ExBehavior,
4991                               RoundingMode Rounding) {
4992   // Poison is independent of anything else. It always propagates from an
4993   // operand to a math result.
4994   if (any_of(Ops, [](Value *V) { return match(V, m_Poison()); }))
4995     return PoisonValue::get(Ops[0]->getType());
4996 
4997   for (Value *V : Ops) {
4998     bool IsNan = match(V, m_NaN());
4999     bool IsInf = match(V, m_Inf());
5000     bool IsUndef = Q.isUndefValue(V);
5001 
5002     // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
5003     // (an undef operand can be chosen to be Nan/Inf), then the result of
5004     // this operation is poison.
5005     if (FMF.noNaNs() && (IsNan || IsUndef))
5006       return PoisonValue::get(V->getType());
5007     if (FMF.noInfs() && (IsInf || IsUndef))
5008       return PoisonValue::get(V->getType());
5009 
5010     if (isDefaultFPEnvironment(ExBehavior, Rounding)) {
5011       if (IsUndef || IsNan)
5012         return propagateNaN(cast<Constant>(V));
5013     } else if (ExBehavior != fp::ebStrict) {
5014       if (IsNan)
5015         return propagateNaN(cast<Constant>(V));
5016     }
5017   }
5018   return nullptr;
5019 }
5020 
5021 // TODO: Move this out to a header file:
5022 static inline bool canIgnoreSNaN(fp::ExceptionBehavior EB, FastMathFlags FMF) {
5023   return (EB == fp::ebIgnore || FMF.noNaNs());
5024 }
5025 
5026 /// Given operands for an FAdd, see if we can fold the result.  If not, this
5027 /// returns null.
5028 static Value *
5029 SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5030                  const SimplifyQuery &Q, unsigned MaxRecurse,
5031                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5032                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5033   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5034     if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
5035       return C;
5036 
5037   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5038     return C;
5039 
5040   // fadd X, -0 ==> X
5041   // With strict/constrained FP, we have these possible edge cases that do
5042   // not simplify to Op0:
5043   // fadd SNaN, -0.0 --> QNaN
5044   // fadd +0.0, -0.0 --> -0.0 (but only with round toward negative)
5045   if (canIgnoreSNaN(ExBehavior, FMF) &&
5046       (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) ||
5047        FMF.noSignedZeros()))
5048     if (match(Op1, m_NegZeroFP()))
5049       return Op0;
5050 
5051   // fadd X, 0 ==> X, when we know X is not -0
5052   if (canIgnoreSNaN(ExBehavior, FMF))
5053     if (match(Op1, m_PosZeroFP()) &&
5054         (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
5055       return Op0;
5056 
5057   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5058     return nullptr;
5059 
5060   // With nnan: -X + X --> 0.0 (and commuted variant)
5061   // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
5062   // Negative zeros are allowed because we always end up with positive zero:
5063   // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
5064   // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
5065   // X =  0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
5066   // X =  0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
5067   if (FMF.noNaNs()) {
5068     if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) ||
5069         match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))
5070       return ConstantFP::getNullValue(Op0->getType());
5071 
5072     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
5073         match(Op1, m_FNeg(m_Specific(Op0))))
5074       return ConstantFP::getNullValue(Op0->getType());
5075   }
5076 
5077   // (X - Y) + Y --> X
5078   // Y + (X - Y) --> X
5079   Value *X;
5080   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
5081       (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) ||
5082        match(Op1, m_FSub(m_Value(X), m_Specific(Op0)))))
5083     return X;
5084 
5085   return nullptr;
5086 }
5087 
5088 /// Given operands for an FSub, see if we can fold the result.  If not, this
5089 /// returns null.
5090 static Value *
5091 SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5092                  const SimplifyQuery &Q, unsigned MaxRecurse,
5093                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5094                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5095   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5096     if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
5097       return C;
5098 
5099   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5100     return C;
5101 
5102   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5103     return nullptr;
5104 
5105   // fsub X, +0 ==> X
5106   if (match(Op1, m_PosZeroFP()))
5107     return Op0;
5108 
5109   // fsub X, -0 ==> X, when we know X is not -0
5110   if (match(Op1, m_NegZeroFP()) &&
5111       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
5112     return Op0;
5113 
5114   // fsub -0.0, (fsub -0.0, X) ==> X
5115   // fsub -0.0, (fneg X) ==> X
5116   Value *X;
5117   if (match(Op0, m_NegZeroFP()) &&
5118       match(Op1, m_FNeg(m_Value(X))))
5119     return X;
5120 
5121   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
5122   // fsub 0.0, (fneg X) ==> X if signed zeros are ignored.
5123   if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) &&
5124       (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) ||
5125        match(Op1, m_FNeg(m_Value(X)))))
5126     return X;
5127 
5128   // fsub nnan x, x ==> 0.0
5129   if (FMF.noNaNs() && Op0 == Op1)
5130     return Constant::getNullValue(Op0->getType());
5131 
5132   // Y - (Y - X) --> X
5133   // (X + Y) - Y --> X
5134   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
5135       (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) ||
5136        match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X)))))
5137     return X;
5138 
5139   return nullptr;
5140 }
5141 
5142 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
5143                               const SimplifyQuery &Q, unsigned MaxRecurse,
5144                               fp::ExceptionBehavior ExBehavior,
5145                               RoundingMode Rounding) {
5146   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5147     return C;
5148 
5149   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5150     return nullptr;
5151 
5152   // fmul X, 1.0 ==> X
5153   if (match(Op1, m_FPOne()))
5154     return Op0;
5155 
5156   // fmul 1.0, X ==> X
5157   if (match(Op0, m_FPOne()))
5158     return Op1;
5159 
5160   // fmul nnan nsz X, 0 ==> 0
5161   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP()))
5162     return ConstantFP::getNullValue(Op0->getType());
5163 
5164   // fmul nnan nsz 0, X ==> 0
5165   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
5166     return ConstantFP::getNullValue(Op1->getType());
5167 
5168   // sqrt(X) * sqrt(X) --> X, if we can:
5169   // 1. Remove the intermediate rounding (reassociate).
5170   // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
5171   // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
5172   Value *X;
5173   if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) &&
5174       FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros())
5175     return X;
5176 
5177   return nullptr;
5178 }
5179 
5180 /// Given the operands for an FMul, see if we can fold the result
5181 static Value *
5182 SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5183                  const SimplifyQuery &Q, unsigned MaxRecurse,
5184                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5185                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5186   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5187     if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
5188       return C;
5189 
5190   // Now apply simplifications that do not require rounding.
5191   return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding);
5192 }
5193 
5194 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5195                               const SimplifyQuery &Q,
5196                               fp::ExceptionBehavior ExBehavior,
5197                               RoundingMode Rounding) {
5198   return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5199                             Rounding);
5200 }
5201 
5202 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5203                               const SimplifyQuery &Q,
5204                               fp::ExceptionBehavior ExBehavior,
5205                               RoundingMode Rounding) {
5206   return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5207                             Rounding);
5208 }
5209 
5210 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5211                               const SimplifyQuery &Q,
5212                               fp::ExceptionBehavior ExBehavior,
5213                               RoundingMode Rounding) {
5214   return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5215                             Rounding);
5216 }
5217 
5218 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
5219                              const SimplifyQuery &Q,
5220                              fp::ExceptionBehavior ExBehavior,
5221                              RoundingMode Rounding) {
5222   return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5223                            Rounding);
5224 }
5225 
5226 static Value *
5227 SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5228                  const SimplifyQuery &Q, unsigned,
5229                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5230                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5231   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5232     if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
5233       return C;
5234 
5235   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5236     return C;
5237 
5238   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5239     return nullptr;
5240 
5241   // X / 1.0 -> X
5242   if (match(Op1, m_FPOne()))
5243     return Op0;
5244 
5245   // 0 / X -> 0
5246   // Requires that NaNs are off (X could be zero) and signed zeroes are
5247   // ignored (X could be positive or negative, so the output sign is unknown).
5248   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
5249     return ConstantFP::getNullValue(Op0->getType());
5250 
5251   if (FMF.noNaNs()) {
5252     // X / X -> 1.0 is legal when NaNs are ignored.
5253     // We can ignore infinities because INF/INF is NaN.
5254     if (Op0 == Op1)
5255       return ConstantFP::get(Op0->getType(), 1.0);
5256 
5257     // (X * Y) / Y --> X if we can reassociate to the above form.
5258     Value *X;
5259     if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1))))
5260       return X;
5261 
5262     // -X /  X -> -1.0 and
5263     //  X / -X -> -1.0 are legal when NaNs are ignored.
5264     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
5265     if (match(Op0, m_FNegNSZ(m_Specific(Op1))) ||
5266         match(Op1, m_FNegNSZ(m_Specific(Op0))))
5267       return ConstantFP::get(Op0->getType(), -1.0);
5268   }
5269 
5270   return nullptr;
5271 }
5272 
5273 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5274                               const SimplifyQuery &Q,
5275                               fp::ExceptionBehavior ExBehavior,
5276                               RoundingMode Rounding) {
5277   return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5278                             Rounding);
5279 }
5280 
5281 static Value *
5282 SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5283                  const SimplifyQuery &Q, unsigned,
5284                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5285                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5286   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5287     if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
5288       return C;
5289 
5290   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5291     return C;
5292 
5293   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5294     return nullptr;
5295 
5296   // Unlike fdiv, the result of frem always matches the sign of the dividend.
5297   // The constant match may include undef elements in a vector, so return a full
5298   // zero constant as the result.
5299   if (FMF.noNaNs()) {
5300     // +0 % X -> 0
5301     if (match(Op0, m_PosZeroFP()))
5302       return ConstantFP::getNullValue(Op0->getType());
5303     // -0 % X -> -0
5304     if (match(Op0, m_NegZeroFP()))
5305       return ConstantFP::getNegativeZero(Op0->getType());
5306   }
5307 
5308   return nullptr;
5309 }
5310 
5311 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5312                               const SimplifyQuery &Q,
5313                               fp::ExceptionBehavior ExBehavior,
5314                               RoundingMode Rounding) {
5315   return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5316                             Rounding);
5317 }
5318 
5319 //=== Helper functions for higher up the class hierarchy.
5320 
5321 /// Given the operand for a UnaryOperator, see if we can fold the result.
5322 /// If not, this returns null.
5323 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q,
5324                            unsigned MaxRecurse) {
5325   switch (Opcode) {
5326   case Instruction::FNeg:
5327     return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse);
5328   default:
5329     llvm_unreachable("Unexpected opcode");
5330   }
5331 }
5332 
5333 /// Given the operand for a UnaryOperator, see if we can fold the result.
5334 /// If not, this returns null.
5335 /// Try to use FastMathFlags when folding the result.
5336 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op,
5337                              const FastMathFlags &FMF,
5338                              const SimplifyQuery &Q, unsigned MaxRecurse) {
5339   switch (Opcode) {
5340   case Instruction::FNeg:
5341     return simplifyFNegInst(Op, FMF, Q, MaxRecurse);
5342   default:
5343     return simplifyUnOp(Opcode, Op, Q, MaxRecurse);
5344   }
5345 }
5346 
5347 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) {
5348   return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit);
5349 }
5350 
5351 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF,
5352                           const SimplifyQuery &Q) {
5353   return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit);
5354 }
5355 
5356 /// Given operands for a BinaryOperator, see if we can fold the result.
5357 /// If not, this returns null.
5358 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5359                             const SimplifyQuery &Q, unsigned MaxRecurse) {
5360   switch (Opcode) {
5361   case Instruction::Add:
5362     return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
5363   case Instruction::Sub:
5364     return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
5365   case Instruction::Mul:
5366     return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
5367   case Instruction::SDiv:
5368     return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
5369   case Instruction::UDiv:
5370     return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
5371   case Instruction::SRem:
5372     return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
5373   case Instruction::URem:
5374     return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
5375   case Instruction::Shl:
5376     return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
5377   case Instruction::LShr:
5378     return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
5379   case Instruction::AShr:
5380     return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
5381   case Instruction::And:
5382     return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
5383   case Instruction::Or:
5384     return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
5385   case Instruction::Xor:
5386     return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
5387   case Instruction::FAdd:
5388     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5389   case Instruction::FSub:
5390     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5391   case Instruction::FMul:
5392     return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5393   case Instruction::FDiv:
5394     return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5395   case Instruction::FRem:
5396     return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5397   default:
5398     llvm_unreachable("Unexpected opcode");
5399   }
5400 }
5401 
5402 /// Given operands for a BinaryOperator, see if we can fold the result.
5403 /// If not, this returns null.
5404 /// Try to use FastMathFlags when folding the result.
5405 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5406                             const FastMathFlags &FMF, const SimplifyQuery &Q,
5407                             unsigned MaxRecurse) {
5408   switch (Opcode) {
5409   case Instruction::FAdd:
5410     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
5411   case Instruction::FSub:
5412     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
5413   case Instruction::FMul:
5414     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
5415   case Instruction::FDiv:
5416     return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
5417   default:
5418     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
5419   }
5420 }
5421 
5422 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5423                            const SimplifyQuery &Q) {
5424   return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
5425 }
5426 
5427 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5428                            FastMathFlags FMF, const SimplifyQuery &Q) {
5429   return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
5430 }
5431 
5432 /// Given operands for a CmpInst, see if we can fold the result.
5433 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
5434                               const SimplifyQuery &Q, unsigned MaxRecurse) {
5435   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
5436     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
5437   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5438 }
5439 
5440 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
5441                              const SimplifyQuery &Q) {
5442   return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
5443 }
5444 
5445 static bool IsIdempotent(Intrinsic::ID ID) {
5446   switch (ID) {
5447   default: return false;
5448 
5449   // Unary idempotent: f(f(x)) = f(x)
5450   case Intrinsic::fabs:
5451   case Intrinsic::floor:
5452   case Intrinsic::ceil:
5453   case Intrinsic::trunc:
5454   case Intrinsic::rint:
5455   case Intrinsic::nearbyint:
5456   case Intrinsic::round:
5457   case Intrinsic::roundeven:
5458   case Intrinsic::canonicalize:
5459     return true;
5460   }
5461 }
5462 
5463 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
5464                                    const DataLayout &DL) {
5465   GlobalValue *PtrSym;
5466   APInt PtrOffset;
5467   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
5468     return nullptr;
5469 
5470   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
5471   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
5472   Type *Int32PtrTy = Int32Ty->getPointerTo();
5473   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
5474 
5475   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
5476   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
5477     return nullptr;
5478 
5479   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
5480   if (OffsetInt % 4 != 0)
5481     return nullptr;
5482 
5483   Constant *C = ConstantExpr::getGetElementPtr(
5484       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
5485       ConstantInt::get(Int64Ty, OffsetInt / 4));
5486   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
5487   if (!Loaded)
5488     return nullptr;
5489 
5490   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
5491   if (!LoadedCE)
5492     return nullptr;
5493 
5494   if (LoadedCE->getOpcode() == Instruction::Trunc) {
5495     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
5496     if (!LoadedCE)
5497       return nullptr;
5498   }
5499 
5500   if (LoadedCE->getOpcode() != Instruction::Sub)
5501     return nullptr;
5502 
5503   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
5504   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
5505     return nullptr;
5506   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
5507 
5508   Constant *LoadedRHS = LoadedCE->getOperand(1);
5509   GlobalValue *LoadedRHSSym;
5510   APInt LoadedRHSOffset;
5511   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
5512                                   DL) ||
5513       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
5514     return nullptr;
5515 
5516   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
5517 }
5518 
5519 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0,
5520                                      const SimplifyQuery &Q) {
5521   // Idempotent functions return the same result when called repeatedly.
5522   Intrinsic::ID IID = F->getIntrinsicID();
5523   if (IsIdempotent(IID))
5524     if (auto *II = dyn_cast<IntrinsicInst>(Op0))
5525       if (II->getIntrinsicID() == IID)
5526         return II;
5527 
5528   Value *X;
5529   switch (IID) {
5530   case Intrinsic::fabs:
5531     if (SignBitMustBeZero(Op0, Q.TLI)) return Op0;
5532     break;
5533   case Intrinsic::bswap:
5534     // bswap(bswap(x)) -> x
5535     if (match(Op0, m_BSwap(m_Value(X)))) return X;
5536     break;
5537   case Intrinsic::bitreverse:
5538     // bitreverse(bitreverse(x)) -> x
5539     if (match(Op0, m_BitReverse(m_Value(X)))) return X;
5540     break;
5541   case Intrinsic::ctpop: {
5542     // If everything but the lowest bit is zero, that bit is the pop-count. Ex:
5543     // ctpop(and X, 1) --> and X, 1
5544     unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
5545     if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1),
5546                           Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
5547       return Op0;
5548     break;
5549   }
5550   case Intrinsic::exp:
5551     // exp(log(x)) -> x
5552     if (Q.CxtI->hasAllowReassoc() &&
5553         match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X;
5554     break;
5555   case Intrinsic::exp2:
5556     // exp2(log2(x)) -> x
5557     if (Q.CxtI->hasAllowReassoc() &&
5558         match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X;
5559     break;
5560   case Intrinsic::log:
5561     // log(exp(x)) -> x
5562     if (Q.CxtI->hasAllowReassoc() &&
5563         match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X;
5564     break;
5565   case Intrinsic::log2:
5566     // log2(exp2(x)) -> x
5567     if (Q.CxtI->hasAllowReassoc() &&
5568         (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) ||
5569          match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0),
5570                                                 m_Value(X))))) return X;
5571     break;
5572   case Intrinsic::log10:
5573     // log10(pow(10.0, x)) -> x
5574     if (Q.CxtI->hasAllowReassoc() &&
5575         match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0),
5576                                                m_Value(X)))) return X;
5577     break;
5578   case Intrinsic::floor:
5579   case Intrinsic::trunc:
5580   case Intrinsic::ceil:
5581   case Intrinsic::round:
5582   case Intrinsic::roundeven:
5583   case Intrinsic::nearbyint:
5584   case Intrinsic::rint: {
5585     // floor (sitofp x) -> sitofp x
5586     // floor (uitofp x) -> uitofp x
5587     //
5588     // Converting from int always results in a finite integral number or
5589     // infinity. For either of those inputs, these rounding functions always
5590     // return the same value, so the rounding can be eliminated.
5591     if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value())))
5592       return Op0;
5593     break;
5594   }
5595   case Intrinsic::experimental_vector_reverse:
5596     // experimental.vector.reverse(experimental.vector.reverse(x)) -> x
5597     if (match(Op0,
5598               m_Intrinsic<Intrinsic::experimental_vector_reverse>(m_Value(X))))
5599       return X;
5600     // experimental.vector.reverse(splat(X)) -> splat(X)
5601     if (isSplatValue(Op0))
5602       return Op0;
5603     break;
5604   default:
5605     break;
5606   }
5607 
5608   return nullptr;
5609 }
5610 
5611 static APInt getMaxMinLimit(Intrinsic::ID IID, unsigned BitWidth) {
5612   switch (IID) {
5613   case Intrinsic::smax: return APInt::getSignedMaxValue(BitWidth);
5614   case Intrinsic::smin: return APInt::getSignedMinValue(BitWidth);
5615   case Intrinsic::umax: return APInt::getMaxValue(BitWidth);
5616   case Intrinsic::umin: return APInt::getMinValue(BitWidth);
5617   default: llvm_unreachable("Unexpected intrinsic");
5618   }
5619 }
5620 
5621 static ICmpInst::Predicate getMaxMinPredicate(Intrinsic::ID IID) {
5622   switch (IID) {
5623   case Intrinsic::smax: return ICmpInst::ICMP_SGE;
5624   case Intrinsic::smin: return ICmpInst::ICMP_SLE;
5625   case Intrinsic::umax: return ICmpInst::ICMP_UGE;
5626   case Intrinsic::umin: return ICmpInst::ICMP_ULE;
5627   default: llvm_unreachable("Unexpected intrinsic");
5628   }
5629 }
5630 
5631 /// Given a min/max intrinsic, see if it can be removed based on having an
5632 /// operand that is another min/max intrinsic with shared operand(s). The caller
5633 /// is expected to swap the operand arguments to handle commutation.
5634 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) {
5635   Value *X, *Y;
5636   if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y))))
5637     return nullptr;
5638 
5639   auto *MM0 = dyn_cast<IntrinsicInst>(Op0);
5640   if (!MM0)
5641     return nullptr;
5642   Intrinsic::ID IID0 = MM0->getIntrinsicID();
5643 
5644   if (Op1 == X || Op1 == Y ||
5645       match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) {
5646     // max (max X, Y), X --> max X, Y
5647     if (IID0 == IID)
5648       return MM0;
5649     // max (min X, Y), X --> X
5650     if (IID0 == getInverseMinMaxIntrinsic(IID))
5651       return Op1;
5652   }
5653   return nullptr;
5654 }
5655 
5656 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1,
5657                                       const SimplifyQuery &Q) {
5658   Intrinsic::ID IID = F->getIntrinsicID();
5659   Type *ReturnType = F->getReturnType();
5660   unsigned BitWidth = ReturnType->getScalarSizeInBits();
5661   switch (IID) {
5662   case Intrinsic::abs:
5663     // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here.
5664     // It is always ok to pick the earlier abs. We'll just lose nsw if its only
5665     // on the outer abs.
5666     if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value())))
5667       return Op0;
5668     break;
5669 
5670   case Intrinsic::cttz: {
5671     Value *X;
5672     if (match(Op0, m_Shl(m_One(), m_Value(X))))
5673       return X;
5674     break;
5675   }
5676   case Intrinsic::ctlz: {
5677     Value *X;
5678     if (match(Op0, m_LShr(m_Negative(), m_Value(X))))
5679       return X;
5680     if (match(Op0, m_AShr(m_Negative(), m_Value())))
5681       return Constant::getNullValue(ReturnType);
5682     break;
5683   }
5684   case Intrinsic::smax:
5685   case Intrinsic::smin:
5686   case Intrinsic::umax:
5687   case Intrinsic::umin: {
5688     // If the arguments are the same, this is a no-op.
5689     if (Op0 == Op1)
5690       return Op0;
5691 
5692     // Canonicalize constant operand as Op1.
5693     if (isa<Constant>(Op0))
5694       std::swap(Op0, Op1);
5695 
5696     // Assume undef is the limit value.
5697     if (Q.isUndefValue(Op1))
5698       return ConstantInt::get(ReturnType, getMaxMinLimit(IID, BitWidth));
5699 
5700     const APInt *C;
5701     if (match(Op1, m_APIntAllowUndef(C))) {
5702       // Clamp to limit value. For example:
5703       // umax(i8 %x, i8 255) --> 255
5704       if (*C == getMaxMinLimit(IID, BitWidth))
5705         return ConstantInt::get(ReturnType, *C);
5706 
5707       // If the constant op is the opposite of the limit value, the other must
5708       // be larger/smaller or equal. For example:
5709       // umin(i8 %x, i8 255) --> %x
5710       if (*C == getMaxMinLimit(getInverseMinMaxIntrinsic(IID), BitWidth))
5711         return Op0;
5712 
5713       // Remove nested call if constant operands allow it. Example:
5714       // max (max X, 7), 5 -> max X, 7
5715       auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0);
5716       if (MinMax0 && MinMax0->getIntrinsicID() == IID) {
5717         // TODO: loosen undef/splat restrictions for vector constants.
5718         Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1);
5719         const APInt *InnerC;
5720         if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) &&
5721             ((IID == Intrinsic::smax && InnerC->sge(*C)) ||
5722              (IID == Intrinsic::smin && InnerC->sle(*C)) ||
5723              (IID == Intrinsic::umax && InnerC->uge(*C)) ||
5724              (IID == Intrinsic::umin && InnerC->ule(*C))))
5725           return Op0;
5726       }
5727     }
5728 
5729     if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1))
5730       return V;
5731     if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0))
5732       return V;
5733 
5734     ICmpInst::Predicate Pred = getMaxMinPredicate(IID);
5735     if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit))
5736       return Op0;
5737     if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit))
5738       return Op1;
5739 
5740     if (Optional<bool> Imp =
5741             isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL))
5742       return *Imp ? Op0 : Op1;
5743     if (Optional<bool> Imp =
5744             isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL))
5745       return *Imp ? Op1 : Op0;
5746 
5747     break;
5748   }
5749   case Intrinsic::usub_with_overflow:
5750   case Intrinsic::ssub_with_overflow:
5751     // X - X -> { 0, false }
5752     // X - undef -> { 0, false }
5753     // undef - X -> { 0, false }
5754     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5755       return Constant::getNullValue(ReturnType);
5756     break;
5757   case Intrinsic::uadd_with_overflow:
5758   case Intrinsic::sadd_with_overflow:
5759     // X + undef -> { -1, false }
5760     // undef + x -> { -1, false }
5761     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) {
5762       return ConstantStruct::get(
5763           cast<StructType>(ReturnType),
5764           {Constant::getAllOnesValue(ReturnType->getStructElementType(0)),
5765            Constant::getNullValue(ReturnType->getStructElementType(1))});
5766     }
5767     break;
5768   case Intrinsic::umul_with_overflow:
5769   case Intrinsic::smul_with_overflow:
5770     // 0 * X -> { 0, false }
5771     // X * 0 -> { 0, false }
5772     if (match(Op0, m_Zero()) || match(Op1, m_Zero()))
5773       return Constant::getNullValue(ReturnType);
5774     // undef * X -> { 0, false }
5775     // X * undef -> { 0, false }
5776     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5777       return Constant::getNullValue(ReturnType);
5778     break;
5779   case Intrinsic::uadd_sat:
5780     // sat(MAX + X) -> MAX
5781     // sat(X + MAX) -> MAX
5782     if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes()))
5783       return Constant::getAllOnesValue(ReturnType);
5784     LLVM_FALLTHROUGH;
5785   case Intrinsic::sadd_sat:
5786     // sat(X + undef) -> -1
5787     // sat(undef + X) -> -1
5788     // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1).
5789     // For signed: Assume undef is ~X, in which case X + ~X = -1.
5790     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5791       return Constant::getAllOnesValue(ReturnType);
5792 
5793     // X + 0 -> X
5794     if (match(Op1, m_Zero()))
5795       return Op0;
5796     // 0 + X -> X
5797     if (match(Op0, m_Zero()))
5798       return Op1;
5799     break;
5800   case Intrinsic::usub_sat:
5801     // sat(0 - X) -> 0, sat(X - MAX) -> 0
5802     if (match(Op0, m_Zero()) || match(Op1, m_AllOnes()))
5803       return Constant::getNullValue(ReturnType);
5804     LLVM_FALLTHROUGH;
5805   case Intrinsic::ssub_sat:
5806     // X - X -> 0, X - undef -> 0, undef - X -> 0
5807     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5808       return Constant::getNullValue(ReturnType);
5809     // X - 0 -> X
5810     if (match(Op1, m_Zero()))
5811       return Op0;
5812     break;
5813   case Intrinsic::load_relative:
5814     if (auto *C0 = dyn_cast<Constant>(Op0))
5815       if (auto *C1 = dyn_cast<Constant>(Op1))
5816         return SimplifyRelativeLoad(C0, C1, Q.DL);
5817     break;
5818   case Intrinsic::powi:
5819     if (auto *Power = dyn_cast<ConstantInt>(Op1)) {
5820       // powi(x, 0) -> 1.0
5821       if (Power->isZero())
5822         return ConstantFP::get(Op0->getType(), 1.0);
5823       // powi(x, 1) -> x
5824       if (Power->isOne())
5825         return Op0;
5826     }
5827     break;
5828   case Intrinsic::copysign:
5829     // copysign X, X --> X
5830     if (Op0 == Op1)
5831       return Op0;
5832     // copysign -X, X --> X
5833     // copysign X, -X --> -X
5834     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
5835         match(Op1, m_FNeg(m_Specific(Op0))))
5836       return Op1;
5837     break;
5838   case Intrinsic::maxnum:
5839   case Intrinsic::minnum:
5840   case Intrinsic::maximum:
5841   case Intrinsic::minimum: {
5842     // If the arguments are the same, this is a no-op.
5843     if (Op0 == Op1) return Op0;
5844 
5845     // Canonicalize constant operand as Op1.
5846     if (isa<Constant>(Op0))
5847       std::swap(Op0, Op1);
5848 
5849     // If an argument is undef, return the other argument.
5850     if (Q.isUndefValue(Op1))
5851       return Op0;
5852 
5853     bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
5854     bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum;
5855 
5856     // minnum(X, nan) -> X
5857     // maxnum(X, nan) -> X
5858     // minimum(X, nan) -> nan
5859     // maximum(X, nan) -> nan
5860     if (match(Op1, m_NaN()))
5861       return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0;
5862 
5863     // In the following folds, inf can be replaced with the largest finite
5864     // float, if the ninf flag is set.
5865     const APFloat *C;
5866     if (match(Op1, m_APFloat(C)) &&
5867         (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) {
5868       // minnum(X, -inf) -> -inf
5869       // maxnum(X, +inf) -> +inf
5870       // minimum(X, -inf) -> -inf if nnan
5871       // maximum(X, +inf) -> +inf if nnan
5872       if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs()))
5873         return ConstantFP::get(ReturnType, *C);
5874 
5875       // minnum(X, +inf) -> X if nnan
5876       // maxnum(X, -inf) -> X if nnan
5877       // minimum(X, +inf) -> X
5878       // maximum(X, -inf) -> X
5879       if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs()))
5880         return Op0;
5881     }
5882 
5883     // Min/max of the same operation with common operand:
5884     // m(m(X, Y)), X --> m(X, Y) (4 commuted variants)
5885     if (auto *M0 = dyn_cast<IntrinsicInst>(Op0))
5886       if (M0->getIntrinsicID() == IID &&
5887           (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1))
5888         return Op0;
5889     if (auto *M1 = dyn_cast<IntrinsicInst>(Op1))
5890       if (M1->getIntrinsicID() == IID &&
5891           (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0))
5892         return Op1;
5893 
5894     break;
5895   }
5896   case Intrinsic::experimental_vector_extract: {
5897     Type *ReturnType = F->getReturnType();
5898 
5899     // (extract_vector (insert_vector _, X, 0), 0) -> X
5900     unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue();
5901     Value *X = nullptr;
5902     if (match(Op0, m_Intrinsic<Intrinsic::experimental_vector_insert>(
5903                        m_Value(), m_Value(X), m_Zero())) &&
5904         IdxN == 0 && X->getType() == ReturnType)
5905       return X;
5906 
5907     break;
5908   }
5909   default:
5910     break;
5911   }
5912 
5913   return nullptr;
5914 }
5915 
5916 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) {
5917 
5918   unsigned NumOperands = Call->arg_size();
5919   Function *F = cast<Function>(Call->getCalledFunction());
5920   Intrinsic::ID IID = F->getIntrinsicID();
5921 
5922   // Most of the intrinsics with no operands have some kind of side effect.
5923   // Don't simplify.
5924   if (!NumOperands) {
5925     switch (IID) {
5926     case Intrinsic::vscale: {
5927       // Call may not be inserted into the IR yet at point of calling simplify.
5928       if (!Call->getParent() || !Call->getParent()->getParent())
5929         return nullptr;
5930       auto Attr = Call->getFunction()->getFnAttribute(Attribute::VScaleRange);
5931       if (!Attr.isValid())
5932         return nullptr;
5933       unsigned VScaleMin = Attr.getVScaleRangeMin();
5934       Optional<unsigned> VScaleMax = Attr.getVScaleRangeMax();
5935       if (VScaleMax && VScaleMin == VScaleMax)
5936         return ConstantInt::get(F->getReturnType(), VScaleMin);
5937       return nullptr;
5938     }
5939     default:
5940       return nullptr;
5941     }
5942   }
5943 
5944   if (NumOperands == 1)
5945     return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q);
5946 
5947   if (NumOperands == 2)
5948     return simplifyBinaryIntrinsic(F, Call->getArgOperand(0),
5949                                    Call->getArgOperand(1), Q);
5950 
5951   // Handle intrinsics with 3 or more arguments.
5952   switch (IID) {
5953   case Intrinsic::masked_load:
5954   case Intrinsic::masked_gather: {
5955     Value *MaskArg = Call->getArgOperand(2);
5956     Value *PassthruArg = Call->getArgOperand(3);
5957     // If the mask is all zeros or undef, the "passthru" argument is the result.
5958     if (maskIsAllZeroOrUndef(MaskArg))
5959       return PassthruArg;
5960     return nullptr;
5961   }
5962   case Intrinsic::fshl:
5963   case Intrinsic::fshr: {
5964     Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1),
5965           *ShAmtArg = Call->getArgOperand(2);
5966 
5967     // If both operands are undef, the result is undef.
5968     if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1))
5969       return UndefValue::get(F->getReturnType());
5970 
5971     // If shift amount is undef, assume it is zero.
5972     if (Q.isUndefValue(ShAmtArg))
5973       return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5974 
5975     const APInt *ShAmtC;
5976     if (match(ShAmtArg, m_APInt(ShAmtC))) {
5977       // If there's effectively no shift, return the 1st arg or 2nd arg.
5978       APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth());
5979       if (ShAmtC->urem(BitWidth).isZero())
5980         return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5981     }
5982 
5983     // Rotating zero by anything is zero.
5984     if (match(Op0, m_Zero()) && match(Op1, m_Zero()))
5985       return ConstantInt::getNullValue(F->getReturnType());
5986 
5987     // Rotating -1 by anything is -1.
5988     if (match(Op0, m_AllOnes()) && match(Op1, m_AllOnes()))
5989       return ConstantInt::getAllOnesValue(F->getReturnType());
5990 
5991     return nullptr;
5992   }
5993   case Intrinsic::experimental_constrained_fma: {
5994     Value *Op0 = Call->getArgOperand(0);
5995     Value *Op1 = Call->getArgOperand(1);
5996     Value *Op2 = Call->getArgOperand(2);
5997     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
5998     if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q,
5999                                 FPI->getExceptionBehavior().getValue(),
6000                                 FPI->getRoundingMode().getValue()))
6001       return V;
6002     return nullptr;
6003   }
6004   case Intrinsic::fma:
6005   case Intrinsic::fmuladd: {
6006     Value *Op0 = Call->getArgOperand(0);
6007     Value *Op1 = Call->getArgOperand(1);
6008     Value *Op2 = Call->getArgOperand(2);
6009     if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, fp::ebIgnore,
6010                                 RoundingMode::NearestTiesToEven))
6011       return V;
6012     return nullptr;
6013   }
6014   case Intrinsic::smul_fix:
6015   case Intrinsic::smul_fix_sat: {
6016     Value *Op0 = Call->getArgOperand(0);
6017     Value *Op1 = Call->getArgOperand(1);
6018     Value *Op2 = Call->getArgOperand(2);
6019     Type *ReturnType = F->getReturnType();
6020 
6021     // Canonicalize constant operand as Op1 (ConstantFolding handles the case
6022     // when both Op0 and Op1 are constant so we do not care about that special
6023     // case here).
6024     if (isa<Constant>(Op0))
6025       std::swap(Op0, Op1);
6026 
6027     // X * 0 -> 0
6028     if (match(Op1, m_Zero()))
6029       return Constant::getNullValue(ReturnType);
6030 
6031     // X * undef -> 0
6032     if (Q.isUndefValue(Op1))
6033       return Constant::getNullValue(ReturnType);
6034 
6035     // X * (1 << Scale) -> X
6036     APInt ScaledOne =
6037         APInt::getOneBitSet(ReturnType->getScalarSizeInBits(),
6038                             cast<ConstantInt>(Op2)->getZExtValue());
6039     if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne)))
6040       return Op0;
6041 
6042     return nullptr;
6043   }
6044   case Intrinsic::experimental_vector_insert: {
6045     Value *Vec = Call->getArgOperand(0);
6046     Value *SubVec = Call->getArgOperand(1);
6047     Value *Idx = Call->getArgOperand(2);
6048     Type *ReturnType = F->getReturnType();
6049 
6050     // (insert_vector Y, (extract_vector X, 0), 0) -> X
6051     // where: Y is X, or Y is undef
6052     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
6053     Value *X = nullptr;
6054     if (match(SubVec, m_Intrinsic<Intrinsic::experimental_vector_extract>(
6055                           m_Value(X), m_Zero())) &&
6056         (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 &&
6057         X->getType() == ReturnType)
6058       return X;
6059 
6060     return nullptr;
6061   }
6062   case Intrinsic::experimental_constrained_fadd: {
6063     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6064     return SimplifyFAddInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6065                             FPI->getFastMathFlags(), Q,
6066                             FPI->getExceptionBehavior().getValue(),
6067                             FPI->getRoundingMode().getValue());
6068     break;
6069   }
6070   case Intrinsic::experimental_constrained_fsub: {
6071     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6072     return SimplifyFSubInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6073                             FPI->getFastMathFlags(), Q,
6074                             FPI->getExceptionBehavior().getValue(),
6075                             FPI->getRoundingMode().getValue());
6076     break;
6077   }
6078   case Intrinsic::experimental_constrained_fmul: {
6079     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6080     return SimplifyFMulInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6081                             FPI->getFastMathFlags(), Q,
6082                             FPI->getExceptionBehavior().getValue(),
6083                             FPI->getRoundingMode().getValue());
6084     break;
6085   }
6086   case Intrinsic::experimental_constrained_fdiv: {
6087     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6088     return SimplifyFDivInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6089                             FPI->getFastMathFlags(), Q,
6090                             FPI->getExceptionBehavior().getValue(),
6091                             FPI->getRoundingMode().getValue());
6092     break;
6093   }
6094   case Intrinsic::experimental_constrained_frem: {
6095     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6096     return SimplifyFRemInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6097                             FPI->getFastMathFlags(), Q,
6098                             FPI->getExceptionBehavior().getValue(),
6099                             FPI->getRoundingMode().getValue());
6100     break;
6101   }
6102   default:
6103     return nullptr;
6104   }
6105 }
6106 
6107 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) {
6108   auto *F = dyn_cast<Function>(Call->getCalledOperand());
6109   if (!F || !canConstantFoldCallTo(Call, F))
6110     return nullptr;
6111 
6112   SmallVector<Constant *, 4> ConstantArgs;
6113   unsigned NumArgs = Call->arg_size();
6114   ConstantArgs.reserve(NumArgs);
6115   for (auto &Arg : Call->args()) {
6116     Constant *C = dyn_cast<Constant>(&Arg);
6117     if (!C) {
6118       if (isa<MetadataAsValue>(Arg.get()))
6119         continue;
6120       return nullptr;
6121     }
6122     ConstantArgs.push_back(C);
6123   }
6124 
6125   return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI);
6126 }
6127 
6128 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) {
6129   // musttail calls can only be simplified if they are also DCEd.
6130   // As we can't guarantee this here, don't simplify them.
6131   if (Call->isMustTailCall())
6132     return nullptr;
6133 
6134   // call undef -> poison
6135   // call null -> poison
6136   Value *Callee = Call->getCalledOperand();
6137   if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee))
6138     return PoisonValue::get(Call->getType());
6139 
6140   if (Value *V = tryConstantFoldCall(Call, Q))
6141     return V;
6142 
6143   auto *F = dyn_cast<Function>(Callee);
6144   if (F && F->isIntrinsic())
6145     if (Value *Ret = simplifyIntrinsic(Call, Q))
6146       return Ret;
6147 
6148   return nullptr;
6149 }
6150 
6151 /// Given operands for a Freeze, see if we can fold the result.
6152 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
6153   // Use a utility function defined in ValueTracking.
6154   if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT))
6155     return Op0;
6156   // We have room for improvement.
6157   return nullptr;
6158 }
6159 
6160 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
6161   return ::SimplifyFreezeInst(Op0, Q);
6162 }
6163 
6164 static Value *SimplifyLoadInst(LoadInst *LI, Value *PtrOp,
6165                                const SimplifyQuery &Q) {
6166   if (LI->isVolatile())
6167     return nullptr;
6168 
6169   APInt Offset(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()), 0);
6170   auto *PtrOpC = dyn_cast<Constant>(PtrOp);
6171   // Try to convert operand into a constant by stripping offsets while looking
6172   // through invariant.group intrinsics. Don't bother if the underlying object
6173   // is not constant, as calculating GEP offsets is expensive.
6174   if (!PtrOpC && isa<Constant>(getUnderlyingObject(PtrOp))) {
6175     PtrOp = PtrOp->stripAndAccumulateConstantOffsets(
6176         Q.DL, Offset, /* AllowNonInbounts */ true,
6177         /* AllowInvariantGroup */ true);
6178     // Index size may have changed due to address space casts.
6179     Offset = Offset.sextOrTrunc(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()));
6180     PtrOpC = dyn_cast<Constant>(PtrOp);
6181   }
6182 
6183   if (PtrOpC)
6184     return ConstantFoldLoadFromConstPtr(PtrOpC, LI->getType(), Offset, Q.DL);
6185   return nullptr;
6186 }
6187 
6188 /// See if we can compute a simplified version of this instruction.
6189 /// If not, this returns null.
6190 
6191 static Value *simplifyInstructionWithOperands(Instruction *I,
6192                                               ArrayRef<Value *> NewOps,
6193                                               const SimplifyQuery &SQ,
6194                                               OptimizationRemarkEmitter *ORE) {
6195   const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
6196   Value *Result = nullptr;
6197 
6198   switch (I->getOpcode()) {
6199   default:
6200     if (llvm::all_of(NewOps, [](Value *V) { return isa<Constant>(V); })) {
6201       SmallVector<Constant *, 8> NewConstOps(NewOps.size());
6202       transform(NewOps, NewConstOps.begin(),
6203                 [](Value *V) { return cast<Constant>(V); });
6204       Result = ConstantFoldInstOperands(I, NewConstOps, Q.DL, Q.TLI);
6205     }
6206     break;
6207   case Instruction::FNeg:
6208     Result = SimplifyFNegInst(NewOps[0], I->getFastMathFlags(), Q);
6209     break;
6210   case Instruction::FAdd:
6211     Result = SimplifyFAddInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6212     break;
6213   case Instruction::Add:
6214     Result = SimplifyAddInst(
6215         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6216         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6217     break;
6218   case Instruction::FSub:
6219     Result = SimplifyFSubInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6220     break;
6221   case Instruction::Sub:
6222     Result = SimplifySubInst(
6223         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6224         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6225     break;
6226   case Instruction::FMul:
6227     Result = SimplifyFMulInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6228     break;
6229   case Instruction::Mul:
6230     Result = SimplifyMulInst(NewOps[0], NewOps[1], Q);
6231     break;
6232   case Instruction::SDiv:
6233     Result = SimplifySDivInst(NewOps[0], NewOps[1], Q);
6234     break;
6235   case Instruction::UDiv:
6236     Result = SimplifyUDivInst(NewOps[0], NewOps[1], Q);
6237     break;
6238   case Instruction::FDiv:
6239     Result = SimplifyFDivInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6240     break;
6241   case Instruction::SRem:
6242     Result = SimplifySRemInst(NewOps[0], NewOps[1], Q);
6243     break;
6244   case Instruction::URem:
6245     Result = SimplifyURemInst(NewOps[0], NewOps[1], Q);
6246     break;
6247   case Instruction::FRem:
6248     Result = SimplifyFRemInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6249     break;
6250   case Instruction::Shl:
6251     Result = SimplifyShlInst(
6252         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6253         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6254     break;
6255   case Instruction::LShr:
6256     Result = SimplifyLShrInst(NewOps[0], NewOps[1],
6257                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
6258     break;
6259   case Instruction::AShr:
6260     Result = SimplifyAShrInst(NewOps[0], NewOps[1],
6261                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
6262     break;
6263   case Instruction::And:
6264     Result = SimplifyAndInst(NewOps[0], NewOps[1], Q);
6265     break;
6266   case Instruction::Or:
6267     Result = SimplifyOrInst(NewOps[0], NewOps[1], Q);
6268     break;
6269   case Instruction::Xor:
6270     Result = SimplifyXorInst(NewOps[0], NewOps[1], Q);
6271     break;
6272   case Instruction::ICmp:
6273     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), NewOps[0],
6274                               NewOps[1], Q);
6275     break;
6276   case Instruction::FCmp:
6277     Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), NewOps[0],
6278                               NewOps[1], I->getFastMathFlags(), Q);
6279     break;
6280   case Instruction::Select:
6281     Result = SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q);
6282     break;
6283   case Instruction::GetElementPtr: {
6284     auto *GEPI = cast<GetElementPtrInst>(I);
6285     Result = SimplifyGEPInst(GEPI->getSourceElementType(), NewOps,
6286                              GEPI->isInBounds(), Q);
6287     break;
6288   }
6289   case Instruction::InsertValue: {
6290     InsertValueInst *IV = cast<InsertValueInst>(I);
6291     Result = SimplifyInsertValueInst(NewOps[0], NewOps[1], IV->getIndices(), Q);
6292     break;
6293   }
6294   case Instruction::InsertElement: {
6295     Result = SimplifyInsertElementInst(NewOps[0], NewOps[1], NewOps[2], Q);
6296     break;
6297   }
6298   case Instruction::ExtractValue: {
6299     auto *EVI = cast<ExtractValueInst>(I);
6300     Result = SimplifyExtractValueInst(NewOps[0], EVI->getIndices(), Q);
6301     break;
6302   }
6303   case Instruction::ExtractElement: {
6304     Result = SimplifyExtractElementInst(NewOps[0], NewOps[1], Q);
6305     break;
6306   }
6307   case Instruction::ShuffleVector: {
6308     auto *SVI = cast<ShuffleVectorInst>(I);
6309     Result = SimplifyShuffleVectorInst(
6310         NewOps[0], NewOps[1], SVI->getShuffleMask(), SVI->getType(), Q);
6311     break;
6312   }
6313   case Instruction::PHI:
6314     Result = SimplifyPHINode(cast<PHINode>(I), NewOps, Q);
6315     break;
6316   case Instruction::Call: {
6317     // TODO: Use NewOps
6318     Result = SimplifyCall(cast<CallInst>(I), Q);
6319     break;
6320   }
6321   case Instruction::Freeze:
6322     Result = llvm::SimplifyFreezeInst(NewOps[0], Q);
6323     break;
6324 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
6325 #include "llvm/IR/Instruction.def"
6326 #undef HANDLE_CAST_INST
6327     Result = SimplifyCastInst(I->getOpcode(), NewOps[0], I->getType(), Q);
6328     break;
6329   case Instruction::Alloca:
6330     // No simplifications for Alloca and it can't be constant folded.
6331     Result = nullptr;
6332     break;
6333   case Instruction::Load:
6334     Result = SimplifyLoadInst(cast<LoadInst>(I), NewOps[0], Q);
6335     break;
6336   }
6337 
6338   /// If called on unreachable code, the above logic may report that the
6339   /// instruction simplified to itself.  Make life easier for users by
6340   /// detecting that case here, returning a safe value instead.
6341   return Result == I ? UndefValue::get(I->getType()) : Result;
6342 }
6343 
6344 Value *llvm::SimplifyInstructionWithOperands(Instruction *I,
6345                                              ArrayRef<Value *> NewOps,
6346                                              const SimplifyQuery &SQ,
6347                                              OptimizationRemarkEmitter *ORE) {
6348   assert(NewOps.size() == I->getNumOperands() &&
6349          "Number of operands should match the instruction!");
6350   return ::simplifyInstructionWithOperands(I, NewOps, SQ, ORE);
6351 }
6352 
6353 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
6354                                  OptimizationRemarkEmitter *ORE) {
6355   SmallVector<Value *, 8> Ops(I->operands());
6356   return ::simplifyInstructionWithOperands(I, Ops, SQ, ORE);
6357 }
6358 
6359 /// Implementation of recursive simplification through an instruction's
6360 /// uses.
6361 ///
6362 /// This is the common implementation of the recursive simplification routines.
6363 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
6364 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
6365 /// instructions to process and attempt to simplify it using
6366 /// InstructionSimplify. Recursively visited users which could not be
6367 /// simplified themselves are to the optional UnsimplifiedUsers set for
6368 /// further processing by the caller.
6369 ///
6370 /// This routine returns 'true' only when *it* simplifies something. The passed
6371 /// in simplified value does not count toward this.
6372 static bool replaceAndRecursivelySimplifyImpl(
6373     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
6374     const DominatorTree *DT, AssumptionCache *AC,
6375     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) {
6376   bool Simplified = false;
6377   SmallSetVector<Instruction *, 8> Worklist;
6378   const DataLayout &DL = I->getModule()->getDataLayout();
6379 
6380   // If we have an explicit value to collapse to, do that round of the
6381   // simplification loop by hand initially.
6382   if (SimpleV) {
6383     for (User *U : I->users())
6384       if (U != I)
6385         Worklist.insert(cast<Instruction>(U));
6386 
6387     // Replace the instruction with its simplified value.
6388     I->replaceAllUsesWith(SimpleV);
6389 
6390     // Gracefully handle edge cases where the instruction is not wired into any
6391     // parent block.
6392     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
6393         !I->mayHaveSideEffects())
6394       I->eraseFromParent();
6395   } else {
6396     Worklist.insert(I);
6397   }
6398 
6399   // Note that we must test the size on each iteration, the worklist can grow.
6400   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
6401     I = Worklist[Idx];
6402 
6403     // See if this instruction simplifies.
6404     SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC});
6405     if (!SimpleV) {
6406       if (UnsimplifiedUsers)
6407         UnsimplifiedUsers->insert(I);
6408       continue;
6409     }
6410 
6411     Simplified = true;
6412 
6413     // Stash away all the uses of the old instruction so we can check them for
6414     // recursive simplifications after a RAUW. This is cheaper than checking all
6415     // uses of To on the recursive step in most cases.
6416     for (User *U : I->users())
6417       Worklist.insert(cast<Instruction>(U));
6418 
6419     // Replace the instruction with its simplified value.
6420     I->replaceAllUsesWith(SimpleV);
6421 
6422     // Gracefully handle edge cases where the instruction is not wired into any
6423     // parent block.
6424     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
6425         !I->mayHaveSideEffects())
6426       I->eraseFromParent();
6427   }
6428   return Simplified;
6429 }
6430 
6431 bool llvm::replaceAndRecursivelySimplify(
6432     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
6433     const DominatorTree *DT, AssumptionCache *AC,
6434     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) {
6435   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
6436   assert(SimpleV && "Must provide a simplified value.");
6437   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC,
6438                                            UnsimplifiedUsers);
6439 }
6440 
6441 namespace llvm {
6442 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
6443   auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
6444   auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
6445   auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
6446   auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr;
6447   auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
6448   auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
6449   return {F.getParent()->getDataLayout(), TLI, DT, AC};
6450 }
6451 
6452 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
6453                                          const DataLayout &DL) {
6454   return {DL, &AR.TLI, &AR.DT, &AR.AC};
6455 }
6456 
6457 template <class T, class... TArgs>
6458 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
6459                                          Function &F) {
6460   auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
6461   auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
6462   auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
6463   return {F.getParent()->getDataLayout(), TLI, DT, AC};
6464 }
6465 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
6466                                                   Function &);
6467 }
6468