1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements routines for folding instructions into simpler forms 11 // that do not require creating new instructions. This does constant folding 12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 15 // simplified: This is usually true and assuming it simplifies the logic (if 16 // they have not been simplified then results are correct but maybe suboptimal). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/Analysis/VectorUtils.h" 29 #include "llvm/IR/ConstantRange.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/GetElementPtrTypeIterator.h" 33 #include "llvm/IR/GlobalAlias.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/IR/ValueHandle.h" 37 #include <algorithm> 38 using namespace llvm; 39 using namespace llvm::PatternMatch; 40 41 #define DEBUG_TYPE "instsimplify" 42 43 enum { RecursionLimit = 3 }; 44 45 STATISTIC(NumExpand, "Number of expansions"); 46 STATISTIC(NumReassoc, "Number of reassociations"); 47 48 namespace { 49 struct Query { 50 const DataLayout &DL; 51 const TargetLibraryInfo *TLI; 52 const DominatorTree *DT; 53 AssumptionCache *AC; 54 const Instruction *CxtI; 55 56 Query(const DataLayout &DL, const TargetLibraryInfo *tli, 57 const DominatorTree *dt, AssumptionCache *ac = nullptr, 58 const Instruction *cxti = nullptr) 59 : DL(DL), TLI(tli), DT(dt), AC(ac), CxtI(cxti) {} 60 }; 61 } // end anonymous namespace 62 63 static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned); 64 static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &, 65 unsigned); 66 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &, 67 const Query &, unsigned); 68 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &, 69 unsigned); 70 static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned); 71 static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned); 72 static Value *SimplifyCastInst(unsigned, Value *, Type *, 73 const Query &, unsigned); 74 75 /// For a boolean type, or a vector of boolean type, return false, or 76 /// a vector with every element false, as appropriate for the type. 77 static Constant *getFalse(Type *Ty) { 78 assert(Ty->getScalarType()->isIntegerTy(1) && 79 "Expected i1 type or a vector of i1!"); 80 return Constant::getNullValue(Ty); 81 } 82 83 /// For a boolean type, or a vector of boolean type, return true, or 84 /// a vector with every element true, as appropriate for the type. 85 static Constant *getTrue(Type *Ty) { 86 assert(Ty->getScalarType()->isIntegerTy(1) && 87 "Expected i1 type or a vector of i1!"); 88 return Constant::getAllOnesValue(Ty); 89 } 90 91 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 92 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 93 Value *RHS) { 94 CmpInst *Cmp = dyn_cast<CmpInst>(V); 95 if (!Cmp) 96 return false; 97 CmpInst::Predicate CPred = Cmp->getPredicate(); 98 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 99 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 100 return true; 101 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 102 CRHS == LHS; 103 } 104 105 /// Does the given value dominate the specified phi node? 106 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 107 Instruction *I = dyn_cast<Instruction>(V); 108 if (!I) 109 // Arguments and constants dominate all instructions. 110 return true; 111 112 // If we are processing instructions (and/or basic blocks) that have not been 113 // fully added to a function, the parent nodes may still be null. Simply 114 // return the conservative answer in these cases. 115 if (!I->getParent() || !P->getParent() || !I->getParent()->getParent()) 116 return false; 117 118 // If we have a DominatorTree then do a precise test. 119 if (DT) { 120 if (!DT->isReachableFromEntry(P->getParent())) 121 return true; 122 if (!DT->isReachableFromEntry(I->getParent())) 123 return false; 124 return DT->dominates(I, P); 125 } 126 127 // Otherwise, if the instruction is in the entry block and is not an invoke, 128 // then it obviously dominates all phi nodes. 129 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() && 130 !isa<InvokeInst>(I)) 131 return true; 132 133 return false; 134 } 135 136 /// Simplify "A op (B op' C)" by distributing op over op', turning it into 137 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 138 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 139 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 140 /// Returns the simplified value, or null if no simplification was performed. 141 static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS, 142 unsigned OpcToExpand, const Query &Q, 143 unsigned MaxRecurse) { 144 Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand; 145 // Recursion is always used, so bail out at once if we already hit the limit. 146 if (!MaxRecurse--) 147 return nullptr; 148 149 // Check whether the expression has the form "(A op' B) op C". 150 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 151 if (Op0->getOpcode() == OpcodeToExpand) { 152 // It does! Try turning it into "(A op C) op' (B op C)". 153 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 154 // Do "A op C" and "B op C" both simplify? 155 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 156 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 157 // They do! Return "L op' R" if it simplifies or is already available. 158 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 159 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 160 && L == B && R == A)) { 161 ++NumExpand; 162 return LHS; 163 } 164 // Otherwise return "L op' R" if it simplifies. 165 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 166 ++NumExpand; 167 return V; 168 } 169 } 170 } 171 172 // Check whether the expression has the form "A op (B op' C)". 173 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 174 if (Op1->getOpcode() == OpcodeToExpand) { 175 // It does! Try turning it into "(A op B) op' (A op C)". 176 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 177 // Do "A op B" and "A op C" both simplify? 178 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 179 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 180 // They do! Return "L op' R" if it simplifies or is already available. 181 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 182 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 183 && L == C && R == B)) { 184 ++NumExpand; 185 return RHS; 186 } 187 // Otherwise return "L op' R" if it simplifies. 188 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 189 ++NumExpand; 190 return V; 191 } 192 } 193 } 194 195 return nullptr; 196 } 197 198 /// Generic simplifications for associative binary operations. 199 /// Returns the simpler value, or null if none was found. 200 static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS, 201 const Query &Q, unsigned MaxRecurse) { 202 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc; 203 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 204 205 // Recursion is always used, so bail out at once if we already hit the limit. 206 if (!MaxRecurse--) 207 return nullptr; 208 209 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 210 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 211 212 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 213 if (Op0 && Op0->getOpcode() == Opcode) { 214 Value *A = Op0->getOperand(0); 215 Value *B = Op0->getOperand(1); 216 Value *C = RHS; 217 218 // Does "B op C" simplify? 219 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 220 // It does! Return "A op V" if it simplifies or is already available. 221 // If V equals B then "A op V" is just the LHS. 222 if (V == B) return LHS; 223 // Otherwise return "A op V" if it simplifies. 224 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 225 ++NumReassoc; 226 return W; 227 } 228 } 229 } 230 231 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 232 if (Op1 && Op1->getOpcode() == Opcode) { 233 Value *A = LHS; 234 Value *B = Op1->getOperand(0); 235 Value *C = Op1->getOperand(1); 236 237 // Does "A op B" simplify? 238 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 239 // It does! Return "V op C" if it simplifies or is already available. 240 // If V equals B then "V op C" is just the RHS. 241 if (V == B) return RHS; 242 // Otherwise return "V op C" if it simplifies. 243 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 244 ++NumReassoc; 245 return W; 246 } 247 } 248 } 249 250 // The remaining transforms require commutativity as well as associativity. 251 if (!Instruction::isCommutative(Opcode)) 252 return nullptr; 253 254 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 255 if (Op0 && Op0->getOpcode() == Opcode) { 256 Value *A = Op0->getOperand(0); 257 Value *B = Op0->getOperand(1); 258 Value *C = RHS; 259 260 // Does "C op A" simplify? 261 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 262 // It does! Return "V op B" if it simplifies or is already available. 263 // If V equals A then "V op B" is just the LHS. 264 if (V == A) return LHS; 265 // Otherwise return "V op B" if it simplifies. 266 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 267 ++NumReassoc; 268 return W; 269 } 270 } 271 } 272 273 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 274 if (Op1 && Op1->getOpcode() == Opcode) { 275 Value *A = LHS; 276 Value *B = Op1->getOperand(0); 277 Value *C = Op1->getOperand(1); 278 279 // Does "C op A" simplify? 280 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 281 // It does! Return "B op V" if it simplifies or is already available. 282 // If V equals C then "B op V" is just the RHS. 283 if (V == C) return RHS; 284 // Otherwise return "B op V" if it simplifies. 285 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 286 ++NumReassoc; 287 return W; 288 } 289 } 290 } 291 292 return nullptr; 293 } 294 295 /// In the case of a binary operation with a select instruction as an operand, 296 /// try to simplify the binop by seeing whether evaluating it on both branches 297 /// of the select results in the same value. Returns the common value if so, 298 /// otherwise returns null. 299 static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS, 300 const Query &Q, unsigned MaxRecurse) { 301 // Recursion is always used, so bail out at once if we already hit the limit. 302 if (!MaxRecurse--) 303 return nullptr; 304 305 SelectInst *SI; 306 if (isa<SelectInst>(LHS)) { 307 SI = cast<SelectInst>(LHS); 308 } else { 309 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 310 SI = cast<SelectInst>(RHS); 311 } 312 313 // Evaluate the BinOp on the true and false branches of the select. 314 Value *TV; 315 Value *FV; 316 if (SI == LHS) { 317 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 318 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 319 } else { 320 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 321 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 322 } 323 324 // If they simplified to the same value, then return the common value. 325 // If they both failed to simplify then return null. 326 if (TV == FV) 327 return TV; 328 329 // If one branch simplified to undef, return the other one. 330 if (TV && isa<UndefValue>(TV)) 331 return FV; 332 if (FV && isa<UndefValue>(FV)) 333 return TV; 334 335 // If applying the operation did not change the true and false select values, 336 // then the result of the binop is the select itself. 337 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 338 return SI; 339 340 // If one branch simplified and the other did not, and the simplified 341 // value is equal to the unsimplified one, return the simplified value. 342 // For example, select (cond, X, X & Z) & Z -> X & Z. 343 if ((FV && !TV) || (TV && !FV)) { 344 // Check that the simplified value has the form "X op Y" where "op" is the 345 // same as the original operation. 346 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 347 if (Simplified && Simplified->getOpcode() == Opcode) { 348 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 349 // We already know that "op" is the same as for the simplified value. See 350 // if the operands match too. If so, return the simplified value. 351 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 352 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 353 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 354 if (Simplified->getOperand(0) == UnsimplifiedLHS && 355 Simplified->getOperand(1) == UnsimplifiedRHS) 356 return Simplified; 357 if (Simplified->isCommutative() && 358 Simplified->getOperand(1) == UnsimplifiedLHS && 359 Simplified->getOperand(0) == UnsimplifiedRHS) 360 return Simplified; 361 } 362 } 363 364 return nullptr; 365 } 366 367 /// In the case of a comparison with a select instruction, try to simplify the 368 /// comparison by seeing whether both branches of the select result in the same 369 /// value. Returns the common value if so, otherwise returns null. 370 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 371 Value *RHS, const Query &Q, 372 unsigned MaxRecurse) { 373 // Recursion is always used, so bail out at once if we already hit the limit. 374 if (!MaxRecurse--) 375 return nullptr; 376 377 // Make sure the select is on the LHS. 378 if (!isa<SelectInst>(LHS)) { 379 std::swap(LHS, RHS); 380 Pred = CmpInst::getSwappedPredicate(Pred); 381 } 382 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 383 SelectInst *SI = cast<SelectInst>(LHS); 384 Value *Cond = SI->getCondition(); 385 Value *TV = SI->getTrueValue(); 386 Value *FV = SI->getFalseValue(); 387 388 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 389 // Does "cmp TV, RHS" simplify? 390 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 391 if (TCmp == Cond) { 392 // It not only simplified, it simplified to the select condition. Replace 393 // it with 'true'. 394 TCmp = getTrue(Cond->getType()); 395 } else if (!TCmp) { 396 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 397 // condition then we can replace it with 'true'. Otherwise give up. 398 if (!isSameCompare(Cond, Pred, TV, RHS)) 399 return nullptr; 400 TCmp = getTrue(Cond->getType()); 401 } 402 403 // Does "cmp FV, RHS" simplify? 404 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 405 if (FCmp == Cond) { 406 // It not only simplified, it simplified to the select condition. Replace 407 // it with 'false'. 408 FCmp = getFalse(Cond->getType()); 409 } else if (!FCmp) { 410 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 411 // condition then we can replace it with 'false'. Otherwise give up. 412 if (!isSameCompare(Cond, Pred, FV, RHS)) 413 return nullptr; 414 FCmp = getFalse(Cond->getType()); 415 } 416 417 // If both sides simplified to the same value, then use it as the result of 418 // the original comparison. 419 if (TCmp == FCmp) 420 return TCmp; 421 422 // The remaining cases only make sense if the select condition has the same 423 // type as the result of the comparison, so bail out if this is not so. 424 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 425 return nullptr; 426 // If the false value simplified to false, then the result of the compare 427 // is equal to "Cond && TCmp". This also catches the case when the false 428 // value simplified to false and the true value to true, returning "Cond". 429 if (match(FCmp, m_Zero())) 430 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 431 return V; 432 // If the true value simplified to true, then the result of the compare 433 // is equal to "Cond || FCmp". 434 if (match(TCmp, m_One())) 435 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 436 return V; 437 // Finally, if the false value simplified to true and the true value to 438 // false, then the result of the compare is equal to "!Cond". 439 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 440 if (Value *V = 441 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 442 Q, MaxRecurse)) 443 return V; 444 445 return nullptr; 446 } 447 448 /// In the case of a binary operation with an operand that is a PHI instruction, 449 /// try to simplify the binop by seeing whether evaluating it on the incoming 450 /// phi values yields the same result for every value. If so returns the common 451 /// value, otherwise returns null. 452 static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS, 453 const Query &Q, unsigned MaxRecurse) { 454 // Recursion is always used, so bail out at once if we already hit the limit. 455 if (!MaxRecurse--) 456 return nullptr; 457 458 PHINode *PI; 459 if (isa<PHINode>(LHS)) { 460 PI = cast<PHINode>(LHS); 461 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 462 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 463 return nullptr; 464 } else { 465 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 466 PI = cast<PHINode>(RHS); 467 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 468 if (!ValueDominatesPHI(LHS, PI, Q.DT)) 469 return nullptr; 470 } 471 472 // Evaluate the BinOp on the incoming phi values. 473 Value *CommonValue = nullptr; 474 for (Value *Incoming : PI->incoming_values()) { 475 // If the incoming value is the phi node itself, it can safely be skipped. 476 if (Incoming == PI) continue; 477 Value *V = PI == LHS ? 478 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 479 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 480 // If the operation failed to simplify, or simplified to a different value 481 // to previously, then give up. 482 if (!V || (CommonValue && V != CommonValue)) 483 return nullptr; 484 CommonValue = V; 485 } 486 487 return CommonValue; 488 } 489 490 /// In the case of a comparison with a PHI instruction, try to simplify the 491 /// comparison by seeing whether comparing with all of the incoming phi values 492 /// yields the same result every time. If so returns the common result, 493 /// otherwise returns null. 494 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 495 const Query &Q, unsigned MaxRecurse) { 496 // Recursion is always used, so bail out at once if we already hit the limit. 497 if (!MaxRecurse--) 498 return nullptr; 499 500 // Make sure the phi is on the LHS. 501 if (!isa<PHINode>(LHS)) { 502 std::swap(LHS, RHS); 503 Pred = CmpInst::getSwappedPredicate(Pred); 504 } 505 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 506 PHINode *PI = cast<PHINode>(LHS); 507 508 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 509 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 510 return nullptr; 511 512 // Evaluate the BinOp on the incoming phi values. 513 Value *CommonValue = nullptr; 514 for (Value *Incoming : PI->incoming_values()) { 515 // If the incoming value is the phi node itself, it can safely be skipped. 516 if (Incoming == PI) continue; 517 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 518 // If the operation failed to simplify, or simplified to a different value 519 // to previously, then give up. 520 if (!V || (CommonValue && V != CommonValue)) 521 return nullptr; 522 CommonValue = V; 523 } 524 525 return CommonValue; 526 } 527 528 /// Given operands for an Add, see if we can fold the result. 529 /// If not, this returns null. 530 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 531 const Query &Q, unsigned MaxRecurse) { 532 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 533 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 534 return ConstantFoldBinaryOpOperands(Instruction::Add, CLHS, CRHS, Q.DL); 535 536 // Canonicalize the constant to the RHS. 537 std::swap(Op0, Op1); 538 } 539 540 // X + undef -> undef 541 if (match(Op1, m_Undef())) 542 return Op1; 543 544 // X + 0 -> X 545 if (match(Op1, m_Zero())) 546 return Op0; 547 548 // X + (Y - X) -> Y 549 // (Y - X) + X -> Y 550 // Eg: X + -X -> 0 551 Value *Y = nullptr; 552 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 553 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 554 return Y; 555 556 // X + ~X -> -1 since ~X = -X-1 557 if (match(Op0, m_Not(m_Specific(Op1))) || 558 match(Op1, m_Not(m_Specific(Op0)))) 559 return Constant::getAllOnesValue(Op0->getType()); 560 561 /// i1 add -> xor. 562 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 563 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 564 return V; 565 566 // Try some generic simplifications for associative operations. 567 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 568 MaxRecurse)) 569 return V; 570 571 // Threading Add over selects and phi nodes is pointless, so don't bother. 572 // Threading over the select in "A + select(cond, B, C)" means evaluating 573 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 574 // only if B and C are equal. If B and C are equal then (since we assume 575 // that operands have already been simplified) "select(cond, B, C)" should 576 // have been simplified to the common value of B and C already. Analysing 577 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 578 // for threading over phi nodes. 579 580 return nullptr; 581 } 582 583 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 584 const DataLayout &DL, const TargetLibraryInfo *TLI, 585 const DominatorTree *DT, AssumptionCache *AC, 586 const Instruction *CxtI) { 587 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 588 RecursionLimit); 589 } 590 591 /// \brief Compute the base pointer and cumulative constant offsets for V. 592 /// 593 /// This strips all constant offsets off of V, leaving it the base pointer, and 594 /// accumulates the total constant offset applied in the returned constant. It 595 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 596 /// no constant offsets applied. 597 /// 598 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 599 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 600 /// folding. 601 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 602 bool AllowNonInbounds = false) { 603 assert(V->getType()->getScalarType()->isPointerTy()); 604 605 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 606 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 607 608 // Even though we don't look through PHI nodes, we could be called on an 609 // instruction in an unreachable block, which may be on a cycle. 610 SmallPtrSet<Value *, 4> Visited; 611 Visited.insert(V); 612 do { 613 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 614 if ((!AllowNonInbounds && !GEP->isInBounds()) || 615 !GEP->accumulateConstantOffset(DL, Offset)) 616 break; 617 V = GEP->getPointerOperand(); 618 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 619 V = cast<Operator>(V)->getOperand(0); 620 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 621 if (GA->isInterposable()) 622 break; 623 V = GA->getAliasee(); 624 } else { 625 if (auto CS = CallSite(V)) 626 if (Value *RV = CS.getReturnedArgOperand()) { 627 V = RV; 628 continue; 629 } 630 break; 631 } 632 assert(V->getType()->getScalarType()->isPointerTy() && 633 "Unexpected operand type!"); 634 } while (Visited.insert(V).second); 635 636 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 637 if (V->getType()->isVectorTy()) 638 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 639 OffsetIntPtr); 640 return OffsetIntPtr; 641 } 642 643 /// \brief Compute the constant difference between two pointer values. 644 /// If the difference is not a constant, returns zero. 645 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 646 Value *RHS) { 647 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 648 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 649 650 // If LHS and RHS are not related via constant offsets to the same base 651 // value, there is nothing we can do here. 652 if (LHS != RHS) 653 return nullptr; 654 655 // Otherwise, the difference of LHS - RHS can be computed as: 656 // LHS - RHS 657 // = (LHSOffset + Base) - (RHSOffset + Base) 658 // = LHSOffset - RHSOffset 659 return ConstantExpr::getSub(LHSOffset, RHSOffset); 660 } 661 662 /// Given operands for a Sub, see if we can fold the result. 663 /// If not, this returns null. 664 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 665 const Query &Q, unsigned MaxRecurse) { 666 if (Constant *CLHS = dyn_cast<Constant>(Op0)) 667 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 668 return ConstantFoldBinaryOpOperands(Instruction::Sub, CLHS, CRHS, Q.DL); 669 670 // X - undef -> undef 671 // undef - X -> undef 672 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 673 return UndefValue::get(Op0->getType()); 674 675 // X - 0 -> X 676 if (match(Op1, m_Zero())) 677 return Op0; 678 679 // X - X -> 0 680 if (Op0 == Op1) 681 return Constant::getNullValue(Op0->getType()); 682 683 // Is this a negation? 684 if (match(Op0, m_Zero())) { 685 // 0 - X -> 0 if the sub is NUW. 686 if (isNUW) 687 return Op0; 688 689 unsigned BitWidth = Op1->getType()->getScalarSizeInBits(); 690 APInt KnownZero(BitWidth, 0); 691 APInt KnownOne(BitWidth, 0); 692 computeKnownBits(Op1, KnownZero, KnownOne, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 693 if (KnownZero == ~APInt::getSignBit(BitWidth)) { 694 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 695 // Op1 must be 0 because negating the minimum signed value is undefined. 696 if (isNSW) 697 return Op0; 698 699 // 0 - X -> X if X is 0 or the minimum signed value. 700 return Op1; 701 } 702 } 703 704 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 705 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 706 Value *X = nullptr, *Y = nullptr, *Z = Op1; 707 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 708 // See if "V === Y - Z" simplifies. 709 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 710 // It does! Now see if "X + V" simplifies. 711 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 712 // It does, we successfully reassociated! 713 ++NumReassoc; 714 return W; 715 } 716 // See if "V === X - Z" simplifies. 717 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 718 // It does! Now see if "Y + V" simplifies. 719 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 720 // It does, we successfully reassociated! 721 ++NumReassoc; 722 return W; 723 } 724 } 725 726 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 727 // For example, X - (X + 1) -> -1 728 X = Op0; 729 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 730 // See if "V === X - Y" simplifies. 731 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 732 // It does! Now see if "V - Z" simplifies. 733 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 734 // It does, we successfully reassociated! 735 ++NumReassoc; 736 return W; 737 } 738 // See if "V === X - Z" simplifies. 739 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 740 // It does! Now see if "V - Y" simplifies. 741 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 742 // It does, we successfully reassociated! 743 ++NumReassoc; 744 return W; 745 } 746 } 747 748 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 749 // For example, X - (X - Y) -> Y. 750 Z = Op0; 751 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 752 // See if "V === Z - X" simplifies. 753 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 754 // It does! Now see if "V + Y" simplifies. 755 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 756 // It does, we successfully reassociated! 757 ++NumReassoc; 758 return W; 759 } 760 761 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 762 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 763 match(Op1, m_Trunc(m_Value(Y)))) 764 if (X->getType() == Y->getType()) 765 // See if "V === X - Y" simplifies. 766 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 767 // It does! Now see if "trunc V" simplifies. 768 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 769 Q, MaxRecurse - 1)) 770 // It does, return the simplified "trunc V". 771 return W; 772 773 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 774 if (match(Op0, m_PtrToInt(m_Value(X))) && 775 match(Op1, m_PtrToInt(m_Value(Y)))) 776 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 777 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 778 779 // i1 sub -> xor. 780 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 781 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 782 return V; 783 784 // Threading Sub over selects and phi nodes is pointless, so don't bother. 785 // Threading over the select in "A - select(cond, B, C)" means evaluating 786 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 787 // only if B and C are equal. If B and C are equal then (since we assume 788 // that operands have already been simplified) "select(cond, B, C)" should 789 // have been simplified to the common value of B and C already. Analysing 790 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 791 // for threading over phi nodes. 792 793 return nullptr; 794 } 795 796 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 797 const DataLayout &DL, const TargetLibraryInfo *TLI, 798 const DominatorTree *DT, AssumptionCache *AC, 799 const Instruction *CxtI) { 800 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 801 RecursionLimit); 802 } 803 804 /// Given operands for an FAdd, see if we can fold the result. If not, this 805 /// returns null. 806 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 807 const Query &Q, unsigned MaxRecurse) { 808 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 809 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 810 return ConstantFoldBinaryOpOperands(Instruction::FAdd, CLHS, CRHS, Q.DL); 811 812 // Canonicalize the constant to the RHS. 813 std::swap(Op0, Op1); 814 } 815 816 // fadd X, -0 ==> X 817 if (match(Op1, m_NegZero())) 818 return Op0; 819 820 // fadd X, 0 ==> X, when we know X is not -0 821 if (match(Op1, m_Zero()) && 822 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 823 return Op0; 824 825 // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0 826 // where nnan and ninf have to occur at least once somewhere in this 827 // expression 828 Value *SubOp = nullptr; 829 if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0)))) 830 SubOp = Op1; 831 else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1)))) 832 SubOp = Op0; 833 if (SubOp) { 834 Instruction *FSub = cast<Instruction>(SubOp); 835 if ((FMF.noNaNs() || FSub->hasNoNaNs()) && 836 (FMF.noInfs() || FSub->hasNoInfs())) 837 return Constant::getNullValue(Op0->getType()); 838 } 839 840 return nullptr; 841 } 842 843 /// Given operands for an FSub, see if we can fold the result. If not, this 844 /// returns null. 845 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 846 const Query &Q, unsigned MaxRecurse) { 847 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 848 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 849 return ConstantFoldBinaryOpOperands(Instruction::FSub, CLHS, CRHS, Q.DL); 850 } 851 852 // fsub X, 0 ==> X 853 if (match(Op1, m_Zero())) 854 return Op0; 855 856 // fsub X, -0 ==> X, when we know X is not -0 857 if (match(Op1, m_NegZero()) && 858 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 859 return Op0; 860 861 // fsub -0.0, (fsub -0.0, X) ==> X 862 Value *X; 863 if (match(Op0, m_NegZero()) && match(Op1, m_FSub(m_NegZero(), m_Value(X)))) 864 return X; 865 866 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 867 if (FMF.noSignedZeros() && match(Op0, m_AnyZero()) && 868 match(Op1, m_FSub(m_AnyZero(), m_Value(X)))) 869 return X; 870 871 // fsub nnan x, x ==> 0.0 872 if (FMF.noNaNs() && Op0 == Op1) 873 return Constant::getNullValue(Op0->getType()); 874 875 return nullptr; 876 } 877 878 /// Given the operands for an FMul, see if we can fold the result 879 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, 880 FastMathFlags FMF, 881 const Query &Q, 882 unsigned MaxRecurse) { 883 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 884 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 885 return ConstantFoldBinaryOpOperands(Instruction::FMul, CLHS, CRHS, Q.DL); 886 887 // Canonicalize the constant to the RHS. 888 std::swap(Op0, Op1); 889 } 890 891 // fmul X, 1.0 ==> X 892 if (match(Op1, m_FPOne())) 893 return Op0; 894 895 // fmul nnan nsz X, 0 ==> 0 896 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero())) 897 return Op1; 898 899 return nullptr; 900 } 901 902 /// Given operands for a Mul, see if we can fold the result. 903 /// If not, this returns null. 904 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q, 905 unsigned MaxRecurse) { 906 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 907 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 908 return ConstantFoldBinaryOpOperands(Instruction::Mul, CLHS, CRHS, Q.DL); 909 910 // Canonicalize the constant to the RHS. 911 std::swap(Op0, Op1); 912 } 913 914 // X * undef -> 0 915 if (match(Op1, m_Undef())) 916 return Constant::getNullValue(Op0->getType()); 917 918 // X * 0 -> 0 919 if (match(Op1, m_Zero())) 920 return Op1; 921 922 // X * 1 -> X 923 if (match(Op1, m_One())) 924 return Op0; 925 926 // (X / Y) * Y -> X if the division is exact. 927 Value *X = nullptr; 928 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 929 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y) 930 return X; 931 932 // i1 mul -> and. 933 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 934 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 935 return V; 936 937 // Try some generic simplifications for associative operations. 938 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 939 MaxRecurse)) 940 return V; 941 942 // Mul distributes over Add. Try some generic simplifications based on this. 943 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 944 Q, MaxRecurse)) 945 return V; 946 947 // If the operation is with the result of a select instruction, check whether 948 // operating on either branch of the select always yields the same value. 949 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 950 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 951 MaxRecurse)) 952 return V; 953 954 // If the operation is with the result of a phi instruction, check whether 955 // operating on all incoming values of the phi always yields the same value. 956 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 957 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 958 MaxRecurse)) 959 return V; 960 961 return nullptr; 962 } 963 964 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 965 const DataLayout &DL, 966 const TargetLibraryInfo *TLI, 967 const DominatorTree *DT, AssumptionCache *AC, 968 const Instruction *CxtI) { 969 return ::SimplifyFAddInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 970 RecursionLimit); 971 } 972 973 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 974 const DataLayout &DL, 975 const TargetLibraryInfo *TLI, 976 const DominatorTree *DT, AssumptionCache *AC, 977 const Instruction *CxtI) { 978 return ::SimplifyFSubInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 979 RecursionLimit); 980 } 981 982 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 983 const DataLayout &DL, 984 const TargetLibraryInfo *TLI, 985 const DominatorTree *DT, AssumptionCache *AC, 986 const Instruction *CxtI) { 987 return ::SimplifyFMulInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 988 RecursionLimit); 989 } 990 991 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout &DL, 992 const TargetLibraryInfo *TLI, 993 const DominatorTree *DT, AssumptionCache *AC, 994 const Instruction *CxtI) { 995 return ::SimplifyMulInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 996 RecursionLimit); 997 } 998 999 /// Given operands for an SDiv or UDiv, see if we can fold the result. 1000 /// If not, this returns null. 1001 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1002 const Query &Q, unsigned MaxRecurse) { 1003 if (Constant *C0 = dyn_cast<Constant>(Op0)) 1004 if (Constant *C1 = dyn_cast<Constant>(Op1)) 1005 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 1006 1007 bool isSigned = Opcode == Instruction::SDiv; 1008 1009 // X / undef -> undef 1010 if (match(Op1, m_Undef())) 1011 return Op1; 1012 1013 // X / 0 -> undef, we don't need to preserve faults! 1014 if (match(Op1, m_Zero())) 1015 return UndefValue::get(Op1->getType()); 1016 1017 // undef / X -> 0 1018 if (match(Op0, m_Undef())) 1019 return Constant::getNullValue(Op0->getType()); 1020 1021 // 0 / X -> 0, we don't need to preserve faults! 1022 if (match(Op0, m_Zero())) 1023 return Op0; 1024 1025 // X / 1 -> X 1026 if (match(Op1, m_One())) 1027 return Op0; 1028 1029 if (Op0->getType()->isIntegerTy(1)) 1030 // It can't be division by zero, hence it must be division by one. 1031 return Op0; 1032 1033 // X / X -> 1 1034 if (Op0 == Op1) 1035 return ConstantInt::get(Op0->getType(), 1); 1036 1037 // (X * Y) / Y -> X if the multiplication does not overflow. 1038 Value *X = nullptr, *Y = nullptr; 1039 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) { 1040 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1 1041 OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0); 1042 // If the Mul knows it does not overflow, then we are good to go. 1043 if ((isSigned && Mul->hasNoSignedWrap()) || 1044 (!isSigned && Mul->hasNoUnsignedWrap())) 1045 return X; 1046 // If X has the form X = A / Y then X * Y cannot overflow. 1047 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X)) 1048 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y) 1049 return X; 1050 } 1051 1052 // (X rem Y) / Y -> 0 1053 if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1054 (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1055 return Constant::getNullValue(Op0->getType()); 1056 1057 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1058 ConstantInt *C1, *C2; 1059 if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1060 match(Op1, m_ConstantInt(C2))) { 1061 bool Overflow; 1062 C1->getValue().umul_ov(C2->getValue(), Overflow); 1063 if (Overflow) 1064 return Constant::getNullValue(Op0->getType()); 1065 } 1066 1067 // If the operation is with the result of a select instruction, check whether 1068 // operating on either branch of the select always yields the same value. 1069 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1070 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1071 return V; 1072 1073 // If the operation is with the result of a phi instruction, check whether 1074 // operating on all incoming values of the phi always yields the same value. 1075 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1076 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1077 return V; 1078 1079 return nullptr; 1080 } 1081 1082 /// Given operands for an SDiv, see if we can fold the result. 1083 /// If not, this returns null. 1084 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q, 1085 unsigned MaxRecurse) { 1086 if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse)) 1087 return V; 1088 1089 return nullptr; 1090 } 1091 1092 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout &DL, 1093 const TargetLibraryInfo *TLI, 1094 const DominatorTree *DT, AssumptionCache *AC, 1095 const Instruction *CxtI) { 1096 return ::SimplifySDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1097 RecursionLimit); 1098 } 1099 1100 /// Given operands for a UDiv, see if we can fold the result. 1101 /// If not, this returns null. 1102 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q, 1103 unsigned MaxRecurse) { 1104 if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse)) 1105 return V; 1106 1107 return nullptr; 1108 } 1109 1110 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout &DL, 1111 const TargetLibraryInfo *TLI, 1112 const DominatorTree *DT, AssumptionCache *AC, 1113 const Instruction *CxtI) { 1114 return ::SimplifyUDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1115 RecursionLimit); 1116 } 1117 1118 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1119 const Query &Q, unsigned) { 1120 // undef / X -> undef (the undef could be a snan). 1121 if (match(Op0, m_Undef())) 1122 return Op0; 1123 1124 // X / undef -> undef 1125 if (match(Op1, m_Undef())) 1126 return Op1; 1127 1128 // 0 / X -> 0 1129 // Requires that NaNs are off (X could be zero) and signed zeroes are 1130 // ignored (X could be positive or negative, so the output sign is unknown). 1131 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 1132 return Op0; 1133 1134 if (FMF.noNaNs()) { 1135 // X / X -> 1.0 is legal when NaNs are ignored. 1136 if (Op0 == Op1) 1137 return ConstantFP::get(Op0->getType(), 1.0); 1138 1139 // -X / X -> -1.0 and 1140 // X / -X -> -1.0 are legal when NaNs are ignored. 1141 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 1142 if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) && 1143 BinaryOperator::getFNegArgument(Op0) == Op1) || 1144 (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) && 1145 BinaryOperator::getFNegArgument(Op1) == Op0)) 1146 return ConstantFP::get(Op0->getType(), -1.0); 1147 } 1148 1149 return nullptr; 1150 } 1151 1152 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1153 const DataLayout &DL, 1154 const TargetLibraryInfo *TLI, 1155 const DominatorTree *DT, AssumptionCache *AC, 1156 const Instruction *CxtI) { 1157 return ::SimplifyFDivInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 1158 RecursionLimit); 1159 } 1160 1161 /// Given operands for an SRem or URem, see if we can fold the result. 1162 /// If not, this returns null. 1163 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1164 const Query &Q, unsigned MaxRecurse) { 1165 if (Constant *C0 = dyn_cast<Constant>(Op0)) 1166 if (Constant *C1 = dyn_cast<Constant>(Op1)) 1167 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 1168 1169 // X % undef -> undef 1170 if (match(Op1, m_Undef())) 1171 return Op1; 1172 1173 // undef % X -> 0 1174 if (match(Op0, m_Undef())) 1175 return Constant::getNullValue(Op0->getType()); 1176 1177 // 0 % X -> 0, we don't need to preserve faults! 1178 if (match(Op0, m_Zero())) 1179 return Op0; 1180 1181 // X % 0 -> undef, we don't need to preserve faults! 1182 if (match(Op1, m_Zero())) 1183 return UndefValue::get(Op0->getType()); 1184 1185 // X % 1 -> 0 1186 if (match(Op1, m_One())) 1187 return Constant::getNullValue(Op0->getType()); 1188 1189 if (Op0->getType()->isIntegerTy(1)) 1190 // It can't be remainder by zero, hence it must be remainder by one. 1191 return Constant::getNullValue(Op0->getType()); 1192 1193 // X % X -> 0 1194 if (Op0 == Op1) 1195 return Constant::getNullValue(Op0->getType()); 1196 1197 // (X % Y) % Y -> X % Y 1198 if ((Opcode == Instruction::SRem && 1199 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1200 (Opcode == Instruction::URem && 1201 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1202 return Op0; 1203 1204 // If the operation is with the result of a select instruction, check whether 1205 // operating on either branch of the select always yields the same value. 1206 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1207 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1208 return V; 1209 1210 // If the operation is with the result of a phi instruction, check whether 1211 // operating on all incoming values of the phi always yields the same value. 1212 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1213 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1214 return V; 1215 1216 return nullptr; 1217 } 1218 1219 /// Given operands for an SRem, see if we can fold the result. 1220 /// If not, this returns null. 1221 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q, 1222 unsigned MaxRecurse) { 1223 if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse)) 1224 return V; 1225 1226 return nullptr; 1227 } 1228 1229 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout &DL, 1230 const TargetLibraryInfo *TLI, 1231 const DominatorTree *DT, AssumptionCache *AC, 1232 const Instruction *CxtI) { 1233 return ::SimplifySRemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1234 RecursionLimit); 1235 } 1236 1237 /// Given operands for a URem, see if we can fold the result. 1238 /// If not, this returns null. 1239 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q, 1240 unsigned MaxRecurse) { 1241 if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse)) 1242 return V; 1243 1244 return nullptr; 1245 } 1246 1247 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout &DL, 1248 const TargetLibraryInfo *TLI, 1249 const DominatorTree *DT, AssumptionCache *AC, 1250 const Instruction *CxtI) { 1251 return ::SimplifyURemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1252 RecursionLimit); 1253 } 1254 1255 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1256 const Query &, unsigned) { 1257 // undef % X -> undef (the undef could be a snan). 1258 if (match(Op0, m_Undef())) 1259 return Op0; 1260 1261 // X % undef -> undef 1262 if (match(Op1, m_Undef())) 1263 return Op1; 1264 1265 // 0 % X -> 0 1266 // Requires that NaNs are off (X could be zero) and signed zeroes are 1267 // ignored (X could be positive or negative, so the output sign is unknown). 1268 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 1269 return Op0; 1270 1271 return nullptr; 1272 } 1273 1274 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1275 const DataLayout &DL, 1276 const TargetLibraryInfo *TLI, 1277 const DominatorTree *DT, AssumptionCache *AC, 1278 const Instruction *CxtI) { 1279 return ::SimplifyFRemInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 1280 RecursionLimit); 1281 } 1282 1283 /// Returns true if a shift by \c Amount always yields undef. 1284 static bool isUndefShift(Value *Amount) { 1285 Constant *C = dyn_cast<Constant>(Amount); 1286 if (!C) 1287 return false; 1288 1289 // X shift by undef -> undef because it may shift by the bitwidth. 1290 if (isa<UndefValue>(C)) 1291 return true; 1292 1293 // Shifting by the bitwidth or more is undefined. 1294 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1295 if (CI->getValue().getLimitedValue() >= 1296 CI->getType()->getScalarSizeInBits()) 1297 return true; 1298 1299 // If all lanes of a vector shift are undefined the whole shift is. 1300 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1301 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) 1302 if (!isUndefShift(C->getAggregateElement(I))) 1303 return false; 1304 return true; 1305 } 1306 1307 return false; 1308 } 1309 1310 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1311 /// If not, this returns null. 1312 static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1, 1313 const Query &Q, unsigned MaxRecurse) { 1314 if (Constant *C0 = dyn_cast<Constant>(Op0)) 1315 if (Constant *C1 = dyn_cast<Constant>(Op1)) 1316 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 1317 1318 // 0 shift by X -> 0 1319 if (match(Op0, m_Zero())) 1320 return Op0; 1321 1322 // X shift by 0 -> X 1323 if (match(Op1, m_Zero())) 1324 return Op0; 1325 1326 // Fold undefined shifts. 1327 if (isUndefShift(Op1)) 1328 return UndefValue::get(Op0->getType()); 1329 1330 // If the operation is with the result of a select instruction, check whether 1331 // operating on either branch of the select always yields the same value. 1332 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1333 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1334 return V; 1335 1336 // If the operation is with the result of a phi instruction, check whether 1337 // operating on all incoming values of the phi always yields the same value. 1338 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1339 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1340 return V; 1341 1342 // If any bits in the shift amount make that value greater than or equal to 1343 // the number of bits in the type, the shift is undefined. 1344 unsigned BitWidth = Op1->getType()->getScalarSizeInBits(); 1345 APInt KnownZero(BitWidth, 0); 1346 APInt KnownOne(BitWidth, 0); 1347 computeKnownBits(Op1, KnownZero, KnownOne, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1348 if (KnownOne.getLimitedValue() >= BitWidth) 1349 return UndefValue::get(Op0->getType()); 1350 1351 // If all valid bits in the shift amount are known zero, the first operand is 1352 // unchanged. 1353 unsigned NumValidShiftBits = Log2_32_Ceil(BitWidth); 1354 APInt ShiftAmountMask = APInt::getLowBitsSet(BitWidth, NumValidShiftBits); 1355 if ((KnownZero & ShiftAmountMask) == ShiftAmountMask) 1356 return Op0; 1357 1358 return nullptr; 1359 } 1360 1361 /// \brief Given operands for an Shl, LShr or AShr, see if we can 1362 /// fold the result. If not, this returns null. 1363 static Value *SimplifyRightShift(unsigned Opcode, Value *Op0, Value *Op1, 1364 bool isExact, const Query &Q, 1365 unsigned MaxRecurse) { 1366 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1367 return V; 1368 1369 // X >> X -> 0 1370 if (Op0 == Op1) 1371 return Constant::getNullValue(Op0->getType()); 1372 1373 // undef >> X -> 0 1374 // undef >> X -> undef (if it's exact) 1375 if (match(Op0, m_Undef())) 1376 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1377 1378 // The low bit cannot be shifted out of an exact shift if it is set. 1379 if (isExact) { 1380 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 1381 APInt Op0KnownZero(BitWidth, 0); 1382 APInt Op0KnownOne(BitWidth, 0); 1383 computeKnownBits(Op0, Op0KnownZero, Op0KnownOne, Q.DL, /*Depth=*/0, Q.AC, 1384 Q.CxtI, Q.DT); 1385 if (Op0KnownOne[0]) 1386 return Op0; 1387 } 1388 1389 return nullptr; 1390 } 1391 1392 /// Given operands for an Shl, see if we can fold the result. 1393 /// If not, this returns null. 1394 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1395 const Query &Q, unsigned MaxRecurse) { 1396 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1397 return V; 1398 1399 // undef << X -> 0 1400 // undef << X -> undef if (if it's NSW/NUW) 1401 if (match(Op0, m_Undef())) 1402 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1403 1404 // (X >> A) << A -> X 1405 Value *X; 1406 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1407 return X; 1408 return nullptr; 1409 } 1410 1411 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1412 const DataLayout &DL, const TargetLibraryInfo *TLI, 1413 const DominatorTree *DT, AssumptionCache *AC, 1414 const Instruction *CxtI) { 1415 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 1416 RecursionLimit); 1417 } 1418 1419 /// Given operands for an LShr, see if we can fold the result. 1420 /// If not, this returns null. 1421 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1422 const Query &Q, unsigned MaxRecurse) { 1423 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1424 MaxRecurse)) 1425 return V; 1426 1427 // (X << A) >> A -> X 1428 Value *X; 1429 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1430 return X; 1431 1432 return nullptr; 1433 } 1434 1435 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1436 const DataLayout &DL, 1437 const TargetLibraryInfo *TLI, 1438 const DominatorTree *DT, AssumptionCache *AC, 1439 const Instruction *CxtI) { 1440 return ::SimplifyLShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI), 1441 RecursionLimit); 1442 } 1443 1444 /// Given operands for an AShr, see if we can fold the result. 1445 /// If not, this returns null. 1446 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1447 const Query &Q, unsigned MaxRecurse) { 1448 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1449 MaxRecurse)) 1450 return V; 1451 1452 // all ones >>a X -> all ones 1453 if (match(Op0, m_AllOnes())) 1454 return Op0; 1455 1456 // (X << A) >> A -> X 1457 Value *X; 1458 if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1459 return X; 1460 1461 // Arithmetic shifting an all-sign-bit value is a no-op. 1462 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1463 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1464 return Op0; 1465 1466 return nullptr; 1467 } 1468 1469 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1470 const DataLayout &DL, 1471 const TargetLibraryInfo *TLI, 1472 const DominatorTree *DT, AssumptionCache *AC, 1473 const Instruction *CxtI) { 1474 return ::SimplifyAShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI), 1475 RecursionLimit); 1476 } 1477 1478 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1479 ICmpInst *UnsignedICmp, bool IsAnd) { 1480 Value *X, *Y; 1481 1482 ICmpInst::Predicate EqPred; 1483 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1484 !ICmpInst::isEquality(EqPred)) 1485 return nullptr; 1486 1487 ICmpInst::Predicate UnsignedPred; 1488 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1489 ICmpInst::isUnsigned(UnsignedPred)) 1490 ; 1491 else if (match(UnsignedICmp, 1492 m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) && 1493 ICmpInst::isUnsigned(UnsignedPred)) 1494 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1495 else 1496 return nullptr; 1497 1498 // X < Y && Y != 0 --> X < Y 1499 // X < Y || Y != 0 --> Y != 0 1500 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1501 return IsAnd ? UnsignedICmp : ZeroICmp; 1502 1503 // X >= Y || Y != 0 --> true 1504 // X >= Y || Y == 0 --> X >= Y 1505 if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) { 1506 if (EqPred == ICmpInst::ICMP_NE) 1507 return getTrue(UnsignedICmp->getType()); 1508 return UnsignedICmp; 1509 } 1510 1511 // X < Y && Y == 0 --> false 1512 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1513 IsAnd) 1514 return getFalse(UnsignedICmp->getType()); 1515 1516 return nullptr; 1517 } 1518 1519 static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1520 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true)) 1521 return X; 1522 1523 // Look for this pattern: (icmp V, C0) & (icmp V, C1)). 1524 Type *ITy = Op0->getType(); 1525 ICmpInst::Predicate Pred0, Pred1; 1526 const APInt *C0, *C1; 1527 Value *V; 1528 if (match(Op0, m_ICmp(Pred0, m_Value(V), m_APInt(C0))) && 1529 match(Op1, m_ICmp(Pred1, m_Specific(V), m_APInt(C1)))) { 1530 // Make a constant range that's the intersection of the two icmp ranges. 1531 // If the intersection is empty, we know that the result is false. 1532 auto Range0 = ConstantRange::makeAllowedICmpRegion(Pred0, *C0); 1533 auto Range1 = ConstantRange::makeAllowedICmpRegion(Pred1, *C1); 1534 if (Range0.intersectWith(Range1).isEmptySet()) 1535 return getFalse(ITy); 1536 } 1537 1538 // (icmp (add V, C0), C1) & (icmp V, C0) 1539 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1540 return nullptr; 1541 1542 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1543 return nullptr; 1544 1545 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1546 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1547 return nullptr; 1548 1549 bool isNSW = AddInst->hasNoSignedWrap(); 1550 bool isNUW = AddInst->hasNoUnsignedWrap(); 1551 1552 const APInt Delta = *C1 - *C0; 1553 if (C0->isStrictlyPositive()) { 1554 if (Delta == 2) { 1555 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1556 return getFalse(ITy); 1557 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1558 return getFalse(ITy); 1559 } 1560 if (Delta == 1) { 1561 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1562 return getFalse(ITy); 1563 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1564 return getFalse(ITy); 1565 } 1566 } 1567 if (C0->getBoolValue() && isNUW) { 1568 if (Delta == 2) 1569 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1570 return getFalse(ITy); 1571 if (Delta == 1) 1572 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1573 return getFalse(ITy); 1574 } 1575 1576 return nullptr; 1577 } 1578 1579 /// Given operands for an And, see if we can fold the result. 1580 /// If not, this returns null. 1581 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q, 1582 unsigned MaxRecurse) { 1583 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1584 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1585 return ConstantFoldBinaryOpOperands(Instruction::And, CLHS, CRHS, Q.DL); 1586 1587 // Canonicalize the constant to the RHS. 1588 std::swap(Op0, Op1); 1589 } 1590 1591 // X & undef -> 0 1592 if (match(Op1, m_Undef())) 1593 return Constant::getNullValue(Op0->getType()); 1594 1595 // X & X = X 1596 if (Op0 == Op1) 1597 return Op0; 1598 1599 // X & 0 = 0 1600 if (match(Op1, m_Zero())) 1601 return Op1; 1602 1603 // X & -1 = X 1604 if (match(Op1, m_AllOnes())) 1605 return Op0; 1606 1607 // A & ~A = ~A & A = 0 1608 if (match(Op0, m_Not(m_Specific(Op1))) || 1609 match(Op1, m_Not(m_Specific(Op0)))) 1610 return Constant::getNullValue(Op0->getType()); 1611 1612 // (A | ?) & A = A 1613 Value *A = nullptr, *B = nullptr; 1614 if (match(Op0, m_Or(m_Value(A), m_Value(B))) && 1615 (A == Op1 || B == Op1)) 1616 return Op1; 1617 1618 // A & (A | ?) = A 1619 if (match(Op1, m_Or(m_Value(A), m_Value(B))) && 1620 (A == Op0 || B == Op0)) 1621 return Op0; 1622 1623 // A & (-A) = A if A is a power of two or zero. 1624 if (match(Op0, m_Neg(m_Specific(Op1))) || 1625 match(Op1, m_Neg(m_Specific(Op0)))) { 1626 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1627 Q.DT)) 1628 return Op0; 1629 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1630 Q.DT)) 1631 return Op1; 1632 } 1633 1634 if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) { 1635 if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) { 1636 if (Value *V = SimplifyAndOfICmps(ICILHS, ICIRHS)) 1637 return V; 1638 if (Value *V = SimplifyAndOfICmps(ICIRHS, ICILHS)) 1639 return V; 1640 } 1641 } 1642 1643 // The compares may be hidden behind casts. Look through those and try the 1644 // same folds as above. 1645 auto *Cast0 = dyn_cast<CastInst>(Op0); 1646 auto *Cast1 = dyn_cast<CastInst>(Op1); 1647 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1648 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1649 auto *Cmp0 = dyn_cast<ICmpInst>(Cast0->getOperand(0)); 1650 auto *Cmp1 = dyn_cast<ICmpInst>(Cast1->getOperand(0)); 1651 if (Cmp0 && Cmp1) { 1652 Instruction::CastOps CastOpc = Cast0->getOpcode(); 1653 Type *ResultType = Cast0->getType(); 1654 if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp0, Cmp1))) 1655 return ConstantExpr::getCast(CastOpc, V, ResultType); 1656 if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp1, Cmp0))) 1657 return ConstantExpr::getCast(CastOpc, V, ResultType); 1658 } 1659 } 1660 1661 // Try some generic simplifications for associative operations. 1662 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1663 MaxRecurse)) 1664 return V; 1665 1666 // And distributes over Or. Try some generic simplifications based on this. 1667 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1668 Q, MaxRecurse)) 1669 return V; 1670 1671 // And distributes over Xor. Try some generic simplifications based on this. 1672 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1673 Q, MaxRecurse)) 1674 return V; 1675 1676 // If the operation is with the result of a select instruction, check whether 1677 // operating on either branch of the select always yields the same value. 1678 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1679 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 1680 MaxRecurse)) 1681 return V; 1682 1683 // If the operation is with the result of a phi instruction, check whether 1684 // operating on all incoming values of the phi always yields the same value. 1685 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1686 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 1687 MaxRecurse)) 1688 return V; 1689 1690 return nullptr; 1691 } 1692 1693 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout &DL, 1694 const TargetLibraryInfo *TLI, 1695 const DominatorTree *DT, AssumptionCache *AC, 1696 const Instruction *CxtI) { 1697 return ::SimplifyAndInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1698 RecursionLimit); 1699 } 1700 1701 /// Simplify (or (icmp ...) (icmp ...)) to true when we can tell that the union 1702 /// contains all possible values. 1703 static Value *SimplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1704 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false)) 1705 return X; 1706 1707 // (icmp (add V, C0), C1) | (icmp V, C0) 1708 ICmpInst::Predicate Pred0, Pred1; 1709 const APInt *C0, *C1; 1710 Value *V; 1711 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1712 return nullptr; 1713 1714 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1715 return nullptr; 1716 1717 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1718 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1719 return nullptr; 1720 1721 Type *ITy = Op0->getType(); 1722 bool isNSW = AddInst->hasNoSignedWrap(); 1723 bool isNUW = AddInst->hasNoUnsignedWrap(); 1724 1725 const APInt Delta = *C1 - *C0; 1726 if (C0->isStrictlyPositive()) { 1727 if (Delta == 2) { 1728 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1729 return getTrue(ITy); 1730 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1731 return getTrue(ITy); 1732 } 1733 if (Delta == 1) { 1734 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1735 return getTrue(ITy); 1736 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1737 return getTrue(ITy); 1738 } 1739 } 1740 if (C0->getBoolValue() && isNUW) { 1741 if (Delta == 2) 1742 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1743 return getTrue(ITy); 1744 if (Delta == 1) 1745 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1746 return getTrue(ITy); 1747 } 1748 1749 return nullptr; 1750 } 1751 1752 /// Given operands for an Or, see if we can fold the result. 1753 /// If not, this returns null. 1754 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q, 1755 unsigned MaxRecurse) { 1756 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1757 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1758 return ConstantFoldBinaryOpOperands(Instruction::Or, CLHS, CRHS, Q.DL); 1759 1760 // Canonicalize the constant to the RHS. 1761 std::swap(Op0, Op1); 1762 } 1763 1764 // X | undef -> -1 1765 if (match(Op1, m_Undef())) 1766 return Constant::getAllOnesValue(Op0->getType()); 1767 1768 // X | X = X 1769 if (Op0 == Op1) 1770 return Op0; 1771 1772 // X | 0 = X 1773 if (match(Op1, m_Zero())) 1774 return Op0; 1775 1776 // X | -1 = -1 1777 if (match(Op1, m_AllOnes())) 1778 return Op1; 1779 1780 // A | ~A = ~A | A = -1 1781 if (match(Op0, m_Not(m_Specific(Op1))) || 1782 match(Op1, m_Not(m_Specific(Op0)))) 1783 return Constant::getAllOnesValue(Op0->getType()); 1784 1785 // (A & ?) | A = A 1786 Value *A = nullptr, *B = nullptr; 1787 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1788 (A == Op1 || B == Op1)) 1789 return Op1; 1790 1791 // A | (A & ?) = A 1792 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1793 (A == Op0 || B == Op0)) 1794 return Op0; 1795 1796 // ~(A & ?) | A = -1 1797 if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) && 1798 (A == Op1 || B == Op1)) 1799 return Constant::getAllOnesValue(Op1->getType()); 1800 1801 // A | ~(A & ?) = -1 1802 if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) && 1803 (A == Op0 || B == Op0)) 1804 return Constant::getAllOnesValue(Op0->getType()); 1805 1806 if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) { 1807 if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) { 1808 if (Value *V = SimplifyOrOfICmps(ICILHS, ICIRHS)) 1809 return V; 1810 if (Value *V = SimplifyOrOfICmps(ICIRHS, ICILHS)) 1811 return V; 1812 } 1813 } 1814 1815 // Try some generic simplifications for associative operations. 1816 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 1817 MaxRecurse)) 1818 return V; 1819 1820 // Or distributes over And. Try some generic simplifications based on this. 1821 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 1822 MaxRecurse)) 1823 return V; 1824 1825 // If the operation is with the result of a select instruction, check whether 1826 // operating on either branch of the select always yields the same value. 1827 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1828 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 1829 MaxRecurse)) 1830 return V; 1831 1832 // (A & C)|(B & D) 1833 Value *C = nullptr, *D = nullptr; 1834 if (match(Op0, m_And(m_Value(A), m_Value(C))) && 1835 match(Op1, m_And(m_Value(B), m_Value(D)))) { 1836 ConstantInt *C1 = dyn_cast<ConstantInt>(C); 1837 ConstantInt *C2 = dyn_cast<ConstantInt>(D); 1838 if (C1 && C2 && (C1->getValue() == ~C2->getValue())) { 1839 // (A & C1)|(B & C2) 1840 // If we have: ((V + N) & C1) | (V & C2) 1841 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 1842 // replace with V+N. 1843 Value *V1, *V2; 1844 if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+ 1845 match(A, m_Add(m_Value(V1), m_Value(V2)))) { 1846 // Add commutes, try both ways. 1847 if (V1 == B && 1848 MaskedValueIsZero(V2, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1849 return A; 1850 if (V2 == B && 1851 MaskedValueIsZero(V1, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1852 return A; 1853 } 1854 // Or commutes, try both ways. 1855 if ((C1->getValue() & (C1->getValue() + 1)) == 0 && 1856 match(B, m_Add(m_Value(V1), m_Value(V2)))) { 1857 // Add commutes, try both ways. 1858 if (V1 == A && 1859 MaskedValueIsZero(V2, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1860 return B; 1861 if (V2 == A && 1862 MaskedValueIsZero(V1, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1863 return B; 1864 } 1865 } 1866 } 1867 1868 // If the operation is with the result of a phi instruction, check whether 1869 // operating on all incoming values of the phi always yields the same value. 1870 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1871 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 1872 return V; 1873 1874 return nullptr; 1875 } 1876 1877 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout &DL, 1878 const TargetLibraryInfo *TLI, 1879 const DominatorTree *DT, AssumptionCache *AC, 1880 const Instruction *CxtI) { 1881 return ::SimplifyOrInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1882 RecursionLimit); 1883 } 1884 1885 /// Given operands for a Xor, see if we can fold the result. 1886 /// If not, this returns null. 1887 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q, 1888 unsigned MaxRecurse) { 1889 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1890 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1891 return ConstantFoldBinaryOpOperands(Instruction::Xor, CLHS, CRHS, Q.DL); 1892 1893 // Canonicalize the constant to the RHS. 1894 std::swap(Op0, Op1); 1895 } 1896 1897 // A ^ undef -> undef 1898 if (match(Op1, m_Undef())) 1899 return Op1; 1900 1901 // A ^ 0 = A 1902 if (match(Op1, m_Zero())) 1903 return Op0; 1904 1905 // A ^ A = 0 1906 if (Op0 == Op1) 1907 return Constant::getNullValue(Op0->getType()); 1908 1909 // A ^ ~A = ~A ^ A = -1 1910 if (match(Op0, m_Not(m_Specific(Op1))) || 1911 match(Op1, m_Not(m_Specific(Op0)))) 1912 return Constant::getAllOnesValue(Op0->getType()); 1913 1914 // Try some generic simplifications for associative operations. 1915 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 1916 MaxRecurse)) 1917 return V; 1918 1919 // Threading Xor over selects and phi nodes is pointless, so don't bother. 1920 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 1921 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 1922 // only if B and C are equal. If B and C are equal then (since we assume 1923 // that operands have already been simplified) "select(cond, B, C)" should 1924 // have been simplified to the common value of B and C already. Analysing 1925 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 1926 // for threading over phi nodes. 1927 1928 return nullptr; 1929 } 1930 1931 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout &DL, 1932 const TargetLibraryInfo *TLI, 1933 const DominatorTree *DT, AssumptionCache *AC, 1934 const Instruction *CxtI) { 1935 return ::SimplifyXorInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1936 RecursionLimit); 1937 } 1938 1939 static Type *GetCompareTy(Value *Op) { 1940 return CmpInst::makeCmpResultType(Op->getType()); 1941 } 1942 1943 /// Rummage around inside V looking for something equivalent to the comparison 1944 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 1945 /// Helper function for analyzing max/min idioms. 1946 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 1947 Value *LHS, Value *RHS) { 1948 SelectInst *SI = dyn_cast<SelectInst>(V); 1949 if (!SI) 1950 return nullptr; 1951 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 1952 if (!Cmp) 1953 return nullptr; 1954 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 1955 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 1956 return Cmp; 1957 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 1958 LHS == CmpRHS && RHS == CmpLHS) 1959 return Cmp; 1960 return nullptr; 1961 } 1962 1963 // A significant optimization not implemented here is assuming that alloca 1964 // addresses are not equal to incoming argument values. They don't *alias*, 1965 // as we say, but that doesn't mean they aren't equal, so we take a 1966 // conservative approach. 1967 // 1968 // This is inspired in part by C++11 5.10p1: 1969 // "Two pointers of the same type compare equal if and only if they are both 1970 // null, both point to the same function, or both represent the same 1971 // address." 1972 // 1973 // This is pretty permissive. 1974 // 1975 // It's also partly due to C11 6.5.9p6: 1976 // "Two pointers compare equal if and only if both are null pointers, both are 1977 // pointers to the same object (including a pointer to an object and a 1978 // subobject at its beginning) or function, both are pointers to one past the 1979 // last element of the same array object, or one is a pointer to one past the 1980 // end of one array object and the other is a pointer to the start of a 1981 // different array object that happens to immediately follow the first array 1982 // object in the address space.) 1983 // 1984 // C11's version is more restrictive, however there's no reason why an argument 1985 // couldn't be a one-past-the-end value for a stack object in the caller and be 1986 // equal to the beginning of a stack object in the callee. 1987 // 1988 // If the C and C++ standards are ever made sufficiently restrictive in this 1989 // area, it may be possible to update LLVM's semantics accordingly and reinstate 1990 // this optimization. 1991 static Constant * 1992 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 1993 const DominatorTree *DT, CmpInst::Predicate Pred, 1994 const Instruction *CxtI, Value *LHS, Value *RHS) { 1995 // First, skip past any trivial no-ops. 1996 LHS = LHS->stripPointerCasts(); 1997 RHS = RHS->stripPointerCasts(); 1998 1999 // A non-null pointer is not equal to a null pointer. 2000 if (llvm::isKnownNonNull(LHS) && isa<ConstantPointerNull>(RHS) && 2001 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 2002 return ConstantInt::get(GetCompareTy(LHS), 2003 !CmpInst::isTrueWhenEqual(Pred)); 2004 2005 // We can only fold certain predicates on pointer comparisons. 2006 switch (Pred) { 2007 default: 2008 return nullptr; 2009 2010 // Equality comaprisons are easy to fold. 2011 case CmpInst::ICMP_EQ: 2012 case CmpInst::ICMP_NE: 2013 break; 2014 2015 // We can only handle unsigned relational comparisons because 'inbounds' on 2016 // a GEP only protects against unsigned wrapping. 2017 case CmpInst::ICMP_UGT: 2018 case CmpInst::ICMP_UGE: 2019 case CmpInst::ICMP_ULT: 2020 case CmpInst::ICMP_ULE: 2021 // However, we have to switch them to their signed variants to handle 2022 // negative indices from the base pointer. 2023 Pred = ICmpInst::getSignedPredicate(Pred); 2024 break; 2025 } 2026 2027 // Strip off any constant offsets so that we can reason about them. 2028 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2029 // here and compare base addresses like AliasAnalysis does, however there are 2030 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2031 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2032 // doesn't need to guarantee pointer inequality when it says NoAlias. 2033 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2034 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2035 2036 // If LHS and RHS are related via constant offsets to the same base 2037 // value, we can replace it with an icmp which just compares the offsets. 2038 if (LHS == RHS) 2039 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2040 2041 // Various optimizations for (in)equality comparisons. 2042 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2043 // Different non-empty allocations that exist at the same time have 2044 // different addresses (if the program can tell). Global variables always 2045 // exist, so they always exist during the lifetime of each other and all 2046 // allocas. Two different allocas usually have different addresses... 2047 // 2048 // However, if there's an @llvm.stackrestore dynamically in between two 2049 // allocas, they may have the same address. It's tempting to reduce the 2050 // scope of the problem by only looking at *static* allocas here. That would 2051 // cover the majority of allocas while significantly reducing the likelihood 2052 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2053 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2054 // an entry block. Also, if we have a block that's not attached to a 2055 // function, we can't tell if it's "static" under the current definition. 2056 // Theoretically, this problem could be fixed by creating a new kind of 2057 // instruction kind specifically for static allocas. Such a new instruction 2058 // could be required to be at the top of the entry block, thus preventing it 2059 // from being subject to a @llvm.stackrestore. Instcombine could even 2060 // convert regular allocas into these special allocas. It'd be nifty. 2061 // However, until then, this problem remains open. 2062 // 2063 // So, we'll assume that two non-empty allocas have different addresses 2064 // for now. 2065 // 2066 // With all that, if the offsets are within the bounds of their allocations 2067 // (and not one-past-the-end! so we can't use inbounds!), and their 2068 // allocations aren't the same, the pointers are not equal. 2069 // 2070 // Note that it's not necessary to check for LHS being a global variable 2071 // address, due to canonicalization and constant folding. 2072 if (isa<AllocaInst>(LHS) && 2073 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2074 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2075 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2076 uint64_t LHSSize, RHSSize; 2077 if (LHSOffsetCI && RHSOffsetCI && 2078 getObjectSize(LHS, LHSSize, DL, TLI) && 2079 getObjectSize(RHS, RHSSize, DL, TLI)) { 2080 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2081 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2082 if (!LHSOffsetValue.isNegative() && 2083 !RHSOffsetValue.isNegative() && 2084 LHSOffsetValue.ult(LHSSize) && 2085 RHSOffsetValue.ult(RHSSize)) { 2086 return ConstantInt::get(GetCompareTy(LHS), 2087 !CmpInst::isTrueWhenEqual(Pred)); 2088 } 2089 } 2090 2091 // Repeat the above check but this time without depending on DataLayout 2092 // or being able to compute a precise size. 2093 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2094 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2095 LHSOffset->isNullValue() && 2096 RHSOffset->isNullValue()) 2097 return ConstantInt::get(GetCompareTy(LHS), 2098 !CmpInst::isTrueWhenEqual(Pred)); 2099 } 2100 2101 // Even if an non-inbounds GEP occurs along the path we can still optimize 2102 // equality comparisons concerning the result. We avoid walking the whole 2103 // chain again by starting where the last calls to 2104 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2105 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2106 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2107 if (LHS == RHS) 2108 return ConstantExpr::getICmp(Pred, 2109 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2110 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2111 2112 // If one side of the equality comparison must come from a noalias call 2113 // (meaning a system memory allocation function), and the other side must 2114 // come from a pointer that cannot overlap with dynamically-allocated 2115 // memory within the lifetime of the current function (allocas, byval 2116 // arguments, globals), then determine the comparison result here. 2117 SmallVector<Value *, 8> LHSUObjs, RHSUObjs; 2118 GetUnderlyingObjects(LHS, LHSUObjs, DL); 2119 GetUnderlyingObjects(RHS, RHSUObjs, DL); 2120 2121 // Is the set of underlying objects all noalias calls? 2122 auto IsNAC = [](ArrayRef<Value *> Objects) { 2123 return all_of(Objects, isNoAliasCall); 2124 }; 2125 2126 // Is the set of underlying objects all things which must be disjoint from 2127 // noalias calls. For allocas, we consider only static ones (dynamic 2128 // allocas might be transformed into calls to malloc not simultaneously 2129 // live with the compared-to allocation). For globals, we exclude symbols 2130 // that might be resolve lazily to symbols in another dynamically-loaded 2131 // library (and, thus, could be malloc'ed by the implementation). 2132 auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) { 2133 return all_of(Objects, [](Value *V) { 2134 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2135 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2136 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2137 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2138 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2139 !GV->isThreadLocal(); 2140 if (const Argument *A = dyn_cast<Argument>(V)) 2141 return A->hasByValAttr(); 2142 return false; 2143 }); 2144 }; 2145 2146 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2147 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2148 return ConstantInt::get(GetCompareTy(LHS), 2149 !CmpInst::isTrueWhenEqual(Pred)); 2150 2151 // Fold comparisons for non-escaping pointer even if the allocation call 2152 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2153 // dynamic allocation call could be either of the operands. 2154 Value *MI = nullptr; 2155 if (isAllocLikeFn(LHS, TLI) && llvm::isKnownNonNullAt(RHS, CxtI, DT)) 2156 MI = LHS; 2157 else if (isAllocLikeFn(RHS, TLI) && llvm::isKnownNonNullAt(LHS, CxtI, DT)) 2158 MI = RHS; 2159 // FIXME: We should also fold the compare when the pointer escapes, but the 2160 // compare dominates the pointer escape 2161 if (MI && !PointerMayBeCaptured(MI, true, true)) 2162 return ConstantInt::get(GetCompareTy(LHS), 2163 CmpInst::isFalseWhenEqual(Pred)); 2164 } 2165 2166 // Otherwise, fail. 2167 return nullptr; 2168 } 2169 2170 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2171 Value *RHS) { 2172 const APInt *C; 2173 if (!match(RHS, m_APInt(C))) 2174 return nullptr; 2175 2176 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2177 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2178 if (RHS_CR.isEmptySet()) 2179 return ConstantInt::getFalse(GetCompareTy(RHS)); 2180 if (RHS_CR.isFullSet()) 2181 return ConstantInt::getTrue(GetCompareTy(RHS)); 2182 2183 // Many binary operators with constant RHS have easy to compute constant 2184 // range. Use them to check whether the comparison is a tautology. 2185 unsigned Width = C->getBitWidth(); 2186 APInt Lower = APInt(Width, 0); 2187 APInt Upper = APInt(Width, 0); 2188 const APInt *C2; 2189 if (match(LHS, m_URem(m_Value(), m_APInt(C2)))) { 2190 // 'urem x, C2' produces [0, C2). 2191 Upper = *C2; 2192 } else if (match(LHS, m_SRem(m_Value(), m_APInt(C2)))) { 2193 // 'srem x, C2' produces (-|C2|, |C2|). 2194 Upper = C2->abs(); 2195 Lower = (-Upper) + 1; 2196 } else if (match(LHS, m_UDiv(m_APInt(C2), m_Value()))) { 2197 // 'udiv C2, x' produces [0, C2]. 2198 Upper = *C2 + 1; 2199 } else if (match(LHS, m_UDiv(m_Value(), m_APInt(C2)))) { 2200 // 'udiv x, C2' produces [0, UINT_MAX / C2]. 2201 APInt NegOne = APInt::getAllOnesValue(Width); 2202 if (*C2 != 0) 2203 Upper = NegOne.udiv(*C2) + 1; 2204 } else if (match(LHS, m_SDiv(m_APInt(C2), m_Value()))) { 2205 if (C2->isMinSignedValue()) { 2206 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 2207 Lower = *C2; 2208 Upper = Lower.lshr(1) + 1; 2209 } else { 2210 // 'sdiv C2, x' produces [-|C2|, |C2|]. 2211 Upper = C2->abs() + 1; 2212 Lower = (-Upper) + 1; 2213 } 2214 } else if (match(LHS, m_SDiv(m_Value(), m_APInt(C2)))) { 2215 APInt IntMin = APInt::getSignedMinValue(Width); 2216 APInt IntMax = APInt::getSignedMaxValue(Width); 2217 if (C2->isAllOnesValue()) { 2218 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 2219 // where C2 != -1 and C2 != 0 and C2 != 1 2220 Lower = IntMin + 1; 2221 Upper = IntMax + 1; 2222 } else if (C2->countLeadingZeros() < Width - 1) { 2223 // 'sdiv x, C2' produces [INT_MIN / C2, INT_MAX / C2] 2224 // where C2 != -1 and C2 != 0 and C2 != 1 2225 Lower = IntMin.sdiv(*C2); 2226 Upper = IntMax.sdiv(*C2); 2227 if (Lower.sgt(Upper)) 2228 std::swap(Lower, Upper); 2229 Upper = Upper + 1; 2230 assert(Upper != Lower && "Upper part of range has wrapped!"); 2231 } 2232 } else if (match(LHS, m_NUWShl(m_APInt(C2), m_Value()))) { 2233 // 'shl nuw C2, x' produces [C2, C2 << CLZ(C2)] 2234 Lower = *C2; 2235 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 2236 } else if (match(LHS, m_NSWShl(m_APInt(C2), m_Value()))) { 2237 if (C2->isNegative()) { 2238 // 'shl nsw C2, x' produces [C2 << CLO(C2)-1, C2] 2239 unsigned ShiftAmount = C2->countLeadingOnes() - 1; 2240 Lower = C2->shl(ShiftAmount); 2241 Upper = *C2 + 1; 2242 } else { 2243 // 'shl nsw C2, x' produces [C2, C2 << CLZ(C2)-1] 2244 unsigned ShiftAmount = C2->countLeadingZeros() - 1; 2245 Lower = *C2; 2246 Upper = C2->shl(ShiftAmount) + 1; 2247 } 2248 } else if (match(LHS, m_LShr(m_Value(), m_APInt(C2)))) { 2249 // 'lshr x, C2' produces [0, UINT_MAX >> C2]. 2250 APInt NegOne = APInt::getAllOnesValue(Width); 2251 if (C2->ult(Width)) 2252 Upper = NegOne.lshr(*C2) + 1; 2253 } else if (match(LHS, m_LShr(m_APInt(C2), m_Value()))) { 2254 // 'lshr C2, x' produces [C2 >> (Width-1), C2]. 2255 unsigned ShiftAmount = Width - 1; 2256 if (*C2 != 0 && cast<BinaryOperator>(LHS)->isExact()) 2257 ShiftAmount = C2->countTrailingZeros(); 2258 Lower = C2->lshr(ShiftAmount); 2259 Upper = *C2 + 1; 2260 } else if (match(LHS, m_AShr(m_Value(), m_APInt(C2)))) { 2261 // 'ashr x, C2' produces [INT_MIN >> C2, INT_MAX >> C2]. 2262 APInt IntMin = APInt::getSignedMinValue(Width); 2263 APInt IntMax = APInt::getSignedMaxValue(Width); 2264 if (C2->ult(Width)) { 2265 Lower = IntMin.ashr(*C2); 2266 Upper = IntMax.ashr(*C2) + 1; 2267 } 2268 } else if (match(LHS, m_AShr(m_APInt(C2), m_Value()))) { 2269 unsigned ShiftAmount = Width - 1; 2270 if (*C2 != 0 && cast<BinaryOperator>(LHS)->isExact()) 2271 ShiftAmount = C2->countTrailingZeros(); 2272 if (C2->isNegative()) { 2273 // 'ashr C2, x' produces [C2, C2 >> (Width-1)] 2274 Lower = *C2; 2275 Upper = C2->ashr(ShiftAmount) + 1; 2276 } else { 2277 // 'ashr C2, x' produces [C2 >> (Width-1), C2] 2278 Lower = C2->ashr(ShiftAmount); 2279 Upper = *C2 + 1; 2280 } 2281 } else if (match(LHS, m_Or(m_Value(), m_APInt(C2)))) { 2282 // 'or x, C2' produces [C2, UINT_MAX]. 2283 Lower = *C2; 2284 } else if (match(LHS, m_And(m_Value(), m_APInt(C2)))) { 2285 // 'and x, C2' produces [0, C2]. 2286 Upper = *C2 + 1; 2287 } else if (match(LHS, m_NUWAdd(m_Value(), m_APInt(C2)))) { 2288 // 'add nuw x, C2' produces [C2, UINT_MAX]. 2289 Lower = *C2; 2290 } 2291 2292 ConstantRange LHS_CR = 2293 Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true); 2294 2295 if (auto *I = dyn_cast<Instruction>(LHS)) 2296 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) 2297 LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges)); 2298 2299 if (!LHS_CR.isFullSet()) { 2300 if (RHS_CR.contains(LHS_CR)) 2301 return ConstantInt::getTrue(GetCompareTy(RHS)); 2302 if (RHS_CR.inverse().contains(LHS_CR)) 2303 return ConstantInt::getFalse(GetCompareTy(RHS)); 2304 } 2305 2306 return nullptr; 2307 } 2308 2309 /// Given operands for an ICmpInst, see if we can fold the result. 2310 /// If not, this returns null. 2311 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 2312 const Query &Q, unsigned MaxRecurse) { 2313 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 2314 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 2315 2316 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 2317 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 2318 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 2319 2320 // If we have a constant, make sure it is on the RHS. 2321 std::swap(LHS, RHS); 2322 Pred = CmpInst::getSwappedPredicate(Pred); 2323 } 2324 2325 Type *ITy = GetCompareTy(LHS); // The return type. 2326 Type *OpTy = LHS->getType(); // The operand type. 2327 2328 // icmp X, X -> true/false 2329 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false 2330 // because X could be 0. 2331 if (LHS == RHS || isa<UndefValue>(RHS)) 2332 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 2333 2334 // Special case logic when the operands have i1 type. 2335 if (OpTy->getScalarType()->isIntegerTy(1)) { 2336 switch (Pred) { 2337 default: break; 2338 case ICmpInst::ICMP_EQ: 2339 // X == 1 -> X 2340 if (match(RHS, m_One())) 2341 return LHS; 2342 break; 2343 case ICmpInst::ICMP_NE: 2344 // X != 0 -> X 2345 if (match(RHS, m_Zero())) 2346 return LHS; 2347 break; 2348 case ICmpInst::ICMP_UGT: 2349 // X >u 0 -> X 2350 if (match(RHS, m_Zero())) 2351 return LHS; 2352 break; 2353 case ICmpInst::ICMP_UGE: { 2354 // X >=u 1 -> X 2355 if (match(RHS, m_One())) 2356 return LHS; 2357 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2358 return getTrue(ITy); 2359 break; 2360 } 2361 case ICmpInst::ICMP_SGE: { 2362 /// For signed comparison, the values for an i1 are 0 and -1 2363 /// respectively. This maps into a truth table of: 2364 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2365 /// 0 | 0 | 1 (0 >= 0) | 1 2366 /// 0 | 1 | 1 (0 >= -1) | 1 2367 /// 1 | 0 | 0 (-1 >= 0) | 0 2368 /// 1 | 1 | 1 (-1 >= -1) | 1 2369 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2370 return getTrue(ITy); 2371 break; 2372 } 2373 case ICmpInst::ICMP_SLT: 2374 // X <s 0 -> X 2375 if (match(RHS, m_Zero())) 2376 return LHS; 2377 break; 2378 case ICmpInst::ICMP_SLE: 2379 // X <=s -1 -> X 2380 if (match(RHS, m_One())) 2381 return LHS; 2382 break; 2383 case ICmpInst::ICMP_ULE: { 2384 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2385 return getTrue(ITy); 2386 break; 2387 } 2388 } 2389 } 2390 2391 // If we are comparing with zero then try hard since this is a common case. 2392 if (match(RHS, m_Zero())) { 2393 bool LHSKnownNonNegative, LHSKnownNegative; 2394 switch (Pred) { 2395 default: llvm_unreachable("Unknown ICmp predicate!"); 2396 case ICmpInst::ICMP_ULT: 2397 return getFalse(ITy); 2398 case ICmpInst::ICMP_UGE: 2399 return getTrue(ITy); 2400 case ICmpInst::ICMP_EQ: 2401 case ICmpInst::ICMP_ULE: 2402 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2403 return getFalse(ITy); 2404 break; 2405 case ICmpInst::ICMP_NE: 2406 case ICmpInst::ICMP_UGT: 2407 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2408 return getTrue(ITy); 2409 break; 2410 case ICmpInst::ICMP_SLT: 2411 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2412 Q.CxtI, Q.DT); 2413 if (LHSKnownNegative) 2414 return getTrue(ITy); 2415 if (LHSKnownNonNegative) 2416 return getFalse(ITy); 2417 break; 2418 case ICmpInst::ICMP_SLE: 2419 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2420 Q.CxtI, Q.DT); 2421 if (LHSKnownNegative) 2422 return getTrue(ITy); 2423 if (LHSKnownNonNegative && 2424 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2425 return getFalse(ITy); 2426 break; 2427 case ICmpInst::ICMP_SGE: 2428 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2429 Q.CxtI, Q.DT); 2430 if (LHSKnownNegative) 2431 return getFalse(ITy); 2432 if (LHSKnownNonNegative) 2433 return getTrue(ITy); 2434 break; 2435 case ICmpInst::ICMP_SGT: 2436 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2437 Q.CxtI, Q.DT); 2438 if (LHSKnownNegative) 2439 return getFalse(ITy); 2440 if (LHSKnownNonNegative && 2441 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2442 return getTrue(ITy); 2443 break; 2444 } 2445 } 2446 2447 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS)) 2448 return V; 2449 2450 // If both operands have range metadata, use the metadata 2451 // to simplify the comparison. 2452 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 2453 auto RHS_Instr = dyn_cast<Instruction>(RHS); 2454 auto LHS_Instr = dyn_cast<Instruction>(LHS); 2455 2456 if (RHS_Instr->getMetadata(LLVMContext::MD_range) && 2457 LHS_Instr->getMetadata(LLVMContext::MD_range)) { 2458 auto RHS_CR = getConstantRangeFromMetadata( 2459 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 2460 auto LHS_CR = getConstantRangeFromMetadata( 2461 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 2462 2463 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 2464 if (Satisfied_CR.contains(LHS_CR)) 2465 return ConstantInt::getTrue(RHS->getContext()); 2466 2467 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 2468 CmpInst::getInversePredicate(Pred), RHS_CR); 2469 if (InversedSatisfied_CR.contains(LHS_CR)) 2470 return ConstantInt::getFalse(RHS->getContext()); 2471 } 2472 } 2473 2474 // Compare of cast, for example (zext X) != 0 -> X != 0 2475 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 2476 Instruction *LI = cast<CastInst>(LHS); 2477 Value *SrcOp = LI->getOperand(0); 2478 Type *SrcTy = SrcOp->getType(); 2479 Type *DstTy = LI->getType(); 2480 2481 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 2482 // if the integer type is the same size as the pointer type. 2483 if (MaxRecurse && isa<PtrToIntInst>(LI) && 2484 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 2485 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 2486 // Transfer the cast to the constant. 2487 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 2488 ConstantExpr::getIntToPtr(RHSC, SrcTy), 2489 Q, MaxRecurse-1)) 2490 return V; 2491 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 2492 if (RI->getOperand(0)->getType() == SrcTy) 2493 // Compare without the cast. 2494 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 2495 Q, MaxRecurse-1)) 2496 return V; 2497 } 2498 } 2499 2500 if (isa<ZExtInst>(LHS)) { 2501 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 2502 // same type. 2503 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 2504 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 2505 // Compare X and Y. Note that signed predicates become unsigned. 2506 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 2507 SrcOp, RI->getOperand(0), Q, 2508 MaxRecurse-1)) 2509 return V; 2510 } 2511 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 2512 // too. If not, then try to deduce the result of the comparison. 2513 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 2514 // Compute the constant that would happen if we truncated to SrcTy then 2515 // reextended to DstTy. 2516 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 2517 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 2518 2519 // If the re-extended constant didn't change then this is effectively 2520 // also a case of comparing two zero-extended values. 2521 if (RExt == CI && MaxRecurse) 2522 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 2523 SrcOp, Trunc, Q, MaxRecurse-1)) 2524 return V; 2525 2526 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 2527 // there. Use this to work out the result of the comparison. 2528 if (RExt != CI) { 2529 switch (Pred) { 2530 default: llvm_unreachable("Unknown ICmp predicate!"); 2531 // LHS <u RHS. 2532 case ICmpInst::ICMP_EQ: 2533 case ICmpInst::ICMP_UGT: 2534 case ICmpInst::ICMP_UGE: 2535 return ConstantInt::getFalse(CI->getContext()); 2536 2537 case ICmpInst::ICMP_NE: 2538 case ICmpInst::ICMP_ULT: 2539 case ICmpInst::ICMP_ULE: 2540 return ConstantInt::getTrue(CI->getContext()); 2541 2542 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 2543 // is non-negative then LHS <s RHS. 2544 case ICmpInst::ICMP_SGT: 2545 case ICmpInst::ICMP_SGE: 2546 return CI->getValue().isNegative() ? 2547 ConstantInt::getTrue(CI->getContext()) : 2548 ConstantInt::getFalse(CI->getContext()); 2549 2550 case ICmpInst::ICMP_SLT: 2551 case ICmpInst::ICMP_SLE: 2552 return CI->getValue().isNegative() ? 2553 ConstantInt::getFalse(CI->getContext()) : 2554 ConstantInt::getTrue(CI->getContext()); 2555 } 2556 } 2557 } 2558 } 2559 2560 if (isa<SExtInst>(LHS)) { 2561 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 2562 // same type. 2563 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 2564 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 2565 // Compare X and Y. Note that the predicate does not change. 2566 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 2567 Q, MaxRecurse-1)) 2568 return V; 2569 } 2570 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 2571 // too. If not, then try to deduce the result of the comparison. 2572 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 2573 // Compute the constant that would happen if we truncated to SrcTy then 2574 // reextended to DstTy. 2575 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 2576 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 2577 2578 // If the re-extended constant didn't change then this is effectively 2579 // also a case of comparing two sign-extended values. 2580 if (RExt == CI && MaxRecurse) 2581 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 2582 return V; 2583 2584 // Otherwise the upper bits of LHS are all equal, while RHS has varying 2585 // bits there. Use this to work out the result of the comparison. 2586 if (RExt != CI) { 2587 switch (Pred) { 2588 default: llvm_unreachable("Unknown ICmp predicate!"); 2589 case ICmpInst::ICMP_EQ: 2590 return ConstantInt::getFalse(CI->getContext()); 2591 case ICmpInst::ICMP_NE: 2592 return ConstantInt::getTrue(CI->getContext()); 2593 2594 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 2595 // LHS >s RHS. 2596 case ICmpInst::ICMP_SGT: 2597 case ICmpInst::ICMP_SGE: 2598 return CI->getValue().isNegative() ? 2599 ConstantInt::getTrue(CI->getContext()) : 2600 ConstantInt::getFalse(CI->getContext()); 2601 case ICmpInst::ICMP_SLT: 2602 case ICmpInst::ICMP_SLE: 2603 return CI->getValue().isNegative() ? 2604 ConstantInt::getFalse(CI->getContext()) : 2605 ConstantInt::getTrue(CI->getContext()); 2606 2607 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 2608 // LHS >u RHS. 2609 case ICmpInst::ICMP_UGT: 2610 case ICmpInst::ICMP_UGE: 2611 // Comparison is true iff the LHS <s 0. 2612 if (MaxRecurse) 2613 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 2614 Constant::getNullValue(SrcTy), 2615 Q, MaxRecurse-1)) 2616 return V; 2617 break; 2618 case ICmpInst::ICMP_ULT: 2619 case ICmpInst::ICMP_ULE: 2620 // Comparison is true iff the LHS >=s 0. 2621 if (MaxRecurse) 2622 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 2623 Constant::getNullValue(SrcTy), 2624 Q, MaxRecurse-1)) 2625 return V; 2626 break; 2627 } 2628 } 2629 } 2630 } 2631 } 2632 2633 // icmp eq|ne X, Y -> false|true if X != Y 2634 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2635 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) { 2636 LLVMContext &Ctx = LHS->getType()->getContext(); 2637 return Pred == ICmpInst::ICMP_NE ? 2638 ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx); 2639 } 2640 2641 // Special logic for binary operators. 2642 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2643 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2644 if (MaxRecurse && (LBO || RBO)) { 2645 // Analyze the case when either LHS or RHS is an add instruction. 2646 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2647 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2648 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2649 if (LBO && LBO->getOpcode() == Instruction::Add) { 2650 A = LBO->getOperand(0); B = LBO->getOperand(1); 2651 NoLHSWrapProblem = ICmpInst::isEquality(Pred) || 2652 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) || 2653 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap()); 2654 } 2655 if (RBO && RBO->getOpcode() == Instruction::Add) { 2656 C = RBO->getOperand(0); D = RBO->getOperand(1); 2657 NoRHSWrapProblem = ICmpInst::isEquality(Pred) || 2658 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) || 2659 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap()); 2660 } 2661 2662 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2663 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2664 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2665 Constant::getNullValue(RHS->getType()), 2666 Q, MaxRecurse-1)) 2667 return V; 2668 2669 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2670 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2671 if (Value *V = SimplifyICmpInst(Pred, 2672 Constant::getNullValue(LHS->getType()), 2673 C == LHS ? D : C, Q, MaxRecurse-1)) 2674 return V; 2675 2676 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2677 if (A && C && (A == C || A == D || B == C || B == D) && 2678 NoLHSWrapProblem && NoRHSWrapProblem) { 2679 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2680 Value *Y, *Z; 2681 if (A == C) { 2682 // C + B == C + D -> B == D 2683 Y = B; 2684 Z = D; 2685 } else if (A == D) { 2686 // D + B == C + D -> B == C 2687 Y = B; 2688 Z = C; 2689 } else if (B == C) { 2690 // A + C == C + D -> A == D 2691 Y = A; 2692 Z = D; 2693 } else { 2694 assert(B == D); 2695 // A + D == C + D -> A == C 2696 Y = A; 2697 Z = C; 2698 } 2699 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1)) 2700 return V; 2701 } 2702 } 2703 2704 { 2705 Value *Y = nullptr; 2706 // icmp pred (or X, Y), X 2707 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2708 if (Pred == ICmpInst::ICMP_ULT) 2709 return getFalse(ITy); 2710 if (Pred == ICmpInst::ICMP_UGE) 2711 return getTrue(ITy); 2712 2713 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2714 bool RHSKnownNonNegative, RHSKnownNegative; 2715 bool YKnownNonNegative, YKnownNegative; 2716 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, Q.DL, 0, 2717 Q.AC, Q.CxtI, Q.DT); 2718 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC, 2719 Q.CxtI, Q.DT); 2720 if (RHSKnownNonNegative && YKnownNegative) 2721 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2722 if (RHSKnownNegative || YKnownNonNegative) 2723 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2724 } 2725 } 2726 // icmp pred X, (or X, Y) 2727 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) { 2728 if (Pred == ICmpInst::ICMP_ULE) 2729 return getTrue(ITy); 2730 if (Pred == ICmpInst::ICMP_UGT) 2731 return getFalse(ITy); 2732 2733 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) { 2734 bool LHSKnownNonNegative, LHSKnownNegative; 2735 bool YKnownNonNegative, YKnownNegative; 2736 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, 2737 Q.AC, Q.CxtI, Q.DT); 2738 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC, 2739 Q.CxtI, Q.DT); 2740 if (LHSKnownNonNegative && YKnownNegative) 2741 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy); 2742 if (LHSKnownNegative || YKnownNonNegative) 2743 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy); 2744 } 2745 } 2746 } 2747 2748 // icmp pred (and X, Y), X 2749 if (LBO && match(LBO, m_CombineOr(m_And(m_Value(), m_Specific(RHS)), 2750 m_And(m_Specific(RHS), m_Value())))) { 2751 if (Pred == ICmpInst::ICMP_UGT) 2752 return getFalse(ITy); 2753 if (Pred == ICmpInst::ICMP_ULE) 2754 return getTrue(ITy); 2755 } 2756 // icmp pred X, (and X, Y) 2757 if (RBO && match(RBO, m_CombineOr(m_And(m_Value(), m_Specific(LHS)), 2758 m_And(m_Specific(LHS), m_Value())))) { 2759 if (Pred == ICmpInst::ICMP_UGE) 2760 return getTrue(ITy); 2761 if (Pred == ICmpInst::ICMP_ULT) 2762 return getFalse(ITy); 2763 } 2764 2765 // 0 - (zext X) pred C 2766 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2767 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2768 if (RHSC->getValue().isStrictlyPositive()) { 2769 if (Pred == ICmpInst::ICMP_SLT) 2770 return ConstantInt::getTrue(RHSC->getContext()); 2771 if (Pred == ICmpInst::ICMP_SGE) 2772 return ConstantInt::getFalse(RHSC->getContext()); 2773 if (Pred == ICmpInst::ICMP_EQ) 2774 return ConstantInt::getFalse(RHSC->getContext()); 2775 if (Pred == ICmpInst::ICMP_NE) 2776 return ConstantInt::getTrue(RHSC->getContext()); 2777 } 2778 if (RHSC->getValue().isNonNegative()) { 2779 if (Pred == ICmpInst::ICMP_SLE) 2780 return ConstantInt::getTrue(RHSC->getContext()); 2781 if (Pred == ICmpInst::ICMP_SGT) 2782 return ConstantInt::getFalse(RHSC->getContext()); 2783 } 2784 } 2785 } 2786 2787 // icmp pred (urem X, Y), Y 2788 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2789 bool KnownNonNegative, KnownNegative; 2790 switch (Pred) { 2791 default: 2792 break; 2793 case ICmpInst::ICMP_SGT: 2794 case ICmpInst::ICMP_SGE: 2795 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2796 Q.CxtI, Q.DT); 2797 if (!KnownNonNegative) 2798 break; 2799 LLVM_FALLTHROUGH; 2800 case ICmpInst::ICMP_EQ: 2801 case ICmpInst::ICMP_UGT: 2802 case ICmpInst::ICMP_UGE: 2803 return getFalse(ITy); 2804 case ICmpInst::ICMP_SLT: 2805 case ICmpInst::ICMP_SLE: 2806 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2807 Q.CxtI, Q.DT); 2808 if (!KnownNonNegative) 2809 break; 2810 LLVM_FALLTHROUGH; 2811 case ICmpInst::ICMP_NE: 2812 case ICmpInst::ICMP_ULT: 2813 case ICmpInst::ICMP_ULE: 2814 return getTrue(ITy); 2815 } 2816 } 2817 2818 // icmp pred X, (urem Y, X) 2819 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2820 bool KnownNonNegative, KnownNegative; 2821 switch (Pred) { 2822 default: 2823 break; 2824 case ICmpInst::ICMP_SGT: 2825 case ICmpInst::ICMP_SGE: 2826 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2827 Q.CxtI, Q.DT); 2828 if (!KnownNonNegative) 2829 break; 2830 LLVM_FALLTHROUGH; 2831 case ICmpInst::ICMP_NE: 2832 case ICmpInst::ICMP_UGT: 2833 case ICmpInst::ICMP_UGE: 2834 return getTrue(ITy); 2835 case ICmpInst::ICMP_SLT: 2836 case ICmpInst::ICMP_SLE: 2837 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2838 Q.CxtI, Q.DT); 2839 if (!KnownNonNegative) 2840 break; 2841 LLVM_FALLTHROUGH; 2842 case ICmpInst::ICMP_EQ: 2843 case ICmpInst::ICMP_ULT: 2844 case ICmpInst::ICMP_ULE: 2845 return getFalse(ITy); 2846 } 2847 } 2848 2849 // x >> y <=u x 2850 // x udiv y <=u x. 2851 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2852 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { 2853 // icmp pred (X op Y), X 2854 if (Pred == ICmpInst::ICMP_UGT) 2855 return getFalse(ITy); 2856 if (Pred == ICmpInst::ICMP_ULE) 2857 return getTrue(ITy); 2858 } 2859 2860 // x >=u x >> y 2861 // x >=u x udiv y. 2862 if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) || 2863 match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) { 2864 // icmp pred X, (X op Y) 2865 if (Pred == ICmpInst::ICMP_ULT) 2866 return getFalse(ITy); 2867 if (Pred == ICmpInst::ICMP_UGE) 2868 return getTrue(ITy); 2869 } 2870 2871 // handle: 2872 // CI2 << X == CI 2873 // CI2 << X != CI 2874 // 2875 // where CI2 is a power of 2 and CI isn't 2876 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2877 const APInt *CI2Val, *CIVal = &CI->getValue(); 2878 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2879 CI2Val->isPowerOf2()) { 2880 if (!CIVal->isPowerOf2()) { 2881 // CI2 << X can equal zero in some circumstances, 2882 // this simplification is unsafe if CI is zero. 2883 // 2884 // We know it is safe if: 2885 // - The shift is nsw, we can't shift out the one bit. 2886 // - The shift is nuw, we can't shift out the one bit. 2887 // - CI2 is one 2888 // - CI isn't zero 2889 if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() || 2890 *CI2Val == 1 || !CI->isZero()) { 2891 if (Pred == ICmpInst::ICMP_EQ) 2892 return ConstantInt::getFalse(RHS->getContext()); 2893 if (Pred == ICmpInst::ICMP_NE) 2894 return ConstantInt::getTrue(RHS->getContext()); 2895 } 2896 } 2897 if (CIVal->isSignBit() && *CI2Val == 1) { 2898 if (Pred == ICmpInst::ICMP_UGT) 2899 return ConstantInt::getFalse(RHS->getContext()); 2900 if (Pred == ICmpInst::ICMP_ULE) 2901 return ConstantInt::getTrue(RHS->getContext()); 2902 } 2903 } 2904 } 2905 2906 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2907 LBO->getOperand(1) == RBO->getOperand(1)) { 2908 switch (LBO->getOpcode()) { 2909 default: break; 2910 case Instruction::UDiv: 2911 case Instruction::LShr: 2912 if (ICmpInst::isSigned(Pred)) 2913 break; 2914 LLVM_FALLTHROUGH; 2915 case Instruction::SDiv: 2916 case Instruction::AShr: 2917 if (!LBO->isExact() || !RBO->isExact()) 2918 break; 2919 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2920 RBO->getOperand(0), Q, MaxRecurse-1)) 2921 return V; 2922 break; 2923 case Instruction::Shl: { 2924 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap(); 2925 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap(); 2926 if (!NUW && !NSW) 2927 break; 2928 if (!NSW && ICmpInst::isSigned(Pred)) 2929 break; 2930 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2931 RBO->getOperand(0), Q, MaxRecurse-1)) 2932 return V; 2933 break; 2934 } 2935 } 2936 } 2937 2938 // Simplify comparisons involving max/min. 2939 Value *A, *B; 2940 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 2941 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 2942 2943 // Signed variants on "max(a,b)>=a -> true". 2944 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2945 if (A != RHS) std::swap(A, B); // smax(A, B) pred A. 2946 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2947 // We analyze this as smax(A, B) pred A. 2948 P = Pred; 2949 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 2950 (A == LHS || B == LHS)) { 2951 if (A != LHS) std::swap(A, B); // A pred smax(A, B). 2952 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2953 // We analyze this as smax(A, B) swapped-pred A. 2954 P = CmpInst::getSwappedPredicate(Pred); 2955 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2956 (A == RHS || B == RHS)) { 2957 if (A != RHS) std::swap(A, B); // smin(A, B) pred A. 2958 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2959 // We analyze this as smax(-A, -B) swapped-pred -A. 2960 // Note that we do not need to actually form -A or -B thanks to EqP. 2961 P = CmpInst::getSwappedPredicate(Pred); 2962 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 2963 (A == LHS || B == LHS)) { 2964 if (A != LHS) std::swap(A, B); // A pred smin(A, B). 2965 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2966 // We analyze this as smax(-A, -B) pred -A. 2967 // Note that we do not need to actually form -A or -B thanks to EqP. 2968 P = Pred; 2969 } 2970 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2971 // Cases correspond to "max(A, B) p A". 2972 switch (P) { 2973 default: 2974 break; 2975 case CmpInst::ICMP_EQ: 2976 case CmpInst::ICMP_SLE: 2977 // Equivalent to "A EqP B". This may be the same as the condition tested 2978 // in the max/min; if so, we can just return that. 2979 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2980 return V; 2981 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2982 return V; 2983 // Otherwise, see if "A EqP B" simplifies. 2984 if (MaxRecurse) 2985 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1)) 2986 return V; 2987 break; 2988 case CmpInst::ICMP_NE: 2989 case CmpInst::ICMP_SGT: { 2990 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2991 // Equivalent to "A InvEqP B". This may be the same as the condition 2992 // tested in the max/min; if so, we can just return that. 2993 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2994 return V; 2995 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2996 return V; 2997 // Otherwise, see if "A InvEqP B" simplifies. 2998 if (MaxRecurse) 2999 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1)) 3000 return V; 3001 break; 3002 } 3003 case CmpInst::ICMP_SGE: 3004 // Always true. 3005 return getTrue(ITy); 3006 case CmpInst::ICMP_SLT: 3007 // Always false. 3008 return getFalse(ITy); 3009 } 3010 } 3011 3012 // Unsigned variants on "max(a,b)>=a -> true". 3013 P = CmpInst::BAD_ICMP_PREDICATE; 3014 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3015 if (A != RHS) std::swap(A, B); // umax(A, B) pred A. 3016 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3017 // We analyze this as umax(A, B) pred A. 3018 P = Pred; 3019 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 3020 (A == LHS || B == LHS)) { 3021 if (A != LHS) std::swap(A, B); // A pred umax(A, B). 3022 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3023 // We analyze this as umax(A, B) swapped-pred A. 3024 P = CmpInst::getSwappedPredicate(Pred); 3025 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3026 (A == RHS || B == RHS)) { 3027 if (A != RHS) std::swap(A, B); // umin(A, B) pred A. 3028 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3029 // We analyze this as umax(-A, -B) swapped-pred -A. 3030 // Note that we do not need to actually form -A or -B thanks to EqP. 3031 P = CmpInst::getSwappedPredicate(Pred); 3032 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3033 (A == LHS || B == LHS)) { 3034 if (A != LHS) std::swap(A, B); // A pred umin(A, B). 3035 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3036 // We analyze this as umax(-A, -B) pred -A. 3037 // Note that we do not need to actually form -A or -B thanks to EqP. 3038 P = Pred; 3039 } 3040 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3041 // Cases correspond to "max(A, B) p A". 3042 switch (P) { 3043 default: 3044 break; 3045 case CmpInst::ICMP_EQ: 3046 case CmpInst::ICMP_ULE: 3047 // Equivalent to "A EqP B". This may be the same as the condition tested 3048 // in the max/min; if so, we can just return that. 3049 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3050 return V; 3051 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3052 return V; 3053 // Otherwise, see if "A EqP B" simplifies. 3054 if (MaxRecurse) 3055 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1)) 3056 return V; 3057 break; 3058 case CmpInst::ICMP_NE: 3059 case CmpInst::ICMP_UGT: { 3060 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3061 // Equivalent to "A InvEqP B". This may be the same as the condition 3062 // tested in the max/min; if so, we can just return that. 3063 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3064 return V; 3065 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3066 return V; 3067 // Otherwise, see if "A InvEqP B" simplifies. 3068 if (MaxRecurse) 3069 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1)) 3070 return V; 3071 break; 3072 } 3073 case CmpInst::ICMP_UGE: 3074 // Always true. 3075 return getTrue(ITy); 3076 case CmpInst::ICMP_ULT: 3077 // Always false. 3078 return getFalse(ITy); 3079 } 3080 } 3081 3082 // Variants on "max(x,y) >= min(x,z)". 3083 Value *C, *D; 3084 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3085 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3086 (A == C || A == D || B == C || B == D)) { 3087 // max(x, ?) pred min(x, ?). 3088 if (Pred == CmpInst::ICMP_SGE) 3089 // Always true. 3090 return getTrue(ITy); 3091 if (Pred == CmpInst::ICMP_SLT) 3092 // Always false. 3093 return getFalse(ITy); 3094 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3095 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 3096 (A == C || A == D || B == C || B == D)) { 3097 // min(x, ?) pred max(x, ?). 3098 if (Pred == CmpInst::ICMP_SLE) 3099 // Always true. 3100 return getTrue(ITy); 3101 if (Pred == CmpInst::ICMP_SGT) 3102 // Always false. 3103 return getFalse(ITy); 3104 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3105 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3106 (A == C || A == D || B == C || B == D)) { 3107 // max(x, ?) pred min(x, ?). 3108 if (Pred == CmpInst::ICMP_UGE) 3109 // Always true. 3110 return getTrue(ITy); 3111 if (Pred == CmpInst::ICMP_ULT) 3112 // Always false. 3113 return getFalse(ITy); 3114 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3115 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 3116 (A == C || A == D || B == C || B == D)) { 3117 // min(x, ?) pred max(x, ?). 3118 if (Pred == CmpInst::ICMP_ULE) 3119 // Always true. 3120 return getTrue(ITy); 3121 if (Pred == CmpInst::ICMP_UGT) 3122 // Always false. 3123 return getFalse(ITy); 3124 } 3125 3126 // Simplify comparisons of related pointers using a powerful, recursive 3127 // GEP-walk when we have target data available.. 3128 if (LHS->getType()->isPointerTy()) 3129 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, LHS, RHS)) 3130 return C; 3131 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3132 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3133 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3134 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3135 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3136 Q.DL.getTypeSizeInBits(CRHS->getType())) 3137 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, 3138 CLHS->getPointerOperand(), 3139 CRHS->getPointerOperand())) 3140 return C; 3141 3142 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3143 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3144 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3145 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3146 (ICmpInst::isEquality(Pred) || 3147 (GLHS->isInBounds() && GRHS->isInBounds() && 3148 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3149 // The bases are equal and the indices are constant. Build a constant 3150 // expression GEP with the same indices and a null base pointer to see 3151 // what constant folding can make out of it. 3152 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3153 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3154 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3155 GLHS->getSourceElementType(), Null, IndicesLHS); 3156 3157 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3158 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3159 GLHS->getSourceElementType(), Null, IndicesRHS); 3160 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3161 } 3162 } 3163 } 3164 3165 // If a bit is known to be zero for A and known to be one for B, 3166 // then A and B cannot be equal. 3167 if (ICmpInst::isEquality(Pred)) { 3168 const APInt *RHSVal; 3169 if (match(RHS, m_APInt(RHSVal))) { 3170 unsigned BitWidth = RHSVal->getBitWidth(); 3171 APInt LHSKnownZero(BitWidth, 0); 3172 APInt LHSKnownOne(BitWidth, 0); 3173 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, Q.DL, /*Depth=*/0, Q.AC, 3174 Q.CxtI, Q.DT); 3175 if (((LHSKnownZero & *RHSVal) != 0) || ((LHSKnownOne & ~(*RHSVal)) != 0)) 3176 return Pred == ICmpInst::ICMP_EQ ? ConstantInt::getFalse(ITy) 3177 : ConstantInt::getTrue(ITy); 3178 } 3179 } 3180 3181 // If the comparison is with the result of a select instruction, check whether 3182 // comparing with either branch of the select always yields the same value. 3183 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3184 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3185 return V; 3186 3187 // If the comparison is with the result of a phi instruction, check whether 3188 // doing the compare with each incoming phi value yields a common result. 3189 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3190 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3191 return V; 3192 3193 return nullptr; 3194 } 3195 3196 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3197 const DataLayout &DL, 3198 const TargetLibraryInfo *TLI, 3199 const DominatorTree *DT, AssumptionCache *AC, 3200 const Instruction *CxtI) { 3201 return ::SimplifyICmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 3202 RecursionLimit); 3203 } 3204 3205 /// Given operands for an FCmpInst, see if we can fold the result. 3206 /// If not, this returns null. 3207 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3208 FastMathFlags FMF, const Query &Q, 3209 unsigned MaxRecurse) { 3210 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3211 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3212 3213 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3214 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3215 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3216 3217 // If we have a constant, make sure it is on the RHS. 3218 std::swap(LHS, RHS); 3219 Pred = CmpInst::getSwappedPredicate(Pred); 3220 } 3221 3222 // Fold trivial predicates. 3223 Type *RetTy = GetCompareTy(LHS); 3224 if (Pred == FCmpInst::FCMP_FALSE) 3225 return getFalse(RetTy); 3226 if (Pred == FCmpInst::FCMP_TRUE) 3227 return getTrue(RetTy); 3228 3229 // UNO/ORD predicates can be trivially folded if NaNs are ignored. 3230 if (FMF.noNaNs()) { 3231 if (Pred == FCmpInst::FCMP_UNO) 3232 return getFalse(RetTy); 3233 if (Pred == FCmpInst::FCMP_ORD) 3234 return getTrue(RetTy); 3235 } 3236 3237 // fcmp pred x, undef and fcmp pred undef, x 3238 // fold to true if unordered, false if ordered 3239 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3240 // Choosing NaN for the undef will always make unordered comparison succeed 3241 // and ordered comparison fail. 3242 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3243 } 3244 3245 // fcmp x,x -> true/false. Not all compares are foldable. 3246 if (LHS == RHS) { 3247 if (CmpInst::isTrueWhenEqual(Pred)) 3248 return getTrue(RetTy); 3249 if (CmpInst::isFalseWhenEqual(Pred)) 3250 return getFalse(RetTy); 3251 } 3252 3253 // Handle fcmp with constant RHS 3254 const ConstantFP *CFP = nullptr; 3255 if (const auto *RHSC = dyn_cast<Constant>(RHS)) { 3256 if (RHS->getType()->isVectorTy()) 3257 CFP = dyn_cast_or_null<ConstantFP>(RHSC->getSplatValue()); 3258 else 3259 CFP = dyn_cast<ConstantFP>(RHSC); 3260 } 3261 if (CFP) { 3262 // If the constant is a nan, see if we can fold the comparison based on it. 3263 if (CFP->getValueAPF().isNaN()) { 3264 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo" 3265 return getFalse(RetTy); 3266 assert(FCmpInst::isUnordered(Pred) && 3267 "Comparison must be either ordered or unordered!"); 3268 // True if unordered. 3269 return getTrue(RetTy); 3270 } 3271 // Check whether the constant is an infinity. 3272 if (CFP->getValueAPF().isInfinity()) { 3273 if (CFP->getValueAPF().isNegative()) { 3274 switch (Pred) { 3275 case FCmpInst::FCMP_OLT: 3276 // No value is ordered and less than negative infinity. 3277 return getFalse(RetTy); 3278 case FCmpInst::FCMP_UGE: 3279 // All values are unordered with or at least negative infinity. 3280 return getTrue(RetTy); 3281 default: 3282 break; 3283 } 3284 } else { 3285 switch (Pred) { 3286 case FCmpInst::FCMP_OGT: 3287 // No value is ordered and greater than infinity. 3288 return getFalse(RetTy); 3289 case FCmpInst::FCMP_ULE: 3290 // All values are unordered with and at most infinity. 3291 return getTrue(RetTy); 3292 default: 3293 break; 3294 } 3295 } 3296 } 3297 if (CFP->getValueAPF().isZero()) { 3298 switch (Pred) { 3299 case FCmpInst::FCMP_UGE: 3300 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3301 return getTrue(RetTy); 3302 break; 3303 case FCmpInst::FCMP_OLT: 3304 // X < 0 3305 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3306 return getFalse(RetTy); 3307 break; 3308 default: 3309 break; 3310 } 3311 } 3312 } 3313 3314 // If the comparison is with the result of a select instruction, check whether 3315 // comparing with either branch of the select always yields the same value. 3316 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3317 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3318 return V; 3319 3320 // If the comparison is with the result of a phi instruction, check whether 3321 // doing the compare with each incoming phi value yields a common result. 3322 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3323 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3324 return V; 3325 3326 return nullptr; 3327 } 3328 3329 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3330 FastMathFlags FMF, const DataLayout &DL, 3331 const TargetLibraryInfo *TLI, 3332 const DominatorTree *DT, AssumptionCache *AC, 3333 const Instruction *CxtI) { 3334 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, 3335 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3336 } 3337 3338 /// See if V simplifies when its operand Op is replaced with RepOp. 3339 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3340 const Query &Q, 3341 unsigned MaxRecurse) { 3342 // Trivial replacement. 3343 if (V == Op) 3344 return RepOp; 3345 3346 auto *I = dyn_cast<Instruction>(V); 3347 if (!I) 3348 return nullptr; 3349 3350 // If this is a binary operator, try to simplify it with the replaced op. 3351 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3352 // Consider: 3353 // %cmp = icmp eq i32 %x, 2147483647 3354 // %add = add nsw i32 %x, 1 3355 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3356 // 3357 // We can't replace %sel with %add unless we strip away the flags. 3358 if (isa<OverflowingBinaryOperator>(B)) 3359 if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap()) 3360 return nullptr; 3361 if (isa<PossiblyExactOperator>(B)) 3362 if (B->isExact()) 3363 return nullptr; 3364 3365 if (MaxRecurse) { 3366 if (B->getOperand(0) == Op) 3367 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3368 MaxRecurse - 1); 3369 if (B->getOperand(1) == Op) 3370 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3371 MaxRecurse - 1); 3372 } 3373 } 3374 3375 // Same for CmpInsts. 3376 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3377 if (MaxRecurse) { 3378 if (C->getOperand(0) == Op) 3379 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3380 MaxRecurse - 1); 3381 if (C->getOperand(1) == Op) 3382 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3383 MaxRecurse - 1); 3384 } 3385 } 3386 3387 // TODO: We could hand off more cases to instsimplify here. 3388 3389 // If all operands are constant after substituting Op for RepOp then we can 3390 // constant fold the instruction. 3391 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3392 // Build a list of all constant operands. 3393 SmallVector<Constant *, 8> ConstOps; 3394 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3395 if (I->getOperand(i) == Op) 3396 ConstOps.push_back(CRepOp); 3397 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3398 ConstOps.push_back(COp); 3399 else 3400 break; 3401 } 3402 3403 // All operands were constants, fold it. 3404 if (ConstOps.size() == I->getNumOperands()) { 3405 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3406 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3407 ConstOps[1], Q.DL, Q.TLI); 3408 3409 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3410 if (!LI->isVolatile()) 3411 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3412 3413 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3414 } 3415 } 3416 3417 return nullptr; 3418 } 3419 3420 /// Try to simplify a select instruction when its condition operand is an 3421 /// integer comparison where one operand of the compare is a constant. 3422 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3423 const APInt *Y, bool TrueWhenUnset) { 3424 const APInt *C; 3425 3426 // (X & Y) == 0 ? X & ~Y : X --> X 3427 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3428 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3429 *Y == ~*C) 3430 return TrueWhenUnset ? FalseVal : TrueVal; 3431 3432 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3433 // (X & Y) != 0 ? X : X & ~Y --> X 3434 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3435 *Y == ~*C) 3436 return TrueWhenUnset ? FalseVal : TrueVal; 3437 3438 if (Y->isPowerOf2()) { 3439 // (X & Y) == 0 ? X | Y : X --> X | Y 3440 // (X & Y) != 0 ? X | Y : X --> X 3441 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3442 *Y == *C) 3443 return TrueWhenUnset ? TrueVal : FalseVal; 3444 3445 // (X & Y) == 0 ? X : X | Y --> X 3446 // (X & Y) != 0 ? X : X | Y --> X | Y 3447 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3448 *Y == *C) 3449 return TrueWhenUnset ? TrueVal : FalseVal; 3450 } 3451 3452 return nullptr; 3453 } 3454 3455 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 3456 /// eq/ne. 3457 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *TrueVal, 3458 Value *FalseVal, 3459 bool TrueWhenUnset) { 3460 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits(); 3461 if (!BitWidth) 3462 return nullptr; 3463 3464 APInt MinSignedValue; 3465 Value *X; 3466 if (match(CmpLHS, m_Trunc(m_Value(X))) && (X == TrueVal || X == FalseVal)) { 3467 // icmp slt (trunc X), 0 <--> icmp ne (and X, C), 0 3468 // icmp sgt (trunc X), -1 <--> icmp eq (and X, C), 0 3469 unsigned DestSize = CmpLHS->getType()->getScalarSizeInBits(); 3470 MinSignedValue = APInt::getSignedMinValue(DestSize).zext(BitWidth); 3471 } else { 3472 // icmp slt X, 0 <--> icmp ne (and X, C), 0 3473 // icmp sgt X, -1 <--> icmp eq (and X, C), 0 3474 X = CmpLHS; 3475 MinSignedValue = APInt::getSignedMinValue(BitWidth); 3476 } 3477 3478 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, &MinSignedValue, 3479 TrueWhenUnset)) 3480 return V; 3481 3482 return nullptr; 3483 } 3484 3485 /// Try to simplify a select instruction when its condition operand is an 3486 /// integer comparison. 3487 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 3488 Value *FalseVal, const Query &Q, 3489 unsigned MaxRecurse) { 3490 ICmpInst::Predicate Pred; 3491 Value *CmpLHS, *CmpRHS; 3492 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 3493 return nullptr; 3494 3495 // FIXME: This code is nearly duplicated in InstCombine. Using/refactoring 3496 // decomposeBitTestICmp() might help. 3497 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) { 3498 Value *X; 3499 const APInt *Y; 3500 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 3501 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 3502 Pred == ICmpInst::ICMP_EQ)) 3503 return V; 3504 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 3505 // Comparing signed-less-than 0 checks if the sign bit is set. 3506 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal, 3507 false)) 3508 return V; 3509 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 3510 // Comparing signed-greater-than -1 checks if the sign bit is not set. 3511 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal, 3512 true)) 3513 return V; 3514 } 3515 3516 if (CondVal->hasOneUse()) { 3517 const APInt *C; 3518 if (match(CmpRHS, m_APInt(C))) { 3519 // X < MIN ? T : F --> F 3520 if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue()) 3521 return FalseVal; 3522 // X < MIN ? T : F --> F 3523 if (Pred == ICmpInst::ICMP_ULT && C->isMinValue()) 3524 return FalseVal; 3525 // X > MAX ? T : F --> F 3526 if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue()) 3527 return FalseVal; 3528 // X > MAX ? T : F --> F 3529 if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue()) 3530 return FalseVal; 3531 } 3532 } 3533 3534 // If we have an equality comparison, then we know the value in one of the 3535 // arms of the select. See if substituting this value into the arm and 3536 // simplifying the result yields the same value as the other arm. 3537 if (Pred == ICmpInst::ICMP_EQ) { 3538 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3539 TrueVal || 3540 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3541 TrueVal) 3542 return FalseVal; 3543 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3544 FalseVal || 3545 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3546 FalseVal) 3547 return FalseVal; 3548 } else if (Pred == ICmpInst::ICMP_NE) { 3549 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3550 FalseVal || 3551 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3552 FalseVal) 3553 return TrueVal; 3554 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3555 TrueVal || 3556 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3557 TrueVal) 3558 return TrueVal; 3559 } 3560 3561 return nullptr; 3562 } 3563 3564 /// Given operands for a SelectInst, see if we can fold the result. 3565 /// If not, this returns null. 3566 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal, 3567 Value *FalseVal, const Query &Q, 3568 unsigned MaxRecurse) { 3569 // select true, X, Y -> X 3570 // select false, X, Y -> Y 3571 if (Constant *CB = dyn_cast<Constant>(CondVal)) { 3572 if (CB->isAllOnesValue()) 3573 return TrueVal; 3574 if (CB->isNullValue()) 3575 return FalseVal; 3576 } 3577 3578 // select C, X, X -> X 3579 if (TrueVal == FalseVal) 3580 return TrueVal; 3581 3582 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y 3583 if (isa<Constant>(TrueVal)) 3584 return TrueVal; 3585 return FalseVal; 3586 } 3587 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X 3588 return FalseVal; 3589 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X 3590 return TrueVal; 3591 3592 if (Value *V = 3593 simplifySelectWithICmpCond(CondVal, TrueVal, FalseVal, Q, MaxRecurse)) 3594 return V; 3595 3596 return nullptr; 3597 } 3598 3599 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3600 const DataLayout &DL, 3601 const TargetLibraryInfo *TLI, 3602 const DominatorTree *DT, AssumptionCache *AC, 3603 const Instruction *CxtI) { 3604 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, 3605 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3606 } 3607 3608 /// Given operands for an GetElementPtrInst, see if we can fold the result. 3609 /// If not, this returns null. 3610 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3611 const Query &Q, unsigned) { 3612 // The type of the GEP pointer operand. 3613 unsigned AS = 3614 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 3615 3616 // getelementptr P -> P. 3617 if (Ops.size() == 1) 3618 return Ops[0]; 3619 3620 // Compute the (pointer) type returned by the GEP instruction. 3621 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 3622 Type *GEPTy = PointerType::get(LastType, AS); 3623 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 3624 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3625 3626 if (isa<UndefValue>(Ops[0])) 3627 return UndefValue::get(GEPTy); 3628 3629 if (Ops.size() == 2) { 3630 // getelementptr P, 0 -> P. 3631 if (match(Ops[1], m_Zero())) 3632 return Ops[0]; 3633 3634 Type *Ty = SrcTy; 3635 if (Ty->isSized()) { 3636 Value *P; 3637 uint64_t C; 3638 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 3639 // getelementptr P, N -> P if P points to a type of zero size. 3640 if (TyAllocSize == 0) 3641 return Ops[0]; 3642 3643 // The following transforms are only safe if the ptrtoint cast 3644 // doesn't truncate the pointers. 3645 if (Ops[1]->getType()->getScalarSizeInBits() == 3646 Q.DL.getPointerSizeInBits(AS)) { 3647 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 3648 if (match(P, m_Zero())) 3649 return Constant::getNullValue(GEPTy); 3650 Value *Temp; 3651 if (match(P, m_PtrToInt(m_Value(Temp)))) 3652 if (Temp->getType() == GEPTy) 3653 return Temp; 3654 return nullptr; 3655 }; 3656 3657 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 3658 if (TyAllocSize == 1 && 3659 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 3660 if (Value *R = PtrToIntOrZero(P)) 3661 return R; 3662 3663 // getelementptr V, (ashr (sub P, V), C) -> Q 3664 // if P points to a type of size 1 << C. 3665 if (match(Ops[1], 3666 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3667 m_ConstantInt(C))) && 3668 TyAllocSize == 1ULL << C) 3669 if (Value *R = PtrToIntOrZero(P)) 3670 return R; 3671 3672 // getelementptr V, (sdiv (sub P, V), C) -> Q 3673 // if P points to a type of size C. 3674 if (match(Ops[1], 3675 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3676 m_SpecificInt(TyAllocSize)))) 3677 if (Value *R = PtrToIntOrZero(P)) 3678 return R; 3679 } 3680 } 3681 } 3682 3683 if (Q.DL.getTypeAllocSize(LastType) == 1 && 3684 all_of(Ops.slice(1).drop_back(1), 3685 [](Value *Idx) { return match(Idx, m_Zero()); })) { 3686 unsigned PtrWidth = 3687 Q.DL.getPointerSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 3688 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == PtrWidth) { 3689 APInt BasePtrOffset(PtrWidth, 0); 3690 Value *StrippedBasePtr = 3691 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 3692 BasePtrOffset); 3693 3694 // gep (gep V, C), (sub 0, V) -> C 3695 if (match(Ops.back(), 3696 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { 3697 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 3698 return ConstantExpr::getIntToPtr(CI, GEPTy); 3699 } 3700 // gep (gep V, C), (xor V, -1) -> C-1 3701 if (match(Ops.back(), 3702 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { 3703 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 3704 return ConstantExpr::getIntToPtr(CI, GEPTy); 3705 } 3706 } 3707 } 3708 3709 // Check to see if this is constant foldable. 3710 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3711 if (!isa<Constant>(Ops[i])) 3712 return nullptr; 3713 3714 return ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 3715 Ops.slice(1)); 3716 } 3717 3718 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3719 const DataLayout &DL, 3720 const TargetLibraryInfo *TLI, 3721 const DominatorTree *DT, AssumptionCache *AC, 3722 const Instruction *CxtI) { 3723 return ::SimplifyGEPInst(SrcTy, Ops, 3724 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3725 } 3726 3727 /// Given operands for an InsertValueInst, see if we can fold the result. 3728 /// If not, this returns null. 3729 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 3730 ArrayRef<unsigned> Idxs, const Query &Q, 3731 unsigned) { 3732 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 3733 if (Constant *CVal = dyn_cast<Constant>(Val)) 3734 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 3735 3736 // insertvalue x, undef, n -> x 3737 if (match(Val, m_Undef())) 3738 return Agg; 3739 3740 // insertvalue x, (extractvalue y, n), n 3741 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 3742 if (EV->getAggregateOperand()->getType() == Agg->getType() && 3743 EV->getIndices() == Idxs) { 3744 // insertvalue undef, (extractvalue y, n), n -> y 3745 if (match(Agg, m_Undef())) 3746 return EV->getAggregateOperand(); 3747 3748 // insertvalue y, (extractvalue y, n), n -> y 3749 if (Agg == EV->getAggregateOperand()) 3750 return Agg; 3751 } 3752 3753 return nullptr; 3754 } 3755 3756 Value *llvm::SimplifyInsertValueInst( 3757 Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const DataLayout &DL, 3758 const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC, 3759 const Instruction *CxtI) { 3760 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query(DL, TLI, DT, AC, CxtI), 3761 RecursionLimit); 3762 } 3763 3764 /// Given operands for an ExtractValueInst, see if we can fold the result. 3765 /// If not, this returns null. 3766 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3767 const Query &, unsigned) { 3768 if (auto *CAgg = dyn_cast<Constant>(Agg)) 3769 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 3770 3771 // extractvalue x, (insertvalue y, elt, n), n -> elt 3772 unsigned NumIdxs = Idxs.size(); 3773 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 3774 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 3775 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 3776 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 3777 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 3778 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 3779 Idxs.slice(0, NumCommonIdxs)) { 3780 if (NumIdxs == NumInsertValueIdxs) 3781 return IVI->getInsertedValueOperand(); 3782 break; 3783 } 3784 } 3785 3786 return nullptr; 3787 } 3788 3789 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3790 const DataLayout &DL, 3791 const TargetLibraryInfo *TLI, 3792 const DominatorTree *DT, 3793 AssumptionCache *AC, 3794 const Instruction *CxtI) { 3795 return ::SimplifyExtractValueInst(Agg, Idxs, Query(DL, TLI, DT, AC, CxtI), 3796 RecursionLimit); 3797 } 3798 3799 /// Given operands for an ExtractElementInst, see if we can fold the result. 3800 /// If not, this returns null. 3801 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const Query &, 3802 unsigned) { 3803 if (auto *CVec = dyn_cast<Constant>(Vec)) { 3804 if (auto *CIdx = dyn_cast<Constant>(Idx)) 3805 return ConstantFoldExtractElementInstruction(CVec, CIdx); 3806 3807 // The index is not relevant if our vector is a splat. 3808 if (auto *Splat = CVec->getSplatValue()) 3809 return Splat; 3810 3811 if (isa<UndefValue>(Vec)) 3812 return UndefValue::get(Vec->getType()->getVectorElementType()); 3813 } 3814 3815 // If extracting a specified index from the vector, see if we can recursively 3816 // find a previously computed scalar that was inserted into the vector. 3817 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) 3818 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 3819 return Elt; 3820 3821 return nullptr; 3822 } 3823 3824 Value *llvm::SimplifyExtractElementInst( 3825 Value *Vec, Value *Idx, const DataLayout &DL, const TargetLibraryInfo *TLI, 3826 const DominatorTree *DT, AssumptionCache *AC, const Instruction *CxtI) { 3827 return ::SimplifyExtractElementInst(Vec, Idx, Query(DL, TLI, DT, AC, CxtI), 3828 RecursionLimit); 3829 } 3830 3831 /// See if we can fold the given phi. If not, returns null. 3832 static Value *SimplifyPHINode(PHINode *PN, const Query &Q) { 3833 // If all of the PHI's incoming values are the same then replace the PHI node 3834 // with the common value. 3835 Value *CommonValue = nullptr; 3836 bool HasUndefInput = false; 3837 for (Value *Incoming : PN->incoming_values()) { 3838 // If the incoming value is the phi node itself, it can safely be skipped. 3839 if (Incoming == PN) continue; 3840 if (isa<UndefValue>(Incoming)) { 3841 // Remember that we saw an undef value, but otherwise ignore them. 3842 HasUndefInput = true; 3843 continue; 3844 } 3845 if (CommonValue && Incoming != CommonValue) 3846 return nullptr; // Not the same, bail out. 3847 CommonValue = Incoming; 3848 } 3849 3850 // If CommonValue is null then all of the incoming values were either undef or 3851 // equal to the phi node itself. 3852 if (!CommonValue) 3853 return UndefValue::get(PN->getType()); 3854 3855 // If we have a PHI node like phi(X, undef, X), where X is defined by some 3856 // instruction, we cannot return X as the result of the PHI node unless it 3857 // dominates the PHI block. 3858 if (HasUndefInput) 3859 return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 3860 3861 return CommonValue; 3862 } 3863 3864 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 3865 Type *Ty, const Query &Q, unsigned MaxRecurse) { 3866 if (auto *C = dyn_cast<Constant>(Op)) 3867 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 3868 3869 if (auto *CI = dyn_cast<CastInst>(Op)) { 3870 auto *Src = CI->getOperand(0); 3871 Type *SrcTy = Src->getType(); 3872 Type *MidTy = CI->getType(); 3873 Type *DstTy = Ty; 3874 if (Src->getType() == Ty) { 3875 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 3876 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 3877 Type *SrcIntPtrTy = 3878 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 3879 Type *MidIntPtrTy = 3880 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 3881 Type *DstIntPtrTy = 3882 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 3883 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 3884 SrcIntPtrTy, MidIntPtrTy, 3885 DstIntPtrTy) == Instruction::BitCast) 3886 return Src; 3887 } 3888 } 3889 3890 // bitcast x -> x 3891 if (CastOpc == Instruction::BitCast) 3892 if (Op->getType() == Ty) 3893 return Op; 3894 3895 return nullptr; 3896 } 3897 3898 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 3899 const DataLayout &DL, 3900 const TargetLibraryInfo *TLI, 3901 const DominatorTree *DT, AssumptionCache *AC, 3902 const Instruction *CxtI) { 3903 return ::SimplifyCastInst(CastOpc, Op, Ty, Query(DL, TLI, DT, AC, CxtI), 3904 RecursionLimit); 3905 } 3906 3907 //=== Helper functions for higher up the class hierarchy. 3908 3909 /// Given operands for a BinaryOperator, see if we can fold the result. 3910 /// If not, this returns null. 3911 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 3912 const Query &Q, unsigned MaxRecurse) { 3913 switch (Opcode) { 3914 case Instruction::Add: 3915 return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 3916 Q, MaxRecurse); 3917 case Instruction::FAdd: 3918 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3919 3920 case Instruction::Sub: 3921 return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 3922 Q, MaxRecurse); 3923 case Instruction::FSub: 3924 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3925 3926 case Instruction::Mul: return SimplifyMulInst (LHS, RHS, Q, MaxRecurse); 3927 case Instruction::FMul: 3928 return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3929 case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 3930 case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 3931 case Instruction::FDiv: 3932 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3933 case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 3934 case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 3935 case Instruction::FRem: 3936 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3937 case Instruction::Shl: 3938 return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 3939 Q, MaxRecurse); 3940 case Instruction::LShr: 3941 return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse); 3942 case Instruction::AShr: 3943 return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse); 3944 case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 3945 case Instruction::Or: return SimplifyOrInst (LHS, RHS, Q, MaxRecurse); 3946 case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 3947 default: 3948 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 3949 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3950 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 3951 3952 // If the operation is associative, try some generic simplifications. 3953 if (Instruction::isAssociative(Opcode)) 3954 if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse)) 3955 return V; 3956 3957 // If the operation is with the result of a select instruction check whether 3958 // operating on either branch of the select always yields the same value. 3959 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3960 if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse)) 3961 return V; 3962 3963 // If the operation is with the result of a phi instruction, check whether 3964 // operating on all incoming values of the phi always yields the same value. 3965 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3966 if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse)) 3967 return V; 3968 3969 return nullptr; 3970 } 3971 } 3972 3973 /// Given operands for a BinaryOperator, see if we can fold the result. 3974 /// If not, this returns null. 3975 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the 3976 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp. 3977 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 3978 const FastMathFlags &FMF, const Query &Q, 3979 unsigned MaxRecurse) { 3980 switch (Opcode) { 3981 case Instruction::FAdd: 3982 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 3983 case Instruction::FSub: 3984 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 3985 case Instruction::FMul: 3986 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 3987 default: 3988 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 3989 } 3990 } 3991 3992 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 3993 const DataLayout &DL, const TargetLibraryInfo *TLI, 3994 const DominatorTree *DT, AssumptionCache *AC, 3995 const Instruction *CxtI) { 3996 return ::SimplifyBinOp(Opcode, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 3997 RecursionLimit); 3998 } 3999 4000 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4001 const FastMathFlags &FMF, const DataLayout &DL, 4002 const TargetLibraryInfo *TLI, 4003 const DominatorTree *DT, AssumptionCache *AC, 4004 const Instruction *CxtI) { 4005 return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Query(DL, TLI, DT, AC, CxtI), 4006 RecursionLimit); 4007 } 4008 4009 /// Given operands for a CmpInst, see if we can fold the result. 4010 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4011 const Query &Q, unsigned MaxRecurse) { 4012 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 4013 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 4014 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4015 } 4016 4017 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4018 const DataLayout &DL, const TargetLibraryInfo *TLI, 4019 const DominatorTree *DT, AssumptionCache *AC, 4020 const Instruction *CxtI) { 4021 return ::SimplifyCmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 4022 RecursionLimit); 4023 } 4024 4025 static bool IsIdempotent(Intrinsic::ID ID) { 4026 switch (ID) { 4027 default: return false; 4028 4029 // Unary idempotent: f(f(x)) = f(x) 4030 case Intrinsic::fabs: 4031 case Intrinsic::floor: 4032 case Intrinsic::ceil: 4033 case Intrinsic::trunc: 4034 case Intrinsic::rint: 4035 case Intrinsic::nearbyint: 4036 case Intrinsic::round: 4037 return true; 4038 } 4039 } 4040 4041 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 4042 const DataLayout &DL) { 4043 GlobalValue *PtrSym; 4044 APInt PtrOffset; 4045 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 4046 return nullptr; 4047 4048 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 4049 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 4050 Type *Int32PtrTy = Int32Ty->getPointerTo(); 4051 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 4052 4053 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 4054 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 4055 return nullptr; 4056 4057 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 4058 if (OffsetInt % 4 != 0) 4059 return nullptr; 4060 4061 Constant *C = ConstantExpr::getGetElementPtr( 4062 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 4063 ConstantInt::get(Int64Ty, OffsetInt / 4)); 4064 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 4065 if (!Loaded) 4066 return nullptr; 4067 4068 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 4069 if (!LoadedCE) 4070 return nullptr; 4071 4072 if (LoadedCE->getOpcode() == Instruction::Trunc) { 4073 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4074 if (!LoadedCE) 4075 return nullptr; 4076 } 4077 4078 if (LoadedCE->getOpcode() != Instruction::Sub) 4079 return nullptr; 4080 4081 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4082 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 4083 return nullptr; 4084 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 4085 4086 Constant *LoadedRHS = LoadedCE->getOperand(1); 4087 GlobalValue *LoadedRHSSym; 4088 APInt LoadedRHSOffset; 4089 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 4090 DL) || 4091 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 4092 return nullptr; 4093 4094 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 4095 } 4096 4097 static bool maskIsAllZeroOrUndef(Value *Mask) { 4098 auto *ConstMask = dyn_cast<Constant>(Mask); 4099 if (!ConstMask) 4100 return false; 4101 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 4102 return true; 4103 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; 4104 ++I) { 4105 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 4106 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 4107 continue; 4108 return false; 4109 } 4110 return true; 4111 } 4112 4113 template <typename IterTy> 4114 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd, 4115 const Query &Q, unsigned MaxRecurse) { 4116 Intrinsic::ID IID = F->getIntrinsicID(); 4117 unsigned NumOperands = std::distance(ArgBegin, ArgEnd); 4118 Type *ReturnType = F->getReturnType(); 4119 4120 // Binary Ops 4121 if (NumOperands == 2) { 4122 Value *LHS = *ArgBegin; 4123 Value *RHS = *(ArgBegin + 1); 4124 if (IID == Intrinsic::usub_with_overflow || 4125 IID == Intrinsic::ssub_with_overflow) { 4126 // X - X -> { 0, false } 4127 if (LHS == RHS) 4128 return Constant::getNullValue(ReturnType); 4129 4130 // X - undef -> undef 4131 // undef - X -> undef 4132 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 4133 return UndefValue::get(ReturnType); 4134 } 4135 4136 if (IID == Intrinsic::uadd_with_overflow || 4137 IID == Intrinsic::sadd_with_overflow) { 4138 // X + undef -> undef 4139 if (isa<UndefValue>(RHS)) 4140 return UndefValue::get(ReturnType); 4141 } 4142 4143 if (IID == Intrinsic::umul_with_overflow || 4144 IID == Intrinsic::smul_with_overflow) { 4145 // X * 0 -> { 0, false } 4146 if (match(RHS, m_Zero())) 4147 return Constant::getNullValue(ReturnType); 4148 4149 // X * undef -> { 0, false } 4150 if (match(RHS, m_Undef())) 4151 return Constant::getNullValue(ReturnType); 4152 } 4153 4154 if (IID == Intrinsic::load_relative && isa<Constant>(LHS) && 4155 isa<Constant>(RHS)) 4156 return SimplifyRelativeLoad(cast<Constant>(LHS), cast<Constant>(RHS), 4157 Q.DL); 4158 } 4159 4160 // Simplify calls to llvm.masked.load.* 4161 if (IID == Intrinsic::masked_load) { 4162 Value *MaskArg = ArgBegin[2]; 4163 Value *PassthruArg = ArgBegin[3]; 4164 // If the mask is all zeros or undef, the "passthru" argument is the result. 4165 if (maskIsAllZeroOrUndef(MaskArg)) 4166 return PassthruArg; 4167 } 4168 4169 // Perform idempotent optimizations 4170 if (!IsIdempotent(IID)) 4171 return nullptr; 4172 4173 // Unary Ops 4174 if (NumOperands == 1) 4175 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) 4176 if (II->getIntrinsicID() == IID) 4177 return II; 4178 4179 return nullptr; 4180 } 4181 4182 template <typename IterTy> 4183 static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd, 4184 const Query &Q, unsigned MaxRecurse) { 4185 Type *Ty = V->getType(); 4186 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 4187 Ty = PTy->getElementType(); 4188 FunctionType *FTy = cast<FunctionType>(Ty); 4189 4190 // call undef -> undef 4191 // call null -> undef 4192 if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V)) 4193 return UndefValue::get(FTy->getReturnType()); 4194 4195 Function *F = dyn_cast<Function>(V); 4196 if (!F) 4197 return nullptr; 4198 4199 if (F->isIntrinsic()) 4200 if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse)) 4201 return Ret; 4202 4203 if (!canConstantFoldCallTo(F)) 4204 return nullptr; 4205 4206 SmallVector<Constant *, 4> ConstantArgs; 4207 ConstantArgs.reserve(ArgEnd - ArgBegin); 4208 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) { 4209 Constant *C = dyn_cast<Constant>(*I); 4210 if (!C) 4211 return nullptr; 4212 ConstantArgs.push_back(C); 4213 } 4214 4215 return ConstantFoldCall(F, ConstantArgs, Q.TLI); 4216 } 4217 4218 Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin, 4219 User::op_iterator ArgEnd, const DataLayout &DL, 4220 const TargetLibraryInfo *TLI, const DominatorTree *DT, 4221 AssumptionCache *AC, const Instruction *CxtI) { 4222 return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT, AC, CxtI), 4223 RecursionLimit); 4224 } 4225 4226 Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args, 4227 const DataLayout &DL, const TargetLibraryInfo *TLI, 4228 const DominatorTree *DT, AssumptionCache *AC, 4229 const Instruction *CxtI) { 4230 return ::SimplifyCall(V, Args.begin(), Args.end(), 4231 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 4232 } 4233 4234 /// See if we can compute a simplified version of this instruction. 4235 /// If not, this returns null. 4236 Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout &DL, 4237 const TargetLibraryInfo *TLI, 4238 const DominatorTree *DT, AssumptionCache *AC) { 4239 Value *Result; 4240 4241 switch (I->getOpcode()) { 4242 default: 4243 Result = ConstantFoldInstruction(I, DL, TLI); 4244 break; 4245 case Instruction::FAdd: 4246 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 4247 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4248 break; 4249 case Instruction::Add: 4250 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), 4251 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4252 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4253 TLI, DT, AC, I); 4254 break; 4255 case Instruction::FSub: 4256 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 4257 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4258 break; 4259 case Instruction::Sub: 4260 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), 4261 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4262 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4263 TLI, DT, AC, I); 4264 break; 4265 case Instruction::FMul: 4266 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 4267 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4268 break; 4269 case Instruction::Mul: 4270 Result = 4271 SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4272 break; 4273 case Instruction::SDiv: 4274 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4275 AC, I); 4276 break; 4277 case Instruction::UDiv: 4278 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4279 AC, I); 4280 break; 4281 case Instruction::FDiv: 4282 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 4283 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4284 break; 4285 case Instruction::SRem: 4286 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4287 AC, I); 4288 break; 4289 case Instruction::URem: 4290 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4291 AC, I); 4292 break; 4293 case Instruction::FRem: 4294 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 4295 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4296 break; 4297 case Instruction::Shl: 4298 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), 4299 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4300 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4301 TLI, DT, AC, I); 4302 break; 4303 case Instruction::LShr: 4304 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 4305 cast<BinaryOperator>(I)->isExact(), DL, TLI, DT, 4306 AC, I); 4307 break; 4308 case Instruction::AShr: 4309 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 4310 cast<BinaryOperator>(I)->isExact(), DL, TLI, DT, 4311 AC, I); 4312 break; 4313 case Instruction::And: 4314 Result = 4315 SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4316 break; 4317 case Instruction::Or: 4318 Result = 4319 SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4320 break; 4321 case Instruction::Xor: 4322 Result = 4323 SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4324 break; 4325 case Instruction::ICmp: 4326 Result = 4327 SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), I->getOperand(0), 4328 I->getOperand(1), DL, TLI, DT, AC, I); 4329 break; 4330 case Instruction::FCmp: 4331 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), 4332 I->getOperand(0), I->getOperand(1), 4333 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4334 break; 4335 case Instruction::Select: 4336 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 4337 I->getOperand(2), DL, TLI, DT, AC, I); 4338 break; 4339 case Instruction::GetElementPtr: { 4340 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 4341 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 4342 Ops, DL, TLI, DT, AC, I); 4343 break; 4344 } 4345 case Instruction::InsertValue: { 4346 InsertValueInst *IV = cast<InsertValueInst>(I); 4347 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 4348 IV->getInsertedValueOperand(), 4349 IV->getIndices(), DL, TLI, DT, AC, I); 4350 break; 4351 } 4352 case Instruction::ExtractValue: { 4353 auto *EVI = cast<ExtractValueInst>(I); 4354 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 4355 EVI->getIndices(), DL, TLI, DT, AC, I); 4356 break; 4357 } 4358 case Instruction::ExtractElement: { 4359 auto *EEI = cast<ExtractElementInst>(I); 4360 Result = SimplifyExtractElementInst( 4361 EEI->getVectorOperand(), EEI->getIndexOperand(), DL, TLI, DT, AC, I); 4362 break; 4363 } 4364 case Instruction::PHI: 4365 Result = SimplifyPHINode(cast<PHINode>(I), Query(DL, TLI, DT, AC, I)); 4366 break; 4367 case Instruction::Call: { 4368 CallSite CS(cast<CallInst>(I)); 4369 Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), DL, 4370 TLI, DT, AC, I); 4371 break; 4372 } 4373 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 4374 #include "llvm/IR/Instruction.def" 4375 #undef HANDLE_CAST_INST 4376 Result = SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), 4377 DL, TLI, DT, AC, I); 4378 break; 4379 } 4380 4381 // In general, it is possible for computeKnownBits to determine all bits in a 4382 // value even when the operands are not all constants. 4383 if (!Result && I->getType()->isIntegerTy()) { 4384 unsigned BitWidth = I->getType()->getScalarSizeInBits(); 4385 APInt KnownZero(BitWidth, 0); 4386 APInt KnownOne(BitWidth, 0); 4387 computeKnownBits(I, KnownZero, KnownOne, DL, /*Depth*/0, AC, I, DT); 4388 if ((KnownZero | KnownOne).isAllOnesValue()) 4389 Result = ConstantInt::get(I->getContext(), KnownOne); 4390 } 4391 4392 /// If called on unreachable code, the above logic may report that the 4393 /// instruction simplified to itself. Make life easier for users by 4394 /// detecting that case here, returning a safe value instead. 4395 return Result == I ? UndefValue::get(I->getType()) : Result; 4396 } 4397 4398 /// \brief Implementation of recursive simplification through an instruction's 4399 /// uses. 4400 /// 4401 /// This is the common implementation of the recursive simplification routines. 4402 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 4403 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 4404 /// instructions to process and attempt to simplify it using 4405 /// InstructionSimplify. 4406 /// 4407 /// This routine returns 'true' only when *it* simplifies something. The passed 4408 /// in simplified value does not count toward this. 4409 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, 4410 const TargetLibraryInfo *TLI, 4411 const DominatorTree *DT, 4412 AssumptionCache *AC) { 4413 bool Simplified = false; 4414 SmallSetVector<Instruction *, 8> Worklist; 4415 const DataLayout &DL = I->getModule()->getDataLayout(); 4416 4417 // If we have an explicit value to collapse to, do that round of the 4418 // simplification loop by hand initially. 4419 if (SimpleV) { 4420 for (User *U : I->users()) 4421 if (U != I) 4422 Worklist.insert(cast<Instruction>(U)); 4423 4424 // Replace the instruction with its simplified value. 4425 I->replaceAllUsesWith(SimpleV); 4426 4427 // Gracefully handle edge cases where the instruction is not wired into any 4428 // parent block. 4429 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4430 !I->mayHaveSideEffects()) 4431 I->eraseFromParent(); 4432 } else { 4433 Worklist.insert(I); 4434 } 4435 4436 // Note that we must test the size on each iteration, the worklist can grow. 4437 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 4438 I = Worklist[Idx]; 4439 4440 // See if this instruction simplifies. 4441 SimpleV = SimplifyInstruction(I, DL, TLI, DT, AC); 4442 if (!SimpleV) 4443 continue; 4444 4445 Simplified = true; 4446 4447 // Stash away all the uses of the old instruction so we can check them for 4448 // recursive simplifications after a RAUW. This is cheaper than checking all 4449 // uses of To on the recursive step in most cases. 4450 for (User *U : I->users()) 4451 Worklist.insert(cast<Instruction>(U)); 4452 4453 // Replace the instruction with its simplified value. 4454 I->replaceAllUsesWith(SimpleV); 4455 4456 // Gracefully handle edge cases where the instruction is not wired into any 4457 // parent block. 4458 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4459 !I->mayHaveSideEffects()) 4460 I->eraseFromParent(); 4461 } 4462 return Simplified; 4463 } 4464 4465 bool llvm::recursivelySimplifyInstruction(Instruction *I, 4466 const TargetLibraryInfo *TLI, 4467 const DominatorTree *DT, 4468 AssumptionCache *AC) { 4469 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC); 4470 } 4471 4472 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, 4473 const TargetLibraryInfo *TLI, 4474 const DominatorTree *DT, 4475 AssumptionCache *AC) { 4476 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 4477 assert(SimpleV && "Must provide a simplified value."); 4478 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC); 4479 } 4480