1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements routines for folding instructions into simpler forms
11 // that do not require creating new instructions.  This does constant folding
12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
14 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
15 // simplified: This is usually true and assuming it simplifies the logic (if
16 // they have not been simplified then results are correct but maybe suboptimal).
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/Analysis/VectorUtils.h"
29 #include "llvm/IR/ConstantRange.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/GetElementPtrTypeIterator.h"
33 #include "llvm/IR/GlobalAlias.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/IR/ValueHandle.h"
37 #include <algorithm>
38 using namespace llvm;
39 using namespace llvm::PatternMatch;
40 
41 #define DEBUG_TYPE "instsimplify"
42 
43 enum { RecursionLimit = 3 };
44 
45 STATISTIC(NumExpand,  "Number of expansions");
46 STATISTIC(NumReassoc, "Number of reassociations");
47 
48 namespace {
49 struct Query {
50   const DataLayout &DL;
51   const TargetLibraryInfo *TLI;
52   const DominatorTree *DT;
53   AssumptionCache *AC;
54   const Instruction *CxtI;
55 
56   Query(const DataLayout &DL, const TargetLibraryInfo *tli,
57         const DominatorTree *dt, AssumptionCache *ac = nullptr,
58         const Instruction *cxti = nullptr)
59       : DL(DL), TLI(tli), DT(dt), AC(ac), CxtI(cxti) {}
60 };
61 } // end anonymous namespace
62 
63 static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
64 static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &,
65                             unsigned);
66 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &,
67                               const Query &, unsigned);
68 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &,
69                               unsigned);
70 static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned);
71 static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned);
72 static Value *SimplifyCastInst(unsigned, Value *, Type *,
73                                const Query &, unsigned);
74 
75 /// For a boolean type, or a vector of boolean type, return false, or
76 /// a vector with every element false, as appropriate for the type.
77 static Constant *getFalse(Type *Ty) {
78   assert(Ty->getScalarType()->isIntegerTy(1) &&
79          "Expected i1 type or a vector of i1!");
80   return Constant::getNullValue(Ty);
81 }
82 
83 /// For a boolean type, or a vector of boolean type, return true, or
84 /// a vector with every element true, as appropriate for the type.
85 static Constant *getTrue(Type *Ty) {
86   assert(Ty->getScalarType()->isIntegerTy(1) &&
87          "Expected i1 type or a vector of i1!");
88   return Constant::getAllOnesValue(Ty);
89 }
90 
91 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
92 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
93                           Value *RHS) {
94   CmpInst *Cmp = dyn_cast<CmpInst>(V);
95   if (!Cmp)
96     return false;
97   CmpInst::Predicate CPred = Cmp->getPredicate();
98   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
99   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
100     return true;
101   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
102     CRHS == LHS;
103 }
104 
105 /// Does the given value dominate the specified phi node?
106 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
107   Instruction *I = dyn_cast<Instruction>(V);
108   if (!I)
109     // Arguments and constants dominate all instructions.
110     return true;
111 
112   // If we are processing instructions (and/or basic blocks) that have not been
113   // fully added to a function, the parent nodes may still be null. Simply
114   // return the conservative answer in these cases.
115   if (!I->getParent() || !P->getParent() || !I->getParent()->getParent())
116     return false;
117 
118   // If we have a DominatorTree then do a precise test.
119   if (DT) {
120     if (!DT->isReachableFromEntry(P->getParent()))
121       return true;
122     if (!DT->isReachableFromEntry(I->getParent()))
123       return false;
124     return DT->dominates(I, P);
125   }
126 
127   // Otherwise, if the instruction is in the entry block and is not an invoke,
128   // then it obviously dominates all phi nodes.
129   if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
130       !isa<InvokeInst>(I))
131     return true;
132 
133   return false;
134 }
135 
136 /// Simplify "A op (B op' C)" by distributing op over op', turning it into
137 /// "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
138 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
139 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
140 /// Returns the simplified value, or null if no simplification was performed.
141 static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
142                           unsigned OpcToExpand, const Query &Q,
143                           unsigned MaxRecurse) {
144   Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
145   // Recursion is always used, so bail out at once if we already hit the limit.
146   if (!MaxRecurse--)
147     return nullptr;
148 
149   // Check whether the expression has the form "(A op' B) op C".
150   if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
151     if (Op0->getOpcode() == OpcodeToExpand) {
152       // It does!  Try turning it into "(A op C) op' (B op C)".
153       Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
154       // Do "A op C" and "B op C" both simplify?
155       if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
156         if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
157           // They do! Return "L op' R" if it simplifies or is already available.
158           // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
159           if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
160                                      && L == B && R == A)) {
161             ++NumExpand;
162             return LHS;
163           }
164           // Otherwise return "L op' R" if it simplifies.
165           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
166             ++NumExpand;
167             return V;
168           }
169         }
170     }
171 
172   // Check whether the expression has the form "A op (B op' C)".
173   if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
174     if (Op1->getOpcode() == OpcodeToExpand) {
175       // It does!  Try turning it into "(A op B) op' (A op C)".
176       Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
177       // Do "A op B" and "A op C" both simplify?
178       if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
179         if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
180           // They do! Return "L op' R" if it simplifies or is already available.
181           // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
182           if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
183                                      && L == C && R == B)) {
184             ++NumExpand;
185             return RHS;
186           }
187           // Otherwise return "L op' R" if it simplifies.
188           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
189             ++NumExpand;
190             return V;
191           }
192         }
193     }
194 
195   return nullptr;
196 }
197 
198 /// Generic simplifications for associative binary operations.
199 /// Returns the simpler value, or null if none was found.
200 static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
201                                        const Query &Q, unsigned MaxRecurse) {
202   Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
203   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
204 
205   // Recursion is always used, so bail out at once if we already hit the limit.
206   if (!MaxRecurse--)
207     return nullptr;
208 
209   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
210   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
211 
212   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
213   if (Op0 && Op0->getOpcode() == Opcode) {
214     Value *A = Op0->getOperand(0);
215     Value *B = Op0->getOperand(1);
216     Value *C = RHS;
217 
218     // Does "B op C" simplify?
219     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
220       // It does!  Return "A op V" if it simplifies or is already available.
221       // If V equals B then "A op V" is just the LHS.
222       if (V == B) return LHS;
223       // Otherwise return "A op V" if it simplifies.
224       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
225         ++NumReassoc;
226         return W;
227       }
228     }
229   }
230 
231   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
232   if (Op1 && Op1->getOpcode() == Opcode) {
233     Value *A = LHS;
234     Value *B = Op1->getOperand(0);
235     Value *C = Op1->getOperand(1);
236 
237     // Does "A op B" simplify?
238     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
239       // It does!  Return "V op C" if it simplifies or is already available.
240       // If V equals B then "V op C" is just the RHS.
241       if (V == B) return RHS;
242       // Otherwise return "V op C" if it simplifies.
243       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
244         ++NumReassoc;
245         return W;
246       }
247     }
248   }
249 
250   // The remaining transforms require commutativity as well as associativity.
251   if (!Instruction::isCommutative(Opcode))
252     return nullptr;
253 
254   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
255   if (Op0 && Op0->getOpcode() == Opcode) {
256     Value *A = Op0->getOperand(0);
257     Value *B = Op0->getOperand(1);
258     Value *C = RHS;
259 
260     // Does "C op A" simplify?
261     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
262       // It does!  Return "V op B" if it simplifies or is already available.
263       // If V equals A then "V op B" is just the LHS.
264       if (V == A) return LHS;
265       // Otherwise return "V op B" if it simplifies.
266       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
267         ++NumReassoc;
268         return W;
269       }
270     }
271   }
272 
273   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
274   if (Op1 && Op1->getOpcode() == Opcode) {
275     Value *A = LHS;
276     Value *B = Op1->getOperand(0);
277     Value *C = Op1->getOperand(1);
278 
279     // Does "C op A" simplify?
280     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
281       // It does!  Return "B op V" if it simplifies or is already available.
282       // If V equals C then "B op V" is just the RHS.
283       if (V == C) return RHS;
284       // Otherwise return "B op V" if it simplifies.
285       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
286         ++NumReassoc;
287         return W;
288       }
289     }
290   }
291 
292   return nullptr;
293 }
294 
295 /// In the case of a binary operation with a select instruction as an operand,
296 /// try to simplify the binop by seeing whether evaluating it on both branches
297 /// of the select results in the same value. Returns the common value if so,
298 /// otherwise returns null.
299 static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
300                                     const Query &Q, unsigned MaxRecurse) {
301   // Recursion is always used, so bail out at once if we already hit the limit.
302   if (!MaxRecurse--)
303     return nullptr;
304 
305   SelectInst *SI;
306   if (isa<SelectInst>(LHS)) {
307     SI = cast<SelectInst>(LHS);
308   } else {
309     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
310     SI = cast<SelectInst>(RHS);
311   }
312 
313   // Evaluate the BinOp on the true and false branches of the select.
314   Value *TV;
315   Value *FV;
316   if (SI == LHS) {
317     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
318     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
319   } else {
320     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
321     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
322   }
323 
324   // If they simplified to the same value, then return the common value.
325   // If they both failed to simplify then return null.
326   if (TV == FV)
327     return TV;
328 
329   // If one branch simplified to undef, return the other one.
330   if (TV && isa<UndefValue>(TV))
331     return FV;
332   if (FV && isa<UndefValue>(FV))
333     return TV;
334 
335   // If applying the operation did not change the true and false select values,
336   // then the result of the binop is the select itself.
337   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
338     return SI;
339 
340   // If one branch simplified and the other did not, and the simplified
341   // value is equal to the unsimplified one, return the simplified value.
342   // For example, select (cond, X, X & Z) & Z -> X & Z.
343   if ((FV && !TV) || (TV && !FV)) {
344     // Check that the simplified value has the form "X op Y" where "op" is the
345     // same as the original operation.
346     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
347     if (Simplified && Simplified->getOpcode() == Opcode) {
348       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
349       // We already know that "op" is the same as for the simplified value.  See
350       // if the operands match too.  If so, return the simplified value.
351       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
352       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
353       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
354       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
355           Simplified->getOperand(1) == UnsimplifiedRHS)
356         return Simplified;
357       if (Simplified->isCommutative() &&
358           Simplified->getOperand(1) == UnsimplifiedLHS &&
359           Simplified->getOperand(0) == UnsimplifiedRHS)
360         return Simplified;
361     }
362   }
363 
364   return nullptr;
365 }
366 
367 /// In the case of a comparison with a select instruction, try to simplify the
368 /// comparison by seeing whether both branches of the select result in the same
369 /// value. Returns the common value if so, otherwise returns null.
370 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
371                                   Value *RHS, const Query &Q,
372                                   unsigned MaxRecurse) {
373   // Recursion is always used, so bail out at once if we already hit the limit.
374   if (!MaxRecurse--)
375     return nullptr;
376 
377   // Make sure the select is on the LHS.
378   if (!isa<SelectInst>(LHS)) {
379     std::swap(LHS, RHS);
380     Pred = CmpInst::getSwappedPredicate(Pred);
381   }
382   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
383   SelectInst *SI = cast<SelectInst>(LHS);
384   Value *Cond = SI->getCondition();
385   Value *TV = SI->getTrueValue();
386   Value *FV = SI->getFalseValue();
387 
388   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
389   // Does "cmp TV, RHS" simplify?
390   Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
391   if (TCmp == Cond) {
392     // It not only simplified, it simplified to the select condition.  Replace
393     // it with 'true'.
394     TCmp = getTrue(Cond->getType());
395   } else if (!TCmp) {
396     // It didn't simplify.  However if "cmp TV, RHS" is equal to the select
397     // condition then we can replace it with 'true'.  Otherwise give up.
398     if (!isSameCompare(Cond, Pred, TV, RHS))
399       return nullptr;
400     TCmp = getTrue(Cond->getType());
401   }
402 
403   // Does "cmp FV, RHS" simplify?
404   Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
405   if (FCmp == Cond) {
406     // It not only simplified, it simplified to the select condition.  Replace
407     // it with 'false'.
408     FCmp = getFalse(Cond->getType());
409   } else if (!FCmp) {
410     // It didn't simplify.  However if "cmp FV, RHS" is equal to the select
411     // condition then we can replace it with 'false'.  Otherwise give up.
412     if (!isSameCompare(Cond, Pred, FV, RHS))
413       return nullptr;
414     FCmp = getFalse(Cond->getType());
415   }
416 
417   // If both sides simplified to the same value, then use it as the result of
418   // the original comparison.
419   if (TCmp == FCmp)
420     return TCmp;
421 
422   // The remaining cases only make sense if the select condition has the same
423   // type as the result of the comparison, so bail out if this is not so.
424   if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
425     return nullptr;
426   // If the false value simplified to false, then the result of the compare
427   // is equal to "Cond && TCmp".  This also catches the case when the false
428   // value simplified to false and the true value to true, returning "Cond".
429   if (match(FCmp, m_Zero()))
430     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
431       return V;
432   // If the true value simplified to true, then the result of the compare
433   // is equal to "Cond || FCmp".
434   if (match(TCmp, m_One()))
435     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
436       return V;
437   // Finally, if the false value simplified to true and the true value to
438   // false, then the result of the compare is equal to "!Cond".
439   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
440     if (Value *V =
441         SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
442                         Q, MaxRecurse))
443       return V;
444 
445   return nullptr;
446 }
447 
448 /// In the case of a binary operation with an operand that is a PHI instruction,
449 /// try to simplify the binop by seeing whether evaluating it on the incoming
450 /// phi values yields the same result for every value. If so returns the common
451 /// value, otherwise returns null.
452 static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
453                                  const Query &Q, unsigned MaxRecurse) {
454   // Recursion is always used, so bail out at once if we already hit the limit.
455   if (!MaxRecurse--)
456     return nullptr;
457 
458   PHINode *PI;
459   if (isa<PHINode>(LHS)) {
460     PI = cast<PHINode>(LHS);
461     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
462     if (!ValueDominatesPHI(RHS, PI, Q.DT))
463       return nullptr;
464   } else {
465     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
466     PI = cast<PHINode>(RHS);
467     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
468     if (!ValueDominatesPHI(LHS, PI, Q.DT))
469       return nullptr;
470   }
471 
472   // Evaluate the BinOp on the incoming phi values.
473   Value *CommonValue = nullptr;
474   for (Value *Incoming : PI->incoming_values()) {
475     // If the incoming value is the phi node itself, it can safely be skipped.
476     if (Incoming == PI) continue;
477     Value *V = PI == LHS ?
478       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
479       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
480     // If the operation failed to simplify, or simplified to a different value
481     // to previously, then give up.
482     if (!V || (CommonValue && V != CommonValue))
483       return nullptr;
484     CommonValue = V;
485   }
486 
487   return CommonValue;
488 }
489 
490 /// In the case of a comparison with a PHI instruction, try to simplify the
491 /// comparison by seeing whether comparing with all of the incoming phi values
492 /// yields the same result every time. If so returns the common result,
493 /// otherwise returns null.
494 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
495                                const Query &Q, unsigned MaxRecurse) {
496   // Recursion is always used, so bail out at once if we already hit the limit.
497   if (!MaxRecurse--)
498     return nullptr;
499 
500   // Make sure the phi is on the LHS.
501   if (!isa<PHINode>(LHS)) {
502     std::swap(LHS, RHS);
503     Pred = CmpInst::getSwappedPredicate(Pred);
504   }
505   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
506   PHINode *PI = cast<PHINode>(LHS);
507 
508   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
509   if (!ValueDominatesPHI(RHS, PI, Q.DT))
510     return nullptr;
511 
512   // Evaluate the BinOp on the incoming phi values.
513   Value *CommonValue = nullptr;
514   for (Value *Incoming : PI->incoming_values()) {
515     // If the incoming value is the phi node itself, it can safely be skipped.
516     if (Incoming == PI) continue;
517     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
518     // If the operation failed to simplify, or simplified to a different value
519     // to previously, then give up.
520     if (!V || (CommonValue && V != CommonValue))
521       return nullptr;
522     CommonValue = V;
523   }
524 
525   return CommonValue;
526 }
527 
528 /// Given operands for an Add, see if we can fold the result.
529 /// If not, this returns null.
530 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
531                               const Query &Q, unsigned MaxRecurse) {
532   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
533     if (Constant *CRHS = dyn_cast<Constant>(Op1))
534       return ConstantFoldBinaryOpOperands(Instruction::Add, CLHS, CRHS, Q.DL);
535 
536     // Canonicalize the constant to the RHS.
537     std::swap(Op0, Op1);
538   }
539 
540   // X + undef -> undef
541   if (match(Op1, m_Undef()))
542     return Op1;
543 
544   // X + 0 -> X
545   if (match(Op1, m_Zero()))
546     return Op0;
547 
548   // X + (Y - X) -> Y
549   // (Y - X) + X -> Y
550   // Eg: X + -X -> 0
551   Value *Y = nullptr;
552   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
553       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
554     return Y;
555 
556   // X + ~X -> -1   since   ~X = -X-1
557   if (match(Op0, m_Not(m_Specific(Op1))) ||
558       match(Op1, m_Not(m_Specific(Op0))))
559     return Constant::getAllOnesValue(Op0->getType());
560 
561   /// i1 add -> xor.
562   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
563     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
564       return V;
565 
566   // Try some generic simplifications for associative operations.
567   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
568                                           MaxRecurse))
569     return V;
570 
571   // Threading Add over selects and phi nodes is pointless, so don't bother.
572   // Threading over the select in "A + select(cond, B, C)" means evaluating
573   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
574   // only if B and C are equal.  If B and C are equal then (since we assume
575   // that operands have already been simplified) "select(cond, B, C)" should
576   // have been simplified to the common value of B and C already.  Analysing
577   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
578   // for threading over phi nodes.
579 
580   return nullptr;
581 }
582 
583 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
584                              const DataLayout &DL, const TargetLibraryInfo *TLI,
585                              const DominatorTree *DT, AssumptionCache *AC,
586                              const Instruction *CxtI) {
587   return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
588                            RecursionLimit);
589 }
590 
591 /// \brief Compute the base pointer and cumulative constant offsets for V.
592 ///
593 /// This strips all constant offsets off of V, leaving it the base pointer, and
594 /// accumulates the total constant offset applied in the returned constant. It
595 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
596 /// no constant offsets applied.
597 ///
598 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
599 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
600 /// folding.
601 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
602                                                 bool AllowNonInbounds = false) {
603   assert(V->getType()->getScalarType()->isPointerTy());
604 
605   Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
606   APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
607 
608   // Even though we don't look through PHI nodes, we could be called on an
609   // instruction in an unreachable block, which may be on a cycle.
610   SmallPtrSet<Value *, 4> Visited;
611   Visited.insert(V);
612   do {
613     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
614       if ((!AllowNonInbounds && !GEP->isInBounds()) ||
615           !GEP->accumulateConstantOffset(DL, Offset))
616         break;
617       V = GEP->getPointerOperand();
618     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
619       V = cast<Operator>(V)->getOperand(0);
620     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
621       if (GA->isInterposable())
622         break;
623       V = GA->getAliasee();
624     } else {
625       if (auto CS = CallSite(V))
626         if (Value *RV = CS.getReturnedArgOperand()) {
627           V = RV;
628           continue;
629         }
630       break;
631     }
632     assert(V->getType()->getScalarType()->isPointerTy() &&
633            "Unexpected operand type!");
634   } while (Visited.insert(V).second);
635 
636   Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
637   if (V->getType()->isVectorTy())
638     return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
639                                     OffsetIntPtr);
640   return OffsetIntPtr;
641 }
642 
643 /// \brief Compute the constant difference between two pointer values.
644 /// If the difference is not a constant, returns zero.
645 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
646                                           Value *RHS) {
647   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
648   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
649 
650   // If LHS and RHS are not related via constant offsets to the same base
651   // value, there is nothing we can do here.
652   if (LHS != RHS)
653     return nullptr;
654 
655   // Otherwise, the difference of LHS - RHS can be computed as:
656   //    LHS - RHS
657   //  = (LHSOffset + Base) - (RHSOffset + Base)
658   //  = LHSOffset - RHSOffset
659   return ConstantExpr::getSub(LHSOffset, RHSOffset);
660 }
661 
662 /// Given operands for a Sub, see if we can fold the result.
663 /// If not, this returns null.
664 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
665                               const Query &Q, unsigned MaxRecurse) {
666   if (Constant *CLHS = dyn_cast<Constant>(Op0))
667     if (Constant *CRHS = dyn_cast<Constant>(Op1))
668       return ConstantFoldBinaryOpOperands(Instruction::Sub, CLHS, CRHS, Q.DL);
669 
670   // X - undef -> undef
671   // undef - X -> undef
672   if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
673     return UndefValue::get(Op0->getType());
674 
675   // X - 0 -> X
676   if (match(Op1, m_Zero()))
677     return Op0;
678 
679   // X - X -> 0
680   if (Op0 == Op1)
681     return Constant::getNullValue(Op0->getType());
682 
683   // Is this a negation?
684   if (match(Op0, m_Zero())) {
685     // 0 - X -> 0 if the sub is NUW.
686     if (isNUW)
687       return Op0;
688 
689     unsigned BitWidth = Op1->getType()->getScalarSizeInBits();
690     APInt KnownZero(BitWidth, 0);
691     APInt KnownOne(BitWidth, 0);
692     computeKnownBits(Op1, KnownZero, KnownOne, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
693     if (KnownZero == ~APInt::getSignBit(BitWidth)) {
694       // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
695       // Op1 must be 0 because negating the minimum signed value is undefined.
696       if (isNSW)
697         return Op0;
698 
699       // 0 - X -> X if X is 0 or the minimum signed value.
700       return Op1;
701     }
702   }
703 
704   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
705   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
706   Value *X = nullptr, *Y = nullptr, *Z = Op1;
707   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
708     // See if "V === Y - Z" simplifies.
709     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
710       // It does!  Now see if "X + V" simplifies.
711       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
712         // It does, we successfully reassociated!
713         ++NumReassoc;
714         return W;
715       }
716     // See if "V === X - Z" simplifies.
717     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
718       // It does!  Now see if "Y + V" simplifies.
719       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
720         // It does, we successfully reassociated!
721         ++NumReassoc;
722         return W;
723       }
724   }
725 
726   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
727   // For example, X - (X + 1) -> -1
728   X = Op0;
729   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
730     // See if "V === X - Y" simplifies.
731     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
732       // It does!  Now see if "V - Z" simplifies.
733       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
734         // It does, we successfully reassociated!
735         ++NumReassoc;
736         return W;
737       }
738     // See if "V === X - Z" simplifies.
739     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
740       // It does!  Now see if "V - Y" simplifies.
741       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
742         // It does, we successfully reassociated!
743         ++NumReassoc;
744         return W;
745       }
746   }
747 
748   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
749   // For example, X - (X - Y) -> Y.
750   Z = Op0;
751   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
752     // See if "V === Z - X" simplifies.
753     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
754       // It does!  Now see if "V + Y" simplifies.
755       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
756         // It does, we successfully reassociated!
757         ++NumReassoc;
758         return W;
759       }
760 
761   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
762   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
763       match(Op1, m_Trunc(m_Value(Y))))
764     if (X->getType() == Y->getType())
765       // See if "V === X - Y" simplifies.
766       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
767         // It does!  Now see if "trunc V" simplifies.
768         if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
769                                         Q, MaxRecurse - 1))
770           // It does, return the simplified "trunc V".
771           return W;
772 
773   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
774   if (match(Op0, m_PtrToInt(m_Value(X))) &&
775       match(Op1, m_PtrToInt(m_Value(Y))))
776     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
777       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
778 
779   // i1 sub -> xor.
780   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
781     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
782       return V;
783 
784   // Threading Sub over selects and phi nodes is pointless, so don't bother.
785   // Threading over the select in "A - select(cond, B, C)" means evaluating
786   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
787   // only if B and C are equal.  If B and C are equal then (since we assume
788   // that operands have already been simplified) "select(cond, B, C)" should
789   // have been simplified to the common value of B and C already.  Analysing
790   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
791   // for threading over phi nodes.
792 
793   return nullptr;
794 }
795 
796 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
797                              const DataLayout &DL, const TargetLibraryInfo *TLI,
798                              const DominatorTree *DT, AssumptionCache *AC,
799                              const Instruction *CxtI) {
800   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
801                            RecursionLimit);
802 }
803 
804 /// Given operands for an FAdd, see if we can fold the result.  If not, this
805 /// returns null.
806 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
807                               const Query &Q, unsigned MaxRecurse) {
808   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
809     if (Constant *CRHS = dyn_cast<Constant>(Op1))
810       return ConstantFoldBinaryOpOperands(Instruction::FAdd, CLHS, CRHS, Q.DL);
811 
812     // Canonicalize the constant to the RHS.
813     std::swap(Op0, Op1);
814   }
815 
816   // fadd X, -0 ==> X
817   if (match(Op1, m_NegZero()))
818     return Op0;
819 
820   // fadd X, 0 ==> X, when we know X is not -0
821   if (match(Op1, m_Zero()) &&
822       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
823     return Op0;
824 
825   // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
826   //   where nnan and ninf have to occur at least once somewhere in this
827   //   expression
828   Value *SubOp = nullptr;
829   if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0))))
830     SubOp = Op1;
831   else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1))))
832     SubOp = Op0;
833   if (SubOp) {
834     Instruction *FSub = cast<Instruction>(SubOp);
835     if ((FMF.noNaNs() || FSub->hasNoNaNs()) &&
836         (FMF.noInfs() || FSub->hasNoInfs()))
837       return Constant::getNullValue(Op0->getType());
838   }
839 
840   return nullptr;
841 }
842 
843 /// Given operands for an FSub, see if we can fold the result.  If not, this
844 /// returns null.
845 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
846                               const Query &Q, unsigned MaxRecurse) {
847   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
848     if (Constant *CRHS = dyn_cast<Constant>(Op1))
849       return ConstantFoldBinaryOpOperands(Instruction::FSub, CLHS, CRHS, Q.DL);
850   }
851 
852   // fsub X, 0 ==> X
853   if (match(Op1, m_Zero()))
854     return Op0;
855 
856   // fsub X, -0 ==> X, when we know X is not -0
857   if (match(Op1, m_NegZero()) &&
858       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
859     return Op0;
860 
861   // fsub -0.0, (fsub -0.0, X) ==> X
862   Value *X;
863   if (match(Op0, m_NegZero()) && match(Op1, m_FSub(m_NegZero(), m_Value(X))))
864     return X;
865 
866   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
867   if (FMF.noSignedZeros() && match(Op0, m_AnyZero()) &&
868       match(Op1, m_FSub(m_AnyZero(), m_Value(X))))
869     return X;
870 
871   // fsub nnan x, x ==> 0.0
872   if (FMF.noNaNs() && Op0 == Op1)
873     return Constant::getNullValue(Op0->getType());
874 
875   return nullptr;
876 }
877 
878 /// Given the operands for an FMul, see if we can fold the result
879 static Value *SimplifyFMulInst(Value *Op0, Value *Op1,
880                                FastMathFlags FMF,
881                                const Query &Q,
882                                unsigned MaxRecurse) {
883  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
884     if (Constant *CRHS = dyn_cast<Constant>(Op1))
885       return ConstantFoldBinaryOpOperands(Instruction::FMul, CLHS, CRHS, Q.DL);
886 
887     // Canonicalize the constant to the RHS.
888     std::swap(Op0, Op1);
889  }
890 
891  // fmul X, 1.0 ==> X
892  if (match(Op1, m_FPOne()))
893    return Op0;
894 
895  // fmul nnan nsz X, 0 ==> 0
896  if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero()))
897    return Op1;
898 
899  return nullptr;
900 }
901 
902 /// Given operands for a Mul, see if we can fold the result.
903 /// If not, this returns null.
904 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
905                               unsigned MaxRecurse) {
906   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
907     if (Constant *CRHS = dyn_cast<Constant>(Op1))
908       return ConstantFoldBinaryOpOperands(Instruction::Mul, CLHS, CRHS, Q.DL);
909 
910     // Canonicalize the constant to the RHS.
911     std::swap(Op0, Op1);
912   }
913 
914   // X * undef -> 0
915   if (match(Op1, m_Undef()))
916     return Constant::getNullValue(Op0->getType());
917 
918   // X * 0 -> 0
919   if (match(Op1, m_Zero()))
920     return Op1;
921 
922   // X * 1 -> X
923   if (match(Op1, m_One()))
924     return Op0;
925 
926   // (X / Y) * Y -> X if the division is exact.
927   Value *X = nullptr;
928   if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
929       match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))   // Y * (X / Y)
930     return X;
931 
932   // i1 mul -> and.
933   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
934     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
935       return V;
936 
937   // Try some generic simplifications for associative operations.
938   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
939                                           MaxRecurse))
940     return V;
941 
942   // Mul distributes over Add.  Try some generic simplifications based on this.
943   if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
944                              Q, MaxRecurse))
945     return V;
946 
947   // If the operation is with the result of a select instruction, check whether
948   // operating on either branch of the select always yields the same value.
949   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
950     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
951                                          MaxRecurse))
952       return V;
953 
954   // If the operation is with the result of a phi instruction, check whether
955   // operating on all incoming values of the phi always yields the same value.
956   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
957     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
958                                       MaxRecurse))
959       return V;
960 
961   return nullptr;
962 }
963 
964 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
965                               const DataLayout &DL,
966                               const TargetLibraryInfo *TLI,
967                               const DominatorTree *DT, AssumptionCache *AC,
968                               const Instruction *CxtI) {
969   return ::SimplifyFAddInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
970                             RecursionLimit);
971 }
972 
973 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
974                               const DataLayout &DL,
975                               const TargetLibraryInfo *TLI,
976                               const DominatorTree *DT, AssumptionCache *AC,
977                               const Instruction *CxtI) {
978   return ::SimplifyFSubInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
979                             RecursionLimit);
980 }
981 
982 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
983                               const DataLayout &DL,
984                               const TargetLibraryInfo *TLI,
985                               const DominatorTree *DT, AssumptionCache *AC,
986                               const Instruction *CxtI) {
987   return ::SimplifyFMulInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
988                             RecursionLimit);
989 }
990 
991 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout &DL,
992                              const TargetLibraryInfo *TLI,
993                              const DominatorTree *DT, AssumptionCache *AC,
994                              const Instruction *CxtI) {
995   return ::SimplifyMulInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
996                            RecursionLimit);
997 }
998 
999 /// Given operands for an SDiv or UDiv, see if we can fold the result.
1000 /// If not, this returns null.
1001 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1002                           const Query &Q, unsigned MaxRecurse) {
1003   if (Constant *C0 = dyn_cast<Constant>(Op0))
1004     if (Constant *C1 = dyn_cast<Constant>(Op1))
1005       return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL);
1006 
1007   bool isSigned = Opcode == Instruction::SDiv;
1008 
1009   // X / undef -> undef
1010   if (match(Op1, m_Undef()))
1011     return Op1;
1012 
1013   // X / 0 -> undef, we don't need to preserve faults!
1014   if (match(Op1, m_Zero()))
1015     return UndefValue::get(Op1->getType());
1016 
1017   // undef / X -> 0
1018   if (match(Op0, m_Undef()))
1019     return Constant::getNullValue(Op0->getType());
1020 
1021   // 0 / X -> 0, we don't need to preserve faults!
1022   if (match(Op0, m_Zero()))
1023     return Op0;
1024 
1025   // X / 1 -> X
1026   if (match(Op1, m_One()))
1027     return Op0;
1028 
1029   if (Op0->getType()->isIntegerTy(1))
1030     // It can't be division by zero, hence it must be division by one.
1031     return Op0;
1032 
1033   // X / X -> 1
1034   if (Op0 == Op1)
1035     return ConstantInt::get(Op0->getType(), 1);
1036 
1037   // (X * Y) / Y -> X if the multiplication does not overflow.
1038   Value *X = nullptr, *Y = nullptr;
1039   if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
1040     if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
1041     OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
1042     // If the Mul knows it does not overflow, then we are good to go.
1043     if ((isSigned && Mul->hasNoSignedWrap()) ||
1044         (!isSigned && Mul->hasNoUnsignedWrap()))
1045       return X;
1046     // If X has the form X = A / Y then X * Y cannot overflow.
1047     if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
1048       if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
1049         return X;
1050   }
1051 
1052   // (X rem Y) / Y -> 0
1053   if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1054       (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1055     return Constant::getNullValue(Op0->getType());
1056 
1057   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1058   ConstantInt *C1, *C2;
1059   if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
1060       match(Op1, m_ConstantInt(C2))) {
1061     bool Overflow;
1062     C1->getValue().umul_ov(C2->getValue(), Overflow);
1063     if (Overflow)
1064       return Constant::getNullValue(Op0->getType());
1065   }
1066 
1067   // If the operation is with the result of a select instruction, check whether
1068   // operating on either branch of the select always yields the same value.
1069   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1070     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1071       return V;
1072 
1073   // If the operation is with the result of a phi instruction, check whether
1074   // operating on all incoming values of the phi always yields the same value.
1075   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1076     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1077       return V;
1078 
1079   return nullptr;
1080 }
1081 
1082 /// Given operands for an SDiv, see if we can fold the result.
1083 /// If not, this returns null.
1084 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
1085                                unsigned MaxRecurse) {
1086   if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse))
1087     return V;
1088 
1089   return nullptr;
1090 }
1091 
1092 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout &DL,
1093                               const TargetLibraryInfo *TLI,
1094                               const DominatorTree *DT, AssumptionCache *AC,
1095                               const Instruction *CxtI) {
1096   return ::SimplifySDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1097                             RecursionLimit);
1098 }
1099 
1100 /// Given operands for a UDiv, see if we can fold the result.
1101 /// If not, this returns null.
1102 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
1103                                unsigned MaxRecurse) {
1104   if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse))
1105     return V;
1106 
1107   return nullptr;
1108 }
1109 
1110 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout &DL,
1111                               const TargetLibraryInfo *TLI,
1112                               const DominatorTree *DT, AssumptionCache *AC,
1113                               const Instruction *CxtI) {
1114   return ::SimplifyUDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1115                             RecursionLimit);
1116 }
1117 
1118 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1119                                const Query &Q, unsigned) {
1120   // undef / X -> undef    (the undef could be a snan).
1121   if (match(Op0, m_Undef()))
1122     return Op0;
1123 
1124   // X / undef -> undef
1125   if (match(Op1, m_Undef()))
1126     return Op1;
1127 
1128   // 0 / X -> 0
1129   // Requires that NaNs are off (X could be zero) and signed zeroes are
1130   // ignored (X could be positive or negative, so the output sign is unknown).
1131   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
1132     return Op0;
1133 
1134   if (FMF.noNaNs()) {
1135     // X / X -> 1.0 is legal when NaNs are ignored.
1136     if (Op0 == Op1)
1137       return ConstantFP::get(Op0->getType(), 1.0);
1138 
1139     // -X /  X -> -1.0 and
1140     //  X / -X -> -1.0 are legal when NaNs are ignored.
1141     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
1142     if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) &&
1143          BinaryOperator::getFNegArgument(Op0) == Op1) ||
1144         (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) &&
1145          BinaryOperator::getFNegArgument(Op1) == Op0))
1146       return ConstantFP::get(Op0->getType(), -1.0);
1147   }
1148 
1149   return nullptr;
1150 }
1151 
1152 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1153                               const DataLayout &DL,
1154                               const TargetLibraryInfo *TLI,
1155                               const DominatorTree *DT, AssumptionCache *AC,
1156                               const Instruction *CxtI) {
1157   return ::SimplifyFDivInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
1158                             RecursionLimit);
1159 }
1160 
1161 /// Given operands for an SRem or URem, see if we can fold the result.
1162 /// If not, this returns null.
1163 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1164                           const Query &Q, unsigned MaxRecurse) {
1165   if (Constant *C0 = dyn_cast<Constant>(Op0))
1166     if (Constant *C1 = dyn_cast<Constant>(Op1))
1167       return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL);
1168 
1169   // X % undef -> undef
1170   if (match(Op1, m_Undef()))
1171     return Op1;
1172 
1173   // undef % X -> 0
1174   if (match(Op0, m_Undef()))
1175     return Constant::getNullValue(Op0->getType());
1176 
1177   // 0 % X -> 0, we don't need to preserve faults!
1178   if (match(Op0, m_Zero()))
1179     return Op0;
1180 
1181   // X % 0 -> undef, we don't need to preserve faults!
1182   if (match(Op1, m_Zero()))
1183     return UndefValue::get(Op0->getType());
1184 
1185   // X % 1 -> 0
1186   if (match(Op1, m_One()))
1187     return Constant::getNullValue(Op0->getType());
1188 
1189   if (Op0->getType()->isIntegerTy(1))
1190     // It can't be remainder by zero, hence it must be remainder by one.
1191     return Constant::getNullValue(Op0->getType());
1192 
1193   // X % X -> 0
1194   if (Op0 == Op1)
1195     return Constant::getNullValue(Op0->getType());
1196 
1197   // (X % Y) % Y -> X % Y
1198   if ((Opcode == Instruction::SRem &&
1199        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1200       (Opcode == Instruction::URem &&
1201        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1202     return Op0;
1203 
1204   // If the operation is with the result of a select instruction, check whether
1205   // operating on either branch of the select always yields the same value.
1206   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1207     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1208       return V;
1209 
1210   // If the operation is with the result of a phi instruction, check whether
1211   // operating on all incoming values of the phi always yields the same value.
1212   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1213     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1214       return V;
1215 
1216   return nullptr;
1217 }
1218 
1219 /// Given operands for an SRem, see if we can fold the result.
1220 /// If not, this returns null.
1221 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
1222                                unsigned MaxRecurse) {
1223   if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse))
1224     return V;
1225 
1226   return nullptr;
1227 }
1228 
1229 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout &DL,
1230                               const TargetLibraryInfo *TLI,
1231                               const DominatorTree *DT, AssumptionCache *AC,
1232                               const Instruction *CxtI) {
1233   return ::SimplifySRemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1234                             RecursionLimit);
1235 }
1236 
1237 /// Given operands for a URem, see if we can fold the result.
1238 /// If not, this returns null.
1239 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
1240                                unsigned MaxRecurse) {
1241   if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse))
1242     return V;
1243 
1244   return nullptr;
1245 }
1246 
1247 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout &DL,
1248                               const TargetLibraryInfo *TLI,
1249                               const DominatorTree *DT, AssumptionCache *AC,
1250                               const Instruction *CxtI) {
1251   return ::SimplifyURemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1252                             RecursionLimit);
1253 }
1254 
1255 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1256                                const Query &, unsigned) {
1257   // undef % X -> undef    (the undef could be a snan).
1258   if (match(Op0, m_Undef()))
1259     return Op0;
1260 
1261   // X % undef -> undef
1262   if (match(Op1, m_Undef()))
1263     return Op1;
1264 
1265   // 0 % X -> 0
1266   // Requires that NaNs are off (X could be zero) and signed zeroes are
1267   // ignored (X could be positive or negative, so the output sign is unknown).
1268   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
1269     return Op0;
1270 
1271   return nullptr;
1272 }
1273 
1274 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1275                               const DataLayout &DL,
1276                               const TargetLibraryInfo *TLI,
1277                               const DominatorTree *DT, AssumptionCache *AC,
1278                               const Instruction *CxtI) {
1279   return ::SimplifyFRemInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
1280                             RecursionLimit);
1281 }
1282 
1283 /// Returns true if a shift by \c Amount always yields undef.
1284 static bool isUndefShift(Value *Amount) {
1285   Constant *C = dyn_cast<Constant>(Amount);
1286   if (!C)
1287     return false;
1288 
1289   // X shift by undef -> undef because it may shift by the bitwidth.
1290   if (isa<UndefValue>(C))
1291     return true;
1292 
1293   // Shifting by the bitwidth or more is undefined.
1294   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1295     if (CI->getValue().getLimitedValue() >=
1296         CI->getType()->getScalarSizeInBits())
1297       return true;
1298 
1299   // If all lanes of a vector shift are undefined the whole shift is.
1300   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1301     for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I)
1302       if (!isUndefShift(C->getAggregateElement(I)))
1303         return false;
1304     return true;
1305   }
1306 
1307   return false;
1308 }
1309 
1310 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1311 /// If not, this returns null.
1312 static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
1313                             const Query &Q, unsigned MaxRecurse) {
1314   if (Constant *C0 = dyn_cast<Constant>(Op0))
1315     if (Constant *C1 = dyn_cast<Constant>(Op1))
1316       return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL);
1317 
1318   // 0 shift by X -> 0
1319   if (match(Op0, m_Zero()))
1320     return Op0;
1321 
1322   // X shift by 0 -> X
1323   if (match(Op1, m_Zero()))
1324     return Op0;
1325 
1326   // Fold undefined shifts.
1327   if (isUndefShift(Op1))
1328     return UndefValue::get(Op0->getType());
1329 
1330   // If the operation is with the result of a select instruction, check whether
1331   // operating on either branch of the select always yields the same value.
1332   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1333     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1334       return V;
1335 
1336   // If the operation is with the result of a phi instruction, check whether
1337   // operating on all incoming values of the phi always yields the same value.
1338   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1339     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1340       return V;
1341 
1342   // If any bits in the shift amount make that value greater than or equal to
1343   // the number of bits in the type, the shift is undefined.
1344   unsigned BitWidth = Op1->getType()->getScalarSizeInBits();
1345   APInt KnownZero(BitWidth, 0);
1346   APInt KnownOne(BitWidth, 0);
1347   computeKnownBits(Op1, KnownZero, KnownOne, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1348   if (KnownOne.getLimitedValue() >= BitWidth)
1349     return UndefValue::get(Op0->getType());
1350 
1351   // If all valid bits in the shift amount are known zero, the first operand is
1352   // unchanged.
1353   unsigned NumValidShiftBits = Log2_32_Ceil(BitWidth);
1354   APInt ShiftAmountMask = APInt::getLowBitsSet(BitWidth, NumValidShiftBits);
1355   if ((KnownZero & ShiftAmountMask) == ShiftAmountMask)
1356     return Op0;
1357 
1358   return nullptr;
1359 }
1360 
1361 /// \brief Given operands for an Shl, LShr or AShr, see if we can
1362 /// fold the result.  If not, this returns null.
1363 static Value *SimplifyRightShift(unsigned Opcode, Value *Op0, Value *Op1,
1364                                  bool isExact, const Query &Q,
1365                                  unsigned MaxRecurse) {
1366   if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
1367     return V;
1368 
1369   // X >> X -> 0
1370   if (Op0 == Op1)
1371     return Constant::getNullValue(Op0->getType());
1372 
1373   // undef >> X -> 0
1374   // undef >> X -> undef (if it's exact)
1375   if (match(Op0, m_Undef()))
1376     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1377 
1378   // The low bit cannot be shifted out of an exact shift if it is set.
1379   if (isExact) {
1380     unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
1381     APInt Op0KnownZero(BitWidth, 0);
1382     APInt Op0KnownOne(BitWidth, 0);
1383     computeKnownBits(Op0, Op0KnownZero, Op0KnownOne, Q.DL, /*Depth=*/0, Q.AC,
1384                      Q.CxtI, Q.DT);
1385     if (Op0KnownOne[0])
1386       return Op0;
1387   }
1388 
1389   return nullptr;
1390 }
1391 
1392 /// Given operands for an Shl, see if we can fold the result.
1393 /// If not, this returns null.
1394 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1395                               const Query &Q, unsigned MaxRecurse) {
1396   if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
1397     return V;
1398 
1399   // undef << X -> 0
1400   // undef << X -> undef if (if it's NSW/NUW)
1401   if (match(Op0, m_Undef()))
1402     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1403 
1404   // (X >> A) << A -> X
1405   Value *X;
1406   if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1407     return X;
1408   return nullptr;
1409 }
1410 
1411 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1412                              const DataLayout &DL, const TargetLibraryInfo *TLI,
1413                              const DominatorTree *DT, AssumptionCache *AC,
1414                              const Instruction *CxtI) {
1415   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
1416                            RecursionLimit);
1417 }
1418 
1419 /// Given operands for an LShr, see if we can fold the result.
1420 /// If not, this returns null.
1421 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1422                                const Query &Q, unsigned MaxRecurse) {
1423   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1424                                     MaxRecurse))
1425       return V;
1426 
1427   // (X << A) >> A -> X
1428   Value *X;
1429   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1430     return X;
1431 
1432   return nullptr;
1433 }
1434 
1435 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1436                               const DataLayout &DL,
1437                               const TargetLibraryInfo *TLI,
1438                               const DominatorTree *DT, AssumptionCache *AC,
1439                               const Instruction *CxtI) {
1440   return ::SimplifyLShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI),
1441                             RecursionLimit);
1442 }
1443 
1444 /// Given operands for an AShr, see if we can fold the result.
1445 /// If not, this returns null.
1446 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1447                                const Query &Q, unsigned MaxRecurse) {
1448   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1449                                     MaxRecurse))
1450     return V;
1451 
1452   // all ones >>a X -> all ones
1453   if (match(Op0, m_AllOnes()))
1454     return Op0;
1455 
1456   // (X << A) >> A -> X
1457   Value *X;
1458   if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1459     return X;
1460 
1461   // Arithmetic shifting an all-sign-bit value is a no-op.
1462   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1463   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1464     return Op0;
1465 
1466   return nullptr;
1467 }
1468 
1469 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1470                               const DataLayout &DL,
1471                               const TargetLibraryInfo *TLI,
1472                               const DominatorTree *DT, AssumptionCache *AC,
1473                               const Instruction *CxtI) {
1474   return ::SimplifyAShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI),
1475                             RecursionLimit);
1476 }
1477 
1478 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1479                                          ICmpInst *UnsignedICmp, bool IsAnd) {
1480   Value *X, *Y;
1481 
1482   ICmpInst::Predicate EqPred;
1483   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1484       !ICmpInst::isEquality(EqPred))
1485     return nullptr;
1486 
1487   ICmpInst::Predicate UnsignedPred;
1488   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1489       ICmpInst::isUnsigned(UnsignedPred))
1490     ;
1491   else if (match(UnsignedICmp,
1492                  m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) &&
1493            ICmpInst::isUnsigned(UnsignedPred))
1494     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1495   else
1496     return nullptr;
1497 
1498   // X < Y && Y != 0  -->  X < Y
1499   // X < Y || Y != 0  -->  Y != 0
1500   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1501     return IsAnd ? UnsignedICmp : ZeroICmp;
1502 
1503   // X >= Y || Y != 0  -->  true
1504   // X >= Y || Y == 0  -->  X >= Y
1505   if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) {
1506     if (EqPred == ICmpInst::ICMP_NE)
1507       return getTrue(UnsignedICmp->getType());
1508     return UnsignedICmp;
1509   }
1510 
1511   // X < Y && Y == 0  -->  false
1512   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1513       IsAnd)
1514     return getFalse(UnsignedICmp->getType());
1515 
1516   return nullptr;
1517 }
1518 
1519 static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
1520   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true))
1521     return X;
1522 
1523   // Look for this pattern: (icmp V, C0) & (icmp V, C1)).
1524   Type *ITy = Op0->getType();
1525   ICmpInst::Predicate Pred0, Pred1;
1526   const APInt *C0, *C1;
1527   Value *V;
1528   if (match(Op0, m_ICmp(Pred0, m_Value(V), m_APInt(C0))) &&
1529       match(Op1, m_ICmp(Pred1, m_Specific(V), m_APInt(C1)))) {
1530     // Make a constant range that's the intersection of the two icmp ranges.
1531     // If the intersection is empty, we know that the result is false.
1532     auto Range0 = ConstantRange::makeAllowedICmpRegion(Pred0, *C0);
1533     auto Range1 = ConstantRange::makeAllowedICmpRegion(Pred1, *C1);
1534     if (Range0.intersectWith(Range1).isEmptySet())
1535       return getFalse(ITy);
1536   }
1537 
1538   // (icmp (add V, C0), C1) & (icmp V, C0)
1539   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1540     return nullptr;
1541 
1542   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1543     return nullptr;
1544 
1545   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1546   if (AddInst->getOperand(1) != Op1->getOperand(1))
1547     return nullptr;
1548 
1549   bool isNSW = AddInst->hasNoSignedWrap();
1550   bool isNUW = AddInst->hasNoUnsignedWrap();
1551 
1552   const APInt Delta = *C1 - *C0;
1553   if (C0->isStrictlyPositive()) {
1554     if (Delta == 2) {
1555       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1556         return getFalse(ITy);
1557       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1558         return getFalse(ITy);
1559     }
1560     if (Delta == 1) {
1561       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1562         return getFalse(ITy);
1563       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1564         return getFalse(ITy);
1565     }
1566   }
1567   if (C0->getBoolValue() && isNUW) {
1568     if (Delta == 2)
1569       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1570         return getFalse(ITy);
1571     if (Delta == 1)
1572       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1573         return getFalse(ITy);
1574   }
1575 
1576   return nullptr;
1577 }
1578 
1579 /// Given operands for an And, see if we can fold the result.
1580 /// If not, this returns null.
1581 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
1582                               unsigned MaxRecurse) {
1583   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1584     if (Constant *CRHS = dyn_cast<Constant>(Op1))
1585       return ConstantFoldBinaryOpOperands(Instruction::And, CLHS, CRHS, Q.DL);
1586 
1587     // Canonicalize the constant to the RHS.
1588     std::swap(Op0, Op1);
1589   }
1590 
1591   // X & undef -> 0
1592   if (match(Op1, m_Undef()))
1593     return Constant::getNullValue(Op0->getType());
1594 
1595   // X & X = X
1596   if (Op0 == Op1)
1597     return Op0;
1598 
1599   // X & 0 = 0
1600   if (match(Op1, m_Zero()))
1601     return Op1;
1602 
1603   // X & -1 = X
1604   if (match(Op1, m_AllOnes()))
1605     return Op0;
1606 
1607   // A & ~A  =  ~A & A  =  0
1608   if (match(Op0, m_Not(m_Specific(Op1))) ||
1609       match(Op1, m_Not(m_Specific(Op0))))
1610     return Constant::getNullValue(Op0->getType());
1611 
1612   // (A | ?) & A = A
1613   Value *A = nullptr, *B = nullptr;
1614   if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1615       (A == Op1 || B == Op1))
1616     return Op1;
1617 
1618   // A & (A | ?) = A
1619   if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1620       (A == Op0 || B == Op0))
1621     return Op0;
1622 
1623   // A & (-A) = A if A is a power of two or zero.
1624   if (match(Op0, m_Neg(m_Specific(Op1))) ||
1625       match(Op1, m_Neg(m_Specific(Op0)))) {
1626     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1627                                Q.DT))
1628       return Op0;
1629     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1630                                Q.DT))
1631       return Op1;
1632   }
1633 
1634   if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
1635     if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
1636       if (Value *V = SimplifyAndOfICmps(ICILHS, ICIRHS))
1637         return V;
1638       if (Value *V = SimplifyAndOfICmps(ICIRHS, ICILHS))
1639         return V;
1640     }
1641   }
1642 
1643   // The compares may be hidden behind casts. Look through those and try the
1644   // same folds as above.
1645   auto *Cast0 = dyn_cast<CastInst>(Op0);
1646   auto *Cast1 = dyn_cast<CastInst>(Op1);
1647   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1648       Cast0->getSrcTy() == Cast1->getSrcTy()) {
1649     auto *Cmp0 = dyn_cast<ICmpInst>(Cast0->getOperand(0));
1650     auto *Cmp1 = dyn_cast<ICmpInst>(Cast1->getOperand(0));
1651     if (Cmp0 && Cmp1) {
1652       Instruction::CastOps CastOpc = Cast0->getOpcode();
1653       Type *ResultType = Cast0->getType();
1654       if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp0, Cmp1)))
1655         return ConstantExpr::getCast(CastOpc, V, ResultType);
1656       if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp1, Cmp0)))
1657         return ConstantExpr::getCast(CastOpc, V, ResultType);
1658     }
1659   }
1660 
1661   // Try some generic simplifications for associative operations.
1662   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
1663                                           MaxRecurse))
1664     return V;
1665 
1666   // And distributes over Or.  Try some generic simplifications based on this.
1667   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1668                              Q, MaxRecurse))
1669     return V;
1670 
1671   // And distributes over Xor.  Try some generic simplifications based on this.
1672   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1673                              Q, MaxRecurse))
1674     return V;
1675 
1676   // If the operation is with the result of a select instruction, check whether
1677   // operating on either branch of the select always yields the same value.
1678   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1679     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
1680                                          MaxRecurse))
1681       return V;
1682 
1683   // If the operation is with the result of a phi instruction, check whether
1684   // operating on all incoming values of the phi always yields the same value.
1685   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1686     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
1687                                       MaxRecurse))
1688       return V;
1689 
1690   return nullptr;
1691 }
1692 
1693 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout &DL,
1694                              const TargetLibraryInfo *TLI,
1695                              const DominatorTree *DT, AssumptionCache *AC,
1696                              const Instruction *CxtI) {
1697   return ::SimplifyAndInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1698                            RecursionLimit);
1699 }
1700 
1701 /// Simplify (or (icmp ...) (icmp ...)) to true when we can tell that the union
1702 /// contains all possible values.
1703 static Value *SimplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
1704   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false))
1705     return X;
1706 
1707   // (icmp (add V, C0), C1) | (icmp V, C0)
1708   ICmpInst::Predicate Pred0, Pred1;
1709   const APInt *C0, *C1;
1710   Value *V;
1711   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1712     return nullptr;
1713 
1714   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1715     return nullptr;
1716 
1717   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1718   if (AddInst->getOperand(1) != Op1->getOperand(1))
1719     return nullptr;
1720 
1721   Type *ITy = Op0->getType();
1722   bool isNSW = AddInst->hasNoSignedWrap();
1723   bool isNUW = AddInst->hasNoUnsignedWrap();
1724 
1725   const APInt Delta = *C1 - *C0;
1726   if (C0->isStrictlyPositive()) {
1727     if (Delta == 2) {
1728       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1729         return getTrue(ITy);
1730       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1731         return getTrue(ITy);
1732     }
1733     if (Delta == 1) {
1734       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1735         return getTrue(ITy);
1736       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1737         return getTrue(ITy);
1738     }
1739   }
1740   if (C0->getBoolValue() && isNUW) {
1741     if (Delta == 2)
1742       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1743         return getTrue(ITy);
1744     if (Delta == 1)
1745       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1746         return getTrue(ITy);
1747   }
1748 
1749   return nullptr;
1750 }
1751 
1752 /// Given operands for an Or, see if we can fold the result.
1753 /// If not, this returns null.
1754 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
1755                              unsigned MaxRecurse) {
1756   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1757     if (Constant *CRHS = dyn_cast<Constant>(Op1))
1758       return ConstantFoldBinaryOpOperands(Instruction::Or, CLHS, CRHS, Q.DL);
1759 
1760     // Canonicalize the constant to the RHS.
1761     std::swap(Op0, Op1);
1762   }
1763 
1764   // X | undef -> -1
1765   if (match(Op1, m_Undef()))
1766     return Constant::getAllOnesValue(Op0->getType());
1767 
1768   // X | X = X
1769   if (Op0 == Op1)
1770     return Op0;
1771 
1772   // X | 0 = X
1773   if (match(Op1, m_Zero()))
1774     return Op0;
1775 
1776   // X | -1 = -1
1777   if (match(Op1, m_AllOnes()))
1778     return Op1;
1779 
1780   // A | ~A  =  ~A | A  =  -1
1781   if (match(Op0, m_Not(m_Specific(Op1))) ||
1782       match(Op1, m_Not(m_Specific(Op0))))
1783     return Constant::getAllOnesValue(Op0->getType());
1784 
1785   // (A & ?) | A = A
1786   Value *A = nullptr, *B = nullptr;
1787   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1788       (A == Op1 || B == Op1))
1789     return Op1;
1790 
1791   // A | (A & ?) = A
1792   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1793       (A == Op0 || B == Op0))
1794     return Op0;
1795 
1796   // ~(A & ?) | A = -1
1797   if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1798       (A == Op1 || B == Op1))
1799     return Constant::getAllOnesValue(Op1->getType());
1800 
1801   // A | ~(A & ?) = -1
1802   if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1803       (A == Op0 || B == Op0))
1804     return Constant::getAllOnesValue(Op0->getType());
1805 
1806   if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
1807     if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
1808       if (Value *V = SimplifyOrOfICmps(ICILHS, ICIRHS))
1809         return V;
1810       if (Value *V = SimplifyOrOfICmps(ICIRHS, ICILHS))
1811         return V;
1812     }
1813   }
1814 
1815   // Try some generic simplifications for associative operations.
1816   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
1817                                           MaxRecurse))
1818     return V;
1819 
1820   // Or distributes over And.  Try some generic simplifications based on this.
1821   if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
1822                              MaxRecurse))
1823     return V;
1824 
1825   // If the operation is with the result of a select instruction, check whether
1826   // operating on either branch of the select always yields the same value.
1827   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1828     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
1829                                          MaxRecurse))
1830       return V;
1831 
1832   // (A & C)|(B & D)
1833   Value *C = nullptr, *D = nullptr;
1834   if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
1835       match(Op1, m_And(m_Value(B), m_Value(D)))) {
1836     ConstantInt *C1 = dyn_cast<ConstantInt>(C);
1837     ConstantInt *C2 = dyn_cast<ConstantInt>(D);
1838     if (C1 && C2 && (C1->getValue() == ~C2->getValue())) {
1839       // (A & C1)|(B & C2)
1840       // If we have: ((V + N) & C1) | (V & C2)
1841       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
1842       // replace with V+N.
1843       Value *V1, *V2;
1844       if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+
1845           match(A, m_Add(m_Value(V1), m_Value(V2)))) {
1846         // Add commutes, try both ways.
1847         if (V1 == B &&
1848             MaskedValueIsZero(V2, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1849           return A;
1850         if (V2 == B &&
1851             MaskedValueIsZero(V1, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1852           return A;
1853       }
1854       // Or commutes, try both ways.
1855       if ((C1->getValue() & (C1->getValue() + 1)) == 0 &&
1856           match(B, m_Add(m_Value(V1), m_Value(V2)))) {
1857         // Add commutes, try both ways.
1858         if (V1 == A &&
1859             MaskedValueIsZero(V2, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1860           return B;
1861         if (V2 == A &&
1862             MaskedValueIsZero(V1, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1863           return B;
1864       }
1865     }
1866   }
1867 
1868   // If the operation is with the result of a phi instruction, check whether
1869   // operating on all incoming values of the phi always yields the same value.
1870   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1871     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
1872       return V;
1873 
1874   return nullptr;
1875 }
1876 
1877 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout &DL,
1878                             const TargetLibraryInfo *TLI,
1879                             const DominatorTree *DT, AssumptionCache *AC,
1880                             const Instruction *CxtI) {
1881   return ::SimplifyOrInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1882                           RecursionLimit);
1883 }
1884 
1885 /// Given operands for a Xor, see if we can fold the result.
1886 /// If not, this returns null.
1887 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
1888                               unsigned MaxRecurse) {
1889   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1890     if (Constant *CRHS = dyn_cast<Constant>(Op1))
1891       return ConstantFoldBinaryOpOperands(Instruction::Xor, CLHS, CRHS, Q.DL);
1892 
1893     // Canonicalize the constant to the RHS.
1894     std::swap(Op0, Op1);
1895   }
1896 
1897   // A ^ undef -> undef
1898   if (match(Op1, m_Undef()))
1899     return Op1;
1900 
1901   // A ^ 0 = A
1902   if (match(Op1, m_Zero()))
1903     return Op0;
1904 
1905   // A ^ A = 0
1906   if (Op0 == Op1)
1907     return Constant::getNullValue(Op0->getType());
1908 
1909   // A ^ ~A  =  ~A ^ A  =  -1
1910   if (match(Op0, m_Not(m_Specific(Op1))) ||
1911       match(Op1, m_Not(m_Specific(Op0))))
1912     return Constant::getAllOnesValue(Op0->getType());
1913 
1914   // Try some generic simplifications for associative operations.
1915   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
1916                                           MaxRecurse))
1917     return V;
1918 
1919   // Threading Xor over selects and phi nodes is pointless, so don't bother.
1920   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1921   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1922   // only if B and C are equal.  If B and C are equal then (since we assume
1923   // that operands have already been simplified) "select(cond, B, C)" should
1924   // have been simplified to the common value of B and C already.  Analysing
1925   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
1926   // for threading over phi nodes.
1927 
1928   return nullptr;
1929 }
1930 
1931 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout &DL,
1932                              const TargetLibraryInfo *TLI,
1933                              const DominatorTree *DT, AssumptionCache *AC,
1934                              const Instruction *CxtI) {
1935   return ::SimplifyXorInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1936                            RecursionLimit);
1937 }
1938 
1939 static Type *GetCompareTy(Value *Op) {
1940   return CmpInst::makeCmpResultType(Op->getType());
1941 }
1942 
1943 /// Rummage around inside V looking for something equivalent to the comparison
1944 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
1945 /// Helper function for analyzing max/min idioms.
1946 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
1947                                          Value *LHS, Value *RHS) {
1948   SelectInst *SI = dyn_cast<SelectInst>(V);
1949   if (!SI)
1950     return nullptr;
1951   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
1952   if (!Cmp)
1953     return nullptr;
1954   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
1955   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
1956     return Cmp;
1957   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
1958       LHS == CmpRHS && RHS == CmpLHS)
1959     return Cmp;
1960   return nullptr;
1961 }
1962 
1963 // A significant optimization not implemented here is assuming that alloca
1964 // addresses are not equal to incoming argument values. They don't *alias*,
1965 // as we say, but that doesn't mean they aren't equal, so we take a
1966 // conservative approach.
1967 //
1968 // This is inspired in part by C++11 5.10p1:
1969 //   "Two pointers of the same type compare equal if and only if they are both
1970 //    null, both point to the same function, or both represent the same
1971 //    address."
1972 //
1973 // This is pretty permissive.
1974 //
1975 // It's also partly due to C11 6.5.9p6:
1976 //   "Two pointers compare equal if and only if both are null pointers, both are
1977 //    pointers to the same object (including a pointer to an object and a
1978 //    subobject at its beginning) or function, both are pointers to one past the
1979 //    last element of the same array object, or one is a pointer to one past the
1980 //    end of one array object and the other is a pointer to the start of a
1981 //    different array object that happens to immediately follow the first array
1982 //    object in the address space.)
1983 //
1984 // C11's version is more restrictive, however there's no reason why an argument
1985 // couldn't be a one-past-the-end value for a stack object in the caller and be
1986 // equal to the beginning of a stack object in the callee.
1987 //
1988 // If the C and C++ standards are ever made sufficiently restrictive in this
1989 // area, it may be possible to update LLVM's semantics accordingly and reinstate
1990 // this optimization.
1991 static Constant *
1992 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI,
1993                    const DominatorTree *DT, CmpInst::Predicate Pred,
1994                    const Instruction *CxtI, Value *LHS, Value *RHS) {
1995   // First, skip past any trivial no-ops.
1996   LHS = LHS->stripPointerCasts();
1997   RHS = RHS->stripPointerCasts();
1998 
1999   // A non-null pointer is not equal to a null pointer.
2000   if (llvm::isKnownNonNull(LHS) && isa<ConstantPointerNull>(RHS) &&
2001       (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
2002     return ConstantInt::get(GetCompareTy(LHS),
2003                             !CmpInst::isTrueWhenEqual(Pred));
2004 
2005   // We can only fold certain predicates on pointer comparisons.
2006   switch (Pred) {
2007   default:
2008     return nullptr;
2009 
2010     // Equality comaprisons are easy to fold.
2011   case CmpInst::ICMP_EQ:
2012   case CmpInst::ICMP_NE:
2013     break;
2014 
2015     // We can only handle unsigned relational comparisons because 'inbounds' on
2016     // a GEP only protects against unsigned wrapping.
2017   case CmpInst::ICMP_UGT:
2018   case CmpInst::ICMP_UGE:
2019   case CmpInst::ICMP_ULT:
2020   case CmpInst::ICMP_ULE:
2021     // However, we have to switch them to their signed variants to handle
2022     // negative indices from the base pointer.
2023     Pred = ICmpInst::getSignedPredicate(Pred);
2024     break;
2025   }
2026 
2027   // Strip off any constant offsets so that we can reason about them.
2028   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2029   // here and compare base addresses like AliasAnalysis does, however there are
2030   // numerous hazards. AliasAnalysis and its utilities rely on special rules
2031   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2032   // doesn't need to guarantee pointer inequality when it says NoAlias.
2033   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
2034   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
2035 
2036   // If LHS and RHS are related via constant offsets to the same base
2037   // value, we can replace it with an icmp which just compares the offsets.
2038   if (LHS == RHS)
2039     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
2040 
2041   // Various optimizations for (in)equality comparisons.
2042   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2043     // Different non-empty allocations that exist at the same time have
2044     // different addresses (if the program can tell). Global variables always
2045     // exist, so they always exist during the lifetime of each other and all
2046     // allocas. Two different allocas usually have different addresses...
2047     //
2048     // However, if there's an @llvm.stackrestore dynamically in between two
2049     // allocas, they may have the same address. It's tempting to reduce the
2050     // scope of the problem by only looking at *static* allocas here. That would
2051     // cover the majority of allocas while significantly reducing the likelihood
2052     // of having an @llvm.stackrestore pop up in the middle. However, it's not
2053     // actually impossible for an @llvm.stackrestore to pop up in the middle of
2054     // an entry block. Also, if we have a block that's not attached to a
2055     // function, we can't tell if it's "static" under the current definition.
2056     // Theoretically, this problem could be fixed by creating a new kind of
2057     // instruction kind specifically for static allocas. Such a new instruction
2058     // could be required to be at the top of the entry block, thus preventing it
2059     // from being subject to a @llvm.stackrestore. Instcombine could even
2060     // convert regular allocas into these special allocas. It'd be nifty.
2061     // However, until then, this problem remains open.
2062     //
2063     // So, we'll assume that two non-empty allocas have different addresses
2064     // for now.
2065     //
2066     // With all that, if the offsets are within the bounds of their allocations
2067     // (and not one-past-the-end! so we can't use inbounds!), and their
2068     // allocations aren't the same, the pointers are not equal.
2069     //
2070     // Note that it's not necessary to check for LHS being a global variable
2071     // address, due to canonicalization and constant folding.
2072     if (isa<AllocaInst>(LHS) &&
2073         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2074       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2075       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2076       uint64_t LHSSize, RHSSize;
2077       if (LHSOffsetCI && RHSOffsetCI &&
2078           getObjectSize(LHS, LHSSize, DL, TLI) &&
2079           getObjectSize(RHS, RHSSize, DL, TLI)) {
2080         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2081         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2082         if (!LHSOffsetValue.isNegative() &&
2083             !RHSOffsetValue.isNegative() &&
2084             LHSOffsetValue.ult(LHSSize) &&
2085             RHSOffsetValue.ult(RHSSize)) {
2086           return ConstantInt::get(GetCompareTy(LHS),
2087                                   !CmpInst::isTrueWhenEqual(Pred));
2088         }
2089       }
2090 
2091       // Repeat the above check but this time without depending on DataLayout
2092       // or being able to compute a precise size.
2093       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2094           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2095           LHSOffset->isNullValue() &&
2096           RHSOffset->isNullValue())
2097         return ConstantInt::get(GetCompareTy(LHS),
2098                                 !CmpInst::isTrueWhenEqual(Pred));
2099     }
2100 
2101     // Even if an non-inbounds GEP occurs along the path we can still optimize
2102     // equality comparisons concerning the result. We avoid walking the whole
2103     // chain again by starting where the last calls to
2104     // stripAndComputeConstantOffsets left off and accumulate the offsets.
2105     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2106     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2107     if (LHS == RHS)
2108       return ConstantExpr::getICmp(Pred,
2109                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2110                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2111 
2112     // If one side of the equality comparison must come from a noalias call
2113     // (meaning a system memory allocation function), and the other side must
2114     // come from a pointer that cannot overlap with dynamically-allocated
2115     // memory within the lifetime of the current function (allocas, byval
2116     // arguments, globals), then determine the comparison result here.
2117     SmallVector<Value *, 8> LHSUObjs, RHSUObjs;
2118     GetUnderlyingObjects(LHS, LHSUObjs, DL);
2119     GetUnderlyingObjects(RHS, RHSUObjs, DL);
2120 
2121     // Is the set of underlying objects all noalias calls?
2122     auto IsNAC = [](ArrayRef<Value *> Objects) {
2123       return all_of(Objects, isNoAliasCall);
2124     };
2125 
2126     // Is the set of underlying objects all things which must be disjoint from
2127     // noalias calls. For allocas, we consider only static ones (dynamic
2128     // allocas might be transformed into calls to malloc not simultaneously
2129     // live with the compared-to allocation). For globals, we exclude symbols
2130     // that might be resolve lazily to symbols in another dynamically-loaded
2131     // library (and, thus, could be malloc'ed by the implementation).
2132     auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) {
2133       return all_of(Objects, [](Value *V) {
2134         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2135           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2136         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2137           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2138                   GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2139                  !GV->isThreadLocal();
2140         if (const Argument *A = dyn_cast<Argument>(V))
2141           return A->hasByValAttr();
2142         return false;
2143       });
2144     };
2145 
2146     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2147         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2148         return ConstantInt::get(GetCompareTy(LHS),
2149                                 !CmpInst::isTrueWhenEqual(Pred));
2150 
2151     // Fold comparisons for non-escaping pointer even if the allocation call
2152     // cannot be elided. We cannot fold malloc comparison to null. Also, the
2153     // dynamic allocation call could be either of the operands.
2154     Value *MI = nullptr;
2155     if (isAllocLikeFn(LHS, TLI) && llvm::isKnownNonNullAt(RHS, CxtI, DT))
2156       MI = LHS;
2157     else if (isAllocLikeFn(RHS, TLI) && llvm::isKnownNonNullAt(LHS, CxtI, DT))
2158       MI = RHS;
2159     // FIXME: We should also fold the compare when the pointer escapes, but the
2160     // compare dominates the pointer escape
2161     if (MI && !PointerMayBeCaptured(MI, true, true))
2162       return ConstantInt::get(GetCompareTy(LHS),
2163                               CmpInst::isFalseWhenEqual(Pred));
2164   }
2165 
2166   // Otherwise, fail.
2167   return nullptr;
2168 }
2169 
2170 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
2171                                        Value *RHS) {
2172   const APInt *C;
2173   if (!match(RHS, m_APInt(C)))
2174     return nullptr;
2175 
2176   // Rule out tautological comparisons (eg., ult 0 or uge 0).
2177   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2178   if (RHS_CR.isEmptySet())
2179     return ConstantInt::getFalse(GetCompareTy(RHS));
2180   if (RHS_CR.isFullSet())
2181     return ConstantInt::getTrue(GetCompareTy(RHS));
2182 
2183   // Many binary operators with constant RHS have easy to compute constant
2184   // range.  Use them to check whether the comparison is a tautology.
2185   unsigned Width = C->getBitWidth();
2186   APInt Lower = APInt(Width, 0);
2187   APInt Upper = APInt(Width, 0);
2188   const APInt *C2;
2189   if (match(LHS, m_URem(m_Value(), m_APInt(C2)))) {
2190     // 'urem x, C2' produces [0, C2).
2191     Upper = *C2;
2192   } else if (match(LHS, m_SRem(m_Value(), m_APInt(C2)))) {
2193     // 'srem x, C2' produces (-|C2|, |C2|).
2194     Upper = C2->abs();
2195     Lower = (-Upper) + 1;
2196   } else if (match(LHS, m_UDiv(m_APInt(C2), m_Value()))) {
2197     // 'udiv C2, x' produces [0, C2].
2198     Upper = *C2 + 1;
2199   } else if (match(LHS, m_UDiv(m_Value(), m_APInt(C2)))) {
2200     // 'udiv x, C2' produces [0, UINT_MAX / C2].
2201     APInt NegOne = APInt::getAllOnesValue(Width);
2202     if (*C2 != 0)
2203       Upper = NegOne.udiv(*C2) + 1;
2204   } else if (match(LHS, m_SDiv(m_APInt(C2), m_Value()))) {
2205     if (C2->isMinSignedValue()) {
2206       // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
2207       Lower = *C2;
2208       Upper = Lower.lshr(1) + 1;
2209     } else {
2210       // 'sdiv C2, x' produces [-|C2|, |C2|].
2211       Upper = C2->abs() + 1;
2212       Lower = (-Upper) + 1;
2213     }
2214   } else if (match(LHS, m_SDiv(m_Value(), m_APInt(C2)))) {
2215     APInt IntMin = APInt::getSignedMinValue(Width);
2216     APInt IntMax = APInt::getSignedMaxValue(Width);
2217     if (C2->isAllOnesValue()) {
2218       // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
2219       //    where C2 != -1 and C2 != 0 and C2 != 1
2220       Lower = IntMin + 1;
2221       Upper = IntMax + 1;
2222     } else if (C2->countLeadingZeros() < Width - 1) {
2223       // 'sdiv x, C2' produces [INT_MIN / C2, INT_MAX / C2]
2224       //    where C2 != -1 and C2 != 0 and C2 != 1
2225       Lower = IntMin.sdiv(*C2);
2226       Upper = IntMax.sdiv(*C2);
2227       if (Lower.sgt(Upper))
2228         std::swap(Lower, Upper);
2229       Upper = Upper + 1;
2230       assert(Upper != Lower && "Upper part of range has wrapped!");
2231     }
2232   } else if (match(LHS, m_NUWShl(m_APInt(C2), m_Value()))) {
2233     // 'shl nuw C2, x' produces [C2, C2 << CLZ(C2)]
2234     Lower = *C2;
2235     Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
2236   } else if (match(LHS, m_NSWShl(m_APInt(C2), m_Value()))) {
2237     if (C2->isNegative()) {
2238       // 'shl nsw C2, x' produces [C2 << CLO(C2)-1, C2]
2239       unsigned ShiftAmount = C2->countLeadingOnes() - 1;
2240       Lower = C2->shl(ShiftAmount);
2241       Upper = *C2 + 1;
2242     } else {
2243       // 'shl nsw C2, x' produces [C2, C2 << CLZ(C2)-1]
2244       unsigned ShiftAmount = C2->countLeadingZeros() - 1;
2245       Lower = *C2;
2246       Upper = C2->shl(ShiftAmount) + 1;
2247     }
2248   } else if (match(LHS, m_LShr(m_Value(), m_APInt(C2)))) {
2249     // 'lshr x, C2' produces [0, UINT_MAX >> C2].
2250     APInt NegOne = APInt::getAllOnesValue(Width);
2251     if (C2->ult(Width))
2252       Upper = NegOne.lshr(*C2) + 1;
2253   } else if (match(LHS, m_LShr(m_APInt(C2), m_Value()))) {
2254     // 'lshr C2, x' produces [C2 >> (Width-1), C2].
2255     unsigned ShiftAmount = Width - 1;
2256     if (*C2 != 0 && cast<BinaryOperator>(LHS)->isExact())
2257       ShiftAmount = C2->countTrailingZeros();
2258     Lower = C2->lshr(ShiftAmount);
2259     Upper = *C2 + 1;
2260   } else if (match(LHS, m_AShr(m_Value(), m_APInt(C2)))) {
2261     // 'ashr x, C2' produces [INT_MIN >> C2, INT_MAX >> C2].
2262     APInt IntMin = APInt::getSignedMinValue(Width);
2263     APInt IntMax = APInt::getSignedMaxValue(Width);
2264     if (C2->ult(Width)) {
2265       Lower = IntMin.ashr(*C2);
2266       Upper = IntMax.ashr(*C2) + 1;
2267     }
2268   } else if (match(LHS, m_AShr(m_APInt(C2), m_Value()))) {
2269     unsigned ShiftAmount = Width - 1;
2270     if (*C2 != 0 && cast<BinaryOperator>(LHS)->isExact())
2271       ShiftAmount = C2->countTrailingZeros();
2272     if (C2->isNegative()) {
2273       // 'ashr C2, x' produces [C2, C2 >> (Width-1)]
2274       Lower = *C2;
2275       Upper = C2->ashr(ShiftAmount) + 1;
2276     } else {
2277       // 'ashr C2, x' produces [C2 >> (Width-1), C2]
2278       Lower = C2->ashr(ShiftAmount);
2279       Upper = *C2 + 1;
2280     }
2281   } else if (match(LHS, m_Or(m_Value(), m_APInt(C2)))) {
2282     // 'or x, C2' produces [C2, UINT_MAX].
2283     Lower = *C2;
2284   } else if (match(LHS, m_And(m_Value(), m_APInt(C2)))) {
2285     // 'and x, C2' produces [0, C2].
2286     Upper = *C2 + 1;
2287   } else if (match(LHS, m_NUWAdd(m_Value(), m_APInt(C2)))) {
2288     // 'add nuw x, C2' produces [C2, UINT_MAX].
2289     Lower = *C2;
2290   }
2291 
2292   ConstantRange LHS_CR =
2293       Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true);
2294 
2295   if (auto *I = dyn_cast<Instruction>(LHS))
2296     if (auto *Ranges = I->getMetadata(LLVMContext::MD_range))
2297       LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges));
2298 
2299   if (!LHS_CR.isFullSet()) {
2300     if (RHS_CR.contains(LHS_CR))
2301       return ConstantInt::getTrue(GetCompareTy(RHS));
2302     if (RHS_CR.inverse().contains(LHS_CR))
2303       return ConstantInt::getFalse(GetCompareTy(RHS));
2304   }
2305 
2306   return nullptr;
2307 }
2308 
2309 /// Given operands for an ICmpInst, see if we can fold the result.
2310 /// If not, this returns null.
2311 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2312                                const Query &Q, unsigned MaxRecurse) {
2313   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
2314   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
2315 
2316   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
2317     if (Constant *CRHS = dyn_cast<Constant>(RHS))
2318       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
2319 
2320     // If we have a constant, make sure it is on the RHS.
2321     std::swap(LHS, RHS);
2322     Pred = CmpInst::getSwappedPredicate(Pred);
2323   }
2324 
2325   Type *ITy = GetCompareTy(LHS); // The return type.
2326   Type *OpTy = LHS->getType();   // The operand type.
2327 
2328   // icmp X, X -> true/false
2329   // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
2330   // because X could be 0.
2331   if (LHS == RHS || isa<UndefValue>(RHS))
2332     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
2333 
2334   // Special case logic when the operands have i1 type.
2335   if (OpTy->getScalarType()->isIntegerTy(1)) {
2336     switch (Pred) {
2337     default: break;
2338     case ICmpInst::ICMP_EQ:
2339       // X == 1 -> X
2340       if (match(RHS, m_One()))
2341         return LHS;
2342       break;
2343     case ICmpInst::ICMP_NE:
2344       // X != 0 -> X
2345       if (match(RHS, m_Zero()))
2346         return LHS;
2347       break;
2348     case ICmpInst::ICMP_UGT:
2349       // X >u 0 -> X
2350       if (match(RHS, m_Zero()))
2351         return LHS;
2352       break;
2353     case ICmpInst::ICMP_UGE: {
2354       // X >=u 1 -> X
2355       if (match(RHS, m_One()))
2356         return LHS;
2357       if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
2358         return getTrue(ITy);
2359       break;
2360     }
2361     case ICmpInst::ICMP_SGE: {
2362       /// For signed comparison, the values for an i1 are 0 and -1
2363       /// respectively. This maps into a truth table of:
2364       /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
2365       ///  0  |  0  |  1 (0 >= 0)   |  1
2366       ///  0  |  1  |  1 (0 >= -1)  |  1
2367       ///  1  |  0  |  0 (-1 >= 0)  |  0
2368       ///  1  |  1  |  1 (-1 >= -1) |  1
2369       if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2370         return getTrue(ITy);
2371       break;
2372     }
2373     case ICmpInst::ICMP_SLT:
2374       // X <s 0 -> X
2375       if (match(RHS, m_Zero()))
2376         return LHS;
2377       break;
2378     case ICmpInst::ICMP_SLE:
2379       // X <=s -1 -> X
2380       if (match(RHS, m_One()))
2381         return LHS;
2382       break;
2383     case ICmpInst::ICMP_ULE: {
2384       if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2385         return getTrue(ITy);
2386       break;
2387     }
2388     }
2389   }
2390 
2391   // If we are comparing with zero then try hard since this is a common case.
2392   if (match(RHS, m_Zero())) {
2393     bool LHSKnownNonNegative, LHSKnownNegative;
2394     switch (Pred) {
2395     default: llvm_unreachable("Unknown ICmp predicate!");
2396     case ICmpInst::ICMP_ULT:
2397       return getFalse(ITy);
2398     case ICmpInst::ICMP_UGE:
2399       return getTrue(ITy);
2400     case ICmpInst::ICMP_EQ:
2401     case ICmpInst::ICMP_ULE:
2402       if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2403         return getFalse(ITy);
2404       break;
2405     case ICmpInst::ICMP_NE:
2406     case ICmpInst::ICMP_UGT:
2407       if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2408         return getTrue(ITy);
2409       break;
2410     case ICmpInst::ICMP_SLT:
2411       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2412                      Q.CxtI, Q.DT);
2413       if (LHSKnownNegative)
2414         return getTrue(ITy);
2415       if (LHSKnownNonNegative)
2416         return getFalse(ITy);
2417       break;
2418     case ICmpInst::ICMP_SLE:
2419       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2420                      Q.CxtI, Q.DT);
2421       if (LHSKnownNegative)
2422         return getTrue(ITy);
2423       if (LHSKnownNonNegative &&
2424           isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2425         return getFalse(ITy);
2426       break;
2427     case ICmpInst::ICMP_SGE:
2428       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2429                      Q.CxtI, Q.DT);
2430       if (LHSKnownNegative)
2431         return getFalse(ITy);
2432       if (LHSKnownNonNegative)
2433         return getTrue(ITy);
2434       break;
2435     case ICmpInst::ICMP_SGT:
2436       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2437                      Q.CxtI, Q.DT);
2438       if (LHSKnownNegative)
2439         return getFalse(ITy);
2440       if (LHSKnownNonNegative &&
2441           isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2442         return getTrue(ITy);
2443       break;
2444     }
2445   }
2446 
2447   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS))
2448     return V;
2449 
2450   // If both operands have range metadata, use the metadata
2451   // to simplify the comparison.
2452   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
2453     auto RHS_Instr = dyn_cast<Instruction>(RHS);
2454     auto LHS_Instr = dyn_cast<Instruction>(LHS);
2455 
2456     if (RHS_Instr->getMetadata(LLVMContext::MD_range) &&
2457         LHS_Instr->getMetadata(LLVMContext::MD_range)) {
2458       auto RHS_CR = getConstantRangeFromMetadata(
2459           *RHS_Instr->getMetadata(LLVMContext::MD_range));
2460       auto LHS_CR = getConstantRangeFromMetadata(
2461           *LHS_Instr->getMetadata(LLVMContext::MD_range));
2462 
2463       auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR);
2464       if (Satisfied_CR.contains(LHS_CR))
2465         return ConstantInt::getTrue(RHS->getContext());
2466 
2467       auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion(
2468                 CmpInst::getInversePredicate(Pred), RHS_CR);
2469       if (InversedSatisfied_CR.contains(LHS_CR))
2470         return ConstantInt::getFalse(RHS->getContext());
2471     }
2472   }
2473 
2474   // Compare of cast, for example (zext X) != 0 -> X != 0
2475   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
2476     Instruction *LI = cast<CastInst>(LHS);
2477     Value *SrcOp = LI->getOperand(0);
2478     Type *SrcTy = SrcOp->getType();
2479     Type *DstTy = LI->getType();
2480 
2481     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
2482     // if the integer type is the same size as the pointer type.
2483     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
2484         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
2485       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2486         // Transfer the cast to the constant.
2487         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
2488                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
2489                                         Q, MaxRecurse-1))
2490           return V;
2491       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
2492         if (RI->getOperand(0)->getType() == SrcTy)
2493           // Compare without the cast.
2494           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
2495                                           Q, MaxRecurse-1))
2496             return V;
2497       }
2498     }
2499 
2500     if (isa<ZExtInst>(LHS)) {
2501       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
2502       // same type.
2503       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
2504         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
2505           // Compare X and Y.  Note that signed predicates become unsigned.
2506           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
2507                                           SrcOp, RI->getOperand(0), Q,
2508                                           MaxRecurse-1))
2509             return V;
2510       }
2511       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
2512       // too.  If not, then try to deduce the result of the comparison.
2513       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
2514         // Compute the constant that would happen if we truncated to SrcTy then
2515         // reextended to DstTy.
2516         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
2517         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
2518 
2519         // If the re-extended constant didn't change then this is effectively
2520         // also a case of comparing two zero-extended values.
2521         if (RExt == CI && MaxRecurse)
2522           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
2523                                         SrcOp, Trunc, Q, MaxRecurse-1))
2524             return V;
2525 
2526         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
2527         // there.  Use this to work out the result of the comparison.
2528         if (RExt != CI) {
2529           switch (Pred) {
2530           default: llvm_unreachable("Unknown ICmp predicate!");
2531           // LHS <u RHS.
2532           case ICmpInst::ICMP_EQ:
2533           case ICmpInst::ICMP_UGT:
2534           case ICmpInst::ICMP_UGE:
2535             return ConstantInt::getFalse(CI->getContext());
2536 
2537           case ICmpInst::ICMP_NE:
2538           case ICmpInst::ICMP_ULT:
2539           case ICmpInst::ICMP_ULE:
2540             return ConstantInt::getTrue(CI->getContext());
2541 
2542           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
2543           // is non-negative then LHS <s RHS.
2544           case ICmpInst::ICMP_SGT:
2545           case ICmpInst::ICMP_SGE:
2546             return CI->getValue().isNegative() ?
2547               ConstantInt::getTrue(CI->getContext()) :
2548               ConstantInt::getFalse(CI->getContext());
2549 
2550           case ICmpInst::ICMP_SLT:
2551           case ICmpInst::ICMP_SLE:
2552             return CI->getValue().isNegative() ?
2553               ConstantInt::getFalse(CI->getContext()) :
2554               ConstantInt::getTrue(CI->getContext());
2555           }
2556         }
2557       }
2558     }
2559 
2560     if (isa<SExtInst>(LHS)) {
2561       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
2562       // same type.
2563       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
2564         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
2565           // Compare X and Y.  Note that the predicate does not change.
2566           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
2567                                           Q, MaxRecurse-1))
2568             return V;
2569       }
2570       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
2571       // too.  If not, then try to deduce the result of the comparison.
2572       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
2573         // Compute the constant that would happen if we truncated to SrcTy then
2574         // reextended to DstTy.
2575         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
2576         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
2577 
2578         // If the re-extended constant didn't change then this is effectively
2579         // also a case of comparing two sign-extended values.
2580         if (RExt == CI && MaxRecurse)
2581           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
2582             return V;
2583 
2584         // Otherwise the upper bits of LHS are all equal, while RHS has varying
2585         // bits there.  Use this to work out the result of the comparison.
2586         if (RExt != CI) {
2587           switch (Pred) {
2588           default: llvm_unreachable("Unknown ICmp predicate!");
2589           case ICmpInst::ICMP_EQ:
2590             return ConstantInt::getFalse(CI->getContext());
2591           case ICmpInst::ICMP_NE:
2592             return ConstantInt::getTrue(CI->getContext());
2593 
2594           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
2595           // LHS >s RHS.
2596           case ICmpInst::ICMP_SGT:
2597           case ICmpInst::ICMP_SGE:
2598             return CI->getValue().isNegative() ?
2599               ConstantInt::getTrue(CI->getContext()) :
2600               ConstantInt::getFalse(CI->getContext());
2601           case ICmpInst::ICMP_SLT:
2602           case ICmpInst::ICMP_SLE:
2603             return CI->getValue().isNegative() ?
2604               ConstantInt::getFalse(CI->getContext()) :
2605               ConstantInt::getTrue(CI->getContext());
2606 
2607           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
2608           // LHS >u RHS.
2609           case ICmpInst::ICMP_UGT:
2610           case ICmpInst::ICMP_UGE:
2611             // Comparison is true iff the LHS <s 0.
2612             if (MaxRecurse)
2613               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
2614                                               Constant::getNullValue(SrcTy),
2615                                               Q, MaxRecurse-1))
2616                 return V;
2617             break;
2618           case ICmpInst::ICMP_ULT:
2619           case ICmpInst::ICMP_ULE:
2620             // Comparison is true iff the LHS >=s 0.
2621             if (MaxRecurse)
2622               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
2623                                               Constant::getNullValue(SrcTy),
2624                                               Q, MaxRecurse-1))
2625                 return V;
2626             break;
2627           }
2628         }
2629       }
2630     }
2631   }
2632 
2633   // icmp eq|ne X, Y -> false|true if X != Y
2634   if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2635       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) {
2636     LLVMContext &Ctx = LHS->getType()->getContext();
2637     return Pred == ICmpInst::ICMP_NE ?
2638       ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx);
2639   }
2640 
2641   // Special logic for binary operators.
2642   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2643   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2644   if (MaxRecurse && (LBO || RBO)) {
2645     // Analyze the case when either LHS or RHS is an add instruction.
2646     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
2647     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2648     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2649     if (LBO && LBO->getOpcode() == Instruction::Add) {
2650       A = LBO->getOperand(0); B = LBO->getOperand(1);
2651       NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
2652         (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
2653         (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
2654     }
2655     if (RBO && RBO->getOpcode() == Instruction::Add) {
2656       C = RBO->getOperand(0); D = RBO->getOperand(1);
2657       NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
2658         (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
2659         (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
2660     }
2661 
2662     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2663     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2664       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2665                                       Constant::getNullValue(RHS->getType()),
2666                                       Q, MaxRecurse-1))
2667         return V;
2668 
2669     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2670     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2671       if (Value *V = SimplifyICmpInst(Pred,
2672                                       Constant::getNullValue(LHS->getType()),
2673                                       C == LHS ? D : C, Q, MaxRecurse-1))
2674         return V;
2675 
2676     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2677     if (A && C && (A == C || A == D || B == C || B == D) &&
2678         NoLHSWrapProblem && NoRHSWrapProblem) {
2679       // Determine Y and Z in the form icmp (X+Y), (X+Z).
2680       Value *Y, *Z;
2681       if (A == C) {
2682         // C + B == C + D  ->  B == D
2683         Y = B;
2684         Z = D;
2685       } else if (A == D) {
2686         // D + B == C + D  ->  B == C
2687         Y = B;
2688         Z = C;
2689       } else if (B == C) {
2690         // A + C == C + D  ->  A == D
2691         Y = A;
2692         Z = D;
2693       } else {
2694         assert(B == D);
2695         // A + D == C + D  ->  A == C
2696         Y = A;
2697         Z = C;
2698       }
2699       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1))
2700         return V;
2701     }
2702   }
2703 
2704   {
2705     Value *Y = nullptr;
2706     // icmp pred (or X, Y), X
2707     if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
2708       if (Pred == ICmpInst::ICMP_ULT)
2709         return getFalse(ITy);
2710       if (Pred == ICmpInst::ICMP_UGE)
2711         return getTrue(ITy);
2712 
2713       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2714         bool RHSKnownNonNegative, RHSKnownNegative;
2715         bool YKnownNonNegative, YKnownNegative;
2716         ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, Q.DL, 0,
2717                        Q.AC, Q.CxtI, Q.DT);
2718         ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC,
2719                        Q.CxtI, Q.DT);
2720         if (RHSKnownNonNegative && YKnownNegative)
2721           return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
2722         if (RHSKnownNegative || YKnownNonNegative)
2723           return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
2724       }
2725     }
2726     // icmp pred X, (or X, Y)
2727     if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) {
2728       if (Pred == ICmpInst::ICMP_ULE)
2729         return getTrue(ITy);
2730       if (Pred == ICmpInst::ICMP_UGT)
2731         return getFalse(ITy);
2732 
2733       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) {
2734         bool LHSKnownNonNegative, LHSKnownNegative;
2735         bool YKnownNonNegative, YKnownNegative;
2736         ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0,
2737                        Q.AC, Q.CxtI, Q.DT);
2738         ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC,
2739                        Q.CxtI, Q.DT);
2740         if (LHSKnownNonNegative && YKnownNegative)
2741           return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy);
2742         if (LHSKnownNegative || YKnownNonNegative)
2743           return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy);
2744       }
2745     }
2746   }
2747 
2748   // icmp pred (and X, Y), X
2749   if (LBO && match(LBO, m_CombineOr(m_And(m_Value(), m_Specific(RHS)),
2750                                     m_And(m_Specific(RHS), m_Value())))) {
2751     if (Pred == ICmpInst::ICMP_UGT)
2752       return getFalse(ITy);
2753     if (Pred == ICmpInst::ICMP_ULE)
2754       return getTrue(ITy);
2755   }
2756   // icmp pred X, (and X, Y)
2757   if (RBO && match(RBO, m_CombineOr(m_And(m_Value(), m_Specific(LHS)),
2758                                     m_And(m_Specific(LHS), m_Value())))) {
2759     if (Pred == ICmpInst::ICMP_UGE)
2760       return getTrue(ITy);
2761     if (Pred == ICmpInst::ICMP_ULT)
2762       return getFalse(ITy);
2763   }
2764 
2765   // 0 - (zext X) pred C
2766   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
2767     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2768       if (RHSC->getValue().isStrictlyPositive()) {
2769         if (Pred == ICmpInst::ICMP_SLT)
2770           return ConstantInt::getTrue(RHSC->getContext());
2771         if (Pred == ICmpInst::ICMP_SGE)
2772           return ConstantInt::getFalse(RHSC->getContext());
2773         if (Pred == ICmpInst::ICMP_EQ)
2774           return ConstantInt::getFalse(RHSC->getContext());
2775         if (Pred == ICmpInst::ICMP_NE)
2776           return ConstantInt::getTrue(RHSC->getContext());
2777       }
2778       if (RHSC->getValue().isNonNegative()) {
2779         if (Pred == ICmpInst::ICMP_SLE)
2780           return ConstantInt::getTrue(RHSC->getContext());
2781         if (Pred == ICmpInst::ICMP_SGT)
2782           return ConstantInt::getFalse(RHSC->getContext());
2783       }
2784     }
2785   }
2786 
2787   // icmp pred (urem X, Y), Y
2788   if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2789     bool KnownNonNegative, KnownNegative;
2790     switch (Pred) {
2791     default:
2792       break;
2793     case ICmpInst::ICMP_SGT:
2794     case ICmpInst::ICMP_SGE:
2795       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2796                      Q.CxtI, Q.DT);
2797       if (!KnownNonNegative)
2798         break;
2799       LLVM_FALLTHROUGH;
2800     case ICmpInst::ICMP_EQ:
2801     case ICmpInst::ICMP_UGT:
2802     case ICmpInst::ICMP_UGE:
2803       return getFalse(ITy);
2804     case ICmpInst::ICMP_SLT:
2805     case ICmpInst::ICMP_SLE:
2806       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2807                      Q.CxtI, Q.DT);
2808       if (!KnownNonNegative)
2809         break;
2810       LLVM_FALLTHROUGH;
2811     case ICmpInst::ICMP_NE:
2812     case ICmpInst::ICMP_ULT:
2813     case ICmpInst::ICMP_ULE:
2814       return getTrue(ITy);
2815     }
2816   }
2817 
2818   // icmp pred X, (urem Y, X)
2819   if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2820     bool KnownNonNegative, KnownNegative;
2821     switch (Pred) {
2822     default:
2823       break;
2824     case ICmpInst::ICMP_SGT:
2825     case ICmpInst::ICMP_SGE:
2826       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2827                      Q.CxtI, Q.DT);
2828       if (!KnownNonNegative)
2829         break;
2830       LLVM_FALLTHROUGH;
2831     case ICmpInst::ICMP_NE:
2832     case ICmpInst::ICMP_UGT:
2833     case ICmpInst::ICMP_UGE:
2834       return getTrue(ITy);
2835     case ICmpInst::ICMP_SLT:
2836     case ICmpInst::ICMP_SLE:
2837       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2838                      Q.CxtI, Q.DT);
2839       if (!KnownNonNegative)
2840         break;
2841       LLVM_FALLTHROUGH;
2842     case ICmpInst::ICMP_EQ:
2843     case ICmpInst::ICMP_ULT:
2844     case ICmpInst::ICMP_ULE:
2845       return getFalse(ITy);
2846     }
2847   }
2848 
2849   // x >> y <=u x
2850   // x udiv y <=u x.
2851   if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
2852               match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) {
2853     // icmp pred (X op Y), X
2854     if (Pred == ICmpInst::ICMP_UGT)
2855       return getFalse(ITy);
2856     if (Pred == ICmpInst::ICMP_ULE)
2857       return getTrue(ITy);
2858   }
2859 
2860   // x >=u x >> y
2861   // x >=u x udiv y.
2862   if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) ||
2863               match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) {
2864     // icmp pred X, (X op Y)
2865     if (Pred == ICmpInst::ICMP_ULT)
2866       return getFalse(ITy);
2867     if (Pred == ICmpInst::ICMP_UGE)
2868       return getTrue(ITy);
2869   }
2870 
2871   // handle:
2872   //   CI2 << X == CI
2873   //   CI2 << X != CI
2874   //
2875   //   where CI2 is a power of 2 and CI isn't
2876   if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
2877     const APInt *CI2Val, *CIVal = &CI->getValue();
2878     if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
2879         CI2Val->isPowerOf2()) {
2880       if (!CIVal->isPowerOf2()) {
2881         // CI2 << X can equal zero in some circumstances,
2882         // this simplification is unsafe if CI is zero.
2883         //
2884         // We know it is safe if:
2885         // - The shift is nsw, we can't shift out the one bit.
2886         // - The shift is nuw, we can't shift out the one bit.
2887         // - CI2 is one
2888         // - CI isn't zero
2889         if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() ||
2890             *CI2Val == 1 || !CI->isZero()) {
2891           if (Pred == ICmpInst::ICMP_EQ)
2892             return ConstantInt::getFalse(RHS->getContext());
2893           if (Pred == ICmpInst::ICMP_NE)
2894             return ConstantInt::getTrue(RHS->getContext());
2895         }
2896       }
2897       if (CIVal->isSignBit() && *CI2Val == 1) {
2898         if (Pred == ICmpInst::ICMP_UGT)
2899           return ConstantInt::getFalse(RHS->getContext());
2900         if (Pred == ICmpInst::ICMP_ULE)
2901           return ConstantInt::getTrue(RHS->getContext());
2902       }
2903     }
2904   }
2905 
2906   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2907       LBO->getOperand(1) == RBO->getOperand(1)) {
2908     switch (LBO->getOpcode()) {
2909     default: break;
2910     case Instruction::UDiv:
2911     case Instruction::LShr:
2912       if (ICmpInst::isSigned(Pred))
2913         break;
2914       LLVM_FALLTHROUGH;
2915     case Instruction::SDiv:
2916     case Instruction::AShr:
2917       if (!LBO->isExact() || !RBO->isExact())
2918         break;
2919       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2920                                       RBO->getOperand(0), Q, MaxRecurse-1))
2921         return V;
2922       break;
2923     case Instruction::Shl: {
2924       bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
2925       bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
2926       if (!NUW && !NSW)
2927         break;
2928       if (!NSW && ICmpInst::isSigned(Pred))
2929         break;
2930       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2931                                       RBO->getOperand(0), Q, MaxRecurse-1))
2932         return V;
2933       break;
2934     }
2935     }
2936   }
2937 
2938   // Simplify comparisons involving max/min.
2939   Value *A, *B;
2940   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
2941   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
2942 
2943   // Signed variants on "max(a,b)>=a -> true".
2944   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2945     if (A != RHS) std::swap(A, B); // smax(A, B) pred A.
2946     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2947     // We analyze this as smax(A, B) pred A.
2948     P = Pred;
2949   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2950              (A == LHS || B == LHS)) {
2951     if (A != LHS) std::swap(A, B); // A pred smax(A, B).
2952     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2953     // We analyze this as smax(A, B) swapped-pred A.
2954     P = CmpInst::getSwappedPredicate(Pred);
2955   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2956              (A == RHS || B == RHS)) {
2957     if (A != RHS) std::swap(A, B); // smin(A, B) pred A.
2958     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2959     // We analyze this as smax(-A, -B) swapped-pred -A.
2960     // Note that we do not need to actually form -A or -B thanks to EqP.
2961     P = CmpInst::getSwappedPredicate(Pred);
2962   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
2963              (A == LHS || B == LHS)) {
2964     if (A != LHS) std::swap(A, B); // A pred smin(A, B).
2965     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2966     // We analyze this as smax(-A, -B) pred -A.
2967     // Note that we do not need to actually form -A or -B thanks to EqP.
2968     P = Pred;
2969   }
2970   if (P != CmpInst::BAD_ICMP_PREDICATE) {
2971     // Cases correspond to "max(A, B) p A".
2972     switch (P) {
2973     default:
2974       break;
2975     case CmpInst::ICMP_EQ:
2976     case CmpInst::ICMP_SLE:
2977       // Equivalent to "A EqP B".  This may be the same as the condition tested
2978       // in the max/min; if so, we can just return that.
2979       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2980         return V;
2981       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2982         return V;
2983       // Otherwise, see if "A EqP B" simplifies.
2984       if (MaxRecurse)
2985         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
2986           return V;
2987       break;
2988     case CmpInst::ICMP_NE:
2989     case CmpInst::ICMP_SGT: {
2990       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2991       // Equivalent to "A InvEqP B".  This may be the same as the condition
2992       // tested in the max/min; if so, we can just return that.
2993       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2994         return V;
2995       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2996         return V;
2997       // Otherwise, see if "A InvEqP B" simplifies.
2998       if (MaxRecurse)
2999         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
3000           return V;
3001       break;
3002     }
3003     case CmpInst::ICMP_SGE:
3004       // Always true.
3005       return getTrue(ITy);
3006     case CmpInst::ICMP_SLT:
3007       // Always false.
3008       return getFalse(ITy);
3009     }
3010   }
3011 
3012   // Unsigned variants on "max(a,b)>=a -> true".
3013   P = CmpInst::BAD_ICMP_PREDICATE;
3014   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3015     if (A != RHS) std::swap(A, B); // umax(A, B) pred A.
3016     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3017     // We analyze this as umax(A, B) pred A.
3018     P = Pred;
3019   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
3020              (A == LHS || B == LHS)) {
3021     if (A != LHS) std::swap(A, B); // A pred umax(A, B).
3022     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3023     // We analyze this as umax(A, B) swapped-pred A.
3024     P = CmpInst::getSwappedPredicate(Pred);
3025   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3026              (A == RHS || B == RHS)) {
3027     if (A != RHS) std::swap(A, B); // umin(A, B) pred A.
3028     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3029     // We analyze this as umax(-A, -B) swapped-pred -A.
3030     // Note that we do not need to actually form -A or -B thanks to EqP.
3031     P = CmpInst::getSwappedPredicate(Pred);
3032   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
3033              (A == LHS || B == LHS)) {
3034     if (A != LHS) std::swap(A, B); // A pred umin(A, B).
3035     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3036     // We analyze this as umax(-A, -B) pred -A.
3037     // Note that we do not need to actually form -A or -B thanks to EqP.
3038     P = Pred;
3039   }
3040   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3041     // Cases correspond to "max(A, B) p A".
3042     switch (P) {
3043     default:
3044       break;
3045     case CmpInst::ICMP_EQ:
3046     case CmpInst::ICMP_ULE:
3047       // Equivalent to "A EqP B".  This may be the same as the condition tested
3048       // in the max/min; if so, we can just return that.
3049       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3050         return V;
3051       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3052         return V;
3053       // Otherwise, see if "A EqP B" simplifies.
3054       if (MaxRecurse)
3055         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
3056           return V;
3057       break;
3058     case CmpInst::ICMP_NE:
3059     case CmpInst::ICMP_UGT: {
3060       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3061       // Equivalent to "A InvEqP B".  This may be the same as the condition
3062       // tested in the max/min; if so, we can just return that.
3063       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3064         return V;
3065       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3066         return V;
3067       // Otherwise, see if "A InvEqP B" simplifies.
3068       if (MaxRecurse)
3069         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
3070           return V;
3071       break;
3072     }
3073     case CmpInst::ICMP_UGE:
3074       // Always true.
3075       return getTrue(ITy);
3076     case CmpInst::ICMP_ULT:
3077       // Always false.
3078       return getFalse(ITy);
3079     }
3080   }
3081 
3082   // Variants on "max(x,y) >= min(x,z)".
3083   Value *C, *D;
3084   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
3085       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
3086       (A == C || A == D || B == C || B == D)) {
3087     // max(x, ?) pred min(x, ?).
3088     if (Pred == CmpInst::ICMP_SGE)
3089       // Always true.
3090       return getTrue(ITy);
3091     if (Pred == CmpInst::ICMP_SLT)
3092       // Always false.
3093       return getFalse(ITy);
3094   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3095              match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
3096              (A == C || A == D || B == C || B == D)) {
3097     // min(x, ?) pred max(x, ?).
3098     if (Pred == CmpInst::ICMP_SLE)
3099       // Always true.
3100       return getTrue(ITy);
3101     if (Pred == CmpInst::ICMP_SGT)
3102       // Always false.
3103       return getFalse(ITy);
3104   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3105              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3106              (A == C || A == D || B == C || B == D)) {
3107     // max(x, ?) pred min(x, ?).
3108     if (Pred == CmpInst::ICMP_UGE)
3109       // Always true.
3110       return getTrue(ITy);
3111     if (Pred == CmpInst::ICMP_ULT)
3112       // Always false.
3113       return getFalse(ITy);
3114   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3115              match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
3116              (A == C || A == D || B == C || B == D)) {
3117     // min(x, ?) pred max(x, ?).
3118     if (Pred == CmpInst::ICMP_ULE)
3119       // Always true.
3120       return getTrue(ITy);
3121     if (Pred == CmpInst::ICMP_UGT)
3122       // Always false.
3123       return getFalse(ITy);
3124   }
3125 
3126   // Simplify comparisons of related pointers using a powerful, recursive
3127   // GEP-walk when we have target data available..
3128   if (LHS->getType()->isPointerTy())
3129     if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, LHS, RHS))
3130       return C;
3131   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3132     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3133       if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3134               Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3135           Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3136               Q.DL.getTypeSizeInBits(CRHS->getType()))
3137         if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI,
3138                                          CLHS->getPointerOperand(),
3139                                          CRHS->getPointerOperand()))
3140           return C;
3141 
3142   if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
3143     if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
3144       if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
3145           GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
3146           (ICmpInst::isEquality(Pred) ||
3147            (GLHS->isInBounds() && GRHS->isInBounds() &&
3148             Pred == ICmpInst::getSignedPredicate(Pred)))) {
3149         // The bases are equal and the indices are constant.  Build a constant
3150         // expression GEP with the same indices and a null base pointer to see
3151         // what constant folding can make out of it.
3152         Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
3153         SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
3154         Constant *NewLHS = ConstantExpr::getGetElementPtr(
3155             GLHS->getSourceElementType(), Null, IndicesLHS);
3156 
3157         SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
3158         Constant *NewRHS = ConstantExpr::getGetElementPtr(
3159             GLHS->getSourceElementType(), Null, IndicesRHS);
3160         return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
3161       }
3162     }
3163   }
3164 
3165   // If a bit is known to be zero for A and known to be one for B,
3166   // then A and B cannot be equal.
3167   if (ICmpInst::isEquality(Pred)) {
3168     const APInt *RHSVal;
3169     if (match(RHS, m_APInt(RHSVal))) {
3170       unsigned BitWidth = RHSVal->getBitWidth();
3171       APInt LHSKnownZero(BitWidth, 0);
3172       APInt LHSKnownOne(BitWidth, 0);
3173       computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, Q.DL, /*Depth=*/0, Q.AC,
3174                        Q.CxtI, Q.DT);
3175       if (((LHSKnownZero & *RHSVal) != 0) || ((LHSKnownOne & ~(*RHSVal)) != 0))
3176         return Pred == ICmpInst::ICMP_EQ ? ConstantInt::getFalse(ITy)
3177                                          : ConstantInt::getTrue(ITy);
3178     }
3179   }
3180 
3181   // If the comparison is with the result of a select instruction, check whether
3182   // comparing with either branch of the select always yields the same value.
3183   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3184     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3185       return V;
3186 
3187   // If the comparison is with the result of a phi instruction, check whether
3188   // doing the compare with each incoming phi value yields a common result.
3189   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3190     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3191       return V;
3192 
3193   return nullptr;
3194 }
3195 
3196 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3197                               const DataLayout &DL,
3198                               const TargetLibraryInfo *TLI,
3199                               const DominatorTree *DT, AssumptionCache *AC,
3200                               const Instruction *CxtI) {
3201   return ::SimplifyICmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
3202                             RecursionLimit);
3203 }
3204 
3205 /// Given operands for an FCmpInst, see if we can fold the result.
3206 /// If not, this returns null.
3207 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3208                                FastMathFlags FMF, const Query &Q,
3209                                unsigned MaxRecurse) {
3210   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3211   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3212 
3213   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3214     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3215       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3216 
3217     // If we have a constant, make sure it is on the RHS.
3218     std::swap(LHS, RHS);
3219     Pred = CmpInst::getSwappedPredicate(Pred);
3220   }
3221 
3222   // Fold trivial predicates.
3223   Type *RetTy = GetCompareTy(LHS);
3224   if (Pred == FCmpInst::FCMP_FALSE)
3225     return getFalse(RetTy);
3226   if (Pred == FCmpInst::FCMP_TRUE)
3227     return getTrue(RetTy);
3228 
3229   // UNO/ORD predicates can be trivially folded if NaNs are ignored.
3230   if (FMF.noNaNs()) {
3231     if (Pred == FCmpInst::FCMP_UNO)
3232       return getFalse(RetTy);
3233     if (Pred == FCmpInst::FCMP_ORD)
3234       return getTrue(RetTy);
3235   }
3236 
3237   // fcmp pred x, undef  and  fcmp pred undef, x
3238   // fold to true if unordered, false if ordered
3239   if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) {
3240     // Choosing NaN for the undef will always make unordered comparison succeed
3241     // and ordered comparison fail.
3242     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3243   }
3244 
3245   // fcmp x,x -> true/false.  Not all compares are foldable.
3246   if (LHS == RHS) {
3247     if (CmpInst::isTrueWhenEqual(Pred))
3248       return getTrue(RetTy);
3249     if (CmpInst::isFalseWhenEqual(Pred))
3250       return getFalse(RetTy);
3251   }
3252 
3253   // Handle fcmp with constant RHS
3254   const ConstantFP *CFP = nullptr;
3255   if (const auto *RHSC = dyn_cast<Constant>(RHS)) {
3256     if (RHS->getType()->isVectorTy())
3257       CFP = dyn_cast_or_null<ConstantFP>(RHSC->getSplatValue());
3258     else
3259       CFP = dyn_cast<ConstantFP>(RHSC);
3260   }
3261   if (CFP) {
3262     // If the constant is a nan, see if we can fold the comparison based on it.
3263     if (CFP->getValueAPF().isNaN()) {
3264       if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
3265         return getFalse(RetTy);
3266       assert(FCmpInst::isUnordered(Pred) &&
3267              "Comparison must be either ordered or unordered!");
3268       // True if unordered.
3269       return getTrue(RetTy);
3270     }
3271     // Check whether the constant is an infinity.
3272     if (CFP->getValueAPF().isInfinity()) {
3273       if (CFP->getValueAPF().isNegative()) {
3274         switch (Pred) {
3275         case FCmpInst::FCMP_OLT:
3276           // No value is ordered and less than negative infinity.
3277           return getFalse(RetTy);
3278         case FCmpInst::FCMP_UGE:
3279           // All values are unordered with or at least negative infinity.
3280           return getTrue(RetTy);
3281         default:
3282           break;
3283         }
3284       } else {
3285         switch (Pred) {
3286         case FCmpInst::FCMP_OGT:
3287           // No value is ordered and greater than infinity.
3288           return getFalse(RetTy);
3289         case FCmpInst::FCMP_ULE:
3290           // All values are unordered with and at most infinity.
3291           return getTrue(RetTy);
3292         default:
3293           break;
3294         }
3295       }
3296     }
3297     if (CFP->getValueAPF().isZero()) {
3298       switch (Pred) {
3299       case FCmpInst::FCMP_UGE:
3300         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3301           return getTrue(RetTy);
3302         break;
3303       case FCmpInst::FCMP_OLT:
3304         // X < 0
3305         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3306           return getFalse(RetTy);
3307         break;
3308       default:
3309         break;
3310       }
3311     }
3312   }
3313 
3314   // If the comparison is with the result of a select instruction, check whether
3315   // comparing with either branch of the select always yields the same value.
3316   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3317     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3318       return V;
3319 
3320   // If the comparison is with the result of a phi instruction, check whether
3321   // doing the compare with each incoming phi value yields a common result.
3322   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3323     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3324       return V;
3325 
3326   return nullptr;
3327 }
3328 
3329 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3330                               FastMathFlags FMF, const DataLayout &DL,
3331                               const TargetLibraryInfo *TLI,
3332                               const DominatorTree *DT, AssumptionCache *AC,
3333                               const Instruction *CxtI) {
3334   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF,
3335                             Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
3336 }
3337 
3338 /// See if V simplifies when its operand Op is replaced with RepOp.
3339 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3340                                            const Query &Q,
3341                                            unsigned MaxRecurse) {
3342   // Trivial replacement.
3343   if (V == Op)
3344     return RepOp;
3345 
3346   auto *I = dyn_cast<Instruction>(V);
3347   if (!I)
3348     return nullptr;
3349 
3350   // If this is a binary operator, try to simplify it with the replaced op.
3351   if (auto *B = dyn_cast<BinaryOperator>(I)) {
3352     // Consider:
3353     //   %cmp = icmp eq i32 %x, 2147483647
3354     //   %add = add nsw i32 %x, 1
3355     //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
3356     //
3357     // We can't replace %sel with %add unless we strip away the flags.
3358     if (isa<OverflowingBinaryOperator>(B))
3359       if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap())
3360         return nullptr;
3361     if (isa<PossiblyExactOperator>(B))
3362       if (B->isExact())
3363         return nullptr;
3364 
3365     if (MaxRecurse) {
3366       if (B->getOperand(0) == Op)
3367         return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q,
3368                              MaxRecurse - 1);
3369       if (B->getOperand(1) == Op)
3370         return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q,
3371                              MaxRecurse - 1);
3372     }
3373   }
3374 
3375   // Same for CmpInsts.
3376   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
3377     if (MaxRecurse) {
3378       if (C->getOperand(0) == Op)
3379         return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q,
3380                                MaxRecurse - 1);
3381       if (C->getOperand(1) == Op)
3382         return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q,
3383                                MaxRecurse - 1);
3384     }
3385   }
3386 
3387   // TODO: We could hand off more cases to instsimplify here.
3388 
3389   // If all operands are constant after substituting Op for RepOp then we can
3390   // constant fold the instruction.
3391   if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
3392     // Build a list of all constant operands.
3393     SmallVector<Constant *, 8> ConstOps;
3394     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3395       if (I->getOperand(i) == Op)
3396         ConstOps.push_back(CRepOp);
3397       else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
3398         ConstOps.push_back(COp);
3399       else
3400         break;
3401     }
3402 
3403     // All operands were constants, fold it.
3404     if (ConstOps.size() == I->getNumOperands()) {
3405       if (CmpInst *C = dyn_cast<CmpInst>(I))
3406         return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
3407                                                ConstOps[1], Q.DL, Q.TLI);
3408 
3409       if (LoadInst *LI = dyn_cast<LoadInst>(I))
3410         if (!LI->isVolatile())
3411           return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
3412 
3413       return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
3414     }
3415   }
3416 
3417   return nullptr;
3418 }
3419 
3420 /// Try to simplify a select instruction when its condition operand is an
3421 /// integer comparison where one operand of the compare is a constant.
3422 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
3423                                     const APInt *Y, bool TrueWhenUnset) {
3424   const APInt *C;
3425 
3426   // (X & Y) == 0 ? X & ~Y : X  --> X
3427   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
3428   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
3429       *Y == ~*C)
3430     return TrueWhenUnset ? FalseVal : TrueVal;
3431 
3432   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
3433   // (X & Y) != 0 ? X : X & ~Y  --> X
3434   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
3435       *Y == ~*C)
3436     return TrueWhenUnset ? FalseVal : TrueVal;
3437 
3438   if (Y->isPowerOf2()) {
3439     // (X & Y) == 0 ? X | Y : X  --> X | Y
3440     // (X & Y) != 0 ? X | Y : X  --> X
3441     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
3442         *Y == *C)
3443       return TrueWhenUnset ? TrueVal : FalseVal;
3444 
3445     // (X & Y) == 0 ? X : X | Y  --> X
3446     // (X & Y) != 0 ? X : X | Y  --> X | Y
3447     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
3448         *Y == *C)
3449       return TrueWhenUnset ? TrueVal : FalseVal;
3450   }
3451 
3452   return nullptr;
3453 }
3454 
3455 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
3456 /// eq/ne.
3457 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *TrueVal,
3458                                            Value *FalseVal,
3459                                            bool TrueWhenUnset) {
3460   unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
3461   if (!BitWidth)
3462     return nullptr;
3463 
3464   APInt MinSignedValue;
3465   Value *X;
3466   if (match(CmpLHS, m_Trunc(m_Value(X))) && (X == TrueVal || X == FalseVal)) {
3467     // icmp slt (trunc X), 0  <--> icmp ne (and X, C), 0
3468     // icmp sgt (trunc X), -1 <--> icmp eq (and X, C), 0
3469     unsigned DestSize = CmpLHS->getType()->getScalarSizeInBits();
3470     MinSignedValue = APInt::getSignedMinValue(DestSize).zext(BitWidth);
3471   } else {
3472     // icmp slt X, 0  <--> icmp ne (and X, C), 0
3473     // icmp sgt X, -1 <--> icmp eq (and X, C), 0
3474     X = CmpLHS;
3475     MinSignedValue = APInt::getSignedMinValue(BitWidth);
3476   }
3477 
3478   if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, &MinSignedValue,
3479                                        TrueWhenUnset))
3480     return V;
3481 
3482   return nullptr;
3483 }
3484 
3485 /// Try to simplify a select instruction when its condition operand is an
3486 /// integer comparison.
3487 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
3488                                          Value *FalseVal, const Query &Q,
3489                                          unsigned MaxRecurse) {
3490   ICmpInst::Predicate Pred;
3491   Value *CmpLHS, *CmpRHS;
3492   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
3493     return nullptr;
3494 
3495   // FIXME: This code is nearly duplicated in InstCombine. Using/refactoring
3496   // decomposeBitTestICmp() might help.
3497   if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) {
3498     Value *X;
3499     const APInt *Y;
3500     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
3501       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
3502                                            Pred == ICmpInst::ICMP_EQ))
3503         return V;
3504   } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
3505     // Comparing signed-less-than 0 checks if the sign bit is set.
3506     if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal,
3507                                                 false))
3508       return V;
3509   } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
3510     // Comparing signed-greater-than -1 checks if the sign bit is not set.
3511     if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal,
3512                                                 true))
3513       return V;
3514   }
3515 
3516   if (CondVal->hasOneUse()) {
3517     const APInt *C;
3518     if (match(CmpRHS, m_APInt(C))) {
3519       // X < MIN ? T : F  -->  F
3520       if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue())
3521         return FalseVal;
3522       // X < MIN ? T : F  -->  F
3523       if (Pred == ICmpInst::ICMP_ULT && C->isMinValue())
3524         return FalseVal;
3525       // X > MAX ? T : F  -->  F
3526       if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue())
3527         return FalseVal;
3528       // X > MAX ? T : F  -->  F
3529       if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue())
3530         return FalseVal;
3531     }
3532   }
3533 
3534   // If we have an equality comparison, then we know the value in one of the
3535   // arms of the select. See if substituting this value into the arm and
3536   // simplifying the result yields the same value as the other arm.
3537   if (Pred == ICmpInst::ICMP_EQ) {
3538     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3539             TrueVal ||
3540         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3541             TrueVal)
3542       return FalseVal;
3543     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3544             FalseVal ||
3545         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3546             FalseVal)
3547       return FalseVal;
3548   } else if (Pred == ICmpInst::ICMP_NE) {
3549     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3550             FalseVal ||
3551         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3552             FalseVal)
3553       return TrueVal;
3554     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3555             TrueVal ||
3556         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3557             TrueVal)
3558       return TrueVal;
3559   }
3560 
3561   return nullptr;
3562 }
3563 
3564 /// Given operands for a SelectInst, see if we can fold the result.
3565 /// If not, this returns null.
3566 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
3567                                  Value *FalseVal, const Query &Q,
3568                                  unsigned MaxRecurse) {
3569   // select true, X, Y  -> X
3570   // select false, X, Y -> Y
3571   if (Constant *CB = dyn_cast<Constant>(CondVal)) {
3572     if (CB->isAllOnesValue())
3573       return TrueVal;
3574     if (CB->isNullValue())
3575       return FalseVal;
3576   }
3577 
3578   // select C, X, X -> X
3579   if (TrueVal == FalseVal)
3580     return TrueVal;
3581 
3582   if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
3583     if (isa<Constant>(TrueVal))
3584       return TrueVal;
3585     return FalseVal;
3586   }
3587   if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
3588     return FalseVal;
3589   if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
3590     return TrueVal;
3591 
3592   if (Value *V =
3593           simplifySelectWithICmpCond(CondVal, TrueVal, FalseVal, Q, MaxRecurse))
3594     return V;
3595 
3596   return nullptr;
3597 }
3598 
3599 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
3600                                 const DataLayout &DL,
3601                                 const TargetLibraryInfo *TLI,
3602                                 const DominatorTree *DT, AssumptionCache *AC,
3603                                 const Instruction *CxtI) {
3604   return ::SimplifySelectInst(Cond, TrueVal, FalseVal,
3605                               Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
3606 }
3607 
3608 /// Given operands for an GetElementPtrInst, see if we can fold the result.
3609 /// If not, this returns null.
3610 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3611                               const Query &Q, unsigned) {
3612   // The type of the GEP pointer operand.
3613   unsigned AS =
3614       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
3615 
3616   // getelementptr P -> P.
3617   if (Ops.size() == 1)
3618     return Ops[0];
3619 
3620   // Compute the (pointer) type returned by the GEP instruction.
3621   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
3622   Type *GEPTy = PointerType::get(LastType, AS);
3623   if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
3624     GEPTy = VectorType::get(GEPTy, VT->getNumElements());
3625 
3626   if (isa<UndefValue>(Ops[0]))
3627     return UndefValue::get(GEPTy);
3628 
3629   if (Ops.size() == 2) {
3630     // getelementptr P, 0 -> P.
3631     if (match(Ops[1], m_Zero()))
3632       return Ops[0];
3633 
3634     Type *Ty = SrcTy;
3635     if (Ty->isSized()) {
3636       Value *P;
3637       uint64_t C;
3638       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
3639       // getelementptr P, N -> P if P points to a type of zero size.
3640       if (TyAllocSize == 0)
3641         return Ops[0];
3642 
3643       // The following transforms are only safe if the ptrtoint cast
3644       // doesn't truncate the pointers.
3645       if (Ops[1]->getType()->getScalarSizeInBits() ==
3646           Q.DL.getPointerSizeInBits(AS)) {
3647         auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
3648           if (match(P, m_Zero()))
3649             return Constant::getNullValue(GEPTy);
3650           Value *Temp;
3651           if (match(P, m_PtrToInt(m_Value(Temp))))
3652             if (Temp->getType() == GEPTy)
3653               return Temp;
3654           return nullptr;
3655         };
3656 
3657         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
3658         if (TyAllocSize == 1 &&
3659             match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
3660           if (Value *R = PtrToIntOrZero(P))
3661             return R;
3662 
3663         // getelementptr V, (ashr (sub P, V), C) -> Q
3664         // if P points to a type of size 1 << C.
3665         if (match(Ops[1],
3666                   m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3667                          m_ConstantInt(C))) &&
3668             TyAllocSize == 1ULL << C)
3669           if (Value *R = PtrToIntOrZero(P))
3670             return R;
3671 
3672         // getelementptr V, (sdiv (sub P, V), C) -> Q
3673         // if P points to a type of size C.
3674         if (match(Ops[1],
3675                   m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3676                          m_SpecificInt(TyAllocSize))))
3677           if (Value *R = PtrToIntOrZero(P))
3678             return R;
3679       }
3680     }
3681   }
3682 
3683   if (Q.DL.getTypeAllocSize(LastType) == 1 &&
3684       all_of(Ops.slice(1).drop_back(1),
3685              [](Value *Idx) { return match(Idx, m_Zero()); })) {
3686     unsigned PtrWidth =
3687         Q.DL.getPointerSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
3688     if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == PtrWidth) {
3689       APInt BasePtrOffset(PtrWidth, 0);
3690       Value *StrippedBasePtr =
3691           Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
3692                                                             BasePtrOffset);
3693 
3694       // gep (gep V, C), (sub 0, V) -> C
3695       if (match(Ops.back(),
3696                 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) {
3697         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
3698         return ConstantExpr::getIntToPtr(CI, GEPTy);
3699       }
3700       // gep (gep V, C), (xor V, -1) -> C-1
3701       if (match(Ops.back(),
3702                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) {
3703         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
3704         return ConstantExpr::getIntToPtr(CI, GEPTy);
3705       }
3706     }
3707   }
3708 
3709   // Check to see if this is constant foldable.
3710   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3711     if (!isa<Constant>(Ops[i]))
3712       return nullptr;
3713 
3714   return ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
3715                                         Ops.slice(1));
3716 }
3717 
3718 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3719                              const DataLayout &DL,
3720                              const TargetLibraryInfo *TLI,
3721                              const DominatorTree *DT, AssumptionCache *AC,
3722                              const Instruction *CxtI) {
3723   return ::SimplifyGEPInst(SrcTy, Ops,
3724                            Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
3725 }
3726 
3727 /// Given operands for an InsertValueInst, see if we can fold the result.
3728 /// If not, this returns null.
3729 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
3730                                       ArrayRef<unsigned> Idxs, const Query &Q,
3731                                       unsigned) {
3732   if (Constant *CAgg = dyn_cast<Constant>(Agg))
3733     if (Constant *CVal = dyn_cast<Constant>(Val))
3734       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
3735 
3736   // insertvalue x, undef, n -> x
3737   if (match(Val, m_Undef()))
3738     return Agg;
3739 
3740   // insertvalue x, (extractvalue y, n), n
3741   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
3742     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
3743         EV->getIndices() == Idxs) {
3744       // insertvalue undef, (extractvalue y, n), n -> y
3745       if (match(Agg, m_Undef()))
3746         return EV->getAggregateOperand();
3747 
3748       // insertvalue y, (extractvalue y, n), n -> y
3749       if (Agg == EV->getAggregateOperand())
3750         return Agg;
3751     }
3752 
3753   return nullptr;
3754 }
3755 
3756 Value *llvm::SimplifyInsertValueInst(
3757     Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const DataLayout &DL,
3758     const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC,
3759     const Instruction *CxtI) {
3760   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query(DL, TLI, DT, AC, CxtI),
3761                                    RecursionLimit);
3762 }
3763 
3764 /// Given operands for an ExtractValueInst, see if we can fold the result.
3765 /// If not, this returns null.
3766 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
3767                                        const Query &, unsigned) {
3768   if (auto *CAgg = dyn_cast<Constant>(Agg))
3769     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
3770 
3771   // extractvalue x, (insertvalue y, elt, n), n -> elt
3772   unsigned NumIdxs = Idxs.size();
3773   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
3774        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
3775     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
3776     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
3777     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
3778     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
3779         Idxs.slice(0, NumCommonIdxs)) {
3780       if (NumIdxs == NumInsertValueIdxs)
3781         return IVI->getInsertedValueOperand();
3782       break;
3783     }
3784   }
3785 
3786   return nullptr;
3787 }
3788 
3789 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
3790                                       const DataLayout &DL,
3791                                       const TargetLibraryInfo *TLI,
3792                                       const DominatorTree *DT,
3793                                       AssumptionCache *AC,
3794                                       const Instruction *CxtI) {
3795   return ::SimplifyExtractValueInst(Agg, Idxs, Query(DL, TLI, DT, AC, CxtI),
3796                                     RecursionLimit);
3797 }
3798 
3799 /// Given operands for an ExtractElementInst, see if we can fold the result.
3800 /// If not, this returns null.
3801 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const Query &,
3802                                          unsigned) {
3803   if (auto *CVec = dyn_cast<Constant>(Vec)) {
3804     if (auto *CIdx = dyn_cast<Constant>(Idx))
3805       return ConstantFoldExtractElementInstruction(CVec, CIdx);
3806 
3807     // The index is not relevant if our vector is a splat.
3808     if (auto *Splat = CVec->getSplatValue())
3809       return Splat;
3810 
3811     if (isa<UndefValue>(Vec))
3812       return UndefValue::get(Vec->getType()->getVectorElementType());
3813   }
3814 
3815   // If extracting a specified index from the vector, see if we can recursively
3816   // find a previously computed scalar that was inserted into the vector.
3817   if (auto *IdxC = dyn_cast<ConstantInt>(Idx))
3818     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
3819       return Elt;
3820 
3821   return nullptr;
3822 }
3823 
3824 Value *llvm::SimplifyExtractElementInst(
3825     Value *Vec, Value *Idx, const DataLayout &DL, const TargetLibraryInfo *TLI,
3826     const DominatorTree *DT, AssumptionCache *AC, const Instruction *CxtI) {
3827   return ::SimplifyExtractElementInst(Vec, Idx, Query(DL, TLI, DT, AC, CxtI),
3828                                       RecursionLimit);
3829 }
3830 
3831 /// See if we can fold the given phi. If not, returns null.
3832 static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
3833   // If all of the PHI's incoming values are the same then replace the PHI node
3834   // with the common value.
3835   Value *CommonValue = nullptr;
3836   bool HasUndefInput = false;
3837   for (Value *Incoming : PN->incoming_values()) {
3838     // If the incoming value is the phi node itself, it can safely be skipped.
3839     if (Incoming == PN) continue;
3840     if (isa<UndefValue>(Incoming)) {
3841       // Remember that we saw an undef value, but otherwise ignore them.
3842       HasUndefInput = true;
3843       continue;
3844     }
3845     if (CommonValue && Incoming != CommonValue)
3846       return nullptr;  // Not the same, bail out.
3847     CommonValue = Incoming;
3848   }
3849 
3850   // If CommonValue is null then all of the incoming values were either undef or
3851   // equal to the phi node itself.
3852   if (!CommonValue)
3853     return UndefValue::get(PN->getType());
3854 
3855   // If we have a PHI node like phi(X, undef, X), where X is defined by some
3856   // instruction, we cannot return X as the result of the PHI node unless it
3857   // dominates the PHI block.
3858   if (HasUndefInput)
3859     return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
3860 
3861   return CommonValue;
3862 }
3863 
3864 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
3865                                Type *Ty, const Query &Q, unsigned MaxRecurse) {
3866   if (auto *C = dyn_cast<Constant>(Op))
3867     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
3868 
3869   if (auto *CI = dyn_cast<CastInst>(Op)) {
3870     auto *Src = CI->getOperand(0);
3871     Type *SrcTy = Src->getType();
3872     Type *MidTy = CI->getType();
3873     Type *DstTy = Ty;
3874     if (Src->getType() == Ty) {
3875       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
3876       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
3877       Type *SrcIntPtrTy =
3878           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
3879       Type *MidIntPtrTy =
3880           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
3881       Type *DstIntPtrTy =
3882           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
3883       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
3884                                          SrcIntPtrTy, MidIntPtrTy,
3885                                          DstIntPtrTy) == Instruction::BitCast)
3886         return Src;
3887     }
3888   }
3889 
3890   // bitcast x -> x
3891   if (CastOpc == Instruction::BitCast)
3892     if (Op->getType() == Ty)
3893       return Op;
3894 
3895   return nullptr;
3896 }
3897 
3898 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
3899                               const DataLayout &DL,
3900                               const TargetLibraryInfo *TLI,
3901                               const DominatorTree *DT, AssumptionCache *AC,
3902                               const Instruction *CxtI) {
3903   return ::SimplifyCastInst(CastOpc, Op, Ty, Query(DL, TLI, DT, AC, CxtI),
3904                             RecursionLimit);
3905 }
3906 
3907 //=== Helper functions for higher up the class hierarchy.
3908 
3909 /// Given operands for a BinaryOperator, see if we can fold the result.
3910 /// If not, this returns null.
3911 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
3912                             const Query &Q, unsigned MaxRecurse) {
3913   switch (Opcode) {
3914   case Instruction::Add:
3915     return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
3916                            Q, MaxRecurse);
3917   case Instruction::FAdd:
3918     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
3919 
3920   case Instruction::Sub:
3921     return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
3922                            Q, MaxRecurse);
3923   case Instruction::FSub:
3924     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
3925 
3926   case Instruction::Mul:  return SimplifyMulInst (LHS, RHS, Q, MaxRecurse);
3927   case Instruction::FMul:
3928     return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse);
3929   case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
3930   case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
3931   case Instruction::FDiv:
3932       return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
3933   case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
3934   case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
3935   case Instruction::FRem:
3936       return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
3937   case Instruction::Shl:
3938     return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
3939                            Q, MaxRecurse);
3940   case Instruction::LShr:
3941     return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
3942   case Instruction::AShr:
3943     return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
3944   case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
3945   case Instruction::Or:  return SimplifyOrInst (LHS, RHS, Q, MaxRecurse);
3946   case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
3947   default:
3948     if (Constant *CLHS = dyn_cast<Constant>(LHS))
3949       if (Constant *CRHS = dyn_cast<Constant>(RHS))
3950         return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
3951 
3952     // If the operation is associative, try some generic simplifications.
3953     if (Instruction::isAssociative(Opcode))
3954       if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse))
3955         return V;
3956 
3957     // If the operation is with the result of a select instruction check whether
3958     // operating on either branch of the select always yields the same value.
3959     if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3960       if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse))
3961         return V;
3962 
3963     // If the operation is with the result of a phi instruction, check whether
3964     // operating on all incoming values of the phi always yields the same value.
3965     if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3966       if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse))
3967         return V;
3968 
3969     return nullptr;
3970   }
3971 }
3972 
3973 /// Given operands for a BinaryOperator, see if we can fold the result.
3974 /// If not, this returns null.
3975 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the
3976 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp.
3977 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
3978                               const FastMathFlags &FMF, const Query &Q,
3979                               unsigned MaxRecurse) {
3980   switch (Opcode) {
3981   case Instruction::FAdd:
3982     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
3983   case Instruction::FSub:
3984     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
3985   case Instruction::FMul:
3986     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
3987   default:
3988     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
3989   }
3990 }
3991 
3992 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
3993                            const DataLayout &DL, const TargetLibraryInfo *TLI,
3994                            const DominatorTree *DT, AssumptionCache *AC,
3995                            const Instruction *CxtI) {
3996   return ::SimplifyBinOp(Opcode, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
3997                          RecursionLimit);
3998 }
3999 
4000 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4001                              const FastMathFlags &FMF, const DataLayout &DL,
4002                              const TargetLibraryInfo *TLI,
4003                              const DominatorTree *DT, AssumptionCache *AC,
4004                              const Instruction *CxtI) {
4005   return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Query(DL, TLI, DT, AC, CxtI),
4006                            RecursionLimit);
4007 }
4008 
4009 /// Given operands for a CmpInst, see if we can fold the result.
4010 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4011                               const Query &Q, unsigned MaxRecurse) {
4012   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
4013     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
4014   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4015 }
4016 
4017 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4018                              const DataLayout &DL, const TargetLibraryInfo *TLI,
4019                              const DominatorTree *DT, AssumptionCache *AC,
4020                              const Instruction *CxtI) {
4021   return ::SimplifyCmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
4022                            RecursionLimit);
4023 }
4024 
4025 static bool IsIdempotent(Intrinsic::ID ID) {
4026   switch (ID) {
4027   default: return false;
4028 
4029   // Unary idempotent: f(f(x)) = f(x)
4030   case Intrinsic::fabs:
4031   case Intrinsic::floor:
4032   case Intrinsic::ceil:
4033   case Intrinsic::trunc:
4034   case Intrinsic::rint:
4035   case Intrinsic::nearbyint:
4036   case Intrinsic::round:
4037     return true;
4038   }
4039 }
4040 
4041 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
4042                                    const DataLayout &DL) {
4043   GlobalValue *PtrSym;
4044   APInt PtrOffset;
4045   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
4046     return nullptr;
4047 
4048   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
4049   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
4050   Type *Int32PtrTy = Int32Ty->getPointerTo();
4051   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
4052 
4053   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
4054   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
4055     return nullptr;
4056 
4057   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
4058   if (OffsetInt % 4 != 0)
4059     return nullptr;
4060 
4061   Constant *C = ConstantExpr::getGetElementPtr(
4062       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
4063       ConstantInt::get(Int64Ty, OffsetInt / 4));
4064   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
4065   if (!Loaded)
4066     return nullptr;
4067 
4068   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
4069   if (!LoadedCE)
4070     return nullptr;
4071 
4072   if (LoadedCE->getOpcode() == Instruction::Trunc) {
4073     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4074     if (!LoadedCE)
4075       return nullptr;
4076   }
4077 
4078   if (LoadedCE->getOpcode() != Instruction::Sub)
4079     return nullptr;
4080 
4081   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4082   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
4083     return nullptr;
4084   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
4085 
4086   Constant *LoadedRHS = LoadedCE->getOperand(1);
4087   GlobalValue *LoadedRHSSym;
4088   APInt LoadedRHSOffset;
4089   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
4090                                   DL) ||
4091       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
4092     return nullptr;
4093 
4094   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
4095 }
4096 
4097 static bool maskIsAllZeroOrUndef(Value *Mask) {
4098   auto *ConstMask = dyn_cast<Constant>(Mask);
4099   if (!ConstMask)
4100     return false;
4101   if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
4102     return true;
4103   for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
4104        ++I) {
4105     if (auto *MaskElt = ConstMask->getAggregateElement(I))
4106       if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
4107         continue;
4108     return false;
4109   }
4110   return true;
4111 }
4112 
4113 template <typename IterTy>
4114 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd,
4115                                 const Query &Q, unsigned MaxRecurse) {
4116   Intrinsic::ID IID = F->getIntrinsicID();
4117   unsigned NumOperands = std::distance(ArgBegin, ArgEnd);
4118   Type *ReturnType = F->getReturnType();
4119 
4120   // Binary Ops
4121   if (NumOperands == 2) {
4122     Value *LHS = *ArgBegin;
4123     Value *RHS = *(ArgBegin + 1);
4124     if (IID == Intrinsic::usub_with_overflow ||
4125         IID == Intrinsic::ssub_with_overflow) {
4126       // X - X -> { 0, false }
4127       if (LHS == RHS)
4128         return Constant::getNullValue(ReturnType);
4129 
4130       // X - undef -> undef
4131       // undef - X -> undef
4132       if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
4133         return UndefValue::get(ReturnType);
4134     }
4135 
4136     if (IID == Intrinsic::uadd_with_overflow ||
4137         IID == Intrinsic::sadd_with_overflow) {
4138       // X + undef -> undef
4139       if (isa<UndefValue>(RHS))
4140         return UndefValue::get(ReturnType);
4141     }
4142 
4143     if (IID == Intrinsic::umul_with_overflow ||
4144         IID == Intrinsic::smul_with_overflow) {
4145       // X * 0 -> { 0, false }
4146       if (match(RHS, m_Zero()))
4147         return Constant::getNullValue(ReturnType);
4148 
4149       // X * undef -> { 0, false }
4150       if (match(RHS, m_Undef()))
4151         return Constant::getNullValue(ReturnType);
4152     }
4153 
4154     if (IID == Intrinsic::load_relative && isa<Constant>(LHS) &&
4155         isa<Constant>(RHS))
4156       return SimplifyRelativeLoad(cast<Constant>(LHS), cast<Constant>(RHS),
4157                                   Q.DL);
4158   }
4159 
4160   // Simplify calls to llvm.masked.load.*
4161   if (IID == Intrinsic::masked_load) {
4162     Value *MaskArg = ArgBegin[2];
4163     Value *PassthruArg = ArgBegin[3];
4164     // If the mask is all zeros or undef, the "passthru" argument is the result.
4165     if (maskIsAllZeroOrUndef(MaskArg))
4166       return PassthruArg;
4167   }
4168 
4169   // Perform idempotent optimizations
4170   if (!IsIdempotent(IID))
4171     return nullptr;
4172 
4173   // Unary Ops
4174   if (NumOperands == 1)
4175     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin))
4176       if (II->getIntrinsicID() == IID)
4177         return II;
4178 
4179   return nullptr;
4180 }
4181 
4182 template <typename IterTy>
4183 static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd,
4184                            const Query &Q, unsigned MaxRecurse) {
4185   Type *Ty = V->getType();
4186   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
4187     Ty = PTy->getElementType();
4188   FunctionType *FTy = cast<FunctionType>(Ty);
4189 
4190   // call undef -> undef
4191   // call null -> undef
4192   if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V))
4193     return UndefValue::get(FTy->getReturnType());
4194 
4195   Function *F = dyn_cast<Function>(V);
4196   if (!F)
4197     return nullptr;
4198 
4199   if (F->isIntrinsic())
4200     if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse))
4201       return Ret;
4202 
4203   if (!canConstantFoldCallTo(F))
4204     return nullptr;
4205 
4206   SmallVector<Constant *, 4> ConstantArgs;
4207   ConstantArgs.reserve(ArgEnd - ArgBegin);
4208   for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
4209     Constant *C = dyn_cast<Constant>(*I);
4210     if (!C)
4211       return nullptr;
4212     ConstantArgs.push_back(C);
4213   }
4214 
4215   return ConstantFoldCall(F, ConstantArgs, Q.TLI);
4216 }
4217 
4218 Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin,
4219                           User::op_iterator ArgEnd, const DataLayout &DL,
4220                           const TargetLibraryInfo *TLI, const DominatorTree *DT,
4221                           AssumptionCache *AC, const Instruction *CxtI) {
4222   return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT, AC, CxtI),
4223                         RecursionLimit);
4224 }
4225 
4226 Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args,
4227                           const DataLayout &DL, const TargetLibraryInfo *TLI,
4228                           const DominatorTree *DT, AssumptionCache *AC,
4229                           const Instruction *CxtI) {
4230   return ::SimplifyCall(V, Args.begin(), Args.end(),
4231                         Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
4232 }
4233 
4234 /// See if we can compute a simplified version of this instruction.
4235 /// If not, this returns null.
4236 Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout &DL,
4237                                  const TargetLibraryInfo *TLI,
4238                                  const DominatorTree *DT, AssumptionCache *AC) {
4239   Value *Result;
4240 
4241   switch (I->getOpcode()) {
4242   default:
4243     Result = ConstantFoldInstruction(I, DL, TLI);
4244     break;
4245   case Instruction::FAdd:
4246     Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
4247                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4248     break;
4249   case Instruction::Add:
4250     Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
4251                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
4252                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
4253                              TLI, DT, AC, I);
4254     break;
4255   case Instruction::FSub:
4256     Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
4257                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4258     break;
4259   case Instruction::Sub:
4260     Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
4261                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
4262                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
4263                              TLI, DT, AC, I);
4264     break;
4265   case Instruction::FMul:
4266     Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
4267                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4268     break;
4269   case Instruction::Mul:
4270     Result =
4271         SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
4272     break;
4273   case Instruction::SDiv:
4274     Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
4275                               AC, I);
4276     break;
4277   case Instruction::UDiv:
4278     Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
4279                               AC, I);
4280     break;
4281   case Instruction::FDiv:
4282     Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
4283                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4284     break;
4285   case Instruction::SRem:
4286     Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
4287                               AC, I);
4288     break;
4289   case Instruction::URem:
4290     Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
4291                               AC, I);
4292     break;
4293   case Instruction::FRem:
4294     Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
4295                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4296     break;
4297   case Instruction::Shl:
4298     Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
4299                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
4300                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
4301                              TLI, DT, AC, I);
4302     break;
4303   case Instruction::LShr:
4304     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
4305                               cast<BinaryOperator>(I)->isExact(), DL, TLI, DT,
4306                               AC, I);
4307     break;
4308   case Instruction::AShr:
4309     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
4310                               cast<BinaryOperator>(I)->isExact(), DL, TLI, DT,
4311                               AC, I);
4312     break;
4313   case Instruction::And:
4314     Result =
4315         SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
4316     break;
4317   case Instruction::Or:
4318     Result =
4319         SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
4320     break;
4321   case Instruction::Xor:
4322     Result =
4323         SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
4324     break;
4325   case Instruction::ICmp:
4326     Result =
4327         SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), I->getOperand(0),
4328                          I->getOperand(1), DL, TLI, DT, AC, I);
4329     break;
4330   case Instruction::FCmp:
4331     Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
4332                               I->getOperand(0), I->getOperand(1),
4333                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4334     break;
4335   case Instruction::Select:
4336     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
4337                                 I->getOperand(2), DL, TLI, DT, AC, I);
4338     break;
4339   case Instruction::GetElementPtr: {
4340     SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
4341     Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(),
4342                              Ops, DL, TLI, DT, AC, I);
4343     break;
4344   }
4345   case Instruction::InsertValue: {
4346     InsertValueInst *IV = cast<InsertValueInst>(I);
4347     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
4348                                      IV->getInsertedValueOperand(),
4349                                      IV->getIndices(), DL, TLI, DT, AC, I);
4350     break;
4351   }
4352   case Instruction::ExtractValue: {
4353     auto *EVI = cast<ExtractValueInst>(I);
4354     Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
4355                                       EVI->getIndices(), DL, TLI, DT, AC, I);
4356     break;
4357   }
4358   case Instruction::ExtractElement: {
4359     auto *EEI = cast<ExtractElementInst>(I);
4360     Result = SimplifyExtractElementInst(
4361         EEI->getVectorOperand(), EEI->getIndexOperand(), DL, TLI, DT, AC, I);
4362     break;
4363   }
4364   case Instruction::PHI:
4365     Result = SimplifyPHINode(cast<PHINode>(I), Query(DL, TLI, DT, AC, I));
4366     break;
4367   case Instruction::Call: {
4368     CallSite CS(cast<CallInst>(I));
4369     Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), DL,
4370                           TLI, DT, AC, I);
4371     break;
4372   }
4373 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
4374 #include "llvm/IR/Instruction.def"
4375 #undef HANDLE_CAST_INST
4376     Result = SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(),
4377                               DL, TLI, DT, AC, I);
4378     break;
4379   }
4380 
4381   // In general, it is possible for computeKnownBits to determine all bits in a
4382   // value even when the operands are not all constants.
4383   if (!Result && I->getType()->isIntegerTy()) {
4384     unsigned BitWidth = I->getType()->getScalarSizeInBits();
4385     APInt KnownZero(BitWidth, 0);
4386     APInt KnownOne(BitWidth, 0);
4387     computeKnownBits(I, KnownZero, KnownOne, DL, /*Depth*/0, AC, I, DT);
4388     if ((KnownZero | KnownOne).isAllOnesValue())
4389       Result = ConstantInt::get(I->getContext(), KnownOne);
4390   }
4391 
4392   /// If called on unreachable code, the above logic may report that the
4393   /// instruction simplified to itself.  Make life easier for users by
4394   /// detecting that case here, returning a safe value instead.
4395   return Result == I ? UndefValue::get(I->getType()) : Result;
4396 }
4397 
4398 /// \brief Implementation of recursive simplification through an instruction's
4399 /// uses.
4400 ///
4401 /// This is the common implementation of the recursive simplification routines.
4402 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
4403 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
4404 /// instructions to process and attempt to simplify it using
4405 /// InstructionSimplify.
4406 ///
4407 /// This routine returns 'true' only when *it* simplifies something. The passed
4408 /// in simplified value does not count toward this.
4409 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
4410                                               const TargetLibraryInfo *TLI,
4411                                               const DominatorTree *DT,
4412                                               AssumptionCache *AC) {
4413   bool Simplified = false;
4414   SmallSetVector<Instruction *, 8> Worklist;
4415   const DataLayout &DL = I->getModule()->getDataLayout();
4416 
4417   // If we have an explicit value to collapse to, do that round of the
4418   // simplification loop by hand initially.
4419   if (SimpleV) {
4420     for (User *U : I->users())
4421       if (U != I)
4422         Worklist.insert(cast<Instruction>(U));
4423 
4424     // Replace the instruction with its simplified value.
4425     I->replaceAllUsesWith(SimpleV);
4426 
4427     // Gracefully handle edge cases where the instruction is not wired into any
4428     // parent block.
4429     if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) &&
4430         !I->mayHaveSideEffects())
4431       I->eraseFromParent();
4432   } else {
4433     Worklist.insert(I);
4434   }
4435 
4436   // Note that we must test the size on each iteration, the worklist can grow.
4437   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
4438     I = Worklist[Idx];
4439 
4440     // See if this instruction simplifies.
4441     SimpleV = SimplifyInstruction(I, DL, TLI, DT, AC);
4442     if (!SimpleV)
4443       continue;
4444 
4445     Simplified = true;
4446 
4447     // Stash away all the uses of the old instruction so we can check them for
4448     // recursive simplifications after a RAUW. This is cheaper than checking all
4449     // uses of To on the recursive step in most cases.
4450     for (User *U : I->users())
4451       Worklist.insert(cast<Instruction>(U));
4452 
4453     // Replace the instruction with its simplified value.
4454     I->replaceAllUsesWith(SimpleV);
4455 
4456     // Gracefully handle edge cases where the instruction is not wired into any
4457     // parent block.
4458     if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) &&
4459         !I->mayHaveSideEffects())
4460       I->eraseFromParent();
4461   }
4462   return Simplified;
4463 }
4464 
4465 bool llvm::recursivelySimplifyInstruction(Instruction *I,
4466                                           const TargetLibraryInfo *TLI,
4467                                           const DominatorTree *DT,
4468                                           AssumptionCache *AC) {
4469   return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC);
4470 }
4471 
4472 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
4473                                          const TargetLibraryInfo *TLI,
4474                                          const DominatorTree *DT,
4475                                          AssumptionCache *AC) {
4476   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
4477   assert(SimpleV && "Must provide a simplified value.");
4478   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC);
4479 }
4480