1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements routines for folding instructions into simpler forms 11 // that do not require creating new instructions. This does constant folding 12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 15 // simplified: This is usually true and assuming it simplifies the logic (if 16 // they have not been simplified then results are correct but maybe suboptimal). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/Analysis/VectorUtils.h" 30 #include "llvm/IR/ConstantRange.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/GetElementPtrTypeIterator.h" 34 #include "llvm/IR/GlobalAlias.h" 35 #include "llvm/IR/Operator.h" 36 #include "llvm/IR/PatternMatch.h" 37 #include "llvm/IR/ValueHandle.h" 38 #include <algorithm> 39 using namespace llvm; 40 using namespace llvm::PatternMatch; 41 42 #define DEBUG_TYPE "instsimplify" 43 44 enum { RecursionLimit = 3 }; 45 46 STATISTIC(NumExpand, "Number of expansions"); 47 STATISTIC(NumReassoc, "Number of reassociations"); 48 49 namespace { 50 struct Query { 51 const DataLayout &DL; 52 const TargetLibraryInfo *TLI; 53 const DominatorTree *DT; 54 AssumptionCache *AC; 55 const Instruction *CxtI; 56 57 Query(const DataLayout &DL, const TargetLibraryInfo *tli, 58 const DominatorTree *dt, AssumptionCache *ac = nullptr, 59 const Instruction *cxti = nullptr) 60 : DL(DL), TLI(tli), DT(dt), AC(ac), CxtI(cxti) {} 61 }; 62 } // end anonymous namespace 63 64 static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned); 65 static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &, 66 unsigned); 67 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &, 68 const Query &, unsigned); 69 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &, 70 unsigned); 71 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 72 const Query &Q, unsigned MaxRecurse); 73 static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned); 74 static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned); 75 static Value *SimplifyCastInst(unsigned, Value *, Type *, 76 const Query &, unsigned); 77 78 /// For a boolean type, or a vector of boolean type, return false, or 79 /// a vector with every element false, as appropriate for the type. 80 static Constant *getFalse(Type *Ty) { 81 assert(Ty->getScalarType()->isIntegerTy(1) && 82 "Expected i1 type or a vector of i1!"); 83 return Constant::getNullValue(Ty); 84 } 85 86 /// For a boolean type, or a vector of boolean type, return true, or 87 /// a vector with every element true, as appropriate for the type. 88 static Constant *getTrue(Type *Ty) { 89 assert(Ty->getScalarType()->isIntegerTy(1) && 90 "Expected i1 type or a vector of i1!"); 91 return Constant::getAllOnesValue(Ty); 92 } 93 94 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 95 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 96 Value *RHS) { 97 CmpInst *Cmp = dyn_cast<CmpInst>(V); 98 if (!Cmp) 99 return false; 100 CmpInst::Predicate CPred = Cmp->getPredicate(); 101 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 102 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 103 return true; 104 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 105 CRHS == LHS; 106 } 107 108 /// Does the given value dominate the specified phi node? 109 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 110 Instruction *I = dyn_cast<Instruction>(V); 111 if (!I) 112 // Arguments and constants dominate all instructions. 113 return true; 114 115 // If we are processing instructions (and/or basic blocks) that have not been 116 // fully added to a function, the parent nodes may still be null. Simply 117 // return the conservative answer in these cases. 118 if (!I->getParent() || !P->getParent() || !I->getParent()->getParent()) 119 return false; 120 121 // If we have a DominatorTree then do a precise test. 122 if (DT) { 123 if (!DT->isReachableFromEntry(P->getParent())) 124 return true; 125 if (!DT->isReachableFromEntry(I->getParent())) 126 return false; 127 return DT->dominates(I, P); 128 } 129 130 // Otherwise, if the instruction is in the entry block and is not an invoke, 131 // then it obviously dominates all phi nodes. 132 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() && 133 !isa<InvokeInst>(I)) 134 return true; 135 136 return false; 137 } 138 139 /// Simplify "A op (B op' C)" by distributing op over op', turning it into 140 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 141 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 142 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 143 /// Returns the simplified value, or null if no simplification was performed. 144 static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS, 145 unsigned OpcToExpand, const Query &Q, 146 unsigned MaxRecurse) { 147 Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand; 148 // Recursion is always used, so bail out at once if we already hit the limit. 149 if (!MaxRecurse--) 150 return nullptr; 151 152 // Check whether the expression has the form "(A op' B) op C". 153 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 154 if (Op0->getOpcode() == OpcodeToExpand) { 155 // It does! Try turning it into "(A op C) op' (B op C)". 156 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 157 // Do "A op C" and "B op C" both simplify? 158 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 159 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 160 // They do! Return "L op' R" if it simplifies or is already available. 161 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 162 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 163 && L == B && R == A)) { 164 ++NumExpand; 165 return LHS; 166 } 167 // Otherwise return "L op' R" if it simplifies. 168 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 169 ++NumExpand; 170 return V; 171 } 172 } 173 } 174 175 // Check whether the expression has the form "A op (B op' C)". 176 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 177 if (Op1->getOpcode() == OpcodeToExpand) { 178 // It does! Try turning it into "(A op B) op' (A op C)". 179 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 180 // Do "A op B" and "A op C" both simplify? 181 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 182 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 183 // They do! Return "L op' R" if it simplifies or is already available. 184 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 185 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 186 && L == C && R == B)) { 187 ++NumExpand; 188 return RHS; 189 } 190 // Otherwise return "L op' R" if it simplifies. 191 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 192 ++NumExpand; 193 return V; 194 } 195 } 196 } 197 198 return nullptr; 199 } 200 201 /// Generic simplifications for associative binary operations. 202 /// Returns the simpler value, or null if none was found. 203 static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS, 204 const Query &Q, unsigned MaxRecurse) { 205 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc; 206 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 207 208 // Recursion is always used, so bail out at once if we already hit the limit. 209 if (!MaxRecurse--) 210 return nullptr; 211 212 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 213 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 214 215 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 216 if (Op0 && Op0->getOpcode() == Opcode) { 217 Value *A = Op0->getOperand(0); 218 Value *B = Op0->getOperand(1); 219 Value *C = RHS; 220 221 // Does "B op C" simplify? 222 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 223 // It does! Return "A op V" if it simplifies or is already available. 224 // If V equals B then "A op V" is just the LHS. 225 if (V == B) return LHS; 226 // Otherwise return "A op V" if it simplifies. 227 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 228 ++NumReassoc; 229 return W; 230 } 231 } 232 } 233 234 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 235 if (Op1 && Op1->getOpcode() == Opcode) { 236 Value *A = LHS; 237 Value *B = Op1->getOperand(0); 238 Value *C = Op1->getOperand(1); 239 240 // Does "A op B" simplify? 241 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 242 // It does! Return "V op C" if it simplifies or is already available. 243 // If V equals B then "V op C" is just the RHS. 244 if (V == B) return RHS; 245 // Otherwise return "V op C" if it simplifies. 246 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 247 ++NumReassoc; 248 return W; 249 } 250 } 251 } 252 253 // The remaining transforms require commutativity as well as associativity. 254 if (!Instruction::isCommutative(Opcode)) 255 return nullptr; 256 257 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 258 if (Op0 && Op0->getOpcode() == Opcode) { 259 Value *A = Op0->getOperand(0); 260 Value *B = Op0->getOperand(1); 261 Value *C = RHS; 262 263 // Does "C op A" simplify? 264 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 265 // It does! Return "V op B" if it simplifies or is already available. 266 // If V equals A then "V op B" is just the LHS. 267 if (V == A) return LHS; 268 // Otherwise return "V op B" if it simplifies. 269 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 270 ++NumReassoc; 271 return W; 272 } 273 } 274 } 275 276 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 277 if (Op1 && Op1->getOpcode() == Opcode) { 278 Value *A = LHS; 279 Value *B = Op1->getOperand(0); 280 Value *C = Op1->getOperand(1); 281 282 // Does "C op A" simplify? 283 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 284 // It does! Return "B op V" if it simplifies or is already available. 285 // If V equals C then "B op V" is just the RHS. 286 if (V == C) return RHS; 287 // Otherwise return "B op V" if it simplifies. 288 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 289 ++NumReassoc; 290 return W; 291 } 292 } 293 } 294 295 return nullptr; 296 } 297 298 /// In the case of a binary operation with a select instruction as an operand, 299 /// try to simplify the binop by seeing whether evaluating it on both branches 300 /// of the select results in the same value. Returns the common value if so, 301 /// otherwise returns null. 302 static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS, 303 const Query &Q, unsigned MaxRecurse) { 304 // Recursion is always used, so bail out at once if we already hit the limit. 305 if (!MaxRecurse--) 306 return nullptr; 307 308 SelectInst *SI; 309 if (isa<SelectInst>(LHS)) { 310 SI = cast<SelectInst>(LHS); 311 } else { 312 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 313 SI = cast<SelectInst>(RHS); 314 } 315 316 // Evaluate the BinOp on the true and false branches of the select. 317 Value *TV; 318 Value *FV; 319 if (SI == LHS) { 320 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 321 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 322 } else { 323 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 324 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 325 } 326 327 // If they simplified to the same value, then return the common value. 328 // If they both failed to simplify then return null. 329 if (TV == FV) 330 return TV; 331 332 // If one branch simplified to undef, return the other one. 333 if (TV && isa<UndefValue>(TV)) 334 return FV; 335 if (FV && isa<UndefValue>(FV)) 336 return TV; 337 338 // If applying the operation did not change the true and false select values, 339 // then the result of the binop is the select itself. 340 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 341 return SI; 342 343 // If one branch simplified and the other did not, and the simplified 344 // value is equal to the unsimplified one, return the simplified value. 345 // For example, select (cond, X, X & Z) & Z -> X & Z. 346 if ((FV && !TV) || (TV && !FV)) { 347 // Check that the simplified value has the form "X op Y" where "op" is the 348 // same as the original operation. 349 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 350 if (Simplified && Simplified->getOpcode() == Opcode) { 351 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 352 // We already know that "op" is the same as for the simplified value. See 353 // if the operands match too. If so, return the simplified value. 354 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 355 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 356 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 357 if (Simplified->getOperand(0) == UnsimplifiedLHS && 358 Simplified->getOperand(1) == UnsimplifiedRHS) 359 return Simplified; 360 if (Simplified->isCommutative() && 361 Simplified->getOperand(1) == UnsimplifiedLHS && 362 Simplified->getOperand(0) == UnsimplifiedRHS) 363 return Simplified; 364 } 365 } 366 367 return nullptr; 368 } 369 370 /// In the case of a comparison with a select instruction, try to simplify the 371 /// comparison by seeing whether both branches of the select result in the same 372 /// value. Returns the common value if so, otherwise returns null. 373 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 374 Value *RHS, const Query &Q, 375 unsigned MaxRecurse) { 376 // Recursion is always used, so bail out at once if we already hit the limit. 377 if (!MaxRecurse--) 378 return nullptr; 379 380 // Make sure the select is on the LHS. 381 if (!isa<SelectInst>(LHS)) { 382 std::swap(LHS, RHS); 383 Pred = CmpInst::getSwappedPredicate(Pred); 384 } 385 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 386 SelectInst *SI = cast<SelectInst>(LHS); 387 Value *Cond = SI->getCondition(); 388 Value *TV = SI->getTrueValue(); 389 Value *FV = SI->getFalseValue(); 390 391 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 392 // Does "cmp TV, RHS" simplify? 393 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 394 if (TCmp == Cond) { 395 // It not only simplified, it simplified to the select condition. Replace 396 // it with 'true'. 397 TCmp = getTrue(Cond->getType()); 398 } else if (!TCmp) { 399 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 400 // condition then we can replace it with 'true'. Otherwise give up. 401 if (!isSameCompare(Cond, Pred, TV, RHS)) 402 return nullptr; 403 TCmp = getTrue(Cond->getType()); 404 } 405 406 // Does "cmp FV, RHS" simplify? 407 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 408 if (FCmp == Cond) { 409 // It not only simplified, it simplified to the select condition. Replace 410 // it with 'false'. 411 FCmp = getFalse(Cond->getType()); 412 } else if (!FCmp) { 413 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 414 // condition then we can replace it with 'false'. Otherwise give up. 415 if (!isSameCompare(Cond, Pred, FV, RHS)) 416 return nullptr; 417 FCmp = getFalse(Cond->getType()); 418 } 419 420 // If both sides simplified to the same value, then use it as the result of 421 // the original comparison. 422 if (TCmp == FCmp) 423 return TCmp; 424 425 // The remaining cases only make sense if the select condition has the same 426 // type as the result of the comparison, so bail out if this is not so. 427 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 428 return nullptr; 429 // If the false value simplified to false, then the result of the compare 430 // is equal to "Cond && TCmp". This also catches the case when the false 431 // value simplified to false and the true value to true, returning "Cond". 432 if (match(FCmp, m_Zero())) 433 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 434 return V; 435 // If the true value simplified to true, then the result of the compare 436 // is equal to "Cond || FCmp". 437 if (match(TCmp, m_One())) 438 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 439 return V; 440 // Finally, if the false value simplified to true and the true value to 441 // false, then the result of the compare is equal to "!Cond". 442 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 443 if (Value *V = 444 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 445 Q, MaxRecurse)) 446 return V; 447 448 return nullptr; 449 } 450 451 /// In the case of a binary operation with an operand that is a PHI instruction, 452 /// try to simplify the binop by seeing whether evaluating it on the incoming 453 /// phi values yields the same result for every value. If so returns the common 454 /// value, otherwise returns null. 455 static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS, 456 const Query &Q, unsigned MaxRecurse) { 457 // Recursion is always used, so bail out at once if we already hit the limit. 458 if (!MaxRecurse--) 459 return nullptr; 460 461 PHINode *PI; 462 if (isa<PHINode>(LHS)) { 463 PI = cast<PHINode>(LHS); 464 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 465 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 466 return nullptr; 467 } else { 468 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 469 PI = cast<PHINode>(RHS); 470 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 471 if (!ValueDominatesPHI(LHS, PI, Q.DT)) 472 return nullptr; 473 } 474 475 // Evaluate the BinOp on the incoming phi values. 476 Value *CommonValue = nullptr; 477 for (Value *Incoming : PI->incoming_values()) { 478 // If the incoming value is the phi node itself, it can safely be skipped. 479 if (Incoming == PI) continue; 480 Value *V = PI == LHS ? 481 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 482 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 483 // If the operation failed to simplify, or simplified to a different value 484 // to previously, then give up. 485 if (!V || (CommonValue && V != CommonValue)) 486 return nullptr; 487 CommonValue = V; 488 } 489 490 return CommonValue; 491 } 492 493 /// In the case of a comparison with a PHI instruction, try to simplify the 494 /// comparison by seeing whether comparing with all of the incoming phi values 495 /// yields the same result every time. If so returns the common result, 496 /// otherwise returns null. 497 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 498 const Query &Q, unsigned MaxRecurse) { 499 // Recursion is always used, so bail out at once if we already hit the limit. 500 if (!MaxRecurse--) 501 return nullptr; 502 503 // Make sure the phi is on the LHS. 504 if (!isa<PHINode>(LHS)) { 505 std::swap(LHS, RHS); 506 Pred = CmpInst::getSwappedPredicate(Pred); 507 } 508 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 509 PHINode *PI = cast<PHINode>(LHS); 510 511 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 512 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 513 return nullptr; 514 515 // Evaluate the BinOp on the incoming phi values. 516 Value *CommonValue = nullptr; 517 for (Value *Incoming : PI->incoming_values()) { 518 // If the incoming value is the phi node itself, it can safely be skipped. 519 if (Incoming == PI) continue; 520 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 521 // If the operation failed to simplify, or simplified to a different value 522 // to previously, then give up. 523 if (!V || (CommonValue && V != CommonValue)) 524 return nullptr; 525 CommonValue = V; 526 } 527 528 return CommonValue; 529 } 530 531 /// Given operands for an Add, see if we can fold the result. 532 /// If not, this returns null. 533 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 534 const Query &Q, unsigned MaxRecurse) { 535 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 536 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 537 return ConstantFoldBinaryOpOperands(Instruction::Add, CLHS, CRHS, Q.DL); 538 539 // Canonicalize the constant to the RHS. 540 std::swap(Op0, Op1); 541 } 542 543 // X + undef -> undef 544 if (match(Op1, m_Undef())) 545 return Op1; 546 547 // X + 0 -> X 548 if (match(Op1, m_Zero())) 549 return Op0; 550 551 // X + (Y - X) -> Y 552 // (Y - X) + X -> Y 553 // Eg: X + -X -> 0 554 Value *Y = nullptr; 555 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 556 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 557 return Y; 558 559 // X + ~X -> -1 since ~X = -X-1 560 if (match(Op0, m_Not(m_Specific(Op1))) || 561 match(Op1, m_Not(m_Specific(Op0)))) 562 return Constant::getAllOnesValue(Op0->getType()); 563 564 /// i1 add -> xor. 565 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 566 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 567 return V; 568 569 // Try some generic simplifications for associative operations. 570 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 571 MaxRecurse)) 572 return V; 573 574 // Threading Add over selects and phi nodes is pointless, so don't bother. 575 // Threading over the select in "A + select(cond, B, C)" means evaluating 576 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 577 // only if B and C are equal. If B and C are equal then (since we assume 578 // that operands have already been simplified) "select(cond, B, C)" should 579 // have been simplified to the common value of B and C already. Analysing 580 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 581 // for threading over phi nodes. 582 583 return nullptr; 584 } 585 586 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 587 const DataLayout &DL, const TargetLibraryInfo *TLI, 588 const DominatorTree *DT, AssumptionCache *AC, 589 const Instruction *CxtI) { 590 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 591 RecursionLimit); 592 } 593 594 /// \brief Compute the base pointer and cumulative constant offsets for V. 595 /// 596 /// This strips all constant offsets off of V, leaving it the base pointer, and 597 /// accumulates the total constant offset applied in the returned constant. It 598 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 599 /// no constant offsets applied. 600 /// 601 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 602 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 603 /// folding. 604 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 605 bool AllowNonInbounds = false) { 606 assert(V->getType()->getScalarType()->isPointerTy()); 607 608 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 609 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 610 611 // Even though we don't look through PHI nodes, we could be called on an 612 // instruction in an unreachable block, which may be on a cycle. 613 SmallPtrSet<Value *, 4> Visited; 614 Visited.insert(V); 615 do { 616 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 617 if ((!AllowNonInbounds && !GEP->isInBounds()) || 618 !GEP->accumulateConstantOffset(DL, Offset)) 619 break; 620 V = GEP->getPointerOperand(); 621 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 622 V = cast<Operator>(V)->getOperand(0); 623 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 624 if (GA->isInterposable()) 625 break; 626 V = GA->getAliasee(); 627 } else { 628 if (auto CS = CallSite(V)) 629 if (Value *RV = CS.getReturnedArgOperand()) { 630 V = RV; 631 continue; 632 } 633 break; 634 } 635 assert(V->getType()->getScalarType()->isPointerTy() && 636 "Unexpected operand type!"); 637 } while (Visited.insert(V).second); 638 639 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 640 if (V->getType()->isVectorTy()) 641 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 642 OffsetIntPtr); 643 return OffsetIntPtr; 644 } 645 646 /// \brief Compute the constant difference between two pointer values. 647 /// If the difference is not a constant, returns zero. 648 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 649 Value *RHS) { 650 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 651 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 652 653 // If LHS and RHS are not related via constant offsets to the same base 654 // value, there is nothing we can do here. 655 if (LHS != RHS) 656 return nullptr; 657 658 // Otherwise, the difference of LHS - RHS can be computed as: 659 // LHS - RHS 660 // = (LHSOffset + Base) - (RHSOffset + Base) 661 // = LHSOffset - RHSOffset 662 return ConstantExpr::getSub(LHSOffset, RHSOffset); 663 } 664 665 /// Given operands for a Sub, see if we can fold the result. 666 /// If not, this returns null. 667 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 668 const Query &Q, unsigned MaxRecurse) { 669 if (Constant *CLHS = dyn_cast<Constant>(Op0)) 670 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 671 return ConstantFoldBinaryOpOperands(Instruction::Sub, CLHS, CRHS, Q.DL); 672 673 // X - undef -> undef 674 // undef - X -> undef 675 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 676 return UndefValue::get(Op0->getType()); 677 678 // X - 0 -> X 679 if (match(Op1, m_Zero())) 680 return Op0; 681 682 // X - X -> 0 683 if (Op0 == Op1) 684 return Constant::getNullValue(Op0->getType()); 685 686 // Is this a negation? 687 if (match(Op0, m_Zero())) { 688 // 0 - X -> 0 if the sub is NUW. 689 if (isNUW) 690 return Op0; 691 692 unsigned BitWidth = Op1->getType()->getScalarSizeInBits(); 693 APInt KnownZero(BitWidth, 0); 694 APInt KnownOne(BitWidth, 0); 695 computeKnownBits(Op1, KnownZero, KnownOne, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 696 if (KnownZero == ~APInt::getSignBit(BitWidth)) { 697 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 698 // Op1 must be 0 because negating the minimum signed value is undefined. 699 if (isNSW) 700 return Op0; 701 702 // 0 - X -> X if X is 0 or the minimum signed value. 703 return Op1; 704 } 705 } 706 707 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 708 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 709 Value *X = nullptr, *Y = nullptr, *Z = Op1; 710 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 711 // See if "V === Y - Z" simplifies. 712 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 713 // It does! Now see if "X + V" simplifies. 714 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 715 // It does, we successfully reassociated! 716 ++NumReassoc; 717 return W; 718 } 719 // See if "V === X - Z" simplifies. 720 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 721 // It does! Now see if "Y + V" simplifies. 722 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 723 // It does, we successfully reassociated! 724 ++NumReassoc; 725 return W; 726 } 727 } 728 729 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 730 // For example, X - (X + 1) -> -1 731 X = Op0; 732 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 733 // See if "V === X - Y" simplifies. 734 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 735 // It does! Now see if "V - Z" simplifies. 736 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 737 // It does, we successfully reassociated! 738 ++NumReassoc; 739 return W; 740 } 741 // See if "V === X - Z" simplifies. 742 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 743 // It does! Now see if "V - Y" simplifies. 744 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 745 // It does, we successfully reassociated! 746 ++NumReassoc; 747 return W; 748 } 749 } 750 751 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 752 // For example, X - (X - Y) -> Y. 753 Z = Op0; 754 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 755 // See if "V === Z - X" simplifies. 756 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 757 // It does! Now see if "V + Y" simplifies. 758 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 759 // It does, we successfully reassociated! 760 ++NumReassoc; 761 return W; 762 } 763 764 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 765 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 766 match(Op1, m_Trunc(m_Value(Y)))) 767 if (X->getType() == Y->getType()) 768 // See if "V === X - Y" simplifies. 769 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 770 // It does! Now see if "trunc V" simplifies. 771 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 772 Q, MaxRecurse - 1)) 773 // It does, return the simplified "trunc V". 774 return W; 775 776 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 777 if (match(Op0, m_PtrToInt(m_Value(X))) && 778 match(Op1, m_PtrToInt(m_Value(Y)))) 779 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 780 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 781 782 // i1 sub -> xor. 783 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 784 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 785 return V; 786 787 // Threading Sub over selects and phi nodes is pointless, so don't bother. 788 // Threading over the select in "A - select(cond, B, C)" means evaluating 789 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 790 // only if B and C are equal. If B and C are equal then (since we assume 791 // that operands have already been simplified) "select(cond, B, C)" should 792 // have been simplified to the common value of B and C already. Analysing 793 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 794 // for threading over phi nodes. 795 796 return nullptr; 797 } 798 799 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 800 const DataLayout &DL, const TargetLibraryInfo *TLI, 801 const DominatorTree *DT, AssumptionCache *AC, 802 const Instruction *CxtI) { 803 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 804 RecursionLimit); 805 } 806 807 /// Given operands for an FAdd, see if we can fold the result. If not, this 808 /// returns null. 809 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 810 const Query &Q, unsigned MaxRecurse) { 811 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 812 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 813 return ConstantFoldBinaryOpOperands(Instruction::FAdd, CLHS, CRHS, Q.DL); 814 815 // Canonicalize the constant to the RHS. 816 std::swap(Op0, Op1); 817 } 818 819 // fadd X, -0 ==> X 820 if (match(Op1, m_NegZero())) 821 return Op0; 822 823 // fadd X, 0 ==> X, when we know X is not -0 824 if (match(Op1, m_Zero()) && 825 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 826 return Op0; 827 828 // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0 829 // where nnan and ninf have to occur at least once somewhere in this 830 // expression 831 Value *SubOp = nullptr; 832 if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0)))) 833 SubOp = Op1; 834 else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1)))) 835 SubOp = Op0; 836 if (SubOp) { 837 Instruction *FSub = cast<Instruction>(SubOp); 838 if ((FMF.noNaNs() || FSub->hasNoNaNs()) && 839 (FMF.noInfs() || FSub->hasNoInfs())) 840 return Constant::getNullValue(Op0->getType()); 841 } 842 843 return nullptr; 844 } 845 846 /// Given operands for an FSub, see if we can fold the result. If not, this 847 /// returns null. 848 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 849 const Query &Q, unsigned MaxRecurse) { 850 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 851 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 852 return ConstantFoldBinaryOpOperands(Instruction::FSub, CLHS, CRHS, Q.DL); 853 } 854 855 // fsub X, 0 ==> X 856 if (match(Op1, m_Zero())) 857 return Op0; 858 859 // fsub X, -0 ==> X, when we know X is not -0 860 if (match(Op1, m_NegZero()) && 861 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 862 return Op0; 863 864 // fsub -0.0, (fsub -0.0, X) ==> X 865 Value *X; 866 if (match(Op0, m_NegZero()) && match(Op1, m_FSub(m_NegZero(), m_Value(X)))) 867 return X; 868 869 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 870 if (FMF.noSignedZeros() && match(Op0, m_AnyZero()) && 871 match(Op1, m_FSub(m_AnyZero(), m_Value(X)))) 872 return X; 873 874 // fsub nnan x, x ==> 0.0 875 if (FMF.noNaNs() && Op0 == Op1) 876 return Constant::getNullValue(Op0->getType()); 877 878 return nullptr; 879 } 880 881 /// Given the operands for an FMul, see if we can fold the result 882 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, 883 FastMathFlags FMF, 884 const Query &Q, 885 unsigned MaxRecurse) { 886 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 887 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 888 return ConstantFoldBinaryOpOperands(Instruction::FMul, CLHS, CRHS, Q.DL); 889 890 // Canonicalize the constant to the RHS. 891 std::swap(Op0, Op1); 892 } 893 894 // fmul X, 1.0 ==> X 895 if (match(Op1, m_FPOne())) 896 return Op0; 897 898 // fmul nnan nsz X, 0 ==> 0 899 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero())) 900 return Op1; 901 902 return nullptr; 903 } 904 905 /// Given operands for a Mul, see if we can fold the result. 906 /// If not, this returns null. 907 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q, 908 unsigned MaxRecurse) { 909 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 910 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 911 return ConstantFoldBinaryOpOperands(Instruction::Mul, CLHS, CRHS, Q.DL); 912 913 // Canonicalize the constant to the RHS. 914 std::swap(Op0, Op1); 915 } 916 917 // X * undef -> 0 918 if (match(Op1, m_Undef())) 919 return Constant::getNullValue(Op0->getType()); 920 921 // X * 0 -> 0 922 if (match(Op1, m_Zero())) 923 return Op1; 924 925 // X * 1 -> X 926 if (match(Op1, m_One())) 927 return Op0; 928 929 // (X / Y) * Y -> X if the division is exact. 930 Value *X = nullptr; 931 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 932 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y) 933 return X; 934 935 // i1 mul -> and. 936 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 937 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 938 return V; 939 940 // Try some generic simplifications for associative operations. 941 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 942 MaxRecurse)) 943 return V; 944 945 // Mul distributes over Add. Try some generic simplifications based on this. 946 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 947 Q, MaxRecurse)) 948 return V; 949 950 // If the operation is with the result of a select instruction, check whether 951 // operating on either branch of the select always yields the same value. 952 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 953 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 954 MaxRecurse)) 955 return V; 956 957 // If the operation is with the result of a phi instruction, check whether 958 // operating on all incoming values of the phi always yields the same value. 959 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 960 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 961 MaxRecurse)) 962 return V; 963 964 return nullptr; 965 } 966 967 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 968 const DataLayout &DL, 969 const TargetLibraryInfo *TLI, 970 const DominatorTree *DT, AssumptionCache *AC, 971 const Instruction *CxtI) { 972 return ::SimplifyFAddInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 973 RecursionLimit); 974 } 975 976 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 977 const DataLayout &DL, 978 const TargetLibraryInfo *TLI, 979 const DominatorTree *DT, AssumptionCache *AC, 980 const Instruction *CxtI) { 981 return ::SimplifyFSubInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 982 RecursionLimit); 983 } 984 985 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 986 const DataLayout &DL, 987 const TargetLibraryInfo *TLI, 988 const DominatorTree *DT, AssumptionCache *AC, 989 const Instruction *CxtI) { 990 return ::SimplifyFMulInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 991 RecursionLimit); 992 } 993 994 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout &DL, 995 const TargetLibraryInfo *TLI, 996 const DominatorTree *DT, AssumptionCache *AC, 997 const Instruction *CxtI) { 998 return ::SimplifyMulInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 999 RecursionLimit); 1000 } 1001 1002 /// Given operands for an SDiv or UDiv, see if we can fold the result. 1003 /// If not, this returns null. 1004 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1005 const Query &Q, unsigned MaxRecurse) { 1006 if (Constant *C0 = dyn_cast<Constant>(Op0)) 1007 if (Constant *C1 = dyn_cast<Constant>(Op1)) 1008 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 1009 1010 bool isSigned = Opcode == Instruction::SDiv; 1011 1012 // X / undef -> undef 1013 if (match(Op1, m_Undef())) 1014 return Op1; 1015 1016 // X / 0 -> undef, we don't need to preserve faults! 1017 if (match(Op1, m_Zero())) 1018 return UndefValue::get(Op1->getType()); 1019 1020 // undef / X -> 0 1021 if (match(Op0, m_Undef())) 1022 return Constant::getNullValue(Op0->getType()); 1023 1024 // 0 / X -> 0, we don't need to preserve faults! 1025 if (match(Op0, m_Zero())) 1026 return Op0; 1027 1028 // X / 1 -> X 1029 if (match(Op1, m_One())) 1030 return Op0; 1031 1032 if (Op0->getType()->isIntegerTy(1)) 1033 // It can't be division by zero, hence it must be division by one. 1034 return Op0; 1035 1036 // X / X -> 1 1037 if (Op0 == Op1) 1038 return ConstantInt::get(Op0->getType(), 1); 1039 1040 // (X * Y) / Y -> X if the multiplication does not overflow. 1041 Value *X = nullptr, *Y = nullptr; 1042 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) { 1043 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1 1044 OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0); 1045 // If the Mul knows it does not overflow, then we are good to go. 1046 if ((isSigned && Mul->hasNoSignedWrap()) || 1047 (!isSigned && Mul->hasNoUnsignedWrap())) 1048 return X; 1049 // If X has the form X = A / Y then X * Y cannot overflow. 1050 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X)) 1051 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y) 1052 return X; 1053 } 1054 1055 // (X rem Y) / Y -> 0 1056 if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1057 (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1058 return Constant::getNullValue(Op0->getType()); 1059 1060 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1061 ConstantInt *C1, *C2; 1062 if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1063 match(Op1, m_ConstantInt(C2))) { 1064 bool Overflow; 1065 C1->getValue().umul_ov(C2->getValue(), Overflow); 1066 if (Overflow) 1067 return Constant::getNullValue(Op0->getType()); 1068 } 1069 1070 // If the operation is with the result of a select instruction, check whether 1071 // operating on either branch of the select always yields the same value. 1072 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1073 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1074 return V; 1075 1076 // If the operation is with the result of a phi instruction, check whether 1077 // operating on all incoming values of the phi always yields the same value. 1078 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1079 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1080 return V; 1081 1082 return nullptr; 1083 } 1084 1085 /// Given operands for an SDiv, see if we can fold the result. 1086 /// If not, this returns null. 1087 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q, 1088 unsigned MaxRecurse) { 1089 if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse)) 1090 return V; 1091 1092 return nullptr; 1093 } 1094 1095 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout &DL, 1096 const TargetLibraryInfo *TLI, 1097 const DominatorTree *DT, AssumptionCache *AC, 1098 const Instruction *CxtI) { 1099 return ::SimplifySDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1100 RecursionLimit); 1101 } 1102 1103 /// Given operands for a UDiv, see if we can fold the result. 1104 /// If not, this returns null. 1105 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q, 1106 unsigned MaxRecurse) { 1107 if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse)) 1108 return V; 1109 1110 // udiv %V, C -> 0 if %V < C 1111 if (MaxRecurse) { 1112 if (Constant *C = dyn_cast_or_null<Constant>(SimplifyICmpInst( 1113 ICmpInst::ICMP_ULT, Op0, Op1, Q, MaxRecurse - 1))) { 1114 if (C->isAllOnesValue()) { 1115 return Constant::getNullValue(Op0->getType()); 1116 } 1117 } 1118 } 1119 1120 return nullptr; 1121 } 1122 1123 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout &DL, 1124 const TargetLibraryInfo *TLI, 1125 const DominatorTree *DT, AssumptionCache *AC, 1126 const Instruction *CxtI) { 1127 return ::SimplifyUDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1128 RecursionLimit); 1129 } 1130 1131 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1132 const Query &Q, unsigned) { 1133 // undef / X -> undef (the undef could be a snan). 1134 if (match(Op0, m_Undef())) 1135 return Op0; 1136 1137 // X / undef -> undef 1138 if (match(Op1, m_Undef())) 1139 return Op1; 1140 1141 // X / 1.0 -> X 1142 if (match(Op1, m_FPOne())) 1143 return Op0; 1144 1145 // 0 / X -> 0 1146 // Requires that NaNs are off (X could be zero) and signed zeroes are 1147 // ignored (X could be positive or negative, so the output sign is unknown). 1148 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 1149 return Op0; 1150 1151 if (FMF.noNaNs()) { 1152 // X / X -> 1.0 is legal when NaNs are ignored. 1153 if (Op0 == Op1) 1154 return ConstantFP::get(Op0->getType(), 1.0); 1155 1156 // -X / X -> -1.0 and 1157 // X / -X -> -1.0 are legal when NaNs are ignored. 1158 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 1159 if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) && 1160 BinaryOperator::getFNegArgument(Op0) == Op1) || 1161 (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) && 1162 BinaryOperator::getFNegArgument(Op1) == Op0)) 1163 return ConstantFP::get(Op0->getType(), -1.0); 1164 } 1165 1166 return nullptr; 1167 } 1168 1169 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1170 const DataLayout &DL, 1171 const TargetLibraryInfo *TLI, 1172 const DominatorTree *DT, AssumptionCache *AC, 1173 const Instruction *CxtI) { 1174 return ::SimplifyFDivInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 1175 RecursionLimit); 1176 } 1177 1178 /// Given operands for an SRem or URem, see if we can fold the result. 1179 /// If not, this returns null. 1180 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1181 const Query &Q, unsigned MaxRecurse) { 1182 if (Constant *C0 = dyn_cast<Constant>(Op0)) 1183 if (Constant *C1 = dyn_cast<Constant>(Op1)) 1184 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 1185 1186 // X % undef -> undef 1187 if (match(Op1, m_Undef())) 1188 return Op1; 1189 1190 // undef % X -> 0 1191 if (match(Op0, m_Undef())) 1192 return Constant::getNullValue(Op0->getType()); 1193 1194 // 0 % X -> 0, we don't need to preserve faults! 1195 if (match(Op0, m_Zero())) 1196 return Op0; 1197 1198 // X % 0 -> undef, we don't need to preserve faults! 1199 if (match(Op1, m_Zero())) 1200 return UndefValue::get(Op0->getType()); 1201 1202 // X % 1 -> 0 1203 if (match(Op1, m_One())) 1204 return Constant::getNullValue(Op0->getType()); 1205 1206 if (Op0->getType()->isIntegerTy(1)) 1207 // It can't be remainder by zero, hence it must be remainder by one. 1208 return Constant::getNullValue(Op0->getType()); 1209 1210 // X % X -> 0 1211 if (Op0 == Op1) 1212 return Constant::getNullValue(Op0->getType()); 1213 1214 // (X % Y) % Y -> X % Y 1215 if ((Opcode == Instruction::SRem && 1216 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1217 (Opcode == Instruction::URem && 1218 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1219 return Op0; 1220 1221 // If the operation is with the result of a select instruction, check whether 1222 // operating on either branch of the select always yields the same value. 1223 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1224 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1225 return V; 1226 1227 // If the operation is with the result of a phi instruction, check whether 1228 // operating on all incoming values of the phi always yields the same value. 1229 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1230 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1231 return V; 1232 1233 return nullptr; 1234 } 1235 1236 /// Given operands for an SRem, see if we can fold the result. 1237 /// If not, this returns null. 1238 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q, 1239 unsigned MaxRecurse) { 1240 if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse)) 1241 return V; 1242 1243 return nullptr; 1244 } 1245 1246 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout &DL, 1247 const TargetLibraryInfo *TLI, 1248 const DominatorTree *DT, AssumptionCache *AC, 1249 const Instruction *CxtI) { 1250 return ::SimplifySRemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1251 RecursionLimit); 1252 } 1253 1254 /// Given operands for a URem, see if we can fold the result. 1255 /// If not, this returns null. 1256 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q, 1257 unsigned MaxRecurse) { 1258 if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse)) 1259 return V; 1260 1261 // urem %V, C -> %V if %V < C 1262 if (MaxRecurse) { 1263 if (Constant *C = dyn_cast_or_null<Constant>(SimplifyICmpInst( 1264 ICmpInst::ICMP_ULT, Op0, Op1, Q, MaxRecurse - 1))) { 1265 if (C->isAllOnesValue()) { 1266 return Op0; 1267 } 1268 } 1269 } 1270 1271 return nullptr; 1272 } 1273 1274 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout &DL, 1275 const TargetLibraryInfo *TLI, 1276 const DominatorTree *DT, AssumptionCache *AC, 1277 const Instruction *CxtI) { 1278 return ::SimplifyURemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1279 RecursionLimit); 1280 } 1281 1282 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1283 const Query &, unsigned) { 1284 // undef % X -> undef (the undef could be a snan). 1285 if (match(Op0, m_Undef())) 1286 return Op0; 1287 1288 // X % undef -> undef 1289 if (match(Op1, m_Undef())) 1290 return Op1; 1291 1292 // 0 % X -> 0 1293 // Requires that NaNs are off (X could be zero) and signed zeroes are 1294 // ignored (X could be positive or negative, so the output sign is unknown). 1295 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 1296 return Op0; 1297 1298 return nullptr; 1299 } 1300 1301 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1302 const DataLayout &DL, 1303 const TargetLibraryInfo *TLI, 1304 const DominatorTree *DT, AssumptionCache *AC, 1305 const Instruction *CxtI) { 1306 return ::SimplifyFRemInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 1307 RecursionLimit); 1308 } 1309 1310 /// Returns true if a shift by \c Amount always yields undef. 1311 static bool isUndefShift(Value *Amount) { 1312 Constant *C = dyn_cast<Constant>(Amount); 1313 if (!C) 1314 return false; 1315 1316 // X shift by undef -> undef because it may shift by the bitwidth. 1317 if (isa<UndefValue>(C)) 1318 return true; 1319 1320 // Shifting by the bitwidth or more is undefined. 1321 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1322 if (CI->getValue().getLimitedValue() >= 1323 CI->getType()->getScalarSizeInBits()) 1324 return true; 1325 1326 // If all lanes of a vector shift are undefined the whole shift is. 1327 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1328 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) 1329 if (!isUndefShift(C->getAggregateElement(I))) 1330 return false; 1331 return true; 1332 } 1333 1334 return false; 1335 } 1336 1337 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1338 /// If not, this returns null. 1339 static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1, 1340 const Query &Q, unsigned MaxRecurse) { 1341 if (Constant *C0 = dyn_cast<Constant>(Op0)) 1342 if (Constant *C1 = dyn_cast<Constant>(Op1)) 1343 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 1344 1345 // 0 shift by X -> 0 1346 if (match(Op0, m_Zero())) 1347 return Op0; 1348 1349 // X shift by 0 -> X 1350 if (match(Op1, m_Zero())) 1351 return Op0; 1352 1353 // Fold undefined shifts. 1354 if (isUndefShift(Op1)) 1355 return UndefValue::get(Op0->getType()); 1356 1357 // If the operation is with the result of a select instruction, check whether 1358 // operating on either branch of the select always yields the same value. 1359 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1360 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1361 return V; 1362 1363 // If the operation is with the result of a phi instruction, check whether 1364 // operating on all incoming values of the phi always yields the same value. 1365 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1366 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1367 return V; 1368 1369 // If any bits in the shift amount make that value greater than or equal to 1370 // the number of bits in the type, the shift is undefined. 1371 unsigned BitWidth = Op1->getType()->getScalarSizeInBits(); 1372 APInt KnownZero(BitWidth, 0); 1373 APInt KnownOne(BitWidth, 0); 1374 computeKnownBits(Op1, KnownZero, KnownOne, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1375 if (KnownOne.getLimitedValue() >= BitWidth) 1376 return UndefValue::get(Op0->getType()); 1377 1378 // If all valid bits in the shift amount are known zero, the first operand is 1379 // unchanged. 1380 unsigned NumValidShiftBits = Log2_32_Ceil(BitWidth); 1381 APInt ShiftAmountMask = APInt::getLowBitsSet(BitWidth, NumValidShiftBits); 1382 if ((KnownZero & ShiftAmountMask) == ShiftAmountMask) 1383 return Op0; 1384 1385 return nullptr; 1386 } 1387 1388 /// \brief Given operands for an Shl, LShr or AShr, see if we can 1389 /// fold the result. If not, this returns null. 1390 static Value *SimplifyRightShift(unsigned Opcode, Value *Op0, Value *Op1, 1391 bool isExact, const Query &Q, 1392 unsigned MaxRecurse) { 1393 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1394 return V; 1395 1396 // X >> X -> 0 1397 if (Op0 == Op1) 1398 return Constant::getNullValue(Op0->getType()); 1399 1400 // undef >> X -> 0 1401 // undef >> X -> undef (if it's exact) 1402 if (match(Op0, m_Undef())) 1403 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1404 1405 // The low bit cannot be shifted out of an exact shift if it is set. 1406 if (isExact) { 1407 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 1408 APInt Op0KnownZero(BitWidth, 0); 1409 APInt Op0KnownOne(BitWidth, 0); 1410 computeKnownBits(Op0, Op0KnownZero, Op0KnownOne, Q.DL, /*Depth=*/0, Q.AC, 1411 Q.CxtI, Q.DT); 1412 if (Op0KnownOne[0]) 1413 return Op0; 1414 } 1415 1416 return nullptr; 1417 } 1418 1419 /// Given operands for an Shl, see if we can fold the result. 1420 /// If not, this returns null. 1421 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1422 const Query &Q, unsigned MaxRecurse) { 1423 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1424 return V; 1425 1426 // undef << X -> 0 1427 // undef << X -> undef if (if it's NSW/NUW) 1428 if (match(Op0, m_Undef())) 1429 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1430 1431 // (X >> A) << A -> X 1432 Value *X; 1433 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1434 return X; 1435 return nullptr; 1436 } 1437 1438 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1439 const DataLayout &DL, const TargetLibraryInfo *TLI, 1440 const DominatorTree *DT, AssumptionCache *AC, 1441 const Instruction *CxtI) { 1442 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 1443 RecursionLimit); 1444 } 1445 1446 /// Given operands for an LShr, see if we can fold the result. 1447 /// If not, this returns null. 1448 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1449 const Query &Q, unsigned MaxRecurse) { 1450 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1451 MaxRecurse)) 1452 return V; 1453 1454 // (X << A) >> A -> X 1455 Value *X; 1456 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1457 return X; 1458 1459 return nullptr; 1460 } 1461 1462 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1463 const DataLayout &DL, 1464 const TargetLibraryInfo *TLI, 1465 const DominatorTree *DT, AssumptionCache *AC, 1466 const Instruction *CxtI) { 1467 return ::SimplifyLShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI), 1468 RecursionLimit); 1469 } 1470 1471 /// Given operands for an AShr, see if we can fold the result. 1472 /// If not, this returns null. 1473 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1474 const Query &Q, unsigned MaxRecurse) { 1475 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1476 MaxRecurse)) 1477 return V; 1478 1479 // all ones >>a X -> all ones 1480 if (match(Op0, m_AllOnes())) 1481 return Op0; 1482 1483 // (X << A) >> A -> X 1484 Value *X; 1485 if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1486 return X; 1487 1488 // Arithmetic shifting an all-sign-bit value is a no-op. 1489 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1490 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1491 return Op0; 1492 1493 return nullptr; 1494 } 1495 1496 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1497 const DataLayout &DL, 1498 const TargetLibraryInfo *TLI, 1499 const DominatorTree *DT, AssumptionCache *AC, 1500 const Instruction *CxtI) { 1501 return ::SimplifyAShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI), 1502 RecursionLimit); 1503 } 1504 1505 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1506 ICmpInst *UnsignedICmp, bool IsAnd) { 1507 Value *X, *Y; 1508 1509 ICmpInst::Predicate EqPred; 1510 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1511 !ICmpInst::isEquality(EqPred)) 1512 return nullptr; 1513 1514 ICmpInst::Predicate UnsignedPred; 1515 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1516 ICmpInst::isUnsigned(UnsignedPred)) 1517 ; 1518 else if (match(UnsignedICmp, 1519 m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) && 1520 ICmpInst::isUnsigned(UnsignedPred)) 1521 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1522 else 1523 return nullptr; 1524 1525 // X < Y && Y != 0 --> X < Y 1526 // X < Y || Y != 0 --> Y != 0 1527 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1528 return IsAnd ? UnsignedICmp : ZeroICmp; 1529 1530 // X >= Y || Y != 0 --> true 1531 // X >= Y || Y == 0 --> X >= Y 1532 if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) { 1533 if (EqPred == ICmpInst::ICMP_NE) 1534 return getTrue(UnsignedICmp->getType()); 1535 return UnsignedICmp; 1536 } 1537 1538 // X < Y && Y == 0 --> false 1539 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1540 IsAnd) 1541 return getFalse(UnsignedICmp->getType()); 1542 1543 return nullptr; 1544 } 1545 1546 /// Commuted variants are assumed to be handled by calling this function again 1547 /// with the parameters swapped. 1548 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1549 ICmpInst::Predicate Pred0, Pred1; 1550 Value *A ,*B; 1551 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1552 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1553 return nullptr; 1554 1555 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1556 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1557 // can eliminate Op1 from this 'and'. 1558 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1559 return Op0; 1560 1561 // Check for any combination of predicates that are guaranteed to be disjoint. 1562 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1563 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1564 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1565 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1566 return getFalse(Op0->getType()); 1567 1568 return nullptr; 1569 } 1570 1571 /// Commuted variants are assumed to be handled by calling this function again 1572 /// with the parameters swapped. 1573 static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1574 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true)) 1575 return X; 1576 1577 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1578 return X; 1579 1580 // Look for this pattern: (icmp V, C0) & (icmp V, C1)). 1581 Type *ITy = Op0->getType(); 1582 ICmpInst::Predicate Pred0, Pred1; 1583 const APInt *C0, *C1; 1584 Value *V; 1585 if (match(Op0, m_ICmp(Pred0, m_Value(V), m_APInt(C0))) && 1586 match(Op1, m_ICmp(Pred1, m_Specific(V), m_APInt(C1)))) { 1587 // Make a constant range that's the intersection of the two icmp ranges. 1588 // If the intersection is empty, we know that the result is false. 1589 auto Range0 = ConstantRange::makeAllowedICmpRegion(Pred0, *C0); 1590 auto Range1 = ConstantRange::makeAllowedICmpRegion(Pred1, *C1); 1591 if (Range0.intersectWith(Range1).isEmptySet()) 1592 return getFalse(ITy); 1593 } 1594 1595 // (icmp (add V, C0), C1) & (icmp V, C0) 1596 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1597 return nullptr; 1598 1599 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1600 return nullptr; 1601 1602 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1603 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1604 return nullptr; 1605 1606 bool isNSW = AddInst->hasNoSignedWrap(); 1607 bool isNUW = AddInst->hasNoUnsignedWrap(); 1608 1609 const APInt Delta = *C1 - *C0; 1610 if (C0->isStrictlyPositive()) { 1611 if (Delta == 2) { 1612 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1613 return getFalse(ITy); 1614 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1615 return getFalse(ITy); 1616 } 1617 if (Delta == 1) { 1618 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1619 return getFalse(ITy); 1620 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1621 return getFalse(ITy); 1622 } 1623 } 1624 if (C0->getBoolValue() && isNUW) { 1625 if (Delta == 2) 1626 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1627 return getFalse(ITy); 1628 if (Delta == 1) 1629 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1630 return getFalse(ITy); 1631 } 1632 1633 return nullptr; 1634 } 1635 1636 /// Given operands for an And, see if we can fold the result. 1637 /// If not, this returns null. 1638 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q, 1639 unsigned MaxRecurse) { 1640 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1641 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1642 return ConstantFoldBinaryOpOperands(Instruction::And, CLHS, CRHS, Q.DL); 1643 1644 // Canonicalize the constant to the RHS. 1645 std::swap(Op0, Op1); 1646 } 1647 1648 // X & undef -> 0 1649 if (match(Op1, m_Undef())) 1650 return Constant::getNullValue(Op0->getType()); 1651 1652 // X & X = X 1653 if (Op0 == Op1) 1654 return Op0; 1655 1656 // X & 0 = 0 1657 if (match(Op1, m_Zero())) 1658 return Op1; 1659 1660 // X & -1 = X 1661 if (match(Op1, m_AllOnes())) 1662 return Op0; 1663 1664 // A & ~A = ~A & A = 0 1665 if (match(Op0, m_Not(m_Specific(Op1))) || 1666 match(Op1, m_Not(m_Specific(Op0)))) 1667 return Constant::getNullValue(Op0->getType()); 1668 1669 // (A | ?) & A = A 1670 Value *A = nullptr, *B = nullptr; 1671 if (match(Op0, m_Or(m_Value(A), m_Value(B))) && 1672 (A == Op1 || B == Op1)) 1673 return Op1; 1674 1675 // A & (A | ?) = A 1676 if (match(Op1, m_Or(m_Value(A), m_Value(B))) && 1677 (A == Op0 || B == Op0)) 1678 return Op0; 1679 1680 // A & (-A) = A if A is a power of two or zero. 1681 if (match(Op0, m_Neg(m_Specific(Op1))) || 1682 match(Op1, m_Neg(m_Specific(Op0)))) { 1683 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1684 Q.DT)) 1685 return Op0; 1686 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1687 Q.DT)) 1688 return Op1; 1689 } 1690 1691 if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) { 1692 if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) { 1693 if (Value *V = SimplifyAndOfICmps(ICILHS, ICIRHS)) 1694 return V; 1695 if (Value *V = SimplifyAndOfICmps(ICIRHS, ICILHS)) 1696 return V; 1697 } 1698 } 1699 1700 // The compares may be hidden behind casts. Look through those and try the 1701 // same folds as above. 1702 auto *Cast0 = dyn_cast<CastInst>(Op0); 1703 auto *Cast1 = dyn_cast<CastInst>(Op1); 1704 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1705 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1706 auto *Cmp0 = dyn_cast<ICmpInst>(Cast0->getOperand(0)); 1707 auto *Cmp1 = dyn_cast<ICmpInst>(Cast1->getOperand(0)); 1708 if (Cmp0 && Cmp1) { 1709 Instruction::CastOps CastOpc = Cast0->getOpcode(); 1710 Type *ResultType = Cast0->getType(); 1711 if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp0, Cmp1))) 1712 return ConstantExpr::getCast(CastOpc, V, ResultType); 1713 if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp1, Cmp0))) 1714 return ConstantExpr::getCast(CastOpc, V, ResultType); 1715 } 1716 } 1717 1718 // Try some generic simplifications for associative operations. 1719 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1720 MaxRecurse)) 1721 return V; 1722 1723 // And distributes over Or. Try some generic simplifications based on this. 1724 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1725 Q, MaxRecurse)) 1726 return V; 1727 1728 // And distributes over Xor. Try some generic simplifications based on this. 1729 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1730 Q, MaxRecurse)) 1731 return V; 1732 1733 // If the operation is with the result of a select instruction, check whether 1734 // operating on either branch of the select always yields the same value. 1735 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1736 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 1737 MaxRecurse)) 1738 return V; 1739 1740 // If the operation is with the result of a phi instruction, check whether 1741 // operating on all incoming values of the phi always yields the same value. 1742 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1743 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 1744 MaxRecurse)) 1745 return V; 1746 1747 return nullptr; 1748 } 1749 1750 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout &DL, 1751 const TargetLibraryInfo *TLI, 1752 const DominatorTree *DT, AssumptionCache *AC, 1753 const Instruction *CxtI) { 1754 return ::SimplifyAndInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1755 RecursionLimit); 1756 } 1757 1758 /// Commuted variants are assumed to be handled by calling this function again 1759 /// with the parameters swapped. 1760 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1761 ICmpInst::Predicate Pred0, Pred1; 1762 Value *A ,*B; 1763 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1764 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1765 return nullptr; 1766 1767 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1768 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1769 // can eliminate Op0 from this 'or'. 1770 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1771 return Op1; 1772 1773 // Check for any combination of predicates that cover the entire range of 1774 // possibilities. 1775 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1776 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1777 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1778 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1779 return getTrue(Op0->getType()); 1780 1781 return nullptr; 1782 } 1783 1784 /// Commuted variants are assumed to be handled by calling this function again 1785 /// with the parameters swapped. 1786 static Value *SimplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1787 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false)) 1788 return X; 1789 1790 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1791 return X; 1792 1793 // (icmp (add V, C0), C1) | (icmp V, C0) 1794 ICmpInst::Predicate Pred0, Pred1; 1795 const APInt *C0, *C1; 1796 Value *V; 1797 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1798 return nullptr; 1799 1800 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1801 return nullptr; 1802 1803 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1804 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1805 return nullptr; 1806 1807 Type *ITy = Op0->getType(); 1808 bool isNSW = AddInst->hasNoSignedWrap(); 1809 bool isNUW = AddInst->hasNoUnsignedWrap(); 1810 1811 const APInt Delta = *C1 - *C0; 1812 if (C0->isStrictlyPositive()) { 1813 if (Delta == 2) { 1814 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1815 return getTrue(ITy); 1816 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1817 return getTrue(ITy); 1818 } 1819 if (Delta == 1) { 1820 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1821 return getTrue(ITy); 1822 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1823 return getTrue(ITy); 1824 } 1825 } 1826 if (C0->getBoolValue() && isNUW) { 1827 if (Delta == 2) 1828 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1829 return getTrue(ITy); 1830 if (Delta == 1) 1831 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1832 return getTrue(ITy); 1833 } 1834 1835 return nullptr; 1836 } 1837 1838 /// Given operands for an Or, see if we can fold the result. 1839 /// If not, this returns null. 1840 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q, 1841 unsigned MaxRecurse) { 1842 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1843 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1844 return ConstantFoldBinaryOpOperands(Instruction::Or, CLHS, CRHS, Q.DL); 1845 1846 // Canonicalize the constant to the RHS. 1847 std::swap(Op0, Op1); 1848 } 1849 1850 // X | undef -> -1 1851 if (match(Op1, m_Undef())) 1852 return Constant::getAllOnesValue(Op0->getType()); 1853 1854 // X | X = X 1855 if (Op0 == Op1) 1856 return Op0; 1857 1858 // X | 0 = X 1859 if (match(Op1, m_Zero())) 1860 return Op0; 1861 1862 // X | -1 = -1 1863 if (match(Op1, m_AllOnes())) 1864 return Op1; 1865 1866 // A | ~A = ~A | A = -1 1867 if (match(Op0, m_Not(m_Specific(Op1))) || 1868 match(Op1, m_Not(m_Specific(Op0)))) 1869 return Constant::getAllOnesValue(Op0->getType()); 1870 1871 // (A & ?) | A = A 1872 Value *A = nullptr, *B = nullptr; 1873 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1874 (A == Op1 || B == Op1)) 1875 return Op1; 1876 1877 // A | (A & ?) = A 1878 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1879 (A == Op0 || B == Op0)) 1880 return Op0; 1881 1882 // ~(A & ?) | A = -1 1883 if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) && 1884 (A == Op1 || B == Op1)) 1885 return Constant::getAllOnesValue(Op1->getType()); 1886 1887 // A | ~(A & ?) = -1 1888 if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) && 1889 (A == Op0 || B == Op0)) 1890 return Constant::getAllOnesValue(Op0->getType()); 1891 1892 if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) { 1893 if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) { 1894 if (Value *V = SimplifyOrOfICmps(ICILHS, ICIRHS)) 1895 return V; 1896 if (Value *V = SimplifyOrOfICmps(ICIRHS, ICILHS)) 1897 return V; 1898 } 1899 } 1900 1901 // Try some generic simplifications for associative operations. 1902 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 1903 MaxRecurse)) 1904 return V; 1905 1906 // Or distributes over And. Try some generic simplifications based on this. 1907 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 1908 MaxRecurse)) 1909 return V; 1910 1911 // If the operation is with the result of a select instruction, check whether 1912 // operating on either branch of the select always yields the same value. 1913 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1914 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 1915 MaxRecurse)) 1916 return V; 1917 1918 // (A & C)|(B & D) 1919 Value *C = nullptr, *D = nullptr; 1920 if (match(Op0, m_And(m_Value(A), m_Value(C))) && 1921 match(Op1, m_And(m_Value(B), m_Value(D)))) { 1922 ConstantInt *C1 = dyn_cast<ConstantInt>(C); 1923 ConstantInt *C2 = dyn_cast<ConstantInt>(D); 1924 if (C1 && C2 && (C1->getValue() == ~C2->getValue())) { 1925 // (A & C1)|(B & C2) 1926 // If we have: ((V + N) & C1) | (V & C2) 1927 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 1928 // replace with V+N. 1929 Value *V1, *V2; 1930 if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+ 1931 match(A, m_Add(m_Value(V1), m_Value(V2)))) { 1932 // Add commutes, try both ways. 1933 if (V1 == B && 1934 MaskedValueIsZero(V2, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1935 return A; 1936 if (V2 == B && 1937 MaskedValueIsZero(V1, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1938 return A; 1939 } 1940 // Or commutes, try both ways. 1941 if ((C1->getValue() & (C1->getValue() + 1)) == 0 && 1942 match(B, m_Add(m_Value(V1), m_Value(V2)))) { 1943 // Add commutes, try both ways. 1944 if (V1 == A && 1945 MaskedValueIsZero(V2, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1946 return B; 1947 if (V2 == A && 1948 MaskedValueIsZero(V1, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1949 return B; 1950 } 1951 } 1952 } 1953 1954 // If the operation is with the result of a phi instruction, check whether 1955 // operating on all incoming values of the phi always yields the same value. 1956 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1957 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 1958 return V; 1959 1960 return nullptr; 1961 } 1962 1963 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout &DL, 1964 const TargetLibraryInfo *TLI, 1965 const DominatorTree *DT, AssumptionCache *AC, 1966 const Instruction *CxtI) { 1967 return ::SimplifyOrInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1968 RecursionLimit); 1969 } 1970 1971 /// Given operands for a Xor, see if we can fold the result. 1972 /// If not, this returns null. 1973 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q, 1974 unsigned MaxRecurse) { 1975 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1976 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1977 return ConstantFoldBinaryOpOperands(Instruction::Xor, CLHS, CRHS, Q.DL); 1978 1979 // Canonicalize the constant to the RHS. 1980 std::swap(Op0, Op1); 1981 } 1982 1983 // A ^ undef -> undef 1984 if (match(Op1, m_Undef())) 1985 return Op1; 1986 1987 // A ^ 0 = A 1988 if (match(Op1, m_Zero())) 1989 return Op0; 1990 1991 // A ^ A = 0 1992 if (Op0 == Op1) 1993 return Constant::getNullValue(Op0->getType()); 1994 1995 // A ^ ~A = ~A ^ A = -1 1996 if (match(Op0, m_Not(m_Specific(Op1))) || 1997 match(Op1, m_Not(m_Specific(Op0)))) 1998 return Constant::getAllOnesValue(Op0->getType()); 1999 2000 // Try some generic simplifications for associative operations. 2001 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 2002 MaxRecurse)) 2003 return V; 2004 2005 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2006 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2007 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2008 // only if B and C are equal. If B and C are equal then (since we assume 2009 // that operands have already been simplified) "select(cond, B, C)" should 2010 // have been simplified to the common value of B and C already. Analysing 2011 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2012 // for threading over phi nodes. 2013 2014 return nullptr; 2015 } 2016 2017 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout &DL, 2018 const TargetLibraryInfo *TLI, 2019 const DominatorTree *DT, AssumptionCache *AC, 2020 const Instruction *CxtI) { 2021 return ::SimplifyXorInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 2022 RecursionLimit); 2023 } 2024 2025 static Type *GetCompareTy(Value *Op) { 2026 return CmpInst::makeCmpResultType(Op->getType()); 2027 } 2028 2029 /// Rummage around inside V looking for something equivalent to the comparison 2030 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2031 /// Helper function for analyzing max/min idioms. 2032 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2033 Value *LHS, Value *RHS) { 2034 SelectInst *SI = dyn_cast<SelectInst>(V); 2035 if (!SI) 2036 return nullptr; 2037 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2038 if (!Cmp) 2039 return nullptr; 2040 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2041 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2042 return Cmp; 2043 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2044 LHS == CmpRHS && RHS == CmpLHS) 2045 return Cmp; 2046 return nullptr; 2047 } 2048 2049 // A significant optimization not implemented here is assuming that alloca 2050 // addresses are not equal to incoming argument values. They don't *alias*, 2051 // as we say, but that doesn't mean they aren't equal, so we take a 2052 // conservative approach. 2053 // 2054 // This is inspired in part by C++11 5.10p1: 2055 // "Two pointers of the same type compare equal if and only if they are both 2056 // null, both point to the same function, or both represent the same 2057 // address." 2058 // 2059 // This is pretty permissive. 2060 // 2061 // It's also partly due to C11 6.5.9p6: 2062 // "Two pointers compare equal if and only if both are null pointers, both are 2063 // pointers to the same object (including a pointer to an object and a 2064 // subobject at its beginning) or function, both are pointers to one past the 2065 // last element of the same array object, or one is a pointer to one past the 2066 // end of one array object and the other is a pointer to the start of a 2067 // different array object that happens to immediately follow the first array 2068 // object in the address space.) 2069 // 2070 // C11's version is more restrictive, however there's no reason why an argument 2071 // couldn't be a one-past-the-end value for a stack object in the caller and be 2072 // equal to the beginning of a stack object in the callee. 2073 // 2074 // If the C and C++ standards are ever made sufficiently restrictive in this 2075 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2076 // this optimization. 2077 static Constant * 2078 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 2079 const DominatorTree *DT, CmpInst::Predicate Pred, 2080 const Instruction *CxtI, Value *LHS, Value *RHS) { 2081 // First, skip past any trivial no-ops. 2082 LHS = LHS->stripPointerCasts(); 2083 RHS = RHS->stripPointerCasts(); 2084 2085 // A non-null pointer is not equal to a null pointer. 2086 if (llvm::isKnownNonNull(LHS) && isa<ConstantPointerNull>(RHS) && 2087 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 2088 return ConstantInt::get(GetCompareTy(LHS), 2089 !CmpInst::isTrueWhenEqual(Pred)); 2090 2091 // We can only fold certain predicates on pointer comparisons. 2092 switch (Pred) { 2093 default: 2094 return nullptr; 2095 2096 // Equality comaprisons are easy to fold. 2097 case CmpInst::ICMP_EQ: 2098 case CmpInst::ICMP_NE: 2099 break; 2100 2101 // We can only handle unsigned relational comparisons because 'inbounds' on 2102 // a GEP only protects against unsigned wrapping. 2103 case CmpInst::ICMP_UGT: 2104 case CmpInst::ICMP_UGE: 2105 case CmpInst::ICMP_ULT: 2106 case CmpInst::ICMP_ULE: 2107 // However, we have to switch them to their signed variants to handle 2108 // negative indices from the base pointer. 2109 Pred = ICmpInst::getSignedPredicate(Pred); 2110 break; 2111 } 2112 2113 // Strip off any constant offsets so that we can reason about them. 2114 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2115 // here and compare base addresses like AliasAnalysis does, however there are 2116 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2117 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2118 // doesn't need to guarantee pointer inequality when it says NoAlias. 2119 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2120 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2121 2122 // If LHS and RHS are related via constant offsets to the same base 2123 // value, we can replace it with an icmp which just compares the offsets. 2124 if (LHS == RHS) 2125 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2126 2127 // Various optimizations for (in)equality comparisons. 2128 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2129 // Different non-empty allocations that exist at the same time have 2130 // different addresses (if the program can tell). Global variables always 2131 // exist, so they always exist during the lifetime of each other and all 2132 // allocas. Two different allocas usually have different addresses... 2133 // 2134 // However, if there's an @llvm.stackrestore dynamically in between two 2135 // allocas, they may have the same address. It's tempting to reduce the 2136 // scope of the problem by only looking at *static* allocas here. That would 2137 // cover the majority of allocas while significantly reducing the likelihood 2138 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2139 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2140 // an entry block. Also, if we have a block that's not attached to a 2141 // function, we can't tell if it's "static" under the current definition. 2142 // Theoretically, this problem could be fixed by creating a new kind of 2143 // instruction kind specifically for static allocas. Such a new instruction 2144 // could be required to be at the top of the entry block, thus preventing it 2145 // from being subject to a @llvm.stackrestore. Instcombine could even 2146 // convert regular allocas into these special allocas. It'd be nifty. 2147 // However, until then, this problem remains open. 2148 // 2149 // So, we'll assume that two non-empty allocas have different addresses 2150 // for now. 2151 // 2152 // With all that, if the offsets are within the bounds of their allocations 2153 // (and not one-past-the-end! so we can't use inbounds!), and their 2154 // allocations aren't the same, the pointers are not equal. 2155 // 2156 // Note that it's not necessary to check for LHS being a global variable 2157 // address, due to canonicalization and constant folding. 2158 if (isa<AllocaInst>(LHS) && 2159 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2160 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2161 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2162 uint64_t LHSSize, RHSSize; 2163 if (LHSOffsetCI && RHSOffsetCI && 2164 getObjectSize(LHS, LHSSize, DL, TLI) && 2165 getObjectSize(RHS, RHSSize, DL, TLI)) { 2166 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2167 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2168 if (!LHSOffsetValue.isNegative() && 2169 !RHSOffsetValue.isNegative() && 2170 LHSOffsetValue.ult(LHSSize) && 2171 RHSOffsetValue.ult(RHSSize)) { 2172 return ConstantInt::get(GetCompareTy(LHS), 2173 !CmpInst::isTrueWhenEqual(Pred)); 2174 } 2175 } 2176 2177 // Repeat the above check but this time without depending on DataLayout 2178 // or being able to compute a precise size. 2179 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2180 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2181 LHSOffset->isNullValue() && 2182 RHSOffset->isNullValue()) 2183 return ConstantInt::get(GetCompareTy(LHS), 2184 !CmpInst::isTrueWhenEqual(Pred)); 2185 } 2186 2187 // Even if an non-inbounds GEP occurs along the path we can still optimize 2188 // equality comparisons concerning the result. We avoid walking the whole 2189 // chain again by starting where the last calls to 2190 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2191 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2192 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2193 if (LHS == RHS) 2194 return ConstantExpr::getICmp(Pred, 2195 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2196 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2197 2198 // If one side of the equality comparison must come from a noalias call 2199 // (meaning a system memory allocation function), and the other side must 2200 // come from a pointer that cannot overlap with dynamically-allocated 2201 // memory within the lifetime of the current function (allocas, byval 2202 // arguments, globals), then determine the comparison result here. 2203 SmallVector<Value *, 8> LHSUObjs, RHSUObjs; 2204 GetUnderlyingObjects(LHS, LHSUObjs, DL); 2205 GetUnderlyingObjects(RHS, RHSUObjs, DL); 2206 2207 // Is the set of underlying objects all noalias calls? 2208 auto IsNAC = [](ArrayRef<Value *> Objects) { 2209 return all_of(Objects, isNoAliasCall); 2210 }; 2211 2212 // Is the set of underlying objects all things which must be disjoint from 2213 // noalias calls. For allocas, we consider only static ones (dynamic 2214 // allocas might be transformed into calls to malloc not simultaneously 2215 // live with the compared-to allocation). For globals, we exclude symbols 2216 // that might be resolve lazily to symbols in another dynamically-loaded 2217 // library (and, thus, could be malloc'ed by the implementation). 2218 auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) { 2219 return all_of(Objects, [](Value *V) { 2220 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2221 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2222 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2223 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2224 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2225 !GV->isThreadLocal(); 2226 if (const Argument *A = dyn_cast<Argument>(V)) 2227 return A->hasByValAttr(); 2228 return false; 2229 }); 2230 }; 2231 2232 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2233 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2234 return ConstantInt::get(GetCompareTy(LHS), 2235 !CmpInst::isTrueWhenEqual(Pred)); 2236 2237 // Fold comparisons for non-escaping pointer even if the allocation call 2238 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2239 // dynamic allocation call could be either of the operands. 2240 Value *MI = nullptr; 2241 if (isAllocLikeFn(LHS, TLI) && llvm::isKnownNonNullAt(RHS, CxtI, DT)) 2242 MI = LHS; 2243 else if (isAllocLikeFn(RHS, TLI) && llvm::isKnownNonNullAt(LHS, CxtI, DT)) 2244 MI = RHS; 2245 // FIXME: We should also fold the compare when the pointer escapes, but the 2246 // compare dominates the pointer escape 2247 if (MI && !PointerMayBeCaptured(MI, true, true)) 2248 return ConstantInt::get(GetCompareTy(LHS), 2249 CmpInst::isFalseWhenEqual(Pred)); 2250 } 2251 2252 // Otherwise, fail. 2253 return nullptr; 2254 } 2255 2256 /// Fold an icmp when its operands have i1 scalar type. 2257 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2258 Value *RHS, const Query &Q) { 2259 Type *ITy = GetCompareTy(LHS); // The return type. 2260 Type *OpTy = LHS->getType(); // The operand type. 2261 if (!OpTy->getScalarType()->isIntegerTy(1)) 2262 return nullptr; 2263 2264 switch (Pred) { 2265 default: 2266 break; 2267 case ICmpInst::ICMP_EQ: 2268 // X == 1 -> X 2269 if (match(RHS, m_One())) 2270 return LHS; 2271 break; 2272 case ICmpInst::ICMP_NE: 2273 // X != 0 -> X 2274 if (match(RHS, m_Zero())) 2275 return LHS; 2276 break; 2277 case ICmpInst::ICMP_UGT: 2278 // X >u 0 -> X 2279 if (match(RHS, m_Zero())) 2280 return LHS; 2281 break; 2282 case ICmpInst::ICMP_UGE: 2283 // X >=u 1 -> X 2284 if (match(RHS, m_One())) 2285 return LHS; 2286 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2287 return getTrue(ITy); 2288 break; 2289 case ICmpInst::ICMP_SGE: 2290 /// For signed comparison, the values for an i1 are 0 and -1 2291 /// respectively. This maps into a truth table of: 2292 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2293 /// 0 | 0 | 1 (0 >= 0) | 1 2294 /// 0 | 1 | 1 (0 >= -1) | 1 2295 /// 1 | 0 | 0 (-1 >= 0) | 0 2296 /// 1 | 1 | 1 (-1 >= -1) | 1 2297 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2298 return getTrue(ITy); 2299 break; 2300 case ICmpInst::ICMP_SLT: 2301 // X <s 0 -> X 2302 if (match(RHS, m_Zero())) 2303 return LHS; 2304 break; 2305 case ICmpInst::ICMP_SLE: 2306 // X <=s -1 -> X 2307 if (match(RHS, m_One())) 2308 return LHS; 2309 break; 2310 case ICmpInst::ICMP_ULE: 2311 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2312 return getTrue(ITy); 2313 break; 2314 } 2315 2316 return nullptr; 2317 } 2318 2319 /// Try hard to fold icmp with zero RHS because this is a common case. 2320 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2321 Value *RHS, const Query &Q) { 2322 if (!match(RHS, m_Zero())) 2323 return nullptr; 2324 2325 Type *ITy = GetCompareTy(LHS); // The return type. 2326 bool LHSKnownNonNegative, LHSKnownNegative; 2327 switch (Pred) { 2328 default: 2329 llvm_unreachable("Unknown ICmp predicate!"); 2330 case ICmpInst::ICMP_ULT: 2331 return getFalse(ITy); 2332 case ICmpInst::ICMP_UGE: 2333 return getTrue(ITy); 2334 case ICmpInst::ICMP_EQ: 2335 case ICmpInst::ICMP_ULE: 2336 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2337 return getFalse(ITy); 2338 break; 2339 case ICmpInst::ICMP_NE: 2340 case ICmpInst::ICMP_UGT: 2341 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2342 return getTrue(ITy); 2343 break; 2344 case ICmpInst::ICMP_SLT: 2345 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2346 Q.CxtI, Q.DT); 2347 if (LHSKnownNegative) 2348 return getTrue(ITy); 2349 if (LHSKnownNonNegative) 2350 return getFalse(ITy); 2351 break; 2352 case ICmpInst::ICMP_SLE: 2353 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2354 Q.CxtI, Q.DT); 2355 if (LHSKnownNegative) 2356 return getTrue(ITy); 2357 if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2358 return getFalse(ITy); 2359 break; 2360 case ICmpInst::ICMP_SGE: 2361 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2362 Q.CxtI, Q.DT); 2363 if (LHSKnownNegative) 2364 return getFalse(ITy); 2365 if (LHSKnownNonNegative) 2366 return getTrue(ITy); 2367 break; 2368 case ICmpInst::ICMP_SGT: 2369 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2370 Q.CxtI, Q.DT); 2371 if (LHSKnownNegative) 2372 return getFalse(ITy); 2373 if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2374 return getTrue(ITy); 2375 break; 2376 } 2377 2378 return nullptr; 2379 } 2380 2381 /// Many binary operators with a constant operand have an easy-to-compute 2382 /// range of outputs. This can be used to fold a comparison to always true or 2383 /// always false. 2384 static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper) { 2385 unsigned Width = Lower.getBitWidth(); 2386 const APInt *C; 2387 switch (BO.getOpcode()) { 2388 case Instruction::Add: 2389 if (match(BO.getOperand(1), m_APInt(C)) && *C != 0) { 2390 // FIXME: If we have both nuw and nsw, we should reduce the range further. 2391 if (BO.hasNoUnsignedWrap()) { 2392 // 'add nuw x, C' produces [C, UINT_MAX]. 2393 Lower = *C; 2394 } else if (BO.hasNoSignedWrap()) { 2395 if (C->isNegative()) { 2396 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 2397 Lower = APInt::getSignedMinValue(Width); 2398 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 2399 } else { 2400 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 2401 Lower = APInt::getSignedMinValue(Width) + *C; 2402 Upper = APInt::getSignedMaxValue(Width) + 1; 2403 } 2404 } 2405 } 2406 break; 2407 2408 case Instruction::And: 2409 if (match(BO.getOperand(1), m_APInt(C))) 2410 // 'and x, C' produces [0, C]. 2411 Upper = *C + 1; 2412 break; 2413 2414 case Instruction::Or: 2415 if (match(BO.getOperand(1), m_APInt(C))) 2416 // 'or x, C' produces [C, UINT_MAX]. 2417 Lower = *C; 2418 break; 2419 2420 case Instruction::AShr: 2421 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2422 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 2423 Lower = APInt::getSignedMinValue(Width).ashr(*C); 2424 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 2425 } else if (match(BO.getOperand(0), m_APInt(C))) { 2426 unsigned ShiftAmount = Width - 1; 2427 if (*C != 0 && BO.isExact()) 2428 ShiftAmount = C->countTrailingZeros(); 2429 if (C->isNegative()) { 2430 // 'ashr C, x' produces [C, C >> (Width-1)] 2431 Lower = *C; 2432 Upper = C->ashr(ShiftAmount) + 1; 2433 } else { 2434 // 'ashr C, x' produces [C >> (Width-1), C] 2435 Lower = C->ashr(ShiftAmount); 2436 Upper = *C + 1; 2437 } 2438 } 2439 break; 2440 2441 case Instruction::LShr: 2442 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2443 // 'lshr x, C' produces [0, UINT_MAX >> C]. 2444 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 2445 } else if (match(BO.getOperand(0), m_APInt(C))) { 2446 // 'lshr C, x' produces [C >> (Width-1), C]. 2447 unsigned ShiftAmount = Width - 1; 2448 if (*C != 0 && BO.isExact()) 2449 ShiftAmount = C->countTrailingZeros(); 2450 Lower = C->lshr(ShiftAmount); 2451 Upper = *C + 1; 2452 } 2453 break; 2454 2455 case Instruction::Shl: 2456 if (match(BO.getOperand(0), m_APInt(C))) { 2457 if (BO.hasNoUnsignedWrap()) { 2458 // 'shl nuw C, x' produces [C, C << CLZ(C)] 2459 Lower = *C; 2460 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 2461 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 2462 if (C->isNegative()) { 2463 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 2464 unsigned ShiftAmount = C->countLeadingOnes() - 1; 2465 Lower = C->shl(ShiftAmount); 2466 Upper = *C + 1; 2467 } else { 2468 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 2469 unsigned ShiftAmount = C->countLeadingZeros() - 1; 2470 Lower = *C; 2471 Upper = C->shl(ShiftAmount) + 1; 2472 } 2473 } 2474 } 2475 break; 2476 2477 case Instruction::SDiv: 2478 if (match(BO.getOperand(1), m_APInt(C))) { 2479 APInt IntMin = APInt::getSignedMinValue(Width); 2480 APInt IntMax = APInt::getSignedMaxValue(Width); 2481 if (C->isAllOnesValue()) { 2482 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 2483 // where C != -1 and C != 0 and C != 1 2484 Lower = IntMin + 1; 2485 Upper = IntMax + 1; 2486 } else if (C->countLeadingZeros() < Width - 1) { 2487 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 2488 // where C != -1 and C != 0 and C != 1 2489 Lower = IntMin.sdiv(*C); 2490 Upper = IntMax.sdiv(*C); 2491 if (Lower.sgt(Upper)) 2492 std::swap(Lower, Upper); 2493 Upper = Upper + 1; 2494 assert(Upper != Lower && "Upper part of range has wrapped!"); 2495 } 2496 } else if (match(BO.getOperand(0), m_APInt(C))) { 2497 if (C->isMinSignedValue()) { 2498 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 2499 Lower = *C; 2500 Upper = Lower.lshr(1) + 1; 2501 } else { 2502 // 'sdiv C, x' produces [-|C|, |C|]. 2503 Upper = C->abs() + 1; 2504 Lower = (-Upper) + 1; 2505 } 2506 } 2507 break; 2508 2509 case Instruction::UDiv: 2510 if (match(BO.getOperand(1), m_APInt(C)) && *C != 0) { 2511 // 'udiv x, C' produces [0, UINT_MAX / C]. 2512 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 2513 } else if (match(BO.getOperand(0), m_APInt(C))) { 2514 // 'udiv C, x' produces [0, C]. 2515 Upper = *C + 1; 2516 } 2517 break; 2518 2519 case Instruction::SRem: 2520 if (match(BO.getOperand(1), m_APInt(C))) { 2521 // 'srem x, C' produces (-|C|, |C|). 2522 Upper = C->abs(); 2523 Lower = (-Upper) + 1; 2524 } 2525 break; 2526 2527 case Instruction::URem: 2528 if (match(BO.getOperand(1), m_APInt(C))) 2529 // 'urem x, C' produces [0, C). 2530 Upper = *C; 2531 break; 2532 2533 default: 2534 break; 2535 } 2536 } 2537 2538 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2539 Value *RHS) { 2540 const APInt *C; 2541 if (!match(RHS, m_APInt(C))) 2542 return nullptr; 2543 2544 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2545 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2546 if (RHS_CR.isEmptySet()) 2547 return ConstantInt::getFalse(GetCompareTy(RHS)); 2548 if (RHS_CR.isFullSet()) 2549 return ConstantInt::getTrue(GetCompareTy(RHS)); 2550 2551 // Find the range of possible values for binary operators. 2552 unsigned Width = C->getBitWidth(); 2553 APInt Lower = APInt(Width, 0); 2554 APInt Upper = APInt(Width, 0); 2555 if (auto *BO = dyn_cast<BinaryOperator>(LHS)) 2556 setLimitsForBinOp(*BO, Lower, Upper); 2557 2558 ConstantRange LHS_CR = 2559 Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true); 2560 2561 if (auto *I = dyn_cast<Instruction>(LHS)) 2562 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) 2563 LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges)); 2564 2565 if (!LHS_CR.isFullSet()) { 2566 if (RHS_CR.contains(LHS_CR)) 2567 return ConstantInt::getTrue(GetCompareTy(RHS)); 2568 if (RHS_CR.inverse().contains(LHS_CR)) 2569 return ConstantInt::getFalse(GetCompareTy(RHS)); 2570 } 2571 2572 return nullptr; 2573 } 2574 2575 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 2576 Value *RHS, const Query &Q, 2577 unsigned MaxRecurse) { 2578 Type *ITy = GetCompareTy(LHS); // The return type. 2579 2580 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2581 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2582 if (MaxRecurse && (LBO || RBO)) { 2583 // Analyze the case when either LHS or RHS is an add instruction. 2584 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2585 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2586 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2587 if (LBO && LBO->getOpcode() == Instruction::Add) { 2588 A = LBO->getOperand(0); 2589 B = LBO->getOperand(1); 2590 NoLHSWrapProblem = 2591 ICmpInst::isEquality(Pred) || 2592 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) || 2593 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap()); 2594 } 2595 if (RBO && RBO->getOpcode() == Instruction::Add) { 2596 C = RBO->getOperand(0); 2597 D = RBO->getOperand(1); 2598 NoRHSWrapProblem = 2599 ICmpInst::isEquality(Pred) || 2600 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) || 2601 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap()); 2602 } 2603 2604 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2605 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2606 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2607 Constant::getNullValue(RHS->getType()), Q, 2608 MaxRecurse - 1)) 2609 return V; 2610 2611 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2612 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2613 if (Value *V = 2614 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 2615 C == LHS ? D : C, Q, MaxRecurse - 1)) 2616 return V; 2617 2618 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2619 if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem && 2620 NoRHSWrapProblem) { 2621 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2622 Value *Y, *Z; 2623 if (A == C) { 2624 // C + B == C + D -> B == D 2625 Y = B; 2626 Z = D; 2627 } else if (A == D) { 2628 // D + B == C + D -> B == C 2629 Y = B; 2630 Z = C; 2631 } else if (B == C) { 2632 // A + C == C + D -> A == D 2633 Y = A; 2634 Z = D; 2635 } else { 2636 assert(B == D); 2637 // A + D == C + D -> A == C 2638 Y = A; 2639 Z = C; 2640 } 2641 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 2642 return V; 2643 } 2644 } 2645 2646 { 2647 Value *Y = nullptr; 2648 // icmp pred (or X, Y), X 2649 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2650 if (Pred == ICmpInst::ICMP_ULT) 2651 return getFalse(ITy); 2652 if (Pred == ICmpInst::ICMP_UGE) 2653 return getTrue(ITy); 2654 2655 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2656 bool RHSKnownNonNegative, RHSKnownNegative; 2657 bool YKnownNonNegative, YKnownNegative; 2658 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, Q.DL, 0, 2659 Q.AC, Q.CxtI, Q.DT); 2660 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC, 2661 Q.CxtI, Q.DT); 2662 if (RHSKnownNonNegative && YKnownNegative) 2663 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2664 if (RHSKnownNegative || YKnownNonNegative) 2665 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2666 } 2667 } 2668 // icmp pred X, (or X, Y) 2669 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) { 2670 if (Pred == ICmpInst::ICMP_ULE) 2671 return getTrue(ITy); 2672 if (Pred == ICmpInst::ICMP_UGT) 2673 return getFalse(ITy); 2674 2675 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) { 2676 bool LHSKnownNonNegative, LHSKnownNegative; 2677 bool YKnownNonNegative, YKnownNegative; 2678 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, 2679 Q.AC, Q.CxtI, Q.DT); 2680 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC, 2681 Q.CxtI, Q.DT); 2682 if (LHSKnownNonNegative && YKnownNegative) 2683 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy); 2684 if (LHSKnownNegative || YKnownNonNegative) 2685 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy); 2686 } 2687 } 2688 } 2689 2690 // icmp pred (and X, Y), X 2691 if (LBO && match(LBO, m_CombineOr(m_And(m_Value(), m_Specific(RHS)), 2692 m_And(m_Specific(RHS), m_Value())))) { 2693 if (Pred == ICmpInst::ICMP_UGT) 2694 return getFalse(ITy); 2695 if (Pred == ICmpInst::ICMP_ULE) 2696 return getTrue(ITy); 2697 } 2698 // icmp pred X, (and X, Y) 2699 if (RBO && match(RBO, m_CombineOr(m_And(m_Value(), m_Specific(LHS)), 2700 m_And(m_Specific(LHS), m_Value())))) { 2701 if (Pred == ICmpInst::ICMP_UGE) 2702 return getTrue(ITy); 2703 if (Pred == ICmpInst::ICMP_ULT) 2704 return getFalse(ITy); 2705 } 2706 2707 // 0 - (zext X) pred C 2708 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2709 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2710 if (RHSC->getValue().isStrictlyPositive()) { 2711 if (Pred == ICmpInst::ICMP_SLT) 2712 return ConstantInt::getTrue(RHSC->getContext()); 2713 if (Pred == ICmpInst::ICMP_SGE) 2714 return ConstantInt::getFalse(RHSC->getContext()); 2715 if (Pred == ICmpInst::ICMP_EQ) 2716 return ConstantInt::getFalse(RHSC->getContext()); 2717 if (Pred == ICmpInst::ICMP_NE) 2718 return ConstantInt::getTrue(RHSC->getContext()); 2719 } 2720 if (RHSC->getValue().isNonNegative()) { 2721 if (Pred == ICmpInst::ICMP_SLE) 2722 return ConstantInt::getTrue(RHSC->getContext()); 2723 if (Pred == ICmpInst::ICMP_SGT) 2724 return ConstantInt::getFalse(RHSC->getContext()); 2725 } 2726 } 2727 } 2728 2729 // icmp pred (urem X, Y), Y 2730 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2731 bool KnownNonNegative, KnownNegative; 2732 switch (Pred) { 2733 default: 2734 break; 2735 case ICmpInst::ICMP_SGT: 2736 case ICmpInst::ICMP_SGE: 2737 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2738 Q.CxtI, Q.DT); 2739 if (!KnownNonNegative) 2740 break; 2741 LLVM_FALLTHROUGH; 2742 case ICmpInst::ICMP_EQ: 2743 case ICmpInst::ICMP_UGT: 2744 case ICmpInst::ICMP_UGE: 2745 return getFalse(ITy); 2746 case ICmpInst::ICMP_SLT: 2747 case ICmpInst::ICMP_SLE: 2748 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2749 Q.CxtI, Q.DT); 2750 if (!KnownNonNegative) 2751 break; 2752 LLVM_FALLTHROUGH; 2753 case ICmpInst::ICMP_NE: 2754 case ICmpInst::ICMP_ULT: 2755 case ICmpInst::ICMP_ULE: 2756 return getTrue(ITy); 2757 } 2758 } 2759 2760 // icmp pred X, (urem Y, X) 2761 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2762 bool KnownNonNegative, KnownNegative; 2763 switch (Pred) { 2764 default: 2765 break; 2766 case ICmpInst::ICMP_SGT: 2767 case ICmpInst::ICMP_SGE: 2768 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2769 Q.CxtI, Q.DT); 2770 if (!KnownNonNegative) 2771 break; 2772 LLVM_FALLTHROUGH; 2773 case ICmpInst::ICMP_NE: 2774 case ICmpInst::ICMP_UGT: 2775 case ICmpInst::ICMP_UGE: 2776 return getTrue(ITy); 2777 case ICmpInst::ICMP_SLT: 2778 case ICmpInst::ICMP_SLE: 2779 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2780 Q.CxtI, Q.DT); 2781 if (!KnownNonNegative) 2782 break; 2783 LLVM_FALLTHROUGH; 2784 case ICmpInst::ICMP_EQ: 2785 case ICmpInst::ICMP_ULT: 2786 case ICmpInst::ICMP_ULE: 2787 return getFalse(ITy); 2788 } 2789 } 2790 2791 // x >> y <=u x 2792 // x udiv y <=u x. 2793 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2794 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { 2795 // icmp pred (X op Y), X 2796 if (Pred == ICmpInst::ICMP_UGT) 2797 return getFalse(ITy); 2798 if (Pred == ICmpInst::ICMP_ULE) 2799 return getTrue(ITy); 2800 } 2801 2802 // x >=u x >> y 2803 // x >=u x udiv y. 2804 if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) || 2805 match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) { 2806 // icmp pred X, (X op Y) 2807 if (Pred == ICmpInst::ICMP_ULT) 2808 return getFalse(ITy); 2809 if (Pred == ICmpInst::ICMP_UGE) 2810 return getTrue(ITy); 2811 } 2812 2813 // handle: 2814 // CI2 << X == CI 2815 // CI2 << X != CI 2816 // 2817 // where CI2 is a power of 2 and CI isn't 2818 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2819 const APInt *CI2Val, *CIVal = &CI->getValue(); 2820 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2821 CI2Val->isPowerOf2()) { 2822 if (!CIVal->isPowerOf2()) { 2823 // CI2 << X can equal zero in some circumstances, 2824 // this simplification is unsafe if CI is zero. 2825 // 2826 // We know it is safe if: 2827 // - The shift is nsw, we can't shift out the one bit. 2828 // - The shift is nuw, we can't shift out the one bit. 2829 // - CI2 is one 2830 // - CI isn't zero 2831 if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() || 2832 *CI2Val == 1 || !CI->isZero()) { 2833 if (Pred == ICmpInst::ICMP_EQ) 2834 return ConstantInt::getFalse(RHS->getContext()); 2835 if (Pred == ICmpInst::ICMP_NE) 2836 return ConstantInt::getTrue(RHS->getContext()); 2837 } 2838 } 2839 if (CIVal->isSignBit() && *CI2Val == 1) { 2840 if (Pred == ICmpInst::ICMP_UGT) 2841 return ConstantInt::getFalse(RHS->getContext()); 2842 if (Pred == ICmpInst::ICMP_ULE) 2843 return ConstantInt::getTrue(RHS->getContext()); 2844 } 2845 } 2846 } 2847 2848 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2849 LBO->getOperand(1) == RBO->getOperand(1)) { 2850 switch (LBO->getOpcode()) { 2851 default: 2852 break; 2853 case Instruction::UDiv: 2854 case Instruction::LShr: 2855 if (ICmpInst::isSigned(Pred)) 2856 break; 2857 LLVM_FALLTHROUGH; 2858 case Instruction::SDiv: 2859 case Instruction::AShr: 2860 if (!LBO->isExact() || !RBO->isExact()) 2861 break; 2862 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2863 RBO->getOperand(0), Q, MaxRecurse - 1)) 2864 return V; 2865 break; 2866 case Instruction::Shl: { 2867 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap(); 2868 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap(); 2869 if (!NUW && !NSW) 2870 break; 2871 if (!NSW && ICmpInst::isSigned(Pred)) 2872 break; 2873 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2874 RBO->getOperand(0), Q, MaxRecurse - 1)) 2875 return V; 2876 break; 2877 } 2878 } 2879 } 2880 return nullptr; 2881 } 2882 2883 /// Simplify integer comparisons where at least one operand of the compare 2884 /// matches an integer min/max idiom. 2885 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 2886 Value *RHS, const Query &Q, 2887 unsigned MaxRecurse) { 2888 Type *ITy = GetCompareTy(LHS); // The return type. 2889 Value *A, *B; 2890 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 2891 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 2892 2893 // Signed variants on "max(a,b)>=a -> true". 2894 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2895 if (A != RHS) 2896 std::swap(A, B); // smax(A, B) pred A. 2897 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2898 // We analyze this as smax(A, B) pred A. 2899 P = Pred; 2900 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 2901 (A == LHS || B == LHS)) { 2902 if (A != LHS) 2903 std::swap(A, B); // A pred smax(A, B). 2904 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2905 // We analyze this as smax(A, B) swapped-pred A. 2906 P = CmpInst::getSwappedPredicate(Pred); 2907 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2908 (A == RHS || B == RHS)) { 2909 if (A != RHS) 2910 std::swap(A, B); // smin(A, B) pred A. 2911 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2912 // We analyze this as smax(-A, -B) swapped-pred -A. 2913 // Note that we do not need to actually form -A or -B thanks to EqP. 2914 P = CmpInst::getSwappedPredicate(Pred); 2915 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 2916 (A == LHS || B == LHS)) { 2917 if (A != LHS) 2918 std::swap(A, B); // A pred smin(A, B). 2919 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2920 // We analyze this as smax(-A, -B) pred -A. 2921 // Note that we do not need to actually form -A or -B thanks to EqP. 2922 P = Pred; 2923 } 2924 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2925 // Cases correspond to "max(A, B) p A". 2926 switch (P) { 2927 default: 2928 break; 2929 case CmpInst::ICMP_EQ: 2930 case CmpInst::ICMP_SLE: 2931 // Equivalent to "A EqP B". This may be the same as the condition tested 2932 // in the max/min; if so, we can just return that. 2933 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2934 return V; 2935 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2936 return V; 2937 // Otherwise, see if "A EqP B" simplifies. 2938 if (MaxRecurse) 2939 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 2940 return V; 2941 break; 2942 case CmpInst::ICMP_NE: 2943 case CmpInst::ICMP_SGT: { 2944 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2945 // Equivalent to "A InvEqP B". This may be the same as the condition 2946 // tested in the max/min; if so, we can just return that. 2947 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2948 return V; 2949 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2950 return V; 2951 // Otherwise, see if "A InvEqP B" simplifies. 2952 if (MaxRecurse) 2953 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 2954 return V; 2955 break; 2956 } 2957 case CmpInst::ICMP_SGE: 2958 // Always true. 2959 return getTrue(ITy); 2960 case CmpInst::ICMP_SLT: 2961 // Always false. 2962 return getFalse(ITy); 2963 } 2964 } 2965 2966 // Unsigned variants on "max(a,b)>=a -> true". 2967 P = CmpInst::BAD_ICMP_PREDICATE; 2968 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2969 if (A != RHS) 2970 std::swap(A, B); // umax(A, B) pred A. 2971 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2972 // We analyze this as umax(A, B) pred A. 2973 P = Pred; 2974 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 2975 (A == LHS || B == LHS)) { 2976 if (A != LHS) 2977 std::swap(A, B); // A pred umax(A, B). 2978 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2979 // We analyze this as umax(A, B) swapped-pred A. 2980 P = CmpInst::getSwappedPredicate(Pred); 2981 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2982 (A == RHS || B == RHS)) { 2983 if (A != RHS) 2984 std::swap(A, B); // umin(A, B) pred A. 2985 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2986 // We analyze this as umax(-A, -B) swapped-pred -A. 2987 // Note that we do not need to actually form -A or -B thanks to EqP. 2988 P = CmpInst::getSwappedPredicate(Pred); 2989 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 2990 (A == LHS || B == LHS)) { 2991 if (A != LHS) 2992 std::swap(A, B); // A pred umin(A, B). 2993 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2994 // We analyze this as umax(-A, -B) pred -A. 2995 // Note that we do not need to actually form -A or -B thanks to EqP. 2996 P = Pred; 2997 } 2998 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2999 // Cases correspond to "max(A, B) p A". 3000 switch (P) { 3001 default: 3002 break; 3003 case CmpInst::ICMP_EQ: 3004 case CmpInst::ICMP_ULE: 3005 // Equivalent to "A EqP B". This may be the same as the condition tested 3006 // in the max/min; if so, we can just return that. 3007 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3008 return V; 3009 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3010 return V; 3011 // Otherwise, see if "A EqP B" simplifies. 3012 if (MaxRecurse) 3013 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3014 return V; 3015 break; 3016 case CmpInst::ICMP_NE: 3017 case CmpInst::ICMP_UGT: { 3018 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3019 // Equivalent to "A InvEqP B". This may be the same as the condition 3020 // tested in the max/min; if so, we can just return that. 3021 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3022 return V; 3023 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3024 return V; 3025 // Otherwise, see if "A InvEqP B" simplifies. 3026 if (MaxRecurse) 3027 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3028 return V; 3029 break; 3030 } 3031 case CmpInst::ICMP_UGE: 3032 // Always true. 3033 return getTrue(ITy); 3034 case CmpInst::ICMP_ULT: 3035 // Always false. 3036 return getFalse(ITy); 3037 } 3038 } 3039 3040 // Variants on "max(x,y) >= min(x,z)". 3041 Value *C, *D; 3042 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3043 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3044 (A == C || A == D || B == C || B == D)) { 3045 // max(x, ?) pred min(x, ?). 3046 if (Pred == CmpInst::ICMP_SGE) 3047 // Always true. 3048 return getTrue(ITy); 3049 if (Pred == CmpInst::ICMP_SLT) 3050 // Always false. 3051 return getFalse(ITy); 3052 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3053 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 3054 (A == C || A == D || B == C || B == D)) { 3055 // min(x, ?) pred max(x, ?). 3056 if (Pred == CmpInst::ICMP_SLE) 3057 // Always true. 3058 return getTrue(ITy); 3059 if (Pred == CmpInst::ICMP_SGT) 3060 // Always false. 3061 return getFalse(ITy); 3062 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3063 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3064 (A == C || A == D || B == C || B == D)) { 3065 // max(x, ?) pred min(x, ?). 3066 if (Pred == CmpInst::ICMP_UGE) 3067 // Always true. 3068 return getTrue(ITy); 3069 if (Pred == CmpInst::ICMP_ULT) 3070 // Always false. 3071 return getFalse(ITy); 3072 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3073 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 3074 (A == C || A == D || B == C || B == D)) { 3075 // min(x, ?) pred max(x, ?). 3076 if (Pred == CmpInst::ICMP_ULE) 3077 // Always true. 3078 return getTrue(ITy); 3079 if (Pred == CmpInst::ICMP_UGT) 3080 // Always false. 3081 return getFalse(ITy); 3082 } 3083 3084 return nullptr; 3085 } 3086 3087 /// Given operands for an ICmpInst, see if we can fold the result. 3088 /// If not, this returns null. 3089 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3090 const Query &Q, unsigned MaxRecurse) { 3091 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3092 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3093 3094 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3095 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3096 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3097 3098 // If we have a constant, make sure it is on the RHS. 3099 std::swap(LHS, RHS); 3100 Pred = CmpInst::getSwappedPredicate(Pred); 3101 } 3102 3103 Type *ITy = GetCompareTy(LHS); // The return type. 3104 3105 // icmp X, X -> true/false 3106 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false 3107 // because X could be 0. 3108 if (LHS == RHS || isa<UndefValue>(RHS)) 3109 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3110 3111 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3112 return V; 3113 3114 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3115 return V; 3116 3117 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS)) 3118 return V; 3119 3120 // If both operands have range metadata, use the metadata 3121 // to simplify the comparison. 3122 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3123 auto RHS_Instr = dyn_cast<Instruction>(RHS); 3124 auto LHS_Instr = dyn_cast<Instruction>(LHS); 3125 3126 if (RHS_Instr->getMetadata(LLVMContext::MD_range) && 3127 LHS_Instr->getMetadata(LLVMContext::MD_range)) { 3128 auto RHS_CR = getConstantRangeFromMetadata( 3129 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3130 auto LHS_CR = getConstantRangeFromMetadata( 3131 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3132 3133 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 3134 if (Satisfied_CR.contains(LHS_CR)) 3135 return ConstantInt::getTrue(RHS->getContext()); 3136 3137 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 3138 CmpInst::getInversePredicate(Pred), RHS_CR); 3139 if (InversedSatisfied_CR.contains(LHS_CR)) 3140 return ConstantInt::getFalse(RHS->getContext()); 3141 } 3142 } 3143 3144 // Compare of cast, for example (zext X) != 0 -> X != 0 3145 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3146 Instruction *LI = cast<CastInst>(LHS); 3147 Value *SrcOp = LI->getOperand(0); 3148 Type *SrcTy = SrcOp->getType(); 3149 Type *DstTy = LI->getType(); 3150 3151 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3152 // if the integer type is the same size as the pointer type. 3153 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3154 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3155 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3156 // Transfer the cast to the constant. 3157 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3158 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3159 Q, MaxRecurse-1)) 3160 return V; 3161 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3162 if (RI->getOperand(0)->getType() == SrcTy) 3163 // Compare without the cast. 3164 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3165 Q, MaxRecurse-1)) 3166 return V; 3167 } 3168 } 3169 3170 if (isa<ZExtInst>(LHS)) { 3171 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3172 // same type. 3173 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3174 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3175 // Compare X and Y. Note that signed predicates become unsigned. 3176 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3177 SrcOp, RI->getOperand(0), Q, 3178 MaxRecurse-1)) 3179 return V; 3180 } 3181 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3182 // too. If not, then try to deduce the result of the comparison. 3183 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3184 // Compute the constant that would happen if we truncated to SrcTy then 3185 // reextended to DstTy. 3186 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3187 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3188 3189 // If the re-extended constant didn't change then this is effectively 3190 // also a case of comparing two zero-extended values. 3191 if (RExt == CI && MaxRecurse) 3192 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3193 SrcOp, Trunc, Q, MaxRecurse-1)) 3194 return V; 3195 3196 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3197 // there. Use this to work out the result of the comparison. 3198 if (RExt != CI) { 3199 switch (Pred) { 3200 default: llvm_unreachable("Unknown ICmp predicate!"); 3201 // LHS <u RHS. 3202 case ICmpInst::ICMP_EQ: 3203 case ICmpInst::ICMP_UGT: 3204 case ICmpInst::ICMP_UGE: 3205 return ConstantInt::getFalse(CI->getContext()); 3206 3207 case ICmpInst::ICMP_NE: 3208 case ICmpInst::ICMP_ULT: 3209 case ICmpInst::ICMP_ULE: 3210 return ConstantInt::getTrue(CI->getContext()); 3211 3212 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3213 // is non-negative then LHS <s RHS. 3214 case ICmpInst::ICMP_SGT: 3215 case ICmpInst::ICMP_SGE: 3216 return CI->getValue().isNegative() ? 3217 ConstantInt::getTrue(CI->getContext()) : 3218 ConstantInt::getFalse(CI->getContext()); 3219 3220 case ICmpInst::ICMP_SLT: 3221 case ICmpInst::ICMP_SLE: 3222 return CI->getValue().isNegative() ? 3223 ConstantInt::getFalse(CI->getContext()) : 3224 ConstantInt::getTrue(CI->getContext()); 3225 } 3226 } 3227 } 3228 } 3229 3230 if (isa<SExtInst>(LHS)) { 3231 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3232 // same type. 3233 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3234 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3235 // Compare X and Y. Note that the predicate does not change. 3236 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3237 Q, MaxRecurse-1)) 3238 return V; 3239 } 3240 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3241 // too. If not, then try to deduce the result of the comparison. 3242 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3243 // Compute the constant that would happen if we truncated to SrcTy then 3244 // reextended to DstTy. 3245 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3246 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3247 3248 // If the re-extended constant didn't change then this is effectively 3249 // also a case of comparing two sign-extended values. 3250 if (RExt == CI && MaxRecurse) 3251 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3252 return V; 3253 3254 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3255 // bits there. Use this to work out the result of the comparison. 3256 if (RExt != CI) { 3257 switch (Pred) { 3258 default: llvm_unreachable("Unknown ICmp predicate!"); 3259 case ICmpInst::ICMP_EQ: 3260 return ConstantInt::getFalse(CI->getContext()); 3261 case ICmpInst::ICMP_NE: 3262 return ConstantInt::getTrue(CI->getContext()); 3263 3264 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3265 // LHS >s RHS. 3266 case ICmpInst::ICMP_SGT: 3267 case ICmpInst::ICMP_SGE: 3268 return CI->getValue().isNegative() ? 3269 ConstantInt::getTrue(CI->getContext()) : 3270 ConstantInt::getFalse(CI->getContext()); 3271 case ICmpInst::ICMP_SLT: 3272 case ICmpInst::ICMP_SLE: 3273 return CI->getValue().isNegative() ? 3274 ConstantInt::getFalse(CI->getContext()) : 3275 ConstantInt::getTrue(CI->getContext()); 3276 3277 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3278 // LHS >u RHS. 3279 case ICmpInst::ICMP_UGT: 3280 case ICmpInst::ICMP_UGE: 3281 // Comparison is true iff the LHS <s 0. 3282 if (MaxRecurse) 3283 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3284 Constant::getNullValue(SrcTy), 3285 Q, MaxRecurse-1)) 3286 return V; 3287 break; 3288 case ICmpInst::ICMP_ULT: 3289 case ICmpInst::ICMP_ULE: 3290 // Comparison is true iff the LHS >=s 0. 3291 if (MaxRecurse) 3292 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3293 Constant::getNullValue(SrcTy), 3294 Q, MaxRecurse-1)) 3295 return V; 3296 break; 3297 } 3298 } 3299 } 3300 } 3301 } 3302 3303 // icmp eq|ne X, Y -> false|true if X != Y 3304 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 3305 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) { 3306 LLVMContext &Ctx = LHS->getType()->getContext(); 3307 return Pred == ICmpInst::ICMP_NE ? 3308 ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx); 3309 } 3310 3311 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3312 return V; 3313 3314 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3315 return V; 3316 3317 // Simplify comparisons of related pointers using a powerful, recursive 3318 // GEP-walk when we have target data available.. 3319 if (LHS->getType()->isPointerTy()) 3320 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, LHS, RHS)) 3321 return C; 3322 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3323 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3324 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3325 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3326 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3327 Q.DL.getTypeSizeInBits(CRHS->getType())) 3328 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, 3329 CLHS->getPointerOperand(), 3330 CRHS->getPointerOperand())) 3331 return C; 3332 3333 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3334 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3335 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3336 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3337 (ICmpInst::isEquality(Pred) || 3338 (GLHS->isInBounds() && GRHS->isInBounds() && 3339 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3340 // The bases are equal and the indices are constant. Build a constant 3341 // expression GEP with the same indices and a null base pointer to see 3342 // what constant folding can make out of it. 3343 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3344 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3345 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3346 GLHS->getSourceElementType(), Null, IndicesLHS); 3347 3348 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3349 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3350 GLHS->getSourceElementType(), Null, IndicesRHS); 3351 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3352 } 3353 } 3354 } 3355 3356 // If a bit is known to be zero for A and known to be one for B, 3357 // then A and B cannot be equal. 3358 if (ICmpInst::isEquality(Pred)) { 3359 const APInt *RHSVal; 3360 if (match(RHS, m_APInt(RHSVal))) { 3361 unsigned BitWidth = RHSVal->getBitWidth(); 3362 APInt LHSKnownZero(BitWidth, 0); 3363 APInt LHSKnownOne(BitWidth, 0); 3364 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, Q.DL, /*Depth=*/0, Q.AC, 3365 Q.CxtI, Q.DT); 3366 if (((LHSKnownZero & *RHSVal) != 0) || ((LHSKnownOne & ~(*RHSVal)) != 0)) 3367 return Pred == ICmpInst::ICMP_EQ ? ConstantInt::getFalse(ITy) 3368 : ConstantInt::getTrue(ITy); 3369 } 3370 } 3371 3372 // If the comparison is with the result of a select instruction, check whether 3373 // comparing with either branch of the select always yields the same value. 3374 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3375 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3376 return V; 3377 3378 // If the comparison is with the result of a phi instruction, check whether 3379 // doing the compare with each incoming phi value yields a common result. 3380 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3381 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3382 return V; 3383 3384 return nullptr; 3385 } 3386 3387 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3388 const DataLayout &DL, 3389 const TargetLibraryInfo *TLI, 3390 const DominatorTree *DT, AssumptionCache *AC, 3391 const Instruction *CxtI) { 3392 return ::SimplifyICmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 3393 RecursionLimit); 3394 } 3395 3396 /// Given operands for an FCmpInst, see if we can fold the result. 3397 /// If not, this returns null. 3398 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3399 FastMathFlags FMF, const Query &Q, 3400 unsigned MaxRecurse) { 3401 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3402 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3403 3404 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3405 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3406 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3407 3408 // If we have a constant, make sure it is on the RHS. 3409 std::swap(LHS, RHS); 3410 Pred = CmpInst::getSwappedPredicate(Pred); 3411 } 3412 3413 // Fold trivial predicates. 3414 Type *RetTy = GetCompareTy(LHS); 3415 if (Pred == FCmpInst::FCMP_FALSE) 3416 return getFalse(RetTy); 3417 if (Pred == FCmpInst::FCMP_TRUE) 3418 return getTrue(RetTy); 3419 3420 // UNO/ORD predicates can be trivially folded if NaNs are ignored. 3421 if (FMF.noNaNs()) { 3422 if (Pred == FCmpInst::FCMP_UNO) 3423 return getFalse(RetTy); 3424 if (Pred == FCmpInst::FCMP_ORD) 3425 return getTrue(RetTy); 3426 } 3427 3428 // fcmp pred x, undef and fcmp pred undef, x 3429 // fold to true if unordered, false if ordered 3430 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3431 // Choosing NaN for the undef will always make unordered comparison succeed 3432 // and ordered comparison fail. 3433 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3434 } 3435 3436 // fcmp x,x -> true/false. Not all compares are foldable. 3437 if (LHS == RHS) { 3438 if (CmpInst::isTrueWhenEqual(Pred)) 3439 return getTrue(RetTy); 3440 if (CmpInst::isFalseWhenEqual(Pred)) 3441 return getFalse(RetTy); 3442 } 3443 3444 // Handle fcmp with constant RHS 3445 const ConstantFP *CFP = nullptr; 3446 if (const auto *RHSC = dyn_cast<Constant>(RHS)) { 3447 if (RHS->getType()->isVectorTy()) 3448 CFP = dyn_cast_or_null<ConstantFP>(RHSC->getSplatValue()); 3449 else 3450 CFP = dyn_cast<ConstantFP>(RHSC); 3451 } 3452 if (CFP) { 3453 // If the constant is a nan, see if we can fold the comparison based on it. 3454 if (CFP->getValueAPF().isNaN()) { 3455 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo" 3456 return getFalse(RetTy); 3457 assert(FCmpInst::isUnordered(Pred) && 3458 "Comparison must be either ordered or unordered!"); 3459 // True if unordered. 3460 return getTrue(RetTy); 3461 } 3462 // Check whether the constant is an infinity. 3463 if (CFP->getValueAPF().isInfinity()) { 3464 if (CFP->getValueAPF().isNegative()) { 3465 switch (Pred) { 3466 case FCmpInst::FCMP_OLT: 3467 // No value is ordered and less than negative infinity. 3468 return getFalse(RetTy); 3469 case FCmpInst::FCMP_UGE: 3470 // All values are unordered with or at least negative infinity. 3471 return getTrue(RetTy); 3472 default: 3473 break; 3474 } 3475 } else { 3476 switch (Pred) { 3477 case FCmpInst::FCMP_OGT: 3478 // No value is ordered and greater than infinity. 3479 return getFalse(RetTy); 3480 case FCmpInst::FCMP_ULE: 3481 // All values are unordered with and at most infinity. 3482 return getTrue(RetTy); 3483 default: 3484 break; 3485 } 3486 } 3487 } 3488 if (CFP->getValueAPF().isZero()) { 3489 switch (Pred) { 3490 case FCmpInst::FCMP_UGE: 3491 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3492 return getTrue(RetTy); 3493 break; 3494 case FCmpInst::FCMP_OLT: 3495 // X < 0 3496 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3497 return getFalse(RetTy); 3498 break; 3499 default: 3500 break; 3501 } 3502 } 3503 } 3504 3505 // If the comparison is with the result of a select instruction, check whether 3506 // comparing with either branch of the select always yields the same value. 3507 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3508 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3509 return V; 3510 3511 // If the comparison is with the result of a phi instruction, check whether 3512 // doing the compare with each incoming phi value yields a common result. 3513 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3514 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3515 return V; 3516 3517 return nullptr; 3518 } 3519 3520 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3521 FastMathFlags FMF, const DataLayout &DL, 3522 const TargetLibraryInfo *TLI, 3523 const DominatorTree *DT, AssumptionCache *AC, 3524 const Instruction *CxtI) { 3525 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, 3526 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3527 } 3528 3529 /// See if V simplifies when its operand Op is replaced with RepOp. 3530 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3531 const Query &Q, 3532 unsigned MaxRecurse) { 3533 // Trivial replacement. 3534 if (V == Op) 3535 return RepOp; 3536 3537 auto *I = dyn_cast<Instruction>(V); 3538 if (!I) 3539 return nullptr; 3540 3541 // If this is a binary operator, try to simplify it with the replaced op. 3542 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3543 // Consider: 3544 // %cmp = icmp eq i32 %x, 2147483647 3545 // %add = add nsw i32 %x, 1 3546 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3547 // 3548 // We can't replace %sel with %add unless we strip away the flags. 3549 if (isa<OverflowingBinaryOperator>(B)) 3550 if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap()) 3551 return nullptr; 3552 if (isa<PossiblyExactOperator>(B)) 3553 if (B->isExact()) 3554 return nullptr; 3555 3556 if (MaxRecurse) { 3557 if (B->getOperand(0) == Op) 3558 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3559 MaxRecurse - 1); 3560 if (B->getOperand(1) == Op) 3561 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3562 MaxRecurse - 1); 3563 } 3564 } 3565 3566 // Same for CmpInsts. 3567 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3568 if (MaxRecurse) { 3569 if (C->getOperand(0) == Op) 3570 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3571 MaxRecurse - 1); 3572 if (C->getOperand(1) == Op) 3573 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3574 MaxRecurse - 1); 3575 } 3576 } 3577 3578 // TODO: We could hand off more cases to instsimplify here. 3579 3580 // If all operands are constant after substituting Op for RepOp then we can 3581 // constant fold the instruction. 3582 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3583 // Build a list of all constant operands. 3584 SmallVector<Constant *, 8> ConstOps; 3585 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3586 if (I->getOperand(i) == Op) 3587 ConstOps.push_back(CRepOp); 3588 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3589 ConstOps.push_back(COp); 3590 else 3591 break; 3592 } 3593 3594 // All operands were constants, fold it. 3595 if (ConstOps.size() == I->getNumOperands()) { 3596 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3597 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3598 ConstOps[1], Q.DL, Q.TLI); 3599 3600 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3601 if (!LI->isVolatile()) 3602 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3603 3604 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3605 } 3606 } 3607 3608 return nullptr; 3609 } 3610 3611 /// Try to simplify a select instruction when its condition operand is an 3612 /// integer comparison where one operand of the compare is a constant. 3613 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3614 const APInt *Y, bool TrueWhenUnset) { 3615 const APInt *C; 3616 3617 // (X & Y) == 0 ? X & ~Y : X --> X 3618 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3619 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3620 *Y == ~*C) 3621 return TrueWhenUnset ? FalseVal : TrueVal; 3622 3623 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3624 // (X & Y) != 0 ? X : X & ~Y --> X 3625 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3626 *Y == ~*C) 3627 return TrueWhenUnset ? FalseVal : TrueVal; 3628 3629 if (Y->isPowerOf2()) { 3630 // (X & Y) == 0 ? X | Y : X --> X | Y 3631 // (X & Y) != 0 ? X | Y : X --> X 3632 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3633 *Y == *C) 3634 return TrueWhenUnset ? TrueVal : FalseVal; 3635 3636 // (X & Y) == 0 ? X : X | Y --> X 3637 // (X & Y) != 0 ? X : X | Y --> X | Y 3638 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3639 *Y == *C) 3640 return TrueWhenUnset ? TrueVal : FalseVal; 3641 } 3642 3643 return nullptr; 3644 } 3645 3646 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 3647 /// eq/ne. 3648 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *TrueVal, 3649 Value *FalseVal, 3650 bool TrueWhenUnset) { 3651 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits(); 3652 if (!BitWidth) 3653 return nullptr; 3654 3655 APInt MinSignedValue; 3656 Value *X; 3657 if (match(CmpLHS, m_Trunc(m_Value(X))) && (X == TrueVal || X == FalseVal)) { 3658 // icmp slt (trunc X), 0 <--> icmp ne (and X, C), 0 3659 // icmp sgt (trunc X), -1 <--> icmp eq (and X, C), 0 3660 unsigned DestSize = CmpLHS->getType()->getScalarSizeInBits(); 3661 MinSignedValue = APInt::getSignedMinValue(DestSize).zext(BitWidth); 3662 } else { 3663 // icmp slt X, 0 <--> icmp ne (and X, C), 0 3664 // icmp sgt X, -1 <--> icmp eq (and X, C), 0 3665 X = CmpLHS; 3666 MinSignedValue = APInt::getSignedMinValue(BitWidth); 3667 } 3668 3669 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, &MinSignedValue, 3670 TrueWhenUnset)) 3671 return V; 3672 3673 return nullptr; 3674 } 3675 3676 /// Try to simplify a select instruction when its condition operand is an 3677 /// integer comparison. 3678 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 3679 Value *FalseVal, const Query &Q, 3680 unsigned MaxRecurse) { 3681 ICmpInst::Predicate Pred; 3682 Value *CmpLHS, *CmpRHS; 3683 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 3684 return nullptr; 3685 3686 // FIXME: This code is nearly duplicated in InstCombine. Using/refactoring 3687 // decomposeBitTestICmp() might help. 3688 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) { 3689 Value *X; 3690 const APInt *Y; 3691 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 3692 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 3693 Pred == ICmpInst::ICMP_EQ)) 3694 return V; 3695 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 3696 // Comparing signed-less-than 0 checks if the sign bit is set. 3697 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal, 3698 false)) 3699 return V; 3700 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 3701 // Comparing signed-greater-than -1 checks if the sign bit is not set. 3702 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal, 3703 true)) 3704 return V; 3705 } 3706 3707 if (CondVal->hasOneUse()) { 3708 const APInt *C; 3709 if (match(CmpRHS, m_APInt(C))) { 3710 // X < MIN ? T : F --> F 3711 if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue()) 3712 return FalseVal; 3713 // X < MIN ? T : F --> F 3714 if (Pred == ICmpInst::ICMP_ULT && C->isMinValue()) 3715 return FalseVal; 3716 // X > MAX ? T : F --> F 3717 if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue()) 3718 return FalseVal; 3719 // X > MAX ? T : F --> F 3720 if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue()) 3721 return FalseVal; 3722 } 3723 } 3724 3725 // If we have an equality comparison, then we know the value in one of the 3726 // arms of the select. See if substituting this value into the arm and 3727 // simplifying the result yields the same value as the other arm. 3728 if (Pred == ICmpInst::ICMP_EQ) { 3729 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3730 TrueVal || 3731 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3732 TrueVal) 3733 return FalseVal; 3734 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3735 FalseVal || 3736 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3737 FalseVal) 3738 return FalseVal; 3739 } else if (Pred == ICmpInst::ICMP_NE) { 3740 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3741 FalseVal || 3742 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3743 FalseVal) 3744 return TrueVal; 3745 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3746 TrueVal || 3747 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3748 TrueVal) 3749 return TrueVal; 3750 } 3751 3752 return nullptr; 3753 } 3754 3755 /// Given operands for a SelectInst, see if we can fold the result. 3756 /// If not, this returns null. 3757 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal, 3758 Value *FalseVal, const Query &Q, 3759 unsigned MaxRecurse) { 3760 // select true, X, Y -> X 3761 // select false, X, Y -> Y 3762 if (Constant *CB = dyn_cast<Constant>(CondVal)) { 3763 if (CB->isAllOnesValue()) 3764 return TrueVal; 3765 if (CB->isNullValue()) 3766 return FalseVal; 3767 } 3768 3769 // select C, X, X -> X 3770 if (TrueVal == FalseVal) 3771 return TrueVal; 3772 3773 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y 3774 if (isa<Constant>(TrueVal)) 3775 return TrueVal; 3776 return FalseVal; 3777 } 3778 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X 3779 return FalseVal; 3780 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X 3781 return TrueVal; 3782 3783 if (Value *V = 3784 simplifySelectWithICmpCond(CondVal, TrueVal, FalseVal, Q, MaxRecurse)) 3785 return V; 3786 3787 return nullptr; 3788 } 3789 3790 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3791 const DataLayout &DL, 3792 const TargetLibraryInfo *TLI, 3793 const DominatorTree *DT, AssumptionCache *AC, 3794 const Instruction *CxtI) { 3795 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, 3796 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3797 } 3798 3799 /// Given operands for an GetElementPtrInst, see if we can fold the result. 3800 /// If not, this returns null. 3801 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3802 const Query &Q, unsigned) { 3803 // The type of the GEP pointer operand. 3804 unsigned AS = 3805 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 3806 3807 // getelementptr P -> P. 3808 if (Ops.size() == 1) 3809 return Ops[0]; 3810 3811 // Compute the (pointer) type returned by the GEP instruction. 3812 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 3813 Type *GEPTy = PointerType::get(LastType, AS); 3814 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 3815 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3816 3817 if (isa<UndefValue>(Ops[0])) 3818 return UndefValue::get(GEPTy); 3819 3820 if (Ops.size() == 2) { 3821 // getelementptr P, 0 -> P. 3822 if (match(Ops[1], m_Zero())) 3823 return Ops[0]; 3824 3825 Type *Ty = SrcTy; 3826 if (Ty->isSized()) { 3827 Value *P; 3828 uint64_t C; 3829 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 3830 // getelementptr P, N -> P if P points to a type of zero size. 3831 if (TyAllocSize == 0) 3832 return Ops[0]; 3833 3834 // The following transforms are only safe if the ptrtoint cast 3835 // doesn't truncate the pointers. 3836 if (Ops[1]->getType()->getScalarSizeInBits() == 3837 Q.DL.getPointerSizeInBits(AS)) { 3838 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 3839 if (match(P, m_Zero())) 3840 return Constant::getNullValue(GEPTy); 3841 Value *Temp; 3842 if (match(P, m_PtrToInt(m_Value(Temp)))) 3843 if (Temp->getType() == GEPTy) 3844 return Temp; 3845 return nullptr; 3846 }; 3847 3848 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 3849 if (TyAllocSize == 1 && 3850 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 3851 if (Value *R = PtrToIntOrZero(P)) 3852 return R; 3853 3854 // getelementptr V, (ashr (sub P, V), C) -> Q 3855 // if P points to a type of size 1 << C. 3856 if (match(Ops[1], 3857 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3858 m_ConstantInt(C))) && 3859 TyAllocSize == 1ULL << C) 3860 if (Value *R = PtrToIntOrZero(P)) 3861 return R; 3862 3863 // getelementptr V, (sdiv (sub P, V), C) -> Q 3864 // if P points to a type of size C. 3865 if (match(Ops[1], 3866 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3867 m_SpecificInt(TyAllocSize)))) 3868 if (Value *R = PtrToIntOrZero(P)) 3869 return R; 3870 } 3871 } 3872 } 3873 3874 if (Q.DL.getTypeAllocSize(LastType) == 1 && 3875 all_of(Ops.slice(1).drop_back(1), 3876 [](Value *Idx) { return match(Idx, m_Zero()); })) { 3877 unsigned PtrWidth = 3878 Q.DL.getPointerSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 3879 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == PtrWidth) { 3880 APInt BasePtrOffset(PtrWidth, 0); 3881 Value *StrippedBasePtr = 3882 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 3883 BasePtrOffset); 3884 3885 // gep (gep V, C), (sub 0, V) -> C 3886 if (match(Ops.back(), 3887 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { 3888 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 3889 return ConstantExpr::getIntToPtr(CI, GEPTy); 3890 } 3891 // gep (gep V, C), (xor V, -1) -> C-1 3892 if (match(Ops.back(), 3893 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { 3894 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 3895 return ConstantExpr::getIntToPtr(CI, GEPTy); 3896 } 3897 } 3898 } 3899 3900 // Check to see if this is constant foldable. 3901 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3902 if (!isa<Constant>(Ops[i])) 3903 return nullptr; 3904 3905 return ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 3906 Ops.slice(1)); 3907 } 3908 3909 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3910 const DataLayout &DL, 3911 const TargetLibraryInfo *TLI, 3912 const DominatorTree *DT, AssumptionCache *AC, 3913 const Instruction *CxtI) { 3914 return ::SimplifyGEPInst(SrcTy, Ops, 3915 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3916 } 3917 3918 /// Given operands for an InsertValueInst, see if we can fold the result. 3919 /// If not, this returns null. 3920 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 3921 ArrayRef<unsigned> Idxs, const Query &Q, 3922 unsigned) { 3923 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 3924 if (Constant *CVal = dyn_cast<Constant>(Val)) 3925 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 3926 3927 // insertvalue x, undef, n -> x 3928 if (match(Val, m_Undef())) 3929 return Agg; 3930 3931 // insertvalue x, (extractvalue y, n), n 3932 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 3933 if (EV->getAggregateOperand()->getType() == Agg->getType() && 3934 EV->getIndices() == Idxs) { 3935 // insertvalue undef, (extractvalue y, n), n -> y 3936 if (match(Agg, m_Undef())) 3937 return EV->getAggregateOperand(); 3938 3939 // insertvalue y, (extractvalue y, n), n -> y 3940 if (Agg == EV->getAggregateOperand()) 3941 return Agg; 3942 } 3943 3944 return nullptr; 3945 } 3946 3947 Value *llvm::SimplifyInsertValueInst( 3948 Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const DataLayout &DL, 3949 const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC, 3950 const Instruction *CxtI) { 3951 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query(DL, TLI, DT, AC, CxtI), 3952 RecursionLimit); 3953 } 3954 3955 /// Given operands for an ExtractValueInst, see if we can fold the result. 3956 /// If not, this returns null. 3957 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3958 const Query &, unsigned) { 3959 if (auto *CAgg = dyn_cast<Constant>(Agg)) 3960 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 3961 3962 // extractvalue x, (insertvalue y, elt, n), n -> elt 3963 unsigned NumIdxs = Idxs.size(); 3964 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 3965 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 3966 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 3967 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 3968 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 3969 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 3970 Idxs.slice(0, NumCommonIdxs)) { 3971 if (NumIdxs == NumInsertValueIdxs) 3972 return IVI->getInsertedValueOperand(); 3973 break; 3974 } 3975 } 3976 3977 return nullptr; 3978 } 3979 3980 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3981 const DataLayout &DL, 3982 const TargetLibraryInfo *TLI, 3983 const DominatorTree *DT, 3984 AssumptionCache *AC, 3985 const Instruction *CxtI) { 3986 return ::SimplifyExtractValueInst(Agg, Idxs, Query(DL, TLI, DT, AC, CxtI), 3987 RecursionLimit); 3988 } 3989 3990 /// Given operands for an ExtractElementInst, see if we can fold the result. 3991 /// If not, this returns null. 3992 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const Query &, 3993 unsigned) { 3994 if (auto *CVec = dyn_cast<Constant>(Vec)) { 3995 if (auto *CIdx = dyn_cast<Constant>(Idx)) 3996 return ConstantFoldExtractElementInstruction(CVec, CIdx); 3997 3998 // The index is not relevant if our vector is a splat. 3999 if (auto *Splat = CVec->getSplatValue()) 4000 return Splat; 4001 4002 if (isa<UndefValue>(Vec)) 4003 return UndefValue::get(Vec->getType()->getVectorElementType()); 4004 } 4005 4006 // If extracting a specified index from the vector, see if we can recursively 4007 // find a previously computed scalar that was inserted into the vector. 4008 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) 4009 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4010 return Elt; 4011 4012 return nullptr; 4013 } 4014 4015 Value *llvm::SimplifyExtractElementInst( 4016 Value *Vec, Value *Idx, const DataLayout &DL, const TargetLibraryInfo *TLI, 4017 const DominatorTree *DT, AssumptionCache *AC, const Instruction *CxtI) { 4018 return ::SimplifyExtractElementInst(Vec, Idx, Query(DL, TLI, DT, AC, CxtI), 4019 RecursionLimit); 4020 } 4021 4022 /// See if we can fold the given phi. If not, returns null. 4023 static Value *SimplifyPHINode(PHINode *PN, const Query &Q) { 4024 // If all of the PHI's incoming values are the same then replace the PHI node 4025 // with the common value. 4026 Value *CommonValue = nullptr; 4027 bool HasUndefInput = false; 4028 for (Value *Incoming : PN->incoming_values()) { 4029 // If the incoming value is the phi node itself, it can safely be skipped. 4030 if (Incoming == PN) continue; 4031 if (isa<UndefValue>(Incoming)) { 4032 // Remember that we saw an undef value, but otherwise ignore them. 4033 HasUndefInput = true; 4034 continue; 4035 } 4036 if (CommonValue && Incoming != CommonValue) 4037 return nullptr; // Not the same, bail out. 4038 CommonValue = Incoming; 4039 } 4040 4041 // If CommonValue is null then all of the incoming values were either undef or 4042 // equal to the phi node itself. 4043 if (!CommonValue) 4044 return UndefValue::get(PN->getType()); 4045 4046 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4047 // instruction, we cannot return X as the result of the PHI node unless it 4048 // dominates the PHI block. 4049 if (HasUndefInput) 4050 return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4051 4052 return CommonValue; 4053 } 4054 4055 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4056 Type *Ty, const Query &Q, unsigned MaxRecurse) { 4057 if (auto *C = dyn_cast<Constant>(Op)) 4058 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4059 4060 if (auto *CI = dyn_cast<CastInst>(Op)) { 4061 auto *Src = CI->getOperand(0); 4062 Type *SrcTy = Src->getType(); 4063 Type *MidTy = CI->getType(); 4064 Type *DstTy = Ty; 4065 if (Src->getType() == Ty) { 4066 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4067 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4068 Type *SrcIntPtrTy = 4069 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4070 Type *MidIntPtrTy = 4071 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4072 Type *DstIntPtrTy = 4073 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4074 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4075 SrcIntPtrTy, MidIntPtrTy, 4076 DstIntPtrTy) == Instruction::BitCast) 4077 return Src; 4078 } 4079 } 4080 4081 // bitcast x -> x 4082 if (CastOpc == Instruction::BitCast) 4083 if (Op->getType() == Ty) 4084 return Op; 4085 4086 return nullptr; 4087 } 4088 4089 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4090 const DataLayout &DL, 4091 const TargetLibraryInfo *TLI, 4092 const DominatorTree *DT, AssumptionCache *AC, 4093 const Instruction *CxtI) { 4094 return ::SimplifyCastInst(CastOpc, Op, Ty, Query(DL, TLI, DT, AC, CxtI), 4095 RecursionLimit); 4096 } 4097 4098 //=== Helper functions for higher up the class hierarchy. 4099 4100 /// Given operands for a BinaryOperator, see if we can fold the result. 4101 /// If not, this returns null. 4102 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4103 const Query &Q, unsigned MaxRecurse) { 4104 switch (Opcode) { 4105 case Instruction::Add: 4106 return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 4107 Q, MaxRecurse); 4108 case Instruction::FAdd: 4109 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4110 4111 case Instruction::Sub: 4112 return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 4113 Q, MaxRecurse); 4114 case Instruction::FSub: 4115 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4116 4117 case Instruction::Mul: return SimplifyMulInst (LHS, RHS, Q, MaxRecurse); 4118 case Instruction::FMul: 4119 return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4120 case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 4121 case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 4122 case Instruction::FDiv: 4123 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4124 case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 4125 case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 4126 case Instruction::FRem: 4127 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4128 case Instruction::Shl: 4129 return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 4130 Q, MaxRecurse); 4131 case Instruction::LShr: 4132 return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse); 4133 case Instruction::AShr: 4134 return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse); 4135 case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 4136 case Instruction::Or: return SimplifyOrInst (LHS, RHS, Q, MaxRecurse); 4137 case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 4138 default: 4139 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 4140 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 4141 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 4142 4143 // If the operation is associative, try some generic simplifications. 4144 if (Instruction::isAssociative(Opcode)) 4145 if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse)) 4146 return V; 4147 4148 // If the operation is with the result of a select instruction check whether 4149 // operating on either branch of the select always yields the same value. 4150 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 4151 if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse)) 4152 return V; 4153 4154 // If the operation is with the result of a phi instruction, check whether 4155 // operating on all incoming values of the phi always yields the same value. 4156 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 4157 if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse)) 4158 return V; 4159 4160 return nullptr; 4161 } 4162 } 4163 4164 /// Given operands for a BinaryOperator, see if we can fold the result. 4165 /// If not, this returns null. 4166 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the 4167 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp. 4168 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4169 const FastMathFlags &FMF, const Query &Q, 4170 unsigned MaxRecurse) { 4171 switch (Opcode) { 4172 case Instruction::FAdd: 4173 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 4174 case Instruction::FSub: 4175 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 4176 case Instruction::FMul: 4177 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 4178 case Instruction::FDiv: 4179 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 4180 default: 4181 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 4182 } 4183 } 4184 4185 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4186 const DataLayout &DL, const TargetLibraryInfo *TLI, 4187 const DominatorTree *DT, AssumptionCache *AC, 4188 const Instruction *CxtI) { 4189 return ::SimplifyBinOp(Opcode, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 4190 RecursionLimit); 4191 } 4192 4193 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4194 const FastMathFlags &FMF, const DataLayout &DL, 4195 const TargetLibraryInfo *TLI, 4196 const DominatorTree *DT, AssumptionCache *AC, 4197 const Instruction *CxtI) { 4198 return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Query(DL, TLI, DT, AC, CxtI), 4199 RecursionLimit); 4200 } 4201 4202 /// Given operands for a CmpInst, see if we can fold the result. 4203 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4204 const Query &Q, unsigned MaxRecurse) { 4205 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 4206 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 4207 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4208 } 4209 4210 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4211 const DataLayout &DL, const TargetLibraryInfo *TLI, 4212 const DominatorTree *DT, AssumptionCache *AC, 4213 const Instruction *CxtI) { 4214 return ::SimplifyCmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 4215 RecursionLimit); 4216 } 4217 4218 static bool IsIdempotent(Intrinsic::ID ID) { 4219 switch (ID) { 4220 default: return false; 4221 4222 // Unary idempotent: f(f(x)) = f(x) 4223 case Intrinsic::fabs: 4224 case Intrinsic::floor: 4225 case Intrinsic::ceil: 4226 case Intrinsic::trunc: 4227 case Intrinsic::rint: 4228 case Intrinsic::nearbyint: 4229 case Intrinsic::round: 4230 return true; 4231 } 4232 } 4233 4234 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 4235 const DataLayout &DL) { 4236 GlobalValue *PtrSym; 4237 APInt PtrOffset; 4238 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 4239 return nullptr; 4240 4241 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 4242 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 4243 Type *Int32PtrTy = Int32Ty->getPointerTo(); 4244 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 4245 4246 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 4247 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 4248 return nullptr; 4249 4250 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 4251 if (OffsetInt % 4 != 0) 4252 return nullptr; 4253 4254 Constant *C = ConstantExpr::getGetElementPtr( 4255 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 4256 ConstantInt::get(Int64Ty, OffsetInt / 4)); 4257 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 4258 if (!Loaded) 4259 return nullptr; 4260 4261 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 4262 if (!LoadedCE) 4263 return nullptr; 4264 4265 if (LoadedCE->getOpcode() == Instruction::Trunc) { 4266 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4267 if (!LoadedCE) 4268 return nullptr; 4269 } 4270 4271 if (LoadedCE->getOpcode() != Instruction::Sub) 4272 return nullptr; 4273 4274 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4275 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 4276 return nullptr; 4277 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 4278 4279 Constant *LoadedRHS = LoadedCE->getOperand(1); 4280 GlobalValue *LoadedRHSSym; 4281 APInt LoadedRHSOffset; 4282 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 4283 DL) || 4284 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 4285 return nullptr; 4286 4287 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 4288 } 4289 4290 static bool maskIsAllZeroOrUndef(Value *Mask) { 4291 auto *ConstMask = dyn_cast<Constant>(Mask); 4292 if (!ConstMask) 4293 return false; 4294 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 4295 return true; 4296 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; 4297 ++I) { 4298 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 4299 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 4300 continue; 4301 return false; 4302 } 4303 return true; 4304 } 4305 4306 template <typename IterTy> 4307 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd, 4308 const Query &Q, unsigned MaxRecurse) { 4309 Intrinsic::ID IID = F->getIntrinsicID(); 4310 unsigned NumOperands = std::distance(ArgBegin, ArgEnd); 4311 4312 // Unary Ops 4313 if (NumOperands == 1) { 4314 // Perform idempotent optimizations 4315 if (IsIdempotent(IID)) { 4316 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) { 4317 if (II->getIntrinsicID() == IID) 4318 return II; 4319 } 4320 } 4321 4322 switch (IID) { 4323 case Intrinsic::fabs: { 4324 if (SignBitMustBeZero(*ArgBegin, Q.TLI)) 4325 return *ArgBegin; 4326 return nullptr; 4327 } 4328 default: 4329 return nullptr; 4330 } 4331 } 4332 4333 // Binary Ops 4334 if (NumOperands == 2) { 4335 Value *LHS = *ArgBegin; 4336 Value *RHS = *(ArgBegin + 1); 4337 Type *ReturnType = F->getReturnType(); 4338 4339 switch (IID) { 4340 case Intrinsic::usub_with_overflow: 4341 case Intrinsic::ssub_with_overflow: { 4342 // X - X -> { 0, false } 4343 if (LHS == RHS) 4344 return Constant::getNullValue(ReturnType); 4345 4346 // X - undef -> undef 4347 // undef - X -> undef 4348 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 4349 return UndefValue::get(ReturnType); 4350 4351 return nullptr; 4352 } 4353 case Intrinsic::uadd_with_overflow: 4354 case Intrinsic::sadd_with_overflow: { 4355 // X + undef -> undef 4356 if (isa<UndefValue>(RHS)) 4357 return UndefValue::get(ReturnType); 4358 4359 return nullptr; 4360 } 4361 case Intrinsic::umul_with_overflow: 4362 case Intrinsic::smul_with_overflow: { 4363 // X * 0 -> { 0, false } 4364 if (match(RHS, m_Zero())) 4365 return Constant::getNullValue(ReturnType); 4366 4367 // X * undef -> { 0, false } 4368 if (match(RHS, m_Undef())) 4369 return Constant::getNullValue(ReturnType); 4370 4371 return nullptr; 4372 } 4373 case Intrinsic::load_relative: { 4374 Constant *C0 = dyn_cast<Constant>(LHS); 4375 Constant *C1 = dyn_cast<Constant>(RHS); 4376 if (C0 && C1) 4377 return SimplifyRelativeLoad(C0, C1, Q.DL); 4378 return nullptr; 4379 } 4380 default: 4381 return nullptr; 4382 } 4383 } 4384 4385 // Simplify calls to llvm.masked.load.* 4386 switch (IID) { 4387 case Intrinsic::masked_load: { 4388 Value *MaskArg = ArgBegin[2]; 4389 Value *PassthruArg = ArgBegin[3]; 4390 // If the mask is all zeros or undef, the "passthru" argument is the result. 4391 if (maskIsAllZeroOrUndef(MaskArg)) 4392 return PassthruArg; 4393 return nullptr; 4394 } 4395 default: 4396 return nullptr; 4397 } 4398 } 4399 4400 template <typename IterTy> 4401 static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd, 4402 const Query &Q, unsigned MaxRecurse) { 4403 Type *Ty = V->getType(); 4404 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 4405 Ty = PTy->getElementType(); 4406 FunctionType *FTy = cast<FunctionType>(Ty); 4407 4408 // call undef -> undef 4409 // call null -> undef 4410 if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V)) 4411 return UndefValue::get(FTy->getReturnType()); 4412 4413 Function *F = dyn_cast<Function>(V); 4414 if (!F) 4415 return nullptr; 4416 4417 if (F->isIntrinsic()) 4418 if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse)) 4419 return Ret; 4420 4421 if (!canConstantFoldCallTo(F)) 4422 return nullptr; 4423 4424 SmallVector<Constant *, 4> ConstantArgs; 4425 ConstantArgs.reserve(ArgEnd - ArgBegin); 4426 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) { 4427 Constant *C = dyn_cast<Constant>(*I); 4428 if (!C) 4429 return nullptr; 4430 ConstantArgs.push_back(C); 4431 } 4432 4433 return ConstantFoldCall(F, ConstantArgs, Q.TLI); 4434 } 4435 4436 Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin, 4437 User::op_iterator ArgEnd, const DataLayout &DL, 4438 const TargetLibraryInfo *TLI, const DominatorTree *DT, 4439 AssumptionCache *AC, const Instruction *CxtI) { 4440 return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT, AC, CxtI), 4441 RecursionLimit); 4442 } 4443 4444 Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args, 4445 const DataLayout &DL, const TargetLibraryInfo *TLI, 4446 const DominatorTree *DT, AssumptionCache *AC, 4447 const Instruction *CxtI) { 4448 return ::SimplifyCall(V, Args.begin(), Args.end(), 4449 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 4450 } 4451 4452 /// See if we can compute a simplified version of this instruction. 4453 /// If not, this returns null. 4454 Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout &DL, 4455 const TargetLibraryInfo *TLI, 4456 const DominatorTree *DT, AssumptionCache *AC, 4457 OptimizationRemarkEmitter *ORE) { 4458 Value *Result; 4459 4460 switch (I->getOpcode()) { 4461 default: 4462 Result = ConstantFoldInstruction(I, DL, TLI); 4463 break; 4464 case Instruction::FAdd: 4465 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 4466 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4467 break; 4468 case Instruction::Add: 4469 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), 4470 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4471 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4472 TLI, DT, AC, I); 4473 break; 4474 case Instruction::FSub: 4475 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 4476 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4477 break; 4478 case Instruction::Sub: 4479 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), 4480 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4481 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4482 TLI, DT, AC, I); 4483 break; 4484 case Instruction::FMul: 4485 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 4486 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4487 break; 4488 case Instruction::Mul: 4489 Result = 4490 SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4491 break; 4492 case Instruction::SDiv: 4493 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4494 AC, I); 4495 break; 4496 case Instruction::UDiv: 4497 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4498 AC, I); 4499 break; 4500 case Instruction::FDiv: 4501 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 4502 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4503 break; 4504 case Instruction::SRem: 4505 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4506 AC, I); 4507 break; 4508 case Instruction::URem: 4509 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4510 AC, I); 4511 break; 4512 case Instruction::FRem: 4513 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 4514 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4515 break; 4516 case Instruction::Shl: 4517 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), 4518 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4519 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4520 TLI, DT, AC, I); 4521 break; 4522 case Instruction::LShr: 4523 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 4524 cast<BinaryOperator>(I)->isExact(), DL, TLI, DT, 4525 AC, I); 4526 break; 4527 case Instruction::AShr: 4528 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 4529 cast<BinaryOperator>(I)->isExact(), DL, TLI, DT, 4530 AC, I); 4531 break; 4532 case Instruction::And: 4533 Result = 4534 SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4535 break; 4536 case Instruction::Or: 4537 Result = 4538 SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4539 break; 4540 case Instruction::Xor: 4541 Result = 4542 SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4543 break; 4544 case Instruction::ICmp: 4545 Result = 4546 SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), I->getOperand(0), 4547 I->getOperand(1), DL, TLI, DT, AC, I); 4548 break; 4549 case Instruction::FCmp: 4550 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), 4551 I->getOperand(0), I->getOperand(1), 4552 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4553 break; 4554 case Instruction::Select: 4555 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 4556 I->getOperand(2), DL, TLI, DT, AC, I); 4557 break; 4558 case Instruction::GetElementPtr: { 4559 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 4560 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 4561 Ops, DL, TLI, DT, AC, I); 4562 break; 4563 } 4564 case Instruction::InsertValue: { 4565 InsertValueInst *IV = cast<InsertValueInst>(I); 4566 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 4567 IV->getInsertedValueOperand(), 4568 IV->getIndices(), DL, TLI, DT, AC, I); 4569 break; 4570 } 4571 case Instruction::ExtractValue: { 4572 auto *EVI = cast<ExtractValueInst>(I); 4573 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 4574 EVI->getIndices(), DL, TLI, DT, AC, I); 4575 break; 4576 } 4577 case Instruction::ExtractElement: { 4578 auto *EEI = cast<ExtractElementInst>(I); 4579 Result = SimplifyExtractElementInst( 4580 EEI->getVectorOperand(), EEI->getIndexOperand(), DL, TLI, DT, AC, I); 4581 break; 4582 } 4583 case Instruction::PHI: 4584 Result = SimplifyPHINode(cast<PHINode>(I), Query(DL, TLI, DT, AC, I)); 4585 break; 4586 case Instruction::Call: { 4587 CallSite CS(cast<CallInst>(I)); 4588 Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), DL, 4589 TLI, DT, AC, I); 4590 break; 4591 } 4592 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 4593 #include "llvm/IR/Instruction.def" 4594 #undef HANDLE_CAST_INST 4595 Result = SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), 4596 DL, TLI, DT, AC, I); 4597 break; 4598 } 4599 4600 // In general, it is possible for computeKnownBits to determine all bits in a 4601 // value even when the operands are not all constants. 4602 if (!Result && I->getType()->isIntOrIntVectorTy()) { 4603 unsigned BitWidth = I->getType()->getScalarSizeInBits(); 4604 APInt KnownZero(BitWidth, 0); 4605 APInt KnownOne(BitWidth, 0); 4606 computeKnownBits(I, KnownZero, KnownOne, DL, /*Depth*/0, AC, I, DT, ORE); 4607 if ((KnownZero | KnownOne).isAllOnesValue()) 4608 Result = ConstantInt::get(I->getType(), KnownOne); 4609 } 4610 4611 /// If called on unreachable code, the above logic may report that the 4612 /// instruction simplified to itself. Make life easier for users by 4613 /// detecting that case here, returning a safe value instead. 4614 return Result == I ? UndefValue::get(I->getType()) : Result; 4615 } 4616 4617 /// \brief Implementation of recursive simplification through an instruction's 4618 /// uses. 4619 /// 4620 /// This is the common implementation of the recursive simplification routines. 4621 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 4622 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 4623 /// instructions to process and attempt to simplify it using 4624 /// InstructionSimplify. 4625 /// 4626 /// This routine returns 'true' only when *it* simplifies something. The passed 4627 /// in simplified value does not count toward this. 4628 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, 4629 const TargetLibraryInfo *TLI, 4630 const DominatorTree *DT, 4631 AssumptionCache *AC) { 4632 bool Simplified = false; 4633 SmallSetVector<Instruction *, 8> Worklist; 4634 const DataLayout &DL = I->getModule()->getDataLayout(); 4635 4636 // If we have an explicit value to collapse to, do that round of the 4637 // simplification loop by hand initially. 4638 if (SimpleV) { 4639 for (User *U : I->users()) 4640 if (U != I) 4641 Worklist.insert(cast<Instruction>(U)); 4642 4643 // Replace the instruction with its simplified value. 4644 I->replaceAllUsesWith(SimpleV); 4645 4646 // Gracefully handle edge cases where the instruction is not wired into any 4647 // parent block. 4648 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4649 !I->mayHaveSideEffects()) 4650 I->eraseFromParent(); 4651 } else { 4652 Worklist.insert(I); 4653 } 4654 4655 // Note that we must test the size on each iteration, the worklist can grow. 4656 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 4657 I = Worklist[Idx]; 4658 4659 // See if this instruction simplifies. 4660 SimpleV = SimplifyInstruction(I, DL, TLI, DT, AC); 4661 if (!SimpleV) 4662 continue; 4663 4664 Simplified = true; 4665 4666 // Stash away all the uses of the old instruction so we can check them for 4667 // recursive simplifications after a RAUW. This is cheaper than checking all 4668 // uses of To on the recursive step in most cases. 4669 for (User *U : I->users()) 4670 Worklist.insert(cast<Instruction>(U)); 4671 4672 // Replace the instruction with its simplified value. 4673 I->replaceAllUsesWith(SimpleV); 4674 4675 // Gracefully handle edge cases where the instruction is not wired into any 4676 // parent block. 4677 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4678 !I->mayHaveSideEffects()) 4679 I->eraseFromParent(); 4680 } 4681 return Simplified; 4682 } 4683 4684 bool llvm::recursivelySimplifyInstruction(Instruction *I, 4685 const TargetLibraryInfo *TLI, 4686 const DominatorTree *DT, 4687 AssumptionCache *AC) { 4688 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC); 4689 } 4690 4691 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, 4692 const TargetLibraryInfo *TLI, 4693 const DominatorTree *DT, 4694 AssumptionCache *AC) { 4695 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 4696 assert(SimpleV && "Must provide a simplified value."); 4697 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC); 4698 } 4699