1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements routines for folding instructions into simpler forms
11 // that do not require creating new instructions.  This does constant folding
12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
14 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
15 // simplified: This is usually true and assuming it simplifies the logic (if
16 // they have not been simplified then results are correct but maybe suboptimal).
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/Analysis/VectorUtils.h"
30 #include "llvm/IR/ConstantRange.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/GetElementPtrTypeIterator.h"
34 #include "llvm/IR/GlobalAlias.h"
35 #include "llvm/IR/Operator.h"
36 #include "llvm/IR/PatternMatch.h"
37 #include "llvm/IR/ValueHandle.h"
38 #include <algorithm>
39 using namespace llvm;
40 using namespace llvm::PatternMatch;
41 
42 #define DEBUG_TYPE "instsimplify"
43 
44 enum { RecursionLimit = 3 };
45 
46 STATISTIC(NumExpand,  "Number of expansions");
47 STATISTIC(NumReassoc, "Number of reassociations");
48 
49 namespace {
50 struct Query {
51   const DataLayout &DL;
52   const TargetLibraryInfo *TLI;
53   const DominatorTree *DT;
54   AssumptionCache *AC;
55   const Instruction *CxtI;
56 
57   Query(const DataLayout &DL, const TargetLibraryInfo *tli,
58         const DominatorTree *dt, AssumptionCache *ac = nullptr,
59         const Instruction *cxti = nullptr)
60       : DL(DL), TLI(tli), DT(dt), AC(ac), CxtI(cxti) {}
61 };
62 } // end anonymous namespace
63 
64 static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
65 static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &,
66                             unsigned);
67 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &,
68                               const Query &, unsigned);
69 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &,
70                               unsigned);
71 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
72                                const Query &Q, unsigned MaxRecurse);
73 static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned);
74 static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned);
75 static Value *SimplifyCastInst(unsigned, Value *, Type *,
76                                const Query &, unsigned);
77 
78 /// For a boolean type, or a vector of boolean type, return false, or
79 /// a vector with every element false, as appropriate for the type.
80 static Constant *getFalse(Type *Ty) {
81   assert(Ty->getScalarType()->isIntegerTy(1) &&
82          "Expected i1 type or a vector of i1!");
83   return Constant::getNullValue(Ty);
84 }
85 
86 /// For a boolean type, or a vector of boolean type, return true, or
87 /// a vector with every element true, as appropriate for the type.
88 static Constant *getTrue(Type *Ty) {
89   assert(Ty->getScalarType()->isIntegerTy(1) &&
90          "Expected i1 type or a vector of i1!");
91   return Constant::getAllOnesValue(Ty);
92 }
93 
94 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
95 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
96                           Value *RHS) {
97   CmpInst *Cmp = dyn_cast<CmpInst>(V);
98   if (!Cmp)
99     return false;
100   CmpInst::Predicate CPred = Cmp->getPredicate();
101   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
102   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
103     return true;
104   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
105     CRHS == LHS;
106 }
107 
108 /// Does the given value dominate the specified phi node?
109 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
110   Instruction *I = dyn_cast<Instruction>(V);
111   if (!I)
112     // Arguments and constants dominate all instructions.
113     return true;
114 
115   // If we are processing instructions (and/or basic blocks) that have not been
116   // fully added to a function, the parent nodes may still be null. Simply
117   // return the conservative answer in these cases.
118   if (!I->getParent() || !P->getParent() || !I->getParent()->getParent())
119     return false;
120 
121   // If we have a DominatorTree then do a precise test.
122   if (DT) {
123     if (!DT->isReachableFromEntry(P->getParent()))
124       return true;
125     if (!DT->isReachableFromEntry(I->getParent()))
126       return false;
127     return DT->dominates(I, P);
128   }
129 
130   // Otherwise, if the instruction is in the entry block and is not an invoke,
131   // then it obviously dominates all phi nodes.
132   if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
133       !isa<InvokeInst>(I))
134     return true;
135 
136   return false;
137 }
138 
139 /// Simplify "A op (B op' C)" by distributing op over op', turning it into
140 /// "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
141 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
142 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
143 /// Returns the simplified value, or null if no simplification was performed.
144 static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
145                           unsigned OpcToExpand, const Query &Q,
146                           unsigned MaxRecurse) {
147   Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
148   // Recursion is always used, so bail out at once if we already hit the limit.
149   if (!MaxRecurse--)
150     return nullptr;
151 
152   // Check whether the expression has the form "(A op' B) op C".
153   if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
154     if (Op0->getOpcode() == OpcodeToExpand) {
155       // It does!  Try turning it into "(A op C) op' (B op C)".
156       Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
157       // Do "A op C" and "B op C" both simplify?
158       if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
159         if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
160           // They do! Return "L op' R" if it simplifies or is already available.
161           // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
162           if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
163                                      && L == B && R == A)) {
164             ++NumExpand;
165             return LHS;
166           }
167           // Otherwise return "L op' R" if it simplifies.
168           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
169             ++NumExpand;
170             return V;
171           }
172         }
173     }
174 
175   // Check whether the expression has the form "A op (B op' C)".
176   if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
177     if (Op1->getOpcode() == OpcodeToExpand) {
178       // It does!  Try turning it into "(A op B) op' (A op C)".
179       Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
180       // Do "A op B" and "A op C" both simplify?
181       if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
182         if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
183           // They do! Return "L op' R" if it simplifies or is already available.
184           // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
185           if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
186                                      && L == C && R == B)) {
187             ++NumExpand;
188             return RHS;
189           }
190           // Otherwise return "L op' R" if it simplifies.
191           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
192             ++NumExpand;
193             return V;
194           }
195         }
196     }
197 
198   return nullptr;
199 }
200 
201 /// Generic simplifications for associative binary operations.
202 /// Returns the simpler value, or null if none was found.
203 static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
204                                        const Query &Q, unsigned MaxRecurse) {
205   Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
206   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
207 
208   // Recursion is always used, so bail out at once if we already hit the limit.
209   if (!MaxRecurse--)
210     return nullptr;
211 
212   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
213   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
214 
215   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
216   if (Op0 && Op0->getOpcode() == Opcode) {
217     Value *A = Op0->getOperand(0);
218     Value *B = Op0->getOperand(1);
219     Value *C = RHS;
220 
221     // Does "B op C" simplify?
222     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
223       // It does!  Return "A op V" if it simplifies or is already available.
224       // If V equals B then "A op V" is just the LHS.
225       if (V == B) return LHS;
226       // Otherwise return "A op V" if it simplifies.
227       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
228         ++NumReassoc;
229         return W;
230       }
231     }
232   }
233 
234   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
235   if (Op1 && Op1->getOpcode() == Opcode) {
236     Value *A = LHS;
237     Value *B = Op1->getOperand(0);
238     Value *C = Op1->getOperand(1);
239 
240     // Does "A op B" simplify?
241     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
242       // It does!  Return "V op C" if it simplifies or is already available.
243       // If V equals B then "V op C" is just the RHS.
244       if (V == B) return RHS;
245       // Otherwise return "V op C" if it simplifies.
246       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
247         ++NumReassoc;
248         return W;
249       }
250     }
251   }
252 
253   // The remaining transforms require commutativity as well as associativity.
254   if (!Instruction::isCommutative(Opcode))
255     return nullptr;
256 
257   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
258   if (Op0 && Op0->getOpcode() == Opcode) {
259     Value *A = Op0->getOperand(0);
260     Value *B = Op0->getOperand(1);
261     Value *C = RHS;
262 
263     // Does "C op A" simplify?
264     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
265       // It does!  Return "V op B" if it simplifies or is already available.
266       // If V equals A then "V op B" is just the LHS.
267       if (V == A) return LHS;
268       // Otherwise return "V op B" if it simplifies.
269       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
270         ++NumReassoc;
271         return W;
272       }
273     }
274   }
275 
276   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
277   if (Op1 && Op1->getOpcode() == Opcode) {
278     Value *A = LHS;
279     Value *B = Op1->getOperand(0);
280     Value *C = Op1->getOperand(1);
281 
282     // Does "C op A" simplify?
283     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
284       // It does!  Return "B op V" if it simplifies or is already available.
285       // If V equals C then "B op V" is just the RHS.
286       if (V == C) return RHS;
287       // Otherwise return "B op V" if it simplifies.
288       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
289         ++NumReassoc;
290         return W;
291       }
292     }
293   }
294 
295   return nullptr;
296 }
297 
298 /// In the case of a binary operation with a select instruction as an operand,
299 /// try to simplify the binop by seeing whether evaluating it on both branches
300 /// of the select results in the same value. Returns the common value if so,
301 /// otherwise returns null.
302 static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
303                                     const Query &Q, unsigned MaxRecurse) {
304   // Recursion is always used, so bail out at once if we already hit the limit.
305   if (!MaxRecurse--)
306     return nullptr;
307 
308   SelectInst *SI;
309   if (isa<SelectInst>(LHS)) {
310     SI = cast<SelectInst>(LHS);
311   } else {
312     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
313     SI = cast<SelectInst>(RHS);
314   }
315 
316   // Evaluate the BinOp on the true and false branches of the select.
317   Value *TV;
318   Value *FV;
319   if (SI == LHS) {
320     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
321     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
322   } else {
323     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
324     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
325   }
326 
327   // If they simplified to the same value, then return the common value.
328   // If they both failed to simplify then return null.
329   if (TV == FV)
330     return TV;
331 
332   // If one branch simplified to undef, return the other one.
333   if (TV && isa<UndefValue>(TV))
334     return FV;
335   if (FV && isa<UndefValue>(FV))
336     return TV;
337 
338   // If applying the operation did not change the true and false select values,
339   // then the result of the binop is the select itself.
340   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
341     return SI;
342 
343   // If one branch simplified and the other did not, and the simplified
344   // value is equal to the unsimplified one, return the simplified value.
345   // For example, select (cond, X, X & Z) & Z -> X & Z.
346   if ((FV && !TV) || (TV && !FV)) {
347     // Check that the simplified value has the form "X op Y" where "op" is the
348     // same as the original operation.
349     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
350     if (Simplified && Simplified->getOpcode() == Opcode) {
351       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
352       // We already know that "op" is the same as for the simplified value.  See
353       // if the operands match too.  If so, return the simplified value.
354       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
355       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
356       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
357       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
358           Simplified->getOperand(1) == UnsimplifiedRHS)
359         return Simplified;
360       if (Simplified->isCommutative() &&
361           Simplified->getOperand(1) == UnsimplifiedLHS &&
362           Simplified->getOperand(0) == UnsimplifiedRHS)
363         return Simplified;
364     }
365   }
366 
367   return nullptr;
368 }
369 
370 /// In the case of a comparison with a select instruction, try to simplify the
371 /// comparison by seeing whether both branches of the select result in the same
372 /// value. Returns the common value if so, otherwise returns null.
373 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
374                                   Value *RHS, const Query &Q,
375                                   unsigned MaxRecurse) {
376   // Recursion is always used, so bail out at once if we already hit the limit.
377   if (!MaxRecurse--)
378     return nullptr;
379 
380   // Make sure the select is on the LHS.
381   if (!isa<SelectInst>(LHS)) {
382     std::swap(LHS, RHS);
383     Pred = CmpInst::getSwappedPredicate(Pred);
384   }
385   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
386   SelectInst *SI = cast<SelectInst>(LHS);
387   Value *Cond = SI->getCondition();
388   Value *TV = SI->getTrueValue();
389   Value *FV = SI->getFalseValue();
390 
391   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
392   // Does "cmp TV, RHS" simplify?
393   Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
394   if (TCmp == Cond) {
395     // It not only simplified, it simplified to the select condition.  Replace
396     // it with 'true'.
397     TCmp = getTrue(Cond->getType());
398   } else if (!TCmp) {
399     // It didn't simplify.  However if "cmp TV, RHS" is equal to the select
400     // condition then we can replace it with 'true'.  Otherwise give up.
401     if (!isSameCompare(Cond, Pred, TV, RHS))
402       return nullptr;
403     TCmp = getTrue(Cond->getType());
404   }
405 
406   // Does "cmp FV, RHS" simplify?
407   Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
408   if (FCmp == Cond) {
409     // It not only simplified, it simplified to the select condition.  Replace
410     // it with 'false'.
411     FCmp = getFalse(Cond->getType());
412   } else if (!FCmp) {
413     // It didn't simplify.  However if "cmp FV, RHS" is equal to the select
414     // condition then we can replace it with 'false'.  Otherwise give up.
415     if (!isSameCompare(Cond, Pred, FV, RHS))
416       return nullptr;
417     FCmp = getFalse(Cond->getType());
418   }
419 
420   // If both sides simplified to the same value, then use it as the result of
421   // the original comparison.
422   if (TCmp == FCmp)
423     return TCmp;
424 
425   // The remaining cases only make sense if the select condition has the same
426   // type as the result of the comparison, so bail out if this is not so.
427   if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
428     return nullptr;
429   // If the false value simplified to false, then the result of the compare
430   // is equal to "Cond && TCmp".  This also catches the case when the false
431   // value simplified to false and the true value to true, returning "Cond".
432   if (match(FCmp, m_Zero()))
433     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
434       return V;
435   // If the true value simplified to true, then the result of the compare
436   // is equal to "Cond || FCmp".
437   if (match(TCmp, m_One()))
438     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
439       return V;
440   // Finally, if the false value simplified to true and the true value to
441   // false, then the result of the compare is equal to "!Cond".
442   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
443     if (Value *V =
444         SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
445                         Q, MaxRecurse))
446       return V;
447 
448   return nullptr;
449 }
450 
451 /// In the case of a binary operation with an operand that is a PHI instruction,
452 /// try to simplify the binop by seeing whether evaluating it on the incoming
453 /// phi values yields the same result for every value. If so returns the common
454 /// value, otherwise returns null.
455 static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
456                                  const Query &Q, unsigned MaxRecurse) {
457   // Recursion is always used, so bail out at once if we already hit the limit.
458   if (!MaxRecurse--)
459     return nullptr;
460 
461   PHINode *PI;
462   if (isa<PHINode>(LHS)) {
463     PI = cast<PHINode>(LHS);
464     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
465     if (!ValueDominatesPHI(RHS, PI, Q.DT))
466       return nullptr;
467   } else {
468     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
469     PI = cast<PHINode>(RHS);
470     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
471     if (!ValueDominatesPHI(LHS, PI, Q.DT))
472       return nullptr;
473   }
474 
475   // Evaluate the BinOp on the incoming phi values.
476   Value *CommonValue = nullptr;
477   for (Value *Incoming : PI->incoming_values()) {
478     // If the incoming value is the phi node itself, it can safely be skipped.
479     if (Incoming == PI) continue;
480     Value *V = PI == LHS ?
481       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
482       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
483     // If the operation failed to simplify, or simplified to a different value
484     // to previously, then give up.
485     if (!V || (CommonValue && V != CommonValue))
486       return nullptr;
487     CommonValue = V;
488   }
489 
490   return CommonValue;
491 }
492 
493 /// In the case of a comparison with a PHI instruction, try to simplify the
494 /// comparison by seeing whether comparing with all of the incoming phi values
495 /// yields the same result every time. If so returns the common result,
496 /// otherwise returns null.
497 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
498                                const Query &Q, unsigned MaxRecurse) {
499   // Recursion is always used, so bail out at once if we already hit the limit.
500   if (!MaxRecurse--)
501     return nullptr;
502 
503   // Make sure the phi is on the LHS.
504   if (!isa<PHINode>(LHS)) {
505     std::swap(LHS, RHS);
506     Pred = CmpInst::getSwappedPredicate(Pred);
507   }
508   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
509   PHINode *PI = cast<PHINode>(LHS);
510 
511   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
512   if (!ValueDominatesPHI(RHS, PI, Q.DT))
513     return nullptr;
514 
515   // Evaluate the BinOp on the incoming phi values.
516   Value *CommonValue = nullptr;
517   for (Value *Incoming : PI->incoming_values()) {
518     // If the incoming value is the phi node itself, it can safely be skipped.
519     if (Incoming == PI) continue;
520     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
521     // If the operation failed to simplify, or simplified to a different value
522     // to previously, then give up.
523     if (!V || (CommonValue && V != CommonValue))
524       return nullptr;
525     CommonValue = V;
526   }
527 
528   return CommonValue;
529 }
530 
531 /// Given operands for an Add, see if we can fold the result.
532 /// If not, this returns null.
533 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
534                               const Query &Q, unsigned MaxRecurse) {
535   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
536     if (Constant *CRHS = dyn_cast<Constant>(Op1))
537       return ConstantFoldBinaryOpOperands(Instruction::Add, CLHS, CRHS, Q.DL);
538 
539     // Canonicalize the constant to the RHS.
540     std::swap(Op0, Op1);
541   }
542 
543   // X + undef -> undef
544   if (match(Op1, m_Undef()))
545     return Op1;
546 
547   // X + 0 -> X
548   if (match(Op1, m_Zero()))
549     return Op0;
550 
551   // X + (Y - X) -> Y
552   // (Y - X) + X -> Y
553   // Eg: X + -X -> 0
554   Value *Y = nullptr;
555   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
556       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
557     return Y;
558 
559   // X + ~X -> -1   since   ~X = -X-1
560   if (match(Op0, m_Not(m_Specific(Op1))) ||
561       match(Op1, m_Not(m_Specific(Op0))))
562     return Constant::getAllOnesValue(Op0->getType());
563 
564   /// i1 add -> xor.
565   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
566     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
567       return V;
568 
569   // Try some generic simplifications for associative operations.
570   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
571                                           MaxRecurse))
572     return V;
573 
574   // Threading Add over selects and phi nodes is pointless, so don't bother.
575   // Threading over the select in "A + select(cond, B, C)" means evaluating
576   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
577   // only if B and C are equal.  If B and C are equal then (since we assume
578   // that operands have already been simplified) "select(cond, B, C)" should
579   // have been simplified to the common value of B and C already.  Analysing
580   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
581   // for threading over phi nodes.
582 
583   return nullptr;
584 }
585 
586 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
587                              const DataLayout &DL, const TargetLibraryInfo *TLI,
588                              const DominatorTree *DT, AssumptionCache *AC,
589                              const Instruction *CxtI) {
590   return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
591                            RecursionLimit);
592 }
593 
594 /// \brief Compute the base pointer and cumulative constant offsets for V.
595 ///
596 /// This strips all constant offsets off of V, leaving it the base pointer, and
597 /// accumulates the total constant offset applied in the returned constant. It
598 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
599 /// no constant offsets applied.
600 ///
601 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
602 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
603 /// folding.
604 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
605                                                 bool AllowNonInbounds = false) {
606   assert(V->getType()->getScalarType()->isPointerTy());
607 
608   Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
609   APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
610 
611   // Even though we don't look through PHI nodes, we could be called on an
612   // instruction in an unreachable block, which may be on a cycle.
613   SmallPtrSet<Value *, 4> Visited;
614   Visited.insert(V);
615   do {
616     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
617       if ((!AllowNonInbounds && !GEP->isInBounds()) ||
618           !GEP->accumulateConstantOffset(DL, Offset))
619         break;
620       V = GEP->getPointerOperand();
621     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
622       V = cast<Operator>(V)->getOperand(0);
623     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
624       if (GA->isInterposable())
625         break;
626       V = GA->getAliasee();
627     } else {
628       if (auto CS = CallSite(V))
629         if (Value *RV = CS.getReturnedArgOperand()) {
630           V = RV;
631           continue;
632         }
633       break;
634     }
635     assert(V->getType()->getScalarType()->isPointerTy() &&
636            "Unexpected operand type!");
637   } while (Visited.insert(V).second);
638 
639   Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
640   if (V->getType()->isVectorTy())
641     return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
642                                     OffsetIntPtr);
643   return OffsetIntPtr;
644 }
645 
646 /// \brief Compute the constant difference between two pointer values.
647 /// If the difference is not a constant, returns zero.
648 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
649                                           Value *RHS) {
650   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
651   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
652 
653   // If LHS and RHS are not related via constant offsets to the same base
654   // value, there is nothing we can do here.
655   if (LHS != RHS)
656     return nullptr;
657 
658   // Otherwise, the difference of LHS - RHS can be computed as:
659   //    LHS - RHS
660   //  = (LHSOffset + Base) - (RHSOffset + Base)
661   //  = LHSOffset - RHSOffset
662   return ConstantExpr::getSub(LHSOffset, RHSOffset);
663 }
664 
665 /// Given operands for a Sub, see if we can fold the result.
666 /// If not, this returns null.
667 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
668                               const Query &Q, unsigned MaxRecurse) {
669   if (Constant *CLHS = dyn_cast<Constant>(Op0))
670     if (Constant *CRHS = dyn_cast<Constant>(Op1))
671       return ConstantFoldBinaryOpOperands(Instruction::Sub, CLHS, CRHS, Q.DL);
672 
673   // X - undef -> undef
674   // undef - X -> undef
675   if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
676     return UndefValue::get(Op0->getType());
677 
678   // X - 0 -> X
679   if (match(Op1, m_Zero()))
680     return Op0;
681 
682   // X - X -> 0
683   if (Op0 == Op1)
684     return Constant::getNullValue(Op0->getType());
685 
686   // Is this a negation?
687   if (match(Op0, m_Zero())) {
688     // 0 - X -> 0 if the sub is NUW.
689     if (isNUW)
690       return Op0;
691 
692     unsigned BitWidth = Op1->getType()->getScalarSizeInBits();
693     APInt KnownZero(BitWidth, 0);
694     APInt KnownOne(BitWidth, 0);
695     computeKnownBits(Op1, KnownZero, KnownOne, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
696     if (KnownZero == ~APInt::getSignBit(BitWidth)) {
697       // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
698       // Op1 must be 0 because negating the minimum signed value is undefined.
699       if (isNSW)
700         return Op0;
701 
702       // 0 - X -> X if X is 0 or the minimum signed value.
703       return Op1;
704     }
705   }
706 
707   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
708   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
709   Value *X = nullptr, *Y = nullptr, *Z = Op1;
710   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
711     // See if "V === Y - Z" simplifies.
712     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
713       // It does!  Now see if "X + V" simplifies.
714       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
715         // It does, we successfully reassociated!
716         ++NumReassoc;
717         return W;
718       }
719     // See if "V === X - Z" simplifies.
720     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
721       // It does!  Now see if "Y + V" simplifies.
722       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
723         // It does, we successfully reassociated!
724         ++NumReassoc;
725         return W;
726       }
727   }
728 
729   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
730   // For example, X - (X + 1) -> -1
731   X = Op0;
732   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
733     // See if "V === X - Y" simplifies.
734     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
735       // It does!  Now see if "V - Z" simplifies.
736       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
737         // It does, we successfully reassociated!
738         ++NumReassoc;
739         return W;
740       }
741     // See if "V === X - Z" simplifies.
742     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
743       // It does!  Now see if "V - Y" simplifies.
744       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
745         // It does, we successfully reassociated!
746         ++NumReassoc;
747         return W;
748       }
749   }
750 
751   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
752   // For example, X - (X - Y) -> Y.
753   Z = Op0;
754   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
755     // See if "V === Z - X" simplifies.
756     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
757       // It does!  Now see if "V + Y" simplifies.
758       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
759         // It does, we successfully reassociated!
760         ++NumReassoc;
761         return W;
762       }
763 
764   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
765   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
766       match(Op1, m_Trunc(m_Value(Y))))
767     if (X->getType() == Y->getType())
768       // See if "V === X - Y" simplifies.
769       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
770         // It does!  Now see if "trunc V" simplifies.
771         if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
772                                         Q, MaxRecurse - 1))
773           // It does, return the simplified "trunc V".
774           return W;
775 
776   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
777   if (match(Op0, m_PtrToInt(m_Value(X))) &&
778       match(Op1, m_PtrToInt(m_Value(Y))))
779     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
780       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
781 
782   // i1 sub -> xor.
783   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
784     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
785       return V;
786 
787   // Threading Sub over selects and phi nodes is pointless, so don't bother.
788   // Threading over the select in "A - select(cond, B, C)" means evaluating
789   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
790   // only if B and C are equal.  If B and C are equal then (since we assume
791   // that operands have already been simplified) "select(cond, B, C)" should
792   // have been simplified to the common value of B and C already.  Analysing
793   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
794   // for threading over phi nodes.
795 
796   return nullptr;
797 }
798 
799 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
800                              const DataLayout &DL, const TargetLibraryInfo *TLI,
801                              const DominatorTree *DT, AssumptionCache *AC,
802                              const Instruction *CxtI) {
803   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
804                            RecursionLimit);
805 }
806 
807 /// Given operands for an FAdd, see if we can fold the result.  If not, this
808 /// returns null.
809 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
810                               const Query &Q, unsigned MaxRecurse) {
811   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
812     if (Constant *CRHS = dyn_cast<Constant>(Op1))
813       return ConstantFoldBinaryOpOperands(Instruction::FAdd, CLHS, CRHS, Q.DL);
814 
815     // Canonicalize the constant to the RHS.
816     std::swap(Op0, Op1);
817   }
818 
819   // fadd X, -0 ==> X
820   if (match(Op1, m_NegZero()))
821     return Op0;
822 
823   // fadd X, 0 ==> X, when we know X is not -0
824   if (match(Op1, m_Zero()) &&
825       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
826     return Op0;
827 
828   // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
829   //   where nnan and ninf have to occur at least once somewhere in this
830   //   expression
831   Value *SubOp = nullptr;
832   if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0))))
833     SubOp = Op1;
834   else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1))))
835     SubOp = Op0;
836   if (SubOp) {
837     Instruction *FSub = cast<Instruction>(SubOp);
838     if ((FMF.noNaNs() || FSub->hasNoNaNs()) &&
839         (FMF.noInfs() || FSub->hasNoInfs()))
840       return Constant::getNullValue(Op0->getType());
841   }
842 
843   return nullptr;
844 }
845 
846 /// Given operands for an FSub, see if we can fold the result.  If not, this
847 /// returns null.
848 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
849                               const Query &Q, unsigned MaxRecurse) {
850   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
851     if (Constant *CRHS = dyn_cast<Constant>(Op1))
852       return ConstantFoldBinaryOpOperands(Instruction::FSub, CLHS, CRHS, Q.DL);
853   }
854 
855   // fsub X, 0 ==> X
856   if (match(Op1, m_Zero()))
857     return Op0;
858 
859   // fsub X, -0 ==> X, when we know X is not -0
860   if (match(Op1, m_NegZero()) &&
861       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
862     return Op0;
863 
864   // fsub -0.0, (fsub -0.0, X) ==> X
865   Value *X;
866   if (match(Op0, m_NegZero()) && match(Op1, m_FSub(m_NegZero(), m_Value(X))))
867     return X;
868 
869   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
870   if (FMF.noSignedZeros() && match(Op0, m_AnyZero()) &&
871       match(Op1, m_FSub(m_AnyZero(), m_Value(X))))
872     return X;
873 
874   // fsub nnan x, x ==> 0.0
875   if (FMF.noNaNs() && Op0 == Op1)
876     return Constant::getNullValue(Op0->getType());
877 
878   return nullptr;
879 }
880 
881 /// Given the operands for an FMul, see if we can fold the result
882 static Value *SimplifyFMulInst(Value *Op0, Value *Op1,
883                                FastMathFlags FMF,
884                                const Query &Q,
885                                unsigned MaxRecurse) {
886  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
887     if (Constant *CRHS = dyn_cast<Constant>(Op1))
888       return ConstantFoldBinaryOpOperands(Instruction::FMul, CLHS, CRHS, Q.DL);
889 
890     // Canonicalize the constant to the RHS.
891     std::swap(Op0, Op1);
892  }
893 
894  // fmul X, 1.0 ==> X
895  if (match(Op1, m_FPOne()))
896    return Op0;
897 
898  // fmul nnan nsz X, 0 ==> 0
899  if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero()))
900    return Op1;
901 
902  return nullptr;
903 }
904 
905 /// Given operands for a Mul, see if we can fold the result.
906 /// If not, this returns null.
907 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
908                               unsigned MaxRecurse) {
909   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
910     if (Constant *CRHS = dyn_cast<Constant>(Op1))
911       return ConstantFoldBinaryOpOperands(Instruction::Mul, CLHS, CRHS, Q.DL);
912 
913     // Canonicalize the constant to the RHS.
914     std::swap(Op0, Op1);
915   }
916 
917   // X * undef -> 0
918   if (match(Op1, m_Undef()))
919     return Constant::getNullValue(Op0->getType());
920 
921   // X * 0 -> 0
922   if (match(Op1, m_Zero()))
923     return Op1;
924 
925   // X * 1 -> X
926   if (match(Op1, m_One()))
927     return Op0;
928 
929   // (X / Y) * Y -> X if the division is exact.
930   Value *X = nullptr;
931   if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
932       match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))   // Y * (X / Y)
933     return X;
934 
935   // i1 mul -> and.
936   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
937     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
938       return V;
939 
940   // Try some generic simplifications for associative operations.
941   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
942                                           MaxRecurse))
943     return V;
944 
945   // Mul distributes over Add.  Try some generic simplifications based on this.
946   if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
947                              Q, MaxRecurse))
948     return V;
949 
950   // If the operation is with the result of a select instruction, check whether
951   // operating on either branch of the select always yields the same value.
952   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
953     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
954                                          MaxRecurse))
955       return V;
956 
957   // If the operation is with the result of a phi instruction, check whether
958   // operating on all incoming values of the phi always yields the same value.
959   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
960     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
961                                       MaxRecurse))
962       return V;
963 
964   return nullptr;
965 }
966 
967 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
968                               const DataLayout &DL,
969                               const TargetLibraryInfo *TLI,
970                               const DominatorTree *DT, AssumptionCache *AC,
971                               const Instruction *CxtI) {
972   return ::SimplifyFAddInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
973                             RecursionLimit);
974 }
975 
976 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
977                               const DataLayout &DL,
978                               const TargetLibraryInfo *TLI,
979                               const DominatorTree *DT, AssumptionCache *AC,
980                               const Instruction *CxtI) {
981   return ::SimplifyFSubInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
982                             RecursionLimit);
983 }
984 
985 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
986                               const DataLayout &DL,
987                               const TargetLibraryInfo *TLI,
988                               const DominatorTree *DT, AssumptionCache *AC,
989                               const Instruction *CxtI) {
990   return ::SimplifyFMulInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
991                             RecursionLimit);
992 }
993 
994 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout &DL,
995                              const TargetLibraryInfo *TLI,
996                              const DominatorTree *DT, AssumptionCache *AC,
997                              const Instruction *CxtI) {
998   return ::SimplifyMulInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
999                            RecursionLimit);
1000 }
1001 
1002 /// Given operands for an SDiv or UDiv, see if we can fold the result.
1003 /// If not, this returns null.
1004 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1005                           const Query &Q, unsigned MaxRecurse) {
1006   if (Constant *C0 = dyn_cast<Constant>(Op0))
1007     if (Constant *C1 = dyn_cast<Constant>(Op1))
1008       return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL);
1009 
1010   bool isSigned = Opcode == Instruction::SDiv;
1011 
1012   // X / undef -> undef
1013   if (match(Op1, m_Undef()))
1014     return Op1;
1015 
1016   // X / 0 -> undef, we don't need to preserve faults!
1017   if (match(Op1, m_Zero()))
1018     return UndefValue::get(Op1->getType());
1019 
1020   // undef / X -> 0
1021   if (match(Op0, m_Undef()))
1022     return Constant::getNullValue(Op0->getType());
1023 
1024   // 0 / X -> 0, we don't need to preserve faults!
1025   if (match(Op0, m_Zero()))
1026     return Op0;
1027 
1028   // X / 1 -> X
1029   if (match(Op1, m_One()))
1030     return Op0;
1031 
1032   if (Op0->getType()->isIntegerTy(1))
1033     // It can't be division by zero, hence it must be division by one.
1034     return Op0;
1035 
1036   // X / X -> 1
1037   if (Op0 == Op1)
1038     return ConstantInt::get(Op0->getType(), 1);
1039 
1040   // (X * Y) / Y -> X if the multiplication does not overflow.
1041   Value *X = nullptr, *Y = nullptr;
1042   if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
1043     if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
1044     OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
1045     // If the Mul knows it does not overflow, then we are good to go.
1046     if ((isSigned && Mul->hasNoSignedWrap()) ||
1047         (!isSigned && Mul->hasNoUnsignedWrap()))
1048       return X;
1049     // If X has the form X = A / Y then X * Y cannot overflow.
1050     if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
1051       if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
1052         return X;
1053   }
1054 
1055   // (X rem Y) / Y -> 0
1056   if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1057       (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1058     return Constant::getNullValue(Op0->getType());
1059 
1060   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1061   ConstantInt *C1, *C2;
1062   if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
1063       match(Op1, m_ConstantInt(C2))) {
1064     bool Overflow;
1065     C1->getValue().umul_ov(C2->getValue(), Overflow);
1066     if (Overflow)
1067       return Constant::getNullValue(Op0->getType());
1068   }
1069 
1070   // If the operation is with the result of a select instruction, check whether
1071   // operating on either branch of the select always yields the same value.
1072   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1073     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1074       return V;
1075 
1076   // If the operation is with the result of a phi instruction, check whether
1077   // operating on all incoming values of the phi always yields the same value.
1078   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1079     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1080       return V;
1081 
1082   return nullptr;
1083 }
1084 
1085 /// Given operands for an SDiv, see if we can fold the result.
1086 /// If not, this returns null.
1087 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
1088                                unsigned MaxRecurse) {
1089   if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse))
1090     return V;
1091 
1092   return nullptr;
1093 }
1094 
1095 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout &DL,
1096                               const TargetLibraryInfo *TLI,
1097                               const DominatorTree *DT, AssumptionCache *AC,
1098                               const Instruction *CxtI) {
1099   return ::SimplifySDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1100                             RecursionLimit);
1101 }
1102 
1103 /// Given operands for a UDiv, see if we can fold the result.
1104 /// If not, this returns null.
1105 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
1106                                unsigned MaxRecurse) {
1107   if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse))
1108     return V;
1109 
1110   // udiv %V, C -> 0 if %V < C
1111   if (MaxRecurse) {
1112     if (Constant *C = dyn_cast_or_null<Constant>(SimplifyICmpInst(
1113             ICmpInst::ICMP_ULT, Op0, Op1, Q, MaxRecurse - 1))) {
1114       if (C->isAllOnesValue()) {
1115         return Constant::getNullValue(Op0->getType());
1116       }
1117     }
1118   }
1119 
1120   return nullptr;
1121 }
1122 
1123 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout &DL,
1124                               const TargetLibraryInfo *TLI,
1125                               const DominatorTree *DT, AssumptionCache *AC,
1126                               const Instruction *CxtI) {
1127   return ::SimplifyUDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1128                             RecursionLimit);
1129 }
1130 
1131 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1132                                const Query &Q, unsigned) {
1133   // undef / X -> undef    (the undef could be a snan).
1134   if (match(Op0, m_Undef()))
1135     return Op0;
1136 
1137   // X / undef -> undef
1138   if (match(Op1, m_Undef()))
1139     return Op1;
1140 
1141   // X / 1.0 -> X
1142   if (match(Op1, m_FPOne()))
1143     return Op0;
1144 
1145   // 0 / X -> 0
1146   // Requires that NaNs are off (X could be zero) and signed zeroes are
1147   // ignored (X could be positive or negative, so the output sign is unknown).
1148   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
1149     return Op0;
1150 
1151   if (FMF.noNaNs()) {
1152     // X / X -> 1.0 is legal when NaNs are ignored.
1153     if (Op0 == Op1)
1154       return ConstantFP::get(Op0->getType(), 1.0);
1155 
1156     // -X /  X -> -1.0 and
1157     //  X / -X -> -1.0 are legal when NaNs are ignored.
1158     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
1159     if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) &&
1160          BinaryOperator::getFNegArgument(Op0) == Op1) ||
1161         (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) &&
1162          BinaryOperator::getFNegArgument(Op1) == Op0))
1163       return ConstantFP::get(Op0->getType(), -1.0);
1164   }
1165 
1166   return nullptr;
1167 }
1168 
1169 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1170                               const DataLayout &DL,
1171                               const TargetLibraryInfo *TLI,
1172                               const DominatorTree *DT, AssumptionCache *AC,
1173                               const Instruction *CxtI) {
1174   return ::SimplifyFDivInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
1175                             RecursionLimit);
1176 }
1177 
1178 /// Given operands for an SRem or URem, see if we can fold the result.
1179 /// If not, this returns null.
1180 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1181                           const Query &Q, unsigned MaxRecurse) {
1182   if (Constant *C0 = dyn_cast<Constant>(Op0))
1183     if (Constant *C1 = dyn_cast<Constant>(Op1))
1184       return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL);
1185 
1186   // X % undef -> undef
1187   if (match(Op1, m_Undef()))
1188     return Op1;
1189 
1190   // undef % X -> 0
1191   if (match(Op0, m_Undef()))
1192     return Constant::getNullValue(Op0->getType());
1193 
1194   // 0 % X -> 0, we don't need to preserve faults!
1195   if (match(Op0, m_Zero()))
1196     return Op0;
1197 
1198   // X % 0 -> undef, we don't need to preserve faults!
1199   if (match(Op1, m_Zero()))
1200     return UndefValue::get(Op0->getType());
1201 
1202   // X % 1 -> 0
1203   if (match(Op1, m_One()))
1204     return Constant::getNullValue(Op0->getType());
1205 
1206   if (Op0->getType()->isIntegerTy(1))
1207     // It can't be remainder by zero, hence it must be remainder by one.
1208     return Constant::getNullValue(Op0->getType());
1209 
1210   // X % X -> 0
1211   if (Op0 == Op1)
1212     return Constant::getNullValue(Op0->getType());
1213 
1214   // (X % Y) % Y -> X % Y
1215   if ((Opcode == Instruction::SRem &&
1216        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1217       (Opcode == Instruction::URem &&
1218        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1219     return Op0;
1220 
1221   // If the operation is with the result of a select instruction, check whether
1222   // operating on either branch of the select always yields the same value.
1223   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1224     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1225       return V;
1226 
1227   // If the operation is with the result of a phi instruction, check whether
1228   // operating on all incoming values of the phi always yields the same value.
1229   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1230     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1231       return V;
1232 
1233   return nullptr;
1234 }
1235 
1236 /// Given operands for an SRem, see if we can fold the result.
1237 /// If not, this returns null.
1238 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
1239                                unsigned MaxRecurse) {
1240   if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse))
1241     return V;
1242 
1243   return nullptr;
1244 }
1245 
1246 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout &DL,
1247                               const TargetLibraryInfo *TLI,
1248                               const DominatorTree *DT, AssumptionCache *AC,
1249                               const Instruction *CxtI) {
1250   return ::SimplifySRemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1251                             RecursionLimit);
1252 }
1253 
1254 /// Given operands for a URem, see if we can fold the result.
1255 /// If not, this returns null.
1256 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
1257                                unsigned MaxRecurse) {
1258   if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse))
1259     return V;
1260 
1261   // urem %V, C -> %V if %V < C
1262   if (MaxRecurse) {
1263     if (Constant *C = dyn_cast_or_null<Constant>(SimplifyICmpInst(
1264             ICmpInst::ICMP_ULT, Op0, Op1, Q, MaxRecurse - 1))) {
1265       if (C->isAllOnesValue()) {
1266         return Op0;
1267       }
1268     }
1269   }
1270 
1271   return nullptr;
1272 }
1273 
1274 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout &DL,
1275                               const TargetLibraryInfo *TLI,
1276                               const DominatorTree *DT, AssumptionCache *AC,
1277                               const Instruction *CxtI) {
1278   return ::SimplifyURemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1279                             RecursionLimit);
1280 }
1281 
1282 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1283                                const Query &, unsigned) {
1284   // undef % X -> undef    (the undef could be a snan).
1285   if (match(Op0, m_Undef()))
1286     return Op0;
1287 
1288   // X % undef -> undef
1289   if (match(Op1, m_Undef()))
1290     return Op1;
1291 
1292   // 0 % X -> 0
1293   // Requires that NaNs are off (X could be zero) and signed zeroes are
1294   // ignored (X could be positive or negative, so the output sign is unknown).
1295   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
1296     return Op0;
1297 
1298   return nullptr;
1299 }
1300 
1301 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1302                               const DataLayout &DL,
1303                               const TargetLibraryInfo *TLI,
1304                               const DominatorTree *DT, AssumptionCache *AC,
1305                               const Instruction *CxtI) {
1306   return ::SimplifyFRemInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
1307                             RecursionLimit);
1308 }
1309 
1310 /// Returns true if a shift by \c Amount always yields undef.
1311 static bool isUndefShift(Value *Amount) {
1312   Constant *C = dyn_cast<Constant>(Amount);
1313   if (!C)
1314     return false;
1315 
1316   // X shift by undef -> undef because it may shift by the bitwidth.
1317   if (isa<UndefValue>(C))
1318     return true;
1319 
1320   // Shifting by the bitwidth or more is undefined.
1321   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1322     if (CI->getValue().getLimitedValue() >=
1323         CI->getType()->getScalarSizeInBits())
1324       return true;
1325 
1326   // If all lanes of a vector shift are undefined the whole shift is.
1327   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1328     for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I)
1329       if (!isUndefShift(C->getAggregateElement(I)))
1330         return false;
1331     return true;
1332   }
1333 
1334   return false;
1335 }
1336 
1337 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1338 /// If not, this returns null.
1339 static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
1340                             const Query &Q, unsigned MaxRecurse) {
1341   if (Constant *C0 = dyn_cast<Constant>(Op0))
1342     if (Constant *C1 = dyn_cast<Constant>(Op1))
1343       return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL);
1344 
1345   // 0 shift by X -> 0
1346   if (match(Op0, m_Zero()))
1347     return Op0;
1348 
1349   // X shift by 0 -> X
1350   if (match(Op1, m_Zero()))
1351     return Op0;
1352 
1353   // Fold undefined shifts.
1354   if (isUndefShift(Op1))
1355     return UndefValue::get(Op0->getType());
1356 
1357   // If the operation is with the result of a select instruction, check whether
1358   // operating on either branch of the select always yields the same value.
1359   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1360     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1361       return V;
1362 
1363   // If the operation is with the result of a phi instruction, check whether
1364   // operating on all incoming values of the phi always yields the same value.
1365   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1366     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1367       return V;
1368 
1369   // If any bits in the shift amount make that value greater than or equal to
1370   // the number of bits in the type, the shift is undefined.
1371   unsigned BitWidth = Op1->getType()->getScalarSizeInBits();
1372   APInt KnownZero(BitWidth, 0);
1373   APInt KnownOne(BitWidth, 0);
1374   computeKnownBits(Op1, KnownZero, KnownOne, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1375   if (KnownOne.getLimitedValue() >= BitWidth)
1376     return UndefValue::get(Op0->getType());
1377 
1378   // If all valid bits in the shift amount are known zero, the first operand is
1379   // unchanged.
1380   unsigned NumValidShiftBits = Log2_32_Ceil(BitWidth);
1381   APInt ShiftAmountMask = APInt::getLowBitsSet(BitWidth, NumValidShiftBits);
1382   if ((KnownZero & ShiftAmountMask) == ShiftAmountMask)
1383     return Op0;
1384 
1385   return nullptr;
1386 }
1387 
1388 /// \brief Given operands for an Shl, LShr or AShr, see if we can
1389 /// fold the result.  If not, this returns null.
1390 static Value *SimplifyRightShift(unsigned Opcode, Value *Op0, Value *Op1,
1391                                  bool isExact, const Query &Q,
1392                                  unsigned MaxRecurse) {
1393   if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
1394     return V;
1395 
1396   // X >> X -> 0
1397   if (Op0 == Op1)
1398     return Constant::getNullValue(Op0->getType());
1399 
1400   // undef >> X -> 0
1401   // undef >> X -> undef (if it's exact)
1402   if (match(Op0, m_Undef()))
1403     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1404 
1405   // The low bit cannot be shifted out of an exact shift if it is set.
1406   if (isExact) {
1407     unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
1408     APInt Op0KnownZero(BitWidth, 0);
1409     APInt Op0KnownOne(BitWidth, 0);
1410     computeKnownBits(Op0, Op0KnownZero, Op0KnownOne, Q.DL, /*Depth=*/0, Q.AC,
1411                      Q.CxtI, Q.DT);
1412     if (Op0KnownOne[0])
1413       return Op0;
1414   }
1415 
1416   return nullptr;
1417 }
1418 
1419 /// Given operands for an Shl, see if we can fold the result.
1420 /// If not, this returns null.
1421 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1422                               const Query &Q, unsigned MaxRecurse) {
1423   if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
1424     return V;
1425 
1426   // undef << X -> 0
1427   // undef << X -> undef if (if it's NSW/NUW)
1428   if (match(Op0, m_Undef()))
1429     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1430 
1431   // (X >> A) << A -> X
1432   Value *X;
1433   if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1434     return X;
1435   return nullptr;
1436 }
1437 
1438 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1439                              const DataLayout &DL, const TargetLibraryInfo *TLI,
1440                              const DominatorTree *DT, AssumptionCache *AC,
1441                              const Instruction *CxtI) {
1442   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
1443                            RecursionLimit);
1444 }
1445 
1446 /// Given operands for an LShr, see if we can fold the result.
1447 /// If not, this returns null.
1448 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1449                                const Query &Q, unsigned MaxRecurse) {
1450   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1451                                     MaxRecurse))
1452       return V;
1453 
1454   // (X << A) >> A -> X
1455   Value *X;
1456   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1457     return X;
1458 
1459   return nullptr;
1460 }
1461 
1462 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1463                               const DataLayout &DL,
1464                               const TargetLibraryInfo *TLI,
1465                               const DominatorTree *DT, AssumptionCache *AC,
1466                               const Instruction *CxtI) {
1467   return ::SimplifyLShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI),
1468                             RecursionLimit);
1469 }
1470 
1471 /// Given operands for an AShr, see if we can fold the result.
1472 /// If not, this returns null.
1473 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1474                                const Query &Q, unsigned MaxRecurse) {
1475   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1476                                     MaxRecurse))
1477     return V;
1478 
1479   // all ones >>a X -> all ones
1480   if (match(Op0, m_AllOnes()))
1481     return Op0;
1482 
1483   // (X << A) >> A -> X
1484   Value *X;
1485   if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1486     return X;
1487 
1488   // Arithmetic shifting an all-sign-bit value is a no-op.
1489   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1490   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1491     return Op0;
1492 
1493   return nullptr;
1494 }
1495 
1496 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1497                               const DataLayout &DL,
1498                               const TargetLibraryInfo *TLI,
1499                               const DominatorTree *DT, AssumptionCache *AC,
1500                               const Instruction *CxtI) {
1501   return ::SimplifyAShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI),
1502                             RecursionLimit);
1503 }
1504 
1505 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1506                                          ICmpInst *UnsignedICmp, bool IsAnd) {
1507   Value *X, *Y;
1508 
1509   ICmpInst::Predicate EqPred;
1510   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1511       !ICmpInst::isEquality(EqPred))
1512     return nullptr;
1513 
1514   ICmpInst::Predicate UnsignedPred;
1515   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1516       ICmpInst::isUnsigned(UnsignedPred))
1517     ;
1518   else if (match(UnsignedICmp,
1519                  m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) &&
1520            ICmpInst::isUnsigned(UnsignedPred))
1521     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1522   else
1523     return nullptr;
1524 
1525   // X < Y && Y != 0  -->  X < Y
1526   // X < Y || Y != 0  -->  Y != 0
1527   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1528     return IsAnd ? UnsignedICmp : ZeroICmp;
1529 
1530   // X >= Y || Y != 0  -->  true
1531   // X >= Y || Y == 0  -->  X >= Y
1532   if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) {
1533     if (EqPred == ICmpInst::ICMP_NE)
1534       return getTrue(UnsignedICmp->getType());
1535     return UnsignedICmp;
1536   }
1537 
1538   // X < Y && Y == 0  -->  false
1539   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1540       IsAnd)
1541     return getFalse(UnsignedICmp->getType());
1542 
1543   return nullptr;
1544 }
1545 
1546 /// Commuted variants are assumed to be handled by calling this function again
1547 /// with the parameters swapped.
1548 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1549   ICmpInst::Predicate Pred0, Pred1;
1550   Value *A ,*B;
1551   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1552       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1553     return nullptr;
1554 
1555   // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
1556   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1557   // can eliminate Op1 from this 'and'.
1558   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1559     return Op0;
1560 
1561   // Check for any combination of predicates that are guaranteed to be disjoint.
1562   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1563       (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
1564       (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
1565       (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
1566     return getFalse(Op0->getType());
1567 
1568   return nullptr;
1569 }
1570 
1571 /// Commuted variants are assumed to be handled by calling this function again
1572 /// with the parameters swapped.
1573 static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
1574   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true))
1575     return X;
1576 
1577   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
1578     return X;
1579 
1580   // Look for this pattern: (icmp V, C0) & (icmp V, C1)).
1581   Type *ITy = Op0->getType();
1582   ICmpInst::Predicate Pred0, Pred1;
1583   const APInt *C0, *C1;
1584   Value *V;
1585   if (match(Op0, m_ICmp(Pred0, m_Value(V), m_APInt(C0))) &&
1586       match(Op1, m_ICmp(Pred1, m_Specific(V), m_APInt(C1)))) {
1587     // Make a constant range that's the intersection of the two icmp ranges.
1588     // If the intersection is empty, we know that the result is false.
1589     auto Range0 = ConstantRange::makeAllowedICmpRegion(Pred0, *C0);
1590     auto Range1 = ConstantRange::makeAllowedICmpRegion(Pred1, *C1);
1591     if (Range0.intersectWith(Range1).isEmptySet())
1592       return getFalse(ITy);
1593   }
1594 
1595   // (icmp (add V, C0), C1) & (icmp V, C0)
1596   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1597     return nullptr;
1598 
1599   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1600     return nullptr;
1601 
1602   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1603   if (AddInst->getOperand(1) != Op1->getOperand(1))
1604     return nullptr;
1605 
1606   bool isNSW = AddInst->hasNoSignedWrap();
1607   bool isNUW = AddInst->hasNoUnsignedWrap();
1608 
1609   const APInt Delta = *C1 - *C0;
1610   if (C0->isStrictlyPositive()) {
1611     if (Delta == 2) {
1612       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1613         return getFalse(ITy);
1614       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1615         return getFalse(ITy);
1616     }
1617     if (Delta == 1) {
1618       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1619         return getFalse(ITy);
1620       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1621         return getFalse(ITy);
1622     }
1623   }
1624   if (C0->getBoolValue() && isNUW) {
1625     if (Delta == 2)
1626       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1627         return getFalse(ITy);
1628     if (Delta == 1)
1629       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1630         return getFalse(ITy);
1631   }
1632 
1633   return nullptr;
1634 }
1635 
1636 /// Given operands for an And, see if we can fold the result.
1637 /// If not, this returns null.
1638 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
1639                               unsigned MaxRecurse) {
1640   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1641     if (Constant *CRHS = dyn_cast<Constant>(Op1))
1642       return ConstantFoldBinaryOpOperands(Instruction::And, CLHS, CRHS, Q.DL);
1643 
1644     // Canonicalize the constant to the RHS.
1645     std::swap(Op0, Op1);
1646   }
1647 
1648   // X & undef -> 0
1649   if (match(Op1, m_Undef()))
1650     return Constant::getNullValue(Op0->getType());
1651 
1652   // X & X = X
1653   if (Op0 == Op1)
1654     return Op0;
1655 
1656   // X & 0 = 0
1657   if (match(Op1, m_Zero()))
1658     return Op1;
1659 
1660   // X & -1 = X
1661   if (match(Op1, m_AllOnes()))
1662     return Op0;
1663 
1664   // A & ~A  =  ~A & A  =  0
1665   if (match(Op0, m_Not(m_Specific(Op1))) ||
1666       match(Op1, m_Not(m_Specific(Op0))))
1667     return Constant::getNullValue(Op0->getType());
1668 
1669   // (A | ?) & A = A
1670   Value *A = nullptr, *B = nullptr;
1671   if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1672       (A == Op1 || B == Op1))
1673     return Op1;
1674 
1675   // A & (A | ?) = A
1676   if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1677       (A == Op0 || B == Op0))
1678     return Op0;
1679 
1680   // A & (-A) = A if A is a power of two or zero.
1681   if (match(Op0, m_Neg(m_Specific(Op1))) ||
1682       match(Op1, m_Neg(m_Specific(Op0)))) {
1683     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1684                                Q.DT))
1685       return Op0;
1686     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1687                                Q.DT))
1688       return Op1;
1689   }
1690 
1691   if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
1692     if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
1693       if (Value *V = SimplifyAndOfICmps(ICILHS, ICIRHS))
1694         return V;
1695       if (Value *V = SimplifyAndOfICmps(ICIRHS, ICILHS))
1696         return V;
1697     }
1698   }
1699 
1700   // The compares may be hidden behind casts. Look through those and try the
1701   // same folds as above.
1702   auto *Cast0 = dyn_cast<CastInst>(Op0);
1703   auto *Cast1 = dyn_cast<CastInst>(Op1);
1704   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1705       Cast0->getSrcTy() == Cast1->getSrcTy()) {
1706     auto *Cmp0 = dyn_cast<ICmpInst>(Cast0->getOperand(0));
1707     auto *Cmp1 = dyn_cast<ICmpInst>(Cast1->getOperand(0));
1708     if (Cmp0 && Cmp1) {
1709       Instruction::CastOps CastOpc = Cast0->getOpcode();
1710       Type *ResultType = Cast0->getType();
1711       if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp0, Cmp1)))
1712         return ConstantExpr::getCast(CastOpc, V, ResultType);
1713       if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp1, Cmp0)))
1714         return ConstantExpr::getCast(CastOpc, V, ResultType);
1715     }
1716   }
1717 
1718   // Try some generic simplifications for associative operations.
1719   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
1720                                           MaxRecurse))
1721     return V;
1722 
1723   // And distributes over Or.  Try some generic simplifications based on this.
1724   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1725                              Q, MaxRecurse))
1726     return V;
1727 
1728   // And distributes over Xor.  Try some generic simplifications based on this.
1729   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1730                              Q, MaxRecurse))
1731     return V;
1732 
1733   // If the operation is with the result of a select instruction, check whether
1734   // operating on either branch of the select always yields the same value.
1735   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1736     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
1737                                          MaxRecurse))
1738       return V;
1739 
1740   // If the operation is with the result of a phi instruction, check whether
1741   // operating on all incoming values of the phi always yields the same value.
1742   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1743     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
1744                                       MaxRecurse))
1745       return V;
1746 
1747   return nullptr;
1748 }
1749 
1750 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout &DL,
1751                              const TargetLibraryInfo *TLI,
1752                              const DominatorTree *DT, AssumptionCache *AC,
1753                              const Instruction *CxtI) {
1754   return ::SimplifyAndInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1755                            RecursionLimit);
1756 }
1757 
1758 /// Commuted variants are assumed to be handled by calling this function again
1759 /// with the parameters swapped.
1760 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1761   ICmpInst::Predicate Pred0, Pred1;
1762   Value *A ,*B;
1763   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1764       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1765     return nullptr;
1766 
1767   // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
1768   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1769   // can eliminate Op0 from this 'or'.
1770   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1771     return Op1;
1772 
1773   // Check for any combination of predicates that cover the entire range of
1774   // possibilities.
1775   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1776       (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
1777       (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
1778       (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
1779     return getTrue(Op0->getType());
1780 
1781   return nullptr;
1782 }
1783 
1784 /// Commuted variants are assumed to be handled by calling this function again
1785 /// with the parameters swapped.
1786 static Value *SimplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
1787   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false))
1788     return X;
1789 
1790   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
1791     return X;
1792 
1793   // (icmp (add V, C0), C1) | (icmp V, C0)
1794   ICmpInst::Predicate Pred0, Pred1;
1795   const APInt *C0, *C1;
1796   Value *V;
1797   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1798     return nullptr;
1799 
1800   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1801     return nullptr;
1802 
1803   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1804   if (AddInst->getOperand(1) != Op1->getOperand(1))
1805     return nullptr;
1806 
1807   Type *ITy = Op0->getType();
1808   bool isNSW = AddInst->hasNoSignedWrap();
1809   bool isNUW = AddInst->hasNoUnsignedWrap();
1810 
1811   const APInt Delta = *C1 - *C0;
1812   if (C0->isStrictlyPositive()) {
1813     if (Delta == 2) {
1814       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1815         return getTrue(ITy);
1816       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1817         return getTrue(ITy);
1818     }
1819     if (Delta == 1) {
1820       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1821         return getTrue(ITy);
1822       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1823         return getTrue(ITy);
1824     }
1825   }
1826   if (C0->getBoolValue() && isNUW) {
1827     if (Delta == 2)
1828       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1829         return getTrue(ITy);
1830     if (Delta == 1)
1831       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1832         return getTrue(ITy);
1833   }
1834 
1835   return nullptr;
1836 }
1837 
1838 /// Given operands for an Or, see if we can fold the result.
1839 /// If not, this returns null.
1840 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
1841                              unsigned MaxRecurse) {
1842   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1843     if (Constant *CRHS = dyn_cast<Constant>(Op1))
1844       return ConstantFoldBinaryOpOperands(Instruction::Or, CLHS, CRHS, Q.DL);
1845 
1846     // Canonicalize the constant to the RHS.
1847     std::swap(Op0, Op1);
1848   }
1849 
1850   // X | undef -> -1
1851   if (match(Op1, m_Undef()))
1852     return Constant::getAllOnesValue(Op0->getType());
1853 
1854   // X | X = X
1855   if (Op0 == Op1)
1856     return Op0;
1857 
1858   // X | 0 = X
1859   if (match(Op1, m_Zero()))
1860     return Op0;
1861 
1862   // X | -1 = -1
1863   if (match(Op1, m_AllOnes()))
1864     return Op1;
1865 
1866   // A | ~A  =  ~A | A  =  -1
1867   if (match(Op0, m_Not(m_Specific(Op1))) ||
1868       match(Op1, m_Not(m_Specific(Op0))))
1869     return Constant::getAllOnesValue(Op0->getType());
1870 
1871   // (A & ?) | A = A
1872   Value *A = nullptr, *B = nullptr;
1873   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1874       (A == Op1 || B == Op1))
1875     return Op1;
1876 
1877   // A | (A & ?) = A
1878   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1879       (A == Op0 || B == Op0))
1880     return Op0;
1881 
1882   // ~(A & ?) | A = -1
1883   if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1884       (A == Op1 || B == Op1))
1885     return Constant::getAllOnesValue(Op1->getType());
1886 
1887   // A | ~(A & ?) = -1
1888   if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1889       (A == Op0 || B == Op0))
1890     return Constant::getAllOnesValue(Op0->getType());
1891 
1892   if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
1893     if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
1894       if (Value *V = SimplifyOrOfICmps(ICILHS, ICIRHS))
1895         return V;
1896       if (Value *V = SimplifyOrOfICmps(ICIRHS, ICILHS))
1897         return V;
1898     }
1899   }
1900 
1901   // Try some generic simplifications for associative operations.
1902   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
1903                                           MaxRecurse))
1904     return V;
1905 
1906   // Or distributes over And.  Try some generic simplifications based on this.
1907   if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
1908                              MaxRecurse))
1909     return V;
1910 
1911   // If the operation is with the result of a select instruction, check whether
1912   // operating on either branch of the select always yields the same value.
1913   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1914     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
1915                                          MaxRecurse))
1916       return V;
1917 
1918   // (A & C)|(B & D)
1919   Value *C = nullptr, *D = nullptr;
1920   if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
1921       match(Op1, m_And(m_Value(B), m_Value(D)))) {
1922     ConstantInt *C1 = dyn_cast<ConstantInt>(C);
1923     ConstantInt *C2 = dyn_cast<ConstantInt>(D);
1924     if (C1 && C2 && (C1->getValue() == ~C2->getValue())) {
1925       // (A & C1)|(B & C2)
1926       // If we have: ((V + N) & C1) | (V & C2)
1927       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
1928       // replace with V+N.
1929       Value *V1, *V2;
1930       if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+
1931           match(A, m_Add(m_Value(V1), m_Value(V2)))) {
1932         // Add commutes, try both ways.
1933         if (V1 == B &&
1934             MaskedValueIsZero(V2, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1935           return A;
1936         if (V2 == B &&
1937             MaskedValueIsZero(V1, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1938           return A;
1939       }
1940       // Or commutes, try both ways.
1941       if ((C1->getValue() & (C1->getValue() + 1)) == 0 &&
1942           match(B, m_Add(m_Value(V1), m_Value(V2)))) {
1943         // Add commutes, try both ways.
1944         if (V1 == A &&
1945             MaskedValueIsZero(V2, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1946           return B;
1947         if (V2 == A &&
1948             MaskedValueIsZero(V1, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1949           return B;
1950       }
1951     }
1952   }
1953 
1954   // If the operation is with the result of a phi instruction, check whether
1955   // operating on all incoming values of the phi always yields the same value.
1956   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1957     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
1958       return V;
1959 
1960   return nullptr;
1961 }
1962 
1963 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout &DL,
1964                             const TargetLibraryInfo *TLI,
1965                             const DominatorTree *DT, AssumptionCache *AC,
1966                             const Instruction *CxtI) {
1967   return ::SimplifyOrInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1968                           RecursionLimit);
1969 }
1970 
1971 /// Given operands for a Xor, see if we can fold the result.
1972 /// If not, this returns null.
1973 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
1974                               unsigned MaxRecurse) {
1975   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1976     if (Constant *CRHS = dyn_cast<Constant>(Op1))
1977       return ConstantFoldBinaryOpOperands(Instruction::Xor, CLHS, CRHS, Q.DL);
1978 
1979     // Canonicalize the constant to the RHS.
1980     std::swap(Op0, Op1);
1981   }
1982 
1983   // A ^ undef -> undef
1984   if (match(Op1, m_Undef()))
1985     return Op1;
1986 
1987   // A ^ 0 = A
1988   if (match(Op1, m_Zero()))
1989     return Op0;
1990 
1991   // A ^ A = 0
1992   if (Op0 == Op1)
1993     return Constant::getNullValue(Op0->getType());
1994 
1995   // A ^ ~A  =  ~A ^ A  =  -1
1996   if (match(Op0, m_Not(m_Specific(Op1))) ||
1997       match(Op1, m_Not(m_Specific(Op0))))
1998     return Constant::getAllOnesValue(Op0->getType());
1999 
2000   // Try some generic simplifications for associative operations.
2001   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
2002                                           MaxRecurse))
2003     return V;
2004 
2005   // Threading Xor over selects and phi nodes is pointless, so don't bother.
2006   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
2007   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
2008   // only if B and C are equal.  If B and C are equal then (since we assume
2009   // that operands have already been simplified) "select(cond, B, C)" should
2010   // have been simplified to the common value of B and C already.  Analysing
2011   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
2012   // for threading over phi nodes.
2013 
2014   return nullptr;
2015 }
2016 
2017 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout &DL,
2018                              const TargetLibraryInfo *TLI,
2019                              const DominatorTree *DT, AssumptionCache *AC,
2020                              const Instruction *CxtI) {
2021   return ::SimplifyXorInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
2022                            RecursionLimit);
2023 }
2024 
2025 static Type *GetCompareTy(Value *Op) {
2026   return CmpInst::makeCmpResultType(Op->getType());
2027 }
2028 
2029 /// Rummage around inside V looking for something equivalent to the comparison
2030 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
2031 /// Helper function for analyzing max/min idioms.
2032 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
2033                                          Value *LHS, Value *RHS) {
2034   SelectInst *SI = dyn_cast<SelectInst>(V);
2035   if (!SI)
2036     return nullptr;
2037   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2038   if (!Cmp)
2039     return nullptr;
2040   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2041   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
2042     return Cmp;
2043   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
2044       LHS == CmpRHS && RHS == CmpLHS)
2045     return Cmp;
2046   return nullptr;
2047 }
2048 
2049 // A significant optimization not implemented here is assuming that alloca
2050 // addresses are not equal to incoming argument values. They don't *alias*,
2051 // as we say, but that doesn't mean they aren't equal, so we take a
2052 // conservative approach.
2053 //
2054 // This is inspired in part by C++11 5.10p1:
2055 //   "Two pointers of the same type compare equal if and only if they are both
2056 //    null, both point to the same function, or both represent the same
2057 //    address."
2058 //
2059 // This is pretty permissive.
2060 //
2061 // It's also partly due to C11 6.5.9p6:
2062 //   "Two pointers compare equal if and only if both are null pointers, both are
2063 //    pointers to the same object (including a pointer to an object and a
2064 //    subobject at its beginning) or function, both are pointers to one past the
2065 //    last element of the same array object, or one is a pointer to one past the
2066 //    end of one array object and the other is a pointer to the start of a
2067 //    different array object that happens to immediately follow the first array
2068 //    object in the address space.)
2069 //
2070 // C11's version is more restrictive, however there's no reason why an argument
2071 // couldn't be a one-past-the-end value for a stack object in the caller and be
2072 // equal to the beginning of a stack object in the callee.
2073 //
2074 // If the C and C++ standards are ever made sufficiently restrictive in this
2075 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2076 // this optimization.
2077 static Constant *
2078 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI,
2079                    const DominatorTree *DT, CmpInst::Predicate Pred,
2080                    const Instruction *CxtI, Value *LHS, Value *RHS) {
2081   // First, skip past any trivial no-ops.
2082   LHS = LHS->stripPointerCasts();
2083   RHS = RHS->stripPointerCasts();
2084 
2085   // A non-null pointer is not equal to a null pointer.
2086   if (llvm::isKnownNonNull(LHS) && isa<ConstantPointerNull>(RHS) &&
2087       (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
2088     return ConstantInt::get(GetCompareTy(LHS),
2089                             !CmpInst::isTrueWhenEqual(Pred));
2090 
2091   // We can only fold certain predicates on pointer comparisons.
2092   switch (Pred) {
2093   default:
2094     return nullptr;
2095 
2096     // Equality comaprisons are easy to fold.
2097   case CmpInst::ICMP_EQ:
2098   case CmpInst::ICMP_NE:
2099     break;
2100 
2101     // We can only handle unsigned relational comparisons because 'inbounds' on
2102     // a GEP only protects against unsigned wrapping.
2103   case CmpInst::ICMP_UGT:
2104   case CmpInst::ICMP_UGE:
2105   case CmpInst::ICMP_ULT:
2106   case CmpInst::ICMP_ULE:
2107     // However, we have to switch them to their signed variants to handle
2108     // negative indices from the base pointer.
2109     Pred = ICmpInst::getSignedPredicate(Pred);
2110     break;
2111   }
2112 
2113   // Strip off any constant offsets so that we can reason about them.
2114   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2115   // here and compare base addresses like AliasAnalysis does, however there are
2116   // numerous hazards. AliasAnalysis and its utilities rely on special rules
2117   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2118   // doesn't need to guarantee pointer inequality when it says NoAlias.
2119   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
2120   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
2121 
2122   // If LHS and RHS are related via constant offsets to the same base
2123   // value, we can replace it with an icmp which just compares the offsets.
2124   if (LHS == RHS)
2125     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
2126 
2127   // Various optimizations for (in)equality comparisons.
2128   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2129     // Different non-empty allocations that exist at the same time have
2130     // different addresses (if the program can tell). Global variables always
2131     // exist, so they always exist during the lifetime of each other and all
2132     // allocas. Two different allocas usually have different addresses...
2133     //
2134     // However, if there's an @llvm.stackrestore dynamically in between two
2135     // allocas, they may have the same address. It's tempting to reduce the
2136     // scope of the problem by only looking at *static* allocas here. That would
2137     // cover the majority of allocas while significantly reducing the likelihood
2138     // of having an @llvm.stackrestore pop up in the middle. However, it's not
2139     // actually impossible for an @llvm.stackrestore to pop up in the middle of
2140     // an entry block. Also, if we have a block that's not attached to a
2141     // function, we can't tell if it's "static" under the current definition.
2142     // Theoretically, this problem could be fixed by creating a new kind of
2143     // instruction kind specifically for static allocas. Such a new instruction
2144     // could be required to be at the top of the entry block, thus preventing it
2145     // from being subject to a @llvm.stackrestore. Instcombine could even
2146     // convert regular allocas into these special allocas. It'd be nifty.
2147     // However, until then, this problem remains open.
2148     //
2149     // So, we'll assume that two non-empty allocas have different addresses
2150     // for now.
2151     //
2152     // With all that, if the offsets are within the bounds of their allocations
2153     // (and not one-past-the-end! so we can't use inbounds!), and their
2154     // allocations aren't the same, the pointers are not equal.
2155     //
2156     // Note that it's not necessary to check for LHS being a global variable
2157     // address, due to canonicalization and constant folding.
2158     if (isa<AllocaInst>(LHS) &&
2159         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2160       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2161       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2162       uint64_t LHSSize, RHSSize;
2163       if (LHSOffsetCI && RHSOffsetCI &&
2164           getObjectSize(LHS, LHSSize, DL, TLI) &&
2165           getObjectSize(RHS, RHSSize, DL, TLI)) {
2166         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2167         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2168         if (!LHSOffsetValue.isNegative() &&
2169             !RHSOffsetValue.isNegative() &&
2170             LHSOffsetValue.ult(LHSSize) &&
2171             RHSOffsetValue.ult(RHSSize)) {
2172           return ConstantInt::get(GetCompareTy(LHS),
2173                                   !CmpInst::isTrueWhenEqual(Pred));
2174         }
2175       }
2176 
2177       // Repeat the above check but this time without depending on DataLayout
2178       // or being able to compute a precise size.
2179       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2180           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2181           LHSOffset->isNullValue() &&
2182           RHSOffset->isNullValue())
2183         return ConstantInt::get(GetCompareTy(LHS),
2184                                 !CmpInst::isTrueWhenEqual(Pred));
2185     }
2186 
2187     // Even if an non-inbounds GEP occurs along the path we can still optimize
2188     // equality comparisons concerning the result. We avoid walking the whole
2189     // chain again by starting where the last calls to
2190     // stripAndComputeConstantOffsets left off and accumulate the offsets.
2191     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2192     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2193     if (LHS == RHS)
2194       return ConstantExpr::getICmp(Pred,
2195                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2196                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2197 
2198     // If one side of the equality comparison must come from a noalias call
2199     // (meaning a system memory allocation function), and the other side must
2200     // come from a pointer that cannot overlap with dynamically-allocated
2201     // memory within the lifetime of the current function (allocas, byval
2202     // arguments, globals), then determine the comparison result here.
2203     SmallVector<Value *, 8> LHSUObjs, RHSUObjs;
2204     GetUnderlyingObjects(LHS, LHSUObjs, DL);
2205     GetUnderlyingObjects(RHS, RHSUObjs, DL);
2206 
2207     // Is the set of underlying objects all noalias calls?
2208     auto IsNAC = [](ArrayRef<Value *> Objects) {
2209       return all_of(Objects, isNoAliasCall);
2210     };
2211 
2212     // Is the set of underlying objects all things which must be disjoint from
2213     // noalias calls. For allocas, we consider only static ones (dynamic
2214     // allocas might be transformed into calls to malloc not simultaneously
2215     // live with the compared-to allocation). For globals, we exclude symbols
2216     // that might be resolve lazily to symbols in another dynamically-loaded
2217     // library (and, thus, could be malloc'ed by the implementation).
2218     auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) {
2219       return all_of(Objects, [](Value *V) {
2220         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2221           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2222         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2223           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2224                   GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2225                  !GV->isThreadLocal();
2226         if (const Argument *A = dyn_cast<Argument>(V))
2227           return A->hasByValAttr();
2228         return false;
2229       });
2230     };
2231 
2232     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2233         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2234         return ConstantInt::get(GetCompareTy(LHS),
2235                                 !CmpInst::isTrueWhenEqual(Pred));
2236 
2237     // Fold comparisons for non-escaping pointer even if the allocation call
2238     // cannot be elided. We cannot fold malloc comparison to null. Also, the
2239     // dynamic allocation call could be either of the operands.
2240     Value *MI = nullptr;
2241     if (isAllocLikeFn(LHS, TLI) && llvm::isKnownNonNullAt(RHS, CxtI, DT))
2242       MI = LHS;
2243     else if (isAllocLikeFn(RHS, TLI) && llvm::isKnownNonNullAt(LHS, CxtI, DT))
2244       MI = RHS;
2245     // FIXME: We should also fold the compare when the pointer escapes, but the
2246     // compare dominates the pointer escape
2247     if (MI && !PointerMayBeCaptured(MI, true, true))
2248       return ConstantInt::get(GetCompareTy(LHS),
2249                               CmpInst::isFalseWhenEqual(Pred));
2250   }
2251 
2252   // Otherwise, fail.
2253   return nullptr;
2254 }
2255 
2256 /// Fold an icmp when its operands have i1 scalar type.
2257 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
2258                                   Value *RHS, const Query &Q) {
2259   Type *ITy = GetCompareTy(LHS); // The return type.
2260   Type *OpTy = LHS->getType();   // The operand type.
2261   if (!OpTy->getScalarType()->isIntegerTy(1))
2262     return nullptr;
2263 
2264   switch (Pred) {
2265   default:
2266     break;
2267   case ICmpInst::ICMP_EQ:
2268     // X == 1 -> X
2269     if (match(RHS, m_One()))
2270       return LHS;
2271     break;
2272   case ICmpInst::ICMP_NE:
2273     // X != 0 -> X
2274     if (match(RHS, m_Zero()))
2275       return LHS;
2276     break;
2277   case ICmpInst::ICMP_UGT:
2278     // X >u 0 -> X
2279     if (match(RHS, m_Zero()))
2280       return LHS;
2281     break;
2282   case ICmpInst::ICMP_UGE:
2283     // X >=u 1 -> X
2284     if (match(RHS, m_One()))
2285       return LHS;
2286     if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
2287       return getTrue(ITy);
2288     break;
2289   case ICmpInst::ICMP_SGE:
2290     /// For signed comparison, the values for an i1 are 0 and -1
2291     /// respectively. This maps into a truth table of:
2292     /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
2293     ///  0  |  0  |  1 (0 >= 0)   |  1
2294     ///  0  |  1  |  1 (0 >= -1)  |  1
2295     ///  1  |  0  |  0 (-1 >= 0)  |  0
2296     ///  1  |  1  |  1 (-1 >= -1) |  1
2297     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2298       return getTrue(ITy);
2299     break;
2300   case ICmpInst::ICMP_SLT:
2301     // X <s 0 -> X
2302     if (match(RHS, m_Zero()))
2303       return LHS;
2304     break;
2305   case ICmpInst::ICMP_SLE:
2306     // X <=s -1 -> X
2307     if (match(RHS, m_One()))
2308       return LHS;
2309     break;
2310   case ICmpInst::ICMP_ULE:
2311     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2312       return getTrue(ITy);
2313     break;
2314   }
2315 
2316   return nullptr;
2317 }
2318 
2319 /// Try hard to fold icmp with zero RHS because this is a common case.
2320 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
2321                                    Value *RHS, const Query &Q) {
2322   if (!match(RHS, m_Zero()))
2323     return nullptr;
2324 
2325   Type *ITy = GetCompareTy(LHS); // The return type.
2326   bool LHSKnownNonNegative, LHSKnownNegative;
2327   switch (Pred) {
2328   default:
2329     llvm_unreachable("Unknown ICmp predicate!");
2330   case ICmpInst::ICMP_ULT:
2331     return getFalse(ITy);
2332   case ICmpInst::ICMP_UGE:
2333     return getTrue(ITy);
2334   case ICmpInst::ICMP_EQ:
2335   case ICmpInst::ICMP_ULE:
2336     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2337       return getFalse(ITy);
2338     break;
2339   case ICmpInst::ICMP_NE:
2340   case ICmpInst::ICMP_UGT:
2341     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2342       return getTrue(ITy);
2343     break;
2344   case ICmpInst::ICMP_SLT:
2345     ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2346                    Q.CxtI, Q.DT);
2347     if (LHSKnownNegative)
2348       return getTrue(ITy);
2349     if (LHSKnownNonNegative)
2350       return getFalse(ITy);
2351     break;
2352   case ICmpInst::ICMP_SLE:
2353     ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2354                    Q.CxtI, Q.DT);
2355     if (LHSKnownNegative)
2356       return getTrue(ITy);
2357     if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2358       return getFalse(ITy);
2359     break;
2360   case ICmpInst::ICMP_SGE:
2361     ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2362                    Q.CxtI, Q.DT);
2363     if (LHSKnownNegative)
2364       return getFalse(ITy);
2365     if (LHSKnownNonNegative)
2366       return getTrue(ITy);
2367     break;
2368   case ICmpInst::ICMP_SGT:
2369     ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2370                    Q.CxtI, Q.DT);
2371     if (LHSKnownNegative)
2372       return getFalse(ITy);
2373     if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2374       return getTrue(ITy);
2375     break;
2376   }
2377 
2378   return nullptr;
2379 }
2380 
2381 /// Many binary operators with a constant operand have an easy-to-compute
2382 /// range of outputs. This can be used to fold a comparison to always true or
2383 /// always false.
2384 static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper) {
2385   unsigned Width = Lower.getBitWidth();
2386   const APInt *C;
2387   switch (BO.getOpcode()) {
2388   case Instruction::Add:
2389     if (match(BO.getOperand(1), m_APInt(C)) && *C != 0) {
2390       // FIXME: If we have both nuw and nsw, we should reduce the range further.
2391       if (BO.hasNoUnsignedWrap()) {
2392         // 'add nuw x, C' produces [C, UINT_MAX].
2393         Lower = *C;
2394       } else if (BO.hasNoSignedWrap()) {
2395         if (C->isNegative()) {
2396           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
2397           Lower = APInt::getSignedMinValue(Width);
2398           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
2399         } else {
2400           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
2401           Lower = APInt::getSignedMinValue(Width) + *C;
2402           Upper = APInt::getSignedMaxValue(Width) + 1;
2403         }
2404       }
2405     }
2406     break;
2407 
2408   case Instruction::And:
2409     if (match(BO.getOperand(1), m_APInt(C)))
2410       // 'and x, C' produces [0, C].
2411       Upper = *C + 1;
2412     break;
2413 
2414   case Instruction::Or:
2415     if (match(BO.getOperand(1), m_APInt(C)))
2416       // 'or x, C' produces [C, UINT_MAX].
2417       Lower = *C;
2418     break;
2419 
2420   case Instruction::AShr:
2421     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
2422       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
2423       Lower = APInt::getSignedMinValue(Width).ashr(*C);
2424       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
2425     } else if (match(BO.getOperand(0), m_APInt(C))) {
2426       unsigned ShiftAmount = Width - 1;
2427       if (*C != 0 && BO.isExact())
2428         ShiftAmount = C->countTrailingZeros();
2429       if (C->isNegative()) {
2430         // 'ashr C, x' produces [C, C >> (Width-1)]
2431         Lower = *C;
2432         Upper = C->ashr(ShiftAmount) + 1;
2433       } else {
2434         // 'ashr C, x' produces [C >> (Width-1), C]
2435         Lower = C->ashr(ShiftAmount);
2436         Upper = *C + 1;
2437       }
2438     }
2439     break;
2440 
2441   case Instruction::LShr:
2442     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
2443       // 'lshr x, C' produces [0, UINT_MAX >> C].
2444       Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
2445     } else if (match(BO.getOperand(0), m_APInt(C))) {
2446       // 'lshr C, x' produces [C >> (Width-1), C].
2447       unsigned ShiftAmount = Width - 1;
2448       if (*C != 0 && BO.isExact())
2449         ShiftAmount = C->countTrailingZeros();
2450       Lower = C->lshr(ShiftAmount);
2451       Upper = *C + 1;
2452     }
2453     break;
2454 
2455   case Instruction::Shl:
2456     if (match(BO.getOperand(0), m_APInt(C))) {
2457       if (BO.hasNoUnsignedWrap()) {
2458         // 'shl nuw C, x' produces [C, C << CLZ(C)]
2459         Lower = *C;
2460         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
2461       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
2462         if (C->isNegative()) {
2463           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
2464           unsigned ShiftAmount = C->countLeadingOnes() - 1;
2465           Lower = C->shl(ShiftAmount);
2466           Upper = *C + 1;
2467         } else {
2468           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
2469           unsigned ShiftAmount = C->countLeadingZeros() - 1;
2470           Lower = *C;
2471           Upper = C->shl(ShiftAmount) + 1;
2472         }
2473       }
2474     }
2475     break;
2476 
2477   case Instruction::SDiv:
2478     if (match(BO.getOperand(1), m_APInt(C))) {
2479       APInt IntMin = APInt::getSignedMinValue(Width);
2480       APInt IntMax = APInt::getSignedMaxValue(Width);
2481       if (C->isAllOnesValue()) {
2482         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
2483         //    where C != -1 and C != 0 and C != 1
2484         Lower = IntMin + 1;
2485         Upper = IntMax + 1;
2486       } else if (C->countLeadingZeros() < Width - 1) {
2487         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
2488         //    where C != -1 and C != 0 and C != 1
2489         Lower = IntMin.sdiv(*C);
2490         Upper = IntMax.sdiv(*C);
2491         if (Lower.sgt(Upper))
2492           std::swap(Lower, Upper);
2493         Upper = Upper + 1;
2494         assert(Upper != Lower && "Upper part of range has wrapped!");
2495       }
2496     } else if (match(BO.getOperand(0), m_APInt(C))) {
2497       if (C->isMinSignedValue()) {
2498         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
2499         Lower = *C;
2500         Upper = Lower.lshr(1) + 1;
2501       } else {
2502         // 'sdiv C, x' produces [-|C|, |C|].
2503         Upper = C->abs() + 1;
2504         Lower = (-Upper) + 1;
2505       }
2506     }
2507     break;
2508 
2509   case Instruction::UDiv:
2510     if (match(BO.getOperand(1), m_APInt(C)) && *C != 0) {
2511       // 'udiv x, C' produces [0, UINT_MAX / C].
2512       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
2513     } else if (match(BO.getOperand(0), m_APInt(C))) {
2514       // 'udiv C, x' produces [0, C].
2515       Upper = *C + 1;
2516     }
2517     break;
2518 
2519   case Instruction::SRem:
2520     if (match(BO.getOperand(1), m_APInt(C))) {
2521       // 'srem x, C' produces (-|C|, |C|).
2522       Upper = C->abs();
2523       Lower = (-Upper) + 1;
2524     }
2525     break;
2526 
2527   case Instruction::URem:
2528     if (match(BO.getOperand(1), m_APInt(C)))
2529       // 'urem x, C' produces [0, C).
2530       Upper = *C;
2531     break;
2532 
2533   default:
2534     break;
2535   }
2536 }
2537 
2538 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
2539                                        Value *RHS) {
2540   const APInt *C;
2541   if (!match(RHS, m_APInt(C)))
2542     return nullptr;
2543 
2544   // Rule out tautological comparisons (eg., ult 0 or uge 0).
2545   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2546   if (RHS_CR.isEmptySet())
2547     return ConstantInt::getFalse(GetCompareTy(RHS));
2548   if (RHS_CR.isFullSet())
2549     return ConstantInt::getTrue(GetCompareTy(RHS));
2550 
2551   // Find the range of possible values for binary operators.
2552   unsigned Width = C->getBitWidth();
2553   APInt Lower = APInt(Width, 0);
2554   APInt Upper = APInt(Width, 0);
2555   if (auto *BO = dyn_cast<BinaryOperator>(LHS))
2556     setLimitsForBinOp(*BO, Lower, Upper);
2557 
2558   ConstantRange LHS_CR =
2559       Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true);
2560 
2561   if (auto *I = dyn_cast<Instruction>(LHS))
2562     if (auto *Ranges = I->getMetadata(LLVMContext::MD_range))
2563       LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges));
2564 
2565   if (!LHS_CR.isFullSet()) {
2566     if (RHS_CR.contains(LHS_CR))
2567       return ConstantInt::getTrue(GetCompareTy(RHS));
2568     if (RHS_CR.inverse().contains(LHS_CR))
2569       return ConstantInt::getFalse(GetCompareTy(RHS));
2570   }
2571 
2572   return nullptr;
2573 }
2574 
2575 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
2576                                     Value *RHS, const Query &Q,
2577                                     unsigned MaxRecurse) {
2578   Type *ITy = GetCompareTy(LHS); // The return type.
2579 
2580   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2581   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2582   if (MaxRecurse && (LBO || RBO)) {
2583     // Analyze the case when either LHS or RHS is an add instruction.
2584     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
2585     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2586     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2587     if (LBO && LBO->getOpcode() == Instruction::Add) {
2588       A = LBO->getOperand(0);
2589       B = LBO->getOperand(1);
2590       NoLHSWrapProblem =
2591           ICmpInst::isEquality(Pred) ||
2592           (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
2593           (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
2594     }
2595     if (RBO && RBO->getOpcode() == Instruction::Add) {
2596       C = RBO->getOperand(0);
2597       D = RBO->getOperand(1);
2598       NoRHSWrapProblem =
2599           ICmpInst::isEquality(Pred) ||
2600           (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
2601           (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
2602     }
2603 
2604     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2605     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2606       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2607                                       Constant::getNullValue(RHS->getType()), Q,
2608                                       MaxRecurse - 1))
2609         return V;
2610 
2611     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2612     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2613       if (Value *V =
2614               SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
2615                                C == LHS ? D : C, Q, MaxRecurse - 1))
2616         return V;
2617 
2618     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2619     if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem &&
2620         NoRHSWrapProblem) {
2621       // Determine Y and Z in the form icmp (X+Y), (X+Z).
2622       Value *Y, *Z;
2623       if (A == C) {
2624         // C + B == C + D  ->  B == D
2625         Y = B;
2626         Z = D;
2627       } else if (A == D) {
2628         // D + B == C + D  ->  B == C
2629         Y = B;
2630         Z = C;
2631       } else if (B == C) {
2632         // A + C == C + D  ->  A == D
2633         Y = A;
2634         Z = D;
2635       } else {
2636         assert(B == D);
2637         // A + D == C + D  ->  A == C
2638         Y = A;
2639         Z = C;
2640       }
2641       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
2642         return V;
2643     }
2644   }
2645 
2646   {
2647     Value *Y = nullptr;
2648     // icmp pred (or X, Y), X
2649     if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
2650       if (Pred == ICmpInst::ICMP_ULT)
2651         return getFalse(ITy);
2652       if (Pred == ICmpInst::ICMP_UGE)
2653         return getTrue(ITy);
2654 
2655       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2656         bool RHSKnownNonNegative, RHSKnownNegative;
2657         bool YKnownNonNegative, YKnownNegative;
2658         ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, Q.DL, 0,
2659                        Q.AC, Q.CxtI, Q.DT);
2660         ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC,
2661                        Q.CxtI, Q.DT);
2662         if (RHSKnownNonNegative && YKnownNegative)
2663           return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
2664         if (RHSKnownNegative || YKnownNonNegative)
2665           return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
2666       }
2667     }
2668     // icmp pred X, (or X, Y)
2669     if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) {
2670       if (Pred == ICmpInst::ICMP_ULE)
2671         return getTrue(ITy);
2672       if (Pred == ICmpInst::ICMP_UGT)
2673         return getFalse(ITy);
2674 
2675       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) {
2676         bool LHSKnownNonNegative, LHSKnownNegative;
2677         bool YKnownNonNegative, YKnownNegative;
2678         ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0,
2679                        Q.AC, Q.CxtI, Q.DT);
2680         ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC,
2681                        Q.CxtI, Q.DT);
2682         if (LHSKnownNonNegative && YKnownNegative)
2683           return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy);
2684         if (LHSKnownNegative || YKnownNonNegative)
2685           return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy);
2686       }
2687     }
2688   }
2689 
2690   // icmp pred (and X, Y), X
2691   if (LBO && match(LBO, m_CombineOr(m_And(m_Value(), m_Specific(RHS)),
2692                                     m_And(m_Specific(RHS), m_Value())))) {
2693     if (Pred == ICmpInst::ICMP_UGT)
2694       return getFalse(ITy);
2695     if (Pred == ICmpInst::ICMP_ULE)
2696       return getTrue(ITy);
2697   }
2698   // icmp pred X, (and X, Y)
2699   if (RBO && match(RBO, m_CombineOr(m_And(m_Value(), m_Specific(LHS)),
2700                                     m_And(m_Specific(LHS), m_Value())))) {
2701     if (Pred == ICmpInst::ICMP_UGE)
2702       return getTrue(ITy);
2703     if (Pred == ICmpInst::ICMP_ULT)
2704       return getFalse(ITy);
2705   }
2706 
2707   // 0 - (zext X) pred C
2708   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
2709     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2710       if (RHSC->getValue().isStrictlyPositive()) {
2711         if (Pred == ICmpInst::ICMP_SLT)
2712           return ConstantInt::getTrue(RHSC->getContext());
2713         if (Pred == ICmpInst::ICMP_SGE)
2714           return ConstantInt::getFalse(RHSC->getContext());
2715         if (Pred == ICmpInst::ICMP_EQ)
2716           return ConstantInt::getFalse(RHSC->getContext());
2717         if (Pred == ICmpInst::ICMP_NE)
2718           return ConstantInt::getTrue(RHSC->getContext());
2719       }
2720       if (RHSC->getValue().isNonNegative()) {
2721         if (Pred == ICmpInst::ICMP_SLE)
2722           return ConstantInt::getTrue(RHSC->getContext());
2723         if (Pred == ICmpInst::ICMP_SGT)
2724           return ConstantInt::getFalse(RHSC->getContext());
2725       }
2726     }
2727   }
2728 
2729   // icmp pred (urem X, Y), Y
2730   if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2731     bool KnownNonNegative, KnownNegative;
2732     switch (Pred) {
2733     default:
2734       break;
2735     case ICmpInst::ICMP_SGT:
2736     case ICmpInst::ICMP_SGE:
2737       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2738                      Q.CxtI, Q.DT);
2739       if (!KnownNonNegative)
2740         break;
2741       LLVM_FALLTHROUGH;
2742     case ICmpInst::ICMP_EQ:
2743     case ICmpInst::ICMP_UGT:
2744     case ICmpInst::ICMP_UGE:
2745       return getFalse(ITy);
2746     case ICmpInst::ICMP_SLT:
2747     case ICmpInst::ICMP_SLE:
2748       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2749                      Q.CxtI, Q.DT);
2750       if (!KnownNonNegative)
2751         break;
2752       LLVM_FALLTHROUGH;
2753     case ICmpInst::ICMP_NE:
2754     case ICmpInst::ICMP_ULT:
2755     case ICmpInst::ICMP_ULE:
2756       return getTrue(ITy);
2757     }
2758   }
2759 
2760   // icmp pred X, (urem Y, X)
2761   if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2762     bool KnownNonNegative, KnownNegative;
2763     switch (Pred) {
2764     default:
2765       break;
2766     case ICmpInst::ICMP_SGT:
2767     case ICmpInst::ICMP_SGE:
2768       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2769                      Q.CxtI, Q.DT);
2770       if (!KnownNonNegative)
2771         break;
2772       LLVM_FALLTHROUGH;
2773     case ICmpInst::ICMP_NE:
2774     case ICmpInst::ICMP_UGT:
2775     case ICmpInst::ICMP_UGE:
2776       return getTrue(ITy);
2777     case ICmpInst::ICMP_SLT:
2778     case ICmpInst::ICMP_SLE:
2779       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2780                      Q.CxtI, Q.DT);
2781       if (!KnownNonNegative)
2782         break;
2783       LLVM_FALLTHROUGH;
2784     case ICmpInst::ICMP_EQ:
2785     case ICmpInst::ICMP_ULT:
2786     case ICmpInst::ICMP_ULE:
2787       return getFalse(ITy);
2788     }
2789   }
2790 
2791   // x >> y <=u x
2792   // x udiv y <=u x.
2793   if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
2794               match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) {
2795     // icmp pred (X op Y), X
2796     if (Pred == ICmpInst::ICMP_UGT)
2797       return getFalse(ITy);
2798     if (Pred == ICmpInst::ICMP_ULE)
2799       return getTrue(ITy);
2800   }
2801 
2802   // x >=u x >> y
2803   // x >=u x udiv y.
2804   if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) ||
2805               match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) {
2806     // icmp pred X, (X op Y)
2807     if (Pred == ICmpInst::ICMP_ULT)
2808       return getFalse(ITy);
2809     if (Pred == ICmpInst::ICMP_UGE)
2810       return getTrue(ITy);
2811   }
2812 
2813   // handle:
2814   //   CI2 << X == CI
2815   //   CI2 << X != CI
2816   //
2817   //   where CI2 is a power of 2 and CI isn't
2818   if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
2819     const APInt *CI2Val, *CIVal = &CI->getValue();
2820     if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
2821         CI2Val->isPowerOf2()) {
2822       if (!CIVal->isPowerOf2()) {
2823         // CI2 << X can equal zero in some circumstances,
2824         // this simplification is unsafe if CI is zero.
2825         //
2826         // We know it is safe if:
2827         // - The shift is nsw, we can't shift out the one bit.
2828         // - The shift is nuw, we can't shift out the one bit.
2829         // - CI2 is one
2830         // - CI isn't zero
2831         if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() ||
2832             *CI2Val == 1 || !CI->isZero()) {
2833           if (Pred == ICmpInst::ICMP_EQ)
2834             return ConstantInt::getFalse(RHS->getContext());
2835           if (Pred == ICmpInst::ICMP_NE)
2836             return ConstantInt::getTrue(RHS->getContext());
2837         }
2838       }
2839       if (CIVal->isSignBit() && *CI2Val == 1) {
2840         if (Pred == ICmpInst::ICMP_UGT)
2841           return ConstantInt::getFalse(RHS->getContext());
2842         if (Pred == ICmpInst::ICMP_ULE)
2843           return ConstantInt::getTrue(RHS->getContext());
2844       }
2845     }
2846   }
2847 
2848   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2849       LBO->getOperand(1) == RBO->getOperand(1)) {
2850     switch (LBO->getOpcode()) {
2851     default:
2852       break;
2853     case Instruction::UDiv:
2854     case Instruction::LShr:
2855       if (ICmpInst::isSigned(Pred))
2856         break;
2857       LLVM_FALLTHROUGH;
2858     case Instruction::SDiv:
2859     case Instruction::AShr:
2860       if (!LBO->isExact() || !RBO->isExact())
2861         break;
2862       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2863                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2864         return V;
2865       break;
2866     case Instruction::Shl: {
2867       bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
2868       bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
2869       if (!NUW && !NSW)
2870         break;
2871       if (!NSW && ICmpInst::isSigned(Pred))
2872         break;
2873       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2874                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2875         return V;
2876       break;
2877     }
2878     }
2879   }
2880   return nullptr;
2881 }
2882 
2883 /// Simplify integer comparisons where at least one operand of the compare
2884 /// matches an integer min/max idiom.
2885 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
2886                                      Value *RHS, const Query &Q,
2887                                      unsigned MaxRecurse) {
2888   Type *ITy = GetCompareTy(LHS); // The return type.
2889   Value *A, *B;
2890   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
2891   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
2892 
2893   // Signed variants on "max(a,b)>=a -> true".
2894   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2895     if (A != RHS)
2896       std::swap(A, B);       // smax(A, B) pred A.
2897     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2898     // We analyze this as smax(A, B) pred A.
2899     P = Pred;
2900   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2901              (A == LHS || B == LHS)) {
2902     if (A != LHS)
2903       std::swap(A, B);       // A pred smax(A, B).
2904     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2905     // We analyze this as smax(A, B) swapped-pred A.
2906     P = CmpInst::getSwappedPredicate(Pred);
2907   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2908              (A == RHS || B == RHS)) {
2909     if (A != RHS)
2910       std::swap(A, B);       // smin(A, B) pred A.
2911     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2912     // We analyze this as smax(-A, -B) swapped-pred -A.
2913     // Note that we do not need to actually form -A or -B thanks to EqP.
2914     P = CmpInst::getSwappedPredicate(Pred);
2915   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
2916              (A == LHS || B == LHS)) {
2917     if (A != LHS)
2918       std::swap(A, B);       // A pred smin(A, B).
2919     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2920     // We analyze this as smax(-A, -B) pred -A.
2921     // Note that we do not need to actually form -A or -B thanks to EqP.
2922     P = Pred;
2923   }
2924   if (P != CmpInst::BAD_ICMP_PREDICATE) {
2925     // Cases correspond to "max(A, B) p A".
2926     switch (P) {
2927     default:
2928       break;
2929     case CmpInst::ICMP_EQ:
2930     case CmpInst::ICMP_SLE:
2931       // Equivalent to "A EqP B".  This may be the same as the condition tested
2932       // in the max/min; if so, we can just return that.
2933       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2934         return V;
2935       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2936         return V;
2937       // Otherwise, see if "A EqP B" simplifies.
2938       if (MaxRecurse)
2939         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
2940           return V;
2941       break;
2942     case CmpInst::ICMP_NE:
2943     case CmpInst::ICMP_SGT: {
2944       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2945       // Equivalent to "A InvEqP B".  This may be the same as the condition
2946       // tested in the max/min; if so, we can just return that.
2947       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2948         return V;
2949       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2950         return V;
2951       // Otherwise, see if "A InvEqP B" simplifies.
2952       if (MaxRecurse)
2953         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
2954           return V;
2955       break;
2956     }
2957     case CmpInst::ICMP_SGE:
2958       // Always true.
2959       return getTrue(ITy);
2960     case CmpInst::ICMP_SLT:
2961       // Always false.
2962       return getFalse(ITy);
2963     }
2964   }
2965 
2966   // Unsigned variants on "max(a,b)>=a -> true".
2967   P = CmpInst::BAD_ICMP_PREDICATE;
2968   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2969     if (A != RHS)
2970       std::swap(A, B);       // umax(A, B) pred A.
2971     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2972     // We analyze this as umax(A, B) pred A.
2973     P = Pred;
2974   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
2975              (A == LHS || B == LHS)) {
2976     if (A != LHS)
2977       std::swap(A, B);       // A pred umax(A, B).
2978     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2979     // We analyze this as umax(A, B) swapped-pred A.
2980     P = CmpInst::getSwappedPredicate(Pred);
2981   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2982              (A == RHS || B == RHS)) {
2983     if (A != RHS)
2984       std::swap(A, B);       // umin(A, B) pred A.
2985     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2986     // We analyze this as umax(-A, -B) swapped-pred -A.
2987     // Note that we do not need to actually form -A or -B thanks to EqP.
2988     P = CmpInst::getSwappedPredicate(Pred);
2989   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
2990              (A == LHS || B == LHS)) {
2991     if (A != LHS)
2992       std::swap(A, B);       // A pred umin(A, B).
2993     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2994     // We analyze this as umax(-A, -B) pred -A.
2995     // Note that we do not need to actually form -A or -B thanks to EqP.
2996     P = Pred;
2997   }
2998   if (P != CmpInst::BAD_ICMP_PREDICATE) {
2999     // Cases correspond to "max(A, B) p A".
3000     switch (P) {
3001     default:
3002       break;
3003     case CmpInst::ICMP_EQ:
3004     case CmpInst::ICMP_ULE:
3005       // Equivalent to "A EqP B".  This may be the same as the condition tested
3006       // in the max/min; if so, we can just return that.
3007       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3008         return V;
3009       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3010         return V;
3011       // Otherwise, see if "A EqP B" simplifies.
3012       if (MaxRecurse)
3013         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3014           return V;
3015       break;
3016     case CmpInst::ICMP_NE:
3017     case CmpInst::ICMP_UGT: {
3018       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3019       // Equivalent to "A InvEqP B".  This may be the same as the condition
3020       // tested in the max/min; if so, we can just return that.
3021       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3022         return V;
3023       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3024         return V;
3025       // Otherwise, see if "A InvEqP B" simplifies.
3026       if (MaxRecurse)
3027         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3028           return V;
3029       break;
3030     }
3031     case CmpInst::ICMP_UGE:
3032       // Always true.
3033       return getTrue(ITy);
3034     case CmpInst::ICMP_ULT:
3035       // Always false.
3036       return getFalse(ITy);
3037     }
3038   }
3039 
3040   // Variants on "max(x,y) >= min(x,z)".
3041   Value *C, *D;
3042   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
3043       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
3044       (A == C || A == D || B == C || B == D)) {
3045     // max(x, ?) pred min(x, ?).
3046     if (Pred == CmpInst::ICMP_SGE)
3047       // Always true.
3048       return getTrue(ITy);
3049     if (Pred == CmpInst::ICMP_SLT)
3050       // Always false.
3051       return getFalse(ITy);
3052   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3053              match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
3054              (A == C || A == D || B == C || B == D)) {
3055     // min(x, ?) pred max(x, ?).
3056     if (Pred == CmpInst::ICMP_SLE)
3057       // Always true.
3058       return getTrue(ITy);
3059     if (Pred == CmpInst::ICMP_SGT)
3060       // Always false.
3061       return getFalse(ITy);
3062   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3063              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3064              (A == C || A == D || B == C || B == D)) {
3065     // max(x, ?) pred min(x, ?).
3066     if (Pred == CmpInst::ICMP_UGE)
3067       // Always true.
3068       return getTrue(ITy);
3069     if (Pred == CmpInst::ICMP_ULT)
3070       // Always false.
3071       return getFalse(ITy);
3072   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3073              match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
3074              (A == C || A == D || B == C || B == D)) {
3075     // min(x, ?) pred max(x, ?).
3076     if (Pred == CmpInst::ICMP_ULE)
3077       // Always true.
3078       return getTrue(ITy);
3079     if (Pred == CmpInst::ICMP_UGT)
3080       // Always false.
3081       return getFalse(ITy);
3082   }
3083 
3084   return nullptr;
3085 }
3086 
3087 /// Given operands for an ICmpInst, see if we can fold the result.
3088 /// If not, this returns null.
3089 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3090                                const Query &Q, unsigned MaxRecurse) {
3091   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3092   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
3093 
3094   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3095     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3096       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3097 
3098     // If we have a constant, make sure it is on the RHS.
3099     std::swap(LHS, RHS);
3100     Pred = CmpInst::getSwappedPredicate(Pred);
3101   }
3102 
3103   Type *ITy = GetCompareTy(LHS); // The return type.
3104 
3105   // icmp X, X -> true/false
3106   // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
3107   // because X could be 0.
3108   if (LHS == RHS || isa<UndefValue>(RHS))
3109     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
3110 
3111   if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
3112     return V;
3113 
3114   if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
3115     return V;
3116 
3117   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS))
3118     return V;
3119 
3120   // If both operands have range metadata, use the metadata
3121   // to simplify the comparison.
3122   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
3123     auto RHS_Instr = dyn_cast<Instruction>(RHS);
3124     auto LHS_Instr = dyn_cast<Instruction>(LHS);
3125 
3126     if (RHS_Instr->getMetadata(LLVMContext::MD_range) &&
3127         LHS_Instr->getMetadata(LLVMContext::MD_range)) {
3128       auto RHS_CR = getConstantRangeFromMetadata(
3129           *RHS_Instr->getMetadata(LLVMContext::MD_range));
3130       auto LHS_CR = getConstantRangeFromMetadata(
3131           *LHS_Instr->getMetadata(LLVMContext::MD_range));
3132 
3133       auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR);
3134       if (Satisfied_CR.contains(LHS_CR))
3135         return ConstantInt::getTrue(RHS->getContext());
3136 
3137       auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion(
3138                 CmpInst::getInversePredicate(Pred), RHS_CR);
3139       if (InversedSatisfied_CR.contains(LHS_CR))
3140         return ConstantInt::getFalse(RHS->getContext());
3141     }
3142   }
3143 
3144   // Compare of cast, for example (zext X) != 0 -> X != 0
3145   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
3146     Instruction *LI = cast<CastInst>(LHS);
3147     Value *SrcOp = LI->getOperand(0);
3148     Type *SrcTy = SrcOp->getType();
3149     Type *DstTy = LI->getType();
3150 
3151     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3152     // if the integer type is the same size as the pointer type.
3153     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3154         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
3155       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
3156         // Transfer the cast to the constant.
3157         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
3158                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
3159                                         Q, MaxRecurse-1))
3160           return V;
3161       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3162         if (RI->getOperand(0)->getType() == SrcTy)
3163           // Compare without the cast.
3164           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3165                                           Q, MaxRecurse-1))
3166             return V;
3167       }
3168     }
3169 
3170     if (isa<ZExtInst>(LHS)) {
3171       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3172       // same type.
3173       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3174         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3175           // Compare X and Y.  Note that signed predicates become unsigned.
3176           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3177                                           SrcOp, RI->getOperand(0), Q,
3178                                           MaxRecurse-1))
3179             return V;
3180       }
3181       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3182       // too.  If not, then try to deduce the result of the comparison.
3183       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3184         // Compute the constant that would happen if we truncated to SrcTy then
3185         // reextended to DstTy.
3186         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3187         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
3188 
3189         // If the re-extended constant didn't change then this is effectively
3190         // also a case of comparing two zero-extended values.
3191         if (RExt == CI && MaxRecurse)
3192           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3193                                         SrcOp, Trunc, Q, MaxRecurse-1))
3194             return V;
3195 
3196         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3197         // there.  Use this to work out the result of the comparison.
3198         if (RExt != CI) {
3199           switch (Pred) {
3200           default: llvm_unreachable("Unknown ICmp predicate!");
3201           // LHS <u RHS.
3202           case ICmpInst::ICMP_EQ:
3203           case ICmpInst::ICMP_UGT:
3204           case ICmpInst::ICMP_UGE:
3205             return ConstantInt::getFalse(CI->getContext());
3206 
3207           case ICmpInst::ICMP_NE:
3208           case ICmpInst::ICMP_ULT:
3209           case ICmpInst::ICMP_ULE:
3210             return ConstantInt::getTrue(CI->getContext());
3211 
3212           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
3213           // is non-negative then LHS <s RHS.
3214           case ICmpInst::ICMP_SGT:
3215           case ICmpInst::ICMP_SGE:
3216             return CI->getValue().isNegative() ?
3217               ConstantInt::getTrue(CI->getContext()) :
3218               ConstantInt::getFalse(CI->getContext());
3219 
3220           case ICmpInst::ICMP_SLT:
3221           case ICmpInst::ICMP_SLE:
3222             return CI->getValue().isNegative() ?
3223               ConstantInt::getFalse(CI->getContext()) :
3224               ConstantInt::getTrue(CI->getContext());
3225           }
3226         }
3227       }
3228     }
3229 
3230     if (isa<SExtInst>(LHS)) {
3231       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3232       // same type.
3233       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3234         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3235           // Compare X and Y.  Note that the predicate does not change.
3236           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3237                                           Q, MaxRecurse-1))
3238             return V;
3239       }
3240       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3241       // too.  If not, then try to deduce the result of the comparison.
3242       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3243         // Compute the constant that would happen if we truncated to SrcTy then
3244         // reextended to DstTy.
3245         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3246         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
3247 
3248         // If the re-extended constant didn't change then this is effectively
3249         // also a case of comparing two sign-extended values.
3250         if (RExt == CI && MaxRecurse)
3251           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
3252             return V;
3253 
3254         // Otherwise the upper bits of LHS are all equal, while RHS has varying
3255         // bits there.  Use this to work out the result of the comparison.
3256         if (RExt != CI) {
3257           switch (Pred) {
3258           default: llvm_unreachable("Unknown ICmp predicate!");
3259           case ICmpInst::ICMP_EQ:
3260             return ConstantInt::getFalse(CI->getContext());
3261           case ICmpInst::ICMP_NE:
3262             return ConstantInt::getTrue(CI->getContext());
3263 
3264           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
3265           // LHS >s RHS.
3266           case ICmpInst::ICMP_SGT:
3267           case ICmpInst::ICMP_SGE:
3268             return CI->getValue().isNegative() ?
3269               ConstantInt::getTrue(CI->getContext()) :
3270               ConstantInt::getFalse(CI->getContext());
3271           case ICmpInst::ICMP_SLT:
3272           case ICmpInst::ICMP_SLE:
3273             return CI->getValue().isNegative() ?
3274               ConstantInt::getFalse(CI->getContext()) :
3275               ConstantInt::getTrue(CI->getContext());
3276 
3277           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
3278           // LHS >u RHS.
3279           case ICmpInst::ICMP_UGT:
3280           case ICmpInst::ICMP_UGE:
3281             // Comparison is true iff the LHS <s 0.
3282             if (MaxRecurse)
3283               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3284                                               Constant::getNullValue(SrcTy),
3285                                               Q, MaxRecurse-1))
3286                 return V;
3287             break;
3288           case ICmpInst::ICMP_ULT:
3289           case ICmpInst::ICMP_ULE:
3290             // Comparison is true iff the LHS >=s 0.
3291             if (MaxRecurse)
3292               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3293                                               Constant::getNullValue(SrcTy),
3294                                               Q, MaxRecurse-1))
3295                 return V;
3296             break;
3297           }
3298         }
3299       }
3300     }
3301   }
3302 
3303   // icmp eq|ne X, Y -> false|true if X != Y
3304   if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
3305       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) {
3306     LLVMContext &Ctx = LHS->getType()->getContext();
3307     return Pred == ICmpInst::ICMP_NE ?
3308       ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx);
3309   }
3310 
3311   if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
3312     return V;
3313 
3314   if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
3315     return V;
3316 
3317   // Simplify comparisons of related pointers using a powerful, recursive
3318   // GEP-walk when we have target data available..
3319   if (LHS->getType()->isPointerTy())
3320     if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, LHS, RHS))
3321       return C;
3322   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3323     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3324       if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3325               Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3326           Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3327               Q.DL.getTypeSizeInBits(CRHS->getType()))
3328         if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI,
3329                                          CLHS->getPointerOperand(),
3330                                          CRHS->getPointerOperand()))
3331           return C;
3332 
3333   if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
3334     if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
3335       if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
3336           GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
3337           (ICmpInst::isEquality(Pred) ||
3338            (GLHS->isInBounds() && GRHS->isInBounds() &&
3339             Pred == ICmpInst::getSignedPredicate(Pred)))) {
3340         // The bases are equal and the indices are constant.  Build a constant
3341         // expression GEP with the same indices and a null base pointer to see
3342         // what constant folding can make out of it.
3343         Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
3344         SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
3345         Constant *NewLHS = ConstantExpr::getGetElementPtr(
3346             GLHS->getSourceElementType(), Null, IndicesLHS);
3347 
3348         SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
3349         Constant *NewRHS = ConstantExpr::getGetElementPtr(
3350             GLHS->getSourceElementType(), Null, IndicesRHS);
3351         return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
3352       }
3353     }
3354   }
3355 
3356   // If a bit is known to be zero for A and known to be one for B,
3357   // then A and B cannot be equal.
3358   if (ICmpInst::isEquality(Pred)) {
3359     const APInt *RHSVal;
3360     if (match(RHS, m_APInt(RHSVal))) {
3361       unsigned BitWidth = RHSVal->getBitWidth();
3362       APInt LHSKnownZero(BitWidth, 0);
3363       APInt LHSKnownOne(BitWidth, 0);
3364       computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, Q.DL, /*Depth=*/0, Q.AC,
3365                        Q.CxtI, Q.DT);
3366       if (((LHSKnownZero & *RHSVal) != 0) || ((LHSKnownOne & ~(*RHSVal)) != 0))
3367         return Pred == ICmpInst::ICMP_EQ ? ConstantInt::getFalse(ITy)
3368                                          : ConstantInt::getTrue(ITy);
3369     }
3370   }
3371 
3372   // If the comparison is with the result of a select instruction, check whether
3373   // comparing with either branch of the select always yields the same value.
3374   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3375     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3376       return V;
3377 
3378   // If the comparison is with the result of a phi instruction, check whether
3379   // doing the compare with each incoming phi value yields a common result.
3380   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3381     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3382       return V;
3383 
3384   return nullptr;
3385 }
3386 
3387 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3388                               const DataLayout &DL,
3389                               const TargetLibraryInfo *TLI,
3390                               const DominatorTree *DT, AssumptionCache *AC,
3391                               const Instruction *CxtI) {
3392   return ::SimplifyICmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
3393                             RecursionLimit);
3394 }
3395 
3396 /// Given operands for an FCmpInst, see if we can fold the result.
3397 /// If not, this returns null.
3398 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3399                                FastMathFlags FMF, const Query &Q,
3400                                unsigned MaxRecurse) {
3401   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3402   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3403 
3404   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3405     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3406       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3407 
3408     // If we have a constant, make sure it is on the RHS.
3409     std::swap(LHS, RHS);
3410     Pred = CmpInst::getSwappedPredicate(Pred);
3411   }
3412 
3413   // Fold trivial predicates.
3414   Type *RetTy = GetCompareTy(LHS);
3415   if (Pred == FCmpInst::FCMP_FALSE)
3416     return getFalse(RetTy);
3417   if (Pred == FCmpInst::FCMP_TRUE)
3418     return getTrue(RetTy);
3419 
3420   // UNO/ORD predicates can be trivially folded if NaNs are ignored.
3421   if (FMF.noNaNs()) {
3422     if (Pred == FCmpInst::FCMP_UNO)
3423       return getFalse(RetTy);
3424     if (Pred == FCmpInst::FCMP_ORD)
3425       return getTrue(RetTy);
3426   }
3427 
3428   // fcmp pred x, undef  and  fcmp pred undef, x
3429   // fold to true if unordered, false if ordered
3430   if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) {
3431     // Choosing NaN for the undef will always make unordered comparison succeed
3432     // and ordered comparison fail.
3433     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3434   }
3435 
3436   // fcmp x,x -> true/false.  Not all compares are foldable.
3437   if (LHS == RHS) {
3438     if (CmpInst::isTrueWhenEqual(Pred))
3439       return getTrue(RetTy);
3440     if (CmpInst::isFalseWhenEqual(Pred))
3441       return getFalse(RetTy);
3442   }
3443 
3444   // Handle fcmp with constant RHS
3445   const ConstantFP *CFP = nullptr;
3446   if (const auto *RHSC = dyn_cast<Constant>(RHS)) {
3447     if (RHS->getType()->isVectorTy())
3448       CFP = dyn_cast_or_null<ConstantFP>(RHSC->getSplatValue());
3449     else
3450       CFP = dyn_cast<ConstantFP>(RHSC);
3451   }
3452   if (CFP) {
3453     // If the constant is a nan, see if we can fold the comparison based on it.
3454     if (CFP->getValueAPF().isNaN()) {
3455       if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
3456         return getFalse(RetTy);
3457       assert(FCmpInst::isUnordered(Pred) &&
3458              "Comparison must be either ordered or unordered!");
3459       // True if unordered.
3460       return getTrue(RetTy);
3461     }
3462     // Check whether the constant is an infinity.
3463     if (CFP->getValueAPF().isInfinity()) {
3464       if (CFP->getValueAPF().isNegative()) {
3465         switch (Pred) {
3466         case FCmpInst::FCMP_OLT:
3467           // No value is ordered and less than negative infinity.
3468           return getFalse(RetTy);
3469         case FCmpInst::FCMP_UGE:
3470           // All values are unordered with or at least negative infinity.
3471           return getTrue(RetTy);
3472         default:
3473           break;
3474         }
3475       } else {
3476         switch (Pred) {
3477         case FCmpInst::FCMP_OGT:
3478           // No value is ordered and greater than infinity.
3479           return getFalse(RetTy);
3480         case FCmpInst::FCMP_ULE:
3481           // All values are unordered with and at most infinity.
3482           return getTrue(RetTy);
3483         default:
3484           break;
3485         }
3486       }
3487     }
3488     if (CFP->getValueAPF().isZero()) {
3489       switch (Pred) {
3490       case FCmpInst::FCMP_UGE:
3491         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3492           return getTrue(RetTy);
3493         break;
3494       case FCmpInst::FCMP_OLT:
3495         // X < 0
3496         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3497           return getFalse(RetTy);
3498         break;
3499       default:
3500         break;
3501       }
3502     }
3503   }
3504 
3505   // If the comparison is with the result of a select instruction, check whether
3506   // comparing with either branch of the select always yields the same value.
3507   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3508     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3509       return V;
3510 
3511   // If the comparison is with the result of a phi instruction, check whether
3512   // doing the compare with each incoming phi value yields a common result.
3513   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3514     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3515       return V;
3516 
3517   return nullptr;
3518 }
3519 
3520 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3521                               FastMathFlags FMF, const DataLayout &DL,
3522                               const TargetLibraryInfo *TLI,
3523                               const DominatorTree *DT, AssumptionCache *AC,
3524                               const Instruction *CxtI) {
3525   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF,
3526                             Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
3527 }
3528 
3529 /// See if V simplifies when its operand Op is replaced with RepOp.
3530 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3531                                            const Query &Q,
3532                                            unsigned MaxRecurse) {
3533   // Trivial replacement.
3534   if (V == Op)
3535     return RepOp;
3536 
3537   auto *I = dyn_cast<Instruction>(V);
3538   if (!I)
3539     return nullptr;
3540 
3541   // If this is a binary operator, try to simplify it with the replaced op.
3542   if (auto *B = dyn_cast<BinaryOperator>(I)) {
3543     // Consider:
3544     //   %cmp = icmp eq i32 %x, 2147483647
3545     //   %add = add nsw i32 %x, 1
3546     //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
3547     //
3548     // We can't replace %sel with %add unless we strip away the flags.
3549     if (isa<OverflowingBinaryOperator>(B))
3550       if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap())
3551         return nullptr;
3552     if (isa<PossiblyExactOperator>(B))
3553       if (B->isExact())
3554         return nullptr;
3555 
3556     if (MaxRecurse) {
3557       if (B->getOperand(0) == Op)
3558         return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q,
3559                              MaxRecurse - 1);
3560       if (B->getOperand(1) == Op)
3561         return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q,
3562                              MaxRecurse - 1);
3563     }
3564   }
3565 
3566   // Same for CmpInsts.
3567   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
3568     if (MaxRecurse) {
3569       if (C->getOperand(0) == Op)
3570         return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q,
3571                                MaxRecurse - 1);
3572       if (C->getOperand(1) == Op)
3573         return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q,
3574                                MaxRecurse - 1);
3575     }
3576   }
3577 
3578   // TODO: We could hand off more cases to instsimplify here.
3579 
3580   // If all operands are constant after substituting Op for RepOp then we can
3581   // constant fold the instruction.
3582   if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
3583     // Build a list of all constant operands.
3584     SmallVector<Constant *, 8> ConstOps;
3585     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3586       if (I->getOperand(i) == Op)
3587         ConstOps.push_back(CRepOp);
3588       else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
3589         ConstOps.push_back(COp);
3590       else
3591         break;
3592     }
3593 
3594     // All operands were constants, fold it.
3595     if (ConstOps.size() == I->getNumOperands()) {
3596       if (CmpInst *C = dyn_cast<CmpInst>(I))
3597         return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
3598                                                ConstOps[1], Q.DL, Q.TLI);
3599 
3600       if (LoadInst *LI = dyn_cast<LoadInst>(I))
3601         if (!LI->isVolatile())
3602           return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
3603 
3604       return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
3605     }
3606   }
3607 
3608   return nullptr;
3609 }
3610 
3611 /// Try to simplify a select instruction when its condition operand is an
3612 /// integer comparison where one operand of the compare is a constant.
3613 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
3614                                     const APInt *Y, bool TrueWhenUnset) {
3615   const APInt *C;
3616 
3617   // (X & Y) == 0 ? X & ~Y : X  --> X
3618   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
3619   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
3620       *Y == ~*C)
3621     return TrueWhenUnset ? FalseVal : TrueVal;
3622 
3623   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
3624   // (X & Y) != 0 ? X : X & ~Y  --> X
3625   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
3626       *Y == ~*C)
3627     return TrueWhenUnset ? FalseVal : TrueVal;
3628 
3629   if (Y->isPowerOf2()) {
3630     // (X & Y) == 0 ? X | Y : X  --> X | Y
3631     // (X & Y) != 0 ? X | Y : X  --> X
3632     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
3633         *Y == *C)
3634       return TrueWhenUnset ? TrueVal : FalseVal;
3635 
3636     // (X & Y) == 0 ? X : X | Y  --> X
3637     // (X & Y) != 0 ? X : X | Y  --> X | Y
3638     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
3639         *Y == *C)
3640       return TrueWhenUnset ? TrueVal : FalseVal;
3641   }
3642 
3643   return nullptr;
3644 }
3645 
3646 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
3647 /// eq/ne.
3648 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *TrueVal,
3649                                            Value *FalseVal,
3650                                            bool TrueWhenUnset) {
3651   unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
3652   if (!BitWidth)
3653     return nullptr;
3654 
3655   APInt MinSignedValue;
3656   Value *X;
3657   if (match(CmpLHS, m_Trunc(m_Value(X))) && (X == TrueVal || X == FalseVal)) {
3658     // icmp slt (trunc X), 0  <--> icmp ne (and X, C), 0
3659     // icmp sgt (trunc X), -1 <--> icmp eq (and X, C), 0
3660     unsigned DestSize = CmpLHS->getType()->getScalarSizeInBits();
3661     MinSignedValue = APInt::getSignedMinValue(DestSize).zext(BitWidth);
3662   } else {
3663     // icmp slt X, 0  <--> icmp ne (and X, C), 0
3664     // icmp sgt X, -1 <--> icmp eq (and X, C), 0
3665     X = CmpLHS;
3666     MinSignedValue = APInt::getSignedMinValue(BitWidth);
3667   }
3668 
3669   if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, &MinSignedValue,
3670                                        TrueWhenUnset))
3671     return V;
3672 
3673   return nullptr;
3674 }
3675 
3676 /// Try to simplify a select instruction when its condition operand is an
3677 /// integer comparison.
3678 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
3679                                          Value *FalseVal, const Query &Q,
3680                                          unsigned MaxRecurse) {
3681   ICmpInst::Predicate Pred;
3682   Value *CmpLHS, *CmpRHS;
3683   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
3684     return nullptr;
3685 
3686   // FIXME: This code is nearly duplicated in InstCombine. Using/refactoring
3687   // decomposeBitTestICmp() might help.
3688   if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) {
3689     Value *X;
3690     const APInt *Y;
3691     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
3692       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
3693                                            Pred == ICmpInst::ICMP_EQ))
3694         return V;
3695   } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
3696     // Comparing signed-less-than 0 checks if the sign bit is set.
3697     if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal,
3698                                                 false))
3699       return V;
3700   } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
3701     // Comparing signed-greater-than -1 checks if the sign bit is not set.
3702     if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal,
3703                                                 true))
3704       return V;
3705   }
3706 
3707   if (CondVal->hasOneUse()) {
3708     const APInt *C;
3709     if (match(CmpRHS, m_APInt(C))) {
3710       // X < MIN ? T : F  -->  F
3711       if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue())
3712         return FalseVal;
3713       // X < MIN ? T : F  -->  F
3714       if (Pred == ICmpInst::ICMP_ULT && C->isMinValue())
3715         return FalseVal;
3716       // X > MAX ? T : F  -->  F
3717       if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue())
3718         return FalseVal;
3719       // X > MAX ? T : F  -->  F
3720       if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue())
3721         return FalseVal;
3722     }
3723   }
3724 
3725   // If we have an equality comparison, then we know the value in one of the
3726   // arms of the select. See if substituting this value into the arm and
3727   // simplifying the result yields the same value as the other arm.
3728   if (Pred == ICmpInst::ICMP_EQ) {
3729     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3730             TrueVal ||
3731         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3732             TrueVal)
3733       return FalseVal;
3734     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3735             FalseVal ||
3736         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3737             FalseVal)
3738       return FalseVal;
3739   } else if (Pred == ICmpInst::ICMP_NE) {
3740     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3741             FalseVal ||
3742         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3743             FalseVal)
3744       return TrueVal;
3745     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3746             TrueVal ||
3747         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3748             TrueVal)
3749       return TrueVal;
3750   }
3751 
3752   return nullptr;
3753 }
3754 
3755 /// Given operands for a SelectInst, see if we can fold the result.
3756 /// If not, this returns null.
3757 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
3758                                  Value *FalseVal, const Query &Q,
3759                                  unsigned MaxRecurse) {
3760   // select true, X, Y  -> X
3761   // select false, X, Y -> Y
3762   if (Constant *CB = dyn_cast<Constant>(CondVal)) {
3763     if (CB->isAllOnesValue())
3764       return TrueVal;
3765     if (CB->isNullValue())
3766       return FalseVal;
3767   }
3768 
3769   // select C, X, X -> X
3770   if (TrueVal == FalseVal)
3771     return TrueVal;
3772 
3773   if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
3774     if (isa<Constant>(TrueVal))
3775       return TrueVal;
3776     return FalseVal;
3777   }
3778   if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
3779     return FalseVal;
3780   if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
3781     return TrueVal;
3782 
3783   if (Value *V =
3784           simplifySelectWithICmpCond(CondVal, TrueVal, FalseVal, Q, MaxRecurse))
3785     return V;
3786 
3787   return nullptr;
3788 }
3789 
3790 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
3791                                 const DataLayout &DL,
3792                                 const TargetLibraryInfo *TLI,
3793                                 const DominatorTree *DT, AssumptionCache *AC,
3794                                 const Instruction *CxtI) {
3795   return ::SimplifySelectInst(Cond, TrueVal, FalseVal,
3796                               Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
3797 }
3798 
3799 /// Given operands for an GetElementPtrInst, see if we can fold the result.
3800 /// If not, this returns null.
3801 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3802                               const Query &Q, unsigned) {
3803   // The type of the GEP pointer operand.
3804   unsigned AS =
3805       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
3806 
3807   // getelementptr P -> P.
3808   if (Ops.size() == 1)
3809     return Ops[0];
3810 
3811   // Compute the (pointer) type returned by the GEP instruction.
3812   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
3813   Type *GEPTy = PointerType::get(LastType, AS);
3814   if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
3815     GEPTy = VectorType::get(GEPTy, VT->getNumElements());
3816 
3817   if (isa<UndefValue>(Ops[0]))
3818     return UndefValue::get(GEPTy);
3819 
3820   if (Ops.size() == 2) {
3821     // getelementptr P, 0 -> P.
3822     if (match(Ops[1], m_Zero()))
3823       return Ops[0];
3824 
3825     Type *Ty = SrcTy;
3826     if (Ty->isSized()) {
3827       Value *P;
3828       uint64_t C;
3829       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
3830       // getelementptr P, N -> P if P points to a type of zero size.
3831       if (TyAllocSize == 0)
3832         return Ops[0];
3833 
3834       // The following transforms are only safe if the ptrtoint cast
3835       // doesn't truncate the pointers.
3836       if (Ops[1]->getType()->getScalarSizeInBits() ==
3837           Q.DL.getPointerSizeInBits(AS)) {
3838         auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
3839           if (match(P, m_Zero()))
3840             return Constant::getNullValue(GEPTy);
3841           Value *Temp;
3842           if (match(P, m_PtrToInt(m_Value(Temp))))
3843             if (Temp->getType() == GEPTy)
3844               return Temp;
3845           return nullptr;
3846         };
3847 
3848         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
3849         if (TyAllocSize == 1 &&
3850             match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
3851           if (Value *R = PtrToIntOrZero(P))
3852             return R;
3853 
3854         // getelementptr V, (ashr (sub P, V), C) -> Q
3855         // if P points to a type of size 1 << C.
3856         if (match(Ops[1],
3857                   m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3858                          m_ConstantInt(C))) &&
3859             TyAllocSize == 1ULL << C)
3860           if (Value *R = PtrToIntOrZero(P))
3861             return R;
3862 
3863         // getelementptr V, (sdiv (sub P, V), C) -> Q
3864         // if P points to a type of size C.
3865         if (match(Ops[1],
3866                   m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3867                          m_SpecificInt(TyAllocSize))))
3868           if (Value *R = PtrToIntOrZero(P))
3869             return R;
3870       }
3871     }
3872   }
3873 
3874   if (Q.DL.getTypeAllocSize(LastType) == 1 &&
3875       all_of(Ops.slice(1).drop_back(1),
3876              [](Value *Idx) { return match(Idx, m_Zero()); })) {
3877     unsigned PtrWidth =
3878         Q.DL.getPointerSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
3879     if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == PtrWidth) {
3880       APInt BasePtrOffset(PtrWidth, 0);
3881       Value *StrippedBasePtr =
3882           Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
3883                                                             BasePtrOffset);
3884 
3885       // gep (gep V, C), (sub 0, V) -> C
3886       if (match(Ops.back(),
3887                 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) {
3888         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
3889         return ConstantExpr::getIntToPtr(CI, GEPTy);
3890       }
3891       // gep (gep V, C), (xor V, -1) -> C-1
3892       if (match(Ops.back(),
3893                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) {
3894         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
3895         return ConstantExpr::getIntToPtr(CI, GEPTy);
3896       }
3897     }
3898   }
3899 
3900   // Check to see if this is constant foldable.
3901   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3902     if (!isa<Constant>(Ops[i]))
3903       return nullptr;
3904 
3905   return ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
3906                                         Ops.slice(1));
3907 }
3908 
3909 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3910                              const DataLayout &DL,
3911                              const TargetLibraryInfo *TLI,
3912                              const DominatorTree *DT, AssumptionCache *AC,
3913                              const Instruction *CxtI) {
3914   return ::SimplifyGEPInst(SrcTy, Ops,
3915                            Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
3916 }
3917 
3918 /// Given operands for an InsertValueInst, see if we can fold the result.
3919 /// If not, this returns null.
3920 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
3921                                       ArrayRef<unsigned> Idxs, const Query &Q,
3922                                       unsigned) {
3923   if (Constant *CAgg = dyn_cast<Constant>(Agg))
3924     if (Constant *CVal = dyn_cast<Constant>(Val))
3925       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
3926 
3927   // insertvalue x, undef, n -> x
3928   if (match(Val, m_Undef()))
3929     return Agg;
3930 
3931   // insertvalue x, (extractvalue y, n), n
3932   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
3933     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
3934         EV->getIndices() == Idxs) {
3935       // insertvalue undef, (extractvalue y, n), n -> y
3936       if (match(Agg, m_Undef()))
3937         return EV->getAggregateOperand();
3938 
3939       // insertvalue y, (extractvalue y, n), n -> y
3940       if (Agg == EV->getAggregateOperand())
3941         return Agg;
3942     }
3943 
3944   return nullptr;
3945 }
3946 
3947 Value *llvm::SimplifyInsertValueInst(
3948     Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const DataLayout &DL,
3949     const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC,
3950     const Instruction *CxtI) {
3951   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query(DL, TLI, DT, AC, CxtI),
3952                                    RecursionLimit);
3953 }
3954 
3955 /// Given operands for an ExtractValueInst, see if we can fold the result.
3956 /// If not, this returns null.
3957 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
3958                                        const Query &, unsigned) {
3959   if (auto *CAgg = dyn_cast<Constant>(Agg))
3960     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
3961 
3962   // extractvalue x, (insertvalue y, elt, n), n -> elt
3963   unsigned NumIdxs = Idxs.size();
3964   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
3965        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
3966     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
3967     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
3968     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
3969     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
3970         Idxs.slice(0, NumCommonIdxs)) {
3971       if (NumIdxs == NumInsertValueIdxs)
3972         return IVI->getInsertedValueOperand();
3973       break;
3974     }
3975   }
3976 
3977   return nullptr;
3978 }
3979 
3980 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
3981                                       const DataLayout &DL,
3982                                       const TargetLibraryInfo *TLI,
3983                                       const DominatorTree *DT,
3984                                       AssumptionCache *AC,
3985                                       const Instruction *CxtI) {
3986   return ::SimplifyExtractValueInst(Agg, Idxs, Query(DL, TLI, DT, AC, CxtI),
3987                                     RecursionLimit);
3988 }
3989 
3990 /// Given operands for an ExtractElementInst, see if we can fold the result.
3991 /// If not, this returns null.
3992 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const Query &,
3993                                          unsigned) {
3994   if (auto *CVec = dyn_cast<Constant>(Vec)) {
3995     if (auto *CIdx = dyn_cast<Constant>(Idx))
3996       return ConstantFoldExtractElementInstruction(CVec, CIdx);
3997 
3998     // The index is not relevant if our vector is a splat.
3999     if (auto *Splat = CVec->getSplatValue())
4000       return Splat;
4001 
4002     if (isa<UndefValue>(Vec))
4003       return UndefValue::get(Vec->getType()->getVectorElementType());
4004   }
4005 
4006   // If extracting a specified index from the vector, see if we can recursively
4007   // find a previously computed scalar that was inserted into the vector.
4008   if (auto *IdxC = dyn_cast<ConstantInt>(Idx))
4009     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
4010       return Elt;
4011 
4012   return nullptr;
4013 }
4014 
4015 Value *llvm::SimplifyExtractElementInst(
4016     Value *Vec, Value *Idx, const DataLayout &DL, const TargetLibraryInfo *TLI,
4017     const DominatorTree *DT, AssumptionCache *AC, const Instruction *CxtI) {
4018   return ::SimplifyExtractElementInst(Vec, Idx, Query(DL, TLI, DT, AC, CxtI),
4019                                       RecursionLimit);
4020 }
4021 
4022 /// See if we can fold the given phi. If not, returns null.
4023 static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
4024   // If all of the PHI's incoming values are the same then replace the PHI node
4025   // with the common value.
4026   Value *CommonValue = nullptr;
4027   bool HasUndefInput = false;
4028   for (Value *Incoming : PN->incoming_values()) {
4029     // If the incoming value is the phi node itself, it can safely be skipped.
4030     if (Incoming == PN) continue;
4031     if (isa<UndefValue>(Incoming)) {
4032       // Remember that we saw an undef value, but otherwise ignore them.
4033       HasUndefInput = true;
4034       continue;
4035     }
4036     if (CommonValue && Incoming != CommonValue)
4037       return nullptr;  // Not the same, bail out.
4038     CommonValue = Incoming;
4039   }
4040 
4041   // If CommonValue is null then all of the incoming values were either undef or
4042   // equal to the phi node itself.
4043   if (!CommonValue)
4044     return UndefValue::get(PN->getType());
4045 
4046   // If we have a PHI node like phi(X, undef, X), where X is defined by some
4047   // instruction, we cannot return X as the result of the PHI node unless it
4048   // dominates the PHI block.
4049   if (HasUndefInput)
4050     return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
4051 
4052   return CommonValue;
4053 }
4054 
4055 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
4056                                Type *Ty, const Query &Q, unsigned MaxRecurse) {
4057   if (auto *C = dyn_cast<Constant>(Op))
4058     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
4059 
4060   if (auto *CI = dyn_cast<CastInst>(Op)) {
4061     auto *Src = CI->getOperand(0);
4062     Type *SrcTy = Src->getType();
4063     Type *MidTy = CI->getType();
4064     Type *DstTy = Ty;
4065     if (Src->getType() == Ty) {
4066       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
4067       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
4068       Type *SrcIntPtrTy =
4069           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
4070       Type *MidIntPtrTy =
4071           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
4072       Type *DstIntPtrTy =
4073           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
4074       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
4075                                          SrcIntPtrTy, MidIntPtrTy,
4076                                          DstIntPtrTy) == Instruction::BitCast)
4077         return Src;
4078     }
4079   }
4080 
4081   // bitcast x -> x
4082   if (CastOpc == Instruction::BitCast)
4083     if (Op->getType() == Ty)
4084       return Op;
4085 
4086   return nullptr;
4087 }
4088 
4089 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
4090                               const DataLayout &DL,
4091                               const TargetLibraryInfo *TLI,
4092                               const DominatorTree *DT, AssumptionCache *AC,
4093                               const Instruction *CxtI) {
4094   return ::SimplifyCastInst(CastOpc, Op, Ty, Query(DL, TLI, DT, AC, CxtI),
4095                             RecursionLimit);
4096 }
4097 
4098 //=== Helper functions for higher up the class hierarchy.
4099 
4100 /// Given operands for a BinaryOperator, see if we can fold the result.
4101 /// If not, this returns null.
4102 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4103                             const Query &Q, unsigned MaxRecurse) {
4104   switch (Opcode) {
4105   case Instruction::Add:
4106     return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
4107                            Q, MaxRecurse);
4108   case Instruction::FAdd:
4109     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4110 
4111   case Instruction::Sub:
4112     return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
4113                            Q, MaxRecurse);
4114   case Instruction::FSub:
4115     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4116 
4117   case Instruction::Mul:  return SimplifyMulInst (LHS, RHS, Q, MaxRecurse);
4118   case Instruction::FMul:
4119     return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4120   case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
4121   case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
4122   case Instruction::FDiv:
4123       return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4124   case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
4125   case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
4126   case Instruction::FRem:
4127       return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4128   case Instruction::Shl:
4129     return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
4130                            Q, MaxRecurse);
4131   case Instruction::LShr:
4132     return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
4133   case Instruction::AShr:
4134     return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
4135   case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
4136   case Instruction::Or:  return SimplifyOrInst (LHS, RHS, Q, MaxRecurse);
4137   case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
4138   default:
4139     if (Constant *CLHS = dyn_cast<Constant>(LHS))
4140       if (Constant *CRHS = dyn_cast<Constant>(RHS))
4141         return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
4142 
4143     // If the operation is associative, try some generic simplifications.
4144     if (Instruction::isAssociative(Opcode))
4145       if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse))
4146         return V;
4147 
4148     // If the operation is with the result of a select instruction check whether
4149     // operating on either branch of the select always yields the same value.
4150     if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
4151       if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse))
4152         return V;
4153 
4154     // If the operation is with the result of a phi instruction, check whether
4155     // operating on all incoming values of the phi always yields the same value.
4156     if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
4157       if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse))
4158         return V;
4159 
4160     return nullptr;
4161   }
4162 }
4163 
4164 /// Given operands for a BinaryOperator, see if we can fold the result.
4165 /// If not, this returns null.
4166 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the
4167 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp.
4168 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4169                               const FastMathFlags &FMF, const Query &Q,
4170                               unsigned MaxRecurse) {
4171   switch (Opcode) {
4172   case Instruction::FAdd:
4173     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
4174   case Instruction::FSub:
4175     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
4176   case Instruction::FMul:
4177     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
4178   case Instruction::FDiv:
4179     return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
4180   default:
4181     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
4182   }
4183 }
4184 
4185 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4186                            const DataLayout &DL, const TargetLibraryInfo *TLI,
4187                            const DominatorTree *DT, AssumptionCache *AC,
4188                            const Instruction *CxtI) {
4189   return ::SimplifyBinOp(Opcode, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
4190                          RecursionLimit);
4191 }
4192 
4193 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4194                              const FastMathFlags &FMF, const DataLayout &DL,
4195                              const TargetLibraryInfo *TLI,
4196                              const DominatorTree *DT, AssumptionCache *AC,
4197                              const Instruction *CxtI) {
4198   return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Query(DL, TLI, DT, AC, CxtI),
4199                            RecursionLimit);
4200 }
4201 
4202 /// Given operands for a CmpInst, see if we can fold the result.
4203 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4204                               const Query &Q, unsigned MaxRecurse) {
4205   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
4206     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
4207   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4208 }
4209 
4210 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4211                              const DataLayout &DL, const TargetLibraryInfo *TLI,
4212                              const DominatorTree *DT, AssumptionCache *AC,
4213                              const Instruction *CxtI) {
4214   return ::SimplifyCmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
4215                            RecursionLimit);
4216 }
4217 
4218 static bool IsIdempotent(Intrinsic::ID ID) {
4219   switch (ID) {
4220   default: return false;
4221 
4222   // Unary idempotent: f(f(x)) = f(x)
4223   case Intrinsic::fabs:
4224   case Intrinsic::floor:
4225   case Intrinsic::ceil:
4226   case Intrinsic::trunc:
4227   case Intrinsic::rint:
4228   case Intrinsic::nearbyint:
4229   case Intrinsic::round:
4230     return true;
4231   }
4232 }
4233 
4234 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
4235                                    const DataLayout &DL) {
4236   GlobalValue *PtrSym;
4237   APInt PtrOffset;
4238   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
4239     return nullptr;
4240 
4241   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
4242   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
4243   Type *Int32PtrTy = Int32Ty->getPointerTo();
4244   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
4245 
4246   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
4247   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
4248     return nullptr;
4249 
4250   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
4251   if (OffsetInt % 4 != 0)
4252     return nullptr;
4253 
4254   Constant *C = ConstantExpr::getGetElementPtr(
4255       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
4256       ConstantInt::get(Int64Ty, OffsetInt / 4));
4257   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
4258   if (!Loaded)
4259     return nullptr;
4260 
4261   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
4262   if (!LoadedCE)
4263     return nullptr;
4264 
4265   if (LoadedCE->getOpcode() == Instruction::Trunc) {
4266     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4267     if (!LoadedCE)
4268       return nullptr;
4269   }
4270 
4271   if (LoadedCE->getOpcode() != Instruction::Sub)
4272     return nullptr;
4273 
4274   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4275   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
4276     return nullptr;
4277   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
4278 
4279   Constant *LoadedRHS = LoadedCE->getOperand(1);
4280   GlobalValue *LoadedRHSSym;
4281   APInt LoadedRHSOffset;
4282   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
4283                                   DL) ||
4284       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
4285     return nullptr;
4286 
4287   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
4288 }
4289 
4290 static bool maskIsAllZeroOrUndef(Value *Mask) {
4291   auto *ConstMask = dyn_cast<Constant>(Mask);
4292   if (!ConstMask)
4293     return false;
4294   if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
4295     return true;
4296   for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
4297        ++I) {
4298     if (auto *MaskElt = ConstMask->getAggregateElement(I))
4299       if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
4300         continue;
4301     return false;
4302   }
4303   return true;
4304 }
4305 
4306 template <typename IterTy>
4307 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd,
4308                                 const Query &Q, unsigned MaxRecurse) {
4309   Intrinsic::ID IID = F->getIntrinsicID();
4310   unsigned NumOperands = std::distance(ArgBegin, ArgEnd);
4311 
4312   // Unary Ops
4313   if (NumOperands == 1) {
4314     // Perform idempotent optimizations
4315     if (IsIdempotent(IID)) {
4316       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) {
4317         if (II->getIntrinsicID() == IID)
4318           return II;
4319       }
4320     }
4321 
4322     switch (IID) {
4323     case Intrinsic::fabs: {
4324       if (SignBitMustBeZero(*ArgBegin, Q.TLI))
4325         return *ArgBegin;
4326       return nullptr;
4327     }
4328     default:
4329       return nullptr;
4330     }
4331   }
4332 
4333   // Binary Ops
4334   if (NumOperands == 2) {
4335     Value *LHS = *ArgBegin;
4336     Value *RHS = *(ArgBegin + 1);
4337     Type *ReturnType = F->getReturnType();
4338 
4339     switch (IID) {
4340     case Intrinsic::usub_with_overflow:
4341     case Intrinsic::ssub_with_overflow: {
4342       // X - X -> { 0, false }
4343       if (LHS == RHS)
4344         return Constant::getNullValue(ReturnType);
4345 
4346       // X - undef -> undef
4347       // undef - X -> undef
4348       if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
4349         return UndefValue::get(ReturnType);
4350 
4351       return nullptr;
4352     }
4353     case Intrinsic::uadd_with_overflow:
4354     case Intrinsic::sadd_with_overflow: {
4355       // X + undef -> undef
4356       if (isa<UndefValue>(RHS))
4357         return UndefValue::get(ReturnType);
4358 
4359       return nullptr;
4360     }
4361     case Intrinsic::umul_with_overflow:
4362     case Intrinsic::smul_with_overflow: {
4363       // X * 0 -> { 0, false }
4364       if (match(RHS, m_Zero()))
4365         return Constant::getNullValue(ReturnType);
4366 
4367       // X * undef -> { 0, false }
4368       if (match(RHS, m_Undef()))
4369         return Constant::getNullValue(ReturnType);
4370 
4371       return nullptr;
4372     }
4373     case Intrinsic::load_relative: {
4374       Constant *C0 = dyn_cast<Constant>(LHS);
4375       Constant *C1 = dyn_cast<Constant>(RHS);
4376       if (C0 && C1)
4377         return SimplifyRelativeLoad(C0, C1, Q.DL);
4378       return nullptr;
4379     }
4380     default:
4381       return nullptr;
4382     }
4383   }
4384 
4385   // Simplify calls to llvm.masked.load.*
4386   switch (IID) {
4387   case Intrinsic::masked_load: {
4388     Value *MaskArg = ArgBegin[2];
4389     Value *PassthruArg = ArgBegin[3];
4390     // If the mask is all zeros or undef, the "passthru" argument is the result.
4391     if (maskIsAllZeroOrUndef(MaskArg))
4392       return PassthruArg;
4393     return nullptr;
4394   }
4395   default:
4396     return nullptr;
4397   }
4398 }
4399 
4400 template <typename IterTy>
4401 static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd,
4402                            const Query &Q, unsigned MaxRecurse) {
4403   Type *Ty = V->getType();
4404   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
4405     Ty = PTy->getElementType();
4406   FunctionType *FTy = cast<FunctionType>(Ty);
4407 
4408   // call undef -> undef
4409   // call null -> undef
4410   if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V))
4411     return UndefValue::get(FTy->getReturnType());
4412 
4413   Function *F = dyn_cast<Function>(V);
4414   if (!F)
4415     return nullptr;
4416 
4417   if (F->isIntrinsic())
4418     if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse))
4419       return Ret;
4420 
4421   if (!canConstantFoldCallTo(F))
4422     return nullptr;
4423 
4424   SmallVector<Constant *, 4> ConstantArgs;
4425   ConstantArgs.reserve(ArgEnd - ArgBegin);
4426   for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
4427     Constant *C = dyn_cast<Constant>(*I);
4428     if (!C)
4429       return nullptr;
4430     ConstantArgs.push_back(C);
4431   }
4432 
4433   return ConstantFoldCall(F, ConstantArgs, Q.TLI);
4434 }
4435 
4436 Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin,
4437                           User::op_iterator ArgEnd, const DataLayout &DL,
4438                           const TargetLibraryInfo *TLI, const DominatorTree *DT,
4439                           AssumptionCache *AC, const Instruction *CxtI) {
4440   return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT, AC, CxtI),
4441                         RecursionLimit);
4442 }
4443 
4444 Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args,
4445                           const DataLayout &DL, const TargetLibraryInfo *TLI,
4446                           const DominatorTree *DT, AssumptionCache *AC,
4447                           const Instruction *CxtI) {
4448   return ::SimplifyCall(V, Args.begin(), Args.end(),
4449                         Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
4450 }
4451 
4452 /// See if we can compute a simplified version of this instruction.
4453 /// If not, this returns null.
4454 Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout &DL,
4455                                  const TargetLibraryInfo *TLI,
4456                                  const DominatorTree *DT, AssumptionCache *AC,
4457                                  OptimizationRemarkEmitter *ORE) {
4458   Value *Result;
4459 
4460   switch (I->getOpcode()) {
4461   default:
4462     Result = ConstantFoldInstruction(I, DL, TLI);
4463     break;
4464   case Instruction::FAdd:
4465     Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
4466                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4467     break;
4468   case Instruction::Add:
4469     Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
4470                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
4471                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
4472                              TLI, DT, AC, I);
4473     break;
4474   case Instruction::FSub:
4475     Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
4476                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4477     break;
4478   case Instruction::Sub:
4479     Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
4480                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
4481                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
4482                              TLI, DT, AC, I);
4483     break;
4484   case Instruction::FMul:
4485     Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
4486                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4487     break;
4488   case Instruction::Mul:
4489     Result =
4490         SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
4491     break;
4492   case Instruction::SDiv:
4493     Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
4494                               AC, I);
4495     break;
4496   case Instruction::UDiv:
4497     Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
4498                               AC, I);
4499     break;
4500   case Instruction::FDiv:
4501     Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
4502                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4503     break;
4504   case Instruction::SRem:
4505     Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
4506                               AC, I);
4507     break;
4508   case Instruction::URem:
4509     Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
4510                               AC, I);
4511     break;
4512   case Instruction::FRem:
4513     Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
4514                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4515     break;
4516   case Instruction::Shl:
4517     Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
4518                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
4519                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
4520                              TLI, DT, AC, I);
4521     break;
4522   case Instruction::LShr:
4523     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
4524                               cast<BinaryOperator>(I)->isExact(), DL, TLI, DT,
4525                               AC, I);
4526     break;
4527   case Instruction::AShr:
4528     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
4529                               cast<BinaryOperator>(I)->isExact(), DL, TLI, DT,
4530                               AC, I);
4531     break;
4532   case Instruction::And:
4533     Result =
4534         SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
4535     break;
4536   case Instruction::Or:
4537     Result =
4538         SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
4539     break;
4540   case Instruction::Xor:
4541     Result =
4542         SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
4543     break;
4544   case Instruction::ICmp:
4545     Result =
4546         SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), I->getOperand(0),
4547                          I->getOperand(1), DL, TLI, DT, AC, I);
4548     break;
4549   case Instruction::FCmp:
4550     Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
4551                               I->getOperand(0), I->getOperand(1),
4552                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4553     break;
4554   case Instruction::Select:
4555     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
4556                                 I->getOperand(2), DL, TLI, DT, AC, I);
4557     break;
4558   case Instruction::GetElementPtr: {
4559     SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
4560     Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(),
4561                              Ops, DL, TLI, DT, AC, I);
4562     break;
4563   }
4564   case Instruction::InsertValue: {
4565     InsertValueInst *IV = cast<InsertValueInst>(I);
4566     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
4567                                      IV->getInsertedValueOperand(),
4568                                      IV->getIndices(), DL, TLI, DT, AC, I);
4569     break;
4570   }
4571   case Instruction::ExtractValue: {
4572     auto *EVI = cast<ExtractValueInst>(I);
4573     Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
4574                                       EVI->getIndices(), DL, TLI, DT, AC, I);
4575     break;
4576   }
4577   case Instruction::ExtractElement: {
4578     auto *EEI = cast<ExtractElementInst>(I);
4579     Result = SimplifyExtractElementInst(
4580         EEI->getVectorOperand(), EEI->getIndexOperand(), DL, TLI, DT, AC, I);
4581     break;
4582   }
4583   case Instruction::PHI:
4584     Result = SimplifyPHINode(cast<PHINode>(I), Query(DL, TLI, DT, AC, I));
4585     break;
4586   case Instruction::Call: {
4587     CallSite CS(cast<CallInst>(I));
4588     Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), DL,
4589                           TLI, DT, AC, I);
4590     break;
4591   }
4592 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
4593 #include "llvm/IR/Instruction.def"
4594 #undef HANDLE_CAST_INST
4595     Result = SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(),
4596                               DL, TLI, DT, AC, I);
4597     break;
4598   }
4599 
4600   // In general, it is possible for computeKnownBits to determine all bits in a
4601   // value even when the operands are not all constants.
4602   if (!Result && I->getType()->isIntOrIntVectorTy()) {
4603     unsigned BitWidth = I->getType()->getScalarSizeInBits();
4604     APInt KnownZero(BitWidth, 0);
4605     APInt KnownOne(BitWidth, 0);
4606     computeKnownBits(I, KnownZero, KnownOne, DL, /*Depth*/0, AC, I, DT, ORE);
4607     if ((KnownZero | KnownOne).isAllOnesValue())
4608       Result = ConstantInt::get(I->getType(), KnownOne);
4609   }
4610 
4611   /// If called on unreachable code, the above logic may report that the
4612   /// instruction simplified to itself.  Make life easier for users by
4613   /// detecting that case here, returning a safe value instead.
4614   return Result == I ? UndefValue::get(I->getType()) : Result;
4615 }
4616 
4617 /// \brief Implementation of recursive simplification through an instruction's
4618 /// uses.
4619 ///
4620 /// This is the common implementation of the recursive simplification routines.
4621 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
4622 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
4623 /// instructions to process and attempt to simplify it using
4624 /// InstructionSimplify.
4625 ///
4626 /// This routine returns 'true' only when *it* simplifies something. The passed
4627 /// in simplified value does not count toward this.
4628 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
4629                                               const TargetLibraryInfo *TLI,
4630                                               const DominatorTree *DT,
4631                                               AssumptionCache *AC) {
4632   bool Simplified = false;
4633   SmallSetVector<Instruction *, 8> Worklist;
4634   const DataLayout &DL = I->getModule()->getDataLayout();
4635 
4636   // If we have an explicit value to collapse to, do that round of the
4637   // simplification loop by hand initially.
4638   if (SimpleV) {
4639     for (User *U : I->users())
4640       if (U != I)
4641         Worklist.insert(cast<Instruction>(U));
4642 
4643     // Replace the instruction with its simplified value.
4644     I->replaceAllUsesWith(SimpleV);
4645 
4646     // Gracefully handle edge cases where the instruction is not wired into any
4647     // parent block.
4648     if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) &&
4649         !I->mayHaveSideEffects())
4650       I->eraseFromParent();
4651   } else {
4652     Worklist.insert(I);
4653   }
4654 
4655   // Note that we must test the size on each iteration, the worklist can grow.
4656   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
4657     I = Worklist[Idx];
4658 
4659     // See if this instruction simplifies.
4660     SimpleV = SimplifyInstruction(I, DL, TLI, DT, AC);
4661     if (!SimpleV)
4662       continue;
4663 
4664     Simplified = true;
4665 
4666     // Stash away all the uses of the old instruction so we can check them for
4667     // recursive simplifications after a RAUW. This is cheaper than checking all
4668     // uses of To on the recursive step in most cases.
4669     for (User *U : I->users())
4670       Worklist.insert(cast<Instruction>(U));
4671 
4672     // Replace the instruction with its simplified value.
4673     I->replaceAllUsesWith(SimpleV);
4674 
4675     // Gracefully handle edge cases where the instruction is not wired into any
4676     // parent block.
4677     if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) &&
4678         !I->mayHaveSideEffects())
4679       I->eraseFromParent();
4680   }
4681   return Simplified;
4682 }
4683 
4684 bool llvm::recursivelySimplifyInstruction(Instruction *I,
4685                                           const TargetLibraryInfo *TLI,
4686                                           const DominatorTree *DT,
4687                                           AssumptionCache *AC) {
4688   return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC);
4689 }
4690 
4691 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
4692                                          const TargetLibraryInfo *TLI,
4693                                          const DominatorTree *DT,
4694                                          AssumptionCache *AC) {
4695   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
4696   assert(SimpleV && "Must provide a simplified value.");
4697   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC);
4698 }
4699