1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements routines for folding instructions into simpler forms 11 // that do not require creating new instructions. This does constant folding 12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 15 // simplified: This is usually true and assuming it simplifies the logic (if 16 // they have not been simplified then results are correct but maybe suboptimal). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/Analysis/VectorUtils.h" 29 #include "llvm/IR/ConstantRange.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/GetElementPtrTypeIterator.h" 33 #include "llvm/IR/GlobalAlias.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/IR/ValueHandle.h" 37 #include <algorithm> 38 using namespace llvm; 39 using namespace llvm::PatternMatch; 40 41 #define DEBUG_TYPE "instsimplify" 42 43 enum { RecursionLimit = 3 }; 44 45 STATISTIC(NumExpand, "Number of expansions"); 46 STATISTIC(NumReassoc, "Number of reassociations"); 47 48 namespace { 49 struct Query { 50 const DataLayout &DL; 51 const TargetLibraryInfo *TLI; 52 const DominatorTree *DT; 53 AssumptionCache *AC; 54 const Instruction *CxtI; 55 56 Query(const DataLayout &DL, const TargetLibraryInfo *tli, 57 const DominatorTree *dt, AssumptionCache *ac = nullptr, 58 const Instruction *cxti = nullptr) 59 : DL(DL), TLI(tli), DT(dt), AC(ac), CxtI(cxti) {} 60 }; 61 } // end anonymous namespace 62 63 static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned); 64 static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &, 65 unsigned); 66 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &, 67 const Query &, unsigned); 68 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &, 69 unsigned); 70 static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned); 71 static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned); 72 static Value *SimplifyCastInst(unsigned, Value *, Type *, 73 const Query &, unsigned); 74 75 /// For a boolean type, or a vector of boolean type, return false, or 76 /// a vector with every element false, as appropriate for the type. 77 static Constant *getFalse(Type *Ty) { 78 assert(Ty->getScalarType()->isIntegerTy(1) && 79 "Expected i1 type or a vector of i1!"); 80 return Constant::getNullValue(Ty); 81 } 82 83 /// For a boolean type, or a vector of boolean type, return true, or 84 /// a vector with every element true, as appropriate for the type. 85 static Constant *getTrue(Type *Ty) { 86 assert(Ty->getScalarType()->isIntegerTy(1) && 87 "Expected i1 type or a vector of i1!"); 88 return Constant::getAllOnesValue(Ty); 89 } 90 91 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 92 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 93 Value *RHS) { 94 CmpInst *Cmp = dyn_cast<CmpInst>(V); 95 if (!Cmp) 96 return false; 97 CmpInst::Predicate CPred = Cmp->getPredicate(); 98 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 99 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 100 return true; 101 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 102 CRHS == LHS; 103 } 104 105 /// Does the given value dominate the specified phi node? 106 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 107 Instruction *I = dyn_cast<Instruction>(V); 108 if (!I) 109 // Arguments and constants dominate all instructions. 110 return true; 111 112 // If we are processing instructions (and/or basic blocks) that have not been 113 // fully added to a function, the parent nodes may still be null. Simply 114 // return the conservative answer in these cases. 115 if (!I->getParent() || !P->getParent() || !I->getParent()->getParent()) 116 return false; 117 118 // If we have a DominatorTree then do a precise test. 119 if (DT) { 120 if (!DT->isReachableFromEntry(P->getParent())) 121 return true; 122 if (!DT->isReachableFromEntry(I->getParent())) 123 return false; 124 return DT->dominates(I, P); 125 } 126 127 // Otherwise, if the instruction is in the entry block and is not an invoke, 128 // then it obviously dominates all phi nodes. 129 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() && 130 !isa<InvokeInst>(I)) 131 return true; 132 133 return false; 134 } 135 136 /// Simplify "A op (B op' C)" by distributing op over op', turning it into 137 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 138 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 139 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 140 /// Returns the simplified value, or null if no simplification was performed. 141 static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS, 142 unsigned OpcToExpand, const Query &Q, 143 unsigned MaxRecurse) { 144 Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand; 145 // Recursion is always used, so bail out at once if we already hit the limit. 146 if (!MaxRecurse--) 147 return nullptr; 148 149 // Check whether the expression has the form "(A op' B) op C". 150 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 151 if (Op0->getOpcode() == OpcodeToExpand) { 152 // It does! Try turning it into "(A op C) op' (B op C)". 153 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 154 // Do "A op C" and "B op C" both simplify? 155 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 156 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 157 // They do! Return "L op' R" if it simplifies or is already available. 158 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 159 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 160 && L == B && R == A)) { 161 ++NumExpand; 162 return LHS; 163 } 164 // Otherwise return "L op' R" if it simplifies. 165 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 166 ++NumExpand; 167 return V; 168 } 169 } 170 } 171 172 // Check whether the expression has the form "A op (B op' C)". 173 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 174 if (Op1->getOpcode() == OpcodeToExpand) { 175 // It does! Try turning it into "(A op B) op' (A op C)". 176 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 177 // Do "A op B" and "A op C" both simplify? 178 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 179 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 180 // They do! Return "L op' R" if it simplifies or is already available. 181 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 182 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 183 && L == C && R == B)) { 184 ++NumExpand; 185 return RHS; 186 } 187 // Otherwise return "L op' R" if it simplifies. 188 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 189 ++NumExpand; 190 return V; 191 } 192 } 193 } 194 195 return nullptr; 196 } 197 198 /// Generic simplifications for associative binary operations. 199 /// Returns the simpler value, or null if none was found. 200 static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS, 201 const Query &Q, unsigned MaxRecurse) { 202 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc; 203 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 204 205 // Recursion is always used, so bail out at once if we already hit the limit. 206 if (!MaxRecurse--) 207 return nullptr; 208 209 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 210 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 211 212 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 213 if (Op0 && Op0->getOpcode() == Opcode) { 214 Value *A = Op0->getOperand(0); 215 Value *B = Op0->getOperand(1); 216 Value *C = RHS; 217 218 // Does "B op C" simplify? 219 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 220 // It does! Return "A op V" if it simplifies or is already available. 221 // If V equals B then "A op V" is just the LHS. 222 if (V == B) return LHS; 223 // Otherwise return "A op V" if it simplifies. 224 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 225 ++NumReassoc; 226 return W; 227 } 228 } 229 } 230 231 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 232 if (Op1 && Op1->getOpcode() == Opcode) { 233 Value *A = LHS; 234 Value *B = Op1->getOperand(0); 235 Value *C = Op1->getOperand(1); 236 237 // Does "A op B" simplify? 238 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 239 // It does! Return "V op C" if it simplifies or is already available. 240 // If V equals B then "V op C" is just the RHS. 241 if (V == B) return RHS; 242 // Otherwise return "V op C" if it simplifies. 243 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 244 ++NumReassoc; 245 return W; 246 } 247 } 248 } 249 250 // The remaining transforms require commutativity as well as associativity. 251 if (!Instruction::isCommutative(Opcode)) 252 return nullptr; 253 254 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 255 if (Op0 && Op0->getOpcode() == Opcode) { 256 Value *A = Op0->getOperand(0); 257 Value *B = Op0->getOperand(1); 258 Value *C = RHS; 259 260 // Does "C op A" simplify? 261 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 262 // It does! Return "V op B" if it simplifies or is already available. 263 // If V equals A then "V op B" is just the LHS. 264 if (V == A) return LHS; 265 // Otherwise return "V op B" if it simplifies. 266 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 267 ++NumReassoc; 268 return W; 269 } 270 } 271 } 272 273 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 274 if (Op1 && Op1->getOpcode() == Opcode) { 275 Value *A = LHS; 276 Value *B = Op1->getOperand(0); 277 Value *C = Op1->getOperand(1); 278 279 // Does "C op A" simplify? 280 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 281 // It does! Return "B op V" if it simplifies or is already available. 282 // If V equals C then "B op V" is just the RHS. 283 if (V == C) return RHS; 284 // Otherwise return "B op V" if it simplifies. 285 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 286 ++NumReassoc; 287 return W; 288 } 289 } 290 } 291 292 return nullptr; 293 } 294 295 /// In the case of a binary operation with a select instruction as an operand, 296 /// try to simplify the binop by seeing whether evaluating it on both branches 297 /// of the select results in the same value. Returns the common value if so, 298 /// otherwise returns null. 299 static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS, 300 const Query &Q, unsigned MaxRecurse) { 301 // Recursion is always used, so bail out at once if we already hit the limit. 302 if (!MaxRecurse--) 303 return nullptr; 304 305 SelectInst *SI; 306 if (isa<SelectInst>(LHS)) { 307 SI = cast<SelectInst>(LHS); 308 } else { 309 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 310 SI = cast<SelectInst>(RHS); 311 } 312 313 // Evaluate the BinOp on the true and false branches of the select. 314 Value *TV; 315 Value *FV; 316 if (SI == LHS) { 317 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 318 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 319 } else { 320 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 321 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 322 } 323 324 // If they simplified to the same value, then return the common value. 325 // If they both failed to simplify then return null. 326 if (TV == FV) 327 return TV; 328 329 // If one branch simplified to undef, return the other one. 330 if (TV && isa<UndefValue>(TV)) 331 return FV; 332 if (FV && isa<UndefValue>(FV)) 333 return TV; 334 335 // If applying the operation did not change the true and false select values, 336 // then the result of the binop is the select itself. 337 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 338 return SI; 339 340 // If one branch simplified and the other did not, and the simplified 341 // value is equal to the unsimplified one, return the simplified value. 342 // For example, select (cond, X, X & Z) & Z -> X & Z. 343 if ((FV && !TV) || (TV && !FV)) { 344 // Check that the simplified value has the form "X op Y" where "op" is the 345 // same as the original operation. 346 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 347 if (Simplified && Simplified->getOpcode() == Opcode) { 348 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 349 // We already know that "op" is the same as for the simplified value. See 350 // if the operands match too. If so, return the simplified value. 351 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 352 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 353 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 354 if (Simplified->getOperand(0) == UnsimplifiedLHS && 355 Simplified->getOperand(1) == UnsimplifiedRHS) 356 return Simplified; 357 if (Simplified->isCommutative() && 358 Simplified->getOperand(1) == UnsimplifiedLHS && 359 Simplified->getOperand(0) == UnsimplifiedRHS) 360 return Simplified; 361 } 362 } 363 364 return nullptr; 365 } 366 367 /// In the case of a comparison with a select instruction, try to simplify the 368 /// comparison by seeing whether both branches of the select result in the same 369 /// value. Returns the common value if so, otherwise returns null. 370 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 371 Value *RHS, const Query &Q, 372 unsigned MaxRecurse) { 373 // Recursion is always used, so bail out at once if we already hit the limit. 374 if (!MaxRecurse--) 375 return nullptr; 376 377 // Make sure the select is on the LHS. 378 if (!isa<SelectInst>(LHS)) { 379 std::swap(LHS, RHS); 380 Pred = CmpInst::getSwappedPredicate(Pred); 381 } 382 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 383 SelectInst *SI = cast<SelectInst>(LHS); 384 Value *Cond = SI->getCondition(); 385 Value *TV = SI->getTrueValue(); 386 Value *FV = SI->getFalseValue(); 387 388 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 389 // Does "cmp TV, RHS" simplify? 390 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 391 if (TCmp == Cond) { 392 // It not only simplified, it simplified to the select condition. Replace 393 // it with 'true'. 394 TCmp = getTrue(Cond->getType()); 395 } else if (!TCmp) { 396 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 397 // condition then we can replace it with 'true'. Otherwise give up. 398 if (!isSameCompare(Cond, Pred, TV, RHS)) 399 return nullptr; 400 TCmp = getTrue(Cond->getType()); 401 } 402 403 // Does "cmp FV, RHS" simplify? 404 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 405 if (FCmp == Cond) { 406 // It not only simplified, it simplified to the select condition. Replace 407 // it with 'false'. 408 FCmp = getFalse(Cond->getType()); 409 } else if (!FCmp) { 410 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 411 // condition then we can replace it with 'false'. Otherwise give up. 412 if (!isSameCompare(Cond, Pred, FV, RHS)) 413 return nullptr; 414 FCmp = getFalse(Cond->getType()); 415 } 416 417 // If both sides simplified to the same value, then use it as the result of 418 // the original comparison. 419 if (TCmp == FCmp) 420 return TCmp; 421 422 // The remaining cases only make sense if the select condition has the same 423 // type as the result of the comparison, so bail out if this is not so. 424 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 425 return nullptr; 426 // If the false value simplified to false, then the result of the compare 427 // is equal to "Cond && TCmp". This also catches the case when the false 428 // value simplified to false and the true value to true, returning "Cond". 429 if (match(FCmp, m_Zero())) 430 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 431 return V; 432 // If the true value simplified to true, then the result of the compare 433 // is equal to "Cond || FCmp". 434 if (match(TCmp, m_One())) 435 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 436 return V; 437 // Finally, if the false value simplified to true and the true value to 438 // false, then the result of the compare is equal to "!Cond". 439 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 440 if (Value *V = 441 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 442 Q, MaxRecurse)) 443 return V; 444 445 return nullptr; 446 } 447 448 /// In the case of a binary operation with an operand that is a PHI instruction, 449 /// try to simplify the binop by seeing whether evaluating it on the incoming 450 /// phi values yields the same result for every value. If so returns the common 451 /// value, otherwise returns null. 452 static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS, 453 const Query &Q, unsigned MaxRecurse) { 454 // Recursion is always used, so bail out at once if we already hit the limit. 455 if (!MaxRecurse--) 456 return nullptr; 457 458 PHINode *PI; 459 if (isa<PHINode>(LHS)) { 460 PI = cast<PHINode>(LHS); 461 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 462 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 463 return nullptr; 464 } else { 465 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 466 PI = cast<PHINode>(RHS); 467 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 468 if (!ValueDominatesPHI(LHS, PI, Q.DT)) 469 return nullptr; 470 } 471 472 // Evaluate the BinOp on the incoming phi values. 473 Value *CommonValue = nullptr; 474 for (Value *Incoming : PI->incoming_values()) { 475 // If the incoming value is the phi node itself, it can safely be skipped. 476 if (Incoming == PI) continue; 477 Value *V = PI == LHS ? 478 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 479 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 480 // If the operation failed to simplify, or simplified to a different value 481 // to previously, then give up. 482 if (!V || (CommonValue && V != CommonValue)) 483 return nullptr; 484 CommonValue = V; 485 } 486 487 return CommonValue; 488 } 489 490 /// In the case of a comparison with a PHI instruction, try to simplify the 491 /// comparison by seeing whether comparing with all of the incoming phi values 492 /// yields the same result every time. If so returns the common result, 493 /// otherwise returns null. 494 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 495 const Query &Q, unsigned MaxRecurse) { 496 // Recursion is always used, so bail out at once if we already hit the limit. 497 if (!MaxRecurse--) 498 return nullptr; 499 500 // Make sure the phi is on the LHS. 501 if (!isa<PHINode>(LHS)) { 502 std::swap(LHS, RHS); 503 Pred = CmpInst::getSwappedPredicate(Pred); 504 } 505 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 506 PHINode *PI = cast<PHINode>(LHS); 507 508 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 509 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 510 return nullptr; 511 512 // Evaluate the BinOp on the incoming phi values. 513 Value *CommonValue = nullptr; 514 for (Value *Incoming : PI->incoming_values()) { 515 // If the incoming value is the phi node itself, it can safely be skipped. 516 if (Incoming == PI) continue; 517 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 518 // If the operation failed to simplify, or simplified to a different value 519 // to previously, then give up. 520 if (!V || (CommonValue && V != CommonValue)) 521 return nullptr; 522 CommonValue = V; 523 } 524 525 return CommonValue; 526 } 527 528 /// Given operands for an Add, see if we can fold the result. 529 /// If not, this returns null. 530 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 531 const Query &Q, unsigned MaxRecurse) { 532 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 533 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 534 return ConstantFoldBinaryOpOperands(Instruction::Add, CLHS, CRHS, Q.DL); 535 536 // Canonicalize the constant to the RHS. 537 std::swap(Op0, Op1); 538 } 539 540 // X + undef -> undef 541 if (match(Op1, m_Undef())) 542 return Op1; 543 544 // X + 0 -> X 545 if (match(Op1, m_Zero())) 546 return Op0; 547 548 // X + (Y - X) -> Y 549 // (Y - X) + X -> Y 550 // Eg: X + -X -> 0 551 Value *Y = nullptr; 552 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 553 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 554 return Y; 555 556 // X + ~X -> -1 since ~X = -X-1 557 if (match(Op0, m_Not(m_Specific(Op1))) || 558 match(Op1, m_Not(m_Specific(Op0)))) 559 return Constant::getAllOnesValue(Op0->getType()); 560 561 /// i1 add -> xor. 562 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 563 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 564 return V; 565 566 // Try some generic simplifications for associative operations. 567 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 568 MaxRecurse)) 569 return V; 570 571 // Threading Add over selects and phi nodes is pointless, so don't bother. 572 // Threading over the select in "A + select(cond, B, C)" means evaluating 573 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 574 // only if B and C are equal. If B and C are equal then (since we assume 575 // that operands have already been simplified) "select(cond, B, C)" should 576 // have been simplified to the common value of B and C already. Analysing 577 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 578 // for threading over phi nodes. 579 580 return nullptr; 581 } 582 583 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 584 const DataLayout &DL, const TargetLibraryInfo *TLI, 585 const DominatorTree *DT, AssumptionCache *AC, 586 const Instruction *CxtI) { 587 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 588 RecursionLimit); 589 } 590 591 /// \brief Compute the base pointer and cumulative constant offsets for V. 592 /// 593 /// This strips all constant offsets off of V, leaving it the base pointer, and 594 /// accumulates the total constant offset applied in the returned constant. It 595 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 596 /// no constant offsets applied. 597 /// 598 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 599 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 600 /// folding. 601 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 602 bool AllowNonInbounds = false) { 603 assert(V->getType()->getScalarType()->isPointerTy()); 604 605 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 606 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 607 608 // Even though we don't look through PHI nodes, we could be called on an 609 // instruction in an unreachable block, which may be on a cycle. 610 SmallPtrSet<Value *, 4> Visited; 611 Visited.insert(V); 612 do { 613 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 614 if ((!AllowNonInbounds && !GEP->isInBounds()) || 615 !GEP->accumulateConstantOffset(DL, Offset)) 616 break; 617 V = GEP->getPointerOperand(); 618 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 619 V = cast<Operator>(V)->getOperand(0); 620 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 621 if (GA->isInterposable()) 622 break; 623 V = GA->getAliasee(); 624 } else { 625 if (auto CS = CallSite(V)) 626 if (Value *RV = CS.getReturnedArgOperand()) { 627 V = RV; 628 continue; 629 } 630 break; 631 } 632 assert(V->getType()->getScalarType()->isPointerTy() && 633 "Unexpected operand type!"); 634 } while (Visited.insert(V).second); 635 636 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 637 if (V->getType()->isVectorTy()) 638 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 639 OffsetIntPtr); 640 return OffsetIntPtr; 641 } 642 643 /// \brief Compute the constant difference between two pointer values. 644 /// If the difference is not a constant, returns zero. 645 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 646 Value *RHS) { 647 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 648 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 649 650 // If LHS and RHS are not related via constant offsets to the same base 651 // value, there is nothing we can do here. 652 if (LHS != RHS) 653 return nullptr; 654 655 // Otherwise, the difference of LHS - RHS can be computed as: 656 // LHS - RHS 657 // = (LHSOffset + Base) - (RHSOffset + Base) 658 // = LHSOffset - RHSOffset 659 return ConstantExpr::getSub(LHSOffset, RHSOffset); 660 } 661 662 /// Given operands for a Sub, see if we can fold the result. 663 /// If not, this returns null. 664 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 665 const Query &Q, unsigned MaxRecurse) { 666 if (Constant *CLHS = dyn_cast<Constant>(Op0)) 667 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 668 return ConstantFoldBinaryOpOperands(Instruction::Sub, CLHS, CRHS, Q.DL); 669 670 // X - undef -> undef 671 // undef - X -> undef 672 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 673 return UndefValue::get(Op0->getType()); 674 675 // X - 0 -> X 676 if (match(Op1, m_Zero())) 677 return Op0; 678 679 // X - X -> 0 680 if (Op0 == Op1) 681 return Constant::getNullValue(Op0->getType()); 682 683 // Is this a negation? 684 if (match(Op0, m_Zero())) { 685 // 0 - X -> 0 if the sub is NUW. 686 if (isNUW) 687 return Op0; 688 689 unsigned BitWidth = Op1->getType()->getScalarSizeInBits(); 690 APInt KnownZero(BitWidth, 0); 691 APInt KnownOne(BitWidth, 0); 692 computeKnownBits(Op1, KnownZero, KnownOne, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 693 if (KnownZero == ~APInt::getSignBit(BitWidth)) { 694 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 695 // Op1 must be 0 because negating the minimum signed value is undefined. 696 if (isNSW) 697 return Op0; 698 699 // 0 - X -> X if X is 0 or the minimum signed value. 700 return Op1; 701 } 702 } 703 704 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 705 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 706 Value *X = nullptr, *Y = nullptr, *Z = Op1; 707 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 708 // See if "V === Y - Z" simplifies. 709 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 710 // It does! Now see if "X + V" simplifies. 711 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 712 // It does, we successfully reassociated! 713 ++NumReassoc; 714 return W; 715 } 716 // See if "V === X - Z" simplifies. 717 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 718 // It does! Now see if "Y + V" simplifies. 719 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 720 // It does, we successfully reassociated! 721 ++NumReassoc; 722 return W; 723 } 724 } 725 726 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 727 // For example, X - (X + 1) -> -1 728 X = Op0; 729 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 730 // See if "V === X - Y" simplifies. 731 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 732 // It does! Now see if "V - Z" simplifies. 733 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 734 // It does, we successfully reassociated! 735 ++NumReassoc; 736 return W; 737 } 738 // See if "V === X - Z" simplifies. 739 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 740 // It does! Now see if "V - Y" simplifies. 741 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 742 // It does, we successfully reassociated! 743 ++NumReassoc; 744 return W; 745 } 746 } 747 748 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 749 // For example, X - (X - Y) -> Y. 750 Z = Op0; 751 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 752 // See if "V === Z - X" simplifies. 753 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 754 // It does! Now see if "V + Y" simplifies. 755 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 756 // It does, we successfully reassociated! 757 ++NumReassoc; 758 return W; 759 } 760 761 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 762 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 763 match(Op1, m_Trunc(m_Value(Y)))) 764 if (X->getType() == Y->getType()) 765 // See if "V === X - Y" simplifies. 766 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 767 // It does! Now see if "trunc V" simplifies. 768 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 769 Q, MaxRecurse - 1)) 770 // It does, return the simplified "trunc V". 771 return W; 772 773 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 774 if (match(Op0, m_PtrToInt(m_Value(X))) && 775 match(Op1, m_PtrToInt(m_Value(Y)))) 776 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 777 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 778 779 // i1 sub -> xor. 780 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 781 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 782 return V; 783 784 // Threading Sub over selects and phi nodes is pointless, so don't bother. 785 // Threading over the select in "A - select(cond, B, C)" means evaluating 786 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 787 // only if B and C are equal. If B and C are equal then (since we assume 788 // that operands have already been simplified) "select(cond, B, C)" should 789 // have been simplified to the common value of B and C already. Analysing 790 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 791 // for threading over phi nodes. 792 793 return nullptr; 794 } 795 796 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 797 const DataLayout &DL, const TargetLibraryInfo *TLI, 798 const DominatorTree *DT, AssumptionCache *AC, 799 const Instruction *CxtI) { 800 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 801 RecursionLimit); 802 } 803 804 /// Given operands for an FAdd, see if we can fold the result. If not, this 805 /// returns null. 806 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 807 const Query &Q, unsigned MaxRecurse) { 808 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 809 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 810 return ConstantFoldBinaryOpOperands(Instruction::FAdd, CLHS, CRHS, Q.DL); 811 812 // Canonicalize the constant to the RHS. 813 std::swap(Op0, Op1); 814 } 815 816 // fadd X, -0 ==> X 817 if (match(Op1, m_NegZero())) 818 return Op0; 819 820 // fadd X, 0 ==> X, when we know X is not -0 821 if (match(Op1, m_Zero()) && 822 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 823 return Op0; 824 825 // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0 826 // where nnan and ninf have to occur at least once somewhere in this 827 // expression 828 Value *SubOp = nullptr; 829 if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0)))) 830 SubOp = Op1; 831 else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1)))) 832 SubOp = Op0; 833 if (SubOp) { 834 Instruction *FSub = cast<Instruction>(SubOp); 835 if ((FMF.noNaNs() || FSub->hasNoNaNs()) && 836 (FMF.noInfs() || FSub->hasNoInfs())) 837 return Constant::getNullValue(Op0->getType()); 838 } 839 840 return nullptr; 841 } 842 843 /// Given operands for an FSub, see if we can fold the result. If not, this 844 /// returns null. 845 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 846 const Query &Q, unsigned MaxRecurse) { 847 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 848 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 849 return ConstantFoldBinaryOpOperands(Instruction::FSub, CLHS, CRHS, Q.DL); 850 } 851 852 // fsub X, 0 ==> X 853 if (match(Op1, m_Zero())) 854 return Op0; 855 856 // fsub X, -0 ==> X, when we know X is not -0 857 if (match(Op1, m_NegZero()) && 858 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 859 return Op0; 860 861 // fsub -0.0, (fsub -0.0, X) ==> X 862 Value *X; 863 if (match(Op0, m_NegZero()) && match(Op1, m_FSub(m_NegZero(), m_Value(X)))) 864 return X; 865 866 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 867 if (FMF.noSignedZeros() && match(Op0, m_AnyZero()) && 868 match(Op1, m_FSub(m_AnyZero(), m_Value(X)))) 869 return X; 870 871 // fsub nnan x, x ==> 0.0 872 if (FMF.noNaNs() && Op0 == Op1) 873 return Constant::getNullValue(Op0->getType()); 874 875 return nullptr; 876 } 877 878 /// Given the operands for an FMul, see if we can fold the result 879 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, 880 FastMathFlags FMF, 881 const Query &Q, 882 unsigned MaxRecurse) { 883 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 884 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 885 return ConstantFoldBinaryOpOperands(Instruction::FMul, CLHS, CRHS, Q.DL); 886 887 // Canonicalize the constant to the RHS. 888 std::swap(Op0, Op1); 889 } 890 891 // fmul X, 1.0 ==> X 892 if (match(Op1, m_FPOne())) 893 return Op0; 894 895 // fmul nnan nsz X, 0 ==> 0 896 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero())) 897 return Op1; 898 899 return nullptr; 900 } 901 902 /// Given operands for a Mul, see if we can fold the result. 903 /// If not, this returns null. 904 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q, 905 unsigned MaxRecurse) { 906 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 907 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 908 return ConstantFoldBinaryOpOperands(Instruction::Mul, CLHS, CRHS, Q.DL); 909 910 // Canonicalize the constant to the RHS. 911 std::swap(Op0, Op1); 912 } 913 914 // X * undef -> 0 915 if (match(Op1, m_Undef())) 916 return Constant::getNullValue(Op0->getType()); 917 918 // X * 0 -> 0 919 if (match(Op1, m_Zero())) 920 return Op1; 921 922 // X * 1 -> X 923 if (match(Op1, m_One())) 924 return Op0; 925 926 // (X / Y) * Y -> X if the division is exact. 927 Value *X = nullptr; 928 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 929 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y) 930 return X; 931 932 // i1 mul -> and. 933 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 934 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 935 return V; 936 937 // Try some generic simplifications for associative operations. 938 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 939 MaxRecurse)) 940 return V; 941 942 // Mul distributes over Add. Try some generic simplifications based on this. 943 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 944 Q, MaxRecurse)) 945 return V; 946 947 // If the operation is with the result of a select instruction, check whether 948 // operating on either branch of the select always yields the same value. 949 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 950 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 951 MaxRecurse)) 952 return V; 953 954 // If the operation is with the result of a phi instruction, check whether 955 // operating on all incoming values of the phi always yields the same value. 956 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 957 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 958 MaxRecurse)) 959 return V; 960 961 return nullptr; 962 } 963 964 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 965 const DataLayout &DL, 966 const TargetLibraryInfo *TLI, 967 const DominatorTree *DT, AssumptionCache *AC, 968 const Instruction *CxtI) { 969 return ::SimplifyFAddInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 970 RecursionLimit); 971 } 972 973 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 974 const DataLayout &DL, 975 const TargetLibraryInfo *TLI, 976 const DominatorTree *DT, AssumptionCache *AC, 977 const Instruction *CxtI) { 978 return ::SimplifyFSubInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 979 RecursionLimit); 980 } 981 982 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 983 const DataLayout &DL, 984 const TargetLibraryInfo *TLI, 985 const DominatorTree *DT, AssumptionCache *AC, 986 const Instruction *CxtI) { 987 return ::SimplifyFMulInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 988 RecursionLimit); 989 } 990 991 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout &DL, 992 const TargetLibraryInfo *TLI, 993 const DominatorTree *DT, AssumptionCache *AC, 994 const Instruction *CxtI) { 995 return ::SimplifyMulInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 996 RecursionLimit); 997 } 998 999 /// Given operands for an SDiv or UDiv, see if we can fold the result. 1000 /// If not, this returns null. 1001 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1002 const Query &Q, unsigned MaxRecurse) { 1003 if (Constant *C0 = dyn_cast<Constant>(Op0)) 1004 if (Constant *C1 = dyn_cast<Constant>(Op1)) 1005 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 1006 1007 bool isSigned = Opcode == Instruction::SDiv; 1008 1009 // X / undef -> undef 1010 if (match(Op1, m_Undef())) 1011 return Op1; 1012 1013 // X / 0 -> undef, we don't need to preserve faults! 1014 if (match(Op1, m_Zero())) 1015 return UndefValue::get(Op1->getType()); 1016 1017 // undef / X -> 0 1018 if (match(Op0, m_Undef())) 1019 return Constant::getNullValue(Op0->getType()); 1020 1021 // 0 / X -> 0, we don't need to preserve faults! 1022 if (match(Op0, m_Zero())) 1023 return Op0; 1024 1025 // X / 1 -> X 1026 if (match(Op1, m_One())) 1027 return Op0; 1028 1029 if (Op0->getType()->isIntegerTy(1)) 1030 // It can't be division by zero, hence it must be division by one. 1031 return Op0; 1032 1033 // X / X -> 1 1034 if (Op0 == Op1) 1035 return ConstantInt::get(Op0->getType(), 1); 1036 1037 // (X * Y) / Y -> X if the multiplication does not overflow. 1038 Value *X = nullptr, *Y = nullptr; 1039 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) { 1040 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1 1041 OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0); 1042 // If the Mul knows it does not overflow, then we are good to go. 1043 if ((isSigned && Mul->hasNoSignedWrap()) || 1044 (!isSigned && Mul->hasNoUnsignedWrap())) 1045 return X; 1046 // If X has the form X = A / Y then X * Y cannot overflow. 1047 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X)) 1048 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y) 1049 return X; 1050 } 1051 1052 // (X rem Y) / Y -> 0 1053 if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1054 (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1055 return Constant::getNullValue(Op0->getType()); 1056 1057 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1058 ConstantInt *C1, *C2; 1059 if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1060 match(Op1, m_ConstantInt(C2))) { 1061 bool Overflow; 1062 C1->getValue().umul_ov(C2->getValue(), Overflow); 1063 if (Overflow) 1064 return Constant::getNullValue(Op0->getType()); 1065 } 1066 1067 // If the operation is with the result of a select instruction, check whether 1068 // operating on either branch of the select always yields the same value. 1069 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1070 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1071 return V; 1072 1073 // If the operation is with the result of a phi instruction, check whether 1074 // operating on all incoming values of the phi always yields the same value. 1075 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1076 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1077 return V; 1078 1079 return nullptr; 1080 } 1081 1082 /// Given operands for an SDiv, see if we can fold the result. 1083 /// If not, this returns null. 1084 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q, 1085 unsigned MaxRecurse) { 1086 if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse)) 1087 return V; 1088 1089 return nullptr; 1090 } 1091 1092 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout &DL, 1093 const TargetLibraryInfo *TLI, 1094 const DominatorTree *DT, AssumptionCache *AC, 1095 const Instruction *CxtI) { 1096 return ::SimplifySDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1097 RecursionLimit); 1098 } 1099 1100 /// Given operands for a UDiv, see if we can fold the result. 1101 /// If not, this returns null. 1102 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q, 1103 unsigned MaxRecurse) { 1104 if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse)) 1105 return V; 1106 1107 return nullptr; 1108 } 1109 1110 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout &DL, 1111 const TargetLibraryInfo *TLI, 1112 const DominatorTree *DT, AssumptionCache *AC, 1113 const Instruction *CxtI) { 1114 return ::SimplifyUDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1115 RecursionLimit); 1116 } 1117 1118 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1119 const Query &Q, unsigned) { 1120 // undef / X -> undef (the undef could be a snan). 1121 if (match(Op0, m_Undef())) 1122 return Op0; 1123 1124 // X / undef -> undef 1125 if (match(Op1, m_Undef())) 1126 return Op1; 1127 1128 // 0 / X -> 0 1129 // Requires that NaNs are off (X could be zero) and signed zeroes are 1130 // ignored (X could be positive or negative, so the output sign is unknown). 1131 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 1132 return Op0; 1133 1134 if (FMF.noNaNs()) { 1135 // X / X -> 1.0 is legal when NaNs are ignored. 1136 if (Op0 == Op1) 1137 return ConstantFP::get(Op0->getType(), 1.0); 1138 1139 // -X / X -> -1.0 and 1140 // X / -X -> -1.0 are legal when NaNs are ignored. 1141 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 1142 if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) && 1143 BinaryOperator::getFNegArgument(Op0) == Op1) || 1144 (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) && 1145 BinaryOperator::getFNegArgument(Op1) == Op0)) 1146 return ConstantFP::get(Op0->getType(), -1.0); 1147 } 1148 1149 return nullptr; 1150 } 1151 1152 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1153 const DataLayout &DL, 1154 const TargetLibraryInfo *TLI, 1155 const DominatorTree *DT, AssumptionCache *AC, 1156 const Instruction *CxtI) { 1157 return ::SimplifyFDivInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 1158 RecursionLimit); 1159 } 1160 1161 /// Given operands for an SRem or URem, see if we can fold the result. 1162 /// If not, this returns null. 1163 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1164 const Query &Q, unsigned MaxRecurse) { 1165 if (Constant *C0 = dyn_cast<Constant>(Op0)) 1166 if (Constant *C1 = dyn_cast<Constant>(Op1)) 1167 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 1168 1169 // X % undef -> undef 1170 if (match(Op1, m_Undef())) 1171 return Op1; 1172 1173 // undef % X -> 0 1174 if (match(Op0, m_Undef())) 1175 return Constant::getNullValue(Op0->getType()); 1176 1177 // 0 % X -> 0, we don't need to preserve faults! 1178 if (match(Op0, m_Zero())) 1179 return Op0; 1180 1181 // X % 0 -> undef, we don't need to preserve faults! 1182 if (match(Op1, m_Zero())) 1183 return UndefValue::get(Op0->getType()); 1184 1185 // X % 1 -> 0 1186 if (match(Op1, m_One())) 1187 return Constant::getNullValue(Op0->getType()); 1188 1189 if (Op0->getType()->isIntegerTy(1)) 1190 // It can't be remainder by zero, hence it must be remainder by one. 1191 return Constant::getNullValue(Op0->getType()); 1192 1193 // X % X -> 0 1194 if (Op0 == Op1) 1195 return Constant::getNullValue(Op0->getType()); 1196 1197 // (X % Y) % Y -> X % Y 1198 if ((Opcode == Instruction::SRem && 1199 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1200 (Opcode == Instruction::URem && 1201 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1202 return Op0; 1203 1204 // If the operation is with the result of a select instruction, check whether 1205 // operating on either branch of the select always yields the same value. 1206 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1207 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1208 return V; 1209 1210 // If the operation is with the result of a phi instruction, check whether 1211 // operating on all incoming values of the phi always yields the same value. 1212 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1213 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1214 return V; 1215 1216 return nullptr; 1217 } 1218 1219 /// Given operands for an SRem, see if we can fold the result. 1220 /// If not, this returns null. 1221 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q, 1222 unsigned MaxRecurse) { 1223 if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse)) 1224 return V; 1225 1226 return nullptr; 1227 } 1228 1229 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout &DL, 1230 const TargetLibraryInfo *TLI, 1231 const DominatorTree *DT, AssumptionCache *AC, 1232 const Instruction *CxtI) { 1233 return ::SimplifySRemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1234 RecursionLimit); 1235 } 1236 1237 /// Given operands for a URem, see if we can fold the result. 1238 /// If not, this returns null. 1239 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q, 1240 unsigned MaxRecurse) { 1241 if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse)) 1242 return V; 1243 1244 return nullptr; 1245 } 1246 1247 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout &DL, 1248 const TargetLibraryInfo *TLI, 1249 const DominatorTree *DT, AssumptionCache *AC, 1250 const Instruction *CxtI) { 1251 return ::SimplifyURemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1252 RecursionLimit); 1253 } 1254 1255 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1256 const Query &, unsigned) { 1257 // undef % X -> undef (the undef could be a snan). 1258 if (match(Op0, m_Undef())) 1259 return Op0; 1260 1261 // X % undef -> undef 1262 if (match(Op1, m_Undef())) 1263 return Op1; 1264 1265 // 0 % X -> 0 1266 // Requires that NaNs are off (X could be zero) and signed zeroes are 1267 // ignored (X could be positive or negative, so the output sign is unknown). 1268 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 1269 return Op0; 1270 1271 return nullptr; 1272 } 1273 1274 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1275 const DataLayout &DL, 1276 const TargetLibraryInfo *TLI, 1277 const DominatorTree *DT, AssumptionCache *AC, 1278 const Instruction *CxtI) { 1279 return ::SimplifyFRemInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 1280 RecursionLimit); 1281 } 1282 1283 /// Returns true if a shift by \c Amount always yields undef. 1284 static bool isUndefShift(Value *Amount) { 1285 Constant *C = dyn_cast<Constant>(Amount); 1286 if (!C) 1287 return false; 1288 1289 // X shift by undef -> undef because it may shift by the bitwidth. 1290 if (isa<UndefValue>(C)) 1291 return true; 1292 1293 // Shifting by the bitwidth or more is undefined. 1294 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1295 if (CI->getValue().getLimitedValue() >= 1296 CI->getType()->getScalarSizeInBits()) 1297 return true; 1298 1299 // If all lanes of a vector shift are undefined the whole shift is. 1300 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1301 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) 1302 if (!isUndefShift(C->getAggregateElement(I))) 1303 return false; 1304 return true; 1305 } 1306 1307 return false; 1308 } 1309 1310 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1311 /// If not, this returns null. 1312 static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1, 1313 const Query &Q, unsigned MaxRecurse) { 1314 if (Constant *C0 = dyn_cast<Constant>(Op0)) 1315 if (Constant *C1 = dyn_cast<Constant>(Op1)) 1316 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 1317 1318 // 0 shift by X -> 0 1319 if (match(Op0, m_Zero())) 1320 return Op0; 1321 1322 // X shift by 0 -> X 1323 if (match(Op1, m_Zero())) 1324 return Op0; 1325 1326 // Fold undefined shifts. 1327 if (isUndefShift(Op1)) 1328 return UndefValue::get(Op0->getType()); 1329 1330 // If the operation is with the result of a select instruction, check whether 1331 // operating on either branch of the select always yields the same value. 1332 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1333 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1334 return V; 1335 1336 // If the operation is with the result of a phi instruction, check whether 1337 // operating on all incoming values of the phi always yields the same value. 1338 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1339 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1340 return V; 1341 1342 // If any bits in the shift amount make that value greater than or equal to 1343 // the number of bits in the type, the shift is undefined. 1344 unsigned BitWidth = Op1->getType()->getScalarSizeInBits(); 1345 APInt KnownZero(BitWidth, 0); 1346 APInt KnownOne(BitWidth, 0); 1347 computeKnownBits(Op1, KnownZero, KnownOne, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1348 if (KnownOne.getLimitedValue() >= BitWidth) 1349 return UndefValue::get(Op0->getType()); 1350 1351 // If all valid bits in the shift amount are known zero, the first operand is 1352 // unchanged. 1353 unsigned NumValidShiftBits = Log2_32_Ceil(BitWidth); 1354 APInt ShiftAmountMask = APInt::getLowBitsSet(BitWidth, NumValidShiftBits); 1355 if ((KnownZero & ShiftAmountMask) == ShiftAmountMask) 1356 return Op0; 1357 1358 return nullptr; 1359 } 1360 1361 /// \brief Given operands for an Shl, LShr or AShr, see if we can 1362 /// fold the result. If not, this returns null. 1363 static Value *SimplifyRightShift(unsigned Opcode, Value *Op0, Value *Op1, 1364 bool isExact, const Query &Q, 1365 unsigned MaxRecurse) { 1366 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1367 return V; 1368 1369 // X >> X -> 0 1370 if (Op0 == Op1) 1371 return Constant::getNullValue(Op0->getType()); 1372 1373 // undef >> X -> 0 1374 // undef >> X -> undef (if it's exact) 1375 if (match(Op0, m_Undef())) 1376 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1377 1378 // The low bit cannot be shifted out of an exact shift if it is set. 1379 if (isExact) { 1380 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 1381 APInt Op0KnownZero(BitWidth, 0); 1382 APInt Op0KnownOne(BitWidth, 0); 1383 computeKnownBits(Op0, Op0KnownZero, Op0KnownOne, Q.DL, /*Depth=*/0, Q.AC, 1384 Q.CxtI, Q.DT); 1385 if (Op0KnownOne[0]) 1386 return Op0; 1387 } 1388 1389 return nullptr; 1390 } 1391 1392 /// Given operands for an Shl, see if we can fold the result. 1393 /// If not, this returns null. 1394 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1395 const Query &Q, unsigned MaxRecurse) { 1396 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1397 return V; 1398 1399 // undef << X -> 0 1400 // undef << X -> undef if (if it's NSW/NUW) 1401 if (match(Op0, m_Undef())) 1402 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1403 1404 // (X >> A) << A -> X 1405 Value *X; 1406 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1407 return X; 1408 return nullptr; 1409 } 1410 1411 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1412 const DataLayout &DL, const TargetLibraryInfo *TLI, 1413 const DominatorTree *DT, AssumptionCache *AC, 1414 const Instruction *CxtI) { 1415 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 1416 RecursionLimit); 1417 } 1418 1419 /// Given operands for an LShr, see if we can fold the result. 1420 /// If not, this returns null. 1421 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1422 const Query &Q, unsigned MaxRecurse) { 1423 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1424 MaxRecurse)) 1425 return V; 1426 1427 // (X << A) >> A -> X 1428 Value *X; 1429 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1430 return X; 1431 1432 return nullptr; 1433 } 1434 1435 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1436 const DataLayout &DL, 1437 const TargetLibraryInfo *TLI, 1438 const DominatorTree *DT, AssumptionCache *AC, 1439 const Instruction *CxtI) { 1440 return ::SimplifyLShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI), 1441 RecursionLimit); 1442 } 1443 1444 /// Given operands for an AShr, see if we can fold the result. 1445 /// If not, this returns null. 1446 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1447 const Query &Q, unsigned MaxRecurse) { 1448 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1449 MaxRecurse)) 1450 return V; 1451 1452 // all ones >>a X -> all ones 1453 if (match(Op0, m_AllOnes())) 1454 return Op0; 1455 1456 // (X << A) >> A -> X 1457 Value *X; 1458 if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1459 return X; 1460 1461 // Arithmetic shifting an all-sign-bit value is a no-op. 1462 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1463 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1464 return Op0; 1465 1466 return nullptr; 1467 } 1468 1469 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1470 const DataLayout &DL, 1471 const TargetLibraryInfo *TLI, 1472 const DominatorTree *DT, AssumptionCache *AC, 1473 const Instruction *CxtI) { 1474 return ::SimplifyAShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI), 1475 RecursionLimit); 1476 } 1477 1478 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1479 ICmpInst *UnsignedICmp, bool IsAnd) { 1480 Value *X, *Y; 1481 1482 ICmpInst::Predicate EqPred; 1483 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1484 !ICmpInst::isEquality(EqPred)) 1485 return nullptr; 1486 1487 ICmpInst::Predicate UnsignedPred; 1488 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1489 ICmpInst::isUnsigned(UnsignedPred)) 1490 ; 1491 else if (match(UnsignedICmp, 1492 m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) && 1493 ICmpInst::isUnsigned(UnsignedPred)) 1494 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1495 else 1496 return nullptr; 1497 1498 // X < Y && Y != 0 --> X < Y 1499 // X < Y || Y != 0 --> Y != 0 1500 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1501 return IsAnd ? UnsignedICmp : ZeroICmp; 1502 1503 // X >= Y || Y != 0 --> true 1504 // X >= Y || Y == 0 --> X >= Y 1505 if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) { 1506 if (EqPred == ICmpInst::ICMP_NE) 1507 return getTrue(UnsignedICmp->getType()); 1508 return UnsignedICmp; 1509 } 1510 1511 // X < Y && Y == 0 --> false 1512 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1513 IsAnd) 1514 return getFalse(UnsignedICmp->getType()); 1515 1516 return nullptr; 1517 } 1518 1519 static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1520 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true)) 1521 return X; 1522 1523 // Look for this pattern: (icmp V, C0) & (icmp V, C1)). 1524 Type *ITy = Op0->getType(); 1525 ICmpInst::Predicate Pred0, Pred1; 1526 const APInt *C0, *C1; 1527 Value *V; 1528 if (match(Op0, m_ICmp(Pred0, m_Value(V), m_APInt(C0))) && 1529 match(Op1, m_ICmp(Pred1, m_Specific(V), m_APInt(C1)))) { 1530 // Make a constant range that's the intersection of the two icmp ranges. 1531 // If the intersection is empty, we know that the result is false. 1532 auto Range0 = ConstantRange::makeAllowedICmpRegion(Pred0, *C0); 1533 auto Range1 = ConstantRange::makeAllowedICmpRegion(Pred1, *C1); 1534 if (Range0.intersectWith(Range1).isEmptySet()) 1535 return getFalse(ITy); 1536 } 1537 1538 // (icmp (add V, C0), C1) & (icmp V, C0) 1539 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1540 return nullptr; 1541 1542 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1543 return nullptr; 1544 1545 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1546 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1547 return nullptr; 1548 1549 bool isNSW = AddInst->hasNoSignedWrap(); 1550 bool isNUW = AddInst->hasNoUnsignedWrap(); 1551 1552 const APInt Delta = *C1 - *C0; 1553 if (C0->isStrictlyPositive()) { 1554 if (Delta == 2) { 1555 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1556 return getFalse(ITy); 1557 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1558 return getFalse(ITy); 1559 } 1560 if (Delta == 1) { 1561 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1562 return getFalse(ITy); 1563 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1564 return getFalse(ITy); 1565 } 1566 } 1567 if (C0->getBoolValue() && isNUW) { 1568 if (Delta == 2) 1569 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1570 return getFalse(ITy); 1571 if (Delta == 1) 1572 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1573 return getFalse(ITy); 1574 } 1575 1576 return nullptr; 1577 } 1578 1579 /// Given operands for an And, see if we can fold the result. 1580 /// If not, this returns null. 1581 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q, 1582 unsigned MaxRecurse) { 1583 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1584 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1585 return ConstantFoldBinaryOpOperands(Instruction::And, CLHS, CRHS, Q.DL); 1586 1587 // Canonicalize the constant to the RHS. 1588 std::swap(Op0, Op1); 1589 } 1590 1591 // X & undef -> 0 1592 if (match(Op1, m_Undef())) 1593 return Constant::getNullValue(Op0->getType()); 1594 1595 // X & X = X 1596 if (Op0 == Op1) 1597 return Op0; 1598 1599 // X & 0 = 0 1600 if (match(Op1, m_Zero())) 1601 return Op1; 1602 1603 // X & -1 = X 1604 if (match(Op1, m_AllOnes())) 1605 return Op0; 1606 1607 // A & ~A = ~A & A = 0 1608 if (match(Op0, m_Not(m_Specific(Op1))) || 1609 match(Op1, m_Not(m_Specific(Op0)))) 1610 return Constant::getNullValue(Op0->getType()); 1611 1612 // (A | ?) & A = A 1613 Value *A = nullptr, *B = nullptr; 1614 if (match(Op0, m_Or(m_Value(A), m_Value(B))) && 1615 (A == Op1 || B == Op1)) 1616 return Op1; 1617 1618 // A & (A | ?) = A 1619 if (match(Op1, m_Or(m_Value(A), m_Value(B))) && 1620 (A == Op0 || B == Op0)) 1621 return Op0; 1622 1623 // A & (-A) = A if A is a power of two or zero. 1624 if (match(Op0, m_Neg(m_Specific(Op1))) || 1625 match(Op1, m_Neg(m_Specific(Op0)))) { 1626 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1627 Q.DT)) 1628 return Op0; 1629 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1630 Q.DT)) 1631 return Op1; 1632 } 1633 1634 if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) { 1635 if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) { 1636 if (Value *V = SimplifyAndOfICmps(ICILHS, ICIRHS)) 1637 return V; 1638 if (Value *V = SimplifyAndOfICmps(ICIRHS, ICILHS)) 1639 return V; 1640 } 1641 } 1642 1643 // The compares may be hidden behind casts. Look through those and try the 1644 // same folds as above. 1645 auto *Cast0 = dyn_cast<CastInst>(Op0); 1646 auto *Cast1 = dyn_cast<CastInst>(Op1); 1647 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1648 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1649 auto *Cmp0 = dyn_cast<ICmpInst>(Cast0->getOperand(0)); 1650 auto *Cmp1 = dyn_cast<ICmpInst>(Cast1->getOperand(0)); 1651 if (Cmp0 && Cmp1) { 1652 Instruction::CastOps CastOpc = Cast0->getOpcode(); 1653 Type *ResultType = Cast0->getType(); 1654 if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp0, Cmp1))) 1655 return ConstantExpr::getCast(CastOpc, V, ResultType); 1656 if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp1, Cmp0))) 1657 return ConstantExpr::getCast(CastOpc, V, ResultType); 1658 } 1659 } 1660 1661 // Try some generic simplifications for associative operations. 1662 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1663 MaxRecurse)) 1664 return V; 1665 1666 // And distributes over Or. Try some generic simplifications based on this. 1667 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1668 Q, MaxRecurse)) 1669 return V; 1670 1671 // And distributes over Xor. Try some generic simplifications based on this. 1672 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1673 Q, MaxRecurse)) 1674 return V; 1675 1676 // If the operation is with the result of a select instruction, check whether 1677 // operating on either branch of the select always yields the same value. 1678 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1679 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 1680 MaxRecurse)) 1681 return V; 1682 1683 // If the operation is with the result of a phi instruction, check whether 1684 // operating on all incoming values of the phi always yields the same value. 1685 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1686 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 1687 MaxRecurse)) 1688 return V; 1689 1690 return nullptr; 1691 } 1692 1693 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout &DL, 1694 const TargetLibraryInfo *TLI, 1695 const DominatorTree *DT, AssumptionCache *AC, 1696 const Instruction *CxtI) { 1697 return ::SimplifyAndInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1698 RecursionLimit); 1699 } 1700 1701 /// Simplify (or (icmp ...) (icmp ...)) to true when we can tell that the union 1702 /// contains all possible values. 1703 static Value *SimplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1704 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false)) 1705 return X; 1706 1707 // (icmp (add V, C0), C1) | (icmp V, C0) 1708 ICmpInst::Predicate Pred0, Pred1; 1709 const APInt *C0, *C1; 1710 Value *V; 1711 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1712 return nullptr; 1713 1714 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1715 return nullptr; 1716 1717 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1718 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1719 return nullptr; 1720 1721 Type *ITy = Op0->getType(); 1722 bool isNSW = AddInst->hasNoSignedWrap(); 1723 bool isNUW = AddInst->hasNoUnsignedWrap(); 1724 1725 const APInt Delta = *C1 - *C0; 1726 if (C0->isStrictlyPositive()) { 1727 if (Delta == 2) { 1728 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1729 return getTrue(ITy); 1730 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1731 return getTrue(ITy); 1732 } 1733 if (Delta == 1) { 1734 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1735 return getTrue(ITy); 1736 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1737 return getTrue(ITy); 1738 } 1739 } 1740 if (C0->getBoolValue() && isNUW) { 1741 if (Delta == 2) 1742 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1743 return getTrue(ITy); 1744 if (Delta == 1) 1745 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1746 return getTrue(ITy); 1747 } 1748 1749 return nullptr; 1750 } 1751 1752 /// Given operands for an Or, see if we can fold the result. 1753 /// If not, this returns null. 1754 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q, 1755 unsigned MaxRecurse) { 1756 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1757 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1758 return ConstantFoldBinaryOpOperands(Instruction::Or, CLHS, CRHS, Q.DL); 1759 1760 // Canonicalize the constant to the RHS. 1761 std::swap(Op0, Op1); 1762 } 1763 1764 // X | undef -> -1 1765 if (match(Op1, m_Undef())) 1766 return Constant::getAllOnesValue(Op0->getType()); 1767 1768 // X | X = X 1769 if (Op0 == Op1) 1770 return Op0; 1771 1772 // X | 0 = X 1773 if (match(Op1, m_Zero())) 1774 return Op0; 1775 1776 // X | -1 = -1 1777 if (match(Op1, m_AllOnes())) 1778 return Op1; 1779 1780 // A | ~A = ~A | A = -1 1781 if (match(Op0, m_Not(m_Specific(Op1))) || 1782 match(Op1, m_Not(m_Specific(Op0)))) 1783 return Constant::getAllOnesValue(Op0->getType()); 1784 1785 // (A & ?) | A = A 1786 Value *A = nullptr, *B = nullptr; 1787 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1788 (A == Op1 || B == Op1)) 1789 return Op1; 1790 1791 // A | (A & ?) = A 1792 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1793 (A == Op0 || B == Op0)) 1794 return Op0; 1795 1796 // ~(A & ?) | A = -1 1797 if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) && 1798 (A == Op1 || B == Op1)) 1799 return Constant::getAllOnesValue(Op1->getType()); 1800 1801 // A | ~(A & ?) = -1 1802 if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) && 1803 (A == Op0 || B == Op0)) 1804 return Constant::getAllOnesValue(Op0->getType()); 1805 1806 if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) { 1807 if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) { 1808 if (Value *V = SimplifyOrOfICmps(ICILHS, ICIRHS)) 1809 return V; 1810 if (Value *V = SimplifyOrOfICmps(ICIRHS, ICILHS)) 1811 return V; 1812 } 1813 } 1814 1815 // Try some generic simplifications for associative operations. 1816 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 1817 MaxRecurse)) 1818 return V; 1819 1820 // Or distributes over And. Try some generic simplifications based on this. 1821 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 1822 MaxRecurse)) 1823 return V; 1824 1825 // If the operation is with the result of a select instruction, check whether 1826 // operating on either branch of the select always yields the same value. 1827 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1828 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 1829 MaxRecurse)) 1830 return V; 1831 1832 // (A & C)|(B & D) 1833 Value *C = nullptr, *D = nullptr; 1834 if (match(Op0, m_And(m_Value(A), m_Value(C))) && 1835 match(Op1, m_And(m_Value(B), m_Value(D)))) { 1836 ConstantInt *C1 = dyn_cast<ConstantInt>(C); 1837 ConstantInt *C2 = dyn_cast<ConstantInt>(D); 1838 if (C1 && C2 && (C1->getValue() == ~C2->getValue())) { 1839 // (A & C1)|(B & C2) 1840 // If we have: ((V + N) & C1) | (V & C2) 1841 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 1842 // replace with V+N. 1843 Value *V1, *V2; 1844 if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+ 1845 match(A, m_Add(m_Value(V1), m_Value(V2)))) { 1846 // Add commutes, try both ways. 1847 if (V1 == B && 1848 MaskedValueIsZero(V2, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1849 return A; 1850 if (V2 == B && 1851 MaskedValueIsZero(V1, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1852 return A; 1853 } 1854 // Or commutes, try both ways. 1855 if ((C1->getValue() & (C1->getValue() + 1)) == 0 && 1856 match(B, m_Add(m_Value(V1), m_Value(V2)))) { 1857 // Add commutes, try both ways. 1858 if (V1 == A && 1859 MaskedValueIsZero(V2, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1860 return B; 1861 if (V2 == A && 1862 MaskedValueIsZero(V1, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1863 return B; 1864 } 1865 } 1866 } 1867 1868 // If the operation is with the result of a phi instruction, check whether 1869 // operating on all incoming values of the phi always yields the same value. 1870 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1871 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 1872 return V; 1873 1874 return nullptr; 1875 } 1876 1877 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout &DL, 1878 const TargetLibraryInfo *TLI, 1879 const DominatorTree *DT, AssumptionCache *AC, 1880 const Instruction *CxtI) { 1881 return ::SimplifyOrInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1882 RecursionLimit); 1883 } 1884 1885 /// Given operands for a Xor, see if we can fold the result. 1886 /// If not, this returns null. 1887 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q, 1888 unsigned MaxRecurse) { 1889 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1890 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1891 return ConstantFoldBinaryOpOperands(Instruction::Xor, CLHS, CRHS, Q.DL); 1892 1893 // Canonicalize the constant to the RHS. 1894 std::swap(Op0, Op1); 1895 } 1896 1897 // A ^ undef -> undef 1898 if (match(Op1, m_Undef())) 1899 return Op1; 1900 1901 // A ^ 0 = A 1902 if (match(Op1, m_Zero())) 1903 return Op0; 1904 1905 // A ^ A = 0 1906 if (Op0 == Op1) 1907 return Constant::getNullValue(Op0->getType()); 1908 1909 // A ^ ~A = ~A ^ A = -1 1910 if (match(Op0, m_Not(m_Specific(Op1))) || 1911 match(Op1, m_Not(m_Specific(Op0)))) 1912 return Constant::getAllOnesValue(Op0->getType()); 1913 1914 // Try some generic simplifications for associative operations. 1915 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 1916 MaxRecurse)) 1917 return V; 1918 1919 // Threading Xor over selects and phi nodes is pointless, so don't bother. 1920 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 1921 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 1922 // only if B and C are equal. If B and C are equal then (since we assume 1923 // that operands have already been simplified) "select(cond, B, C)" should 1924 // have been simplified to the common value of B and C already. Analysing 1925 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 1926 // for threading over phi nodes. 1927 1928 return nullptr; 1929 } 1930 1931 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout &DL, 1932 const TargetLibraryInfo *TLI, 1933 const DominatorTree *DT, AssumptionCache *AC, 1934 const Instruction *CxtI) { 1935 return ::SimplifyXorInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1936 RecursionLimit); 1937 } 1938 1939 static Type *GetCompareTy(Value *Op) { 1940 return CmpInst::makeCmpResultType(Op->getType()); 1941 } 1942 1943 /// Rummage around inside V looking for something equivalent to the comparison 1944 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 1945 /// Helper function for analyzing max/min idioms. 1946 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 1947 Value *LHS, Value *RHS) { 1948 SelectInst *SI = dyn_cast<SelectInst>(V); 1949 if (!SI) 1950 return nullptr; 1951 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 1952 if (!Cmp) 1953 return nullptr; 1954 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 1955 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 1956 return Cmp; 1957 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 1958 LHS == CmpRHS && RHS == CmpLHS) 1959 return Cmp; 1960 return nullptr; 1961 } 1962 1963 // A significant optimization not implemented here is assuming that alloca 1964 // addresses are not equal to incoming argument values. They don't *alias*, 1965 // as we say, but that doesn't mean they aren't equal, so we take a 1966 // conservative approach. 1967 // 1968 // This is inspired in part by C++11 5.10p1: 1969 // "Two pointers of the same type compare equal if and only if they are both 1970 // null, both point to the same function, or both represent the same 1971 // address." 1972 // 1973 // This is pretty permissive. 1974 // 1975 // It's also partly due to C11 6.5.9p6: 1976 // "Two pointers compare equal if and only if both are null pointers, both are 1977 // pointers to the same object (including a pointer to an object and a 1978 // subobject at its beginning) or function, both are pointers to one past the 1979 // last element of the same array object, or one is a pointer to one past the 1980 // end of one array object and the other is a pointer to the start of a 1981 // different array object that happens to immediately follow the first array 1982 // object in the address space.) 1983 // 1984 // C11's version is more restrictive, however there's no reason why an argument 1985 // couldn't be a one-past-the-end value for a stack object in the caller and be 1986 // equal to the beginning of a stack object in the callee. 1987 // 1988 // If the C and C++ standards are ever made sufficiently restrictive in this 1989 // area, it may be possible to update LLVM's semantics accordingly and reinstate 1990 // this optimization. 1991 static Constant * 1992 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 1993 const DominatorTree *DT, CmpInst::Predicate Pred, 1994 const Instruction *CxtI, Value *LHS, Value *RHS) { 1995 // First, skip past any trivial no-ops. 1996 LHS = LHS->stripPointerCasts(); 1997 RHS = RHS->stripPointerCasts(); 1998 1999 // A non-null pointer is not equal to a null pointer. 2000 if (llvm::isKnownNonNull(LHS) && isa<ConstantPointerNull>(RHS) && 2001 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 2002 return ConstantInt::get(GetCompareTy(LHS), 2003 !CmpInst::isTrueWhenEqual(Pred)); 2004 2005 // We can only fold certain predicates on pointer comparisons. 2006 switch (Pred) { 2007 default: 2008 return nullptr; 2009 2010 // Equality comaprisons are easy to fold. 2011 case CmpInst::ICMP_EQ: 2012 case CmpInst::ICMP_NE: 2013 break; 2014 2015 // We can only handle unsigned relational comparisons because 'inbounds' on 2016 // a GEP only protects against unsigned wrapping. 2017 case CmpInst::ICMP_UGT: 2018 case CmpInst::ICMP_UGE: 2019 case CmpInst::ICMP_ULT: 2020 case CmpInst::ICMP_ULE: 2021 // However, we have to switch them to their signed variants to handle 2022 // negative indices from the base pointer. 2023 Pred = ICmpInst::getSignedPredicate(Pred); 2024 break; 2025 } 2026 2027 // Strip off any constant offsets so that we can reason about them. 2028 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2029 // here and compare base addresses like AliasAnalysis does, however there are 2030 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2031 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2032 // doesn't need to guarantee pointer inequality when it says NoAlias. 2033 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2034 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2035 2036 // If LHS and RHS are related via constant offsets to the same base 2037 // value, we can replace it with an icmp which just compares the offsets. 2038 if (LHS == RHS) 2039 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2040 2041 // Various optimizations for (in)equality comparisons. 2042 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2043 // Different non-empty allocations that exist at the same time have 2044 // different addresses (if the program can tell). Global variables always 2045 // exist, so they always exist during the lifetime of each other and all 2046 // allocas. Two different allocas usually have different addresses... 2047 // 2048 // However, if there's an @llvm.stackrestore dynamically in between two 2049 // allocas, they may have the same address. It's tempting to reduce the 2050 // scope of the problem by only looking at *static* allocas here. That would 2051 // cover the majority of allocas while significantly reducing the likelihood 2052 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2053 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2054 // an entry block. Also, if we have a block that's not attached to a 2055 // function, we can't tell if it's "static" under the current definition. 2056 // Theoretically, this problem could be fixed by creating a new kind of 2057 // instruction kind specifically for static allocas. Such a new instruction 2058 // could be required to be at the top of the entry block, thus preventing it 2059 // from being subject to a @llvm.stackrestore. Instcombine could even 2060 // convert regular allocas into these special allocas. It'd be nifty. 2061 // However, until then, this problem remains open. 2062 // 2063 // So, we'll assume that two non-empty allocas have different addresses 2064 // for now. 2065 // 2066 // With all that, if the offsets are within the bounds of their allocations 2067 // (and not one-past-the-end! so we can't use inbounds!), and their 2068 // allocations aren't the same, the pointers are not equal. 2069 // 2070 // Note that it's not necessary to check for LHS being a global variable 2071 // address, due to canonicalization and constant folding. 2072 if (isa<AllocaInst>(LHS) && 2073 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2074 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2075 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2076 uint64_t LHSSize, RHSSize; 2077 if (LHSOffsetCI && RHSOffsetCI && 2078 getObjectSize(LHS, LHSSize, DL, TLI) && 2079 getObjectSize(RHS, RHSSize, DL, TLI)) { 2080 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2081 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2082 if (!LHSOffsetValue.isNegative() && 2083 !RHSOffsetValue.isNegative() && 2084 LHSOffsetValue.ult(LHSSize) && 2085 RHSOffsetValue.ult(RHSSize)) { 2086 return ConstantInt::get(GetCompareTy(LHS), 2087 !CmpInst::isTrueWhenEqual(Pred)); 2088 } 2089 } 2090 2091 // Repeat the above check but this time without depending on DataLayout 2092 // or being able to compute a precise size. 2093 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2094 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2095 LHSOffset->isNullValue() && 2096 RHSOffset->isNullValue()) 2097 return ConstantInt::get(GetCompareTy(LHS), 2098 !CmpInst::isTrueWhenEqual(Pred)); 2099 } 2100 2101 // Even if an non-inbounds GEP occurs along the path we can still optimize 2102 // equality comparisons concerning the result. We avoid walking the whole 2103 // chain again by starting where the last calls to 2104 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2105 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2106 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2107 if (LHS == RHS) 2108 return ConstantExpr::getICmp(Pred, 2109 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2110 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2111 2112 // If one side of the equality comparison must come from a noalias call 2113 // (meaning a system memory allocation function), and the other side must 2114 // come from a pointer that cannot overlap with dynamically-allocated 2115 // memory within the lifetime of the current function (allocas, byval 2116 // arguments, globals), then determine the comparison result here. 2117 SmallVector<Value *, 8> LHSUObjs, RHSUObjs; 2118 GetUnderlyingObjects(LHS, LHSUObjs, DL); 2119 GetUnderlyingObjects(RHS, RHSUObjs, DL); 2120 2121 // Is the set of underlying objects all noalias calls? 2122 auto IsNAC = [](ArrayRef<Value *> Objects) { 2123 return all_of(Objects, isNoAliasCall); 2124 }; 2125 2126 // Is the set of underlying objects all things which must be disjoint from 2127 // noalias calls. For allocas, we consider only static ones (dynamic 2128 // allocas might be transformed into calls to malloc not simultaneously 2129 // live with the compared-to allocation). For globals, we exclude symbols 2130 // that might be resolve lazily to symbols in another dynamically-loaded 2131 // library (and, thus, could be malloc'ed by the implementation). 2132 auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) { 2133 return all_of(Objects, [](Value *V) { 2134 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2135 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2136 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2137 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2138 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2139 !GV->isThreadLocal(); 2140 if (const Argument *A = dyn_cast<Argument>(V)) 2141 return A->hasByValAttr(); 2142 return false; 2143 }); 2144 }; 2145 2146 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2147 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2148 return ConstantInt::get(GetCompareTy(LHS), 2149 !CmpInst::isTrueWhenEqual(Pred)); 2150 2151 // Fold comparisons for non-escaping pointer even if the allocation call 2152 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2153 // dynamic allocation call could be either of the operands. 2154 Value *MI = nullptr; 2155 if (isAllocLikeFn(LHS, TLI) && llvm::isKnownNonNullAt(RHS, CxtI, DT)) 2156 MI = LHS; 2157 else if (isAllocLikeFn(RHS, TLI) && llvm::isKnownNonNullAt(LHS, CxtI, DT)) 2158 MI = RHS; 2159 // FIXME: We should also fold the compare when the pointer escapes, but the 2160 // compare dominates the pointer escape 2161 if (MI && !PointerMayBeCaptured(MI, true, true)) 2162 return ConstantInt::get(GetCompareTy(LHS), 2163 CmpInst::isFalseWhenEqual(Pred)); 2164 } 2165 2166 // Otherwise, fail. 2167 return nullptr; 2168 } 2169 2170 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2171 Value *RHS) { 2172 const APInt *C; 2173 if (!match(RHS, m_APInt(C))) 2174 return nullptr; 2175 2176 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2177 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2178 if (RHS_CR.isEmptySet()) 2179 return ConstantInt::getFalse(GetCompareTy(RHS)); 2180 if (RHS_CR.isFullSet()) 2181 return ConstantInt::getTrue(GetCompareTy(RHS)); 2182 2183 // Many binary operators with constant RHS have easy to compute constant 2184 // range. Use them to check whether the comparison is a tautology. 2185 unsigned Width = C->getBitWidth(); 2186 APInt Lower = APInt(Width, 0); 2187 APInt Upper = APInt(Width, 0); 2188 const APInt *C2; 2189 if (match(LHS, m_URem(m_Value(), m_APInt(C2)))) { 2190 // 'urem x, C2' produces [0, C2). 2191 Upper = *C2; 2192 } else if (match(LHS, m_SRem(m_Value(), m_APInt(C2)))) { 2193 // 'srem x, C2' produces (-|C2|, |C2|). 2194 Upper = C2->abs(); 2195 Lower = (-Upper) + 1; 2196 } else if (match(LHS, m_UDiv(m_APInt(C2), m_Value()))) { 2197 // 'udiv C2, x' produces [0, C2]. 2198 Upper = *C2 + 1; 2199 } else if (match(LHS, m_UDiv(m_Value(), m_APInt(C2)))) { 2200 // 'udiv x, C2' produces [0, UINT_MAX / C2]. 2201 APInt NegOne = APInt::getAllOnesValue(Width); 2202 if (*C2 != 0) 2203 Upper = NegOne.udiv(*C2) + 1; 2204 } else if (match(LHS, m_SDiv(m_APInt(C2), m_Value()))) { 2205 if (C2->isMinSignedValue()) { 2206 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 2207 Lower = *C2; 2208 Upper = Lower.lshr(1) + 1; 2209 } else { 2210 // 'sdiv C2, x' produces [-|C2|, |C2|]. 2211 Upper = C2->abs() + 1; 2212 Lower = (-Upper) + 1; 2213 } 2214 } else if (match(LHS, m_SDiv(m_Value(), m_APInt(C2)))) { 2215 APInt IntMin = APInt::getSignedMinValue(Width); 2216 APInt IntMax = APInt::getSignedMaxValue(Width); 2217 if (C2->isAllOnesValue()) { 2218 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 2219 // where C2 != -1 and C2 != 0 and C2 != 1 2220 Lower = IntMin + 1; 2221 Upper = IntMax + 1; 2222 } else if (C2->countLeadingZeros() < Width - 1) { 2223 // 'sdiv x, C2' produces [INT_MIN / C2, INT_MAX / C2] 2224 // where C2 != -1 and C2 != 0 and C2 != 1 2225 Lower = IntMin.sdiv(*C2); 2226 Upper = IntMax.sdiv(*C2); 2227 if (Lower.sgt(Upper)) 2228 std::swap(Lower, Upper); 2229 Upper = Upper + 1; 2230 assert(Upper != Lower && "Upper part of range has wrapped!"); 2231 } 2232 } else if (match(LHS, m_NUWShl(m_APInt(C2), m_Value()))) { 2233 // 'shl nuw C2, x' produces [C2, C2 << CLZ(C2)] 2234 Lower = *C2; 2235 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 2236 } else if (match(LHS, m_NSWShl(m_APInt(C2), m_Value()))) { 2237 if (C2->isNegative()) { 2238 // 'shl nsw C2, x' produces [C2 << CLO(C2)-1, C2] 2239 unsigned ShiftAmount = C2->countLeadingOnes() - 1; 2240 Lower = C2->shl(ShiftAmount); 2241 Upper = *C2 + 1; 2242 } else { 2243 // 'shl nsw C2, x' produces [C2, C2 << CLZ(C2)-1] 2244 unsigned ShiftAmount = C2->countLeadingZeros() - 1; 2245 Lower = *C2; 2246 Upper = C2->shl(ShiftAmount) + 1; 2247 } 2248 } else if (match(LHS, m_LShr(m_Value(), m_APInt(C2)))) { 2249 // 'lshr x, C2' produces [0, UINT_MAX >> C2]. 2250 APInt NegOne = APInt::getAllOnesValue(Width); 2251 if (C2->ult(Width)) 2252 Upper = NegOne.lshr(*C2) + 1; 2253 } else if (match(LHS, m_LShr(m_APInt(C2), m_Value()))) { 2254 // 'lshr C2, x' produces [C2 >> (Width-1), C2]. 2255 unsigned ShiftAmount = Width - 1; 2256 if (*C2 != 0 && cast<BinaryOperator>(LHS)->isExact()) 2257 ShiftAmount = C2->countTrailingZeros(); 2258 Lower = C2->lshr(ShiftAmount); 2259 Upper = *C2 + 1; 2260 } else if (match(LHS, m_AShr(m_Value(), m_APInt(C2)))) { 2261 // 'ashr x, C2' produces [INT_MIN >> C2, INT_MAX >> C2]. 2262 APInt IntMin = APInt::getSignedMinValue(Width); 2263 APInt IntMax = APInt::getSignedMaxValue(Width); 2264 if (C2->ult(Width)) { 2265 Lower = IntMin.ashr(*C2); 2266 Upper = IntMax.ashr(*C2) + 1; 2267 } 2268 } else if (match(LHS, m_AShr(m_APInt(C2), m_Value()))) { 2269 unsigned ShiftAmount = Width - 1; 2270 if (*C2 != 0 && cast<BinaryOperator>(LHS)->isExact()) 2271 ShiftAmount = C2->countTrailingZeros(); 2272 if (C2->isNegative()) { 2273 // 'ashr C2, x' produces [C2, C2 >> (Width-1)] 2274 Lower = *C2; 2275 Upper = C2->ashr(ShiftAmount) + 1; 2276 } else { 2277 // 'ashr C2, x' produces [C2 >> (Width-1), C2] 2278 Lower = C2->ashr(ShiftAmount); 2279 Upper = *C2 + 1; 2280 } 2281 } else if (match(LHS, m_Or(m_Value(), m_APInt(C2)))) { 2282 // 'or x, C2' produces [C2, UINT_MAX]. 2283 Lower = *C2; 2284 } else if (match(LHS, m_And(m_Value(), m_APInt(C2)))) { 2285 // 'and x, C2' produces [0, C2]. 2286 Upper = *C2 + 1; 2287 } else if (match(LHS, m_NUWAdd(m_Value(), m_APInt(C2)))) { 2288 // 'add nuw x, C2' produces [C2, UINT_MAX]. 2289 Lower = *C2; 2290 } 2291 2292 ConstantRange LHS_CR = 2293 Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true); 2294 2295 if (auto *I = dyn_cast<Instruction>(LHS)) 2296 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) 2297 LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges)); 2298 2299 if (!LHS_CR.isFullSet()) { 2300 if (RHS_CR.contains(LHS_CR)) 2301 return ConstantInt::getTrue(GetCompareTy(RHS)); 2302 if (RHS_CR.inverse().contains(LHS_CR)) 2303 return ConstantInt::getFalse(GetCompareTy(RHS)); 2304 } 2305 2306 return nullptr; 2307 } 2308 2309 /// Given operands for an ICmpInst, see if we can fold the result. 2310 /// If not, this returns null. 2311 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 2312 const Query &Q, unsigned MaxRecurse) { 2313 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 2314 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 2315 2316 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 2317 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 2318 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 2319 2320 // If we have a constant, make sure it is on the RHS. 2321 std::swap(LHS, RHS); 2322 Pred = CmpInst::getSwappedPredicate(Pred); 2323 } 2324 2325 Type *ITy = GetCompareTy(LHS); // The return type. 2326 Type *OpTy = LHS->getType(); // The operand type. 2327 2328 // icmp X, X -> true/false 2329 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false 2330 // because X could be 0. 2331 if (LHS == RHS || isa<UndefValue>(RHS)) 2332 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 2333 2334 // Special case logic when the operands have i1 type. 2335 if (OpTy->getScalarType()->isIntegerTy(1)) { 2336 switch (Pred) { 2337 default: break; 2338 case ICmpInst::ICMP_EQ: 2339 // X == 1 -> X 2340 if (match(RHS, m_One())) 2341 return LHS; 2342 break; 2343 case ICmpInst::ICMP_NE: 2344 // X != 0 -> X 2345 if (match(RHS, m_Zero())) 2346 return LHS; 2347 break; 2348 case ICmpInst::ICMP_UGT: 2349 // X >u 0 -> X 2350 if (match(RHS, m_Zero())) 2351 return LHS; 2352 break; 2353 case ICmpInst::ICMP_UGE: { 2354 // X >=u 1 -> X 2355 if (match(RHS, m_One())) 2356 return LHS; 2357 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2358 return getTrue(ITy); 2359 break; 2360 } 2361 case ICmpInst::ICMP_SGE: { 2362 /// For signed comparison, the values for an i1 are 0 and -1 2363 /// respectively. This maps into a truth table of: 2364 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2365 /// 0 | 0 | 1 (0 >= 0) | 1 2366 /// 0 | 1 | 1 (0 >= -1) | 1 2367 /// 1 | 0 | 0 (-1 >= 0) | 0 2368 /// 1 | 1 | 1 (-1 >= -1) | 1 2369 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2370 return getTrue(ITy); 2371 break; 2372 } 2373 case ICmpInst::ICMP_SLT: 2374 // X <s 0 -> X 2375 if (match(RHS, m_Zero())) 2376 return LHS; 2377 break; 2378 case ICmpInst::ICMP_SLE: 2379 // X <=s -1 -> X 2380 if (match(RHS, m_One())) 2381 return LHS; 2382 break; 2383 case ICmpInst::ICMP_ULE: { 2384 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2385 return getTrue(ITy); 2386 break; 2387 } 2388 } 2389 } 2390 2391 // If we are comparing with zero then try hard since this is a common case. 2392 if (match(RHS, m_Zero())) { 2393 bool LHSKnownNonNegative, LHSKnownNegative; 2394 switch (Pred) { 2395 default: llvm_unreachable("Unknown ICmp predicate!"); 2396 case ICmpInst::ICMP_ULT: 2397 return getFalse(ITy); 2398 case ICmpInst::ICMP_UGE: 2399 return getTrue(ITy); 2400 case ICmpInst::ICMP_EQ: 2401 case ICmpInst::ICMP_ULE: 2402 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2403 return getFalse(ITy); 2404 break; 2405 case ICmpInst::ICMP_NE: 2406 case ICmpInst::ICMP_UGT: 2407 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2408 return getTrue(ITy); 2409 break; 2410 case ICmpInst::ICMP_SLT: 2411 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2412 Q.CxtI, Q.DT); 2413 if (LHSKnownNegative) 2414 return getTrue(ITy); 2415 if (LHSKnownNonNegative) 2416 return getFalse(ITy); 2417 break; 2418 case ICmpInst::ICMP_SLE: 2419 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2420 Q.CxtI, Q.DT); 2421 if (LHSKnownNegative) 2422 return getTrue(ITy); 2423 if (LHSKnownNonNegative && 2424 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2425 return getFalse(ITy); 2426 break; 2427 case ICmpInst::ICMP_SGE: 2428 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2429 Q.CxtI, Q.DT); 2430 if (LHSKnownNegative) 2431 return getFalse(ITy); 2432 if (LHSKnownNonNegative) 2433 return getTrue(ITy); 2434 break; 2435 case ICmpInst::ICMP_SGT: 2436 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2437 Q.CxtI, Q.DT); 2438 if (LHSKnownNegative) 2439 return getFalse(ITy); 2440 if (LHSKnownNonNegative && 2441 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2442 return getTrue(ITy); 2443 break; 2444 } 2445 } 2446 2447 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS)) 2448 return V; 2449 2450 // If both operands have range metadata, use the metadata 2451 // to simplify the comparison. 2452 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 2453 auto RHS_Instr = dyn_cast<Instruction>(RHS); 2454 auto LHS_Instr = dyn_cast<Instruction>(LHS); 2455 2456 if (RHS_Instr->getMetadata(LLVMContext::MD_range) && 2457 LHS_Instr->getMetadata(LLVMContext::MD_range)) { 2458 auto RHS_CR = getConstantRangeFromMetadata( 2459 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 2460 auto LHS_CR = getConstantRangeFromMetadata( 2461 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 2462 2463 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 2464 if (Satisfied_CR.contains(LHS_CR)) 2465 return ConstantInt::getTrue(RHS->getContext()); 2466 2467 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 2468 CmpInst::getInversePredicate(Pred), RHS_CR); 2469 if (InversedSatisfied_CR.contains(LHS_CR)) 2470 return ConstantInt::getFalse(RHS->getContext()); 2471 } 2472 } 2473 2474 // Compare of cast, for example (zext X) != 0 -> X != 0 2475 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 2476 Instruction *LI = cast<CastInst>(LHS); 2477 Value *SrcOp = LI->getOperand(0); 2478 Type *SrcTy = SrcOp->getType(); 2479 Type *DstTy = LI->getType(); 2480 2481 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 2482 // if the integer type is the same size as the pointer type. 2483 if (MaxRecurse && isa<PtrToIntInst>(LI) && 2484 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 2485 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 2486 // Transfer the cast to the constant. 2487 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 2488 ConstantExpr::getIntToPtr(RHSC, SrcTy), 2489 Q, MaxRecurse-1)) 2490 return V; 2491 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 2492 if (RI->getOperand(0)->getType() == SrcTy) 2493 // Compare without the cast. 2494 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 2495 Q, MaxRecurse-1)) 2496 return V; 2497 } 2498 } 2499 2500 if (isa<ZExtInst>(LHS)) { 2501 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 2502 // same type. 2503 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 2504 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 2505 // Compare X and Y. Note that signed predicates become unsigned. 2506 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 2507 SrcOp, RI->getOperand(0), Q, 2508 MaxRecurse-1)) 2509 return V; 2510 } 2511 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 2512 // too. If not, then try to deduce the result of the comparison. 2513 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 2514 // Compute the constant that would happen if we truncated to SrcTy then 2515 // reextended to DstTy. 2516 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 2517 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 2518 2519 // If the re-extended constant didn't change then this is effectively 2520 // also a case of comparing two zero-extended values. 2521 if (RExt == CI && MaxRecurse) 2522 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 2523 SrcOp, Trunc, Q, MaxRecurse-1)) 2524 return V; 2525 2526 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 2527 // there. Use this to work out the result of the comparison. 2528 if (RExt != CI) { 2529 switch (Pred) { 2530 default: llvm_unreachable("Unknown ICmp predicate!"); 2531 // LHS <u RHS. 2532 case ICmpInst::ICMP_EQ: 2533 case ICmpInst::ICMP_UGT: 2534 case ICmpInst::ICMP_UGE: 2535 return ConstantInt::getFalse(CI->getContext()); 2536 2537 case ICmpInst::ICMP_NE: 2538 case ICmpInst::ICMP_ULT: 2539 case ICmpInst::ICMP_ULE: 2540 return ConstantInt::getTrue(CI->getContext()); 2541 2542 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 2543 // is non-negative then LHS <s RHS. 2544 case ICmpInst::ICMP_SGT: 2545 case ICmpInst::ICMP_SGE: 2546 return CI->getValue().isNegative() ? 2547 ConstantInt::getTrue(CI->getContext()) : 2548 ConstantInt::getFalse(CI->getContext()); 2549 2550 case ICmpInst::ICMP_SLT: 2551 case ICmpInst::ICMP_SLE: 2552 return CI->getValue().isNegative() ? 2553 ConstantInt::getFalse(CI->getContext()) : 2554 ConstantInt::getTrue(CI->getContext()); 2555 } 2556 } 2557 } 2558 } 2559 2560 if (isa<SExtInst>(LHS)) { 2561 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 2562 // same type. 2563 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 2564 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 2565 // Compare X and Y. Note that the predicate does not change. 2566 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 2567 Q, MaxRecurse-1)) 2568 return V; 2569 } 2570 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 2571 // too. If not, then try to deduce the result of the comparison. 2572 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 2573 // Compute the constant that would happen if we truncated to SrcTy then 2574 // reextended to DstTy. 2575 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 2576 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 2577 2578 // If the re-extended constant didn't change then this is effectively 2579 // also a case of comparing two sign-extended values. 2580 if (RExt == CI && MaxRecurse) 2581 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 2582 return V; 2583 2584 // Otherwise the upper bits of LHS are all equal, while RHS has varying 2585 // bits there. Use this to work out the result of the comparison. 2586 if (RExt != CI) { 2587 switch (Pred) { 2588 default: llvm_unreachable("Unknown ICmp predicate!"); 2589 case ICmpInst::ICMP_EQ: 2590 return ConstantInt::getFalse(CI->getContext()); 2591 case ICmpInst::ICMP_NE: 2592 return ConstantInt::getTrue(CI->getContext()); 2593 2594 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 2595 // LHS >s RHS. 2596 case ICmpInst::ICMP_SGT: 2597 case ICmpInst::ICMP_SGE: 2598 return CI->getValue().isNegative() ? 2599 ConstantInt::getTrue(CI->getContext()) : 2600 ConstantInt::getFalse(CI->getContext()); 2601 case ICmpInst::ICMP_SLT: 2602 case ICmpInst::ICMP_SLE: 2603 return CI->getValue().isNegative() ? 2604 ConstantInt::getFalse(CI->getContext()) : 2605 ConstantInt::getTrue(CI->getContext()); 2606 2607 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 2608 // LHS >u RHS. 2609 case ICmpInst::ICMP_UGT: 2610 case ICmpInst::ICMP_UGE: 2611 // Comparison is true iff the LHS <s 0. 2612 if (MaxRecurse) 2613 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 2614 Constant::getNullValue(SrcTy), 2615 Q, MaxRecurse-1)) 2616 return V; 2617 break; 2618 case ICmpInst::ICMP_ULT: 2619 case ICmpInst::ICMP_ULE: 2620 // Comparison is true iff the LHS >=s 0. 2621 if (MaxRecurse) 2622 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 2623 Constant::getNullValue(SrcTy), 2624 Q, MaxRecurse-1)) 2625 return V; 2626 break; 2627 } 2628 } 2629 } 2630 } 2631 } 2632 2633 // icmp eq|ne X, Y -> false|true if X != Y 2634 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2635 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) { 2636 LLVMContext &Ctx = LHS->getType()->getContext(); 2637 return Pred == ICmpInst::ICMP_NE ? 2638 ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx); 2639 } 2640 2641 // Special logic for binary operators. 2642 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2643 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2644 if (MaxRecurse && (LBO || RBO)) { 2645 // Analyze the case when either LHS or RHS is an add instruction. 2646 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2647 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2648 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2649 if (LBO && LBO->getOpcode() == Instruction::Add) { 2650 A = LBO->getOperand(0); B = LBO->getOperand(1); 2651 NoLHSWrapProblem = ICmpInst::isEquality(Pred) || 2652 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) || 2653 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap()); 2654 } 2655 if (RBO && RBO->getOpcode() == Instruction::Add) { 2656 C = RBO->getOperand(0); D = RBO->getOperand(1); 2657 NoRHSWrapProblem = ICmpInst::isEquality(Pred) || 2658 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) || 2659 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap()); 2660 } 2661 2662 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2663 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2664 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2665 Constant::getNullValue(RHS->getType()), 2666 Q, MaxRecurse-1)) 2667 return V; 2668 2669 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2670 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2671 if (Value *V = SimplifyICmpInst(Pred, 2672 Constant::getNullValue(LHS->getType()), 2673 C == LHS ? D : C, Q, MaxRecurse-1)) 2674 return V; 2675 2676 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2677 if (A && C && (A == C || A == D || B == C || B == D) && 2678 NoLHSWrapProblem && NoRHSWrapProblem) { 2679 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2680 Value *Y, *Z; 2681 if (A == C) { 2682 // C + B == C + D -> B == D 2683 Y = B; 2684 Z = D; 2685 } else if (A == D) { 2686 // D + B == C + D -> B == C 2687 Y = B; 2688 Z = C; 2689 } else if (B == C) { 2690 // A + C == C + D -> A == D 2691 Y = A; 2692 Z = D; 2693 } else { 2694 assert(B == D); 2695 // A + D == C + D -> A == C 2696 Y = A; 2697 Z = C; 2698 } 2699 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1)) 2700 return V; 2701 } 2702 } 2703 2704 { 2705 Value *Y = nullptr; 2706 // icmp pred (or X, Y), X 2707 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2708 if (Pred == ICmpInst::ICMP_ULT) 2709 return getFalse(ITy); 2710 if (Pred == ICmpInst::ICMP_UGE) 2711 return getTrue(ITy); 2712 2713 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2714 bool RHSKnownNonNegative, RHSKnownNegative; 2715 bool YKnownNonNegative, YKnownNegative; 2716 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, Q.DL, 0, 2717 Q.AC, Q.CxtI, Q.DT); 2718 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC, 2719 Q.CxtI, Q.DT); 2720 if (RHSKnownNonNegative && YKnownNegative) 2721 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2722 if (RHSKnownNegative || YKnownNonNegative) 2723 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2724 } 2725 } 2726 // icmp pred X, (or X, Y) 2727 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) { 2728 if (Pred == ICmpInst::ICMP_ULE) 2729 return getTrue(ITy); 2730 if (Pred == ICmpInst::ICMP_UGT) 2731 return getFalse(ITy); 2732 2733 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) { 2734 bool LHSKnownNonNegative, LHSKnownNegative; 2735 bool YKnownNonNegative, YKnownNegative; 2736 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, 2737 Q.AC, Q.CxtI, Q.DT); 2738 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC, 2739 Q.CxtI, Q.DT); 2740 if (LHSKnownNonNegative && YKnownNegative) 2741 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy); 2742 if (LHSKnownNegative || YKnownNonNegative) 2743 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy); 2744 } 2745 } 2746 } 2747 2748 // icmp pred (and X, Y), X 2749 if (LBO && match(LBO, m_CombineOr(m_And(m_Value(), m_Specific(RHS)), 2750 m_And(m_Specific(RHS), m_Value())))) { 2751 if (Pred == ICmpInst::ICMP_UGT) 2752 return getFalse(ITy); 2753 if (Pred == ICmpInst::ICMP_ULE) 2754 return getTrue(ITy); 2755 } 2756 // icmp pred X, (and X, Y) 2757 if (RBO && match(RBO, m_CombineOr(m_And(m_Value(), m_Specific(LHS)), 2758 m_And(m_Specific(LHS), m_Value())))) { 2759 if (Pred == ICmpInst::ICMP_UGE) 2760 return getTrue(ITy); 2761 if (Pred == ICmpInst::ICMP_ULT) 2762 return getFalse(ITy); 2763 } 2764 2765 // 0 - (zext X) pred C 2766 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2767 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2768 if (RHSC->getValue().isStrictlyPositive()) { 2769 if (Pred == ICmpInst::ICMP_SLT) 2770 return ConstantInt::getTrue(RHSC->getContext()); 2771 if (Pred == ICmpInst::ICMP_SGE) 2772 return ConstantInt::getFalse(RHSC->getContext()); 2773 if (Pred == ICmpInst::ICMP_EQ) 2774 return ConstantInt::getFalse(RHSC->getContext()); 2775 if (Pred == ICmpInst::ICMP_NE) 2776 return ConstantInt::getTrue(RHSC->getContext()); 2777 } 2778 if (RHSC->getValue().isNonNegative()) { 2779 if (Pred == ICmpInst::ICMP_SLE) 2780 return ConstantInt::getTrue(RHSC->getContext()); 2781 if (Pred == ICmpInst::ICMP_SGT) 2782 return ConstantInt::getFalse(RHSC->getContext()); 2783 } 2784 } 2785 } 2786 2787 // icmp pred (urem X, Y), Y 2788 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2789 bool KnownNonNegative, KnownNegative; 2790 switch (Pred) { 2791 default: 2792 break; 2793 case ICmpInst::ICMP_SGT: 2794 case ICmpInst::ICMP_SGE: 2795 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2796 Q.CxtI, Q.DT); 2797 if (!KnownNonNegative) 2798 break; 2799 LLVM_FALLTHROUGH; 2800 case ICmpInst::ICMP_EQ: 2801 case ICmpInst::ICMP_UGT: 2802 case ICmpInst::ICMP_UGE: 2803 return getFalse(ITy); 2804 case ICmpInst::ICMP_SLT: 2805 case ICmpInst::ICMP_SLE: 2806 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2807 Q.CxtI, Q.DT); 2808 if (!KnownNonNegative) 2809 break; 2810 LLVM_FALLTHROUGH; 2811 case ICmpInst::ICMP_NE: 2812 case ICmpInst::ICMP_ULT: 2813 case ICmpInst::ICMP_ULE: 2814 return getTrue(ITy); 2815 } 2816 } 2817 2818 // icmp pred X, (urem Y, X) 2819 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2820 bool KnownNonNegative, KnownNegative; 2821 switch (Pred) { 2822 default: 2823 break; 2824 case ICmpInst::ICMP_SGT: 2825 case ICmpInst::ICMP_SGE: 2826 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2827 Q.CxtI, Q.DT); 2828 if (!KnownNonNegative) 2829 break; 2830 LLVM_FALLTHROUGH; 2831 case ICmpInst::ICMP_NE: 2832 case ICmpInst::ICMP_UGT: 2833 case ICmpInst::ICMP_UGE: 2834 return getTrue(ITy); 2835 case ICmpInst::ICMP_SLT: 2836 case ICmpInst::ICMP_SLE: 2837 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2838 Q.CxtI, Q.DT); 2839 if (!KnownNonNegative) 2840 break; 2841 LLVM_FALLTHROUGH; 2842 case ICmpInst::ICMP_EQ: 2843 case ICmpInst::ICMP_ULT: 2844 case ICmpInst::ICMP_ULE: 2845 return getFalse(ITy); 2846 } 2847 } 2848 2849 // x >> y <=u x 2850 // x udiv y <=u x. 2851 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2852 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { 2853 // icmp pred (X op Y), X 2854 if (Pred == ICmpInst::ICMP_UGT) 2855 return getFalse(ITy); 2856 if (Pred == ICmpInst::ICMP_ULE) 2857 return getTrue(ITy); 2858 } 2859 2860 // handle: 2861 // CI2 << X == CI 2862 // CI2 << X != CI 2863 // 2864 // where CI2 is a power of 2 and CI isn't 2865 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2866 const APInt *CI2Val, *CIVal = &CI->getValue(); 2867 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2868 CI2Val->isPowerOf2()) { 2869 if (!CIVal->isPowerOf2()) { 2870 // CI2 << X can equal zero in some circumstances, 2871 // this simplification is unsafe if CI is zero. 2872 // 2873 // We know it is safe if: 2874 // - The shift is nsw, we can't shift out the one bit. 2875 // - The shift is nuw, we can't shift out the one bit. 2876 // - CI2 is one 2877 // - CI isn't zero 2878 if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() || 2879 *CI2Val == 1 || !CI->isZero()) { 2880 if (Pred == ICmpInst::ICMP_EQ) 2881 return ConstantInt::getFalse(RHS->getContext()); 2882 if (Pred == ICmpInst::ICMP_NE) 2883 return ConstantInt::getTrue(RHS->getContext()); 2884 } 2885 } 2886 if (CIVal->isSignBit() && *CI2Val == 1) { 2887 if (Pred == ICmpInst::ICMP_UGT) 2888 return ConstantInt::getFalse(RHS->getContext()); 2889 if (Pred == ICmpInst::ICMP_ULE) 2890 return ConstantInt::getTrue(RHS->getContext()); 2891 } 2892 } 2893 } 2894 2895 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2896 LBO->getOperand(1) == RBO->getOperand(1)) { 2897 switch (LBO->getOpcode()) { 2898 default: break; 2899 case Instruction::UDiv: 2900 case Instruction::LShr: 2901 if (ICmpInst::isSigned(Pred)) 2902 break; 2903 LLVM_FALLTHROUGH; 2904 case Instruction::SDiv: 2905 case Instruction::AShr: 2906 if (!LBO->isExact() || !RBO->isExact()) 2907 break; 2908 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2909 RBO->getOperand(0), Q, MaxRecurse-1)) 2910 return V; 2911 break; 2912 case Instruction::Shl: { 2913 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap(); 2914 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap(); 2915 if (!NUW && !NSW) 2916 break; 2917 if (!NSW && ICmpInst::isSigned(Pred)) 2918 break; 2919 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2920 RBO->getOperand(0), Q, MaxRecurse-1)) 2921 return V; 2922 break; 2923 } 2924 } 2925 } 2926 2927 // Simplify comparisons involving max/min. 2928 Value *A, *B; 2929 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 2930 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 2931 2932 // Signed variants on "max(a,b)>=a -> true". 2933 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2934 if (A != RHS) std::swap(A, B); // smax(A, B) pred A. 2935 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2936 // We analyze this as smax(A, B) pred A. 2937 P = Pred; 2938 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 2939 (A == LHS || B == LHS)) { 2940 if (A != LHS) std::swap(A, B); // A pred smax(A, B). 2941 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2942 // We analyze this as smax(A, B) swapped-pred A. 2943 P = CmpInst::getSwappedPredicate(Pred); 2944 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2945 (A == RHS || B == RHS)) { 2946 if (A != RHS) std::swap(A, B); // smin(A, B) pred A. 2947 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2948 // We analyze this as smax(-A, -B) swapped-pred -A. 2949 // Note that we do not need to actually form -A or -B thanks to EqP. 2950 P = CmpInst::getSwappedPredicate(Pred); 2951 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 2952 (A == LHS || B == LHS)) { 2953 if (A != LHS) std::swap(A, B); // A pred smin(A, B). 2954 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2955 // We analyze this as smax(-A, -B) pred -A. 2956 // Note that we do not need to actually form -A or -B thanks to EqP. 2957 P = Pred; 2958 } 2959 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2960 // Cases correspond to "max(A, B) p A". 2961 switch (P) { 2962 default: 2963 break; 2964 case CmpInst::ICMP_EQ: 2965 case CmpInst::ICMP_SLE: 2966 // Equivalent to "A EqP B". This may be the same as the condition tested 2967 // in the max/min; if so, we can just return that. 2968 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2969 return V; 2970 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2971 return V; 2972 // Otherwise, see if "A EqP B" simplifies. 2973 if (MaxRecurse) 2974 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1)) 2975 return V; 2976 break; 2977 case CmpInst::ICMP_NE: 2978 case CmpInst::ICMP_SGT: { 2979 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2980 // Equivalent to "A InvEqP B". This may be the same as the condition 2981 // tested in the max/min; if so, we can just return that. 2982 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2983 return V; 2984 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2985 return V; 2986 // Otherwise, see if "A InvEqP B" simplifies. 2987 if (MaxRecurse) 2988 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1)) 2989 return V; 2990 break; 2991 } 2992 case CmpInst::ICMP_SGE: 2993 // Always true. 2994 return getTrue(ITy); 2995 case CmpInst::ICMP_SLT: 2996 // Always false. 2997 return getFalse(ITy); 2998 } 2999 } 3000 3001 // Unsigned variants on "max(a,b)>=a -> true". 3002 P = CmpInst::BAD_ICMP_PREDICATE; 3003 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3004 if (A != RHS) std::swap(A, B); // umax(A, B) pred A. 3005 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3006 // We analyze this as umax(A, B) pred A. 3007 P = Pred; 3008 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 3009 (A == LHS || B == LHS)) { 3010 if (A != LHS) std::swap(A, B); // A pred umax(A, B). 3011 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3012 // We analyze this as umax(A, B) swapped-pred A. 3013 P = CmpInst::getSwappedPredicate(Pred); 3014 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3015 (A == RHS || B == RHS)) { 3016 if (A != RHS) std::swap(A, B); // umin(A, B) pred A. 3017 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3018 // We analyze this as umax(-A, -B) swapped-pred -A. 3019 // Note that we do not need to actually form -A or -B thanks to EqP. 3020 P = CmpInst::getSwappedPredicate(Pred); 3021 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3022 (A == LHS || B == LHS)) { 3023 if (A != LHS) std::swap(A, B); // A pred umin(A, B). 3024 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3025 // We analyze this as umax(-A, -B) pred -A. 3026 // Note that we do not need to actually form -A or -B thanks to EqP. 3027 P = Pred; 3028 } 3029 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3030 // Cases correspond to "max(A, B) p A". 3031 switch (P) { 3032 default: 3033 break; 3034 case CmpInst::ICMP_EQ: 3035 case CmpInst::ICMP_ULE: 3036 // Equivalent to "A EqP B". This may be the same as the condition tested 3037 // in the max/min; if so, we can just return that. 3038 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3039 return V; 3040 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3041 return V; 3042 // Otherwise, see if "A EqP B" simplifies. 3043 if (MaxRecurse) 3044 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1)) 3045 return V; 3046 break; 3047 case CmpInst::ICMP_NE: 3048 case CmpInst::ICMP_UGT: { 3049 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3050 // Equivalent to "A InvEqP B". This may be the same as the condition 3051 // tested in the max/min; if so, we can just return that. 3052 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3053 return V; 3054 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3055 return V; 3056 // Otherwise, see if "A InvEqP B" simplifies. 3057 if (MaxRecurse) 3058 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1)) 3059 return V; 3060 break; 3061 } 3062 case CmpInst::ICMP_UGE: 3063 // Always true. 3064 return getTrue(ITy); 3065 case CmpInst::ICMP_ULT: 3066 // Always false. 3067 return getFalse(ITy); 3068 } 3069 } 3070 3071 // Variants on "max(x,y) >= min(x,z)". 3072 Value *C, *D; 3073 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3074 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3075 (A == C || A == D || B == C || B == D)) { 3076 // max(x, ?) pred min(x, ?). 3077 if (Pred == CmpInst::ICMP_SGE) 3078 // Always true. 3079 return getTrue(ITy); 3080 if (Pred == CmpInst::ICMP_SLT) 3081 // Always false. 3082 return getFalse(ITy); 3083 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3084 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 3085 (A == C || A == D || B == C || B == D)) { 3086 // min(x, ?) pred max(x, ?). 3087 if (Pred == CmpInst::ICMP_SLE) 3088 // Always true. 3089 return getTrue(ITy); 3090 if (Pred == CmpInst::ICMP_SGT) 3091 // Always false. 3092 return getFalse(ITy); 3093 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3094 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3095 (A == C || A == D || B == C || B == D)) { 3096 // max(x, ?) pred min(x, ?). 3097 if (Pred == CmpInst::ICMP_UGE) 3098 // Always true. 3099 return getTrue(ITy); 3100 if (Pred == CmpInst::ICMP_ULT) 3101 // Always false. 3102 return getFalse(ITy); 3103 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3104 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 3105 (A == C || A == D || B == C || B == D)) { 3106 // min(x, ?) pred max(x, ?). 3107 if (Pred == CmpInst::ICMP_ULE) 3108 // Always true. 3109 return getTrue(ITy); 3110 if (Pred == CmpInst::ICMP_UGT) 3111 // Always false. 3112 return getFalse(ITy); 3113 } 3114 3115 // Simplify comparisons of related pointers using a powerful, recursive 3116 // GEP-walk when we have target data available.. 3117 if (LHS->getType()->isPointerTy()) 3118 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, LHS, RHS)) 3119 return C; 3120 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3121 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3122 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3123 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3124 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3125 Q.DL.getTypeSizeInBits(CRHS->getType())) 3126 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, 3127 CLHS->getPointerOperand(), 3128 CRHS->getPointerOperand())) 3129 return C; 3130 3131 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3132 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3133 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3134 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3135 (ICmpInst::isEquality(Pred) || 3136 (GLHS->isInBounds() && GRHS->isInBounds() && 3137 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3138 // The bases are equal and the indices are constant. Build a constant 3139 // expression GEP with the same indices and a null base pointer to see 3140 // what constant folding can make out of it. 3141 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3142 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3143 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3144 GLHS->getSourceElementType(), Null, IndicesLHS); 3145 3146 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3147 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3148 GLHS->getSourceElementType(), Null, IndicesRHS); 3149 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3150 } 3151 } 3152 } 3153 3154 // If a bit is known to be zero for A and known to be one for B, 3155 // then A and B cannot be equal. 3156 if (ICmpInst::isEquality(Pred)) { 3157 const APInt *RHSVal; 3158 if (match(RHS, m_APInt(RHSVal))) { 3159 unsigned BitWidth = RHSVal->getBitWidth(); 3160 APInt LHSKnownZero(BitWidth, 0); 3161 APInt LHSKnownOne(BitWidth, 0); 3162 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, Q.DL, /*Depth=*/0, Q.AC, 3163 Q.CxtI, Q.DT); 3164 if (((LHSKnownZero & *RHSVal) != 0) || ((LHSKnownOne & ~(*RHSVal)) != 0)) 3165 return Pred == ICmpInst::ICMP_EQ ? ConstantInt::getFalse(ITy) 3166 : ConstantInt::getTrue(ITy); 3167 } 3168 } 3169 3170 // If the comparison is with the result of a select instruction, check whether 3171 // comparing with either branch of the select always yields the same value. 3172 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3173 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3174 return V; 3175 3176 // If the comparison is with the result of a phi instruction, check whether 3177 // doing the compare with each incoming phi value yields a common result. 3178 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3179 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3180 return V; 3181 3182 return nullptr; 3183 } 3184 3185 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3186 const DataLayout &DL, 3187 const TargetLibraryInfo *TLI, 3188 const DominatorTree *DT, AssumptionCache *AC, 3189 const Instruction *CxtI) { 3190 return ::SimplifyICmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 3191 RecursionLimit); 3192 } 3193 3194 /// Given operands for an FCmpInst, see if we can fold the result. 3195 /// If not, this returns null. 3196 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3197 FastMathFlags FMF, const Query &Q, 3198 unsigned MaxRecurse) { 3199 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3200 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3201 3202 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3203 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3204 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3205 3206 // If we have a constant, make sure it is on the RHS. 3207 std::swap(LHS, RHS); 3208 Pred = CmpInst::getSwappedPredicate(Pred); 3209 } 3210 3211 // Fold trivial predicates. 3212 Type *RetTy = GetCompareTy(LHS); 3213 if (Pred == FCmpInst::FCMP_FALSE) 3214 return getFalse(RetTy); 3215 if (Pred == FCmpInst::FCMP_TRUE) 3216 return getTrue(RetTy); 3217 3218 // UNO/ORD predicates can be trivially folded if NaNs are ignored. 3219 if (FMF.noNaNs()) { 3220 if (Pred == FCmpInst::FCMP_UNO) 3221 return getFalse(RetTy); 3222 if (Pred == FCmpInst::FCMP_ORD) 3223 return getTrue(RetTy); 3224 } 3225 3226 // fcmp pred x, undef and fcmp pred undef, x 3227 // fold to true if unordered, false if ordered 3228 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3229 // Choosing NaN for the undef will always make unordered comparison succeed 3230 // and ordered comparison fail. 3231 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3232 } 3233 3234 // fcmp x,x -> true/false. Not all compares are foldable. 3235 if (LHS == RHS) { 3236 if (CmpInst::isTrueWhenEqual(Pred)) 3237 return getTrue(RetTy); 3238 if (CmpInst::isFalseWhenEqual(Pred)) 3239 return getFalse(RetTy); 3240 } 3241 3242 // Handle fcmp with constant RHS 3243 const ConstantFP *CFP = nullptr; 3244 if (const auto *RHSC = dyn_cast<Constant>(RHS)) { 3245 if (RHS->getType()->isVectorTy()) 3246 CFP = dyn_cast_or_null<ConstantFP>(RHSC->getSplatValue()); 3247 else 3248 CFP = dyn_cast<ConstantFP>(RHSC); 3249 } 3250 if (CFP) { 3251 // If the constant is a nan, see if we can fold the comparison based on it. 3252 if (CFP->getValueAPF().isNaN()) { 3253 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo" 3254 return getFalse(RetTy); 3255 assert(FCmpInst::isUnordered(Pred) && 3256 "Comparison must be either ordered or unordered!"); 3257 // True if unordered. 3258 return getTrue(RetTy); 3259 } 3260 // Check whether the constant is an infinity. 3261 if (CFP->getValueAPF().isInfinity()) { 3262 if (CFP->getValueAPF().isNegative()) { 3263 switch (Pred) { 3264 case FCmpInst::FCMP_OLT: 3265 // No value is ordered and less than negative infinity. 3266 return getFalse(RetTy); 3267 case FCmpInst::FCMP_UGE: 3268 // All values are unordered with or at least negative infinity. 3269 return getTrue(RetTy); 3270 default: 3271 break; 3272 } 3273 } else { 3274 switch (Pred) { 3275 case FCmpInst::FCMP_OGT: 3276 // No value is ordered and greater than infinity. 3277 return getFalse(RetTy); 3278 case FCmpInst::FCMP_ULE: 3279 // All values are unordered with and at most infinity. 3280 return getTrue(RetTy); 3281 default: 3282 break; 3283 } 3284 } 3285 } 3286 if (CFP->getValueAPF().isZero()) { 3287 switch (Pred) { 3288 case FCmpInst::FCMP_UGE: 3289 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3290 return getTrue(RetTy); 3291 break; 3292 case FCmpInst::FCMP_OLT: 3293 // X < 0 3294 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3295 return getFalse(RetTy); 3296 break; 3297 default: 3298 break; 3299 } 3300 } 3301 } 3302 3303 // If the comparison is with the result of a select instruction, check whether 3304 // comparing with either branch of the select always yields the same value. 3305 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3306 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3307 return V; 3308 3309 // If the comparison is with the result of a phi instruction, check whether 3310 // doing the compare with each incoming phi value yields a common result. 3311 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3312 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3313 return V; 3314 3315 return nullptr; 3316 } 3317 3318 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3319 FastMathFlags FMF, const DataLayout &DL, 3320 const TargetLibraryInfo *TLI, 3321 const DominatorTree *DT, AssumptionCache *AC, 3322 const Instruction *CxtI) { 3323 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, 3324 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3325 } 3326 3327 /// See if V simplifies when its operand Op is replaced with RepOp. 3328 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3329 const Query &Q, 3330 unsigned MaxRecurse) { 3331 // Trivial replacement. 3332 if (V == Op) 3333 return RepOp; 3334 3335 auto *I = dyn_cast<Instruction>(V); 3336 if (!I) 3337 return nullptr; 3338 3339 // If this is a binary operator, try to simplify it with the replaced op. 3340 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3341 // Consider: 3342 // %cmp = icmp eq i32 %x, 2147483647 3343 // %add = add nsw i32 %x, 1 3344 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3345 // 3346 // We can't replace %sel with %add unless we strip away the flags. 3347 if (isa<OverflowingBinaryOperator>(B)) 3348 if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap()) 3349 return nullptr; 3350 if (isa<PossiblyExactOperator>(B)) 3351 if (B->isExact()) 3352 return nullptr; 3353 3354 if (MaxRecurse) { 3355 if (B->getOperand(0) == Op) 3356 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3357 MaxRecurse - 1); 3358 if (B->getOperand(1) == Op) 3359 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3360 MaxRecurse - 1); 3361 } 3362 } 3363 3364 // Same for CmpInsts. 3365 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3366 if (MaxRecurse) { 3367 if (C->getOperand(0) == Op) 3368 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3369 MaxRecurse - 1); 3370 if (C->getOperand(1) == Op) 3371 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3372 MaxRecurse - 1); 3373 } 3374 } 3375 3376 // TODO: We could hand off more cases to instsimplify here. 3377 3378 // If all operands are constant after substituting Op for RepOp then we can 3379 // constant fold the instruction. 3380 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3381 // Build a list of all constant operands. 3382 SmallVector<Constant *, 8> ConstOps; 3383 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3384 if (I->getOperand(i) == Op) 3385 ConstOps.push_back(CRepOp); 3386 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3387 ConstOps.push_back(COp); 3388 else 3389 break; 3390 } 3391 3392 // All operands were constants, fold it. 3393 if (ConstOps.size() == I->getNumOperands()) { 3394 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3395 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3396 ConstOps[1], Q.DL, Q.TLI); 3397 3398 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3399 if (!LI->isVolatile()) 3400 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3401 3402 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3403 } 3404 } 3405 3406 return nullptr; 3407 } 3408 3409 /// Try to simplify a select instruction when its condition operand is an 3410 /// integer comparison where one operand of the compare is a constant. 3411 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3412 const APInt *Y, bool TrueWhenUnset) { 3413 const APInt *C; 3414 3415 // (X & Y) == 0 ? X & ~Y : X --> X 3416 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3417 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3418 *Y == ~*C) 3419 return TrueWhenUnset ? FalseVal : TrueVal; 3420 3421 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3422 // (X & Y) != 0 ? X : X & ~Y --> X 3423 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3424 *Y == ~*C) 3425 return TrueWhenUnset ? FalseVal : TrueVal; 3426 3427 if (Y->isPowerOf2()) { 3428 // (X & Y) == 0 ? X | Y : X --> X | Y 3429 // (X & Y) != 0 ? X | Y : X --> X 3430 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3431 *Y == *C) 3432 return TrueWhenUnset ? TrueVal : FalseVal; 3433 3434 // (X & Y) == 0 ? X : X | Y --> X 3435 // (X & Y) != 0 ? X : X | Y --> X | Y 3436 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3437 *Y == *C) 3438 return TrueWhenUnset ? TrueVal : FalseVal; 3439 } 3440 3441 return nullptr; 3442 } 3443 3444 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 3445 /// eq/ne. 3446 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *TrueVal, 3447 Value *FalseVal, 3448 bool TrueWhenUnset) { 3449 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits(); 3450 if (!BitWidth) 3451 return nullptr; 3452 3453 APInt MinSignedValue; 3454 Value *X; 3455 if (match(CmpLHS, m_Trunc(m_Value(X))) && (X == TrueVal || X == FalseVal)) { 3456 // icmp slt (trunc X), 0 <--> icmp ne (and X, C), 0 3457 // icmp sgt (trunc X), -1 <--> icmp eq (and X, C), 0 3458 unsigned DestSize = CmpLHS->getType()->getScalarSizeInBits(); 3459 MinSignedValue = APInt::getSignedMinValue(DestSize).zext(BitWidth); 3460 } else { 3461 // icmp slt X, 0 <--> icmp ne (and X, C), 0 3462 // icmp sgt X, -1 <--> icmp eq (and X, C), 0 3463 X = CmpLHS; 3464 MinSignedValue = APInt::getSignedMinValue(BitWidth); 3465 } 3466 3467 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, &MinSignedValue, 3468 TrueWhenUnset)) 3469 return V; 3470 3471 return nullptr; 3472 } 3473 3474 /// Try to simplify a select instruction when its condition operand is an 3475 /// integer comparison. 3476 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 3477 Value *FalseVal, const Query &Q, 3478 unsigned MaxRecurse) { 3479 ICmpInst::Predicate Pred; 3480 Value *CmpLHS, *CmpRHS; 3481 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 3482 return nullptr; 3483 3484 // FIXME: This code is nearly duplicated in InstCombine. Using/refactoring 3485 // decomposeBitTestICmp() might help. 3486 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) { 3487 Value *X; 3488 const APInt *Y; 3489 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 3490 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 3491 Pred == ICmpInst::ICMP_EQ)) 3492 return V; 3493 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 3494 // Comparing signed-less-than 0 checks if the sign bit is set. 3495 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal, 3496 false)) 3497 return V; 3498 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 3499 // Comparing signed-greater-than -1 checks if the sign bit is not set. 3500 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal, 3501 true)) 3502 return V; 3503 } 3504 3505 if (CondVal->hasOneUse()) { 3506 const APInt *C; 3507 if (match(CmpRHS, m_APInt(C))) { 3508 // X < MIN ? T : F --> F 3509 if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue()) 3510 return FalseVal; 3511 // X < MIN ? T : F --> F 3512 if (Pred == ICmpInst::ICMP_ULT && C->isMinValue()) 3513 return FalseVal; 3514 // X > MAX ? T : F --> F 3515 if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue()) 3516 return FalseVal; 3517 // X > MAX ? T : F --> F 3518 if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue()) 3519 return FalseVal; 3520 } 3521 } 3522 3523 // If we have an equality comparison, then we know the value in one of the 3524 // arms of the select. See if substituting this value into the arm and 3525 // simplifying the result yields the same value as the other arm. 3526 if (Pred == ICmpInst::ICMP_EQ) { 3527 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3528 TrueVal || 3529 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3530 TrueVal) 3531 return FalseVal; 3532 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3533 FalseVal || 3534 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3535 FalseVal) 3536 return FalseVal; 3537 } else if (Pred == ICmpInst::ICMP_NE) { 3538 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3539 FalseVal || 3540 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3541 FalseVal) 3542 return TrueVal; 3543 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3544 TrueVal || 3545 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3546 TrueVal) 3547 return TrueVal; 3548 } 3549 3550 return nullptr; 3551 } 3552 3553 /// Given operands for a SelectInst, see if we can fold the result. 3554 /// If not, this returns null. 3555 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal, 3556 Value *FalseVal, const Query &Q, 3557 unsigned MaxRecurse) { 3558 // select true, X, Y -> X 3559 // select false, X, Y -> Y 3560 if (Constant *CB = dyn_cast<Constant>(CondVal)) { 3561 if (CB->isAllOnesValue()) 3562 return TrueVal; 3563 if (CB->isNullValue()) 3564 return FalseVal; 3565 } 3566 3567 // select C, X, X -> X 3568 if (TrueVal == FalseVal) 3569 return TrueVal; 3570 3571 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y 3572 if (isa<Constant>(TrueVal)) 3573 return TrueVal; 3574 return FalseVal; 3575 } 3576 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X 3577 return FalseVal; 3578 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X 3579 return TrueVal; 3580 3581 if (Value *V = 3582 simplifySelectWithICmpCond(CondVal, TrueVal, FalseVal, Q, MaxRecurse)) 3583 return V; 3584 3585 return nullptr; 3586 } 3587 3588 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3589 const DataLayout &DL, 3590 const TargetLibraryInfo *TLI, 3591 const DominatorTree *DT, AssumptionCache *AC, 3592 const Instruction *CxtI) { 3593 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, 3594 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3595 } 3596 3597 /// Given operands for an GetElementPtrInst, see if we can fold the result. 3598 /// If not, this returns null. 3599 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3600 const Query &Q, unsigned) { 3601 // The type of the GEP pointer operand. 3602 unsigned AS = 3603 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 3604 3605 // getelementptr P -> P. 3606 if (Ops.size() == 1) 3607 return Ops[0]; 3608 3609 // Compute the (pointer) type returned by the GEP instruction. 3610 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 3611 Type *GEPTy = PointerType::get(LastType, AS); 3612 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 3613 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3614 3615 if (isa<UndefValue>(Ops[0])) 3616 return UndefValue::get(GEPTy); 3617 3618 if (Ops.size() == 2) { 3619 // getelementptr P, 0 -> P. 3620 if (match(Ops[1], m_Zero())) 3621 return Ops[0]; 3622 3623 Type *Ty = SrcTy; 3624 if (Ty->isSized()) { 3625 Value *P; 3626 uint64_t C; 3627 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 3628 // getelementptr P, N -> P if P points to a type of zero size. 3629 if (TyAllocSize == 0) 3630 return Ops[0]; 3631 3632 // The following transforms are only safe if the ptrtoint cast 3633 // doesn't truncate the pointers. 3634 if (Ops[1]->getType()->getScalarSizeInBits() == 3635 Q.DL.getPointerSizeInBits(AS)) { 3636 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 3637 if (match(P, m_Zero())) 3638 return Constant::getNullValue(GEPTy); 3639 Value *Temp; 3640 if (match(P, m_PtrToInt(m_Value(Temp)))) 3641 if (Temp->getType() == GEPTy) 3642 return Temp; 3643 return nullptr; 3644 }; 3645 3646 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 3647 if (TyAllocSize == 1 && 3648 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 3649 if (Value *R = PtrToIntOrZero(P)) 3650 return R; 3651 3652 // getelementptr V, (ashr (sub P, V), C) -> Q 3653 // if P points to a type of size 1 << C. 3654 if (match(Ops[1], 3655 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3656 m_ConstantInt(C))) && 3657 TyAllocSize == 1ULL << C) 3658 if (Value *R = PtrToIntOrZero(P)) 3659 return R; 3660 3661 // getelementptr V, (sdiv (sub P, V), C) -> Q 3662 // if P points to a type of size C. 3663 if (match(Ops[1], 3664 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3665 m_SpecificInt(TyAllocSize)))) 3666 if (Value *R = PtrToIntOrZero(P)) 3667 return R; 3668 } 3669 } 3670 } 3671 3672 if (Q.DL.getTypeAllocSize(LastType) == 1 && 3673 all_of(Ops.slice(1).drop_back(1), 3674 [](Value *Idx) { return match(Idx, m_Zero()); })) { 3675 unsigned PtrWidth = 3676 Q.DL.getPointerSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 3677 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == PtrWidth) { 3678 APInt BasePtrOffset(PtrWidth, 0); 3679 Value *StrippedBasePtr = 3680 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 3681 BasePtrOffset); 3682 3683 // gep (gep V, C), (sub 0, V) -> C 3684 if (match(Ops.back(), 3685 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { 3686 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 3687 return ConstantExpr::getIntToPtr(CI, GEPTy); 3688 } 3689 // gep (gep V, C), (xor V, -1) -> C-1 3690 if (match(Ops.back(), 3691 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { 3692 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 3693 return ConstantExpr::getIntToPtr(CI, GEPTy); 3694 } 3695 } 3696 } 3697 3698 // Check to see if this is constant foldable. 3699 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3700 if (!isa<Constant>(Ops[i])) 3701 return nullptr; 3702 3703 return ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 3704 Ops.slice(1)); 3705 } 3706 3707 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3708 const DataLayout &DL, 3709 const TargetLibraryInfo *TLI, 3710 const DominatorTree *DT, AssumptionCache *AC, 3711 const Instruction *CxtI) { 3712 return ::SimplifyGEPInst(SrcTy, Ops, 3713 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3714 } 3715 3716 /// Given operands for an InsertValueInst, see if we can fold the result. 3717 /// If not, this returns null. 3718 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 3719 ArrayRef<unsigned> Idxs, const Query &Q, 3720 unsigned) { 3721 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 3722 if (Constant *CVal = dyn_cast<Constant>(Val)) 3723 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 3724 3725 // insertvalue x, undef, n -> x 3726 if (match(Val, m_Undef())) 3727 return Agg; 3728 3729 // insertvalue x, (extractvalue y, n), n 3730 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 3731 if (EV->getAggregateOperand()->getType() == Agg->getType() && 3732 EV->getIndices() == Idxs) { 3733 // insertvalue undef, (extractvalue y, n), n -> y 3734 if (match(Agg, m_Undef())) 3735 return EV->getAggregateOperand(); 3736 3737 // insertvalue y, (extractvalue y, n), n -> y 3738 if (Agg == EV->getAggregateOperand()) 3739 return Agg; 3740 } 3741 3742 return nullptr; 3743 } 3744 3745 Value *llvm::SimplifyInsertValueInst( 3746 Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const DataLayout &DL, 3747 const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC, 3748 const Instruction *CxtI) { 3749 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query(DL, TLI, DT, AC, CxtI), 3750 RecursionLimit); 3751 } 3752 3753 /// Given operands for an ExtractValueInst, see if we can fold the result. 3754 /// If not, this returns null. 3755 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3756 const Query &, unsigned) { 3757 if (auto *CAgg = dyn_cast<Constant>(Agg)) 3758 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 3759 3760 // extractvalue x, (insertvalue y, elt, n), n -> elt 3761 unsigned NumIdxs = Idxs.size(); 3762 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 3763 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 3764 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 3765 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 3766 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 3767 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 3768 Idxs.slice(0, NumCommonIdxs)) { 3769 if (NumIdxs == NumInsertValueIdxs) 3770 return IVI->getInsertedValueOperand(); 3771 break; 3772 } 3773 } 3774 3775 return nullptr; 3776 } 3777 3778 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3779 const DataLayout &DL, 3780 const TargetLibraryInfo *TLI, 3781 const DominatorTree *DT, 3782 AssumptionCache *AC, 3783 const Instruction *CxtI) { 3784 return ::SimplifyExtractValueInst(Agg, Idxs, Query(DL, TLI, DT, AC, CxtI), 3785 RecursionLimit); 3786 } 3787 3788 /// Given operands for an ExtractElementInst, see if we can fold the result. 3789 /// If not, this returns null. 3790 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const Query &, 3791 unsigned) { 3792 if (auto *CVec = dyn_cast<Constant>(Vec)) { 3793 if (auto *CIdx = dyn_cast<Constant>(Idx)) 3794 return ConstantFoldExtractElementInstruction(CVec, CIdx); 3795 3796 // The index is not relevant if our vector is a splat. 3797 if (auto *Splat = CVec->getSplatValue()) 3798 return Splat; 3799 3800 if (isa<UndefValue>(Vec)) 3801 return UndefValue::get(Vec->getType()->getVectorElementType()); 3802 } 3803 3804 // If extracting a specified index from the vector, see if we can recursively 3805 // find a previously computed scalar that was inserted into the vector. 3806 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) 3807 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 3808 return Elt; 3809 3810 return nullptr; 3811 } 3812 3813 Value *llvm::SimplifyExtractElementInst( 3814 Value *Vec, Value *Idx, const DataLayout &DL, const TargetLibraryInfo *TLI, 3815 const DominatorTree *DT, AssumptionCache *AC, const Instruction *CxtI) { 3816 return ::SimplifyExtractElementInst(Vec, Idx, Query(DL, TLI, DT, AC, CxtI), 3817 RecursionLimit); 3818 } 3819 3820 /// See if we can fold the given phi. If not, returns null. 3821 static Value *SimplifyPHINode(PHINode *PN, const Query &Q) { 3822 // If all of the PHI's incoming values are the same then replace the PHI node 3823 // with the common value. 3824 Value *CommonValue = nullptr; 3825 bool HasUndefInput = false; 3826 for (Value *Incoming : PN->incoming_values()) { 3827 // If the incoming value is the phi node itself, it can safely be skipped. 3828 if (Incoming == PN) continue; 3829 if (isa<UndefValue>(Incoming)) { 3830 // Remember that we saw an undef value, but otherwise ignore them. 3831 HasUndefInput = true; 3832 continue; 3833 } 3834 if (CommonValue && Incoming != CommonValue) 3835 return nullptr; // Not the same, bail out. 3836 CommonValue = Incoming; 3837 } 3838 3839 // If CommonValue is null then all of the incoming values were either undef or 3840 // equal to the phi node itself. 3841 if (!CommonValue) 3842 return UndefValue::get(PN->getType()); 3843 3844 // If we have a PHI node like phi(X, undef, X), where X is defined by some 3845 // instruction, we cannot return X as the result of the PHI node unless it 3846 // dominates the PHI block. 3847 if (HasUndefInput) 3848 return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 3849 3850 return CommonValue; 3851 } 3852 3853 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 3854 Type *Ty, const Query &Q, unsigned MaxRecurse) { 3855 if (auto *C = dyn_cast<Constant>(Op)) 3856 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 3857 3858 if (auto *CI = dyn_cast<CastInst>(Op)) { 3859 auto *Src = CI->getOperand(0); 3860 Type *SrcTy = Src->getType(); 3861 Type *MidTy = CI->getType(); 3862 Type *DstTy = Ty; 3863 if (Src->getType() == Ty) { 3864 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 3865 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 3866 Type *SrcIntPtrTy = 3867 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 3868 Type *MidIntPtrTy = 3869 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 3870 Type *DstIntPtrTy = 3871 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 3872 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 3873 SrcIntPtrTy, MidIntPtrTy, 3874 DstIntPtrTy) == Instruction::BitCast) 3875 return Src; 3876 } 3877 } 3878 3879 // bitcast x -> x 3880 if (CastOpc == Instruction::BitCast) 3881 if (Op->getType() == Ty) 3882 return Op; 3883 3884 return nullptr; 3885 } 3886 3887 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 3888 const DataLayout &DL, 3889 const TargetLibraryInfo *TLI, 3890 const DominatorTree *DT, AssumptionCache *AC, 3891 const Instruction *CxtI) { 3892 return ::SimplifyCastInst(CastOpc, Op, Ty, Query(DL, TLI, DT, AC, CxtI), 3893 RecursionLimit); 3894 } 3895 3896 //=== Helper functions for higher up the class hierarchy. 3897 3898 /// Given operands for a BinaryOperator, see if we can fold the result. 3899 /// If not, this returns null. 3900 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 3901 const Query &Q, unsigned MaxRecurse) { 3902 switch (Opcode) { 3903 case Instruction::Add: 3904 return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 3905 Q, MaxRecurse); 3906 case Instruction::FAdd: 3907 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3908 3909 case Instruction::Sub: 3910 return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 3911 Q, MaxRecurse); 3912 case Instruction::FSub: 3913 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3914 3915 case Instruction::Mul: return SimplifyMulInst (LHS, RHS, Q, MaxRecurse); 3916 case Instruction::FMul: 3917 return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3918 case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 3919 case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 3920 case Instruction::FDiv: 3921 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3922 case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 3923 case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 3924 case Instruction::FRem: 3925 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3926 case Instruction::Shl: 3927 return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 3928 Q, MaxRecurse); 3929 case Instruction::LShr: 3930 return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse); 3931 case Instruction::AShr: 3932 return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse); 3933 case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 3934 case Instruction::Or: return SimplifyOrInst (LHS, RHS, Q, MaxRecurse); 3935 case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 3936 default: 3937 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 3938 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3939 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 3940 3941 // If the operation is associative, try some generic simplifications. 3942 if (Instruction::isAssociative(Opcode)) 3943 if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse)) 3944 return V; 3945 3946 // If the operation is with the result of a select instruction check whether 3947 // operating on either branch of the select always yields the same value. 3948 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3949 if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse)) 3950 return V; 3951 3952 // If the operation is with the result of a phi instruction, check whether 3953 // operating on all incoming values of the phi always yields the same value. 3954 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3955 if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse)) 3956 return V; 3957 3958 return nullptr; 3959 } 3960 } 3961 3962 /// Given operands for a BinaryOperator, see if we can fold the result. 3963 /// If not, this returns null. 3964 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the 3965 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp. 3966 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 3967 const FastMathFlags &FMF, const Query &Q, 3968 unsigned MaxRecurse) { 3969 switch (Opcode) { 3970 case Instruction::FAdd: 3971 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 3972 case Instruction::FSub: 3973 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 3974 case Instruction::FMul: 3975 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 3976 default: 3977 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 3978 } 3979 } 3980 3981 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 3982 const DataLayout &DL, const TargetLibraryInfo *TLI, 3983 const DominatorTree *DT, AssumptionCache *AC, 3984 const Instruction *CxtI) { 3985 return ::SimplifyBinOp(Opcode, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 3986 RecursionLimit); 3987 } 3988 3989 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 3990 const FastMathFlags &FMF, const DataLayout &DL, 3991 const TargetLibraryInfo *TLI, 3992 const DominatorTree *DT, AssumptionCache *AC, 3993 const Instruction *CxtI) { 3994 return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Query(DL, TLI, DT, AC, CxtI), 3995 RecursionLimit); 3996 } 3997 3998 /// Given operands for a CmpInst, see if we can fold the result. 3999 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4000 const Query &Q, unsigned MaxRecurse) { 4001 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 4002 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 4003 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4004 } 4005 4006 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4007 const DataLayout &DL, const TargetLibraryInfo *TLI, 4008 const DominatorTree *DT, AssumptionCache *AC, 4009 const Instruction *CxtI) { 4010 return ::SimplifyCmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 4011 RecursionLimit); 4012 } 4013 4014 static bool IsIdempotent(Intrinsic::ID ID) { 4015 switch (ID) { 4016 default: return false; 4017 4018 // Unary idempotent: f(f(x)) = f(x) 4019 case Intrinsic::fabs: 4020 case Intrinsic::floor: 4021 case Intrinsic::ceil: 4022 case Intrinsic::trunc: 4023 case Intrinsic::rint: 4024 case Intrinsic::nearbyint: 4025 case Intrinsic::round: 4026 return true; 4027 } 4028 } 4029 4030 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 4031 const DataLayout &DL) { 4032 GlobalValue *PtrSym; 4033 APInt PtrOffset; 4034 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 4035 return nullptr; 4036 4037 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 4038 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 4039 Type *Int32PtrTy = Int32Ty->getPointerTo(); 4040 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 4041 4042 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 4043 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 4044 return nullptr; 4045 4046 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 4047 if (OffsetInt % 4 != 0) 4048 return nullptr; 4049 4050 Constant *C = ConstantExpr::getGetElementPtr( 4051 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 4052 ConstantInt::get(Int64Ty, OffsetInt / 4)); 4053 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 4054 if (!Loaded) 4055 return nullptr; 4056 4057 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 4058 if (!LoadedCE) 4059 return nullptr; 4060 4061 if (LoadedCE->getOpcode() == Instruction::Trunc) { 4062 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4063 if (!LoadedCE) 4064 return nullptr; 4065 } 4066 4067 if (LoadedCE->getOpcode() != Instruction::Sub) 4068 return nullptr; 4069 4070 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4071 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 4072 return nullptr; 4073 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 4074 4075 Constant *LoadedRHS = LoadedCE->getOperand(1); 4076 GlobalValue *LoadedRHSSym; 4077 APInt LoadedRHSOffset; 4078 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 4079 DL) || 4080 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 4081 return nullptr; 4082 4083 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 4084 } 4085 4086 static bool maskIsAllZeroOrUndef(Value *Mask) { 4087 auto *ConstMask = dyn_cast<Constant>(Mask); 4088 if (!ConstMask) 4089 return false; 4090 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 4091 return true; 4092 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; 4093 ++I) { 4094 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 4095 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 4096 continue; 4097 return false; 4098 } 4099 return true; 4100 } 4101 4102 template <typename IterTy> 4103 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd, 4104 const Query &Q, unsigned MaxRecurse) { 4105 Intrinsic::ID IID = F->getIntrinsicID(); 4106 unsigned NumOperands = std::distance(ArgBegin, ArgEnd); 4107 Type *ReturnType = F->getReturnType(); 4108 4109 // Binary Ops 4110 if (NumOperands == 2) { 4111 Value *LHS = *ArgBegin; 4112 Value *RHS = *(ArgBegin + 1); 4113 if (IID == Intrinsic::usub_with_overflow || 4114 IID == Intrinsic::ssub_with_overflow) { 4115 // X - X -> { 0, false } 4116 if (LHS == RHS) 4117 return Constant::getNullValue(ReturnType); 4118 4119 // X - undef -> undef 4120 // undef - X -> undef 4121 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 4122 return UndefValue::get(ReturnType); 4123 } 4124 4125 if (IID == Intrinsic::uadd_with_overflow || 4126 IID == Intrinsic::sadd_with_overflow) { 4127 // X + undef -> undef 4128 if (isa<UndefValue>(RHS)) 4129 return UndefValue::get(ReturnType); 4130 } 4131 4132 if (IID == Intrinsic::umul_with_overflow || 4133 IID == Intrinsic::smul_with_overflow) { 4134 // X * 0 -> { 0, false } 4135 if (match(RHS, m_Zero())) 4136 return Constant::getNullValue(ReturnType); 4137 4138 // X * undef -> { 0, false } 4139 if (match(RHS, m_Undef())) 4140 return Constant::getNullValue(ReturnType); 4141 } 4142 4143 if (IID == Intrinsic::load_relative && isa<Constant>(LHS) && 4144 isa<Constant>(RHS)) 4145 return SimplifyRelativeLoad(cast<Constant>(LHS), cast<Constant>(RHS), 4146 Q.DL); 4147 } 4148 4149 // Simplify calls to llvm.masked.load.* 4150 if (IID == Intrinsic::masked_load) { 4151 Value *MaskArg = ArgBegin[2]; 4152 Value *PassthruArg = ArgBegin[3]; 4153 // If the mask is all zeros or undef, the "passthru" argument is the result. 4154 if (maskIsAllZeroOrUndef(MaskArg)) 4155 return PassthruArg; 4156 } 4157 4158 // Perform idempotent optimizations 4159 if (!IsIdempotent(IID)) 4160 return nullptr; 4161 4162 // Unary Ops 4163 if (NumOperands == 1) 4164 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) 4165 if (II->getIntrinsicID() == IID) 4166 return II; 4167 4168 return nullptr; 4169 } 4170 4171 template <typename IterTy> 4172 static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd, 4173 const Query &Q, unsigned MaxRecurse) { 4174 Type *Ty = V->getType(); 4175 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 4176 Ty = PTy->getElementType(); 4177 FunctionType *FTy = cast<FunctionType>(Ty); 4178 4179 // call undef -> undef 4180 // call null -> undef 4181 if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V)) 4182 return UndefValue::get(FTy->getReturnType()); 4183 4184 Function *F = dyn_cast<Function>(V); 4185 if (!F) 4186 return nullptr; 4187 4188 if (F->isIntrinsic()) 4189 if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse)) 4190 return Ret; 4191 4192 if (!canConstantFoldCallTo(F)) 4193 return nullptr; 4194 4195 SmallVector<Constant *, 4> ConstantArgs; 4196 ConstantArgs.reserve(ArgEnd - ArgBegin); 4197 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) { 4198 Constant *C = dyn_cast<Constant>(*I); 4199 if (!C) 4200 return nullptr; 4201 ConstantArgs.push_back(C); 4202 } 4203 4204 return ConstantFoldCall(F, ConstantArgs, Q.TLI); 4205 } 4206 4207 Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin, 4208 User::op_iterator ArgEnd, const DataLayout &DL, 4209 const TargetLibraryInfo *TLI, const DominatorTree *DT, 4210 AssumptionCache *AC, const Instruction *CxtI) { 4211 return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT, AC, CxtI), 4212 RecursionLimit); 4213 } 4214 4215 Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args, 4216 const DataLayout &DL, const TargetLibraryInfo *TLI, 4217 const DominatorTree *DT, AssumptionCache *AC, 4218 const Instruction *CxtI) { 4219 return ::SimplifyCall(V, Args.begin(), Args.end(), 4220 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 4221 } 4222 4223 /// See if we can compute a simplified version of this instruction. 4224 /// If not, this returns null. 4225 Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout &DL, 4226 const TargetLibraryInfo *TLI, 4227 const DominatorTree *DT, AssumptionCache *AC) { 4228 Value *Result; 4229 4230 switch (I->getOpcode()) { 4231 default: 4232 Result = ConstantFoldInstruction(I, DL, TLI); 4233 break; 4234 case Instruction::FAdd: 4235 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 4236 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4237 break; 4238 case Instruction::Add: 4239 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), 4240 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4241 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4242 TLI, DT, AC, I); 4243 break; 4244 case Instruction::FSub: 4245 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 4246 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4247 break; 4248 case Instruction::Sub: 4249 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), 4250 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4251 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4252 TLI, DT, AC, I); 4253 break; 4254 case Instruction::FMul: 4255 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 4256 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4257 break; 4258 case Instruction::Mul: 4259 Result = 4260 SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4261 break; 4262 case Instruction::SDiv: 4263 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4264 AC, I); 4265 break; 4266 case Instruction::UDiv: 4267 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4268 AC, I); 4269 break; 4270 case Instruction::FDiv: 4271 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 4272 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4273 break; 4274 case Instruction::SRem: 4275 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4276 AC, I); 4277 break; 4278 case Instruction::URem: 4279 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4280 AC, I); 4281 break; 4282 case Instruction::FRem: 4283 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 4284 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4285 break; 4286 case Instruction::Shl: 4287 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), 4288 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4289 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4290 TLI, DT, AC, I); 4291 break; 4292 case Instruction::LShr: 4293 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 4294 cast<BinaryOperator>(I)->isExact(), DL, TLI, DT, 4295 AC, I); 4296 break; 4297 case Instruction::AShr: 4298 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 4299 cast<BinaryOperator>(I)->isExact(), DL, TLI, DT, 4300 AC, I); 4301 break; 4302 case Instruction::And: 4303 Result = 4304 SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4305 break; 4306 case Instruction::Or: 4307 Result = 4308 SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4309 break; 4310 case Instruction::Xor: 4311 Result = 4312 SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4313 break; 4314 case Instruction::ICmp: 4315 Result = 4316 SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), I->getOperand(0), 4317 I->getOperand(1), DL, TLI, DT, AC, I); 4318 break; 4319 case Instruction::FCmp: 4320 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), 4321 I->getOperand(0), I->getOperand(1), 4322 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4323 break; 4324 case Instruction::Select: 4325 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 4326 I->getOperand(2), DL, TLI, DT, AC, I); 4327 break; 4328 case Instruction::GetElementPtr: { 4329 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 4330 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 4331 Ops, DL, TLI, DT, AC, I); 4332 break; 4333 } 4334 case Instruction::InsertValue: { 4335 InsertValueInst *IV = cast<InsertValueInst>(I); 4336 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 4337 IV->getInsertedValueOperand(), 4338 IV->getIndices(), DL, TLI, DT, AC, I); 4339 break; 4340 } 4341 case Instruction::ExtractValue: { 4342 auto *EVI = cast<ExtractValueInst>(I); 4343 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 4344 EVI->getIndices(), DL, TLI, DT, AC, I); 4345 break; 4346 } 4347 case Instruction::ExtractElement: { 4348 auto *EEI = cast<ExtractElementInst>(I); 4349 Result = SimplifyExtractElementInst( 4350 EEI->getVectorOperand(), EEI->getIndexOperand(), DL, TLI, DT, AC, I); 4351 break; 4352 } 4353 case Instruction::PHI: 4354 Result = SimplifyPHINode(cast<PHINode>(I), Query(DL, TLI, DT, AC, I)); 4355 break; 4356 case Instruction::Call: { 4357 CallSite CS(cast<CallInst>(I)); 4358 Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), DL, 4359 TLI, DT, AC, I); 4360 break; 4361 } 4362 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 4363 #include "llvm/IR/Instruction.def" 4364 #undef HANDLE_CAST_INST 4365 Result = SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), 4366 DL, TLI, DT, AC, I); 4367 break; 4368 } 4369 4370 // In general, it is possible for computeKnownBits to determine all bits in a 4371 // value even when the operands are not all constants. 4372 if (!Result && I->getType()->isIntegerTy()) { 4373 unsigned BitWidth = I->getType()->getScalarSizeInBits(); 4374 APInt KnownZero(BitWidth, 0); 4375 APInt KnownOne(BitWidth, 0); 4376 computeKnownBits(I, KnownZero, KnownOne, DL, /*Depth*/0, AC, I, DT); 4377 if ((KnownZero | KnownOne).isAllOnesValue()) 4378 Result = ConstantInt::get(I->getContext(), KnownOne); 4379 } 4380 4381 /// If called on unreachable code, the above logic may report that the 4382 /// instruction simplified to itself. Make life easier for users by 4383 /// detecting that case here, returning a safe value instead. 4384 return Result == I ? UndefValue::get(I->getType()) : Result; 4385 } 4386 4387 /// \brief Implementation of recursive simplification through an instruction's 4388 /// uses. 4389 /// 4390 /// This is the common implementation of the recursive simplification routines. 4391 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 4392 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 4393 /// instructions to process and attempt to simplify it using 4394 /// InstructionSimplify. 4395 /// 4396 /// This routine returns 'true' only when *it* simplifies something. The passed 4397 /// in simplified value does not count toward this. 4398 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, 4399 const TargetLibraryInfo *TLI, 4400 const DominatorTree *DT, 4401 AssumptionCache *AC) { 4402 bool Simplified = false; 4403 SmallSetVector<Instruction *, 8> Worklist; 4404 const DataLayout &DL = I->getModule()->getDataLayout(); 4405 4406 // If we have an explicit value to collapse to, do that round of the 4407 // simplification loop by hand initially. 4408 if (SimpleV) { 4409 for (User *U : I->users()) 4410 if (U != I) 4411 Worklist.insert(cast<Instruction>(U)); 4412 4413 // Replace the instruction with its simplified value. 4414 I->replaceAllUsesWith(SimpleV); 4415 4416 // Gracefully handle edge cases where the instruction is not wired into any 4417 // parent block. 4418 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4419 !I->mayHaveSideEffects()) 4420 I->eraseFromParent(); 4421 } else { 4422 Worklist.insert(I); 4423 } 4424 4425 // Note that we must test the size on each iteration, the worklist can grow. 4426 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 4427 I = Worklist[Idx]; 4428 4429 // See if this instruction simplifies. 4430 SimpleV = SimplifyInstruction(I, DL, TLI, DT, AC); 4431 if (!SimpleV) 4432 continue; 4433 4434 Simplified = true; 4435 4436 // Stash away all the uses of the old instruction so we can check them for 4437 // recursive simplifications after a RAUW. This is cheaper than checking all 4438 // uses of To on the recursive step in most cases. 4439 for (User *U : I->users()) 4440 Worklist.insert(cast<Instruction>(U)); 4441 4442 // Replace the instruction with its simplified value. 4443 I->replaceAllUsesWith(SimpleV); 4444 4445 // Gracefully handle edge cases where the instruction is not wired into any 4446 // parent block. 4447 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4448 !I->mayHaveSideEffects()) 4449 I->eraseFromParent(); 4450 } 4451 return Simplified; 4452 } 4453 4454 bool llvm::recursivelySimplifyInstruction(Instruction *I, 4455 const TargetLibraryInfo *TLI, 4456 const DominatorTree *DT, 4457 AssumptionCache *AC) { 4458 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC); 4459 } 4460 4461 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, 4462 const TargetLibraryInfo *TLI, 4463 const DominatorTree *DT, 4464 AssumptionCache *AC) { 4465 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 4466 assert(SimpleV && "Must provide a simplified value."); 4467 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC); 4468 } 4469