1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements routines for folding instructions into simpler forms 11 // that do not require creating new instructions. This does constant folding 12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 15 // simplified: This is usually true and assuming it simplifies the logic (if 16 // they have not been simplified then results are correct but maybe suboptimal). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/CaptureTracking.h" 26 #include "llvm/Analysis/CmpInstAnalysis.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/Analysis/VectorUtils.h" 32 #include "llvm/IR/ConstantRange.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/GetElementPtrTypeIterator.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/IR/PatternMatch.h" 39 #include "llvm/IR/ValueHandle.h" 40 #include "llvm/Support/KnownBits.h" 41 #include <algorithm> 42 using namespace llvm; 43 using namespace llvm::PatternMatch; 44 45 #define DEBUG_TYPE "instsimplify" 46 47 enum { RecursionLimit = 3 }; 48 49 STATISTIC(NumExpand, "Number of expansions"); 50 STATISTIC(NumReassoc, "Number of reassociations"); 51 52 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 53 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 54 unsigned); 55 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &, 56 const SimplifyQuery &, unsigned); 57 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 58 unsigned); 59 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 60 const SimplifyQuery &Q, unsigned MaxRecurse); 61 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 62 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 63 static Value *SimplifyCastInst(unsigned, Value *, Type *, 64 const SimplifyQuery &, unsigned); 65 66 /// For a boolean type or a vector of boolean type, return false or a vector 67 /// with every element false. 68 static Constant *getFalse(Type *Ty) { 69 return ConstantInt::getFalse(Ty); 70 } 71 72 /// For a boolean type or a vector of boolean type, return true or a vector 73 /// with every element true. 74 static Constant *getTrue(Type *Ty) { 75 return ConstantInt::getTrue(Ty); 76 } 77 78 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 79 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 80 Value *RHS) { 81 CmpInst *Cmp = dyn_cast<CmpInst>(V); 82 if (!Cmp) 83 return false; 84 CmpInst::Predicate CPred = Cmp->getPredicate(); 85 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 86 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 87 return true; 88 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 89 CRHS == LHS; 90 } 91 92 /// Does the given value dominate the specified phi node? 93 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 94 Instruction *I = dyn_cast<Instruction>(V); 95 if (!I) 96 // Arguments and constants dominate all instructions. 97 return true; 98 99 // If we are processing instructions (and/or basic blocks) that have not been 100 // fully added to a function, the parent nodes may still be null. Simply 101 // return the conservative answer in these cases. 102 if (!I->getParent() || !P->getParent() || !I->getParent()->getParent()) 103 return false; 104 105 // If we have a DominatorTree then do a precise test. 106 if (DT) 107 return DT->dominates(I, P); 108 109 // Otherwise, if the instruction is in the entry block and is not an invoke, 110 // then it obviously dominates all phi nodes. 111 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() && 112 !isa<InvokeInst>(I)) 113 return true; 114 115 return false; 116 } 117 118 /// Simplify "A op (B op' C)" by distributing op over op', turning it into 119 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 120 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 121 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 122 /// Returns the simplified value, or null if no simplification was performed. 123 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, 124 Instruction::BinaryOps OpcodeToExpand, 125 const SimplifyQuery &Q, unsigned MaxRecurse) { 126 // Recursion is always used, so bail out at once if we already hit the limit. 127 if (!MaxRecurse--) 128 return nullptr; 129 130 // Check whether the expression has the form "(A op' B) op C". 131 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 132 if (Op0->getOpcode() == OpcodeToExpand) { 133 // It does! Try turning it into "(A op C) op' (B op C)". 134 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 135 // Do "A op C" and "B op C" both simplify? 136 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 137 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 138 // They do! Return "L op' R" if it simplifies or is already available. 139 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 140 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 141 && L == B && R == A)) { 142 ++NumExpand; 143 return LHS; 144 } 145 // Otherwise return "L op' R" if it simplifies. 146 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 147 ++NumExpand; 148 return V; 149 } 150 } 151 } 152 153 // Check whether the expression has the form "A op (B op' C)". 154 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 155 if (Op1->getOpcode() == OpcodeToExpand) { 156 // It does! Try turning it into "(A op B) op' (A op C)". 157 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 158 // Do "A op B" and "A op C" both simplify? 159 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 160 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 161 // They do! Return "L op' R" if it simplifies or is already available. 162 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 163 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 164 && L == C && R == B)) { 165 ++NumExpand; 166 return RHS; 167 } 168 // Otherwise return "L op' R" if it simplifies. 169 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 170 ++NumExpand; 171 return V; 172 } 173 } 174 } 175 176 return nullptr; 177 } 178 179 /// Generic simplifications for associative binary operations. 180 /// Returns the simpler value, or null if none was found. 181 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 182 Value *LHS, Value *RHS, 183 const SimplifyQuery &Q, 184 unsigned MaxRecurse) { 185 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 186 187 // Recursion is always used, so bail out at once if we already hit the limit. 188 if (!MaxRecurse--) 189 return nullptr; 190 191 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 192 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 193 194 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 195 if (Op0 && Op0->getOpcode() == Opcode) { 196 Value *A = Op0->getOperand(0); 197 Value *B = Op0->getOperand(1); 198 Value *C = RHS; 199 200 // Does "B op C" simplify? 201 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 202 // It does! Return "A op V" if it simplifies or is already available. 203 // If V equals B then "A op V" is just the LHS. 204 if (V == B) return LHS; 205 // Otherwise return "A op V" if it simplifies. 206 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 207 ++NumReassoc; 208 return W; 209 } 210 } 211 } 212 213 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 214 if (Op1 && Op1->getOpcode() == Opcode) { 215 Value *A = LHS; 216 Value *B = Op1->getOperand(0); 217 Value *C = Op1->getOperand(1); 218 219 // Does "A op B" simplify? 220 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 221 // It does! Return "V op C" if it simplifies or is already available. 222 // If V equals B then "V op C" is just the RHS. 223 if (V == B) return RHS; 224 // Otherwise return "V op C" if it simplifies. 225 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 226 ++NumReassoc; 227 return W; 228 } 229 } 230 } 231 232 // The remaining transforms require commutativity as well as associativity. 233 if (!Instruction::isCommutative(Opcode)) 234 return nullptr; 235 236 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 237 if (Op0 && Op0->getOpcode() == Opcode) { 238 Value *A = Op0->getOperand(0); 239 Value *B = Op0->getOperand(1); 240 Value *C = RHS; 241 242 // Does "C op A" simplify? 243 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 244 // It does! Return "V op B" if it simplifies or is already available. 245 // If V equals A then "V op B" is just the LHS. 246 if (V == A) return LHS; 247 // Otherwise return "V op B" if it simplifies. 248 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 249 ++NumReassoc; 250 return W; 251 } 252 } 253 } 254 255 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 256 if (Op1 && Op1->getOpcode() == Opcode) { 257 Value *A = LHS; 258 Value *B = Op1->getOperand(0); 259 Value *C = Op1->getOperand(1); 260 261 // Does "C op A" simplify? 262 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 263 // It does! Return "B op V" if it simplifies or is already available. 264 // If V equals C then "B op V" is just the RHS. 265 if (V == C) return RHS; 266 // Otherwise return "B op V" if it simplifies. 267 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 268 ++NumReassoc; 269 return W; 270 } 271 } 272 } 273 274 return nullptr; 275 } 276 277 /// In the case of a binary operation with a select instruction as an operand, 278 /// try to simplify the binop by seeing whether evaluating it on both branches 279 /// of the select results in the same value. Returns the common value if so, 280 /// otherwise returns null. 281 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 282 Value *RHS, const SimplifyQuery &Q, 283 unsigned MaxRecurse) { 284 // Recursion is always used, so bail out at once if we already hit the limit. 285 if (!MaxRecurse--) 286 return nullptr; 287 288 SelectInst *SI; 289 if (isa<SelectInst>(LHS)) { 290 SI = cast<SelectInst>(LHS); 291 } else { 292 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 293 SI = cast<SelectInst>(RHS); 294 } 295 296 // Evaluate the BinOp on the true and false branches of the select. 297 Value *TV; 298 Value *FV; 299 if (SI == LHS) { 300 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 301 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 302 } else { 303 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 304 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 305 } 306 307 // If they simplified to the same value, then return the common value. 308 // If they both failed to simplify then return null. 309 if (TV == FV) 310 return TV; 311 312 // If one branch simplified to undef, return the other one. 313 if (TV && isa<UndefValue>(TV)) 314 return FV; 315 if (FV && isa<UndefValue>(FV)) 316 return TV; 317 318 // If applying the operation did not change the true and false select values, 319 // then the result of the binop is the select itself. 320 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 321 return SI; 322 323 // If one branch simplified and the other did not, and the simplified 324 // value is equal to the unsimplified one, return the simplified value. 325 // For example, select (cond, X, X & Z) & Z -> X & Z. 326 if ((FV && !TV) || (TV && !FV)) { 327 // Check that the simplified value has the form "X op Y" where "op" is the 328 // same as the original operation. 329 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 330 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 331 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 332 // We already know that "op" is the same as for the simplified value. See 333 // if the operands match too. If so, return the simplified value. 334 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 335 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 336 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 337 if (Simplified->getOperand(0) == UnsimplifiedLHS && 338 Simplified->getOperand(1) == UnsimplifiedRHS) 339 return Simplified; 340 if (Simplified->isCommutative() && 341 Simplified->getOperand(1) == UnsimplifiedLHS && 342 Simplified->getOperand(0) == UnsimplifiedRHS) 343 return Simplified; 344 } 345 } 346 347 return nullptr; 348 } 349 350 /// In the case of a comparison with a select instruction, try to simplify the 351 /// comparison by seeing whether both branches of the select result in the same 352 /// value. Returns the common value if so, otherwise returns null. 353 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 354 Value *RHS, const SimplifyQuery &Q, 355 unsigned MaxRecurse) { 356 // Recursion is always used, so bail out at once if we already hit the limit. 357 if (!MaxRecurse--) 358 return nullptr; 359 360 // Make sure the select is on the LHS. 361 if (!isa<SelectInst>(LHS)) { 362 std::swap(LHS, RHS); 363 Pred = CmpInst::getSwappedPredicate(Pred); 364 } 365 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 366 SelectInst *SI = cast<SelectInst>(LHS); 367 Value *Cond = SI->getCondition(); 368 Value *TV = SI->getTrueValue(); 369 Value *FV = SI->getFalseValue(); 370 371 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 372 // Does "cmp TV, RHS" simplify? 373 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 374 if (TCmp == Cond) { 375 // It not only simplified, it simplified to the select condition. Replace 376 // it with 'true'. 377 TCmp = getTrue(Cond->getType()); 378 } else if (!TCmp) { 379 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 380 // condition then we can replace it with 'true'. Otherwise give up. 381 if (!isSameCompare(Cond, Pred, TV, RHS)) 382 return nullptr; 383 TCmp = getTrue(Cond->getType()); 384 } 385 386 // Does "cmp FV, RHS" simplify? 387 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 388 if (FCmp == Cond) { 389 // It not only simplified, it simplified to the select condition. Replace 390 // it with 'false'. 391 FCmp = getFalse(Cond->getType()); 392 } else if (!FCmp) { 393 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 394 // condition then we can replace it with 'false'. Otherwise give up. 395 if (!isSameCompare(Cond, Pred, FV, RHS)) 396 return nullptr; 397 FCmp = getFalse(Cond->getType()); 398 } 399 400 // If both sides simplified to the same value, then use it as the result of 401 // the original comparison. 402 if (TCmp == FCmp) 403 return TCmp; 404 405 // The remaining cases only make sense if the select condition has the same 406 // type as the result of the comparison, so bail out if this is not so. 407 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 408 return nullptr; 409 // If the false value simplified to false, then the result of the compare 410 // is equal to "Cond && TCmp". This also catches the case when the false 411 // value simplified to false and the true value to true, returning "Cond". 412 if (match(FCmp, m_Zero())) 413 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 414 return V; 415 // If the true value simplified to true, then the result of the compare 416 // is equal to "Cond || FCmp". 417 if (match(TCmp, m_One())) 418 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 419 return V; 420 // Finally, if the false value simplified to true and the true value to 421 // false, then the result of the compare is equal to "!Cond". 422 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 423 if (Value *V = 424 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 425 Q, MaxRecurse)) 426 return V; 427 428 return nullptr; 429 } 430 431 /// In the case of a binary operation with an operand that is a PHI instruction, 432 /// try to simplify the binop by seeing whether evaluating it on the incoming 433 /// phi values yields the same result for every value. If so returns the common 434 /// value, otherwise returns null. 435 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 436 Value *RHS, const SimplifyQuery &Q, 437 unsigned MaxRecurse) { 438 // Recursion is always used, so bail out at once if we already hit the limit. 439 if (!MaxRecurse--) 440 return nullptr; 441 442 PHINode *PI; 443 if (isa<PHINode>(LHS)) { 444 PI = cast<PHINode>(LHS); 445 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 446 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 447 return nullptr; 448 } else { 449 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 450 PI = cast<PHINode>(RHS); 451 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 452 if (!ValueDominatesPHI(LHS, PI, Q.DT)) 453 return nullptr; 454 } 455 456 // Evaluate the BinOp on the incoming phi values. 457 Value *CommonValue = nullptr; 458 for (Value *Incoming : PI->incoming_values()) { 459 // If the incoming value is the phi node itself, it can safely be skipped. 460 if (Incoming == PI) continue; 461 Value *V = PI == LHS ? 462 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 463 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 464 // If the operation failed to simplify, or simplified to a different value 465 // to previously, then give up. 466 if (!V || (CommonValue && V != CommonValue)) 467 return nullptr; 468 CommonValue = V; 469 } 470 471 return CommonValue; 472 } 473 474 /// In the case of a comparison with a PHI instruction, try to simplify the 475 /// comparison by seeing whether comparing with all of the incoming phi values 476 /// yields the same result every time. If so returns the common result, 477 /// otherwise returns null. 478 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 479 const SimplifyQuery &Q, unsigned MaxRecurse) { 480 // Recursion is always used, so bail out at once if we already hit the limit. 481 if (!MaxRecurse--) 482 return nullptr; 483 484 // Make sure the phi is on the LHS. 485 if (!isa<PHINode>(LHS)) { 486 std::swap(LHS, RHS); 487 Pred = CmpInst::getSwappedPredicate(Pred); 488 } 489 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 490 PHINode *PI = cast<PHINode>(LHS); 491 492 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 493 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 494 return nullptr; 495 496 // Evaluate the BinOp on the incoming phi values. 497 Value *CommonValue = nullptr; 498 for (Value *Incoming : PI->incoming_values()) { 499 // If the incoming value is the phi node itself, it can safely be skipped. 500 if (Incoming == PI) continue; 501 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 502 // If the operation failed to simplify, or simplified to a different value 503 // to previously, then give up. 504 if (!V || (CommonValue && V != CommonValue)) 505 return nullptr; 506 CommonValue = V; 507 } 508 509 return CommonValue; 510 } 511 512 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 513 Value *&Op0, Value *&Op1, 514 const SimplifyQuery &Q) { 515 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 516 if (auto *CRHS = dyn_cast<Constant>(Op1)) 517 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 518 519 // Canonicalize the constant to the RHS if this is a commutative operation. 520 if (Instruction::isCommutative(Opcode)) 521 std::swap(Op0, Op1); 522 } 523 return nullptr; 524 } 525 526 /// Given operands for an Add, see if we can fold the result. 527 /// If not, this returns null. 528 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 529 const SimplifyQuery &Q, unsigned MaxRecurse) { 530 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 531 return C; 532 533 // X + undef -> undef 534 if (match(Op1, m_Undef())) 535 return Op1; 536 537 // X + 0 -> X 538 if (match(Op1, m_Zero())) 539 return Op0; 540 541 // X + (Y - X) -> Y 542 // (Y - X) + X -> Y 543 // Eg: X + -X -> 0 544 Value *Y = nullptr; 545 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 546 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 547 return Y; 548 549 // X + ~X -> -1 since ~X = -X-1 550 Type *Ty = Op0->getType(); 551 if (match(Op0, m_Not(m_Specific(Op1))) || 552 match(Op1, m_Not(m_Specific(Op0)))) 553 return Constant::getAllOnesValue(Ty); 554 555 // add nsw/nuw (xor Y, signmask), signmask --> Y 556 // The no-wrapping add guarantees that the top bit will be set by the add. 557 // Therefore, the xor must be clearing the already set sign bit of Y. 558 if ((isNSW || isNUW) && match(Op1, m_SignMask()) && 559 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 560 return Y; 561 562 /// i1 add -> xor. 563 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 564 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 565 return V; 566 567 // Try some generic simplifications for associative operations. 568 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 569 MaxRecurse)) 570 return V; 571 572 // Threading Add over selects and phi nodes is pointless, so don't bother. 573 // Threading over the select in "A + select(cond, B, C)" means evaluating 574 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 575 // only if B and C are equal. If B and C are equal then (since we assume 576 // that operands have already been simplified) "select(cond, B, C)" should 577 // have been simplified to the common value of B and C already. Analysing 578 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 579 // for threading over phi nodes. 580 581 return nullptr; 582 } 583 584 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 585 const SimplifyQuery &Query) { 586 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query, RecursionLimit); 587 } 588 589 /// \brief Compute the base pointer and cumulative constant offsets for V. 590 /// 591 /// This strips all constant offsets off of V, leaving it the base pointer, and 592 /// accumulates the total constant offset applied in the returned constant. It 593 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 594 /// no constant offsets applied. 595 /// 596 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 597 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 598 /// folding. 599 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 600 bool AllowNonInbounds = false) { 601 assert(V->getType()->isPtrOrPtrVectorTy()); 602 603 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 604 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 605 606 // Even though we don't look through PHI nodes, we could be called on an 607 // instruction in an unreachable block, which may be on a cycle. 608 SmallPtrSet<Value *, 4> Visited; 609 Visited.insert(V); 610 do { 611 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 612 if ((!AllowNonInbounds && !GEP->isInBounds()) || 613 !GEP->accumulateConstantOffset(DL, Offset)) 614 break; 615 V = GEP->getPointerOperand(); 616 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 617 V = cast<Operator>(V)->getOperand(0); 618 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 619 if (GA->isInterposable()) 620 break; 621 V = GA->getAliasee(); 622 } else { 623 if (auto CS = CallSite(V)) 624 if (Value *RV = CS.getReturnedArgOperand()) { 625 V = RV; 626 continue; 627 } 628 break; 629 } 630 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"); 631 } while (Visited.insert(V).second); 632 633 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 634 if (V->getType()->isVectorTy()) 635 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 636 OffsetIntPtr); 637 return OffsetIntPtr; 638 } 639 640 /// \brief Compute the constant difference between two pointer values. 641 /// If the difference is not a constant, returns zero. 642 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 643 Value *RHS) { 644 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 645 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 646 647 // If LHS and RHS are not related via constant offsets to the same base 648 // value, there is nothing we can do here. 649 if (LHS != RHS) 650 return nullptr; 651 652 // Otherwise, the difference of LHS - RHS can be computed as: 653 // LHS - RHS 654 // = (LHSOffset + Base) - (RHSOffset + Base) 655 // = LHSOffset - RHSOffset 656 return ConstantExpr::getSub(LHSOffset, RHSOffset); 657 } 658 659 /// Given operands for a Sub, see if we can fold the result. 660 /// If not, this returns null. 661 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 662 const SimplifyQuery &Q, unsigned MaxRecurse) { 663 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 664 return C; 665 666 // X - undef -> undef 667 // undef - X -> undef 668 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 669 return UndefValue::get(Op0->getType()); 670 671 // X - 0 -> X 672 if (match(Op1, m_Zero())) 673 return Op0; 674 675 // X - X -> 0 676 if (Op0 == Op1) 677 return Constant::getNullValue(Op0->getType()); 678 679 // Is this a negation? 680 if (match(Op0, m_Zero())) { 681 // 0 - X -> 0 if the sub is NUW. 682 if (isNUW) 683 return Op0; 684 685 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 686 if (Known.Zero.isMaxSignedValue()) { 687 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 688 // Op1 must be 0 because negating the minimum signed value is undefined. 689 if (isNSW) 690 return Op0; 691 692 // 0 - X -> X if X is 0 or the minimum signed value. 693 return Op1; 694 } 695 } 696 697 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 698 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 699 Value *X = nullptr, *Y = nullptr, *Z = Op1; 700 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 701 // See if "V === Y - Z" simplifies. 702 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 703 // It does! Now see if "X + V" simplifies. 704 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 705 // It does, we successfully reassociated! 706 ++NumReassoc; 707 return W; 708 } 709 // See if "V === X - Z" simplifies. 710 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 711 // It does! Now see if "Y + V" simplifies. 712 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 713 // It does, we successfully reassociated! 714 ++NumReassoc; 715 return W; 716 } 717 } 718 719 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 720 // For example, X - (X + 1) -> -1 721 X = Op0; 722 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 723 // See if "V === X - Y" simplifies. 724 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 725 // It does! Now see if "V - Z" simplifies. 726 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 727 // It does, we successfully reassociated! 728 ++NumReassoc; 729 return W; 730 } 731 // See if "V === X - Z" simplifies. 732 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 733 // It does! Now see if "V - Y" simplifies. 734 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 735 // It does, we successfully reassociated! 736 ++NumReassoc; 737 return W; 738 } 739 } 740 741 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 742 // For example, X - (X - Y) -> Y. 743 Z = Op0; 744 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 745 // See if "V === Z - X" simplifies. 746 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 747 // It does! Now see if "V + Y" simplifies. 748 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 749 // It does, we successfully reassociated! 750 ++NumReassoc; 751 return W; 752 } 753 754 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 755 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 756 match(Op1, m_Trunc(m_Value(Y)))) 757 if (X->getType() == Y->getType()) 758 // See if "V === X - Y" simplifies. 759 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 760 // It does! Now see if "trunc V" simplifies. 761 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 762 Q, MaxRecurse - 1)) 763 // It does, return the simplified "trunc V". 764 return W; 765 766 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 767 if (match(Op0, m_PtrToInt(m_Value(X))) && 768 match(Op1, m_PtrToInt(m_Value(Y)))) 769 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 770 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 771 772 // i1 sub -> xor. 773 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 774 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 775 return V; 776 777 // Threading Sub over selects and phi nodes is pointless, so don't bother. 778 // Threading over the select in "A - select(cond, B, C)" means evaluating 779 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 780 // only if B and C are equal. If B and C are equal then (since we assume 781 // that operands have already been simplified) "select(cond, B, C)" should 782 // have been simplified to the common value of B and C already. Analysing 783 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 784 // for threading over phi nodes. 785 786 return nullptr; 787 } 788 789 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 790 const SimplifyQuery &Q) { 791 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 792 } 793 794 /// Given operands for a Mul, see if we can fold the result. 795 /// If not, this returns null. 796 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 797 unsigned MaxRecurse) { 798 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 799 return C; 800 801 // X * undef -> 0 802 if (match(Op1, m_Undef())) 803 return Constant::getNullValue(Op0->getType()); 804 805 // X * 0 -> 0 806 if (match(Op1, m_Zero())) 807 return Op1; 808 809 // X * 1 -> X 810 if (match(Op1, m_One())) 811 return Op0; 812 813 // (X / Y) * Y -> X if the division is exact. 814 Value *X = nullptr; 815 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 816 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y) 817 return X; 818 819 // i1 mul -> and. 820 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 821 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 822 return V; 823 824 // Try some generic simplifications for associative operations. 825 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 826 MaxRecurse)) 827 return V; 828 829 // Mul distributes over Add. Try some generic simplifications based on this. 830 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 831 Q, MaxRecurse)) 832 return V; 833 834 // If the operation is with the result of a select instruction, check whether 835 // operating on either branch of the select always yields the same value. 836 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 837 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 838 MaxRecurse)) 839 return V; 840 841 // If the operation is with the result of a phi instruction, check whether 842 // operating on all incoming values of the phi always yields the same value. 843 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 844 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 845 MaxRecurse)) 846 return V; 847 848 return nullptr; 849 } 850 851 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 852 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 853 } 854 855 /// Check for common or similar folds of integer division or integer remainder. 856 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 857 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) { 858 Type *Ty = Op0->getType(); 859 860 // X / undef -> undef 861 // X % undef -> undef 862 if (match(Op1, m_Undef())) 863 return Op1; 864 865 // X / 0 -> undef 866 // X % 0 -> undef 867 // We don't need to preserve faults! 868 if (match(Op1, m_Zero())) 869 return UndefValue::get(Ty); 870 871 // If any element of a constant divisor vector is zero, the whole op is undef. 872 auto *Op1C = dyn_cast<Constant>(Op1); 873 if (Op1C && Ty->isVectorTy()) { 874 unsigned NumElts = Ty->getVectorNumElements(); 875 for (unsigned i = 0; i != NumElts; ++i) { 876 Constant *Elt = Op1C->getAggregateElement(i); 877 if (Elt && Elt->isNullValue()) 878 return UndefValue::get(Ty); 879 } 880 } 881 882 // undef / X -> 0 883 // undef % X -> 0 884 if (match(Op0, m_Undef())) 885 return Constant::getNullValue(Ty); 886 887 // 0 / X -> 0 888 // 0 % X -> 0 889 if (match(Op0, m_Zero())) 890 return Op0; 891 892 // X / X -> 1 893 // X % X -> 0 894 if (Op0 == Op1) 895 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 896 897 // X / 1 -> X 898 // X % 1 -> 0 899 // If this is a boolean op (single-bit element type), we can't have 900 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 901 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1)) 902 return IsDiv ? Op0 : Constant::getNullValue(Ty); 903 904 return nullptr; 905 } 906 907 /// Given a predicate and two operands, return true if the comparison is true. 908 /// This is a helper for div/rem simplification where we return some other value 909 /// when we can prove a relationship between the operands. 910 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 911 const SimplifyQuery &Q, unsigned MaxRecurse) { 912 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 913 Constant *C = dyn_cast_or_null<Constant>(V); 914 return (C && C->isAllOnesValue()); 915 } 916 917 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 918 /// to simplify X % Y to X. 919 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 920 unsigned MaxRecurse, bool IsSigned) { 921 // Recursion is always used, so bail out at once if we already hit the limit. 922 if (!MaxRecurse--) 923 return false; 924 925 if (IsSigned) { 926 // |X| / |Y| --> 0 927 // 928 // We require that 1 operand is a simple constant. That could be extended to 929 // 2 variables if we computed the sign bit for each. 930 // 931 // Make sure that a constant is not the minimum signed value because taking 932 // the abs() of that is undefined. 933 Type *Ty = X->getType(); 934 const APInt *C; 935 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 936 // Is the variable divisor magnitude always greater than the constant 937 // dividend magnitude? 938 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 939 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 940 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 941 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 942 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 943 return true; 944 } 945 if (match(Y, m_APInt(C))) { 946 // Special-case: we can't take the abs() of a minimum signed value. If 947 // that's the divisor, then all we have to do is prove that the dividend 948 // is also not the minimum signed value. 949 if (C->isMinSignedValue()) 950 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 951 952 // Is the variable dividend magnitude always less than the constant 953 // divisor magnitude? 954 // |X| < |C| --> X > -abs(C) and X < abs(C) 955 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 956 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 957 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 958 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 959 return true; 960 } 961 return false; 962 } 963 964 // IsSigned == false. 965 // Is the dividend unsigned less than the divisor? 966 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 967 } 968 969 /// These are simplifications common to SDiv and UDiv. 970 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 971 const SimplifyQuery &Q, unsigned MaxRecurse) { 972 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 973 return C; 974 975 if (Value *V = simplifyDivRem(Op0, Op1, true)) 976 return V; 977 978 bool IsSigned = Opcode == Instruction::SDiv; 979 980 // (X * Y) / Y -> X if the multiplication does not overflow. 981 Value *X; 982 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 983 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 984 // If the Mul does not overflow, then we are good to go. 985 if ((IsSigned && Mul->hasNoSignedWrap()) || 986 (!IsSigned && Mul->hasNoUnsignedWrap())) 987 return X; 988 // If X has the form X = A / Y, then X * Y cannot overflow. 989 if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 990 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) 991 return X; 992 } 993 994 // (X rem Y) / Y -> 0 995 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 996 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 997 return Constant::getNullValue(Op0->getType()); 998 999 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1000 ConstantInt *C1, *C2; 1001 if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1002 match(Op1, m_ConstantInt(C2))) { 1003 bool Overflow; 1004 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1005 if (Overflow) 1006 return Constant::getNullValue(Op0->getType()); 1007 } 1008 1009 // If the operation is with the result of a select instruction, check whether 1010 // operating on either branch of the select always yields the same value. 1011 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1012 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1013 return V; 1014 1015 // If the operation is with the result of a phi instruction, check whether 1016 // operating on all incoming values of the phi always yields the same value. 1017 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1018 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1019 return V; 1020 1021 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1022 return Constant::getNullValue(Op0->getType()); 1023 1024 return nullptr; 1025 } 1026 1027 /// These are simplifications common to SRem and URem. 1028 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1029 const SimplifyQuery &Q, unsigned MaxRecurse) { 1030 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1031 return C; 1032 1033 if (Value *V = simplifyDivRem(Op0, Op1, false)) 1034 return V; 1035 1036 // (X % Y) % Y -> X % Y 1037 if ((Opcode == Instruction::SRem && 1038 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1039 (Opcode == Instruction::URem && 1040 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1041 return Op0; 1042 1043 // If the operation is with the result of a select instruction, check whether 1044 // operating on either branch of the select always yields the same value. 1045 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1046 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1047 return V; 1048 1049 // If the operation is with the result of a phi instruction, check whether 1050 // operating on all incoming values of the phi always yields the same value. 1051 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1052 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1053 return V; 1054 1055 // If X / Y == 0, then X % Y == X. 1056 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1057 return Op0; 1058 1059 return nullptr; 1060 } 1061 1062 /// Given operands for an SDiv, see if we can fold the result. 1063 /// If not, this returns null. 1064 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1065 unsigned MaxRecurse) { 1066 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1067 } 1068 1069 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1070 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1071 } 1072 1073 /// Given operands for a UDiv, see if we can fold the result. 1074 /// If not, this returns null. 1075 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1076 unsigned MaxRecurse) { 1077 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1078 } 1079 1080 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1081 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1082 } 1083 1084 /// Given operands for an SRem, see if we can fold the result. 1085 /// If not, this returns null. 1086 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1087 unsigned MaxRecurse) { 1088 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1089 } 1090 1091 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1092 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1093 } 1094 1095 /// Given operands for a URem, see if we can fold the result. 1096 /// If not, this returns null. 1097 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1098 unsigned MaxRecurse) { 1099 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1100 } 1101 1102 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1103 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1104 } 1105 1106 /// Returns true if a shift by \c Amount always yields undef. 1107 static bool isUndefShift(Value *Amount) { 1108 Constant *C = dyn_cast<Constant>(Amount); 1109 if (!C) 1110 return false; 1111 1112 // X shift by undef -> undef because it may shift by the bitwidth. 1113 if (isa<UndefValue>(C)) 1114 return true; 1115 1116 // Shifting by the bitwidth or more is undefined. 1117 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1118 if (CI->getValue().getLimitedValue() >= 1119 CI->getType()->getScalarSizeInBits()) 1120 return true; 1121 1122 // If all lanes of a vector shift are undefined the whole shift is. 1123 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1124 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) 1125 if (!isUndefShift(C->getAggregateElement(I))) 1126 return false; 1127 return true; 1128 } 1129 1130 return false; 1131 } 1132 1133 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1134 /// If not, this returns null. 1135 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1136 Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { 1137 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1138 return C; 1139 1140 // 0 shift by X -> 0 1141 if (match(Op0, m_Zero())) 1142 return Op0; 1143 1144 // X shift by 0 -> X 1145 if (match(Op1, m_Zero())) 1146 return Op0; 1147 1148 // Fold undefined shifts. 1149 if (isUndefShift(Op1)) 1150 return UndefValue::get(Op0->getType()); 1151 1152 // If the operation is with the result of a select instruction, check whether 1153 // operating on either branch of the select always yields the same value. 1154 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1155 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1156 return V; 1157 1158 // If the operation is with the result of a phi instruction, check whether 1159 // operating on all incoming values of the phi always yields the same value. 1160 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1161 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1162 return V; 1163 1164 // If any bits in the shift amount make that value greater than or equal to 1165 // the number of bits in the type, the shift is undefined. 1166 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1167 if (Known.One.getLimitedValue() >= Known.getBitWidth()) 1168 return UndefValue::get(Op0->getType()); 1169 1170 // If all valid bits in the shift amount are known zero, the first operand is 1171 // unchanged. 1172 unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth()); 1173 if (Known.countMinTrailingZeros() >= NumValidShiftBits) 1174 return Op0; 1175 1176 return nullptr; 1177 } 1178 1179 /// \brief Given operands for an Shl, LShr or AShr, see if we can 1180 /// fold the result. If not, this returns null. 1181 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1182 Value *Op1, bool isExact, const SimplifyQuery &Q, 1183 unsigned MaxRecurse) { 1184 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1185 return V; 1186 1187 // X >> X -> 0 1188 if (Op0 == Op1) 1189 return Constant::getNullValue(Op0->getType()); 1190 1191 // undef >> X -> 0 1192 // undef >> X -> undef (if it's exact) 1193 if (match(Op0, m_Undef())) 1194 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1195 1196 // The low bit cannot be shifted out of an exact shift if it is set. 1197 if (isExact) { 1198 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1199 if (Op0Known.One[0]) 1200 return Op0; 1201 } 1202 1203 return nullptr; 1204 } 1205 1206 /// Given operands for an Shl, see if we can fold the result. 1207 /// If not, this returns null. 1208 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1209 const SimplifyQuery &Q, unsigned MaxRecurse) { 1210 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1211 return V; 1212 1213 // undef << X -> 0 1214 // undef << X -> undef if (if it's NSW/NUW) 1215 if (match(Op0, m_Undef())) 1216 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1217 1218 // (X >> A) << A -> X 1219 Value *X; 1220 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1221 return X; 1222 return nullptr; 1223 } 1224 1225 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1226 const SimplifyQuery &Q) { 1227 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1228 } 1229 1230 /// Given operands for an LShr, see if we can fold the result. 1231 /// If not, this returns null. 1232 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1233 const SimplifyQuery &Q, unsigned MaxRecurse) { 1234 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1235 MaxRecurse)) 1236 return V; 1237 1238 // (X << A) >> A -> X 1239 Value *X; 1240 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1241 return X; 1242 1243 return nullptr; 1244 } 1245 1246 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1247 const SimplifyQuery &Q) { 1248 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1249 } 1250 1251 /// Given operands for an AShr, see if we can fold the result. 1252 /// If not, this returns null. 1253 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1254 const SimplifyQuery &Q, unsigned MaxRecurse) { 1255 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1256 MaxRecurse)) 1257 return V; 1258 1259 // all ones >>a X -> all ones 1260 if (match(Op0, m_AllOnes())) 1261 return Op0; 1262 1263 // (X << A) >> A -> X 1264 Value *X; 1265 if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1266 return X; 1267 1268 // Arithmetic shifting an all-sign-bit value is a no-op. 1269 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1270 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1271 return Op0; 1272 1273 return nullptr; 1274 } 1275 1276 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1277 const SimplifyQuery &Q) { 1278 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1279 } 1280 1281 /// Commuted variants are assumed to be handled by calling this function again 1282 /// with the parameters swapped. 1283 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1284 ICmpInst *UnsignedICmp, bool IsAnd) { 1285 Value *X, *Y; 1286 1287 ICmpInst::Predicate EqPred; 1288 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1289 !ICmpInst::isEquality(EqPred)) 1290 return nullptr; 1291 1292 ICmpInst::Predicate UnsignedPred; 1293 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1294 ICmpInst::isUnsigned(UnsignedPred)) 1295 ; 1296 else if (match(UnsignedICmp, 1297 m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) && 1298 ICmpInst::isUnsigned(UnsignedPred)) 1299 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1300 else 1301 return nullptr; 1302 1303 // X < Y && Y != 0 --> X < Y 1304 // X < Y || Y != 0 --> Y != 0 1305 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1306 return IsAnd ? UnsignedICmp : ZeroICmp; 1307 1308 // X >= Y || Y != 0 --> true 1309 // X >= Y || Y == 0 --> X >= Y 1310 if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) { 1311 if (EqPred == ICmpInst::ICMP_NE) 1312 return getTrue(UnsignedICmp->getType()); 1313 return UnsignedICmp; 1314 } 1315 1316 // X < Y && Y == 0 --> false 1317 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1318 IsAnd) 1319 return getFalse(UnsignedICmp->getType()); 1320 1321 return nullptr; 1322 } 1323 1324 /// Commuted variants are assumed to be handled by calling this function again 1325 /// with the parameters swapped. 1326 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1327 ICmpInst::Predicate Pred0, Pred1; 1328 Value *A ,*B; 1329 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1330 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1331 return nullptr; 1332 1333 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1334 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1335 // can eliminate Op1 from this 'and'. 1336 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1337 return Op0; 1338 1339 // Check for any combination of predicates that are guaranteed to be disjoint. 1340 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1341 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1342 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1343 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1344 return getFalse(Op0->getType()); 1345 1346 return nullptr; 1347 } 1348 1349 /// Commuted variants are assumed to be handled by calling this function again 1350 /// with the parameters swapped. 1351 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1352 ICmpInst::Predicate Pred0, Pred1; 1353 Value *A ,*B; 1354 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1355 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1356 return nullptr; 1357 1358 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1359 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1360 // can eliminate Op0 from this 'or'. 1361 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1362 return Op1; 1363 1364 // Check for any combination of predicates that cover the entire range of 1365 // possibilities. 1366 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1367 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1368 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1369 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1370 return getTrue(Op0->getType()); 1371 1372 return nullptr; 1373 } 1374 1375 /// Test if a pair of compares with a shared operand and 2 constants has an 1376 /// empty set intersection, full set union, or if one compare is a superset of 1377 /// the other. 1378 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1379 bool IsAnd) { 1380 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1381 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1382 return nullptr; 1383 1384 const APInt *C0, *C1; 1385 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1386 !match(Cmp1->getOperand(1), m_APInt(C1))) 1387 return nullptr; 1388 1389 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1390 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1391 1392 // For and-of-compares, check if the intersection is empty: 1393 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1394 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1395 return getFalse(Cmp0->getType()); 1396 1397 // For or-of-compares, check if the union is full: 1398 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1399 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1400 return getTrue(Cmp0->getType()); 1401 1402 // Is one range a superset of the other? 1403 // If this is and-of-compares, take the smaller set: 1404 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1405 // If this is or-of-compares, take the larger set: 1406 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1407 if (Range0.contains(Range1)) 1408 return IsAnd ? Cmp1 : Cmp0; 1409 if (Range1.contains(Range0)) 1410 return IsAnd ? Cmp0 : Cmp1; 1411 1412 return nullptr; 1413 } 1414 1415 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1416 bool IsAnd) { 1417 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1418 if (!match(Cmp0->getOperand(1), m_Zero()) || 1419 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1420 return nullptr; 1421 1422 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1423 return nullptr; 1424 1425 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1426 Value *X = Cmp0->getOperand(0); 1427 Value *Y = Cmp1->getOperand(0); 1428 1429 // If one of the compares is a masked version of a (not) null check, then 1430 // that compare implies the other, so we eliminate the other. Optionally, look 1431 // through a pointer-to-int cast to match a null check of a pointer type. 1432 1433 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1434 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1435 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1436 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1437 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1438 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1439 return Cmp1; 1440 1441 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1442 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1443 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1444 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1445 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1446 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1447 return Cmp0; 1448 1449 return nullptr; 1450 } 1451 1452 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) { 1453 // (icmp (add V, C0), C1) & (icmp V, C0) 1454 ICmpInst::Predicate Pred0, Pred1; 1455 const APInt *C0, *C1; 1456 Value *V; 1457 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1458 return nullptr; 1459 1460 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1461 return nullptr; 1462 1463 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1464 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1465 return nullptr; 1466 1467 Type *ITy = Op0->getType(); 1468 bool isNSW = AddInst->hasNoSignedWrap(); 1469 bool isNUW = AddInst->hasNoUnsignedWrap(); 1470 1471 const APInt Delta = *C1 - *C0; 1472 if (C0->isStrictlyPositive()) { 1473 if (Delta == 2) { 1474 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1475 return getFalse(ITy); 1476 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1477 return getFalse(ITy); 1478 } 1479 if (Delta == 1) { 1480 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1481 return getFalse(ITy); 1482 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1483 return getFalse(ITy); 1484 } 1485 } 1486 if (C0->getBoolValue() && isNUW) { 1487 if (Delta == 2) 1488 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1489 return getFalse(ITy); 1490 if (Delta == 1) 1491 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1492 return getFalse(ITy); 1493 } 1494 1495 return nullptr; 1496 } 1497 1498 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1499 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true)) 1500 return X; 1501 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true)) 1502 return X; 1503 1504 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1505 return X; 1506 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1507 return X; 1508 1509 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1510 return X; 1511 1512 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1513 return X; 1514 1515 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1)) 1516 return X; 1517 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0)) 1518 return X; 1519 1520 return nullptr; 1521 } 1522 1523 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) { 1524 // (icmp (add V, C0), C1) | (icmp V, C0) 1525 ICmpInst::Predicate Pred0, Pred1; 1526 const APInt *C0, *C1; 1527 Value *V; 1528 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1529 return nullptr; 1530 1531 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1532 return nullptr; 1533 1534 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1535 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1536 return nullptr; 1537 1538 Type *ITy = Op0->getType(); 1539 bool isNSW = AddInst->hasNoSignedWrap(); 1540 bool isNUW = AddInst->hasNoUnsignedWrap(); 1541 1542 const APInt Delta = *C1 - *C0; 1543 if (C0->isStrictlyPositive()) { 1544 if (Delta == 2) { 1545 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1546 return getTrue(ITy); 1547 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1548 return getTrue(ITy); 1549 } 1550 if (Delta == 1) { 1551 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1552 return getTrue(ITy); 1553 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1554 return getTrue(ITy); 1555 } 1556 } 1557 if (C0->getBoolValue() && isNUW) { 1558 if (Delta == 2) 1559 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1560 return getTrue(ITy); 1561 if (Delta == 1) 1562 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1563 return getTrue(ITy); 1564 } 1565 1566 return nullptr; 1567 } 1568 1569 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1570 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false)) 1571 return X; 1572 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false)) 1573 return X; 1574 1575 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1576 return X; 1577 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1578 return X; 1579 1580 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1581 return X; 1582 1583 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1584 return X; 1585 1586 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1)) 1587 return X; 1588 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0)) 1589 return X; 1590 1591 return nullptr; 1592 } 1593 1594 static Value *simplifyAndOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1595 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1596 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1597 if (LHS0->getType() != RHS0->getType()) 1598 return nullptr; 1599 1600 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1601 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1602 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1603 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1604 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1605 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1606 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1607 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1608 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1609 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1610 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1611 if ((isKnownNeverNaN(LHS0) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1612 (isKnownNeverNaN(LHS1) && (LHS0 == RHS0 || LHS0 == RHS1))) 1613 return RHS; 1614 1615 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1616 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1617 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1618 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1619 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1620 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1621 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1622 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1623 if ((isKnownNeverNaN(RHS0) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1624 (isKnownNeverNaN(RHS1) && (RHS0 == LHS0 || RHS0 == LHS1))) 1625 return LHS; 1626 } 1627 1628 return nullptr; 1629 } 1630 1631 static Value *simplifyAndOrOfCmps(Value *Op0, Value *Op1, bool IsAnd) { 1632 // Look through casts of the 'and' operands to find compares. 1633 auto *Cast0 = dyn_cast<CastInst>(Op0); 1634 auto *Cast1 = dyn_cast<CastInst>(Op1); 1635 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1636 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1637 Op0 = Cast0->getOperand(0); 1638 Op1 = Cast1->getOperand(0); 1639 } 1640 1641 Value *V = nullptr; 1642 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1643 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1644 if (ICmp0 && ICmp1) 1645 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1) : 1646 simplifyOrOfICmps(ICmp0, ICmp1); 1647 1648 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1649 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1650 if (FCmp0 && FCmp1) 1651 V = simplifyAndOrOfFCmps(FCmp0, FCmp1, IsAnd); 1652 1653 if (!V) 1654 return nullptr; 1655 if (!Cast0) 1656 return V; 1657 1658 // If we looked through casts, we can only handle a constant simplification 1659 // because we are not allowed to create a cast instruction here. 1660 if (auto *C = dyn_cast<Constant>(V)) 1661 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1662 1663 return nullptr; 1664 } 1665 1666 /// Given operands for an And, see if we can fold the result. 1667 /// If not, this returns null. 1668 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1669 unsigned MaxRecurse) { 1670 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 1671 return C; 1672 1673 // X & undef -> 0 1674 if (match(Op1, m_Undef())) 1675 return Constant::getNullValue(Op0->getType()); 1676 1677 // X & X = X 1678 if (Op0 == Op1) 1679 return Op0; 1680 1681 // X & 0 = 0 1682 if (match(Op1, m_Zero())) 1683 return Op1; 1684 1685 // X & -1 = X 1686 if (match(Op1, m_AllOnes())) 1687 return Op0; 1688 1689 // A & ~A = ~A & A = 0 1690 if (match(Op0, m_Not(m_Specific(Op1))) || 1691 match(Op1, m_Not(m_Specific(Op0)))) 1692 return Constant::getNullValue(Op0->getType()); 1693 1694 // (A | ?) & A = A 1695 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 1696 return Op1; 1697 1698 // A & (A | ?) = A 1699 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 1700 return Op0; 1701 1702 // A mask that only clears known zeros of a shifted value is a no-op. 1703 Value *X; 1704 const APInt *Mask; 1705 const APInt *ShAmt; 1706 if (match(Op1, m_APInt(Mask))) { 1707 // If all bits in the inverted and shifted mask are clear: 1708 // and (shl X, ShAmt), Mask --> shl X, ShAmt 1709 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 1710 (~(*Mask)).lshr(*ShAmt).isNullValue()) 1711 return Op0; 1712 1713 // If all bits in the inverted and shifted mask are clear: 1714 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 1715 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 1716 (~(*Mask)).shl(*ShAmt).isNullValue()) 1717 return Op0; 1718 } 1719 1720 // A & (-A) = A if A is a power of two or zero. 1721 if (match(Op0, m_Neg(m_Specific(Op1))) || 1722 match(Op1, m_Neg(m_Specific(Op0)))) { 1723 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1724 Q.DT)) 1725 return Op0; 1726 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1727 Q.DT)) 1728 return Op1; 1729 } 1730 1731 if (Value *V = simplifyAndOrOfCmps(Op0, Op1, true)) 1732 return V; 1733 1734 // Try some generic simplifications for associative operations. 1735 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1736 MaxRecurse)) 1737 return V; 1738 1739 // And distributes over Or. Try some generic simplifications based on this. 1740 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1741 Q, MaxRecurse)) 1742 return V; 1743 1744 // And distributes over Xor. Try some generic simplifications based on this. 1745 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1746 Q, MaxRecurse)) 1747 return V; 1748 1749 // If the operation is with the result of a select instruction, check whether 1750 // operating on either branch of the select always yields the same value. 1751 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1752 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 1753 MaxRecurse)) 1754 return V; 1755 1756 // If the operation is with the result of a phi instruction, check whether 1757 // operating on all incoming values of the phi always yields the same value. 1758 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1759 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 1760 MaxRecurse)) 1761 return V; 1762 1763 return nullptr; 1764 } 1765 1766 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1767 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 1768 } 1769 1770 /// Given operands for an Or, see if we can fold the result. 1771 /// If not, this returns null. 1772 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1773 unsigned MaxRecurse) { 1774 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 1775 return C; 1776 1777 // X | undef -> -1 1778 if (match(Op1, m_Undef())) 1779 return Constant::getAllOnesValue(Op0->getType()); 1780 1781 // X | X = X 1782 if (Op0 == Op1) 1783 return Op0; 1784 1785 // X | 0 = X 1786 if (match(Op1, m_Zero())) 1787 return Op0; 1788 1789 // X | -1 = -1 1790 if (match(Op1, m_AllOnes())) 1791 return Op1; 1792 1793 // A | ~A = ~A | A = -1 1794 if (match(Op0, m_Not(m_Specific(Op1))) || 1795 match(Op1, m_Not(m_Specific(Op0)))) 1796 return Constant::getAllOnesValue(Op0->getType()); 1797 1798 // (A & ?) | A = A 1799 if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) 1800 return Op1; 1801 1802 // A | (A & ?) = A 1803 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) 1804 return Op0; 1805 1806 // ~(A & ?) | A = -1 1807 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 1808 return Constant::getAllOnesValue(Op1->getType()); 1809 1810 // A | ~(A & ?) = -1 1811 if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 1812 return Constant::getAllOnesValue(Op0->getType()); 1813 1814 Value *A, *B; 1815 // (A & ~B) | (A ^ B) -> (A ^ B) 1816 // (~B & A) | (A ^ B) -> (A ^ B) 1817 // (A & ~B) | (B ^ A) -> (B ^ A) 1818 // (~B & A) | (B ^ A) -> (B ^ A) 1819 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 1820 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 1821 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 1822 return Op1; 1823 1824 // Commute the 'or' operands. 1825 // (A ^ B) | (A & ~B) -> (A ^ B) 1826 // (A ^ B) | (~B & A) -> (A ^ B) 1827 // (B ^ A) | (A & ~B) -> (B ^ A) 1828 // (B ^ A) | (~B & A) -> (B ^ A) 1829 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 1830 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 1831 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 1832 return Op0; 1833 1834 // (A & B) | (~A ^ B) -> (~A ^ B) 1835 // (B & A) | (~A ^ B) -> (~A ^ B) 1836 // (A & B) | (B ^ ~A) -> (B ^ ~A) 1837 // (B & A) | (B ^ ~A) -> (B ^ ~A) 1838 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1839 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 1840 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 1841 return Op1; 1842 1843 // (~A ^ B) | (A & B) -> (~A ^ B) 1844 // (~A ^ B) | (B & A) -> (~A ^ B) 1845 // (B ^ ~A) | (A & B) -> (B ^ ~A) 1846 // (B ^ ~A) | (B & A) -> (B ^ ~A) 1847 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1848 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 1849 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 1850 return Op0; 1851 1852 if (Value *V = simplifyAndOrOfCmps(Op0, Op1, false)) 1853 return V; 1854 1855 // Try some generic simplifications for associative operations. 1856 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 1857 MaxRecurse)) 1858 return V; 1859 1860 // Or distributes over And. Try some generic simplifications based on this. 1861 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 1862 MaxRecurse)) 1863 return V; 1864 1865 // If the operation is with the result of a select instruction, check whether 1866 // operating on either branch of the select always yields the same value. 1867 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1868 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 1869 MaxRecurse)) 1870 return V; 1871 1872 // (A & C1)|(B & C2) 1873 const APInt *C1, *C2; 1874 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 1875 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 1876 if (*C1 == ~*C2) { 1877 // (A & C1)|(B & C2) 1878 // If we have: ((V + N) & C1) | (V & C2) 1879 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 1880 // replace with V+N. 1881 Value *N; 1882 if (C2->isMask() && // C2 == 0+1+ 1883 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 1884 // Add commutes, try both ways. 1885 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1886 return A; 1887 } 1888 // Or commutes, try both ways. 1889 if (C1->isMask() && 1890 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 1891 // Add commutes, try both ways. 1892 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1893 return B; 1894 } 1895 } 1896 } 1897 1898 // If the operation is with the result of a phi instruction, check whether 1899 // operating on all incoming values of the phi always yields the same value. 1900 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1901 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 1902 return V; 1903 1904 return nullptr; 1905 } 1906 1907 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1908 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 1909 } 1910 1911 /// Given operands for a Xor, see if we can fold the result. 1912 /// If not, this returns null. 1913 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1914 unsigned MaxRecurse) { 1915 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 1916 return C; 1917 1918 // A ^ undef -> undef 1919 if (match(Op1, m_Undef())) 1920 return Op1; 1921 1922 // A ^ 0 = A 1923 if (match(Op1, m_Zero())) 1924 return Op0; 1925 1926 // A ^ A = 0 1927 if (Op0 == Op1) 1928 return Constant::getNullValue(Op0->getType()); 1929 1930 // A ^ ~A = ~A ^ A = -1 1931 if (match(Op0, m_Not(m_Specific(Op1))) || 1932 match(Op1, m_Not(m_Specific(Op0)))) 1933 return Constant::getAllOnesValue(Op0->getType()); 1934 1935 // Try some generic simplifications for associative operations. 1936 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 1937 MaxRecurse)) 1938 return V; 1939 1940 // Threading Xor over selects and phi nodes is pointless, so don't bother. 1941 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 1942 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 1943 // only if B and C are equal. If B and C are equal then (since we assume 1944 // that operands have already been simplified) "select(cond, B, C)" should 1945 // have been simplified to the common value of B and C already. Analysing 1946 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 1947 // for threading over phi nodes. 1948 1949 return nullptr; 1950 } 1951 1952 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1953 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 1954 } 1955 1956 1957 static Type *GetCompareTy(Value *Op) { 1958 return CmpInst::makeCmpResultType(Op->getType()); 1959 } 1960 1961 /// Rummage around inside V looking for something equivalent to the comparison 1962 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 1963 /// Helper function for analyzing max/min idioms. 1964 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 1965 Value *LHS, Value *RHS) { 1966 SelectInst *SI = dyn_cast<SelectInst>(V); 1967 if (!SI) 1968 return nullptr; 1969 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 1970 if (!Cmp) 1971 return nullptr; 1972 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 1973 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 1974 return Cmp; 1975 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 1976 LHS == CmpRHS && RHS == CmpLHS) 1977 return Cmp; 1978 return nullptr; 1979 } 1980 1981 // A significant optimization not implemented here is assuming that alloca 1982 // addresses are not equal to incoming argument values. They don't *alias*, 1983 // as we say, but that doesn't mean they aren't equal, so we take a 1984 // conservative approach. 1985 // 1986 // This is inspired in part by C++11 5.10p1: 1987 // "Two pointers of the same type compare equal if and only if they are both 1988 // null, both point to the same function, or both represent the same 1989 // address." 1990 // 1991 // This is pretty permissive. 1992 // 1993 // It's also partly due to C11 6.5.9p6: 1994 // "Two pointers compare equal if and only if both are null pointers, both are 1995 // pointers to the same object (including a pointer to an object and a 1996 // subobject at its beginning) or function, both are pointers to one past the 1997 // last element of the same array object, or one is a pointer to one past the 1998 // end of one array object and the other is a pointer to the start of a 1999 // different array object that happens to immediately follow the first array 2000 // object in the address space.) 2001 // 2002 // C11's version is more restrictive, however there's no reason why an argument 2003 // couldn't be a one-past-the-end value for a stack object in the caller and be 2004 // equal to the beginning of a stack object in the callee. 2005 // 2006 // If the C and C++ standards are ever made sufficiently restrictive in this 2007 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2008 // this optimization. 2009 static Constant * 2010 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 2011 const DominatorTree *DT, CmpInst::Predicate Pred, 2012 AssumptionCache *AC, const Instruction *CxtI, 2013 Value *LHS, Value *RHS) { 2014 // First, skip past any trivial no-ops. 2015 LHS = LHS->stripPointerCasts(); 2016 RHS = RHS->stripPointerCasts(); 2017 2018 // A non-null pointer is not equal to a null pointer. 2019 if (llvm::isKnownNonZero(LHS, DL) && isa<ConstantPointerNull>(RHS) && 2020 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 2021 return ConstantInt::get(GetCompareTy(LHS), 2022 !CmpInst::isTrueWhenEqual(Pred)); 2023 2024 // We can only fold certain predicates on pointer comparisons. 2025 switch (Pred) { 2026 default: 2027 return nullptr; 2028 2029 // Equality comaprisons are easy to fold. 2030 case CmpInst::ICMP_EQ: 2031 case CmpInst::ICMP_NE: 2032 break; 2033 2034 // We can only handle unsigned relational comparisons because 'inbounds' on 2035 // a GEP only protects against unsigned wrapping. 2036 case CmpInst::ICMP_UGT: 2037 case CmpInst::ICMP_UGE: 2038 case CmpInst::ICMP_ULT: 2039 case CmpInst::ICMP_ULE: 2040 // However, we have to switch them to their signed variants to handle 2041 // negative indices from the base pointer. 2042 Pred = ICmpInst::getSignedPredicate(Pred); 2043 break; 2044 } 2045 2046 // Strip off any constant offsets so that we can reason about them. 2047 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2048 // here and compare base addresses like AliasAnalysis does, however there are 2049 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2050 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2051 // doesn't need to guarantee pointer inequality when it says NoAlias. 2052 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2053 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2054 2055 // If LHS and RHS are related via constant offsets to the same base 2056 // value, we can replace it with an icmp which just compares the offsets. 2057 if (LHS == RHS) 2058 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2059 2060 // Various optimizations for (in)equality comparisons. 2061 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2062 // Different non-empty allocations that exist at the same time have 2063 // different addresses (if the program can tell). Global variables always 2064 // exist, so they always exist during the lifetime of each other and all 2065 // allocas. Two different allocas usually have different addresses... 2066 // 2067 // However, if there's an @llvm.stackrestore dynamically in between two 2068 // allocas, they may have the same address. It's tempting to reduce the 2069 // scope of the problem by only looking at *static* allocas here. That would 2070 // cover the majority of allocas while significantly reducing the likelihood 2071 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2072 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2073 // an entry block. Also, if we have a block that's not attached to a 2074 // function, we can't tell if it's "static" under the current definition. 2075 // Theoretically, this problem could be fixed by creating a new kind of 2076 // instruction kind specifically for static allocas. Such a new instruction 2077 // could be required to be at the top of the entry block, thus preventing it 2078 // from being subject to a @llvm.stackrestore. Instcombine could even 2079 // convert regular allocas into these special allocas. It'd be nifty. 2080 // However, until then, this problem remains open. 2081 // 2082 // So, we'll assume that two non-empty allocas have different addresses 2083 // for now. 2084 // 2085 // With all that, if the offsets are within the bounds of their allocations 2086 // (and not one-past-the-end! so we can't use inbounds!), and their 2087 // allocations aren't the same, the pointers are not equal. 2088 // 2089 // Note that it's not necessary to check for LHS being a global variable 2090 // address, due to canonicalization and constant folding. 2091 if (isa<AllocaInst>(LHS) && 2092 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2093 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2094 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2095 uint64_t LHSSize, RHSSize; 2096 if (LHSOffsetCI && RHSOffsetCI && 2097 getObjectSize(LHS, LHSSize, DL, TLI) && 2098 getObjectSize(RHS, RHSSize, DL, TLI)) { 2099 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2100 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2101 if (!LHSOffsetValue.isNegative() && 2102 !RHSOffsetValue.isNegative() && 2103 LHSOffsetValue.ult(LHSSize) && 2104 RHSOffsetValue.ult(RHSSize)) { 2105 return ConstantInt::get(GetCompareTy(LHS), 2106 !CmpInst::isTrueWhenEqual(Pred)); 2107 } 2108 } 2109 2110 // Repeat the above check but this time without depending on DataLayout 2111 // or being able to compute a precise size. 2112 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2113 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2114 LHSOffset->isNullValue() && 2115 RHSOffset->isNullValue()) 2116 return ConstantInt::get(GetCompareTy(LHS), 2117 !CmpInst::isTrueWhenEqual(Pred)); 2118 } 2119 2120 // Even if an non-inbounds GEP occurs along the path we can still optimize 2121 // equality comparisons concerning the result. We avoid walking the whole 2122 // chain again by starting where the last calls to 2123 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2124 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2125 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2126 if (LHS == RHS) 2127 return ConstantExpr::getICmp(Pred, 2128 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2129 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2130 2131 // If one side of the equality comparison must come from a noalias call 2132 // (meaning a system memory allocation function), and the other side must 2133 // come from a pointer that cannot overlap with dynamically-allocated 2134 // memory within the lifetime of the current function (allocas, byval 2135 // arguments, globals), then determine the comparison result here. 2136 SmallVector<Value *, 8> LHSUObjs, RHSUObjs; 2137 GetUnderlyingObjects(LHS, LHSUObjs, DL); 2138 GetUnderlyingObjects(RHS, RHSUObjs, DL); 2139 2140 // Is the set of underlying objects all noalias calls? 2141 auto IsNAC = [](ArrayRef<Value *> Objects) { 2142 return all_of(Objects, isNoAliasCall); 2143 }; 2144 2145 // Is the set of underlying objects all things which must be disjoint from 2146 // noalias calls. For allocas, we consider only static ones (dynamic 2147 // allocas might be transformed into calls to malloc not simultaneously 2148 // live with the compared-to allocation). For globals, we exclude symbols 2149 // that might be resolve lazily to symbols in another dynamically-loaded 2150 // library (and, thus, could be malloc'ed by the implementation). 2151 auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) { 2152 return all_of(Objects, [](Value *V) { 2153 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2154 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2155 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2156 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2157 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2158 !GV->isThreadLocal(); 2159 if (const Argument *A = dyn_cast<Argument>(V)) 2160 return A->hasByValAttr(); 2161 return false; 2162 }); 2163 }; 2164 2165 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2166 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2167 return ConstantInt::get(GetCompareTy(LHS), 2168 !CmpInst::isTrueWhenEqual(Pred)); 2169 2170 // Fold comparisons for non-escaping pointer even if the allocation call 2171 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2172 // dynamic allocation call could be either of the operands. 2173 Value *MI = nullptr; 2174 if (isAllocLikeFn(LHS, TLI) && 2175 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2176 MI = LHS; 2177 else if (isAllocLikeFn(RHS, TLI) && 2178 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2179 MI = RHS; 2180 // FIXME: We should also fold the compare when the pointer escapes, but the 2181 // compare dominates the pointer escape 2182 if (MI && !PointerMayBeCaptured(MI, true, true)) 2183 return ConstantInt::get(GetCompareTy(LHS), 2184 CmpInst::isFalseWhenEqual(Pred)); 2185 } 2186 2187 // Otherwise, fail. 2188 return nullptr; 2189 } 2190 2191 /// Fold an icmp when its operands have i1 scalar type. 2192 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2193 Value *RHS, const SimplifyQuery &Q) { 2194 Type *ITy = GetCompareTy(LHS); // The return type. 2195 Type *OpTy = LHS->getType(); // The operand type. 2196 if (!OpTy->isIntOrIntVectorTy(1)) 2197 return nullptr; 2198 2199 // A boolean compared to true/false can be simplified in 14 out of the 20 2200 // (10 predicates * 2 constants) possible combinations. Cases not handled here 2201 // require a 'not' of the LHS, so those must be transformed in InstCombine. 2202 if (match(RHS, m_Zero())) { 2203 switch (Pred) { 2204 case CmpInst::ICMP_NE: // X != 0 -> X 2205 case CmpInst::ICMP_UGT: // X >u 0 -> X 2206 case CmpInst::ICMP_SLT: // X <s 0 -> X 2207 return LHS; 2208 2209 case CmpInst::ICMP_ULT: // X <u 0 -> false 2210 case CmpInst::ICMP_SGT: // X >s 0 -> false 2211 return getFalse(ITy); 2212 2213 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2214 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2215 return getTrue(ITy); 2216 2217 default: break; 2218 } 2219 } else if (match(RHS, m_One())) { 2220 switch (Pred) { 2221 case CmpInst::ICMP_EQ: // X == 1 -> X 2222 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2223 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2224 return LHS; 2225 2226 case CmpInst::ICMP_UGT: // X >u 1 -> false 2227 case CmpInst::ICMP_SLT: // X <s -1 -> false 2228 return getFalse(ITy); 2229 2230 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2231 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2232 return getTrue(ITy); 2233 2234 default: break; 2235 } 2236 } 2237 2238 switch (Pred) { 2239 default: 2240 break; 2241 case ICmpInst::ICMP_UGE: 2242 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2243 return getTrue(ITy); 2244 break; 2245 case ICmpInst::ICMP_SGE: 2246 /// For signed comparison, the values for an i1 are 0 and -1 2247 /// respectively. This maps into a truth table of: 2248 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2249 /// 0 | 0 | 1 (0 >= 0) | 1 2250 /// 0 | 1 | 1 (0 >= -1) | 1 2251 /// 1 | 0 | 0 (-1 >= 0) | 0 2252 /// 1 | 1 | 1 (-1 >= -1) | 1 2253 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2254 return getTrue(ITy); 2255 break; 2256 case ICmpInst::ICMP_ULE: 2257 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2258 return getTrue(ITy); 2259 break; 2260 } 2261 2262 return nullptr; 2263 } 2264 2265 /// Try hard to fold icmp with zero RHS because this is a common case. 2266 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2267 Value *RHS, const SimplifyQuery &Q) { 2268 if (!match(RHS, m_Zero())) 2269 return nullptr; 2270 2271 Type *ITy = GetCompareTy(LHS); // The return type. 2272 switch (Pred) { 2273 default: 2274 llvm_unreachable("Unknown ICmp predicate!"); 2275 case ICmpInst::ICMP_ULT: 2276 return getFalse(ITy); 2277 case ICmpInst::ICMP_UGE: 2278 return getTrue(ITy); 2279 case ICmpInst::ICMP_EQ: 2280 case ICmpInst::ICMP_ULE: 2281 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2282 return getFalse(ITy); 2283 break; 2284 case ICmpInst::ICMP_NE: 2285 case ICmpInst::ICMP_UGT: 2286 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2287 return getTrue(ITy); 2288 break; 2289 case ICmpInst::ICMP_SLT: { 2290 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2291 if (LHSKnown.isNegative()) 2292 return getTrue(ITy); 2293 if (LHSKnown.isNonNegative()) 2294 return getFalse(ITy); 2295 break; 2296 } 2297 case ICmpInst::ICMP_SLE: { 2298 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2299 if (LHSKnown.isNegative()) 2300 return getTrue(ITy); 2301 if (LHSKnown.isNonNegative() && 2302 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2303 return getFalse(ITy); 2304 break; 2305 } 2306 case ICmpInst::ICMP_SGE: { 2307 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2308 if (LHSKnown.isNegative()) 2309 return getFalse(ITy); 2310 if (LHSKnown.isNonNegative()) 2311 return getTrue(ITy); 2312 break; 2313 } 2314 case ICmpInst::ICMP_SGT: { 2315 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2316 if (LHSKnown.isNegative()) 2317 return getFalse(ITy); 2318 if (LHSKnown.isNonNegative() && 2319 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2320 return getTrue(ITy); 2321 break; 2322 } 2323 } 2324 2325 return nullptr; 2326 } 2327 2328 /// Many binary operators with a constant operand have an easy-to-compute 2329 /// range of outputs. This can be used to fold a comparison to always true or 2330 /// always false. 2331 static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper) { 2332 unsigned Width = Lower.getBitWidth(); 2333 const APInt *C; 2334 switch (BO.getOpcode()) { 2335 case Instruction::Add: 2336 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 2337 // FIXME: If we have both nuw and nsw, we should reduce the range further. 2338 if (BO.hasNoUnsignedWrap()) { 2339 // 'add nuw x, C' produces [C, UINT_MAX]. 2340 Lower = *C; 2341 } else if (BO.hasNoSignedWrap()) { 2342 if (C->isNegative()) { 2343 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 2344 Lower = APInt::getSignedMinValue(Width); 2345 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 2346 } else { 2347 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 2348 Lower = APInt::getSignedMinValue(Width) + *C; 2349 Upper = APInt::getSignedMaxValue(Width) + 1; 2350 } 2351 } 2352 } 2353 break; 2354 2355 case Instruction::And: 2356 if (match(BO.getOperand(1), m_APInt(C))) 2357 // 'and x, C' produces [0, C]. 2358 Upper = *C + 1; 2359 break; 2360 2361 case Instruction::Or: 2362 if (match(BO.getOperand(1), m_APInt(C))) 2363 // 'or x, C' produces [C, UINT_MAX]. 2364 Lower = *C; 2365 break; 2366 2367 case Instruction::AShr: 2368 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2369 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 2370 Lower = APInt::getSignedMinValue(Width).ashr(*C); 2371 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 2372 } else if (match(BO.getOperand(0), m_APInt(C))) { 2373 unsigned ShiftAmount = Width - 1; 2374 if (!C->isNullValue() && BO.isExact()) 2375 ShiftAmount = C->countTrailingZeros(); 2376 if (C->isNegative()) { 2377 // 'ashr C, x' produces [C, C >> (Width-1)] 2378 Lower = *C; 2379 Upper = C->ashr(ShiftAmount) + 1; 2380 } else { 2381 // 'ashr C, x' produces [C >> (Width-1), C] 2382 Lower = C->ashr(ShiftAmount); 2383 Upper = *C + 1; 2384 } 2385 } 2386 break; 2387 2388 case Instruction::LShr: 2389 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2390 // 'lshr x, C' produces [0, UINT_MAX >> C]. 2391 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 2392 } else if (match(BO.getOperand(0), m_APInt(C))) { 2393 // 'lshr C, x' produces [C >> (Width-1), C]. 2394 unsigned ShiftAmount = Width - 1; 2395 if (!C->isNullValue() && BO.isExact()) 2396 ShiftAmount = C->countTrailingZeros(); 2397 Lower = C->lshr(ShiftAmount); 2398 Upper = *C + 1; 2399 } 2400 break; 2401 2402 case Instruction::Shl: 2403 if (match(BO.getOperand(0), m_APInt(C))) { 2404 if (BO.hasNoUnsignedWrap()) { 2405 // 'shl nuw C, x' produces [C, C << CLZ(C)] 2406 Lower = *C; 2407 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 2408 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 2409 if (C->isNegative()) { 2410 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 2411 unsigned ShiftAmount = C->countLeadingOnes() - 1; 2412 Lower = C->shl(ShiftAmount); 2413 Upper = *C + 1; 2414 } else { 2415 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 2416 unsigned ShiftAmount = C->countLeadingZeros() - 1; 2417 Lower = *C; 2418 Upper = C->shl(ShiftAmount) + 1; 2419 } 2420 } 2421 } 2422 break; 2423 2424 case Instruction::SDiv: 2425 if (match(BO.getOperand(1), m_APInt(C))) { 2426 APInt IntMin = APInt::getSignedMinValue(Width); 2427 APInt IntMax = APInt::getSignedMaxValue(Width); 2428 if (C->isAllOnesValue()) { 2429 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 2430 // where C != -1 and C != 0 and C != 1 2431 Lower = IntMin + 1; 2432 Upper = IntMax + 1; 2433 } else if (C->countLeadingZeros() < Width - 1) { 2434 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 2435 // where C != -1 and C != 0 and C != 1 2436 Lower = IntMin.sdiv(*C); 2437 Upper = IntMax.sdiv(*C); 2438 if (Lower.sgt(Upper)) 2439 std::swap(Lower, Upper); 2440 Upper = Upper + 1; 2441 assert(Upper != Lower && "Upper part of range has wrapped!"); 2442 } 2443 } else if (match(BO.getOperand(0), m_APInt(C))) { 2444 if (C->isMinSignedValue()) { 2445 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 2446 Lower = *C; 2447 Upper = Lower.lshr(1) + 1; 2448 } else { 2449 // 'sdiv C, x' produces [-|C|, |C|]. 2450 Upper = C->abs() + 1; 2451 Lower = (-Upper) + 1; 2452 } 2453 } 2454 break; 2455 2456 case Instruction::UDiv: 2457 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 2458 // 'udiv x, C' produces [0, UINT_MAX / C]. 2459 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 2460 } else if (match(BO.getOperand(0), m_APInt(C))) { 2461 // 'udiv C, x' produces [0, C]. 2462 Upper = *C + 1; 2463 } 2464 break; 2465 2466 case Instruction::SRem: 2467 if (match(BO.getOperand(1), m_APInt(C))) { 2468 // 'srem x, C' produces (-|C|, |C|). 2469 Upper = C->abs(); 2470 Lower = (-Upper) + 1; 2471 } 2472 break; 2473 2474 case Instruction::URem: 2475 if (match(BO.getOperand(1), m_APInt(C))) 2476 // 'urem x, C' produces [0, C). 2477 Upper = *C; 2478 break; 2479 2480 default: 2481 break; 2482 } 2483 } 2484 2485 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2486 Value *RHS) { 2487 const APInt *C; 2488 if (!match(RHS, m_APInt(C))) 2489 return nullptr; 2490 2491 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2492 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2493 if (RHS_CR.isEmptySet()) 2494 return ConstantInt::getFalse(GetCompareTy(RHS)); 2495 if (RHS_CR.isFullSet()) 2496 return ConstantInt::getTrue(GetCompareTy(RHS)); 2497 2498 // Find the range of possible values for binary operators. 2499 unsigned Width = C->getBitWidth(); 2500 APInt Lower = APInt(Width, 0); 2501 APInt Upper = APInt(Width, 0); 2502 if (auto *BO = dyn_cast<BinaryOperator>(LHS)) 2503 setLimitsForBinOp(*BO, Lower, Upper); 2504 2505 ConstantRange LHS_CR = 2506 Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true); 2507 2508 if (auto *I = dyn_cast<Instruction>(LHS)) 2509 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) 2510 LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges)); 2511 2512 if (!LHS_CR.isFullSet()) { 2513 if (RHS_CR.contains(LHS_CR)) 2514 return ConstantInt::getTrue(GetCompareTy(RHS)); 2515 if (RHS_CR.inverse().contains(LHS_CR)) 2516 return ConstantInt::getFalse(GetCompareTy(RHS)); 2517 } 2518 2519 return nullptr; 2520 } 2521 2522 /// TODO: A large part of this logic is duplicated in InstCombine's 2523 /// foldICmpBinOp(). We should be able to share that and avoid the code 2524 /// duplication. 2525 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 2526 Value *RHS, const SimplifyQuery &Q, 2527 unsigned MaxRecurse) { 2528 Type *ITy = GetCompareTy(LHS); // The return type. 2529 2530 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2531 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2532 if (MaxRecurse && (LBO || RBO)) { 2533 // Analyze the case when either LHS or RHS is an add instruction. 2534 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2535 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2536 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2537 if (LBO && LBO->getOpcode() == Instruction::Add) { 2538 A = LBO->getOperand(0); 2539 B = LBO->getOperand(1); 2540 NoLHSWrapProblem = 2541 ICmpInst::isEquality(Pred) || 2542 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) || 2543 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap()); 2544 } 2545 if (RBO && RBO->getOpcode() == Instruction::Add) { 2546 C = RBO->getOperand(0); 2547 D = RBO->getOperand(1); 2548 NoRHSWrapProblem = 2549 ICmpInst::isEquality(Pred) || 2550 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) || 2551 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap()); 2552 } 2553 2554 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2555 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2556 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2557 Constant::getNullValue(RHS->getType()), Q, 2558 MaxRecurse - 1)) 2559 return V; 2560 2561 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2562 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2563 if (Value *V = 2564 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 2565 C == LHS ? D : C, Q, MaxRecurse - 1)) 2566 return V; 2567 2568 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2569 if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem && 2570 NoRHSWrapProblem) { 2571 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2572 Value *Y, *Z; 2573 if (A == C) { 2574 // C + B == C + D -> B == D 2575 Y = B; 2576 Z = D; 2577 } else if (A == D) { 2578 // D + B == C + D -> B == C 2579 Y = B; 2580 Z = C; 2581 } else if (B == C) { 2582 // A + C == C + D -> A == D 2583 Y = A; 2584 Z = D; 2585 } else { 2586 assert(B == D); 2587 // A + D == C + D -> A == C 2588 Y = A; 2589 Z = C; 2590 } 2591 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 2592 return V; 2593 } 2594 } 2595 2596 { 2597 Value *Y = nullptr; 2598 // icmp pred (or X, Y), X 2599 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2600 if (Pred == ICmpInst::ICMP_ULT) 2601 return getFalse(ITy); 2602 if (Pred == ICmpInst::ICMP_UGE) 2603 return getTrue(ITy); 2604 2605 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2606 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2607 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2608 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2609 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2610 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2611 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2612 } 2613 } 2614 // icmp pred X, (or X, Y) 2615 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) { 2616 if (Pred == ICmpInst::ICMP_ULE) 2617 return getTrue(ITy); 2618 if (Pred == ICmpInst::ICMP_UGT) 2619 return getFalse(ITy); 2620 2621 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) { 2622 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2623 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2624 if (LHSKnown.isNonNegative() && YKnown.isNegative()) 2625 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy); 2626 if (LHSKnown.isNegative() || YKnown.isNonNegative()) 2627 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy); 2628 } 2629 } 2630 } 2631 2632 // icmp pred (and X, Y), X 2633 if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2634 if (Pred == ICmpInst::ICMP_UGT) 2635 return getFalse(ITy); 2636 if (Pred == ICmpInst::ICMP_ULE) 2637 return getTrue(ITy); 2638 } 2639 // icmp pred X, (and X, Y) 2640 if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) { 2641 if (Pred == ICmpInst::ICMP_UGE) 2642 return getTrue(ITy); 2643 if (Pred == ICmpInst::ICMP_ULT) 2644 return getFalse(ITy); 2645 } 2646 2647 // 0 - (zext X) pred C 2648 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2649 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2650 if (RHSC->getValue().isStrictlyPositive()) { 2651 if (Pred == ICmpInst::ICMP_SLT) 2652 return ConstantInt::getTrue(RHSC->getContext()); 2653 if (Pred == ICmpInst::ICMP_SGE) 2654 return ConstantInt::getFalse(RHSC->getContext()); 2655 if (Pred == ICmpInst::ICMP_EQ) 2656 return ConstantInt::getFalse(RHSC->getContext()); 2657 if (Pred == ICmpInst::ICMP_NE) 2658 return ConstantInt::getTrue(RHSC->getContext()); 2659 } 2660 if (RHSC->getValue().isNonNegative()) { 2661 if (Pred == ICmpInst::ICMP_SLE) 2662 return ConstantInt::getTrue(RHSC->getContext()); 2663 if (Pred == ICmpInst::ICMP_SGT) 2664 return ConstantInt::getFalse(RHSC->getContext()); 2665 } 2666 } 2667 } 2668 2669 // icmp pred (urem X, Y), Y 2670 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2671 switch (Pred) { 2672 default: 2673 break; 2674 case ICmpInst::ICMP_SGT: 2675 case ICmpInst::ICMP_SGE: { 2676 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2677 if (!Known.isNonNegative()) 2678 break; 2679 LLVM_FALLTHROUGH; 2680 } 2681 case ICmpInst::ICMP_EQ: 2682 case ICmpInst::ICMP_UGT: 2683 case ICmpInst::ICMP_UGE: 2684 return getFalse(ITy); 2685 case ICmpInst::ICMP_SLT: 2686 case ICmpInst::ICMP_SLE: { 2687 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2688 if (!Known.isNonNegative()) 2689 break; 2690 LLVM_FALLTHROUGH; 2691 } 2692 case ICmpInst::ICMP_NE: 2693 case ICmpInst::ICMP_ULT: 2694 case ICmpInst::ICMP_ULE: 2695 return getTrue(ITy); 2696 } 2697 } 2698 2699 // icmp pred X, (urem Y, X) 2700 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2701 switch (Pred) { 2702 default: 2703 break; 2704 case ICmpInst::ICMP_SGT: 2705 case ICmpInst::ICMP_SGE: { 2706 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2707 if (!Known.isNonNegative()) 2708 break; 2709 LLVM_FALLTHROUGH; 2710 } 2711 case ICmpInst::ICMP_NE: 2712 case ICmpInst::ICMP_UGT: 2713 case ICmpInst::ICMP_UGE: 2714 return getTrue(ITy); 2715 case ICmpInst::ICMP_SLT: 2716 case ICmpInst::ICMP_SLE: { 2717 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2718 if (!Known.isNonNegative()) 2719 break; 2720 LLVM_FALLTHROUGH; 2721 } 2722 case ICmpInst::ICMP_EQ: 2723 case ICmpInst::ICMP_ULT: 2724 case ICmpInst::ICMP_ULE: 2725 return getFalse(ITy); 2726 } 2727 } 2728 2729 // x >> y <=u x 2730 // x udiv y <=u x. 2731 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2732 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { 2733 // icmp pred (X op Y), X 2734 if (Pred == ICmpInst::ICMP_UGT) 2735 return getFalse(ITy); 2736 if (Pred == ICmpInst::ICMP_ULE) 2737 return getTrue(ITy); 2738 } 2739 2740 // x >=u x >> y 2741 // x >=u x udiv y. 2742 if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) || 2743 match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) { 2744 // icmp pred X, (X op Y) 2745 if (Pred == ICmpInst::ICMP_ULT) 2746 return getFalse(ITy); 2747 if (Pred == ICmpInst::ICMP_UGE) 2748 return getTrue(ITy); 2749 } 2750 2751 // handle: 2752 // CI2 << X == CI 2753 // CI2 << X != CI 2754 // 2755 // where CI2 is a power of 2 and CI isn't 2756 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2757 const APInt *CI2Val, *CIVal = &CI->getValue(); 2758 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2759 CI2Val->isPowerOf2()) { 2760 if (!CIVal->isPowerOf2()) { 2761 // CI2 << X can equal zero in some circumstances, 2762 // this simplification is unsafe if CI is zero. 2763 // 2764 // We know it is safe if: 2765 // - The shift is nsw, we can't shift out the one bit. 2766 // - The shift is nuw, we can't shift out the one bit. 2767 // - CI2 is one 2768 // - CI isn't zero 2769 if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() || 2770 CI2Val->isOneValue() || !CI->isZero()) { 2771 if (Pred == ICmpInst::ICMP_EQ) 2772 return ConstantInt::getFalse(RHS->getContext()); 2773 if (Pred == ICmpInst::ICMP_NE) 2774 return ConstantInt::getTrue(RHS->getContext()); 2775 } 2776 } 2777 if (CIVal->isSignMask() && CI2Val->isOneValue()) { 2778 if (Pred == ICmpInst::ICMP_UGT) 2779 return ConstantInt::getFalse(RHS->getContext()); 2780 if (Pred == ICmpInst::ICMP_ULE) 2781 return ConstantInt::getTrue(RHS->getContext()); 2782 } 2783 } 2784 } 2785 2786 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2787 LBO->getOperand(1) == RBO->getOperand(1)) { 2788 switch (LBO->getOpcode()) { 2789 default: 2790 break; 2791 case Instruction::UDiv: 2792 case Instruction::LShr: 2793 if (ICmpInst::isSigned(Pred) || !LBO->isExact() || !RBO->isExact()) 2794 break; 2795 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2796 RBO->getOperand(0), Q, MaxRecurse - 1)) 2797 return V; 2798 break; 2799 case Instruction::SDiv: 2800 if (!ICmpInst::isEquality(Pred) || !LBO->isExact() || !RBO->isExact()) 2801 break; 2802 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2803 RBO->getOperand(0), Q, MaxRecurse - 1)) 2804 return V; 2805 break; 2806 case Instruction::AShr: 2807 if (!LBO->isExact() || !RBO->isExact()) 2808 break; 2809 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2810 RBO->getOperand(0), Q, MaxRecurse - 1)) 2811 return V; 2812 break; 2813 case Instruction::Shl: { 2814 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap(); 2815 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap(); 2816 if (!NUW && !NSW) 2817 break; 2818 if (!NSW && ICmpInst::isSigned(Pred)) 2819 break; 2820 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2821 RBO->getOperand(0), Q, MaxRecurse - 1)) 2822 return V; 2823 break; 2824 } 2825 } 2826 } 2827 return nullptr; 2828 } 2829 2830 /// Simplify integer comparisons where at least one operand of the compare 2831 /// matches an integer min/max idiom. 2832 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 2833 Value *RHS, const SimplifyQuery &Q, 2834 unsigned MaxRecurse) { 2835 Type *ITy = GetCompareTy(LHS); // The return type. 2836 Value *A, *B; 2837 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 2838 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 2839 2840 // Signed variants on "max(a,b)>=a -> true". 2841 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2842 if (A != RHS) 2843 std::swap(A, B); // smax(A, B) pred A. 2844 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2845 // We analyze this as smax(A, B) pred A. 2846 P = Pred; 2847 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 2848 (A == LHS || B == LHS)) { 2849 if (A != LHS) 2850 std::swap(A, B); // A pred smax(A, B). 2851 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2852 // We analyze this as smax(A, B) swapped-pred A. 2853 P = CmpInst::getSwappedPredicate(Pred); 2854 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2855 (A == RHS || B == RHS)) { 2856 if (A != RHS) 2857 std::swap(A, B); // smin(A, B) pred A. 2858 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2859 // We analyze this as smax(-A, -B) swapped-pred -A. 2860 // Note that we do not need to actually form -A or -B thanks to EqP. 2861 P = CmpInst::getSwappedPredicate(Pred); 2862 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 2863 (A == LHS || B == LHS)) { 2864 if (A != LHS) 2865 std::swap(A, B); // A pred smin(A, B). 2866 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2867 // We analyze this as smax(-A, -B) pred -A. 2868 // Note that we do not need to actually form -A or -B thanks to EqP. 2869 P = Pred; 2870 } 2871 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2872 // Cases correspond to "max(A, B) p A". 2873 switch (P) { 2874 default: 2875 break; 2876 case CmpInst::ICMP_EQ: 2877 case CmpInst::ICMP_SLE: 2878 // Equivalent to "A EqP B". This may be the same as the condition tested 2879 // in the max/min; if so, we can just return that. 2880 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2881 return V; 2882 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2883 return V; 2884 // Otherwise, see if "A EqP B" simplifies. 2885 if (MaxRecurse) 2886 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 2887 return V; 2888 break; 2889 case CmpInst::ICMP_NE: 2890 case CmpInst::ICMP_SGT: { 2891 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2892 // Equivalent to "A InvEqP B". This may be the same as the condition 2893 // tested in the max/min; if so, we can just return that. 2894 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2895 return V; 2896 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2897 return V; 2898 // Otherwise, see if "A InvEqP B" simplifies. 2899 if (MaxRecurse) 2900 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 2901 return V; 2902 break; 2903 } 2904 case CmpInst::ICMP_SGE: 2905 // Always true. 2906 return getTrue(ITy); 2907 case CmpInst::ICMP_SLT: 2908 // Always false. 2909 return getFalse(ITy); 2910 } 2911 } 2912 2913 // Unsigned variants on "max(a,b)>=a -> true". 2914 P = CmpInst::BAD_ICMP_PREDICATE; 2915 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2916 if (A != RHS) 2917 std::swap(A, B); // umax(A, B) pred A. 2918 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2919 // We analyze this as umax(A, B) pred A. 2920 P = Pred; 2921 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 2922 (A == LHS || B == LHS)) { 2923 if (A != LHS) 2924 std::swap(A, B); // A pred umax(A, B). 2925 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2926 // We analyze this as umax(A, B) swapped-pred A. 2927 P = CmpInst::getSwappedPredicate(Pred); 2928 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2929 (A == RHS || B == RHS)) { 2930 if (A != RHS) 2931 std::swap(A, B); // umin(A, B) pred A. 2932 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2933 // We analyze this as umax(-A, -B) swapped-pred -A. 2934 // Note that we do not need to actually form -A or -B thanks to EqP. 2935 P = CmpInst::getSwappedPredicate(Pred); 2936 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 2937 (A == LHS || B == LHS)) { 2938 if (A != LHS) 2939 std::swap(A, B); // A pred umin(A, B). 2940 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2941 // We analyze this as umax(-A, -B) pred -A. 2942 // Note that we do not need to actually form -A or -B thanks to EqP. 2943 P = Pred; 2944 } 2945 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2946 // Cases correspond to "max(A, B) p A". 2947 switch (P) { 2948 default: 2949 break; 2950 case CmpInst::ICMP_EQ: 2951 case CmpInst::ICMP_ULE: 2952 // Equivalent to "A EqP B". This may be the same as the condition tested 2953 // in the max/min; if so, we can just return that. 2954 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2955 return V; 2956 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2957 return V; 2958 // Otherwise, see if "A EqP B" simplifies. 2959 if (MaxRecurse) 2960 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 2961 return V; 2962 break; 2963 case CmpInst::ICMP_NE: 2964 case CmpInst::ICMP_UGT: { 2965 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2966 // Equivalent to "A InvEqP B". This may be the same as the condition 2967 // tested in the max/min; if so, we can just return that. 2968 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2969 return V; 2970 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2971 return V; 2972 // Otherwise, see if "A InvEqP B" simplifies. 2973 if (MaxRecurse) 2974 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 2975 return V; 2976 break; 2977 } 2978 case CmpInst::ICMP_UGE: 2979 // Always true. 2980 return getTrue(ITy); 2981 case CmpInst::ICMP_ULT: 2982 // Always false. 2983 return getFalse(ITy); 2984 } 2985 } 2986 2987 // Variants on "max(x,y) >= min(x,z)". 2988 Value *C, *D; 2989 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 2990 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 2991 (A == C || A == D || B == C || B == D)) { 2992 // max(x, ?) pred min(x, ?). 2993 if (Pred == CmpInst::ICMP_SGE) 2994 // Always true. 2995 return getTrue(ITy); 2996 if (Pred == CmpInst::ICMP_SLT) 2997 // Always false. 2998 return getFalse(ITy); 2999 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3000 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 3001 (A == C || A == D || B == C || B == D)) { 3002 // min(x, ?) pred max(x, ?). 3003 if (Pred == CmpInst::ICMP_SLE) 3004 // Always true. 3005 return getTrue(ITy); 3006 if (Pred == CmpInst::ICMP_SGT) 3007 // Always false. 3008 return getFalse(ITy); 3009 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3010 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3011 (A == C || A == D || B == C || B == D)) { 3012 // max(x, ?) pred min(x, ?). 3013 if (Pred == CmpInst::ICMP_UGE) 3014 // Always true. 3015 return getTrue(ITy); 3016 if (Pred == CmpInst::ICMP_ULT) 3017 // Always false. 3018 return getFalse(ITy); 3019 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3020 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 3021 (A == C || A == D || B == C || B == D)) { 3022 // min(x, ?) pred max(x, ?). 3023 if (Pred == CmpInst::ICMP_ULE) 3024 // Always true. 3025 return getTrue(ITy); 3026 if (Pred == CmpInst::ICMP_UGT) 3027 // Always false. 3028 return getFalse(ITy); 3029 } 3030 3031 return nullptr; 3032 } 3033 3034 /// Given operands for an ICmpInst, see if we can fold the result. 3035 /// If not, this returns null. 3036 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3037 const SimplifyQuery &Q, unsigned MaxRecurse) { 3038 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3039 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3040 3041 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3042 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3043 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3044 3045 // If we have a constant, make sure it is on the RHS. 3046 std::swap(LHS, RHS); 3047 Pred = CmpInst::getSwappedPredicate(Pred); 3048 } 3049 3050 Type *ITy = GetCompareTy(LHS); // The return type. 3051 3052 // icmp X, X -> true/false 3053 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false 3054 // because X could be 0. 3055 if (LHS == RHS || isa<UndefValue>(RHS)) 3056 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3057 3058 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3059 return V; 3060 3061 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3062 return V; 3063 3064 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS)) 3065 return V; 3066 3067 // If both operands have range metadata, use the metadata 3068 // to simplify the comparison. 3069 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3070 auto RHS_Instr = cast<Instruction>(RHS); 3071 auto LHS_Instr = cast<Instruction>(LHS); 3072 3073 if (RHS_Instr->getMetadata(LLVMContext::MD_range) && 3074 LHS_Instr->getMetadata(LLVMContext::MD_range)) { 3075 auto RHS_CR = getConstantRangeFromMetadata( 3076 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3077 auto LHS_CR = getConstantRangeFromMetadata( 3078 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3079 3080 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 3081 if (Satisfied_CR.contains(LHS_CR)) 3082 return ConstantInt::getTrue(RHS->getContext()); 3083 3084 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 3085 CmpInst::getInversePredicate(Pred), RHS_CR); 3086 if (InversedSatisfied_CR.contains(LHS_CR)) 3087 return ConstantInt::getFalse(RHS->getContext()); 3088 } 3089 } 3090 3091 // Compare of cast, for example (zext X) != 0 -> X != 0 3092 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3093 Instruction *LI = cast<CastInst>(LHS); 3094 Value *SrcOp = LI->getOperand(0); 3095 Type *SrcTy = SrcOp->getType(); 3096 Type *DstTy = LI->getType(); 3097 3098 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3099 // if the integer type is the same size as the pointer type. 3100 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3101 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3102 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3103 // Transfer the cast to the constant. 3104 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3105 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3106 Q, MaxRecurse-1)) 3107 return V; 3108 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3109 if (RI->getOperand(0)->getType() == SrcTy) 3110 // Compare without the cast. 3111 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3112 Q, MaxRecurse-1)) 3113 return V; 3114 } 3115 } 3116 3117 if (isa<ZExtInst>(LHS)) { 3118 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3119 // same type. 3120 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3121 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3122 // Compare X and Y. Note that signed predicates become unsigned. 3123 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3124 SrcOp, RI->getOperand(0), Q, 3125 MaxRecurse-1)) 3126 return V; 3127 } 3128 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3129 // too. If not, then try to deduce the result of the comparison. 3130 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3131 // Compute the constant that would happen if we truncated to SrcTy then 3132 // reextended to DstTy. 3133 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3134 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3135 3136 // If the re-extended constant didn't change then this is effectively 3137 // also a case of comparing two zero-extended values. 3138 if (RExt == CI && MaxRecurse) 3139 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3140 SrcOp, Trunc, Q, MaxRecurse-1)) 3141 return V; 3142 3143 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3144 // there. Use this to work out the result of the comparison. 3145 if (RExt != CI) { 3146 switch (Pred) { 3147 default: llvm_unreachable("Unknown ICmp predicate!"); 3148 // LHS <u RHS. 3149 case ICmpInst::ICMP_EQ: 3150 case ICmpInst::ICMP_UGT: 3151 case ICmpInst::ICMP_UGE: 3152 return ConstantInt::getFalse(CI->getContext()); 3153 3154 case ICmpInst::ICMP_NE: 3155 case ICmpInst::ICMP_ULT: 3156 case ICmpInst::ICMP_ULE: 3157 return ConstantInt::getTrue(CI->getContext()); 3158 3159 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3160 // is non-negative then LHS <s RHS. 3161 case ICmpInst::ICMP_SGT: 3162 case ICmpInst::ICMP_SGE: 3163 return CI->getValue().isNegative() ? 3164 ConstantInt::getTrue(CI->getContext()) : 3165 ConstantInt::getFalse(CI->getContext()); 3166 3167 case ICmpInst::ICMP_SLT: 3168 case ICmpInst::ICMP_SLE: 3169 return CI->getValue().isNegative() ? 3170 ConstantInt::getFalse(CI->getContext()) : 3171 ConstantInt::getTrue(CI->getContext()); 3172 } 3173 } 3174 } 3175 } 3176 3177 if (isa<SExtInst>(LHS)) { 3178 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3179 // same type. 3180 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3181 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3182 // Compare X and Y. Note that the predicate does not change. 3183 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3184 Q, MaxRecurse-1)) 3185 return V; 3186 } 3187 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3188 // too. If not, then try to deduce the result of the comparison. 3189 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3190 // Compute the constant that would happen if we truncated to SrcTy then 3191 // reextended to DstTy. 3192 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3193 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3194 3195 // If the re-extended constant didn't change then this is effectively 3196 // also a case of comparing two sign-extended values. 3197 if (RExt == CI && MaxRecurse) 3198 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3199 return V; 3200 3201 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3202 // bits there. Use this to work out the result of the comparison. 3203 if (RExt != CI) { 3204 switch (Pred) { 3205 default: llvm_unreachable("Unknown ICmp predicate!"); 3206 case ICmpInst::ICMP_EQ: 3207 return ConstantInt::getFalse(CI->getContext()); 3208 case ICmpInst::ICMP_NE: 3209 return ConstantInt::getTrue(CI->getContext()); 3210 3211 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3212 // LHS >s RHS. 3213 case ICmpInst::ICMP_SGT: 3214 case ICmpInst::ICMP_SGE: 3215 return CI->getValue().isNegative() ? 3216 ConstantInt::getTrue(CI->getContext()) : 3217 ConstantInt::getFalse(CI->getContext()); 3218 case ICmpInst::ICMP_SLT: 3219 case ICmpInst::ICMP_SLE: 3220 return CI->getValue().isNegative() ? 3221 ConstantInt::getFalse(CI->getContext()) : 3222 ConstantInt::getTrue(CI->getContext()); 3223 3224 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3225 // LHS >u RHS. 3226 case ICmpInst::ICMP_UGT: 3227 case ICmpInst::ICMP_UGE: 3228 // Comparison is true iff the LHS <s 0. 3229 if (MaxRecurse) 3230 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3231 Constant::getNullValue(SrcTy), 3232 Q, MaxRecurse-1)) 3233 return V; 3234 break; 3235 case ICmpInst::ICMP_ULT: 3236 case ICmpInst::ICMP_ULE: 3237 // Comparison is true iff the LHS >=s 0. 3238 if (MaxRecurse) 3239 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3240 Constant::getNullValue(SrcTy), 3241 Q, MaxRecurse-1)) 3242 return V; 3243 break; 3244 } 3245 } 3246 } 3247 } 3248 } 3249 3250 // icmp eq|ne X, Y -> false|true if X != Y 3251 if (ICmpInst::isEquality(Pred) && 3252 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) { 3253 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3254 } 3255 3256 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3257 return V; 3258 3259 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3260 return V; 3261 3262 // Simplify comparisons of related pointers using a powerful, recursive 3263 // GEP-walk when we have target data available.. 3264 if (LHS->getType()->isPointerTy()) 3265 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, LHS, 3266 RHS)) 3267 return C; 3268 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3269 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3270 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3271 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3272 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3273 Q.DL.getTypeSizeInBits(CRHS->getType())) 3274 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3275 CLHS->getPointerOperand(), 3276 CRHS->getPointerOperand())) 3277 return C; 3278 3279 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3280 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3281 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3282 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3283 (ICmpInst::isEquality(Pred) || 3284 (GLHS->isInBounds() && GRHS->isInBounds() && 3285 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3286 // The bases are equal and the indices are constant. Build a constant 3287 // expression GEP with the same indices and a null base pointer to see 3288 // what constant folding can make out of it. 3289 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3290 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3291 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3292 GLHS->getSourceElementType(), Null, IndicesLHS); 3293 3294 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3295 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3296 GLHS->getSourceElementType(), Null, IndicesRHS); 3297 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3298 } 3299 } 3300 } 3301 3302 // If the comparison is with the result of a select instruction, check whether 3303 // comparing with either branch of the select always yields the same value. 3304 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3305 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3306 return V; 3307 3308 // If the comparison is with the result of a phi instruction, check whether 3309 // doing the compare with each incoming phi value yields a common result. 3310 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3311 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3312 return V; 3313 3314 return nullptr; 3315 } 3316 3317 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3318 const SimplifyQuery &Q) { 3319 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3320 } 3321 3322 /// Given operands for an FCmpInst, see if we can fold the result. 3323 /// If not, this returns null. 3324 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3325 FastMathFlags FMF, const SimplifyQuery &Q, 3326 unsigned MaxRecurse) { 3327 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3328 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3329 3330 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3331 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3332 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3333 3334 // If we have a constant, make sure it is on the RHS. 3335 std::swap(LHS, RHS); 3336 Pred = CmpInst::getSwappedPredicate(Pred); 3337 } 3338 3339 // Fold trivial predicates. 3340 Type *RetTy = GetCompareTy(LHS); 3341 if (Pred == FCmpInst::FCMP_FALSE) 3342 return getFalse(RetTy); 3343 if (Pred == FCmpInst::FCMP_TRUE) 3344 return getTrue(RetTy); 3345 3346 // UNO/ORD predicates can be trivially folded if NaNs are ignored. 3347 if (FMF.noNaNs()) { 3348 if (Pred == FCmpInst::FCMP_UNO) 3349 return getFalse(RetTy); 3350 if (Pred == FCmpInst::FCMP_ORD) 3351 return getTrue(RetTy); 3352 } 3353 3354 // fcmp pred x, undef and fcmp pred undef, x 3355 // fold to true if unordered, false if ordered 3356 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3357 // Choosing NaN for the undef will always make unordered comparison succeed 3358 // and ordered comparison fail. 3359 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3360 } 3361 3362 // fcmp x,x -> true/false. Not all compares are foldable. 3363 if (LHS == RHS) { 3364 if (CmpInst::isTrueWhenEqual(Pred)) 3365 return getTrue(RetTy); 3366 if (CmpInst::isFalseWhenEqual(Pred)) 3367 return getFalse(RetTy); 3368 } 3369 3370 // Handle fcmp with constant RHS. 3371 const APFloat *C; 3372 if (match(RHS, m_APFloat(C))) { 3373 // If the constant is a nan, see if we can fold the comparison based on it. 3374 if (C->isNaN()) { 3375 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo" 3376 return getFalse(RetTy); 3377 assert(FCmpInst::isUnordered(Pred) && 3378 "Comparison must be either ordered or unordered!"); 3379 // True if unordered. 3380 return getTrue(RetTy); 3381 } 3382 // Check whether the constant is an infinity. 3383 if (C->isInfinity()) { 3384 if (C->isNegative()) { 3385 switch (Pred) { 3386 case FCmpInst::FCMP_OLT: 3387 // No value is ordered and less than negative infinity. 3388 return getFalse(RetTy); 3389 case FCmpInst::FCMP_UGE: 3390 // All values are unordered with or at least negative infinity. 3391 return getTrue(RetTy); 3392 default: 3393 break; 3394 } 3395 } else { 3396 switch (Pred) { 3397 case FCmpInst::FCMP_OGT: 3398 // No value is ordered and greater than infinity. 3399 return getFalse(RetTy); 3400 case FCmpInst::FCMP_ULE: 3401 // All values are unordered with and at most infinity. 3402 return getTrue(RetTy); 3403 default: 3404 break; 3405 } 3406 } 3407 } 3408 if (C->isZero()) { 3409 switch (Pred) { 3410 case FCmpInst::FCMP_UGE: 3411 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3412 return getTrue(RetTy); 3413 break; 3414 case FCmpInst::FCMP_OLT: 3415 // X < 0 3416 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3417 return getFalse(RetTy); 3418 break; 3419 default: 3420 break; 3421 } 3422 } else if (C->isNegative()) { 3423 assert(!C->isNaN() && "Unexpected NaN constant!"); 3424 // TODO: We can catch more cases by using a range check rather than 3425 // relying on CannotBeOrderedLessThanZero. 3426 switch (Pred) { 3427 case FCmpInst::FCMP_UGE: 3428 case FCmpInst::FCMP_UGT: 3429 case FCmpInst::FCMP_UNE: 3430 // (X >= 0) implies (X > C) when (C < 0) 3431 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3432 return getTrue(RetTy); 3433 break; 3434 case FCmpInst::FCMP_OEQ: 3435 case FCmpInst::FCMP_OLE: 3436 case FCmpInst::FCMP_OLT: 3437 // (X >= 0) implies !(X < C) when (C < 0) 3438 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3439 return getFalse(RetTy); 3440 break; 3441 default: 3442 break; 3443 } 3444 } 3445 } 3446 3447 // If the comparison is with the result of a select instruction, check whether 3448 // comparing with either branch of the select always yields the same value. 3449 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3450 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3451 return V; 3452 3453 // If the comparison is with the result of a phi instruction, check whether 3454 // doing the compare with each incoming phi value yields a common result. 3455 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3456 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3457 return V; 3458 3459 return nullptr; 3460 } 3461 3462 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3463 FastMathFlags FMF, const SimplifyQuery &Q) { 3464 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 3465 } 3466 3467 /// See if V simplifies when its operand Op is replaced with RepOp. 3468 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3469 const SimplifyQuery &Q, 3470 unsigned MaxRecurse) { 3471 // Trivial replacement. 3472 if (V == Op) 3473 return RepOp; 3474 3475 // We cannot replace a constant, and shouldn't even try. 3476 if (isa<Constant>(Op)) 3477 return nullptr; 3478 3479 auto *I = dyn_cast<Instruction>(V); 3480 if (!I) 3481 return nullptr; 3482 3483 // If this is a binary operator, try to simplify it with the replaced op. 3484 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3485 // Consider: 3486 // %cmp = icmp eq i32 %x, 2147483647 3487 // %add = add nsw i32 %x, 1 3488 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3489 // 3490 // We can't replace %sel with %add unless we strip away the flags. 3491 if (isa<OverflowingBinaryOperator>(B)) 3492 if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap()) 3493 return nullptr; 3494 if (isa<PossiblyExactOperator>(B)) 3495 if (B->isExact()) 3496 return nullptr; 3497 3498 if (MaxRecurse) { 3499 if (B->getOperand(0) == Op) 3500 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3501 MaxRecurse - 1); 3502 if (B->getOperand(1) == Op) 3503 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3504 MaxRecurse - 1); 3505 } 3506 } 3507 3508 // Same for CmpInsts. 3509 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3510 if (MaxRecurse) { 3511 if (C->getOperand(0) == Op) 3512 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3513 MaxRecurse - 1); 3514 if (C->getOperand(1) == Op) 3515 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3516 MaxRecurse - 1); 3517 } 3518 } 3519 3520 // TODO: We could hand off more cases to instsimplify here. 3521 3522 // If all operands are constant after substituting Op for RepOp then we can 3523 // constant fold the instruction. 3524 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3525 // Build a list of all constant operands. 3526 SmallVector<Constant *, 8> ConstOps; 3527 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3528 if (I->getOperand(i) == Op) 3529 ConstOps.push_back(CRepOp); 3530 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3531 ConstOps.push_back(COp); 3532 else 3533 break; 3534 } 3535 3536 // All operands were constants, fold it. 3537 if (ConstOps.size() == I->getNumOperands()) { 3538 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3539 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3540 ConstOps[1], Q.DL, Q.TLI); 3541 3542 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3543 if (!LI->isVolatile()) 3544 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3545 3546 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3547 } 3548 } 3549 3550 return nullptr; 3551 } 3552 3553 /// Try to simplify a select instruction when its condition operand is an 3554 /// integer comparison where one operand of the compare is a constant. 3555 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3556 const APInt *Y, bool TrueWhenUnset) { 3557 const APInt *C; 3558 3559 // (X & Y) == 0 ? X & ~Y : X --> X 3560 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3561 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3562 *Y == ~*C) 3563 return TrueWhenUnset ? FalseVal : TrueVal; 3564 3565 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3566 // (X & Y) != 0 ? X : X & ~Y --> X 3567 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3568 *Y == ~*C) 3569 return TrueWhenUnset ? FalseVal : TrueVal; 3570 3571 if (Y->isPowerOf2()) { 3572 // (X & Y) == 0 ? X | Y : X --> X | Y 3573 // (X & Y) != 0 ? X | Y : X --> X 3574 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3575 *Y == *C) 3576 return TrueWhenUnset ? TrueVal : FalseVal; 3577 3578 // (X & Y) == 0 ? X : X | Y --> X 3579 // (X & Y) != 0 ? X : X | Y --> X | Y 3580 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3581 *Y == *C) 3582 return TrueWhenUnset ? TrueVal : FalseVal; 3583 } 3584 3585 return nullptr; 3586 } 3587 3588 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 3589 /// eq/ne. 3590 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 3591 ICmpInst::Predicate Pred, 3592 Value *TrueVal, Value *FalseVal) { 3593 Value *X; 3594 APInt Mask; 3595 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 3596 return nullptr; 3597 3598 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 3599 Pred == ICmpInst::ICMP_EQ); 3600 } 3601 3602 /// Try to simplify a select instruction when its condition operand is an 3603 /// integer comparison. 3604 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 3605 Value *FalseVal, const SimplifyQuery &Q, 3606 unsigned MaxRecurse) { 3607 ICmpInst::Predicate Pred; 3608 Value *CmpLHS, *CmpRHS; 3609 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 3610 return nullptr; 3611 3612 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) { 3613 Value *X; 3614 const APInt *Y; 3615 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 3616 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 3617 Pred == ICmpInst::ICMP_EQ)) 3618 return V; 3619 } 3620 3621 // Check for other compares that behave like bit test. 3622 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 3623 TrueVal, FalseVal)) 3624 return V; 3625 3626 if (CondVal->hasOneUse()) { 3627 const APInt *C; 3628 if (match(CmpRHS, m_APInt(C))) { 3629 // X < MIN ? T : F --> F 3630 if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue()) 3631 return FalseVal; 3632 // X < MIN ? T : F --> F 3633 if (Pred == ICmpInst::ICMP_ULT && C->isMinValue()) 3634 return FalseVal; 3635 // X > MAX ? T : F --> F 3636 if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue()) 3637 return FalseVal; 3638 // X > MAX ? T : F --> F 3639 if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue()) 3640 return FalseVal; 3641 } 3642 } 3643 3644 // If we have an equality comparison, then we know the value in one of the 3645 // arms of the select. See if substituting this value into the arm and 3646 // simplifying the result yields the same value as the other arm. 3647 if (Pred == ICmpInst::ICMP_EQ) { 3648 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3649 TrueVal || 3650 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3651 TrueVal) 3652 return FalseVal; 3653 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3654 FalseVal || 3655 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3656 FalseVal) 3657 return FalseVal; 3658 } else if (Pred == ICmpInst::ICMP_NE) { 3659 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3660 FalseVal || 3661 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3662 FalseVal) 3663 return TrueVal; 3664 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3665 TrueVal || 3666 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3667 TrueVal) 3668 return TrueVal; 3669 } 3670 3671 return nullptr; 3672 } 3673 3674 /// Given operands for a SelectInst, see if we can fold the result. 3675 /// If not, this returns null. 3676 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal, 3677 Value *FalseVal, const SimplifyQuery &Q, 3678 unsigned MaxRecurse) { 3679 // select true, X, Y -> X 3680 // select false, X, Y -> Y 3681 if (Constant *CB = dyn_cast<Constant>(CondVal)) { 3682 if (Constant *CT = dyn_cast<Constant>(TrueVal)) 3683 if (Constant *CF = dyn_cast<Constant>(FalseVal)) 3684 return ConstantFoldSelectInstruction(CB, CT, CF); 3685 if (CB->isAllOnesValue()) 3686 return TrueVal; 3687 if (CB->isNullValue()) 3688 return FalseVal; 3689 } 3690 3691 // select C, X, X -> X 3692 if (TrueVal == FalseVal) 3693 return TrueVal; 3694 3695 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y 3696 if (isa<Constant>(FalseVal)) 3697 return FalseVal; 3698 return TrueVal; 3699 } 3700 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X 3701 return FalseVal; 3702 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X 3703 return TrueVal; 3704 3705 if (Value *V = 3706 simplifySelectWithICmpCond(CondVal, TrueVal, FalseVal, Q, MaxRecurse)) 3707 return V; 3708 3709 return nullptr; 3710 } 3711 3712 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3713 const SimplifyQuery &Q) { 3714 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 3715 } 3716 3717 /// Given operands for an GetElementPtrInst, see if we can fold the result. 3718 /// If not, this returns null. 3719 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3720 const SimplifyQuery &Q, unsigned) { 3721 // The type of the GEP pointer operand. 3722 unsigned AS = 3723 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 3724 3725 // getelementptr P -> P. 3726 if (Ops.size() == 1) 3727 return Ops[0]; 3728 3729 // Compute the (pointer) type returned by the GEP instruction. 3730 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 3731 Type *GEPTy = PointerType::get(LastType, AS); 3732 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 3733 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3734 else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType())) 3735 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3736 3737 if (isa<UndefValue>(Ops[0])) 3738 return UndefValue::get(GEPTy); 3739 3740 if (Ops.size() == 2) { 3741 // getelementptr P, 0 -> P. 3742 if (match(Ops[1], m_Zero())) 3743 return Ops[0]; 3744 3745 Type *Ty = SrcTy; 3746 if (Ty->isSized()) { 3747 Value *P; 3748 uint64_t C; 3749 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 3750 // getelementptr P, N -> P if P points to a type of zero size. 3751 if (TyAllocSize == 0) 3752 return Ops[0]; 3753 3754 // The following transforms are only safe if the ptrtoint cast 3755 // doesn't truncate the pointers. 3756 if (Ops[1]->getType()->getScalarSizeInBits() == 3757 Q.DL.getPointerSizeInBits(AS)) { 3758 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 3759 if (match(P, m_Zero())) 3760 return Constant::getNullValue(GEPTy); 3761 Value *Temp; 3762 if (match(P, m_PtrToInt(m_Value(Temp)))) 3763 if (Temp->getType() == GEPTy) 3764 return Temp; 3765 return nullptr; 3766 }; 3767 3768 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 3769 if (TyAllocSize == 1 && 3770 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 3771 if (Value *R = PtrToIntOrZero(P)) 3772 return R; 3773 3774 // getelementptr V, (ashr (sub P, V), C) -> Q 3775 // if P points to a type of size 1 << C. 3776 if (match(Ops[1], 3777 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3778 m_ConstantInt(C))) && 3779 TyAllocSize == 1ULL << C) 3780 if (Value *R = PtrToIntOrZero(P)) 3781 return R; 3782 3783 // getelementptr V, (sdiv (sub P, V), C) -> Q 3784 // if P points to a type of size C. 3785 if (match(Ops[1], 3786 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3787 m_SpecificInt(TyAllocSize)))) 3788 if (Value *R = PtrToIntOrZero(P)) 3789 return R; 3790 } 3791 } 3792 } 3793 3794 if (Q.DL.getTypeAllocSize(LastType) == 1 && 3795 all_of(Ops.slice(1).drop_back(1), 3796 [](Value *Idx) { return match(Idx, m_Zero()); })) { 3797 unsigned PtrWidth = 3798 Q.DL.getPointerSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 3799 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == PtrWidth) { 3800 APInt BasePtrOffset(PtrWidth, 0); 3801 Value *StrippedBasePtr = 3802 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 3803 BasePtrOffset); 3804 3805 // gep (gep V, C), (sub 0, V) -> C 3806 if (match(Ops.back(), 3807 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { 3808 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 3809 return ConstantExpr::getIntToPtr(CI, GEPTy); 3810 } 3811 // gep (gep V, C), (xor V, -1) -> C-1 3812 if (match(Ops.back(), 3813 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { 3814 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 3815 return ConstantExpr::getIntToPtr(CI, GEPTy); 3816 } 3817 } 3818 } 3819 3820 // Check to see if this is constant foldable. 3821 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 3822 return nullptr; 3823 3824 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 3825 Ops.slice(1)); 3826 if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL)) 3827 return CEFolded; 3828 return CE; 3829 } 3830 3831 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3832 const SimplifyQuery &Q) { 3833 return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit); 3834 } 3835 3836 /// Given operands for an InsertValueInst, see if we can fold the result. 3837 /// If not, this returns null. 3838 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 3839 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 3840 unsigned) { 3841 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 3842 if (Constant *CVal = dyn_cast<Constant>(Val)) 3843 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 3844 3845 // insertvalue x, undef, n -> x 3846 if (match(Val, m_Undef())) 3847 return Agg; 3848 3849 // insertvalue x, (extractvalue y, n), n 3850 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 3851 if (EV->getAggregateOperand()->getType() == Agg->getType() && 3852 EV->getIndices() == Idxs) { 3853 // insertvalue undef, (extractvalue y, n), n -> y 3854 if (match(Agg, m_Undef())) 3855 return EV->getAggregateOperand(); 3856 3857 // insertvalue y, (extractvalue y, n), n -> y 3858 if (Agg == EV->getAggregateOperand()) 3859 return Agg; 3860 } 3861 3862 return nullptr; 3863 } 3864 3865 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 3866 ArrayRef<unsigned> Idxs, 3867 const SimplifyQuery &Q) { 3868 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 3869 } 3870 3871 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 3872 const SimplifyQuery &Q) { 3873 // Try to constant fold. 3874 auto *VecC = dyn_cast<Constant>(Vec); 3875 auto *ValC = dyn_cast<Constant>(Val); 3876 auto *IdxC = dyn_cast<Constant>(Idx); 3877 if (VecC && ValC && IdxC) 3878 return ConstantFoldInsertElementInstruction(VecC, ValC, IdxC); 3879 3880 // Fold into undef if index is out of bounds. 3881 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 3882 uint64_t NumElements = cast<VectorType>(Vec->getType())->getNumElements(); 3883 if (CI->uge(NumElements)) 3884 return UndefValue::get(Vec->getType()); 3885 } 3886 3887 // If index is undef, it might be out of bounds (see above case) 3888 if (isa<UndefValue>(Idx)) 3889 return UndefValue::get(Vec->getType()); 3890 3891 return nullptr; 3892 } 3893 3894 /// Given operands for an ExtractValueInst, see if we can fold the result. 3895 /// If not, this returns null. 3896 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3897 const SimplifyQuery &, unsigned) { 3898 if (auto *CAgg = dyn_cast<Constant>(Agg)) 3899 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 3900 3901 // extractvalue x, (insertvalue y, elt, n), n -> elt 3902 unsigned NumIdxs = Idxs.size(); 3903 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 3904 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 3905 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 3906 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 3907 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 3908 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 3909 Idxs.slice(0, NumCommonIdxs)) { 3910 if (NumIdxs == NumInsertValueIdxs) 3911 return IVI->getInsertedValueOperand(); 3912 break; 3913 } 3914 } 3915 3916 return nullptr; 3917 } 3918 3919 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3920 const SimplifyQuery &Q) { 3921 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 3922 } 3923 3924 /// Given operands for an ExtractElementInst, see if we can fold the result. 3925 /// If not, this returns null. 3926 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &, 3927 unsigned) { 3928 if (auto *CVec = dyn_cast<Constant>(Vec)) { 3929 if (auto *CIdx = dyn_cast<Constant>(Idx)) 3930 return ConstantFoldExtractElementInstruction(CVec, CIdx); 3931 3932 // The index is not relevant if our vector is a splat. 3933 if (auto *Splat = CVec->getSplatValue()) 3934 return Splat; 3935 3936 if (isa<UndefValue>(Vec)) 3937 return UndefValue::get(Vec->getType()->getVectorElementType()); 3938 } 3939 3940 // If extracting a specified index from the vector, see if we can recursively 3941 // find a previously computed scalar that was inserted into the vector. 3942 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 3943 if (IdxC->getValue().uge(Vec->getType()->getVectorNumElements())) 3944 // definitely out of bounds, thus undefined result 3945 return UndefValue::get(Vec->getType()->getVectorElementType()); 3946 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 3947 return Elt; 3948 } 3949 3950 // An undef extract index can be arbitrarily chosen to be an out-of-range 3951 // index value, which would result in the instruction being undef. 3952 if (isa<UndefValue>(Idx)) 3953 return UndefValue::get(Vec->getType()->getVectorElementType()); 3954 3955 return nullptr; 3956 } 3957 3958 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 3959 const SimplifyQuery &Q) { 3960 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 3961 } 3962 3963 /// See if we can fold the given phi. If not, returns null. 3964 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) { 3965 // If all of the PHI's incoming values are the same then replace the PHI node 3966 // with the common value. 3967 Value *CommonValue = nullptr; 3968 bool HasUndefInput = false; 3969 for (Value *Incoming : PN->incoming_values()) { 3970 // If the incoming value is the phi node itself, it can safely be skipped. 3971 if (Incoming == PN) continue; 3972 if (isa<UndefValue>(Incoming)) { 3973 // Remember that we saw an undef value, but otherwise ignore them. 3974 HasUndefInput = true; 3975 continue; 3976 } 3977 if (CommonValue && Incoming != CommonValue) 3978 return nullptr; // Not the same, bail out. 3979 CommonValue = Incoming; 3980 } 3981 3982 // If CommonValue is null then all of the incoming values were either undef or 3983 // equal to the phi node itself. 3984 if (!CommonValue) 3985 return UndefValue::get(PN->getType()); 3986 3987 // If we have a PHI node like phi(X, undef, X), where X is defined by some 3988 // instruction, we cannot return X as the result of the PHI node unless it 3989 // dominates the PHI block. 3990 if (HasUndefInput) 3991 return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 3992 3993 return CommonValue; 3994 } 3995 3996 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 3997 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 3998 if (auto *C = dyn_cast<Constant>(Op)) 3999 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4000 4001 if (auto *CI = dyn_cast<CastInst>(Op)) { 4002 auto *Src = CI->getOperand(0); 4003 Type *SrcTy = Src->getType(); 4004 Type *MidTy = CI->getType(); 4005 Type *DstTy = Ty; 4006 if (Src->getType() == Ty) { 4007 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4008 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4009 Type *SrcIntPtrTy = 4010 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4011 Type *MidIntPtrTy = 4012 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4013 Type *DstIntPtrTy = 4014 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4015 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4016 SrcIntPtrTy, MidIntPtrTy, 4017 DstIntPtrTy) == Instruction::BitCast) 4018 return Src; 4019 } 4020 } 4021 4022 // bitcast x -> x 4023 if (CastOpc == Instruction::BitCast) 4024 if (Op->getType() == Ty) 4025 return Op; 4026 4027 return nullptr; 4028 } 4029 4030 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4031 const SimplifyQuery &Q) { 4032 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4033 } 4034 4035 /// For the given destination element of a shuffle, peek through shuffles to 4036 /// match a root vector source operand that contains that element in the same 4037 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4038 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4039 int MaskVal, Value *RootVec, 4040 unsigned MaxRecurse) { 4041 if (!MaxRecurse--) 4042 return nullptr; 4043 4044 // Bail out if any mask value is undefined. That kind of shuffle may be 4045 // simplified further based on demanded bits or other folds. 4046 if (MaskVal == -1) 4047 return nullptr; 4048 4049 // The mask value chooses which source operand we need to look at next. 4050 int InVecNumElts = Op0->getType()->getVectorNumElements(); 4051 int RootElt = MaskVal; 4052 Value *SourceOp = Op0; 4053 if (MaskVal >= InVecNumElts) { 4054 RootElt = MaskVal - InVecNumElts; 4055 SourceOp = Op1; 4056 } 4057 4058 // If the source operand is a shuffle itself, look through it to find the 4059 // matching root vector. 4060 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4061 return foldIdentityShuffles( 4062 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4063 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4064 } 4065 4066 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4067 // size? 4068 4069 // The source operand is not a shuffle. Initialize the root vector value for 4070 // this shuffle if that has not been done yet. 4071 if (!RootVec) 4072 RootVec = SourceOp; 4073 4074 // Give up as soon as a source operand does not match the existing root value. 4075 if (RootVec != SourceOp) 4076 return nullptr; 4077 4078 // The element must be coming from the same lane in the source vector 4079 // (although it may have crossed lanes in intermediate shuffles). 4080 if (RootElt != DestElt) 4081 return nullptr; 4082 4083 return RootVec; 4084 } 4085 4086 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4087 Type *RetTy, const SimplifyQuery &Q, 4088 unsigned MaxRecurse) { 4089 if (isa<UndefValue>(Mask)) 4090 return UndefValue::get(RetTy); 4091 4092 Type *InVecTy = Op0->getType(); 4093 unsigned MaskNumElts = Mask->getType()->getVectorNumElements(); 4094 unsigned InVecNumElts = InVecTy->getVectorNumElements(); 4095 4096 SmallVector<int, 32> Indices; 4097 ShuffleVectorInst::getShuffleMask(Mask, Indices); 4098 assert(MaskNumElts == Indices.size() && 4099 "Size of Indices not same as number of mask elements?"); 4100 4101 // Canonicalization: If mask does not select elements from an input vector, 4102 // replace that input vector with undef. 4103 bool MaskSelects0 = false, MaskSelects1 = false; 4104 for (unsigned i = 0; i != MaskNumElts; ++i) { 4105 if (Indices[i] == -1) 4106 continue; 4107 if ((unsigned)Indices[i] < InVecNumElts) 4108 MaskSelects0 = true; 4109 else 4110 MaskSelects1 = true; 4111 } 4112 if (!MaskSelects0) 4113 Op0 = UndefValue::get(InVecTy); 4114 if (!MaskSelects1) 4115 Op1 = UndefValue::get(InVecTy); 4116 4117 auto *Op0Const = dyn_cast<Constant>(Op0); 4118 auto *Op1Const = dyn_cast<Constant>(Op1); 4119 4120 // If all operands are constant, constant fold the shuffle. 4121 if (Op0Const && Op1Const) 4122 return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask); 4123 4124 // Canonicalization: if only one input vector is constant, it shall be the 4125 // second one. 4126 if (Op0Const && !Op1Const) { 4127 std::swap(Op0, Op1); 4128 ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts); 4129 } 4130 4131 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4132 // value type is same as the input vectors' type. 4133 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4134 if (isa<UndefValue>(Op1) && RetTy == InVecTy && 4135 OpShuf->getMask()->getSplatValue()) 4136 return Op0; 4137 4138 // Don't fold a shuffle with undef mask elements. This may get folded in a 4139 // better way using demanded bits or other analysis. 4140 // TODO: Should we allow this? 4141 if (find(Indices, -1) != Indices.end()) 4142 return nullptr; 4143 4144 // Check if every element of this shuffle can be mapped back to the 4145 // corresponding element of a single root vector. If so, we don't need this 4146 // shuffle. This handles simple identity shuffles as well as chains of 4147 // shuffles that may widen/narrow and/or move elements across lanes and back. 4148 Value *RootVec = nullptr; 4149 for (unsigned i = 0; i != MaskNumElts; ++i) { 4150 // Note that recursion is limited for each vector element, so if any element 4151 // exceeds the limit, this will fail to simplify. 4152 RootVec = 4153 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4154 4155 // We can't replace a widening/narrowing shuffle with one of its operands. 4156 if (!RootVec || RootVec->getType() != RetTy) 4157 return nullptr; 4158 } 4159 return RootVec; 4160 } 4161 4162 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4163 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4164 Type *RetTy, const SimplifyQuery &Q) { 4165 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4166 } 4167 4168 /// Given operands for an FAdd, see if we can fold the result. If not, this 4169 /// returns null. 4170 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4171 const SimplifyQuery &Q, unsigned MaxRecurse) { 4172 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 4173 return C; 4174 4175 // fadd X, -0 ==> X 4176 if (match(Op1, m_NegZero())) 4177 return Op0; 4178 4179 // fadd X, 0 ==> X, when we know X is not -0 4180 if (match(Op1, m_Zero()) && 4181 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4182 return Op0; 4183 4184 // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0 4185 // where nnan and ninf have to occur at least once somewhere in this 4186 // expression 4187 Value *SubOp = nullptr; 4188 if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0)))) 4189 SubOp = Op1; 4190 else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1)))) 4191 SubOp = Op0; 4192 if (SubOp) { 4193 Instruction *FSub = cast<Instruction>(SubOp); 4194 if ((FMF.noNaNs() || FSub->hasNoNaNs()) && 4195 (FMF.noInfs() || FSub->hasNoInfs())) 4196 return Constant::getNullValue(Op0->getType()); 4197 } 4198 4199 return nullptr; 4200 } 4201 4202 /// Given operands for an FSub, see if we can fold the result. If not, this 4203 /// returns null. 4204 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4205 const SimplifyQuery &Q, unsigned MaxRecurse) { 4206 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 4207 return C; 4208 4209 // fsub X, 0 ==> X 4210 if (match(Op1, m_Zero())) 4211 return Op0; 4212 4213 // fsub X, -0 ==> X, when we know X is not -0 4214 if (match(Op1, m_NegZero()) && 4215 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4216 return Op0; 4217 4218 // fsub -0.0, (fsub -0.0, X) ==> X 4219 Value *X; 4220 if (match(Op0, m_NegZero()) && match(Op1, m_FSub(m_NegZero(), m_Value(X)))) 4221 return X; 4222 4223 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 4224 if (FMF.noSignedZeros() && match(Op0, m_AnyZero()) && 4225 match(Op1, m_FSub(m_AnyZero(), m_Value(X)))) 4226 return X; 4227 4228 // fsub nnan x, x ==> 0.0 4229 if (FMF.noNaNs() && Op0 == Op1) 4230 return Constant::getNullValue(Op0->getType()); 4231 4232 return nullptr; 4233 } 4234 4235 /// Given the operands for an FMul, see if we can fold the result 4236 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4237 const SimplifyQuery &Q, unsigned MaxRecurse) { 4238 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 4239 return C; 4240 4241 // fmul X, 1.0 ==> X 4242 if (match(Op1, m_FPOne())) 4243 return Op0; 4244 4245 // fmul nnan nsz X, 0 ==> 0 4246 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero())) 4247 return Op1; 4248 4249 return nullptr; 4250 } 4251 4252 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4253 const SimplifyQuery &Q) { 4254 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit); 4255 } 4256 4257 4258 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4259 const SimplifyQuery &Q) { 4260 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit); 4261 } 4262 4263 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4264 const SimplifyQuery &Q) { 4265 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit); 4266 } 4267 4268 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4269 const SimplifyQuery &Q, unsigned) { 4270 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 4271 return C; 4272 4273 // undef / X -> undef (the undef could be a snan). 4274 if (match(Op0, m_Undef())) 4275 return Op0; 4276 4277 // X / undef -> undef 4278 if (match(Op1, m_Undef())) 4279 return Op1; 4280 4281 // X / 1.0 -> X 4282 if (match(Op1, m_FPOne())) 4283 return Op0; 4284 4285 // 0 / X -> 0 4286 // Requires that NaNs are off (X could be zero) and signed zeroes are 4287 // ignored (X could be positive or negative, so the output sign is unknown). 4288 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 4289 return Op0; 4290 4291 if (FMF.noNaNs()) { 4292 // X / X -> 1.0 is legal when NaNs are ignored. 4293 if (Op0 == Op1) 4294 return ConstantFP::get(Op0->getType(), 1.0); 4295 4296 // -X / X -> -1.0 and 4297 // X / -X -> -1.0 are legal when NaNs are ignored. 4298 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 4299 if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) && 4300 BinaryOperator::getFNegArgument(Op0) == Op1) || 4301 (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) && 4302 BinaryOperator::getFNegArgument(Op1) == Op0)) 4303 return ConstantFP::get(Op0->getType(), -1.0); 4304 } 4305 4306 return nullptr; 4307 } 4308 4309 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4310 const SimplifyQuery &Q) { 4311 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit); 4312 } 4313 4314 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4315 const SimplifyQuery &Q, unsigned) { 4316 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 4317 return C; 4318 4319 // undef % X -> undef (the undef could be a snan). 4320 if (match(Op0, m_Undef())) 4321 return Op0; 4322 4323 // X % undef -> undef 4324 if (match(Op1, m_Undef())) 4325 return Op1; 4326 4327 // 0 % X -> 0 4328 // Requires that NaNs are off (X could be zero) and signed zeroes are 4329 // ignored (X could be positive or negative, so the output sign is unknown). 4330 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 4331 return Op0; 4332 4333 return nullptr; 4334 } 4335 4336 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4337 const SimplifyQuery &Q) { 4338 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit); 4339 } 4340 4341 //=== Helper functions for higher up the class hierarchy. 4342 4343 /// Given operands for a BinaryOperator, see if we can fold the result. 4344 /// If not, this returns null. 4345 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4346 const SimplifyQuery &Q, unsigned MaxRecurse) { 4347 switch (Opcode) { 4348 case Instruction::Add: 4349 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 4350 case Instruction::Sub: 4351 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 4352 case Instruction::Mul: 4353 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 4354 case Instruction::SDiv: 4355 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 4356 case Instruction::UDiv: 4357 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 4358 case Instruction::SRem: 4359 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 4360 case Instruction::URem: 4361 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 4362 case Instruction::Shl: 4363 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 4364 case Instruction::LShr: 4365 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 4366 case Instruction::AShr: 4367 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 4368 case Instruction::And: 4369 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 4370 case Instruction::Or: 4371 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 4372 case Instruction::Xor: 4373 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 4374 case Instruction::FAdd: 4375 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4376 case Instruction::FSub: 4377 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4378 case Instruction::FMul: 4379 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4380 case Instruction::FDiv: 4381 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4382 case Instruction::FRem: 4383 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4384 default: 4385 llvm_unreachable("Unexpected opcode"); 4386 } 4387 } 4388 4389 /// Given operands for a BinaryOperator, see if we can fold the result. 4390 /// If not, this returns null. 4391 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the 4392 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp. 4393 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4394 const FastMathFlags &FMF, const SimplifyQuery &Q, 4395 unsigned MaxRecurse) { 4396 switch (Opcode) { 4397 case Instruction::FAdd: 4398 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 4399 case Instruction::FSub: 4400 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 4401 case Instruction::FMul: 4402 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 4403 case Instruction::FDiv: 4404 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 4405 default: 4406 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 4407 } 4408 } 4409 4410 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4411 const SimplifyQuery &Q) { 4412 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 4413 } 4414 4415 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4416 FastMathFlags FMF, const SimplifyQuery &Q) { 4417 return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 4418 } 4419 4420 /// Given operands for a CmpInst, see if we can fold the result. 4421 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4422 const SimplifyQuery &Q, unsigned MaxRecurse) { 4423 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 4424 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 4425 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4426 } 4427 4428 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4429 const SimplifyQuery &Q) { 4430 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 4431 } 4432 4433 static bool IsIdempotent(Intrinsic::ID ID) { 4434 switch (ID) { 4435 default: return false; 4436 4437 // Unary idempotent: f(f(x)) = f(x) 4438 case Intrinsic::fabs: 4439 case Intrinsic::floor: 4440 case Intrinsic::ceil: 4441 case Intrinsic::trunc: 4442 case Intrinsic::rint: 4443 case Intrinsic::nearbyint: 4444 case Intrinsic::round: 4445 case Intrinsic::canonicalize: 4446 return true; 4447 } 4448 } 4449 4450 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 4451 const DataLayout &DL) { 4452 GlobalValue *PtrSym; 4453 APInt PtrOffset; 4454 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 4455 return nullptr; 4456 4457 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 4458 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 4459 Type *Int32PtrTy = Int32Ty->getPointerTo(); 4460 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 4461 4462 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 4463 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 4464 return nullptr; 4465 4466 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 4467 if (OffsetInt % 4 != 0) 4468 return nullptr; 4469 4470 Constant *C = ConstantExpr::getGetElementPtr( 4471 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 4472 ConstantInt::get(Int64Ty, OffsetInt / 4)); 4473 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 4474 if (!Loaded) 4475 return nullptr; 4476 4477 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 4478 if (!LoadedCE) 4479 return nullptr; 4480 4481 if (LoadedCE->getOpcode() == Instruction::Trunc) { 4482 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4483 if (!LoadedCE) 4484 return nullptr; 4485 } 4486 4487 if (LoadedCE->getOpcode() != Instruction::Sub) 4488 return nullptr; 4489 4490 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4491 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 4492 return nullptr; 4493 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 4494 4495 Constant *LoadedRHS = LoadedCE->getOperand(1); 4496 GlobalValue *LoadedRHSSym; 4497 APInt LoadedRHSOffset; 4498 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 4499 DL) || 4500 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 4501 return nullptr; 4502 4503 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 4504 } 4505 4506 static bool maskIsAllZeroOrUndef(Value *Mask) { 4507 auto *ConstMask = dyn_cast<Constant>(Mask); 4508 if (!ConstMask) 4509 return false; 4510 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 4511 return true; 4512 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; 4513 ++I) { 4514 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 4515 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 4516 continue; 4517 return false; 4518 } 4519 return true; 4520 } 4521 4522 template <typename IterTy> 4523 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd, 4524 const SimplifyQuery &Q, unsigned MaxRecurse) { 4525 Intrinsic::ID IID = F->getIntrinsicID(); 4526 unsigned NumOperands = std::distance(ArgBegin, ArgEnd); 4527 4528 // Unary Ops 4529 if (NumOperands == 1) { 4530 // Perform idempotent optimizations 4531 if (IsIdempotent(IID)) { 4532 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) { 4533 if (II->getIntrinsicID() == IID) 4534 return II; 4535 } 4536 } 4537 4538 Value *IIOperand = *ArgBegin; 4539 Value *X; 4540 switch (IID) { 4541 case Intrinsic::fabs: { 4542 if (SignBitMustBeZero(IIOperand, Q.TLI)) 4543 return IIOperand; 4544 return nullptr; 4545 } 4546 case Intrinsic::bswap: { 4547 // bswap(bswap(x)) -> x 4548 if (match(IIOperand, m_BSwap(m_Value(X)))) 4549 return X; 4550 return nullptr; 4551 } 4552 case Intrinsic::bitreverse: { 4553 // bitreverse(bitreverse(x)) -> x 4554 if (match(IIOperand, m_BitReverse(m_Value(X)))) 4555 return X; 4556 return nullptr; 4557 } 4558 case Intrinsic::exp: { 4559 // exp(log(x)) -> x 4560 if (Q.CxtI->isFast() && 4561 match(IIOperand, m_Intrinsic<Intrinsic::log>(m_Value(X)))) 4562 return X; 4563 return nullptr; 4564 } 4565 case Intrinsic::exp2: { 4566 // exp2(log2(x)) -> x 4567 if (Q.CxtI->isFast() && 4568 match(IIOperand, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) 4569 return X; 4570 return nullptr; 4571 } 4572 case Intrinsic::log: { 4573 // log(exp(x)) -> x 4574 if (Q.CxtI->isFast() && 4575 match(IIOperand, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) 4576 return X; 4577 return nullptr; 4578 } 4579 case Intrinsic::log2: { 4580 // log2(exp2(x)) -> x 4581 if (Q.CxtI->isFast() && 4582 match(IIOperand, m_Intrinsic<Intrinsic::exp2>(m_Value(X)))) { 4583 return X; 4584 } 4585 return nullptr; 4586 } 4587 default: 4588 return nullptr; 4589 } 4590 } 4591 4592 // Binary Ops 4593 if (NumOperands == 2) { 4594 Value *LHS = *ArgBegin; 4595 Value *RHS = *(ArgBegin + 1); 4596 Type *ReturnType = F->getReturnType(); 4597 4598 switch (IID) { 4599 case Intrinsic::usub_with_overflow: 4600 case Intrinsic::ssub_with_overflow: { 4601 // X - X -> { 0, false } 4602 if (LHS == RHS) 4603 return Constant::getNullValue(ReturnType); 4604 4605 // X - undef -> undef 4606 // undef - X -> undef 4607 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 4608 return UndefValue::get(ReturnType); 4609 4610 return nullptr; 4611 } 4612 case Intrinsic::uadd_with_overflow: 4613 case Intrinsic::sadd_with_overflow: { 4614 // X + undef -> undef 4615 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 4616 return UndefValue::get(ReturnType); 4617 4618 return nullptr; 4619 } 4620 case Intrinsic::umul_with_overflow: 4621 case Intrinsic::smul_with_overflow: { 4622 // 0 * X -> { 0, false } 4623 // X * 0 -> { 0, false } 4624 if (match(LHS, m_Zero()) || match(RHS, m_Zero())) 4625 return Constant::getNullValue(ReturnType); 4626 4627 // undef * X -> { 0, false } 4628 // X * undef -> { 0, false } 4629 if (match(LHS, m_Undef()) || match(RHS, m_Undef())) 4630 return Constant::getNullValue(ReturnType); 4631 4632 return nullptr; 4633 } 4634 case Intrinsic::load_relative: { 4635 Constant *C0 = dyn_cast<Constant>(LHS); 4636 Constant *C1 = dyn_cast<Constant>(RHS); 4637 if (C0 && C1) 4638 return SimplifyRelativeLoad(C0, C1, Q.DL); 4639 return nullptr; 4640 } 4641 case Intrinsic::powi: 4642 if (ConstantInt *Power = dyn_cast<ConstantInt>(RHS)) { 4643 // powi(x, 0) -> 1.0 4644 if (Power->isZero()) 4645 return ConstantFP::get(LHS->getType(), 1.0); 4646 // powi(x, 1) -> x 4647 if (Power->isOne()) 4648 return LHS; 4649 } 4650 return nullptr; 4651 default: 4652 return nullptr; 4653 } 4654 } 4655 4656 // Simplify calls to llvm.masked.load.* 4657 switch (IID) { 4658 case Intrinsic::masked_load: { 4659 Value *MaskArg = ArgBegin[2]; 4660 Value *PassthruArg = ArgBegin[3]; 4661 // If the mask is all zeros or undef, the "passthru" argument is the result. 4662 if (maskIsAllZeroOrUndef(MaskArg)) 4663 return PassthruArg; 4664 return nullptr; 4665 } 4666 default: 4667 return nullptr; 4668 } 4669 } 4670 4671 template <typename IterTy> 4672 static Value *SimplifyCall(ImmutableCallSite CS, Value *V, IterTy ArgBegin, 4673 IterTy ArgEnd, const SimplifyQuery &Q, 4674 unsigned MaxRecurse) { 4675 Type *Ty = V->getType(); 4676 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 4677 Ty = PTy->getElementType(); 4678 FunctionType *FTy = cast<FunctionType>(Ty); 4679 4680 // call undef -> undef 4681 // call null -> undef 4682 if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V)) 4683 return UndefValue::get(FTy->getReturnType()); 4684 4685 Function *F = dyn_cast<Function>(V); 4686 if (!F) 4687 return nullptr; 4688 4689 if (F->isIntrinsic()) 4690 if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse)) 4691 return Ret; 4692 4693 if (!canConstantFoldCallTo(CS, F)) 4694 return nullptr; 4695 4696 SmallVector<Constant *, 4> ConstantArgs; 4697 ConstantArgs.reserve(ArgEnd - ArgBegin); 4698 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) { 4699 Constant *C = dyn_cast<Constant>(*I); 4700 if (!C) 4701 return nullptr; 4702 ConstantArgs.push_back(C); 4703 } 4704 4705 return ConstantFoldCall(CS, F, ConstantArgs, Q.TLI); 4706 } 4707 4708 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V, 4709 User::op_iterator ArgBegin, User::op_iterator ArgEnd, 4710 const SimplifyQuery &Q) { 4711 return ::SimplifyCall(CS, V, ArgBegin, ArgEnd, Q, RecursionLimit); 4712 } 4713 4714 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V, 4715 ArrayRef<Value *> Args, const SimplifyQuery &Q) { 4716 return ::SimplifyCall(CS, V, Args.begin(), Args.end(), Q, RecursionLimit); 4717 } 4718 4719 Value *llvm::SimplifyCall(ImmutableCallSite ICS, const SimplifyQuery &Q) { 4720 CallSite CS(const_cast<Instruction*>(ICS.getInstruction())); 4721 return ::SimplifyCall(CS, CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), 4722 Q, RecursionLimit); 4723 } 4724 4725 /// See if we can compute a simplified version of this instruction. 4726 /// If not, this returns null. 4727 4728 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 4729 OptimizationRemarkEmitter *ORE) { 4730 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 4731 Value *Result; 4732 4733 switch (I->getOpcode()) { 4734 default: 4735 Result = ConstantFoldInstruction(I, Q.DL, Q.TLI); 4736 break; 4737 case Instruction::FAdd: 4738 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 4739 I->getFastMathFlags(), Q); 4740 break; 4741 case Instruction::Add: 4742 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), 4743 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4744 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); 4745 break; 4746 case Instruction::FSub: 4747 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 4748 I->getFastMathFlags(), Q); 4749 break; 4750 case Instruction::Sub: 4751 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), 4752 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4753 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); 4754 break; 4755 case Instruction::FMul: 4756 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 4757 I->getFastMathFlags(), Q); 4758 break; 4759 case Instruction::Mul: 4760 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q); 4761 break; 4762 case Instruction::SDiv: 4763 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q); 4764 break; 4765 case Instruction::UDiv: 4766 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q); 4767 break; 4768 case Instruction::FDiv: 4769 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 4770 I->getFastMathFlags(), Q); 4771 break; 4772 case Instruction::SRem: 4773 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q); 4774 break; 4775 case Instruction::URem: 4776 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q); 4777 break; 4778 case Instruction::FRem: 4779 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 4780 I->getFastMathFlags(), Q); 4781 break; 4782 case Instruction::Shl: 4783 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), 4784 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4785 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); 4786 break; 4787 case Instruction::LShr: 4788 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 4789 cast<BinaryOperator>(I)->isExact(), Q); 4790 break; 4791 case Instruction::AShr: 4792 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 4793 cast<BinaryOperator>(I)->isExact(), Q); 4794 break; 4795 case Instruction::And: 4796 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q); 4797 break; 4798 case Instruction::Or: 4799 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q); 4800 break; 4801 case Instruction::Xor: 4802 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q); 4803 break; 4804 case Instruction::ICmp: 4805 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 4806 I->getOperand(0), I->getOperand(1), Q); 4807 break; 4808 case Instruction::FCmp: 4809 Result = 4810 SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0), 4811 I->getOperand(1), I->getFastMathFlags(), Q); 4812 break; 4813 case Instruction::Select: 4814 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 4815 I->getOperand(2), Q); 4816 break; 4817 case Instruction::GetElementPtr: { 4818 SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end()); 4819 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 4820 Ops, Q); 4821 break; 4822 } 4823 case Instruction::InsertValue: { 4824 InsertValueInst *IV = cast<InsertValueInst>(I); 4825 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 4826 IV->getInsertedValueOperand(), 4827 IV->getIndices(), Q); 4828 break; 4829 } 4830 case Instruction::InsertElement: { 4831 auto *IE = cast<InsertElementInst>(I); 4832 Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1), 4833 IE->getOperand(2), Q); 4834 break; 4835 } 4836 case Instruction::ExtractValue: { 4837 auto *EVI = cast<ExtractValueInst>(I); 4838 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 4839 EVI->getIndices(), Q); 4840 break; 4841 } 4842 case Instruction::ExtractElement: { 4843 auto *EEI = cast<ExtractElementInst>(I); 4844 Result = SimplifyExtractElementInst(EEI->getVectorOperand(), 4845 EEI->getIndexOperand(), Q); 4846 break; 4847 } 4848 case Instruction::ShuffleVector: { 4849 auto *SVI = cast<ShuffleVectorInst>(I); 4850 Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 4851 SVI->getMask(), SVI->getType(), Q); 4852 break; 4853 } 4854 case Instruction::PHI: 4855 Result = SimplifyPHINode(cast<PHINode>(I), Q); 4856 break; 4857 case Instruction::Call: { 4858 CallSite CS(cast<CallInst>(I)); 4859 Result = SimplifyCall(CS, Q); 4860 break; 4861 } 4862 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 4863 #include "llvm/IR/Instruction.def" 4864 #undef HANDLE_CAST_INST 4865 Result = 4866 SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q); 4867 break; 4868 case Instruction::Alloca: 4869 // No simplifications for Alloca and it can't be constant folded. 4870 Result = nullptr; 4871 break; 4872 } 4873 4874 // In general, it is possible for computeKnownBits to determine all bits in a 4875 // value even when the operands are not all constants. 4876 if (!Result && I->getType()->isIntOrIntVectorTy()) { 4877 KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE); 4878 if (Known.isConstant()) 4879 Result = ConstantInt::get(I->getType(), Known.getConstant()); 4880 } 4881 4882 /// If called on unreachable code, the above logic may report that the 4883 /// instruction simplified to itself. Make life easier for users by 4884 /// detecting that case here, returning a safe value instead. 4885 return Result == I ? UndefValue::get(I->getType()) : Result; 4886 } 4887 4888 /// \brief Implementation of recursive simplification through an instruction's 4889 /// uses. 4890 /// 4891 /// This is the common implementation of the recursive simplification routines. 4892 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 4893 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 4894 /// instructions to process and attempt to simplify it using 4895 /// InstructionSimplify. 4896 /// 4897 /// This routine returns 'true' only when *it* simplifies something. The passed 4898 /// in simplified value does not count toward this. 4899 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, 4900 const TargetLibraryInfo *TLI, 4901 const DominatorTree *DT, 4902 AssumptionCache *AC) { 4903 bool Simplified = false; 4904 SmallSetVector<Instruction *, 8> Worklist; 4905 const DataLayout &DL = I->getModule()->getDataLayout(); 4906 4907 // If we have an explicit value to collapse to, do that round of the 4908 // simplification loop by hand initially. 4909 if (SimpleV) { 4910 for (User *U : I->users()) 4911 if (U != I) 4912 Worklist.insert(cast<Instruction>(U)); 4913 4914 // Replace the instruction with its simplified value. 4915 I->replaceAllUsesWith(SimpleV); 4916 4917 // Gracefully handle edge cases where the instruction is not wired into any 4918 // parent block. 4919 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4920 !I->mayHaveSideEffects()) 4921 I->eraseFromParent(); 4922 } else { 4923 Worklist.insert(I); 4924 } 4925 4926 // Note that we must test the size on each iteration, the worklist can grow. 4927 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 4928 I = Worklist[Idx]; 4929 4930 // See if this instruction simplifies. 4931 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 4932 if (!SimpleV) 4933 continue; 4934 4935 Simplified = true; 4936 4937 // Stash away all the uses of the old instruction so we can check them for 4938 // recursive simplifications after a RAUW. This is cheaper than checking all 4939 // uses of To on the recursive step in most cases. 4940 for (User *U : I->users()) 4941 Worklist.insert(cast<Instruction>(U)); 4942 4943 // Replace the instruction with its simplified value. 4944 I->replaceAllUsesWith(SimpleV); 4945 4946 // Gracefully handle edge cases where the instruction is not wired into any 4947 // parent block. 4948 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4949 !I->mayHaveSideEffects()) 4950 I->eraseFromParent(); 4951 } 4952 return Simplified; 4953 } 4954 4955 bool llvm::recursivelySimplifyInstruction(Instruction *I, 4956 const TargetLibraryInfo *TLI, 4957 const DominatorTree *DT, 4958 AssumptionCache *AC) { 4959 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC); 4960 } 4961 4962 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, 4963 const TargetLibraryInfo *TLI, 4964 const DominatorTree *DT, 4965 AssumptionCache *AC) { 4966 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 4967 assert(SimpleV && "Must provide a simplified value."); 4968 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC); 4969 } 4970 4971 namespace llvm { 4972 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 4973 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 4974 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 4975 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 4976 auto *TLI = TLIWP ? &TLIWP->getTLI() : nullptr; 4977 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 4978 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 4979 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 4980 } 4981 4982 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 4983 const DataLayout &DL) { 4984 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 4985 } 4986 4987 template <class T, class... TArgs> 4988 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 4989 Function &F) { 4990 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 4991 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 4992 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 4993 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 4994 } 4995 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 4996 Function &); 4997 } 4998