1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements routines for folding instructions into simpler forms 10 // that do not require creating new instructions. This does constant folding 11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 14 // simplified: This is usually true and assuming it simplifies the logic (if 15 // they have not been simplified then results are correct but maybe suboptimal). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/CmpInstAnalysis.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/LoopAnalysisManager.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/IR/ConstantRange.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/GetElementPtrTypeIterator.h" 35 #include "llvm/IR/GlobalAlias.h" 36 #include "llvm/IR/InstrTypes.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/IR/PatternMatch.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/KnownBits.h" 42 #include <algorithm> 43 using namespace llvm; 44 using namespace llvm::PatternMatch; 45 46 #define DEBUG_TYPE "instsimplify" 47 48 enum { RecursionLimit = 3 }; 49 50 STATISTIC(NumExpand, "Number of expansions"); 51 STATISTIC(NumReassoc, "Number of reassociations"); 52 53 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 54 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); 55 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, 56 const SimplifyQuery &, unsigned); 57 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 58 unsigned); 59 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &, 60 const SimplifyQuery &, unsigned); 61 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 62 unsigned); 63 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 64 const SimplifyQuery &Q, unsigned MaxRecurse); 65 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 66 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 67 static Value *SimplifyCastInst(unsigned, Value *, Type *, 68 const SimplifyQuery &, unsigned); 69 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &, 70 unsigned); 71 72 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 73 Value *FalseVal) { 74 BinaryOperator::BinaryOps BinOpCode; 75 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 76 BinOpCode = BO->getOpcode(); 77 else 78 return nullptr; 79 80 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 81 if (BinOpCode == BinaryOperator::Or) { 82 ExpectedPred = ICmpInst::ICMP_NE; 83 } else if (BinOpCode == BinaryOperator::And) { 84 ExpectedPred = ICmpInst::ICMP_EQ; 85 } else 86 return nullptr; 87 88 // %A = icmp eq %TV, %FV 89 // %B = icmp eq %X, %Y (and one of these is a select operand) 90 // %C = and %A, %B 91 // %D = select %C, %TV, %FV 92 // --> 93 // %FV 94 95 // %A = icmp ne %TV, %FV 96 // %B = icmp ne %X, %Y (and one of these is a select operand) 97 // %C = or %A, %B 98 // %D = select %C, %TV, %FV 99 // --> 100 // %TV 101 Value *X, *Y; 102 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 103 m_Specific(FalseVal)), 104 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 105 Pred1 != Pred2 || Pred1 != ExpectedPred) 106 return nullptr; 107 108 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 109 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 110 111 return nullptr; 112 } 113 114 /// For a boolean type or a vector of boolean type, return false or a vector 115 /// with every element false. 116 static Constant *getFalse(Type *Ty) { 117 return ConstantInt::getFalse(Ty); 118 } 119 120 /// For a boolean type or a vector of boolean type, return true or a vector 121 /// with every element true. 122 static Constant *getTrue(Type *Ty) { 123 return ConstantInt::getTrue(Ty); 124 } 125 126 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 127 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 128 Value *RHS) { 129 CmpInst *Cmp = dyn_cast<CmpInst>(V); 130 if (!Cmp) 131 return false; 132 CmpInst::Predicate CPred = Cmp->getPredicate(); 133 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 134 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 135 return true; 136 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 137 CRHS == LHS; 138 } 139 140 /// Simplify comparison with true or false branch of select: 141 /// %sel = select i1 %cond, i32 %tv, i32 %fv 142 /// %cmp = icmp sle i32 %sel, %rhs 143 /// Compose new comparison by substituting %sel with either %tv or %fv 144 /// and see if it simplifies. 145 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS, 146 Value *RHS, Value *Cond, 147 const SimplifyQuery &Q, unsigned MaxRecurse, 148 Constant *TrueOrFalse) { 149 Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse); 150 if (SimplifiedCmp == Cond) { 151 // %cmp simplified to the select condition (%cond). 152 return TrueOrFalse; 153 } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) { 154 // It didn't simplify. However, if composed comparison is equivalent 155 // to the select condition (%cond) then we can replace it. 156 return TrueOrFalse; 157 } 158 return SimplifiedCmp; 159 } 160 161 /// Simplify comparison with true branch of select 162 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS, 163 Value *RHS, Value *Cond, 164 const SimplifyQuery &Q, 165 unsigned MaxRecurse) { 166 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 167 getTrue(Cond->getType())); 168 } 169 170 /// Simplify comparison with false branch of select 171 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS, 172 Value *RHS, Value *Cond, 173 const SimplifyQuery &Q, 174 unsigned MaxRecurse) { 175 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 176 getFalse(Cond->getType())); 177 } 178 179 /// We know comparison with both branches of select can be simplified, but they 180 /// are not equal. This routine handles some logical simplifications. 181 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, 182 Value *Cond, 183 const SimplifyQuery &Q, 184 unsigned MaxRecurse) { 185 // If the false value simplified to false, then the result of the compare 186 // is equal to "Cond && TCmp". This also catches the case when the false 187 // value simplified to false and the true value to true, returning "Cond". 188 if (match(FCmp, m_Zero())) 189 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 190 return V; 191 // If the true value simplified to true, then the result of the compare 192 // is equal to "Cond || FCmp". 193 if (match(TCmp, m_One())) 194 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 195 return V; 196 // Finally, if the false value simplified to true and the true value to 197 // false, then the result of the compare is equal to "!Cond". 198 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 199 if (Value *V = SimplifyXorInst( 200 Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse)) 201 return V; 202 return nullptr; 203 } 204 205 /// Does the given value dominate the specified phi node? 206 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 207 Instruction *I = dyn_cast<Instruction>(V); 208 if (!I) 209 // Arguments and constants dominate all instructions. 210 return true; 211 212 // If we are processing instructions (and/or basic blocks) that have not been 213 // fully added to a function, the parent nodes may still be null. Simply 214 // return the conservative answer in these cases. 215 if (!I->getParent() || !P->getParent() || !I->getFunction()) 216 return false; 217 218 // If we have a DominatorTree then do a precise test. 219 if (DT) 220 return DT->dominates(I, P); 221 222 // Otherwise, if the instruction is in the entry block and is not an invoke, 223 // then it obviously dominates all phi nodes. 224 if (I->getParent() == &I->getFunction()->getEntryBlock() && 225 !isa<InvokeInst>(I) && !isa<CallBrInst>(I)) 226 return true; 227 228 return false; 229 } 230 231 /// Try to simplify a binary operator of form "V op OtherOp" where V is 232 /// "(B0 opex B1)" by distributing 'op' across 'opex' as 233 /// "(B0 op OtherOp) opex (B1 op OtherOp)". 234 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V, 235 Value *OtherOp, Instruction::BinaryOps OpcodeToExpand, 236 const SimplifyQuery &Q, unsigned MaxRecurse) { 237 auto *B = dyn_cast<BinaryOperator>(V); 238 if (!B || B->getOpcode() != OpcodeToExpand) 239 return nullptr; 240 Value *B0 = B->getOperand(0), *B1 = B->getOperand(1); 241 Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q, MaxRecurse); 242 if (!L) 243 return nullptr; 244 Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q, MaxRecurse); 245 if (!R) 246 return nullptr; 247 248 // Does the expanded pair of binops simplify to the existing binop? 249 if ((L == B0 && R == B1) || 250 (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) { 251 ++NumExpand; 252 return B; 253 } 254 255 // Otherwise, return "L op' R" if it simplifies. 256 Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse); 257 if (!S) 258 return nullptr; 259 260 ++NumExpand; 261 return S; 262 } 263 264 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by 265 /// distributing op over op'. 266 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode, 267 Value *L, Value *R, 268 Instruction::BinaryOps OpcodeToExpand, 269 const SimplifyQuery &Q, 270 unsigned MaxRecurse) { 271 // Recursion is always used, so bail out at once if we already hit the limit. 272 if (!MaxRecurse--) 273 return nullptr; 274 275 if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse)) 276 return V; 277 if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse)) 278 return V; 279 return nullptr; 280 } 281 282 /// Generic simplifications for associative binary operations. 283 /// Returns the simpler value, or null if none was found. 284 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 285 Value *LHS, Value *RHS, 286 const SimplifyQuery &Q, 287 unsigned MaxRecurse) { 288 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 289 290 // Recursion is always used, so bail out at once if we already hit the limit. 291 if (!MaxRecurse--) 292 return nullptr; 293 294 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 295 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 296 297 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 298 if (Op0 && Op0->getOpcode() == Opcode) { 299 Value *A = Op0->getOperand(0); 300 Value *B = Op0->getOperand(1); 301 Value *C = RHS; 302 303 // Does "B op C" simplify? 304 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 305 // It does! Return "A op V" if it simplifies or is already available. 306 // If V equals B then "A op V" is just the LHS. 307 if (V == B) return LHS; 308 // Otherwise return "A op V" if it simplifies. 309 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 310 ++NumReassoc; 311 return W; 312 } 313 } 314 } 315 316 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 317 if (Op1 && Op1->getOpcode() == Opcode) { 318 Value *A = LHS; 319 Value *B = Op1->getOperand(0); 320 Value *C = Op1->getOperand(1); 321 322 // Does "A op B" simplify? 323 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 324 // It does! Return "V op C" if it simplifies or is already available. 325 // If V equals B then "V op C" is just the RHS. 326 if (V == B) return RHS; 327 // Otherwise return "V op C" if it simplifies. 328 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 329 ++NumReassoc; 330 return W; 331 } 332 } 333 } 334 335 // The remaining transforms require commutativity as well as associativity. 336 if (!Instruction::isCommutative(Opcode)) 337 return nullptr; 338 339 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 340 if (Op0 && Op0->getOpcode() == Opcode) { 341 Value *A = Op0->getOperand(0); 342 Value *B = Op0->getOperand(1); 343 Value *C = RHS; 344 345 // Does "C op A" simplify? 346 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 347 // It does! Return "V op B" if it simplifies or is already available. 348 // If V equals A then "V op B" is just the LHS. 349 if (V == A) return LHS; 350 // Otherwise return "V op B" if it simplifies. 351 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 352 ++NumReassoc; 353 return W; 354 } 355 } 356 } 357 358 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 359 if (Op1 && Op1->getOpcode() == Opcode) { 360 Value *A = LHS; 361 Value *B = Op1->getOperand(0); 362 Value *C = Op1->getOperand(1); 363 364 // Does "C op A" simplify? 365 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 366 // It does! Return "B op V" if it simplifies or is already available. 367 // If V equals C then "B op V" is just the RHS. 368 if (V == C) return RHS; 369 // Otherwise return "B op V" if it simplifies. 370 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 371 ++NumReassoc; 372 return W; 373 } 374 } 375 } 376 377 return nullptr; 378 } 379 380 /// In the case of a binary operation with a select instruction as an operand, 381 /// try to simplify the binop by seeing whether evaluating it on both branches 382 /// of the select results in the same value. Returns the common value if so, 383 /// otherwise returns null. 384 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 385 Value *RHS, const SimplifyQuery &Q, 386 unsigned MaxRecurse) { 387 // Recursion is always used, so bail out at once if we already hit the limit. 388 if (!MaxRecurse--) 389 return nullptr; 390 391 SelectInst *SI; 392 if (isa<SelectInst>(LHS)) { 393 SI = cast<SelectInst>(LHS); 394 } else { 395 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 396 SI = cast<SelectInst>(RHS); 397 } 398 399 // Evaluate the BinOp on the true and false branches of the select. 400 Value *TV; 401 Value *FV; 402 if (SI == LHS) { 403 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 404 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 405 } else { 406 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 407 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 408 } 409 410 // If they simplified to the same value, then return the common value. 411 // If they both failed to simplify then return null. 412 if (TV == FV) 413 return TV; 414 415 // If one branch simplified to undef, return the other one. 416 if (TV && isa<UndefValue>(TV)) 417 return FV; 418 if (FV && isa<UndefValue>(FV)) 419 return TV; 420 421 // If applying the operation did not change the true and false select values, 422 // then the result of the binop is the select itself. 423 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 424 return SI; 425 426 // If one branch simplified and the other did not, and the simplified 427 // value is equal to the unsimplified one, return the simplified value. 428 // For example, select (cond, X, X & Z) & Z -> X & Z. 429 if ((FV && !TV) || (TV && !FV)) { 430 // Check that the simplified value has the form "X op Y" where "op" is the 431 // same as the original operation. 432 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 433 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 434 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 435 // We already know that "op" is the same as for the simplified value. See 436 // if the operands match too. If so, return the simplified value. 437 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 438 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 439 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 440 if (Simplified->getOperand(0) == UnsimplifiedLHS && 441 Simplified->getOperand(1) == UnsimplifiedRHS) 442 return Simplified; 443 if (Simplified->isCommutative() && 444 Simplified->getOperand(1) == UnsimplifiedLHS && 445 Simplified->getOperand(0) == UnsimplifiedRHS) 446 return Simplified; 447 } 448 } 449 450 return nullptr; 451 } 452 453 /// In the case of a comparison with a select instruction, try to simplify the 454 /// comparison by seeing whether both branches of the select result in the same 455 /// value. Returns the common value if so, otherwise returns null. 456 /// For example, if we have: 457 /// %tmp = select i1 %cmp, i32 1, i32 2 458 /// %cmp1 = icmp sle i32 %tmp, 3 459 /// We can simplify %cmp1 to true, because both branches of select are 460 /// less than 3. We compose new comparison by substituting %tmp with both 461 /// branches of select and see if it can be simplified. 462 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 463 Value *RHS, const SimplifyQuery &Q, 464 unsigned MaxRecurse) { 465 // Recursion is always used, so bail out at once if we already hit the limit. 466 if (!MaxRecurse--) 467 return nullptr; 468 469 // Make sure the select is on the LHS. 470 if (!isa<SelectInst>(LHS)) { 471 std::swap(LHS, RHS); 472 Pred = CmpInst::getSwappedPredicate(Pred); 473 } 474 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 475 SelectInst *SI = cast<SelectInst>(LHS); 476 Value *Cond = SI->getCondition(); 477 Value *TV = SI->getTrueValue(); 478 Value *FV = SI->getFalseValue(); 479 480 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 481 // Does "cmp TV, RHS" simplify? 482 Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse); 483 if (!TCmp) 484 return nullptr; 485 486 // Does "cmp FV, RHS" simplify? 487 Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse); 488 if (!FCmp) 489 return nullptr; 490 491 // If both sides simplified to the same value, then use it as the result of 492 // the original comparison. 493 if (TCmp == FCmp) 494 return TCmp; 495 496 // The remaining cases only make sense if the select condition has the same 497 // type as the result of the comparison, so bail out if this is not so. 498 if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy()) 499 return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse); 500 501 return nullptr; 502 } 503 504 /// In the case of a binary operation with an operand that is a PHI instruction, 505 /// try to simplify the binop by seeing whether evaluating it on the incoming 506 /// phi values yields the same result for every value. If so returns the common 507 /// value, otherwise returns null. 508 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 509 Value *RHS, const SimplifyQuery &Q, 510 unsigned MaxRecurse) { 511 // Recursion is always used, so bail out at once if we already hit the limit. 512 if (!MaxRecurse--) 513 return nullptr; 514 515 PHINode *PI; 516 if (isa<PHINode>(LHS)) { 517 PI = cast<PHINode>(LHS); 518 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 519 if (!valueDominatesPHI(RHS, PI, Q.DT)) 520 return nullptr; 521 } else { 522 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 523 PI = cast<PHINode>(RHS); 524 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 525 if (!valueDominatesPHI(LHS, PI, Q.DT)) 526 return nullptr; 527 } 528 529 // Evaluate the BinOp on the incoming phi values. 530 Value *CommonValue = nullptr; 531 for (Value *Incoming : PI->incoming_values()) { 532 // If the incoming value is the phi node itself, it can safely be skipped. 533 if (Incoming == PI) continue; 534 Value *V = PI == LHS ? 535 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 536 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 537 // If the operation failed to simplify, or simplified to a different value 538 // to previously, then give up. 539 if (!V || (CommonValue && V != CommonValue)) 540 return nullptr; 541 CommonValue = V; 542 } 543 544 return CommonValue; 545 } 546 547 /// In the case of a comparison with a PHI instruction, try to simplify the 548 /// comparison by seeing whether comparing with all of the incoming phi values 549 /// yields the same result every time. If so returns the common result, 550 /// otherwise returns null. 551 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 552 const SimplifyQuery &Q, unsigned MaxRecurse) { 553 // Recursion is always used, so bail out at once if we already hit the limit. 554 if (!MaxRecurse--) 555 return nullptr; 556 557 // Make sure the phi is on the LHS. 558 if (!isa<PHINode>(LHS)) { 559 std::swap(LHS, RHS); 560 Pred = CmpInst::getSwappedPredicate(Pred); 561 } 562 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 563 PHINode *PI = cast<PHINode>(LHS); 564 565 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 566 if (!valueDominatesPHI(RHS, PI, Q.DT)) 567 return nullptr; 568 569 // Evaluate the BinOp on the incoming phi values. 570 Value *CommonValue = nullptr; 571 for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) { 572 Value *Incoming = PI->getIncomingValue(u); 573 Instruction *InTI = PI->getIncomingBlock(u)->getTerminator(); 574 // If the incoming value is the phi node itself, it can safely be skipped. 575 if (Incoming == PI) continue; 576 // Change the context instruction to the "edge" that flows into the phi. 577 // This is important because that is where incoming is actually "evaluated" 578 // even though it is used later somewhere else. 579 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI), 580 MaxRecurse); 581 // If the operation failed to simplify, or simplified to a different value 582 // to previously, then give up. 583 if (!V || (CommonValue && V != CommonValue)) 584 return nullptr; 585 CommonValue = V; 586 } 587 588 return CommonValue; 589 } 590 591 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 592 Value *&Op0, Value *&Op1, 593 const SimplifyQuery &Q) { 594 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 595 if (auto *CRHS = dyn_cast<Constant>(Op1)) 596 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 597 598 // Canonicalize the constant to the RHS if this is a commutative operation. 599 if (Instruction::isCommutative(Opcode)) 600 std::swap(Op0, Op1); 601 } 602 return nullptr; 603 } 604 605 /// Given operands for an Add, see if we can fold the result. 606 /// If not, this returns null. 607 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 608 const SimplifyQuery &Q, unsigned MaxRecurse) { 609 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 610 return C; 611 612 // X + undef -> undef 613 if (match(Op1, m_Undef())) 614 return Op1; 615 616 // X + 0 -> X 617 if (match(Op1, m_Zero())) 618 return Op0; 619 620 // If two operands are negative, return 0. 621 if (isKnownNegation(Op0, Op1)) 622 return Constant::getNullValue(Op0->getType()); 623 624 // X + (Y - X) -> Y 625 // (Y - X) + X -> Y 626 // Eg: X + -X -> 0 627 Value *Y = nullptr; 628 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 629 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 630 return Y; 631 632 // X + ~X -> -1 since ~X = -X-1 633 Type *Ty = Op0->getType(); 634 if (match(Op0, m_Not(m_Specific(Op1))) || 635 match(Op1, m_Not(m_Specific(Op0)))) 636 return Constant::getAllOnesValue(Ty); 637 638 // add nsw/nuw (xor Y, signmask), signmask --> Y 639 // The no-wrapping add guarantees that the top bit will be set by the add. 640 // Therefore, the xor must be clearing the already set sign bit of Y. 641 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 642 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 643 return Y; 644 645 // add nuw %x, -1 -> -1, because %x can only be 0. 646 if (IsNUW && match(Op1, m_AllOnes())) 647 return Op1; // Which is -1. 648 649 /// i1 add -> xor. 650 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 651 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 652 return V; 653 654 // Try some generic simplifications for associative operations. 655 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 656 MaxRecurse)) 657 return V; 658 659 // Threading Add over selects and phi nodes is pointless, so don't bother. 660 // Threading over the select in "A + select(cond, B, C)" means evaluating 661 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 662 // only if B and C are equal. If B and C are equal then (since we assume 663 // that operands have already been simplified) "select(cond, B, C)" should 664 // have been simplified to the common value of B and C already. Analysing 665 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 666 // for threading over phi nodes. 667 668 return nullptr; 669 } 670 671 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 672 const SimplifyQuery &Query) { 673 return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 674 } 675 676 /// Compute the base pointer and cumulative constant offsets for V. 677 /// 678 /// This strips all constant offsets off of V, leaving it the base pointer, and 679 /// accumulates the total constant offset applied in the returned constant. It 680 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 681 /// no constant offsets applied. 682 /// 683 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 684 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 685 /// folding. 686 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 687 bool AllowNonInbounds = false) { 688 assert(V->getType()->isPtrOrPtrVectorTy()); 689 690 Type *IntIdxTy = DL.getIndexType(V->getType())->getScalarType(); 691 APInt Offset = APInt::getNullValue(IntIdxTy->getIntegerBitWidth()); 692 693 V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds); 694 // As that strip may trace through `addrspacecast`, need to sext or trunc 695 // the offset calculated. 696 IntIdxTy = DL.getIndexType(V->getType())->getScalarType(); 697 Offset = Offset.sextOrTrunc(IntIdxTy->getIntegerBitWidth()); 698 699 Constant *OffsetIntPtr = ConstantInt::get(IntIdxTy, Offset); 700 if (VectorType *VecTy = dyn_cast<VectorType>(V->getType())) 701 return ConstantVector::getSplat(VecTy->getElementCount(), OffsetIntPtr); 702 return OffsetIntPtr; 703 } 704 705 /// Compute the constant difference between two pointer values. 706 /// If the difference is not a constant, returns zero. 707 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 708 Value *RHS) { 709 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 710 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 711 712 // If LHS and RHS are not related via constant offsets to the same base 713 // value, there is nothing we can do here. 714 if (LHS != RHS) 715 return nullptr; 716 717 // Otherwise, the difference of LHS - RHS can be computed as: 718 // LHS - RHS 719 // = (LHSOffset + Base) - (RHSOffset + Base) 720 // = LHSOffset - RHSOffset 721 return ConstantExpr::getSub(LHSOffset, RHSOffset); 722 } 723 724 /// Given operands for a Sub, see if we can fold the result. 725 /// If not, this returns null. 726 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 727 const SimplifyQuery &Q, unsigned MaxRecurse) { 728 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 729 return C; 730 731 // X - undef -> undef 732 // undef - X -> undef 733 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 734 return UndefValue::get(Op0->getType()); 735 736 // X - 0 -> X 737 if (match(Op1, m_Zero())) 738 return Op0; 739 740 // X - X -> 0 741 if (Op0 == Op1) 742 return Constant::getNullValue(Op0->getType()); 743 744 // Is this a negation? 745 if (match(Op0, m_Zero())) { 746 // 0 - X -> 0 if the sub is NUW. 747 if (isNUW) 748 return Constant::getNullValue(Op0->getType()); 749 750 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 751 if (Known.Zero.isMaxSignedValue()) { 752 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 753 // Op1 must be 0 because negating the minimum signed value is undefined. 754 if (isNSW) 755 return Constant::getNullValue(Op0->getType()); 756 757 // 0 - X -> X if X is 0 or the minimum signed value. 758 return Op1; 759 } 760 } 761 762 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 763 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 764 Value *X = nullptr, *Y = nullptr, *Z = Op1; 765 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 766 // See if "V === Y - Z" simplifies. 767 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 768 // It does! Now see if "X + V" simplifies. 769 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 770 // It does, we successfully reassociated! 771 ++NumReassoc; 772 return W; 773 } 774 // See if "V === X - Z" simplifies. 775 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 776 // It does! Now see if "Y + V" simplifies. 777 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 778 // It does, we successfully reassociated! 779 ++NumReassoc; 780 return W; 781 } 782 } 783 784 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 785 // For example, X - (X + 1) -> -1 786 X = Op0; 787 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 788 // See if "V === X - Y" simplifies. 789 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 790 // It does! Now see if "V - Z" simplifies. 791 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 792 // It does, we successfully reassociated! 793 ++NumReassoc; 794 return W; 795 } 796 // See if "V === X - Z" simplifies. 797 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 798 // It does! Now see if "V - Y" simplifies. 799 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 800 // It does, we successfully reassociated! 801 ++NumReassoc; 802 return W; 803 } 804 } 805 806 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 807 // For example, X - (X - Y) -> Y. 808 Z = Op0; 809 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 810 // See if "V === Z - X" simplifies. 811 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 812 // It does! Now see if "V + Y" simplifies. 813 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 814 // It does, we successfully reassociated! 815 ++NumReassoc; 816 return W; 817 } 818 819 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 820 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 821 match(Op1, m_Trunc(m_Value(Y)))) 822 if (X->getType() == Y->getType()) 823 // See if "V === X - Y" simplifies. 824 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 825 // It does! Now see if "trunc V" simplifies. 826 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 827 Q, MaxRecurse - 1)) 828 // It does, return the simplified "trunc V". 829 return W; 830 831 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 832 if (match(Op0, m_PtrToInt(m_Value(X))) && 833 match(Op1, m_PtrToInt(m_Value(Y)))) 834 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 835 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 836 837 // i1 sub -> xor. 838 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 839 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 840 return V; 841 842 // Threading Sub over selects and phi nodes is pointless, so don't bother. 843 // Threading over the select in "A - select(cond, B, C)" means evaluating 844 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 845 // only if B and C are equal. If B and C are equal then (since we assume 846 // that operands have already been simplified) "select(cond, B, C)" should 847 // have been simplified to the common value of B and C already. Analysing 848 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 849 // for threading over phi nodes. 850 851 return nullptr; 852 } 853 854 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 855 const SimplifyQuery &Q) { 856 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 857 } 858 859 /// Given operands for a Mul, see if we can fold the result. 860 /// If not, this returns null. 861 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 862 unsigned MaxRecurse) { 863 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 864 return C; 865 866 // X * undef -> 0 867 // X * 0 -> 0 868 if (match(Op1, m_CombineOr(m_Undef(), m_Zero()))) 869 return Constant::getNullValue(Op0->getType()); 870 871 // X * 1 -> X 872 if (match(Op1, m_One())) 873 return Op0; 874 875 // (X / Y) * Y -> X if the division is exact. 876 Value *X = nullptr; 877 if (Q.IIQ.UseInstrInfo && 878 (match(Op0, 879 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 880 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 881 return X; 882 883 // i1 mul -> and. 884 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 885 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 886 return V; 887 888 // Try some generic simplifications for associative operations. 889 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 890 MaxRecurse)) 891 return V; 892 893 // Mul distributes over Add. Try some generic simplifications based on this. 894 if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1, 895 Instruction::Add, Q, MaxRecurse)) 896 return V; 897 898 // If the operation is with the result of a select instruction, check whether 899 // operating on either branch of the select always yields the same value. 900 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 901 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 902 MaxRecurse)) 903 return V; 904 905 // If the operation is with the result of a phi instruction, check whether 906 // operating on all incoming values of the phi always yields the same value. 907 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 908 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 909 MaxRecurse)) 910 return V; 911 912 return nullptr; 913 } 914 915 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 916 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 917 } 918 919 /// Check for common or similar folds of integer division or integer remainder. 920 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 921 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) { 922 Type *Ty = Op0->getType(); 923 924 // X / undef -> undef 925 // X % undef -> undef 926 if (match(Op1, m_Undef())) 927 return Op1; 928 929 // X / 0 -> undef 930 // X % 0 -> undef 931 // We don't need to preserve faults! 932 if (match(Op1, m_Zero())) 933 return UndefValue::get(Ty); 934 935 // If any element of a constant divisor fixed width vector is zero or undef, 936 // the whole op is undef. 937 auto *Op1C = dyn_cast<Constant>(Op1); 938 auto *VTy = dyn_cast<FixedVectorType>(Ty); 939 if (Op1C && VTy) { 940 unsigned NumElts = VTy->getNumElements(); 941 for (unsigned i = 0; i != NumElts; ++i) { 942 Constant *Elt = Op1C->getAggregateElement(i); 943 if (Elt && (Elt->isNullValue() || isa<UndefValue>(Elt))) 944 return UndefValue::get(Ty); 945 } 946 } 947 948 // undef / X -> 0 949 // undef % X -> 0 950 if (match(Op0, m_Undef())) 951 return Constant::getNullValue(Ty); 952 953 // 0 / X -> 0 954 // 0 % X -> 0 955 if (match(Op0, m_Zero())) 956 return Constant::getNullValue(Op0->getType()); 957 958 // X / X -> 1 959 // X % X -> 0 960 if (Op0 == Op1) 961 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 962 963 // X / 1 -> X 964 // X % 1 -> 0 965 // If this is a boolean op (single-bit element type), we can't have 966 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 967 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. 968 Value *X; 969 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || 970 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 971 return IsDiv ? Op0 : Constant::getNullValue(Ty); 972 973 return nullptr; 974 } 975 976 /// Given a predicate and two operands, return true if the comparison is true. 977 /// This is a helper for div/rem simplification where we return some other value 978 /// when we can prove a relationship between the operands. 979 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 980 const SimplifyQuery &Q, unsigned MaxRecurse) { 981 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 982 Constant *C = dyn_cast_or_null<Constant>(V); 983 return (C && C->isAllOnesValue()); 984 } 985 986 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 987 /// to simplify X % Y to X. 988 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 989 unsigned MaxRecurse, bool IsSigned) { 990 // Recursion is always used, so bail out at once if we already hit the limit. 991 if (!MaxRecurse--) 992 return false; 993 994 if (IsSigned) { 995 // |X| / |Y| --> 0 996 // 997 // We require that 1 operand is a simple constant. That could be extended to 998 // 2 variables if we computed the sign bit for each. 999 // 1000 // Make sure that a constant is not the minimum signed value because taking 1001 // the abs() of that is undefined. 1002 Type *Ty = X->getType(); 1003 const APInt *C; 1004 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 1005 // Is the variable divisor magnitude always greater than the constant 1006 // dividend magnitude? 1007 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 1008 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 1009 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 1010 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 1011 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 1012 return true; 1013 } 1014 if (match(Y, m_APInt(C))) { 1015 // Special-case: we can't take the abs() of a minimum signed value. If 1016 // that's the divisor, then all we have to do is prove that the dividend 1017 // is also not the minimum signed value. 1018 if (C->isMinSignedValue()) 1019 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 1020 1021 // Is the variable dividend magnitude always less than the constant 1022 // divisor magnitude? 1023 // |X| < |C| --> X > -abs(C) and X < abs(C) 1024 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 1025 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 1026 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 1027 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 1028 return true; 1029 } 1030 return false; 1031 } 1032 1033 // IsSigned == false. 1034 // Is the dividend unsigned less than the divisor? 1035 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1036 } 1037 1038 /// These are simplifications common to SDiv and UDiv. 1039 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1040 const SimplifyQuery &Q, unsigned MaxRecurse) { 1041 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1042 return C; 1043 1044 if (Value *V = simplifyDivRem(Op0, Op1, true)) 1045 return V; 1046 1047 bool IsSigned = Opcode == Instruction::SDiv; 1048 1049 // (X * Y) / Y -> X if the multiplication does not overflow. 1050 Value *X; 1051 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1052 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1053 // If the Mul does not overflow, then we are good to go. 1054 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 1055 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul))) 1056 return X; 1057 // If X has the form X = A / Y, then X * Y cannot overflow. 1058 if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1059 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) 1060 return X; 1061 } 1062 1063 // (X rem Y) / Y -> 0 1064 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1065 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1066 return Constant::getNullValue(Op0->getType()); 1067 1068 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1069 ConstantInt *C1, *C2; 1070 if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1071 match(Op1, m_ConstantInt(C2))) { 1072 bool Overflow; 1073 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1074 if (Overflow) 1075 return Constant::getNullValue(Op0->getType()); 1076 } 1077 1078 // If the operation is with the result of a select instruction, check whether 1079 // operating on either branch of the select always yields the same value. 1080 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1081 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1082 return V; 1083 1084 // If the operation is with the result of a phi instruction, check whether 1085 // operating on all incoming values of the phi always yields the same value. 1086 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1087 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1088 return V; 1089 1090 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1091 return Constant::getNullValue(Op0->getType()); 1092 1093 return nullptr; 1094 } 1095 1096 /// These are simplifications common to SRem and URem. 1097 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1098 const SimplifyQuery &Q, unsigned MaxRecurse) { 1099 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1100 return C; 1101 1102 if (Value *V = simplifyDivRem(Op0, Op1, false)) 1103 return V; 1104 1105 // (X % Y) % Y -> X % Y 1106 if ((Opcode == Instruction::SRem && 1107 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1108 (Opcode == Instruction::URem && 1109 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1110 return Op0; 1111 1112 // (X << Y) % X -> 0 1113 if (Q.IIQ.UseInstrInfo && 1114 ((Opcode == Instruction::SRem && 1115 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1116 (Opcode == Instruction::URem && 1117 match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) 1118 return Constant::getNullValue(Op0->getType()); 1119 1120 // If the operation is with the result of a select instruction, check whether 1121 // operating on either branch of the select always yields the same value. 1122 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1123 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1124 return V; 1125 1126 // If the operation is with the result of a phi instruction, check whether 1127 // operating on all incoming values of the phi always yields the same value. 1128 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1129 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1130 return V; 1131 1132 // If X / Y == 0, then X % Y == X. 1133 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1134 return Op0; 1135 1136 return nullptr; 1137 } 1138 1139 /// Given operands for an SDiv, see if we can fold the result. 1140 /// If not, this returns null. 1141 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1142 unsigned MaxRecurse) { 1143 // If two operands are negated and no signed overflow, return -1. 1144 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1145 return Constant::getAllOnesValue(Op0->getType()); 1146 1147 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1148 } 1149 1150 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1151 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1152 } 1153 1154 /// Given operands for a UDiv, see if we can fold the result. 1155 /// If not, this returns null. 1156 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1157 unsigned MaxRecurse) { 1158 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1159 } 1160 1161 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1162 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1163 } 1164 1165 /// Given operands for an SRem, see if we can fold the result. 1166 /// If not, this returns null. 1167 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1168 unsigned MaxRecurse) { 1169 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1170 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1171 Value *X; 1172 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1173 return ConstantInt::getNullValue(Op0->getType()); 1174 1175 // If the two operands are negated, return 0. 1176 if (isKnownNegation(Op0, Op1)) 1177 return ConstantInt::getNullValue(Op0->getType()); 1178 1179 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1180 } 1181 1182 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1183 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1184 } 1185 1186 /// Given operands for a URem, see if we can fold the result. 1187 /// If not, this returns null. 1188 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1189 unsigned MaxRecurse) { 1190 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1191 } 1192 1193 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1194 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1195 } 1196 1197 /// Returns true if a shift by \c Amount always yields undef. 1198 static bool isUndefShift(Value *Amount) { 1199 Constant *C = dyn_cast<Constant>(Amount); 1200 if (!C) 1201 return false; 1202 1203 // X shift by undef -> undef because it may shift by the bitwidth. 1204 if (isa<UndefValue>(C)) 1205 return true; 1206 1207 // Shifting by the bitwidth or more is undefined. 1208 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1209 if (CI->getValue().getLimitedValue() >= 1210 CI->getType()->getScalarSizeInBits()) 1211 return true; 1212 1213 // If all lanes of a vector shift are undefined the whole shift is. 1214 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1215 for (unsigned I = 0, 1216 E = cast<FixedVectorType>(C->getType())->getNumElements(); 1217 I != E; ++I) 1218 if (!isUndefShift(C->getAggregateElement(I))) 1219 return false; 1220 return true; 1221 } 1222 1223 return false; 1224 } 1225 1226 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1227 /// If not, this returns null. 1228 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1229 Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { 1230 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1231 return C; 1232 1233 // 0 shift by X -> 0 1234 if (match(Op0, m_Zero())) 1235 return Constant::getNullValue(Op0->getType()); 1236 1237 // X shift by 0 -> X 1238 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1239 // would be poison. 1240 Value *X; 1241 if (match(Op1, m_Zero()) || 1242 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1243 return Op0; 1244 1245 // Fold undefined shifts. 1246 if (isUndefShift(Op1)) 1247 return UndefValue::get(Op0->getType()); 1248 1249 // If the operation is with the result of a select instruction, check whether 1250 // operating on either branch of the select always yields the same value. 1251 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1252 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1253 return V; 1254 1255 // If the operation is with the result of a phi instruction, check whether 1256 // operating on all incoming values of the phi always yields the same value. 1257 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1258 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1259 return V; 1260 1261 // If any bits in the shift amount make that value greater than or equal to 1262 // the number of bits in the type, the shift is undefined. 1263 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1264 if (Known.One.getLimitedValue() >= Known.getBitWidth()) 1265 return UndefValue::get(Op0->getType()); 1266 1267 // If all valid bits in the shift amount are known zero, the first operand is 1268 // unchanged. 1269 unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth()); 1270 if (Known.countMinTrailingZeros() >= NumValidShiftBits) 1271 return Op0; 1272 1273 return nullptr; 1274 } 1275 1276 /// Given operands for an Shl, LShr or AShr, see if we can 1277 /// fold the result. If not, this returns null. 1278 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1279 Value *Op1, bool isExact, const SimplifyQuery &Q, 1280 unsigned MaxRecurse) { 1281 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1282 return V; 1283 1284 // X >> X -> 0 1285 if (Op0 == Op1) 1286 return Constant::getNullValue(Op0->getType()); 1287 1288 // undef >> X -> 0 1289 // undef >> X -> undef (if it's exact) 1290 if (match(Op0, m_Undef())) 1291 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1292 1293 // The low bit cannot be shifted out of an exact shift if it is set. 1294 if (isExact) { 1295 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1296 if (Op0Known.One[0]) 1297 return Op0; 1298 } 1299 1300 return nullptr; 1301 } 1302 1303 /// Given operands for an Shl, see if we can fold the result. 1304 /// If not, this returns null. 1305 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1306 const SimplifyQuery &Q, unsigned MaxRecurse) { 1307 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1308 return V; 1309 1310 // undef << X -> 0 1311 // undef << X -> undef if (if it's NSW/NUW) 1312 if (match(Op0, m_Undef())) 1313 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1314 1315 // (X >> A) << A -> X 1316 Value *X; 1317 if (Q.IIQ.UseInstrInfo && 1318 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1319 return X; 1320 1321 // shl nuw i8 C, %x -> C iff C has sign bit set. 1322 if (isNUW && match(Op0, m_Negative())) 1323 return Op0; 1324 // NOTE: could use computeKnownBits() / LazyValueInfo, 1325 // but the cost-benefit analysis suggests it isn't worth it. 1326 1327 return nullptr; 1328 } 1329 1330 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1331 const SimplifyQuery &Q) { 1332 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1333 } 1334 1335 /// Given operands for an LShr, see if we can fold the result. 1336 /// If not, this returns null. 1337 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1338 const SimplifyQuery &Q, unsigned MaxRecurse) { 1339 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1340 MaxRecurse)) 1341 return V; 1342 1343 // (X << A) >> A -> X 1344 Value *X; 1345 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1346 return X; 1347 1348 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1349 // We can return X as we do in the above case since OR alters no bits in X. 1350 // SimplifyDemandedBits in InstCombine can do more general optimization for 1351 // bit manipulation. This pattern aims to provide opportunities for other 1352 // optimizers by supporting a simple but common case in InstSimplify. 1353 Value *Y; 1354 const APInt *ShRAmt, *ShLAmt; 1355 if (match(Op1, m_APInt(ShRAmt)) && 1356 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1357 *ShRAmt == *ShLAmt) { 1358 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1359 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 1360 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 1361 if (ShRAmt->uge(EffWidthY)) 1362 return X; 1363 } 1364 1365 return nullptr; 1366 } 1367 1368 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1369 const SimplifyQuery &Q) { 1370 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1371 } 1372 1373 /// Given operands for an AShr, see if we can fold the result. 1374 /// If not, this returns null. 1375 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1376 const SimplifyQuery &Q, unsigned MaxRecurse) { 1377 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1378 MaxRecurse)) 1379 return V; 1380 1381 // all ones >>a X -> -1 1382 // Do not return Op0 because it may contain undef elements if it's a vector. 1383 if (match(Op0, m_AllOnes())) 1384 return Constant::getAllOnesValue(Op0->getType()); 1385 1386 // (X << A) >> A -> X 1387 Value *X; 1388 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1389 return X; 1390 1391 // Arithmetic shifting an all-sign-bit value is a no-op. 1392 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1393 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1394 return Op0; 1395 1396 return nullptr; 1397 } 1398 1399 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1400 const SimplifyQuery &Q) { 1401 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1402 } 1403 1404 /// Commuted variants are assumed to be handled by calling this function again 1405 /// with the parameters swapped. 1406 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1407 ICmpInst *UnsignedICmp, bool IsAnd, 1408 const SimplifyQuery &Q) { 1409 Value *X, *Y; 1410 1411 ICmpInst::Predicate EqPred; 1412 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1413 !ICmpInst::isEquality(EqPred)) 1414 return nullptr; 1415 1416 ICmpInst::Predicate UnsignedPred; 1417 1418 Value *A, *B; 1419 // Y = (A - B); 1420 if (match(Y, m_Sub(m_Value(A), m_Value(B)))) { 1421 if (match(UnsignedICmp, 1422 m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) && 1423 ICmpInst::isUnsigned(UnsignedPred)) { 1424 // A >=/<= B || (A - B) != 0 <--> true 1425 if ((UnsignedPred == ICmpInst::ICMP_UGE || 1426 UnsignedPred == ICmpInst::ICMP_ULE) && 1427 EqPred == ICmpInst::ICMP_NE && !IsAnd) 1428 return ConstantInt::getTrue(UnsignedICmp->getType()); 1429 // A </> B && (A - B) == 0 <--> false 1430 if ((UnsignedPred == ICmpInst::ICMP_ULT || 1431 UnsignedPred == ICmpInst::ICMP_UGT) && 1432 EqPred == ICmpInst::ICMP_EQ && IsAnd) 1433 return ConstantInt::getFalse(UnsignedICmp->getType()); 1434 1435 // A </> B && (A - B) != 0 <--> A </> B 1436 // A </> B || (A - B) != 0 <--> (A - B) != 0 1437 if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT || 1438 UnsignedPred == ICmpInst::ICMP_UGT)) 1439 return IsAnd ? UnsignedICmp : ZeroICmp; 1440 1441 // A <=/>= B && (A - B) == 0 <--> (A - B) == 0 1442 // A <=/>= B || (A - B) == 0 <--> A <=/>= B 1443 if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE || 1444 UnsignedPred == ICmpInst::ICMP_UGE)) 1445 return IsAnd ? ZeroICmp : UnsignedICmp; 1446 } 1447 1448 // Given Y = (A - B) 1449 // Y >= A && Y != 0 --> Y >= A iff B != 0 1450 // Y < A || Y == 0 --> Y < A iff B != 0 1451 if (match(UnsignedICmp, 1452 m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) { 1453 if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd && 1454 EqPred == ICmpInst::ICMP_NE && 1455 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1456 return UnsignedICmp; 1457 if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd && 1458 EqPred == ICmpInst::ICMP_EQ && 1459 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1460 return UnsignedICmp; 1461 } 1462 } 1463 1464 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1465 ICmpInst::isUnsigned(UnsignedPred)) 1466 ; 1467 else if (match(UnsignedICmp, 1468 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1469 ICmpInst::isUnsigned(UnsignedPred)) 1470 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1471 else 1472 return nullptr; 1473 1474 // X > Y && Y == 0 --> Y == 0 iff X != 0 1475 // X > Y || Y == 0 --> X > Y iff X != 0 1476 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1477 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1478 return IsAnd ? ZeroICmp : UnsignedICmp; 1479 1480 // X <= Y && Y != 0 --> X <= Y iff X != 0 1481 // X <= Y || Y != 0 --> Y != 0 iff X != 0 1482 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1483 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1484 return IsAnd ? UnsignedICmp : ZeroICmp; 1485 1486 // The transforms below here are expected to be handled more generally with 1487 // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's 1488 // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap, 1489 // these are candidates for removal. 1490 1491 // X < Y && Y != 0 --> X < Y 1492 // X < Y || Y != 0 --> Y != 0 1493 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1494 return IsAnd ? UnsignedICmp : ZeroICmp; 1495 1496 // X >= Y && Y == 0 --> Y == 0 1497 // X >= Y || Y == 0 --> X >= Y 1498 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ) 1499 return IsAnd ? ZeroICmp : UnsignedICmp; 1500 1501 // X < Y && Y == 0 --> false 1502 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1503 IsAnd) 1504 return getFalse(UnsignedICmp->getType()); 1505 1506 // X >= Y || Y != 0 --> true 1507 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE && 1508 !IsAnd) 1509 return getTrue(UnsignedICmp->getType()); 1510 1511 return nullptr; 1512 } 1513 1514 /// Commuted variants are assumed to be handled by calling this function again 1515 /// with the parameters swapped. 1516 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1517 ICmpInst::Predicate Pred0, Pred1; 1518 Value *A ,*B; 1519 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1520 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1521 return nullptr; 1522 1523 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1524 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1525 // can eliminate Op1 from this 'and'. 1526 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1527 return Op0; 1528 1529 // Check for any combination of predicates that are guaranteed to be disjoint. 1530 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1531 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1532 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1533 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1534 return getFalse(Op0->getType()); 1535 1536 return nullptr; 1537 } 1538 1539 /// Commuted variants are assumed to be handled by calling this function again 1540 /// with the parameters swapped. 1541 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1542 ICmpInst::Predicate Pred0, Pred1; 1543 Value *A ,*B; 1544 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1545 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1546 return nullptr; 1547 1548 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1549 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1550 // can eliminate Op0 from this 'or'. 1551 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1552 return Op1; 1553 1554 // Check for any combination of predicates that cover the entire range of 1555 // possibilities. 1556 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1557 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1558 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1559 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1560 return getTrue(Op0->getType()); 1561 1562 return nullptr; 1563 } 1564 1565 /// Test if a pair of compares with a shared operand and 2 constants has an 1566 /// empty set intersection, full set union, or if one compare is a superset of 1567 /// the other. 1568 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1569 bool IsAnd) { 1570 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1571 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1572 return nullptr; 1573 1574 const APInt *C0, *C1; 1575 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1576 !match(Cmp1->getOperand(1), m_APInt(C1))) 1577 return nullptr; 1578 1579 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1580 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1581 1582 // For and-of-compares, check if the intersection is empty: 1583 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1584 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1585 return getFalse(Cmp0->getType()); 1586 1587 // For or-of-compares, check if the union is full: 1588 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1589 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1590 return getTrue(Cmp0->getType()); 1591 1592 // Is one range a superset of the other? 1593 // If this is and-of-compares, take the smaller set: 1594 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1595 // If this is or-of-compares, take the larger set: 1596 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1597 if (Range0.contains(Range1)) 1598 return IsAnd ? Cmp1 : Cmp0; 1599 if (Range1.contains(Range0)) 1600 return IsAnd ? Cmp0 : Cmp1; 1601 1602 return nullptr; 1603 } 1604 1605 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1606 bool IsAnd) { 1607 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1608 if (!match(Cmp0->getOperand(1), m_Zero()) || 1609 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1610 return nullptr; 1611 1612 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1613 return nullptr; 1614 1615 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1616 Value *X = Cmp0->getOperand(0); 1617 Value *Y = Cmp1->getOperand(0); 1618 1619 // If one of the compares is a masked version of a (not) null check, then 1620 // that compare implies the other, so we eliminate the other. Optionally, look 1621 // through a pointer-to-int cast to match a null check of a pointer type. 1622 1623 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1624 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1625 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1626 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1627 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1628 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1629 return Cmp1; 1630 1631 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1632 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1633 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1634 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1635 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1636 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1637 return Cmp0; 1638 1639 return nullptr; 1640 } 1641 1642 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1643 const InstrInfoQuery &IIQ) { 1644 // (icmp (add V, C0), C1) & (icmp V, C0) 1645 ICmpInst::Predicate Pred0, Pred1; 1646 const APInt *C0, *C1; 1647 Value *V; 1648 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1649 return nullptr; 1650 1651 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1652 return nullptr; 1653 1654 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1655 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1656 return nullptr; 1657 1658 Type *ITy = Op0->getType(); 1659 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1660 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1661 1662 const APInt Delta = *C1 - *C0; 1663 if (C0->isStrictlyPositive()) { 1664 if (Delta == 2) { 1665 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1666 return getFalse(ITy); 1667 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1668 return getFalse(ITy); 1669 } 1670 if (Delta == 1) { 1671 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1672 return getFalse(ITy); 1673 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1674 return getFalse(ITy); 1675 } 1676 } 1677 if (C0->getBoolValue() && isNUW) { 1678 if (Delta == 2) 1679 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1680 return getFalse(ITy); 1681 if (Delta == 1) 1682 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1683 return getFalse(ITy); 1684 } 1685 1686 return nullptr; 1687 } 1688 1689 /// Try to eliminate compares with signed or unsigned min/max constants. 1690 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1, 1691 bool IsAnd) { 1692 // Canonicalize an equality compare as Cmp0. 1693 if (Cmp1->isEquality()) 1694 std::swap(Cmp0, Cmp1); 1695 if (!Cmp0->isEquality()) 1696 return nullptr; 1697 1698 // The equality compare must be against a constant. Convert the 'null' pointer 1699 // constant to an integer zero value. 1700 APInt MinMaxC; 1701 const APInt *C; 1702 if (match(Cmp0->getOperand(1), m_APInt(C))) 1703 MinMaxC = *C; 1704 else if (isa<ConstantPointerNull>(Cmp0->getOperand(1))) 1705 MinMaxC = APInt::getNullValue(8); 1706 else 1707 return nullptr; 1708 1709 // The non-equality compare must include a common operand (X). Canonicalize 1710 // the common operand as operand 0 (the predicate is swapped if the common 1711 // operand was operand 1). 1712 ICmpInst::Predicate Pred0 = Cmp0->getPredicate(); 1713 Value *X = Cmp0->getOperand(0); 1714 ICmpInst::Predicate Pred1; 1715 if (!match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value())) || 1716 ICmpInst::isEquality(Pred1)) 1717 return nullptr; 1718 1719 // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1. 1720 if (!IsAnd) { 1721 Pred0 = ICmpInst::getInversePredicate(Pred0); 1722 Pred1 = ICmpInst::getInversePredicate(Pred1); 1723 } 1724 1725 // Normalize to unsigned compare and unsigned min/max value. 1726 // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255 1727 if (ICmpInst::isSigned(Pred1)) { 1728 Pred1 = ICmpInst::getUnsignedPredicate(Pred1); 1729 MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth()); 1730 } 1731 1732 // (X != MAX) && (X < Y) --> X < Y 1733 // (X == MAX) || (X >= Y) --> X >= Y 1734 if (MinMaxC.isMaxValue()) 1735 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) 1736 return Cmp1; 1737 1738 // (X != MIN) && (X > Y) --> X > Y 1739 // (X == MIN) || (X <= Y) --> X <= Y 1740 if (MinMaxC.isMinValue()) 1741 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT) 1742 return Cmp1; 1743 1744 return nullptr; 1745 } 1746 1747 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1748 const SimplifyQuery &Q) { 1749 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q)) 1750 return X; 1751 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q)) 1752 return X; 1753 1754 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1755 return X; 1756 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1757 return X; 1758 1759 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1760 return X; 1761 1762 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true)) 1763 return X; 1764 1765 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1766 return X; 1767 1768 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1769 return X; 1770 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1771 return X; 1772 1773 return nullptr; 1774 } 1775 1776 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1777 const InstrInfoQuery &IIQ) { 1778 // (icmp (add V, C0), C1) | (icmp V, C0) 1779 ICmpInst::Predicate Pred0, Pred1; 1780 const APInt *C0, *C1; 1781 Value *V; 1782 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1783 return nullptr; 1784 1785 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1786 return nullptr; 1787 1788 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1789 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1790 return nullptr; 1791 1792 Type *ITy = Op0->getType(); 1793 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1794 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1795 1796 const APInt Delta = *C1 - *C0; 1797 if (C0->isStrictlyPositive()) { 1798 if (Delta == 2) { 1799 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1800 return getTrue(ITy); 1801 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1802 return getTrue(ITy); 1803 } 1804 if (Delta == 1) { 1805 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1806 return getTrue(ITy); 1807 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1808 return getTrue(ITy); 1809 } 1810 } 1811 if (C0->getBoolValue() && isNUW) { 1812 if (Delta == 2) 1813 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1814 return getTrue(ITy); 1815 if (Delta == 1) 1816 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1817 return getTrue(ITy); 1818 } 1819 1820 return nullptr; 1821 } 1822 1823 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1824 const SimplifyQuery &Q) { 1825 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q)) 1826 return X; 1827 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q)) 1828 return X; 1829 1830 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1831 return X; 1832 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1833 return X; 1834 1835 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1836 return X; 1837 1838 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false)) 1839 return X; 1840 1841 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1842 return X; 1843 1844 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1845 return X; 1846 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1847 return X; 1848 1849 return nullptr; 1850 } 1851 1852 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, 1853 FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1854 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1855 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1856 if (LHS0->getType() != RHS0->getType()) 1857 return nullptr; 1858 1859 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1860 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1861 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1862 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1863 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1864 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1865 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1866 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1867 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1868 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1869 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1870 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1871 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1))) 1872 return RHS; 1873 1874 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1875 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1876 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1877 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1878 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1879 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1880 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1881 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1882 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1883 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1))) 1884 return LHS; 1885 } 1886 1887 return nullptr; 1888 } 1889 1890 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, 1891 Value *Op0, Value *Op1, bool IsAnd) { 1892 // Look through casts of the 'and' operands to find compares. 1893 auto *Cast0 = dyn_cast<CastInst>(Op0); 1894 auto *Cast1 = dyn_cast<CastInst>(Op1); 1895 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1896 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1897 Op0 = Cast0->getOperand(0); 1898 Op1 = Cast1->getOperand(0); 1899 } 1900 1901 Value *V = nullptr; 1902 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1903 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1904 if (ICmp0 && ICmp1) 1905 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q) 1906 : simplifyOrOfICmps(ICmp0, ICmp1, Q); 1907 1908 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1909 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1910 if (FCmp0 && FCmp1) 1911 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd); 1912 1913 if (!V) 1914 return nullptr; 1915 if (!Cast0) 1916 return V; 1917 1918 // If we looked through casts, we can only handle a constant simplification 1919 // because we are not allowed to create a cast instruction here. 1920 if (auto *C = dyn_cast<Constant>(V)) 1921 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1922 1923 return nullptr; 1924 } 1925 1926 /// Check that the Op1 is in expected form, i.e.: 1927 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) 1928 /// %Op1 = extractvalue { i4, i1 } %Agg, 1 1929 static bool omitCheckForZeroBeforeMulWithOverflowInternal(Value *Op1, 1930 Value *X) { 1931 auto *Extract = dyn_cast<ExtractValueInst>(Op1); 1932 // We should only be extracting the overflow bit. 1933 if (!Extract || !Extract->getIndices().equals(1)) 1934 return false; 1935 Value *Agg = Extract->getAggregateOperand(); 1936 // This should be a multiplication-with-overflow intrinsic. 1937 if (!match(Agg, m_CombineOr(m_Intrinsic<Intrinsic::umul_with_overflow>(), 1938 m_Intrinsic<Intrinsic::smul_with_overflow>()))) 1939 return false; 1940 // One of its multipliers should be the value we checked for zero before. 1941 if (!match(Agg, m_CombineOr(m_Argument<0>(m_Specific(X)), 1942 m_Argument<1>(m_Specific(X))))) 1943 return false; 1944 return true; 1945 } 1946 1947 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some 1948 /// other form of check, e.g. one that was using division; it may have been 1949 /// guarded against division-by-zero. We can drop that check now. 1950 /// Look for: 1951 /// %Op0 = icmp ne i4 %X, 0 1952 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) 1953 /// %Op1 = extractvalue { i4, i1 } %Agg, 1 1954 /// %??? = and i1 %Op0, %Op1 1955 /// We can just return %Op1 1956 static Value *omitCheckForZeroBeforeMulWithOverflow(Value *Op0, Value *Op1) { 1957 ICmpInst::Predicate Pred; 1958 Value *X; 1959 if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) || 1960 Pred != ICmpInst::Predicate::ICMP_NE) 1961 return nullptr; 1962 // Is Op1 in expected form? 1963 if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X)) 1964 return nullptr; 1965 // Can omit 'and', and just return the overflow bit. 1966 return Op1; 1967 } 1968 1969 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some 1970 /// other form of check, e.g. one that was using division; it may have been 1971 /// guarded against division-by-zero. We can drop that check now. 1972 /// Look for: 1973 /// %Op0 = icmp eq i4 %X, 0 1974 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) 1975 /// %Op1 = extractvalue { i4, i1 } %Agg, 1 1976 /// %NotOp1 = xor i1 %Op1, true 1977 /// %or = or i1 %Op0, %NotOp1 1978 /// We can just return %NotOp1 1979 static Value *omitCheckForZeroBeforeInvertedMulWithOverflow(Value *Op0, 1980 Value *NotOp1) { 1981 ICmpInst::Predicate Pred; 1982 Value *X; 1983 if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) || 1984 Pred != ICmpInst::Predicate::ICMP_EQ) 1985 return nullptr; 1986 // We expect the other hand of an 'or' to be a 'not'. 1987 Value *Op1; 1988 if (!match(NotOp1, m_Not(m_Value(Op1)))) 1989 return nullptr; 1990 // Is Op1 in expected form? 1991 if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X)) 1992 return nullptr; 1993 // Can omit 'and', and just return the inverted overflow bit. 1994 return NotOp1; 1995 } 1996 1997 /// Given operands for an And, see if we can fold the result. 1998 /// If not, this returns null. 1999 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2000 unsigned MaxRecurse) { 2001 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 2002 return C; 2003 2004 // X & undef -> 0 2005 if (match(Op1, m_Undef())) 2006 return Constant::getNullValue(Op0->getType()); 2007 2008 // X & X = X 2009 if (Op0 == Op1) 2010 return Op0; 2011 2012 // X & 0 = 0 2013 if (match(Op1, m_Zero())) 2014 return Constant::getNullValue(Op0->getType()); 2015 2016 // X & -1 = X 2017 if (match(Op1, m_AllOnes())) 2018 return Op0; 2019 2020 // A & ~A = ~A & A = 0 2021 if (match(Op0, m_Not(m_Specific(Op1))) || 2022 match(Op1, m_Not(m_Specific(Op0)))) 2023 return Constant::getNullValue(Op0->getType()); 2024 2025 // (A | ?) & A = A 2026 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 2027 return Op1; 2028 2029 // A & (A | ?) = A 2030 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 2031 return Op0; 2032 2033 // A mask that only clears known zeros of a shifted value is a no-op. 2034 Value *X; 2035 const APInt *Mask; 2036 const APInt *ShAmt; 2037 if (match(Op1, m_APInt(Mask))) { 2038 // If all bits in the inverted and shifted mask are clear: 2039 // and (shl X, ShAmt), Mask --> shl X, ShAmt 2040 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 2041 (~(*Mask)).lshr(*ShAmt).isNullValue()) 2042 return Op0; 2043 2044 // If all bits in the inverted and shifted mask are clear: 2045 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 2046 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 2047 (~(*Mask)).shl(*ShAmt).isNullValue()) 2048 return Op0; 2049 } 2050 2051 // If we have a multiplication overflow check that is being 'and'ed with a 2052 // check that one of the multipliers is not zero, we can omit the 'and', and 2053 // only keep the overflow check. 2054 if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op0, Op1)) 2055 return V; 2056 if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op1, Op0)) 2057 return V; 2058 2059 // A & (-A) = A if A is a power of two or zero. 2060 if (match(Op0, m_Neg(m_Specific(Op1))) || 2061 match(Op1, m_Neg(m_Specific(Op0)))) { 2062 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2063 Q.DT)) 2064 return Op0; 2065 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2066 Q.DT)) 2067 return Op1; 2068 } 2069 2070 // This is a similar pattern used for checking if a value is a power-of-2: 2071 // (A - 1) & A --> 0 (if A is a power-of-2 or 0) 2072 // A & (A - 1) --> 0 (if A is a power-of-2 or 0) 2073 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) && 2074 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2075 return Constant::getNullValue(Op1->getType()); 2076 if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) && 2077 isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2078 return Constant::getNullValue(Op0->getType()); 2079 2080 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 2081 return V; 2082 2083 // Try some generic simplifications for associative operations. 2084 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 2085 MaxRecurse)) 2086 return V; 2087 2088 // And distributes over Or. Try some generic simplifications based on this. 2089 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2090 Instruction::Or, Q, MaxRecurse)) 2091 return V; 2092 2093 // And distributes over Xor. Try some generic simplifications based on this. 2094 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2095 Instruction::Xor, Q, MaxRecurse)) 2096 return V; 2097 2098 // If the operation is with the result of a select instruction, check whether 2099 // operating on either branch of the select always yields the same value. 2100 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 2101 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 2102 MaxRecurse)) 2103 return V; 2104 2105 // If the operation is with the result of a phi instruction, check whether 2106 // operating on all incoming values of the phi always yields the same value. 2107 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2108 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 2109 MaxRecurse)) 2110 return V; 2111 2112 // Assuming the effective width of Y is not larger than A, i.e. all bits 2113 // from X and Y are disjoint in (X << A) | Y, 2114 // if the mask of this AND op covers all bits of X or Y, while it covers 2115 // no bits from the other, we can bypass this AND op. E.g., 2116 // ((X << A) | Y) & Mask -> Y, 2117 // if Mask = ((1 << effective_width_of(Y)) - 1) 2118 // ((X << A) | Y) & Mask -> X << A, 2119 // if Mask = ((1 << effective_width_of(X)) - 1) << A 2120 // SimplifyDemandedBits in InstCombine can optimize the general case. 2121 // This pattern aims to help other passes for a common case. 2122 Value *Y, *XShifted; 2123 if (match(Op1, m_APInt(Mask)) && 2124 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 2125 m_Value(XShifted)), 2126 m_Value(Y)))) { 2127 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 2128 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 2129 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2130 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 2131 if (EffWidthY <= ShftCnt) { 2132 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, 2133 Q.DT); 2134 const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros(); 2135 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 2136 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 2137 // If the mask is extracting all bits from X or Y as is, we can skip 2138 // this AND op. 2139 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 2140 return Y; 2141 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 2142 return XShifted; 2143 } 2144 } 2145 2146 return nullptr; 2147 } 2148 2149 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2150 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 2151 } 2152 2153 /// Given operands for an Or, see if we can fold the result. 2154 /// If not, this returns null. 2155 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2156 unsigned MaxRecurse) { 2157 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 2158 return C; 2159 2160 // X | undef -> -1 2161 // X | -1 = -1 2162 // Do not return Op1 because it may contain undef elements if it's a vector. 2163 if (match(Op1, m_Undef()) || match(Op1, m_AllOnes())) 2164 return Constant::getAllOnesValue(Op0->getType()); 2165 2166 // X | X = X 2167 // X | 0 = X 2168 if (Op0 == Op1 || match(Op1, m_Zero())) 2169 return Op0; 2170 2171 // A | ~A = ~A | A = -1 2172 if (match(Op0, m_Not(m_Specific(Op1))) || 2173 match(Op1, m_Not(m_Specific(Op0)))) 2174 return Constant::getAllOnesValue(Op0->getType()); 2175 2176 // (A & ?) | A = A 2177 if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) 2178 return Op1; 2179 2180 // A | (A & ?) = A 2181 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) 2182 return Op0; 2183 2184 // ~(A & ?) | A = -1 2185 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 2186 return Constant::getAllOnesValue(Op1->getType()); 2187 2188 // A | ~(A & ?) = -1 2189 if (match(Op1, m_Not(m_c_And(m_Specific(Op0), m_Value())))) 2190 return Constant::getAllOnesValue(Op0->getType()); 2191 2192 Value *A, *B; 2193 // (A & ~B) | (A ^ B) -> (A ^ B) 2194 // (~B & A) | (A ^ B) -> (A ^ B) 2195 // (A & ~B) | (B ^ A) -> (B ^ A) 2196 // (~B & A) | (B ^ A) -> (B ^ A) 2197 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 2198 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 2199 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 2200 return Op1; 2201 2202 // Commute the 'or' operands. 2203 // (A ^ B) | (A & ~B) -> (A ^ B) 2204 // (A ^ B) | (~B & A) -> (A ^ B) 2205 // (B ^ A) | (A & ~B) -> (B ^ A) 2206 // (B ^ A) | (~B & A) -> (B ^ A) 2207 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 2208 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 2209 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 2210 return Op0; 2211 2212 // (A & B) | (~A ^ B) -> (~A ^ B) 2213 // (B & A) | (~A ^ B) -> (~A ^ B) 2214 // (A & B) | (B ^ ~A) -> (B ^ ~A) 2215 // (B & A) | (B ^ ~A) -> (B ^ ~A) 2216 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 2217 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 2218 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 2219 return Op1; 2220 2221 // (~A ^ B) | (A & B) -> (~A ^ B) 2222 // (~A ^ B) | (B & A) -> (~A ^ B) 2223 // (B ^ ~A) | (A & B) -> (B ^ ~A) 2224 // (B ^ ~A) | (B & A) -> (B ^ ~A) 2225 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 2226 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 2227 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 2228 return Op0; 2229 2230 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 2231 return V; 2232 2233 // If we have a multiplication overflow check that is being 'and'ed with a 2234 // check that one of the multipliers is not zero, we can omit the 'and', and 2235 // only keep the overflow check. 2236 if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op0, Op1)) 2237 return V; 2238 if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op1, Op0)) 2239 return V; 2240 2241 // Try some generic simplifications for associative operations. 2242 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 2243 MaxRecurse)) 2244 return V; 2245 2246 // Or distributes over And. Try some generic simplifications based on this. 2247 if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1, 2248 Instruction::And, Q, MaxRecurse)) 2249 return V; 2250 2251 // If the operation is with the result of a select instruction, check whether 2252 // operating on either branch of the select always yields the same value. 2253 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 2254 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 2255 MaxRecurse)) 2256 return V; 2257 2258 // (A & C1)|(B & C2) 2259 const APInt *C1, *C2; 2260 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2261 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2262 if (*C1 == ~*C2) { 2263 // (A & C1)|(B & C2) 2264 // If we have: ((V + N) & C1) | (V & C2) 2265 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2266 // replace with V+N. 2267 Value *N; 2268 if (C2->isMask() && // C2 == 0+1+ 2269 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2270 // Add commutes, try both ways. 2271 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2272 return A; 2273 } 2274 // Or commutes, try both ways. 2275 if (C1->isMask() && 2276 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2277 // Add commutes, try both ways. 2278 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2279 return B; 2280 } 2281 } 2282 } 2283 2284 // If the operation is with the result of a phi instruction, check whether 2285 // operating on all incoming values of the phi always yields the same value. 2286 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2287 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2288 return V; 2289 2290 return nullptr; 2291 } 2292 2293 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2294 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 2295 } 2296 2297 /// Given operands for a Xor, see if we can fold the result. 2298 /// If not, this returns null. 2299 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2300 unsigned MaxRecurse) { 2301 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2302 return C; 2303 2304 // A ^ undef -> undef 2305 if (match(Op1, m_Undef())) 2306 return Op1; 2307 2308 // A ^ 0 = A 2309 if (match(Op1, m_Zero())) 2310 return Op0; 2311 2312 // A ^ A = 0 2313 if (Op0 == Op1) 2314 return Constant::getNullValue(Op0->getType()); 2315 2316 // A ^ ~A = ~A ^ A = -1 2317 if (match(Op0, m_Not(m_Specific(Op1))) || 2318 match(Op1, m_Not(m_Specific(Op0)))) 2319 return Constant::getAllOnesValue(Op0->getType()); 2320 2321 // Try some generic simplifications for associative operations. 2322 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 2323 MaxRecurse)) 2324 return V; 2325 2326 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2327 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2328 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2329 // only if B and C are equal. If B and C are equal then (since we assume 2330 // that operands have already been simplified) "select(cond, B, C)" should 2331 // have been simplified to the common value of B and C already. Analysing 2332 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2333 // for threading over phi nodes. 2334 2335 return nullptr; 2336 } 2337 2338 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2339 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 2340 } 2341 2342 2343 static Type *GetCompareTy(Value *Op) { 2344 return CmpInst::makeCmpResultType(Op->getType()); 2345 } 2346 2347 /// Rummage around inside V looking for something equivalent to the comparison 2348 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2349 /// Helper function for analyzing max/min idioms. 2350 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2351 Value *LHS, Value *RHS) { 2352 SelectInst *SI = dyn_cast<SelectInst>(V); 2353 if (!SI) 2354 return nullptr; 2355 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2356 if (!Cmp) 2357 return nullptr; 2358 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2359 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2360 return Cmp; 2361 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2362 LHS == CmpRHS && RHS == CmpLHS) 2363 return Cmp; 2364 return nullptr; 2365 } 2366 2367 // A significant optimization not implemented here is assuming that alloca 2368 // addresses are not equal to incoming argument values. They don't *alias*, 2369 // as we say, but that doesn't mean they aren't equal, so we take a 2370 // conservative approach. 2371 // 2372 // This is inspired in part by C++11 5.10p1: 2373 // "Two pointers of the same type compare equal if and only if they are both 2374 // null, both point to the same function, or both represent the same 2375 // address." 2376 // 2377 // This is pretty permissive. 2378 // 2379 // It's also partly due to C11 6.5.9p6: 2380 // "Two pointers compare equal if and only if both are null pointers, both are 2381 // pointers to the same object (including a pointer to an object and a 2382 // subobject at its beginning) or function, both are pointers to one past the 2383 // last element of the same array object, or one is a pointer to one past the 2384 // end of one array object and the other is a pointer to the start of a 2385 // different array object that happens to immediately follow the first array 2386 // object in the address space.) 2387 // 2388 // C11's version is more restrictive, however there's no reason why an argument 2389 // couldn't be a one-past-the-end value for a stack object in the caller and be 2390 // equal to the beginning of a stack object in the callee. 2391 // 2392 // If the C and C++ standards are ever made sufficiently restrictive in this 2393 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2394 // this optimization. 2395 static Constant * 2396 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 2397 const DominatorTree *DT, CmpInst::Predicate Pred, 2398 AssumptionCache *AC, const Instruction *CxtI, 2399 const InstrInfoQuery &IIQ, Value *LHS, Value *RHS) { 2400 // First, skip past any trivial no-ops. 2401 LHS = LHS->stripPointerCasts(); 2402 RHS = RHS->stripPointerCasts(); 2403 2404 // A non-null pointer is not equal to a null pointer. 2405 if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) && 2406 llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, 2407 IIQ.UseInstrInfo)) 2408 return ConstantInt::get(GetCompareTy(LHS), 2409 !CmpInst::isTrueWhenEqual(Pred)); 2410 2411 // We can only fold certain predicates on pointer comparisons. 2412 switch (Pred) { 2413 default: 2414 return nullptr; 2415 2416 // Equality comaprisons are easy to fold. 2417 case CmpInst::ICMP_EQ: 2418 case CmpInst::ICMP_NE: 2419 break; 2420 2421 // We can only handle unsigned relational comparisons because 'inbounds' on 2422 // a GEP only protects against unsigned wrapping. 2423 case CmpInst::ICMP_UGT: 2424 case CmpInst::ICMP_UGE: 2425 case CmpInst::ICMP_ULT: 2426 case CmpInst::ICMP_ULE: 2427 // However, we have to switch them to their signed variants to handle 2428 // negative indices from the base pointer. 2429 Pred = ICmpInst::getSignedPredicate(Pred); 2430 break; 2431 } 2432 2433 // Strip off any constant offsets so that we can reason about them. 2434 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2435 // here and compare base addresses like AliasAnalysis does, however there are 2436 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2437 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2438 // doesn't need to guarantee pointer inequality when it says NoAlias. 2439 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2440 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2441 2442 // If LHS and RHS are related via constant offsets to the same base 2443 // value, we can replace it with an icmp which just compares the offsets. 2444 if (LHS == RHS) 2445 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2446 2447 // Various optimizations for (in)equality comparisons. 2448 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2449 // Different non-empty allocations that exist at the same time have 2450 // different addresses (if the program can tell). Global variables always 2451 // exist, so they always exist during the lifetime of each other and all 2452 // allocas. Two different allocas usually have different addresses... 2453 // 2454 // However, if there's an @llvm.stackrestore dynamically in between two 2455 // allocas, they may have the same address. It's tempting to reduce the 2456 // scope of the problem by only looking at *static* allocas here. That would 2457 // cover the majority of allocas while significantly reducing the likelihood 2458 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2459 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2460 // an entry block. Also, if we have a block that's not attached to a 2461 // function, we can't tell if it's "static" under the current definition. 2462 // Theoretically, this problem could be fixed by creating a new kind of 2463 // instruction kind specifically for static allocas. Such a new instruction 2464 // could be required to be at the top of the entry block, thus preventing it 2465 // from being subject to a @llvm.stackrestore. Instcombine could even 2466 // convert regular allocas into these special allocas. It'd be nifty. 2467 // However, until then, this problem remains open. 2468 // 2469 // So, we'll assume that two non-empty allocas have different addresses 2470 // for now. 2471 // 2472 // With all that, if the offsets are within the bounds of their allocations 2473 // (and not one-past-the-end! so we can't use inbounds!), and their 2474 // allocations aren't the same, the pointers are not equal. 2475 // 2476 // Note that it's not necessary to check for LHS being a global variable 2477 // address, due to canonicalization and constant folding. 2478 if (isa<AllocaInst>(LHS) && 2479 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2480 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2481 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2482 uint64_t LHSSize, RHSSize; 2483 ObjectSizeOpts Opts; 2484 Opts.NullIsUnknownSize = 2485 NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction()); 2486 if (LHSOffsetCI && RHSOffsetCI && 2487 getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2488 getObjectSize(RHS, RHSSize, DL, TLI, Opts)) { 2489 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2490 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2491 if (!LHSOffsetValue.isNegative() && 2492 !RHSOffsetValue.isNegative() && 2493 LHSOffsetValue.ult(LHSSize) && 2494 RHSOffsetValue.ult(RHSSize)) { 2495 return ConstantInt::get(GetCompareTy(LHS), 2496 !CmpInst::isTrueWhenEqual(Pred)); 2497 } 2498 } 2499 2500 // Repeat the above check but this time without depending on DataLayout 2501 // or being able to compute a precise size. 2502 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2503 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2504 LHSOffset->isNullValue() && 2505 RHSOffset->isNullValue()) 2506 return ConstantInt::get(GetCompareTy(LHS), 2507 !CmpInst::isTrueWhenEqual(Pred)); 2508 } 2509 2510 // Even if an non-inbounds GEP occurs along the path we can still optimize 2511 // equality comparisons concerning the result. We avoid walking the whole 2512 // chain again by starting where the last calls to 2513 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2514 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2515 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2516 if (LHS == RHS) 2517 return ConstantExpr::getICmp(Pred, 2518 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2519 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2520 2521 // If one side of the equality comparison must come from a noalias call 2522 // (meaning a system memory allocation function), and the other side must 2523 // come from a pointer that cannot overlap with dynamically-allocated 2524 // memory within the lifetime of the current function (allocas, byval 2525 // arguments, globals), then determine the comparison result here. 2526 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; 2527 getUnderlyingObjects(LHS, LHSUObjs); 2528 getUnderlyingObjects(RHS, RHSUObjs); 2529 2530 // Is the set of underlying objects all noalias calls? 2531 auto IsNAC = [](ArrayRef<const Value *> Objects) { 2532 return all_of(Objects, isNoAliasCall); 2533 }; 2534 2535 // Is the set of underlying objects all things which must be disjoint from 2536 // noalias calls. For allocas, we consider only static ones (dynamic 2537 // allocas might be transformed into calls to malloc not simultaneously 2538 // live with the compared-to allocation). For globals, we exclude symbols 2539 // that might be resolve lazily to symbols in another dynamically-loaded 2540 // library (and, thus, could be malloc'ed by the implementation). 2541 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { 2542 return all_of(Objects, [](const Value *V) { 2543 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2544 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2545 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2546 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2547 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2548 !GV->isThreadLocal(); 2549 if (const Argument *A = dyn_cast<Argument>(V)) 2550 return A->hasByValAttr(); 2551 return false; 2552 }); 2553 }; 2554 2555 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2556 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2557 return ConstantInt::get(GetCompareTy(LHS), 2558 !CmpInst::isTrueWhenEqual(Pred)); 2559 2560 // Fold comparisons for non-escaping pointer even if the allocation call 2561 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2562 // dynamic allocation call could be either of the operands. 2563 Value *MI = nullptr; 2564 if (isAllocLikeFn(LHS, TLI) && 2565 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2566 MI = LHS; 2567 else if (isAllocLikeFn(RHS, TLI) && 2568 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2569 MI = RHS; 2570 // FIXME: We should also fold the compare when the pointer escapes, but the 2571 // compare dominates the pointer escape 2572 if (MI && !PointerMayBeCaptured(MI, true, true)) 2573 return ConstantInt::get(GetCompareTy(LHS), 2574 CmpInst::isFalseWhenEqual(Pred)); 2575 } 2576 2577 // Otherwise, fail. 2578 return nullptr; 2579 } 2580 2581 /// Fold an icmp when its operands have i1 scalar type. 2582 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2583 Value *RHS, const SimplifyQuery &Q) { 2584 Type *ITy = GetCompareTy(LHS); // The return type. 2585 Type *OpTy = LHS->getType(); // The operand type. 2586 if (!OpTy->isIntOrIntVectorTy(1)) 2587 return nullptr; 2588 2589 // A boolean compared to true/false can be simplified in 14 out of the 20 2590 // (10 predicates * 2 constants) possible combinations. Cases not handled here 2591 // require a 'not' of the LHS, so those must be transformed in InstCombine. 2592 if (match(RHS, m_Zero())) { 2593 switch (Pred) { 2594 case CmpInst::ICMP_NE: // X != 0 -> X 2595 case CmpInst::ICMP_UGT: // X >u 0 -> X 2596 case CmpInst::ICMP_SLT: // X <s 0 -> X 2597 return LHS; 2598 2599 case CmpInst::ICMP_ULT: // X <u 0 -> false 2600 case CmpInst::ICMP_SGT: // X >s 0 -> false 2601 return getFalse(ITy); 2602 2603 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2604 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2605 return getTrue(ITy); 2606 2607 default: break; 2608 } 2609 } else if (match(RHS, m_One())) { 2610 switch (Pred) { 2611 case CmpInst::ICMP_EQ: // X == 1 -> X 2612 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2613 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2614 return LHS; 2615 2616 case CmpInst::ICMP_UGT: // X >u 1 -> false 2617 case CmpInst::ICMP_SLT: // X <s -1 -> false 2618 return getFalse(ITy); 2619 2620 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2621 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2622 return getTrue(ITy); 2623 2624 default: break; 2625 } 2626 } 2627 2628 switch (Pred) { 2629 default: 2630 break; 2631 case ICmpInst::ICMP_UGE: 2632 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2633 return getTrue(ITy); 2634 break; 2635 case ICmpInst::ICMP_SGE: 2636 /// For signed comparison, the values for an i1 are 0 and -1 2637 /// respectively. This maps into a truth table of: 2638 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2639 /// 0 | 0 | 1 (0 >= 0) | 1 2640 /// 0 | 1 | 1 (0 >= -1) | 1 2641 /// 1 | 0 | 0 (-1 >= 0) | 0 2642 /// 1 | 1 | 1 (-1 >= -1) | 1 2643 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2644 return getTrue(ITy); 2645 break; 2646 case ICmpInst::ICMP_ULE: 2647 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2648 return getTrue(ITy); 2649 break; 2650 } 2651 2652 return nullptr; 2653 } 2654 2655 /// Try hard to fold icmp with zero RHS because this is a common case. 2656 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2657 Value *RHS, const SimplifyQuery &Q) { 2658 if (!match(RHS, m_Zero())) 2659 return nullptr; 2660 2661 Type *ITy = GetCompareTy(LHS); // The return type. 2662 switch (Pred) { 2663 default: 2664 llvm_unreachable("Unknown ICmp predicate!"); 2665 case ICmpInst::ICMP_ULT: 2666 return getFalse(ITy); 2667 case ICmpInst::ICMP_UGE: 2668 return getTrue(ITy); 2669 case ICmpInst::ICMP_EQ: 2670 case ICmpInst::ICMP_ULE: 2671 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2672 return getFalse(ITy); 2673 break; 2674 case ICmpInst::ICMP_NE: 2675 case ICmpInst::ICMP_UGT: 2676 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2677 return getTrue(ITy); 2678 break; 2679 case ICmpInst::ICMP_SLT: { 2680 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2681 if (LHSKnown.isNegative()) 2682 return getTrue(ITy); 2683 if (LHSKnown.isNonNegative()) 2684 return getFalse(ITy); 2685 break; 2686 } 2687 case ICmpInst::ICMP_SLE: { 2688 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2689 if (LHSKnown.isNegative()) 2690 return getTrue(ITy); 2691 if (LHSKnown.isNonNegative() && 2692 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2693 return getFalse(ITy); 2694 break; 2695 } 2696 case ICmpInst::ICMP_SGE: { 2697 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2698 if (LHSKnown.isNegative()) 2699 return getFalse(ITy); 2700 if (LHSKnown.isNonNegative()) 2701 return getTrue(ITy); 2702 break; 2703 } 2704 case ICmpInst::ICMP_SGT: { 2705 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2706 if (LHSKnown.isNegative()) 2707 return getFalse(ITy); 2708 if (LHSKnown.isNonNegative() && 2709 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2710 return getTrue(ITy); 2711 break; 2712 } 2713 } 2714 2715 return nullptr; 2716 } 2717 2718 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2719 Value *RHS, const InstrInfoQuery &IIQ) { 2720 Type *ITy = GetCompareTy(RHS); // The return type. 2721 2722 Value *X; 2723 // Sign-bit checks can be optimized to true/false after unsigned 2724 // floating-point casts: 2725 // icmp slt (bitcast (uitofp X)), 0 --> false 2726 // icmp sgt (bitcast (uitofp X)), -1 --> true 2727 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 2728 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 2729 return ConstantInt::getFalse(ITy); 2730 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 2731 return ConstantInt::getTrue(ITy); 2732 } 2733 2734 const APInt *C; 2735 if (!match(RHS, m_APIntAllowUndef(C))) 2736 return nullptr; 2737 2738 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2739 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2740 if (RHS_CR.isEmptySet()) 2741 return ConstantInt::getFalse(ITy); 2742 if (RHS_CR.isFullSet()) 2743 return ConstantInt::getTrue(ITy); 2744 2745 ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo); 2746 if (!LHS_CR.isFullSet()) { 2747 if (RHS_CR.contains(LHS_CR)) 2748 return ConstantInt::getTrue(ITy); 2749 if (RHS_CR.inverse().contains(LHS_CR)) 2750 return ConstantInt::getFalse(ITy); 2751 } 2752 2753 return nullptr; 2754 } 2755 2756 static Value *simplifyICmpWithBinOpOnLHS( 2757 CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS, 2758 const SimplifyQuery &Q, unsigned MaxRecurse) { 2759 Type *ITy = GetCompareTy(RHS); // The return type. 2760 2761 Value *Y = nullptr; 2762 // icmp pred (or X, Y), X 2763 if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2764 if (Pred == ICmpInst::ICMP_ULT) 2765 return getFalse(ITy); 2766 if (Pred == ICmpInst::ICMP_UGE) 2767 return getTrue(ITy); 2768 2769 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2770 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2771 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2772 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2773 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2774 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2775 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2776 } 2777 } 2778 2779 // icmp pred (and X, Y), X 2780 if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2781 if (Pred == ICmpInst::ICMP_UGT) 2782 return getFalse(ITy); 2783 if (Pred == ICmpInst::ICMP_ULE) 2784 return getTrue(ITy); 2785 } 2786 2787 // icmp pred (urem X, Y), Y 2788 if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2789 switch (Pred) { 2790 default: 2791 break; 2792 case ICmpInst::ICMP_SGT: 2793 case ICmpInst::ICMP_SGE: { 2794 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2795 if (!Known.isNonNegative()) 2796 break; 2797 LLVM_FALLTHROUGH; 2798 } 2799 case ICmpInst::ICMP_EQ: 2800 case ICmpInst::ICMP_UGT: 2801 case ICmpInst::ICMP_UGE: 2802 return getFalse(ITy); 2803 case ICmpInst::ICMP_SLT: 2804 case ICmpInst::ICMP_SLE: { 2805 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2806 if (!Known.isNonNegative()) 2807 break; 2808 LLVM_FALLTHROUGH; 2809 } 2810 case ICmpInst::ICMP_NE: 2811 case ICmpInst::ICMP_ULT: 2812 case ICmpInst::ICMP_ULE: 2813 return getTrue(ITy); 2814 } 2815 } 2816 2817 // icmp pred (urem X, Y), X 2818 if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) { 2819 if (Pred == ICmpInst::ICMP_ULE) 2820 return getTrue(ITy); 2821 if (Pred == ICmpInst::ICMP_UGT) 2822 return getFalse(ITy); 2823 } 2824 2825 // x >> y <=u x 2826 // x udiv y <=u x. 2827 if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2828 match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) { 2829 // icmp pred (X op Y), X 2830 if (Pred == ICmpInst::ICMP_UGT) 2831 return getFalse(ITy); 2832 if (Pred == ICmpInst::ICMP_ULE) 2833 return getTrue(ITy); 2834 } 2835 2836 return nullptr; 2837 } 2838 2839 /// TODO: A large part of this logic is duplicated in InstCombine's 2840 /// foldICmpBinOp(). We should be able to share that and avoid the code 2841 /// duplication. 2842 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 2843 Value *RHS, const SimplifyQuery &Q, 2844 unsigned MaxRecurse) { 2845 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2846 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2847 if (MaxRecurse && (LBO || RBO)) { 2848 // Analyze the case when either LHS or RHS is an add instruction. 2849 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2850 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2851 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2852 if (LBO && LBO->getOpcode() == Instruction::Add) { 2853 A = LBO->getOperand(0); 2854 B = LBO->getOperand(1); 2855 NoLHSWrapProblem = 2856 ICmpInst::isEquality(Pred) || 2857 (CmpInst::isUnsigned(Pred) && 2858 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 2859 (CmpInst::isSigned(Pred) && 2860 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 2861 } 2862 if (RBO && RBO->getOpcode() == Instruction::Add) { 2863 C = RBO->getOperand(0); 2864 D = RBO->getOperand(1); 2865 NoRHSWrapProblem = 2866 ICmpInst::isEquality(Pred) || 2867 (CmpInst::isUnsigned(Pred) && 2868 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 2869 (CmpInst::isSigned(Pred) && 2870 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 2871 } 2872 2873 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2874 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2875 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2876 Constant::getNullValue(RHS->getType()), Q, 2877 MaxRecurse - 1)) 2878 return V; 2879 2880 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2881 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2882 if (Value *V = 2883 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 2884 C == LHS ? D : C, Q, MaxRecurse - 1)) 2885 return V; 2886 2887 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2888 if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem && 2889 NoRHSWrapProblem) { 2890 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2891 Value *Y, *Z; 2892 if (A == C) { 2893 // C + B == C + D -> B == D 2894 Y = B; 2895 Z = D; 2896 } else if (A == D) { 2897 // D + B == C + D -> B == C 2898 Y = B; 2899 Z = C; 2900 } else if (B == C) { 2901 // A + C == C + D -> A == D 2902 Y = A; 2903 Z = D; 2904 } else { 2905 assert(B == D); 2906 // A + D == C + D -> A == C 2907 Y = A; 2908 Z = C; 2909 } 2910 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 2911 return V; 2912 } 2913 } 2914 2915 if (LBO) 2916 if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse)) 2917 return V; 2918 2919 if (RBO) 2920 if (Value *V = simplifyICmpWithBinOpOnLHS( 2921 ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse)) 2922 return V; 2923 2924 // 0 - (zext X) pred C 2925 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2926 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2927 if (RHSC->getValue().isStrictlyPositive()) { 2928 if (Pred == ICmpInst::ICMP_SLT) 2929 return ConstantInt::getTrue(RHSC->getContext()); 2930 if (Pred == ICmpInst::ICMP_SGE) 2931 return ConstantInt::getFalse(RHSC->getContext()); 2932 if (Pred == ICmpInst::ICMP_EQ) 2933 return ConstantInt::getFalse(RHSC->getContext()); 2934 if (Pred == ICmpInst::ICMP_NE) 2935 return ConstantInt::getTrue(RHSC->getContext()); 2936 } 2937 if (RHSC->getValue().isNonNegative()) { 2938 if (Pred == ICmpInst::ICMP_SLE) 2939 return ConstantInt::getTrue(RHSC->getContext()); 2940 if (Pred == ICmpInst::ICMP_SGT) 2941 return ConstantInt::getFalse(RHSC->getContext()); 2942 } 2943 } 2944 } 2945 2946 // handle: 2947 // CI2 << X == CI 2948 // CI2 << X != CI 2949 // 2950 // where CI2 is a power of 2 and CI isn't 2951 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2952 const APInt *CI2Val, *CIVal = &CI->getValue(); 2953 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2954 CI2Val->isPowerOf2()) { 2955 if (!CIVal->isPowerOf2()) { 2956 // CI2 << X can equal zero in some circumstances, 2957 // this simplification is unsafe if CI is zero. 2958 // 2959 // We know it is safe if: 2960 // - The shift is nsw, we can't shift out the one bit. 2961 // - The shift is nuw, we can't shift out the one bit. 2962 // - CI2 is one 2963 // - CI isn't zero 2964 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 2965 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 2966 CI2Val->isOneValue() || !CI->isZero()) { 2967 if (Pred == ICmpInst::ICMP_EQ) 2968 return ConstantInt::getFalse(RHS->getContext()); 2969 if (Pred == ICmpInst::ICMP_NE) 2970 return ConstantInt::getTrue(RHS->getContext()); 2971 } 2972 } 2973 if (CIVal->isSignMask() && CI2Val->isOneValue()) { 2974 if (Pred == ICmpInst::ICMP_UGT) 2975 return ConstantInt::getFalse(RHS->getContext()); 2976 if (Pred == ICmpInst::ICMP_ULE) 2977 return ConstantInt::getTrue(RHS->getContext()); 2978 } 2979 } 2980 } 2981 2982 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2983 LBO->getOperand(1) == RBO->getOperand(1)) { 2984 switch (LBO->getOpcode()) { 2985 default: 2986 break; 2987 case Instruction::UDiv: 2988 case Instruction::LShr: 2989 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 2990 !Q.IIQ.isExact(RBO)) 2991 break; 2992 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2993 RBO->getOperand(0), Q, MaxRecurse - 1)) 2994 return V; 2995 break; 2996 case Instruction::SDiv: 2997 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 2998 !Q.IIQ.isExact(RBO)) 2999 break; 3000 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3001 RBO->getOperand(0), Q, MaxRecurse - 1)) 3002 return V; 3003 break; 3004 case Instruction::AShr: 3005 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 3006 break; 3007 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3008 RBO->getOperand(0), Q, MaxRecurse - 1)) 3009 return V; 3010 break; 3011 case Instruction::Shl: { 3012 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 3013 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 3014 if (!NUW && !NSW) 3015 break; 3016 if (!NSW && ICmpInst::isSigned(Pred)) 3017 break; 3018 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3019 RBO->getOperand(0), Q, MaxRecurse - 1)) 3020 return V; 3021 break; 3022 } 3023 } 3024 } 3025 return nullptr; 3026 } 3027 3028 /// Simplify integer comparisons where at least one operand of the compare 3029 /// matches an integer min/max idiom. 3030 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 3031 Value *RHS, const SimplifyQuery &Q, 3032 unsigned MaxRecurse) { 3033 Type *ITy = GetCompareTy(LHS); // The return type. 3034 Value *A, *B; 3035 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 3036 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 3037 3038 // Signed variants on "max(a,b)>=a -> true". 3039 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3040 if (A != RHS) 3041 std::swap(A, B); // smax(A, B) pred A. 3042 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3043 // We analyze this as smax(A, B) pred A. 3044 P = Pred; 3045 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 3046 (A == LHS || B == LHS)) { 3047 if (A != LHS) 3048 std::swap(A, B); // A pred smax(A, B). 3049 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3050 // We analyze this as smax(A, B) swapped-pred A. 3051 P = CmpInst::getSwappedPredicate(Pred); 3052 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3053 (A == RHS || B == RHS)) { 3054 if (A != RHS) 3055 std::swap(A, B); // smin(A, B) pred A. 3056 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3057 // We analyze this as smax(-A, -B) swapped-pred -A. 3058 // Note that we do not need to actually form -A or -B thanks to EqP. 3059 P = CmpInst::getSwappedPredicate(Pred); 3060 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 3061 (A == LHS || B == LHS)) { 3062 if (A != LHS) 3063 std::swap(A, B); // A pred smin(A, B). 3064 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3065 // We analyze this as smax(-A, -B) pred -A. 3066 // Note that we do not need to actually form -A or -B thanks to EqP. 3067 P = Pred; 3068 } 3069 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3070 // Cases correspond to "max(A, B) p A". 3071 switch (P) { 3072 default: 3073 break; 3074 case CmpInst::ICMP_EQ: 3075 case CmpInst::ICMP_SLE: 3076 // Equivalent to "A EqP B". This may be the same as the condition tested 3077 // in the max/min; if so, we can just return that. 3078 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3079 return V; 3080 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3081 return V; 3082 // Otherwise, see if "A EqP B" simplifies. 3083 if (MaxRecurse) 3084 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3085 return V; 3086 break; 3087 case CmpInst::ICMP_NE: 3088 case CmpInst::ICMP_SGT: { 3089 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3090 // Equivalent to "A InvEqP B". This may be the same as the condition 3091 // tested in the max/min; if so, we can just return that. 3092 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3093 return V; 3094 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3095 return V; 3096 // Otherwise, see if "A InvEqP B" simplifies. 3097 if (MaxRecurse) 3098 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3099 return V; 3100 break; 3101 } 3102 case CmpInst::ICMP_SGE: 3103 // Always true. 3104 return getTrue(ITy); 3105 case CmpInst::ICMP_SLT: 3106 // Always false. 3107 return getFalse(ITy); 3108 } 3109 } 3110 3111 // Unsigned variants on "max(a,b)>=a -> true". 3112 P = CmpInst::BAD_ICMP_PREDICATE; 3113 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3114 if (A != RHS) 3115 std::swap(A, B); // umax(A, B) pred A. 3116 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3117 // We analyze this as umax(A, B) pred A. 3118 P = Pred; 3119 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 3120 (A == LHS || B == LHS)) { 3121 if (A != LHS) 3122 std::swap(A, B); // A pred umax(A, B). 3123 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3124 // We analyze this as umax(A, B) swapped-pred A. 3125 P = CmpInst::getSwappedPredicate(Pred); 3126 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3127 (A == RHS || B == RHS)) { 3128 if (A != RHS) 3129 std::swap(A, B); // umin(A, B) pred A. 3130 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3131 // We analyze this as umax(-A, -B) swapped-pred -A. 3132 // Note that we do not need to actually form -A or -B thanks to EqP. 3133 P = CmpInst::getSwappedPredicate(Pred); 3134 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3135 (A == LHS || B == LHS)) { 3136 if (A != LHS) 3137 std::swap(A, B); // A pred umin(A, B). 3138 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3139 // We analyze this as umax(-A, -B) pred -A. 3140 // Note that we do not need to actually form -A or -B thanks to EqP. 3141 P = Pred; 3142 } 3143 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3144 // Cases correspond to "max(A, B) p A". 3145 switch (P) { 3146 default: 3147 break; 3148 case CmpInst::ICMP_EQ: 3149 case CmpInst::ICMP_ULE: 3150 // Equivalent to "A EqP B". This may be the same as the condition tested 3151 // in the max/min; if so, we can just return that. 3152 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3153 return V; 3154 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3155 return V; 3156 // Otherwise, see if "A EqP B" simplifies. 3157 if (MaxRecurse) 3158 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3159 return V; 3160 break; 3161 case CmpInst::ICMP_NE: 3162 case CmpInst::ICMP_UGT: { 3163 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3164 // Equivalent to "A InvEqP B". This may be the same as the condition 3165 // tested in the max/min; if so, we can just return that. 3166 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3167 return V; 3168 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3169 return V; 3170 // Otherwise, see if "A InvEqP B" simplifies. 3171 if (MaxRecurse) 3172 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3173 return V; 3174 break; 3175 } 3176 case CmpInst::ICMP_UGE: 3177 // Always true. 3178 return getTrue(ITy); 3179 case CmpInst::ICMP_ULT: 3180 // Always false. 3181 return getFalse(ITy); 3182 } 3183 } 3184 3185 // Variants on "max(x,y) >= min(x,z)". 3186 Value *C, *D; 3187 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3188 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3189 (A == C || A == D || B == C || B == D)) { 3190 // max(x, ?) pred min(x, ?). 3191 if (Pred == CmpInst::ICMP_SGE) 3192 // Always true. 3193 return getTrue(ITy); 3194 if (Pred == CmpInst::ICMP_SLT) 3195 // Always false. 3196 return getFalse(ITy); 3197 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3198 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 3199 (A == C || A == D || B == C || B == D)) { 3200 // min(x, ?) pred max(x, ?). 3201 if (Pred == CmpInst::ICMP_SLE) 3202 // Always true. 3203 return getTrue(ITy); 3204 if (Pred == CmpInst::ICMP_SGT) 3205 // Always false. 3206 return getFalse(ITy); 3207 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3208 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3209 (A == C || A == D || B == C || B == D)) { 3210 // max(x, ?) pred min(x, ?). 3211 if (Pred == CmpInst::ICMP_UGE) 3212 // Always true. 3213 return getTrue(ITy); 3214 if (Pred == CmpInst::ICMP_ULT) 3215 // Always false. 3216 return getFalse(ITy); 3217 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3218 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 3219 (A == C || A == D || B == C || B == D)) { 3220 // min(x, ?) pred max(x, ?). 3221 if (Pred == CmpInst::ICMP_ULE) 3222 // Always true. 3223 return getTrue(ITy); 3224 if (Pred == CmpInst::ICMP_UGT) 3225 // Always false. 3226 return getFalse(ITy); 3227 } 3228 3229 return nullptr; 3230 } 3231 3232 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate, 3233 Value *LHS, Value *RHS, 3234 const SimplifyQuery &Q) { 3235 // Gracefully handle instructions that have not been inserted yet. 3236 if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent()) 3237 return nullptr; 3238 3239 for (Value *AssumeBaseOp : {LHS, RHS}) { 3240 for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) { 3241 if (!AssumeVH) 3242 continue; 3243 3244 CallInst *Assume = cast<CallInst>(AssumeVH); 3245 if (Optional<bool> Imp = 3246 isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS, 3247 Q.DL)) 3248 if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT)) 3249 return ConstantInt::get(GetCompareTy(LHS), *Imp); 3250 } 3251 } 3252 3253 return nullptr; 3254 } 3255 3256 /// Given operands for an ICmpInst, see if we can fold the result. 3257 /// If not, this returns null. 3258 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3259 const SimplifyQuery &Q, unsigned MaxRecurse) { 3260 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3261 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3262 3263 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3264 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3265 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3266 3267 // If we have a constant, make sure it is on the RHS. 3268 std::swap(LHS, RHS); 3269 Pred = CmpInst::getSwappedPredicate(Pred); 3270 } 3271 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); 3272 3273 Type *ITy = GetCompareTy(LHS); // The return type. 3274 3275 // For EQ and NE, we can always pick a value for the undef to make the 3276 // predicate pass or fail, so we can return undef. 3277 // Matches behavior in llvm::ConstantFoldCompareInstruction. 3278 if (isa<UndefValue>(RHS) && ICmpInst::isEquality(Pred)) 3279 return UndefValue::get(ITy); 3280 3281 // icmp X, X -> true/false 3282 // icmp X, undef -> true/false because undef could be X. 3283 if (LHS == RHS || isa<UndefValue>(RHS)) 3284 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3285 3286 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3287 return V; 3288 3289 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3290 return V; 3291 3292 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3293 return V; 3294 3295 // If both operands have range metadata, use the metadata 3296 // to simplify the comparison. 3297 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3298 auto RHS_Instr = cast<Instruction>(RHS); 3299 auto LHS_Instr = cast<Instruction>(LHS); 3300 3301 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && 3302 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { 3303 auto RHS_CR = getConstantRangeFromMetadata( 3304 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3305 auto LHS_CR = getConstantRangeFromMetadata( 3306 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3307 3308 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 3309 if (Satisfied_CR.contains(LHS_CR)) 3310 return ConstantInt::getTrue(RHS->getContext()); 3311 3312 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 3313 CmpInst::getInversePredicate(Pred), RHS_CR); 3314 if (InversedSatisfied_CR.contains(LHS_CR)) 3315 return ConstantInt::getFalse(RHS->getContext()); 3316 } 3317 } 3318 3319 // Compare of cast, for example (zext X) != 0 -> X != 0 3320 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3321 Instruction *LI = cast<CastInst>(LHS); 3322 Value *SrcOp = LI->getOperand(0); 3323 Type *SrcTy = SrcOp->getType(); 3324 Type *DstTy = LI->getType(); 3325 3326 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3327 // if the integer type is the same size as the pointer type. 3328 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3329 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3330 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3331 // Transfer the cast to the constant. 3332 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3333 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3334 Q, MaxRecurse-1)) 3335 return V; 3336 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3337 if (RI->getOperand(0)->getType() == SrcTy) 3338 // Compare without the cast. 3339 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3340 Q, MaxRecurse-1)) 3341 return V; 3342 } 3343 } 3344 3345 if (isa<ZExtInst>(LHS)) { 3346 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3347 // same type. 3348 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3349 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3350 // Compare X and Y. Note that signed predicates become unsigned. 3351 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3352 SrcOp, RI->getOperand(0), Q, 3353 MaxRecurse-1)) 3354 return V; 3355 } 3356 // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true. 3357 else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3358 if (SrcOp == RI->getOperand(0)) { 3359 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE) 3360 return ConstantInt::getTrue(ITy); 3361 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT) 3362 return ConstantInt::getFalse(ITy); 3363 } 3364 } 3365 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3366 // too. If not, then try to deduce the result of the comparison. 3367 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3368 // Compute the constant that would happen if we truncated to SrcTy then 3369 // reextended to DstTy. 3370 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3371 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3372 3373 // If the re-extended constant didn't change then this is effectively 3374 // also a case of comparing two zero-extended values. 3375 if (RExt == CI && MaxRecurse) 3376 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3377 SrcOp, Trunc, Q, MaxRecurse-1)) 3378 return V; 3379 3380 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3381 // there. Use this to work out the result of the comparison. 3382 if (RExt != CI) { 3383 switch (Pred) { 3384 default: llvm_unreachable("Unknown ICmp predicate!"); 3385 // LHS <u RHS. 3386 case ICmpInst::ICMP_EQ: 3387 case ICmpInst::ICMP_UGT: 3388 case ICmpInst::ICMP_UGE: 3389 return ConstantInt::getFalse(CI->getContext()); 3390 3391 case ICmpInst::ICMP_NE: 3392 case ICmpInst::ICMP_ULT: 3393 case ICmpInst::ICMP_ULE: 3394 return ConstantInt::getTrue(CI->getContext()); 3395 3396 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3397 // is non-negative then LHS <s RHS. 3398 case ICmpInst::ICMP_SGT: 3399 case ICmpInst::ICMP_SGE: 3400 return CI->getValue().isNegative() ? 3401 ConstantInt::getTrue(CI->getContext()) : 3402 ConstantInt::getFalse(CI->getContext()); 3403 3404 case ICmpInst::ICMP_SLT: 3405 case ICmpInst::ICMP_SLE: 3406 return CI->getValue().isNegative() ? 3407 ConstantInt::getFalse(CI->getContext()) : 3408 ConstantInt::getTrue(CI->getContext()); 3409 } 3410 } 3411 } 3412 } 3413 3414 if (isa<SExtInst>(LHS)) { 3415 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3416 // same type. 3417 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3418 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3419 // Compare X and Y. Note that the predicate does not change. 3420 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3421 Q, MaxRecurse-1)) 3422 return V; 3423 } 3424 // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true. 3425 else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3426 if (SrcOp == RI->getOperand(0)) { 3427 if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE) 3428 return ConstantInt::getTrue(ITy); 3429 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT) 3430 return ConstantInt::getFalse(ITy); 3431 } 3432 } 3433 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3434 // too. If not, then try to deduce the result of the comparison. 3435 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3436 // Compute the constant that would happen if we truncated to SrcTy then 3437 // reextended to DstTy. 3438 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3439 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3440 3441 // If the re-extended constant didn't change then this is effectively 3442 // also a case of comparing two sign-extended values. 3443 if (RExt == CI && MaxRecurse) 3444 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3445 return V; 3446 3447 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3448 // bits there. Use this to work out the result of the comparison. 3449 if (RExt != CI) { 3450 switch (Pred) { 3451 default: llvm_unreachable("Unknown ICmp predicate!"); 3452 case ICmpInst::ICMP_EQ: 3453 return ConstantInt::getFalse(CI->getContext()); 3454 case ICmpInst::ICMP_NE: 3455 return ConstantInt::getTrue(CI->getContext()); 3456 3457 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3458 // LHS >s RHS. 3459 case ICmpInst::ICMP_SGT: 3460 case ICmpInst::ICMP_SGE: 3461 return CI->getValue().isNegative() ? 3462 ConstantInt::getTrue(CI->getContext()) : 3463 ConstantInt::getFalse(CI->getContext()); 3464 case ICmpInst::ICMP_SLT: 3465 case ICmpInst::ICMP_SLE: 3466 return CI->getValue().isNegative() ? 3467 ConstantInt::getFalse(CI->getContext()) : 3468 ConstantInt::getTrue(CI->getContext()); 3469 3470 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3471 // LHS >u RHS. 3472 case ICmpInst::ICMP_UGT: 3473 case ICmpInst::ICMP_UGE: 3474 // Comparison is true iff the LHS <s 0. 3475 if (MaxRecurse) 3476 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3477 Constant::getNullValue(SrcTy), 3478 Q, MaxRecurse-1)) 3479 return V; 3480 break; 3481 case ICmpInst::ICMP_ULT: 3482 case ICmpInst::ICMP_ULE: 3483 // Comparison is true iff the LHS >=s 0. 3484 if (MaxRecurse) 3485 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3486 Constant::getNullValue(SrcTy), 3487 Q, MaxRecurse-1)) 3488 return V; 3489 break; 3490 } 3491 } 3492 } 3493 } 3494 } 3495 3496 // icmp eq|ne X, Y -> false|true if X != Y 3497 if (ICmpInst::isEquality(Pred) && 3498 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 3499 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3500 } 3501 3502 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3503 return V; 3504 3505 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3506 return V; 3507 3508 if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q)) 3509 return V; 3510 3511 // Simplify comparisons of related pointers using a powerful, recursive 3512 // GEP-walk when we have target data available.. 3513 if (LHS->getType()->isPointerTy()) 3514 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3515 Q.IIQ, LHS, RHS)) 3516 return C; 3517 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3518 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3519 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3520 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3521 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3522 Q.DL.getTypeSizeInBits(CRHS->getType())) 3523 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3524 Q.IIQ, CLHS->getPointerOperand(), 3525 CRHS->getPointerOperand())) 3526 return C; 3527 3528 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3529 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3530 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3531 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3532 (ICmpInst::isEquality(Pred) || 3533 (GLHS->isInBounds() && GRHS->isInBounds() && 3534 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3535 // The bases are equal and the indices are constant. Build a constant 3536 // expression GEP with the same indices and a null base pointer to see 3537 // what constant folding can make out of it. 3538 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3539 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3540 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3541 GLHS->getSourceElementType(), Null, IndicesLHS); 3542 3543 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3544 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3545 GLHS->getSourceElementType(), Null, IndicesRHS); 3546 Constant *NewICmp = ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3547 return ConstantFoldConstant(NewICmp, Q.DL); 3548 } 3549 } 3550 } 3551 3552 // If the comparison is with the result of a select instruction, check whether 3553 // comparing with either branch of the select always yields the same value. 3554 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3555 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3556 return V; 3557 3558 // If the comparison is with the result of a phi instruction, check whether 3559 // doing the compare with each incoming phi value yields a common result. 3560 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3561 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3562 return V; 3563 3564 return nullptr; 3565 } 3566 3567 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3568 const SimplifyQuery &Q) { 3569 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3570 } 3571 3572 /// Given operands for an FCmpInst, see if we can fold the result. 3573 /// If not, this returns null. 3574 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3575 FastMathFlags FMF, const SimplifyQuery &Q, 3576 unsigned MaxRecurse) { 3577 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3578 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3579 3580 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3581 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3582 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3583 3584 // If we have a constant, make sure it is on the RHS. 3585 std::swap(LHS, RHS); 3586 Pred = CmpInst::getSwappedPredicate(Pred); 3587 } 3588 3589 // Fold trivial predicates. 3590 Type *RetTy = GetCompareTy(LHS); 3591 if (Pred == FCmpInst::FCMP_FALSE) 3592 return getFalse(RetTy); 3593 if (Pred == FCmpInst::FCMP_TRUE) 3594 return getTrue(RetTy); 3595 3596 // Fold (un)ordered comparison if we can determine there are no NaNs. 3597 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) 3598 if (FMF.noNaNs() || 3599 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI))) 3600 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 3601 3602 // NaN is unordered; NaN is not ordered. 3603 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && 3604 "Comparison must be either ordered or unordered"); 3605 if (match(RHS, m_NaN())) 3606 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3607 3608 // fcmp pred x, undef and fcmp pred undef, x 3609 // fold to true if unordered, false if ordered 3610 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3611 // Choosing NaN for the undef will always make unordered comparison succeed 3612 // and ordered comparison fail. 3613 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3614 } 3615 3616 // fcmp x,x -> true/false. Not all compares are foldable. 3617 if (LHS == RHS) { 3618 if (CmpInst::isTrueWhenEqual(Pred)) 3619 return getTrue(RetTy); 3620 if (CmpInst::isFalseWhenEqual(Pred)) 3621 return getFalse(RetTy); 3622 } 3623 3624 // Handle fcmp with constant RHS. 3625 // TODO: Use match with a specific FP value, so these work with vectors with 3626 // undef lanes. 3627 const APFloat *C; 3628 if (match(RHS, m_APFloat(C))) { 3629 // Check whether the constant is an infinity. 3630 if (C->isInfinity()) { 3631 if (C->isNegative()) { 3632 switch (Pred) { 3633 case FCmpInst::FCMP_OLT: 3634 // No value is ordered and less than negative infinity. 3635 return getFalse(RetTy); 3636 case FCmpInst::FCMP_UGE: 3637 // All values are unordered with or at least negative infinity. 3638 return getTrue(RetTy); 3639 default: 3640 break; 3641 } 3642 } else { 3643 switch (Pred) { 3644 case FCmpInst::FCMP_OGT: 3645 // No value is ordered and greater than infinity. 3646 return getFalse(RetTy); 3647 case FCmpInst::FCMP_ULE: 3648 // All values are unordered with and at most infinity. 3649 return getTrue(RetTy); 3650 default: 3651 break; 3652 } 3653 } 3654 3655 // LHS == Inf 3656 if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI)) 3657 return getFalse(RetTy); 3658 // LHS != Inf 3659 if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI)) 3660 return getTrue(RetTy); 3661 // LHS == Inf || LHS == NaN 3662 if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) && 3663 isKnownNeverNaN(LHS, Q.TLI)) 3664 return getFalse(RetTy); 3665 // LHS != Inf && LHS != NaN 3666 if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) && 3667 isKnownNeverNaN(LHS, Q.TLI)) 3668 return getTrue(RetTy); 3669 } 3670 if (C->isNegative() && !C->isNegZero()) { 3671 assert(!C->isNaN() && "Unexpected NaN constant!"); 3672 // TODO: We can catch more cases by using a range check rather than 3673 // relying on CannotBeOrderedLessThanZero. 3674 switch (Pred) { 3675 case FCmpInst::FCMP_UGE: 3676 case FCmpInst::FCMP_UGT: 3677 case FCmpInst::FCMP_UNE: 3678 // (X >= 0) implies (X > C) when (C < 0) 3679 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3680 return getTrue(RetTy); 3681 break; 3682 case FCmpInst::FCMP_OEQ: 3683 case FCmpInst::FCMP_OLE: 3684 case FCmpInst::FCMP_OLT: 3685 // (X >= 0) implies !(X < C) when (C < 0) 3686 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3687 return getFalse(RetTy); 3688 break; 3689 default: 3690 break; 3691 } 3692 } 3693 3694 // Check comparison of [minnum/maxnum with constant] with other constant. 3695 const APFloat *C2; 3696 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) && 3697 *C2 < *C) || 3698 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) && 3699 *C2 > *C)) { 3700 bool IsMaxNum = 3701 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum; 3702 // The ordered relationship and minnum/maxnum guarantee that we do not 3703 // have NaN constants, so ordered/unordered preds are handled the same. 3704 switch (Pred) { 3705 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ: 3706 // minnum(X, LesserC) == C --> false 3707 // maxnum(X, GreaterC) == C --> false 3708 return getFalse(RetTy); 3709 case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE: 3710 // minnum(X, LesserC) != C --> true 3711 // maxnum(X, GreaterC) != C --> true 3712 return getTrue(RetTy); 3713 case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE: 3714 case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT: 3715 // minnum(X, LesserC) >= C --> false 3716 // minnum(X, LesserC) > C --> false 3717 // maxnum(X, GreaterC) >= C --> true 3718 // maxnum(X, GreaterC) > C --> true 3719 return ConstantInt::get(RetTy, IsMaxNum); 3720 case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE: 3721 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT: 3722 // minnum(X, LesserC) <= C --> true 3723 // minnum(X, LesserC) < C --> true 3724 // maxnum(X, GreaterC) <= C --> false 3725 // maxnum(X, GreaterC) < C --> false 3726 return ConstantInt::get(RetTy, !IsMaxNum); 3727 default: 3728 // TRUE/FALSE/ORD/UNO should be handled before this. 3729 llvm_unreachable("Unexpected fcmp predicate"); 3730 } 3731 } 3732 } 3733 3734 if (match(RHS, m_AnyZeroFP())) { 3735 switch (Pred) { 3736 case FCmpInst::FCMP_OGE: 3737 case FCmpInst::FCMP_ULT: 3738 // Positive or zero X >= 0.0 --> true 3739 // Positive or zero X < 0.0 --> false 3740 if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) && 3741 CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3742 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy); 3743 break; 3744 case FCmpInst::FCMP_UGE: 3745 case FCmpInst::FCMP_OLT: 3746 // Positive or zero or nan X >= 0.0 --> true 3747 // Positive or zero or nan X < 0.0 --> false 3748 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3749 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy); 3750 break; 3751 default: 3752 break; 3753 } 3754 } 3755 3756 // If the comparison is with the result of a select instruction, check whether 3757 // comparing with either branch of the select always yields the same value. 3758 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3759 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3760 return V; 3761 3762 // If the comparison is with the result of a phi instruction, check whether 3763 // doing the compare with each incoming phi value yields a common result. 3764 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3765 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3766 return V; 3767 3768 return nullptr; 3769 } 3770 3771 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3772 FastMathFlags FMF, const SimplifyQuery &Q) { 3773 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 3774 } 3775 3776 /// See if V simplifies when its operand Op is replaced with RepOp. 3777 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3778 const SimplifyQuery &Q, 3779 unsigned MaxRecurse) { 3780 // Trivial replacement. 3781 if (V == Op) 3782 return RepOp; 3783 3784 // We cannot replace a constant, and shouldn't even try. 3785 if (isa<Constant>(Op)) 3786 return nullptr; 3787 3788 auto *I = dyn_cast<Instruction>(V); 3789 if (!I) 3790 return nullptr; 3791 3792 // If this is a binary operator, try to simplify it with the replaced op. 3793 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3794 // Consider: 3795 // %cmp = icmp eq i32 %x, 2147483647 3796 // %add = add nsw i32 %x, 1 3797 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3798 // 3799 // We can't replace %sel with %add unless we strip away the flags. 3800 // TODO: This is an unusual limitation because better analysis results in 3801 // worse simplification. InstCombine can do this fold more generally 3802 // by dropping the flags. Remove this fold to save compile-time? 3803 if (isa<OverflowingBinaryOperator>(B)) 3804 if (Q.IIQ.hasNoSignedWrap(B) || Q.IIQ.hasNoUnsignedWrap(B)) 3805 return nullptr; 3806 if (isa<PossiblyExactOperator>(B) && Q.IIQ.isExact(B)) 3807 return nullptr; 3808 3809 if (MaxRecurse) { 3810 if (B->getOperand(0) == Op) 3811 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3812 MaxRecurse - 1); 3813 if (B->getOperand(1) == Op) 3814 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3815 MaxRecurse - 1); 3816 } 3817 } 3818 3819 // Same for CmpInsts. 3820 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3821 if (MaxRecurse) { 3822 if (C->getOperand(0) == Op) 3823 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3824 MaxRecurse - 1); 3825 if (C->getOperand(1) == Op) 3826 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3827 MaxRecurse - 1); 3828 } 3829 } 3830 3831 // Same for GEPs. 3832 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 3833 if (MaxRecurse) { 3834 SmallVector<Value *, 8> NewOps(GEP->getNumOperands()); 3835 transform(GEP->operands(), NewOps.begin(), 3836 [&](Value *V) { return V == Op ? RepOp : V; }); 3837 return SimplifyGEPInst(GEP->getSourceElementType(), NewOps, Q, 3838 MaxRecurse - 1); 3839 } 3840 } 3841 3842 // TODO: We could hand off more cases to instsimplify here. 3843 3844 // If all operands are constant after substituting Op for RepOp then we can 3845 // constant fold the instruction. 3846 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3847 // Build a list of all constant operands. 3848 SmallVector<Constant *, 8> ConstOps; 3849 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3850 if (I->getOperand(i) == Op) 3851 ConstOps.push_back(CRepOp); 3852 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3853 ConstOps.push_back(COp); 3854 else 3855 break; 3856 } 3857 3858 // All operands were constants, fold it. 3859 if (ConstOps.size() == I->getNumOperands()) { 3860 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3861 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3862 ConstOps[1], Q.DL, Q.TLI); 3863 3864 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3865 if (!LI->isVolatile()) 3866 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3867 3868 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3869 } 3870 } 3871 3872 return nullptr; 3873 } 3874 3875 /// Try to simplify a select instruction when its condition operand is an 3876 /// integer comparison where one operand of the compare is a constant. 3877 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3878 const APInt *Y, bool TrueWhenUnset) { 3879 const APInt *C; 3880 3881 // (X & Y) == 0 ? X & ~Y : X --> X 3882 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3883 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3884 *Y == ~*C) 3885 return TrueWhenUnset ? FalseVal : TrueVal; 3886 3887 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3888 // (X & Y) != 0 ? X : X & ~Y --> X 3889 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3890 *Y == ~*C) 3891 return TrueWhenUnset ? FalseVal : TrueVal; 3892 3893 if (Y->isPowerOf2()) { 3894 // (X & Y) == 0 ? X | Y : X --> X | Y 3895 // (X & Y) != 0 ? X | Y : X --> X 3896 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3897 *Y == *C) 3898 return TrueWhenUnset ? TrueVal : FalseVal; 3899 3900 // (X & Y) == 0 ? X : X | Y --> X 3901 // (X & Y) != 0 ? X : X | Y --> X | Y 3902 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3903 *Y == *C) 3904 return TrueWhenUnset ? TrueVal : FalseVal; 3905 } 3906 3907 return nullptr; 3908 } 3909 3910 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 3911 /// eq/ne. 3912 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 3913 ICmpInst::Predicate Pred, 3914 Value *TrueVal, Value *FalseVal) { 3915 Value *X; 3916 APInt Mask; 3917 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 3918 return nullptr; 3919 3920 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 3921 Pred == ICmpInst::ICMP_EQ); 3922 } 3923 3924 /// Try to simplify a select instruction when its condition operand is an 3925 /// integer comparison. 3926 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 3927 Value *FalseVal, const SimplifyQuery &Q, 3928 unsigned MaxRecurse) { 3929 ICmpInst::Predicate Pred; 3930 Value *CmpLHS, *CmpRHS; 3931 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 3932 return nullptr; 3933 3934 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) { 3935 Value *X; 3936 const APInt *Y; 3937 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 3938 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 3939 Pred == ICmpInst::ICMP_EQ)) 3940 return V; 3941 3942 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. 3943 Value *ShAmt; 3944 auto isFsh = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), 3945 m_Value(ShAmt)), 3946 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), 3947 m_Value(ShAmt))); 3948 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 3949 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 3950 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt && 3951 Pred == ICmpInst::ICMP_EQ) 3952 return X; 3953 // (ShAmt != 0) ? X : fshl(X, *, ShAmt) --> X 3954 // (ShAmt != 0) ? X : fshr(*, X, ShAmt) --> X 3955 if (match(FalseVal, isFsh) && TrueVal == X && CmpLHS == ShAmt && 3956 Pred == ICmpInst::ICMP_NE) 3957 return X; 3958 3959 // Test for a zero-shift-guard-op around rotates. These are used to 3960 // avoid UB from oversized shifts in raw IR rotate patterns, but the 3961 // intrinsics do not have that problem. 3962 // We do not allow this transform for the general funnel shift case because 3963 // that would not preserve the poison safety of the original code. 3964 auto isRotate = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X), 3965 m_Deferred(X), 3966 m_Value(ShAmt)), 3967 m_Intrinsic<Intrinsic::fshr>(m_Value(X), 3968 m_Deferred(X), 3969 m_Value(ShAmt))); 3970 // (ShAmt != 0) ? fshl(X, X, ShAmt) : X --> fshl(X, X, ShAmt) 3971 // (ShAmt != 0) ? fshr(X, X, ShAmt) : X --> fshr(X, X, ShAmt) 3972 if (match(TrueVal, isRotate) && FalseVal == X && CmpLHS == ShAmt && 3973 Pred == ICmpInst::ICMP_NE) 3974 return TrueVal; 3975 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) 3976 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) 3977 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && 3978 Pred == ICmpInst::ICMP_EQ) 3979 return FalseVal; 3980 } 3981 3982 // Check for other compares that behave like bit test. 3983 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 3984 TrueVal, FalseVal)) 3985 return V; 3986 3987 // If we have an equality comparison, then we know the value in one of the 3988 // arms of the select. See if substituting this value into the arm and 3989 // simplifying the result yields the same value as the other arm. 3990 if (Pred == ICmpInst::ICMP_EQ) { 3991 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3992 TrueVal || 3993 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3994 TrueVal) 3995 return FalseVal; 3996 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3997 FalseVal || 3998 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3999 FalseVal) 4000 return FalseVal; 4001 } else if (Pred == ICmpInst::ICMP_NE) { 4002 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 4003 FalseVal || 4004 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 4005 FalseVal) 4006 return TrueVal; 4007 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 4008 TrueVal || 4009 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 4010 TrueVal) 4011 return TrueVal; 4012 } 4013 4014 return nullptr; 4015 } 4016 4017 /// Try to simplify a select instruction when its condition operand is a 4018 /// floating-point comparison. 4019 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, 4020 const SimplifyQuery &Q) { 4021 FCmpInst::Predicate Pred; 4022 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && 4023 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) 4024 return nullptr; 4025 4026 // This transform is safe if we do not have (do not care about) -0.0 or if 4027 // at least one operand is known to not be -0.0. Otherwise, the select can 4028 // change the sign of a zero operand. 4029 bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) && 4030 Q.CxtI->hasNoSignedZeros(); 4031 const APFloat *C; 4032 if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) || 4033 (match(F, m_APFloat(C)) && C->isNonZero())) { 4034 // (T == F) ? T : F --> F 4035 // (F == T) ? T : F --> F 4036 if (Pred == FCmpInst::FCMP_OEQ) 4037 return F; 4038 4039 // (T != F) ? T : F --> T 4040 // (F != T) ? T : F --> T 4041 if (Pred == FCmpInst::FCMP_UNE) 4042 return T; 4043 } 4044 4045 return nullptr; 4046 } 4047 4048 /// Given operands for a SelectInst, see if we can fold the result. 4049 /// If not, this returns null. 4050 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4051 const SimplifyQuery &Q, unsigned MaxRecurse) { 4052 if (auto *CondC = dyn_cast<Constant>(Cond)) { 4053 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 4054 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 4055 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); 4056 4057 // select undef, X, Y -> X or Y 4058 if (isa<UndefValue>(CondC)) 4059 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 4060 4061 // TODO: Vector constants with undef elements don't simplify. 4062 4063 // select true, X, Y -> X 4064 if (CondC->isAllOnesValue()) 4065 return TrueVal; 4066 // select false, X, Y -> Y 4067 if (CondC->isNullValue()) 4068 return FalseVal; 4069 } 4070 4071 // select i1 Cond, i1 true, i1 false --> i1 Cond 4072 assert(Cond->getType()->isIntOrIntVectorTy(1) && 4073 "Select must have bool or bool vector condition"); 4074 assert(TrueVal->getType() == FalseVal->getType() && 4075 "Select must have same types for true/false ops"); 4076 if (Cond->getType() == TrueVal->getType() && 4077 match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt())) 4078 return Cond; 4079 4080 // select ?, X, X -> X 4081 if (TrueVal == FalseVal) 4082 return TrueVal; 4083 4084 if (isa<UndefValue>(TrueVal)) // select ?, undef, X -> X 4085 return FalseVal; 4086 if (isa<UndefValue>(FalseVal)) // select ?, X, undef -> X 4087 return TrueVal; 4088 4089 // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC'' 4090 Constant *TrueC, *FalseC; 4091 if (TrueVal->getType()->isVectorTy() && match(TrueVal, m_Constant(TrueC)) && 4092 match(FalseVal, m_Constant(FalseC))) { 4093 unsigned NumElts = 4094 cast<FixedVectorType>(TrueC->getType())->getNumElements(); 4095 SmallVector<Constant *, 16> NewC; 4096 for (unsigned i = 0; i != NumElts; ++i) { 4097 // Bail out on incomplete vector constants. 4098 Constant *TEltC = TrueC->getAggregateElement(i); 4099 Constant *FEltC = FalseC->getAggregateElement(i); 4100 if (!TEltC || !FEltC) 4101 break; 4102 4103 // If the elements match (undef or not), that value is the result. If only 4104 // one element is undef, choose the defined element as the safe result. 4105 if (TEltC == FEltC) 4106 NewC.push_back(TEltC); 4107 else if (isa<UndefValue>(TEltC)) 4108 NewC.push_back(FEltC); 4109 else if (isa<UndefValue>(FEltC)) 4110 NewC.push_back(TEltC); 4111 else 4112 break; 4113 } 4114 if (NewC.size() == NumElts) 4115 return ConstantVector::get(NewC); 4116 } 4117 4118 if (Value *V = 4119 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 4120 return V; 4121 4122 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q)) 4123 return V; 4124 4125 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 4126 return V; 4127 4128 Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 4129 if (Imp) 4130 return *Imp ? TrueVal : FalseVal; 4131 4132 return nullptr; 4133 } 4134 4135 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4136 const SimplifyQuery &Q) { 4137 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 4138 } 4139 4140 /// Given operands for an GetElementPtrInst, see if we can fold the result. 4141 /// If not, this returns null. 4142 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 4143 const SimplifyQuery &Q, unsigned) { 4144 // The type of the GEP pointer operand. 4145 unsigned AS = 4146 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 4147 4148 // getelementptr P -> P. 4149 if (Ops.size() == 1) 4150 return Ops[0]; 4151 4152 // Compute the (pointer) type returned by the GEP instruction. 4153 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 4154 Type *GEPTy = PointerType::get(LastType, AS); 4155 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 4156 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4157 else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType())) 4158 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4159 4160 if (isa<UndefValue>(Ops[0])) 4161 return UndefValue::get(GEPTy); 4162 4163 bool IsScalableVec = isa<ScalableVectorType>(SrcTy); 4164 4165 if (Ops.size() == 2) { 4166 // getelementptr P, 0 -> P. 4167 if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy) 4168 return Ops[0]; 4169 4170 Type *Ty = SrcTy; 4171 if (!IsScalableVec && Ty->isSized()) { 4172 Value *P; 4173 uint64_t C; 4174 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 4175 // getelementptr P, N -> P if P points to a type of zero size. 4176 if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy) 4177 return Ops[0]; 4178 4179 // The following transforms are only safe if the ptrtoint cast 4180 // doesn't truncate the pointers. 4181 if (Ops[1]->getType()->getScalarSizeInBits() == 4182 Q.DL.getPointerSizeInBits(AS)) { 4183 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 4184 if (match(P, m_Zero())) 4185 return Constant::getNullValue(GEPTy); 4186 Value *Temp; 4187 if (match(P, m_PtrToInt(m_Value(Temp)))) 4188 if (Temp->getType() == GEPTy) 4189 return Temp; 4190 return nullptr; 4191 }; 4192 4193 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 4194 if (TyAllocSize == 1 && 4195 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 4196 if (Value *R = PtrToIntOrZero(P)) 4197 return R; 4198 4199 // getelementptr V, (ashr (sub P, V), C) -> Q 4200 // if P points to a type of size 1 << C. 4201 if (match(Ops[1], 4202 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 4203 m_ConstantInt(C))) && 4204 TyAllocSize == 1ULL << C) 4205 if (Value *R = PtrToIntOrZero(P)) 4206 return R; 4207 4208 // getelementptr V, (sdiv (sub P, V), C) -> Q 4209 // if P points to a type of size C. 4210 if (match(Ops[1], 4211 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 4212 m_SpecificInt(TyAllocSize)))) 4213 if (Value *R = PtrToIntOrZero(P)) 4214 return R; 4215 } 4216 } 4217 } 4218 4219 if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 && 4220 all_of(Ops.slice(1).drop_back(1), 4221 [](Value *Idx) { return match(Idx, m_Zero()); })) { 4222 unsigned IdxWidth = 4223 Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 4224 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) { 4225 APInt BasePtrOffset(IdxWidth, 0); 4226 Value *StrippedBasePtr = 4227 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 4228 BasePtrOffset); 4229 4230 // gep (gep V, C), (sub 0, V) -> C 4231 if (match(Ops.back(), 4232 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { 4233 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 4234 return ConstantExpr::getIntToPtr(CI, GEPTy); 4235 } 4236 // gep (gep V, C), (xor V, -1) -> C-1 4237 if (match(Ops.back(), 4238 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { 4239 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 4240 return ConstantExpr::getIntToPtr(CI, GEPTy); 4241 } 4242 } 4243 } 4244 4245 // Check to see if this is constant foldable. 4246 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 4247 return nullptr; 4248 4249 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 4250 Ops.slice(1)); 4251 return ConstantFoldConstant(CE, Q.DL); 4252 } 4253 4254 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 4255 const SimplifyQuery &Q) { 4256 return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit); 4257 } 4258 4259 /// Given operands for an InsertValueInst, see if we can fold the result. 4260 /// If not, this returns null. 4261 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 4262 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 4263 unsigned) { 4264 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 4265 if (Constant *CVal = dyn_cast<Constant>(Val)) 4266 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 4267 4268 // insertvalue x, undef, n -> x 4269 if (match(Val, m_Undef())) 4270 return Agg; 4271 4272 // insertvalue x, (extractvalue y, n), n 4273 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 4274 if (EV->getAggregateOperand()->getType() == Agg->getType() && 4275 EV->getIndices() == Idxs) { 4276 // insertvalue undef, (extractvalue y, n), n -> y 4277 if (match(Agg, m_Undef())) 4278 return EV->getAggregateOperand(); 4279 4280 // insertvalue y, (extractvalue y, n), n -> y 4281 if (Agg == EV->getAggregateOperand()) 4282 return Agg; 4283 } 4284 4285 return nullptr; 4286 } 4287 4288 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 4289 ArrayRef<unsigned> Idxs, 4290 const SimplifyQuery &Q) { 4291 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 4292 } 4293 4294 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 4295 const SimplifyQuery &Q) { 4296 // Try to constant fold. 4297 auto *VecC = dyn_cast<Constant>(Vec); 4298 auto *ValC = dyn_cast<Constant>(Val); 4299 auto *IdxC = dyn_cast<Constant>(Idx); 4300 if (VecC && ValC && IdxC) 4301 return ConstantFoldInsertElementInstruction(VecC, ValC, IdxC); 4302 4303 // For fixed-length vector, fold into undef if index is out of bounds. 4304 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 4305 if (isa<FixedVectorType>(Vec->getType()) && 4306 CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements())) 4307 return UndefValue::get(Vec->getType()); 4308 } 4309 4310 // If index is undef, it might be out of bounds (see above case) 4311 if (isa<UndefValue>(Idx)) 4312 return UndefValue::get(Vec->getType()); 4313 4314 // If the scalar is undef, and there is no risk of propagating poison from the 4315 // vector value, simplify to the vector value. 4316 if (isa<UndefValue>(Val) && isGuaranteedNotToBeUndefOrPoison(Vec)) 4317 return Vec; 4318 4319 // If we are extracting a value from a vector, then inserting it into the same 4320 // place, that's the input vector: 4321 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec 4322 if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx)))) 4323 return Vec; 4324 4325 return nullptr; 4326 } 4327 4328 /// Given operands for an ExtractValueInst, see if we can fold the result. 4329 /// If not, this returns null. 4330 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4331 const SimplifyQuery &, unsigned) { 4332 if (auto *CAgg = dyn_cast<Constant>(Agg)) 4333 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 4334 4335 // extractvalue x, (insertvalue y, elt, n), n -> elt 4336 unsigned NumIdxs = Idxs.size(); 4337 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 4338 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 4339 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 4340 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 4341 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 4342 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 4343 Idxs.slice(0, NumCommonIdxs)) { 4344 if (NumIdxs == NumInsertValueIdxs) 4345 return IVI->getInsertedValueOperand(); 4346 break; 4347 } 4348 } 4349 4350 return nullptr; 4351 } 4352 4353 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4354 const SimplifyQuery &Q) { 4355 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 4356 } 4357 4358 /// Given operands for an ExtractElementInst, see if we can fold the result. 4359 /// If not, this returns null. 4360 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &, 4361 unsigned) { 4362 auto *VecVTy = cast<VectorType>(Vec->getType()); 4363 if (auto *CVec = dyn_cast<Constant>(Vec)) { 4364 if (auto *CIdx = dyn_cast<Constant>(Idx)) 4365 return ConstantFoldExtractElementInstruction(CVec, CIdx); 4366 4367 // The index is not relevant if our vector is a splat. 4368 if (auto *Splat = CVec->getSplatValue()) 4369 return Splat; 4370 4371 if (isa<UndefValue>(Vec)) 4372 return UndefValue::get(VecVTy->getElementType()); 4373 } 4374 4375 // If extracting a specified index from the vector, see if we can recursively 4376 // find a previously computed scalar that was inserted into the vector. 4377 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 4378 // For fixed-length vector, fold into undef if index is out of bounds. 4379 if (isa<FixedVectorType>(VecVTy) && 4380 IdxC->getValue().uge(cast<FixedVectorType>(VecVTy)->getNumElements())) 4381 return UndefValue::get(VecVTy->getElementType()); 4382 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4383 return Elt; 4384 } 4385 4386 // An undef extract index can be arbitrarily chosen to be an out-of-range 4387 // index value, which would result in the instruction being undef. 4388 if (isa<UndefValue>(Idx)) 4389 return UndefValue::get(VecVTy->getElementType()); 4390 4391 return nullptr; 4392 } 4393 4394 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 4395 const SimplifyQuery &Q) { 4396 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 4397 } 4398 4399 /// See if we can fold the given phi. If not, returns null. 4400 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) { 4401 // If all of the PHI's incoming values are the same then replace the PHI node 4402 // with the common value. 4403 Value *CommonValue = nullptr; 4404 bool HasUndefInput = false; 4405 for (Value *Incoming : PN->incoming_values()) { 4406 // If the incoming value is the phi node itself, it can safely be skipped. 4407 if (Incoming == PN) continue; 4408 if (isa<UndefValue>(Incoming)) { 4409 // Remember that we saw an undef value, but otherwise ignore them. 4410 HasUndefInput = true; 4411 continue; 4412 } 4413 if (CommonValue && Incoming != CommonValue) 4414 return nullptr; // Not the same, bail out. 4415 CommonValue = Incoming; 4416 } 4417 4418 // If CommonValue is null then all of the incoming values were either undef or 4419 // equal to the phi node itself. 4420 if (!CommonValue) 4421 return UndefValue::get(PN->getType()); 4422 4423 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4424 // instruction, we cannot return X as the result of the PHI node unless it 4425 // dominates the PHI block. 4426 if (HasUndefInput) 4427 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4428 4429 return CommonValue; 4430 } 4431 4432 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4433 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 4434 if (auto *C = dyn_cast<Constant>(Op)) 4435 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4436 4437 if (auto *CI = dyn_cast<CastInst>(Op)) { 4438 auto *Src = CI->getOperand(0); 4439 Type *SrcTy = Src->getType(); 4440 Type *MidTy = CI->getType(); 4441 Type *DstTy = Ty; 4442 if (Src->getType() == Ty) { 4443 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4444 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4445 Type *SrcIntPtrTy = 4446 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4447 Type *MidIntPtrTy = 4448 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4449 Type *DstIntPtrTy = 4450 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4451 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4452 SrcIntPtrTy, MidIntPtrTy, 4453 DstIntPtrTy) == Instruction::BitCast) 4454 return Src; 4455 } 4456 } 4457 4458 // bitcast x -> x 4459 if (CastOpc == Instruction::BitCast) 4460 if (Op->getType() == Ty) 4461 return Op; 4462 4463 return nullptr; 4464 } 4465 4466 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4467 const SimplifyQuery &Q) { 4468 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4469 } 4470 4471 /// For the given destination element of a shuffle, peek through shuffles to 4472 /// match a root vector source operand that contains that element in the same 4473 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4474 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4475 int MaskVal, Value *RootVec, 4476 unsigned MaxRecurse) { 4477 if (!MaxRecurse--) 4478 return nullptr; 4479 4480 // Bail out if any mask value is undefined. That kind of shuffle may be 4481 // simplified further based on demanded bits or other folds. 4482 if (MaskVal == -1) 4483 return nullptr; 4484 4485 // The mask value chooses which source operand we need to look at next. 4486 int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements(); 4487 int RootElt = MaskVal; 4488 Value *SourceOp = Op0; 4489 if (MaskVal >= InVecNumElts) { 4490 RootElt = MaskVal - InVecNumElts; 4491 SourceOp = Op1; 4492 } 4493 4494 // If the source operand is a shuffle itself, look through it to find the 4495 // matching root vector. 4496 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4497 return foldIdentityShuffles( 4498 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4499 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4500 } 4501 4502 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4503 // size? 4504 4505 // The source operand is not a shuffle. Initialize the root vector value for 4506 // this shuffle if that has not been done yet. 4507 if (!RootVec) 4508 RootVec = SourceOp; 4509 4510 // Give up as soon as a source operand does not match the existing root value. 4511 if (RootVec != SourceOp) 4512 return nullptr; 4513 4514 // The element must be coming from the same lane in the source vector 4515 // (although it may have crossed lanes in intermediate shuffles). 4516 if (RootElt != DestElt) 4517 return nullptr; 4518 4519 return RootVec; 4520 } 4521 4522 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4523 ArrayRef<int> Mask, Type *RetTy, 4524 const SimplifyQuery &Q, 4525 unsigned MaxRecurse) { 4526 if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; })) 4527 return UndefValue::get(RetTy); 4528 4529 auto *InVecTy = cast<VectorType>(Op0->getType()); 4530 unsigned MaskNumElts = Mask.size(); 4531 ElementCount InVecEltCount = InVecTy->getElementCount(); 4532 4533 bool Scalable = InVecEltCount.Scalable; 4534 4535 SmallVector<int, 32> Indices; 4536 Indices.assign(Mask.begin(), Mask.end()); 4537 4538 // Canonicalization: If mask does not select elements from an input vector, 4539 // replace that input vector with undef. 4540 if (!Scalable) { 4541 bool MaskSelects0 = false, MaskSelects1 = false; 4542 unsigned InVecNumElts = InVecEltCount.Min; 4543 for (unsigned i = 0; i != MaskNumElts; ++i) { 4544 if (Indices[i] == -1) 4545 continue; 4546 if ((unsigned)Indices[i] < InVecNumElts) 4547 MaskSelects0 = true; 4548 else 4549 MaskSelects1 = true; 4550 } 4551 if (!MaskSelects0) 4552 Op0 = UndefValue::get(InVecTy); 4553 if (!MaskSelects1) 4554 Op1 = UndefValue::get(InVecTy); 4555 } 4556 4557 auto *Op0Const = dyn_cast<Constant>(Op0); 4558 auto *Op1Const = dyn_cast<Constant>(Op1); 4559 4560 // If all operands are constant, constant fold the shuffle. This 4561 // transformation depends on the value of the mask which is not known at 4562 // compile time for scalable vectors 4563 if (!Scalable && Op0Const && Op1Const) 4564 return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask); 4565 4566 // Canonicalization: if only one input vector is constant, it shall be the 4567 // second one. This transformation depends on the value of the mask which 4568 // is not known at compile time for scalable vectors 4569 if (!Scalable && Op0Const && !Op1Const) { 4570 std::swap(Op0, Op1); 4571 ShuffleVectorInst::commuteShuffleMask(Indices, InVecEltCount.Min); 4572 } 4573 4574 // A splat of an inserted scalar constant becomes a vector constant: 4575 // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...> 4576 // NOTE: We may have commuted above, so analyze the updated Indices, not the 4577 // original mask constant. 4578 // NOTE: This transformation depends on the value of the mask which is not 4579 // known at compile time for scalable vectors 4580 Constant *C; 4581 ConstantInt *IndexC; 4582 if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C), 4583 m_ConstantInt(IndexC)))) { 4584 // Match a splat shuffle mask of the insert index allowing undef elements. 4585 int InsertIndex = IndexC->getZExtValue(); 4586 if (all_of(Indices, [InsertIndex](int MaskElt) { 4587 return MaskElt == InsertIndex || MaskElt == -1; 4588 })) { 4589 assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat"); 4590 4591 // Shuffle mask undefs become undefined constant result elements. 4592 SmallVector<Constant *, 16> VecC(MaskNumElts, C); 4593 for (unsigned i = 0; i != MaskNumElts; ++i) 4594 if (Indices[i] == -1) 4595 VecC[i] = UndefValue::get(C->getType()); 4596 return ConstantVector::get(VecC); 4597 } 4598 } 4599 4600 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4601 // value type is same as the input vectors' type. 4602 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4603 if (isa<UndefValue>(Op1) && RetTy == InVecTy && 4604 is_splat(OpShuf->getShuffleMask())) 4605 return Op0; 4606 4607 // All remaining transformation depend on the value of the mask, which is 4608 // not known at compile time for scalable vectors. 4609 if (Scalable) 4610 return nullptr; 4611 4612 // Don't fold a shuffle with undef mask elements. This may get folded in a 4613 // better way using demanded bits or other analysis. 4614 // TODO: Should we allow this? 4615 if (find(Indices, -1) != Indices.end()) 4616 return nullptr; 4617 4618 // Check if every element of this shuffle can be mapped back to the 4619 // corresponding element of a single root vector. If so, we don't need this 4620 // shuffle. This handles simple identity shuffles as well as chains of 4621 // shuffles that may widen/narrow and/or move elements across lanes and back. 4622 Value *RootVec = nullptr; 4623 for (unsigned i = 0; i != MaskNumElts; ++i) { 4624 // Note that recursion is limited for each vector element, so if any element 4625 // exceeds the limit, this will fail to simplify. 4626 RootVec = 4627 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4628 4629 // We can't replace a widening/narrowing shuffle with one of its operands. 4630 if (!RootVec || RootVec->getType() != RetTy) 4631 return nullptr; 4632 } 4633 return RootVec; 4634 } 4635 4636 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4637 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4638 ArrayRef<int> Mask, Type *RetTy, 4639 const SimplifyQuery &Q) { 4640 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4641 } 4642 4643 static Constant *foldConstant(Instruction::UnaryOps Opcode, 4644 Value *&Op, const SimplifyQuery &Q) { 4645 if (auto *C = dyn_cast<Constant>(Op)) 4646 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); 4647 return nullptr; 4648 } 4649 4650 /// Given the operand for an FNeg, see if we can fold the result. If not, this 4651 /// returns null. 4652 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, 4653 const SimplifyQuery &Q, unsigned MaxRecurse) { 4654 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) 4655 return C; 4656 4657 Value *X; 4658 // fneg (fneg X) ==> X 4659 if (match(Op, m_FNeg(m_Value(X)))) 4660 return X; 4661 4662 return nullptr; 4663 } 4664 4665 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF, 4666 const SimplifyQuery &Q) { 4667 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); 4668 } 4669 4670 static Constant *propagateNaN(Constant *In) { 4671 // If the input is a vector with undef elements, just return a default NaN. 4672 if (!In->isNaN()) 4673 return ConstantFP::getNaN(In->getType()); 4674 4675 // Propagate the existing NaN constant when possible. 4676 // TODO: Should we quiet a signaling NaN? 4677 return In; 4678 } 4679 4680 /// Perform folds that are common to any floating-point operation. This implies 4681 /// transforms based on undef/NaN because the operation itself makes no 4682 /// difference to the result. 4683 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, 4684 FastMathFlags FMF = FastMathFlags()) { 4685 for (Value *V : Ops) { 4686 bool IsNan = match(V, m_NaN()); 4687 bool IsInf = match(V, m_Inf()); 4688 bool IsUndef = match(V, m_Undef()); 4689 4690 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 4691 // (an undef operand can be chosen to be Nan/Inf), then the result of 4692 // this operation is poison. That result can be relaxed to undef. 4693 if (FMF.noNaNs() && (IsNan || IsUndef)) 4694 return UndefValue::get(V->getType()); 4695 if (FMF.noInfs() && (IsInf || IsUndef)) 4696 return UndefValue::get(V->getType()); 4697 4698 if (IsUndef || IsNan) 4699 return propagateNaN(cast<Constant>(V)); 4700 } 4701 return nullptr; 4702 } 4703 4704 /// Given operands for an FAdd, see if we can fold the result. If not, this 4705 /// returns null. 4706 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4707 const SimplifyQuery &Q, unsigned MaxRecurse) { 4708 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 4709 return C; 4710 4711 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF)) 4712 return C; 4713 4714 // fadd X, -0 ==> X 4715 if (match(Op1, m_NegZeroFP())) 4716 return Op0; 4717 4718 // fadd X, 0 ==> X, when we know X is not -0 4719 if (match(Op1, m_PosZeroFP()) && 4720 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4721 return Op0; 4722 4723 // With nnan: -X + X --> 0.0 (and commuted variant) 4724 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 4725 // Negative zeros are allowed because we always end up with positive zero: 4726 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4727 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4728 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 4729 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 4730 if (FMF.noNaNs()) { 4731 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 4732 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) 4733 return ConstantFP::getNullValue(Op0->getType()); 4734 4735 if (match(Op0, m_FNeg(m_Specific(Op1))) || 4736 match(Op1, m_FNeg(m_Specific(Op0)))) 4737 return ConstantFP::getNullValue(Op0->getType()); 4738 } 4739 4740 // (X - Y) + Y --> X 4741 // Y + (X - Y) --> X 4742 Value *X; 4743 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4744 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 4745 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 4746 return X; 4747 4748 return nullptr; 4749 } 4750 4751 /// Given operands for an FSub, see if we can fold the result. If not, this 4752 /// returns null. 4753 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4754 const SimplifyQuery &Q, unsigned MaxRecurse) { 4755 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 4756 return C; 4757 4758 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF)) 4759 return C; 4760 4761 // fsub X, +0 ==> X 4762 if (match(Op1, m_PosZeroFP())) 4763 return Op0; 4764 4765 // fsub X, -0 ==> X, when we know X is not -0 4766 if (match(Op1, m_NegZeroFP()) && 4767 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4768 return Op0; 4769 4770 // fsub -0.0, (fsub -0.0, X) ==> X 4771 // fsub -0.0, (fneg X) ==> X 4772 Value *X; 4773 if (match(Op0, m_NegZeroFP()) && 4774 match(Op1, m_FNeg(m_Value(X)))) 4775 return X; 4776 4777 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 4778 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. 4779 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 4780 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) || 4781 match(Op1, m_FNeg(m_Value(X))))) 4782 return X; 4783 4784 // fsub nnan x, x ==> 0.0 4785 if (FMF.noNaNs() && Op0 == Op1) 4786 return Constant::getNullValue(Op0->getType()); 4787 4788 // Y - (Y - X) --> X 4789 // (X + Y) - Y --> X 4790 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4791 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 4792 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 4793 return X; 4794 4795 return nullptr; 4796 } 4797 4798 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 4799 const SimplifyQuery &Q, unsigned MaxRecurse) { 4800 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF)) 4801 return C; 4802 4803 // fmul X, 1.0 ==> X 4804 if (match(Op1, m_FPOne())) 4805 return Op0; 4806 4807 // fmul 1.0, X ==> X 4808 if (match(Op0, m_FPOne())) 4809 return Op1; 4810 4811 // fmul nnan nsz X, 0 ==> 0 4812 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) 4813 return ConstantFP::getNullValue(Op0->getType()); 4814 4815 // fmul nnan nsz 0, X ==> 0 4816 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 4817 return ConstantFP::getNullValue(Op1->getType()); 4818 4819 // sqrt(X) * sqrt(X) --> X, if we can: 4820 // 1. Remove the intermediate rounding (reassociate). 4821 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 4822 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 4823 Value *X; 4824 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && 4825 FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros()) 4826 return X; 4827 4828 return nullptr; 4829 } 4830 4831 /// Given the operands for an FMul, see if we can fold the result 4832 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4833 const SimplifyQuery &Q, unsigned MaxRecurse) { 4834 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 4835 return C; 4836 4837 // Now apply simplifications that do not require rounding. 4838 return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse); 4839 } 4840 4841 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4842 const SimplifyQuery &Q) { 4843 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit); 4844 } 4845 4846 4847 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4848 const SimplifyQuery &Q) { 4849 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit); 4850 } 4851 4852 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4853 const SimplifyQuery &Q) { 4854 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit); 4855 } 4856 4857 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 4858 const SimplifyQuery &Q) { 4859 return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit); 4860 } 4861 4862 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4863 const SimplifyQuery &Q, unsigned) { 4864 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 4865 return C; 4866 4867 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF)) 4868 return C; 4869 4870 // X / 1.0 -> X 4871 if (match(Op1, m_FPOne())) 4872 return Op0; 4873 4874 // 0 / X -> 0 4875 // Requires that NaNs are off (X could be zero) and signed zeroes are 4876 // ignored (X could be positive or negative, so the output sign is unknown). 4877 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 4878 return ConstantFP::getNullValue(Op0->getType()); 4879 4880 if (FMF.noNaNs()) { 4881 // X / X -> 1.0 is legal when NaNs are ignored. 4882 // We can ignore infinities because INF/INF is NaN. 4883 if (Op0 == Op1) 4884 return ConstantFP::get(Op0->getType(), 1.0); 4885 4886 // (X * Y) / Y --> X if we can reassociate to the above form. 4887 Value *X; 4888 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 4889 return X; 4890 4891 // -X / X -> -1.0 and 4892 // X / -X -> -1.0 are legal when NaNs are ignored. 4893 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 4894 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 4895 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 4896 return ConstantFP::get(Op0->getType(), -1.0); 4897 } 4898 4899 return nullptr; 4900 } 4901 4902 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4903 const SimplifyQuery &Q) { 4904 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit); 4905 } 4906 4907 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4908 const SimplifyQuery &Q, unsigned) { 4909 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 4910 return C; 4911 4912 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF)) 4913 return C; 4914 4915 // Unlike fdiv, the result of frem always matches the sign of the dividend. 4916 // The constant match may include undef elements in a vector, so return a full 4917 // zero constant as the result. 4918 if (FMF.noNaNs()) { 4919 // +0 % X -> 0 4920 if (match(Op0, m_PosZeroFP())) 4921 return ConstantFP::getNullValue(Op0->getType()); 4922 // -0 % X -> -0 4923 if (match(Op0, m_NegZeroFP())) 4924 return ConstantFP::getNegativeZero(Op0->getType()); 4925 } 4926 4927 return nullptr; 4928 } 4929 4930 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4931 const SimplifyQuery &Q) { 4932 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit); 4933 } 4934 4935 //=== Helper functions for higher up the class hierarchy. 4936 4937 /// Given the operand for a UnaryOperator, see if we can fold the result. 4938 /// If not, this returns null. 4939 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, 4940 unsigned MaxRecurse) { 4941 switch (Opcode) { 4942 case Instruction::FNeg: 4943 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); 4944 default: 4945 llvm_unreachable("Unexpected opcode"); 4946 } 4947 } 4948 4949 /// Given the operand for a UnaryOperator, see if we can fold the result. 4950 /// If not, this returns null. 4951 /// Try to use FastMathFlags when folding the result. 4952 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, 4953 const FastMathFlags &FMF, 4954 const SimplifyQuery &Q, unsigned MaxRecurse) { 4955 switch (Opcode) { 4956 case Instruction::FNeg: 4957 return simplifyFNegInst(Op, FMF, Q, MaxRecurse); 4958 default: 4959 return simplifyUnOp(Opcode, Op, Q, MaxRecurse); 4960 } 4961 } 4962 4963 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { 4964 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit); 4965 } 4966 4967 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, 4968 const SimplifyQuery &Q) { 4969 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); 4970 } 4971 4972 /// Given operands for a BinaryOperator, see if we can fold the result. 4973 /// If not, this returns null. 4974 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4975 const SimplifyQuery &Q, unsigned MaxRecurse) { 4976 switch (Opcode) { 4977 case Instruction::Add: 4978 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 4979 case Instruction::Sub: 4980 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 4981 case Instruction::Mul: 4982 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 4983 case Instruction::SDiv: 4984 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 4985 case Instruction::UDiv: 4986 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 4987 case Instruction::SRem: 4988 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 4989 case Instruction::URem: 4990 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 4991 case Instruction::Shl: 4992 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 4993 case Instruction::LShr: 4994 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 4995 case Instruction::AShr: 4996 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 4997 case Instruction::And: 4998 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 4999 case Instruction::Or: 5000 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 5001 case Instruction::Xor: 5002 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 5003 case Instruction::FAdd: 5004 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5005 case Instruction::FSub: 5006 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5007 case Instruction::FMul: 5008 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5009 case Instruction::FDiv: 5010 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5011 case Instruction::FRem: 5012 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5013 default: 5014 llvm_unreachable("Unexpected opcode"); 5015 } 5016 } 5017 5018 /// Given operands for a BinaryOperator, see if we can fold the result. 5019 /// If not, this returns null. 5020 /// Try to use FastMathFlags when folding the result. 5021 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5022 const FastMathFlags &FMF, const SimplifyQuery &Q, 5023 unsigned MaxRecurse) { 5024 switch (Opcode) { 5025 case Instruction::FAdd: 5026 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 5027 case Instruction::FSub: 5028 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 5029 case Instruction::FMul: 5030 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 5031 case Instruction::FDiv: 5032 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 5033 default: 5034 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 5035 } 5036 } 5037 5038 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5039 const SimplifyQuery &Q) { 5040 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 5041 } 5042 5043 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5044 FastMathFlags FMF, const SimplifyQuery &Q) { 5045 return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 5046 } 5047 5048 /// Given operands for a CmpInst, see if we can fold the result. 5049 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5050 const SimplifyQuery &Q, unsigned MaxRecurse) { 5051 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 5052 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 5053 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5054 } 5055 5056 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5057 const SimplifyQuery &Q) { 5058 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 5059 } 5060 5061 static bool IsIdempotent(Intrinsic::ID ID) { 5062 switch (ID) { 5063 default: return false; 5064 5065 // Unary idempotent: f(f(x)) = f(x) 5066 case Intrinsic::fabs: 5067 case Intrinsic::floor: 5068 case Intrinsic::ceil: 5069 case Intrinsic::trunc: 5070 case Intrinsic::rint: 5071 case Intrinsic::nearbyint: 5072 case Intrinsic::round: 5073 case Intrinsic::roundeven: 5074 case Intrinsic::canonicalize: 5075 return true; 5076 } 5077 } 5078 5079 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 5080 const DataLayout &DL) { 5081 GlobalValue *PtrSym; 5082 APInt PtrOffset; 5083 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 5084 return nullptr; 5085 5086 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 5087 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 5088 Type *Int32PtrTy = Int32Ty->getPointerTo(); 5089 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 5090 5091 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 5092 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 5093 return nullptr; 5094 5095 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 5096 if (OffsetInt % 4 != 0) 5097 return nullptr; 5098 5099 Constant *C = ConstantExpr::getGetElementPtr( 5100 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 5101 ConstantInt::get(Int64Ty, OffsetInt / 4)); 5102 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 5103 if (!Loaded) 5104 return nullptr; 5105 5106 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 5107 if (!LoadedCE) 5108 return nullptr; 5109 5110 if (LoadedCE->getOpcode() == Instruction::Trunc) { 5111 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5112 if (!LoadedCE) 5113 return nullptr; 5114 } 5115 5116 if (LoadedCE->getOpcode() != Instruction::Sub) 5117 return nullptr; 5118 5119 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5120 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 5121 return nullptr; 5122 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 5123 5124 Constant *LoadedRHS = LoadedCE->getOperand(1); 5125 GlobalValue *LoadedRHSSym; 5126 APInt LoadedRHSOffset; 5127 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 5128 DL) || 5129 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 5130 return nullptr; 5131 5132 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 5133 } 5134 5135 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 5136 const SimplifyQuery &Q) { 5137 // Idempotent functions return the same result when called repeatedly. 5138 Intrinsic::ID IID = F->getIntrinsicID(); 5139 if (IsIdempotent(IID)) 5140 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 5141 if (II->getIntrinsicID() == IID) 5142 return II; 5143 5144 Value *X; 5145 switch (IID) { 5146 case Intrinsic::fabs: 5147 if (SignBitMustBeZero(Op0, Q.TLI)) return Op0; 5148 break; 5149 case Intrinsic::bswap: 5150 // bswap(bswap(x)) -> x 5151 if (match(Op0, m_BSwap(m_Value(X)))) return X; 5152 break; 5153 case Intrinsic::bitreverse: 5154 // bitreverse(bitreverse(x)) -> x 5155 if (match(Op0, m_BitReverse(m_Value(X)))) return X; 5156 break; 5157 case Intrinsic::exp: 5158 // exp(log(x)) -> x 5159 if (Q.CxtI->hasAllowReassoc() && 5160 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X; 5161 break; 5162 case Intrinsic::exp2: 5163 // exp2(log2(x)) -> x 5164 if (Q.CxtI->hasAllowReassoc() && 5165 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X; 5166 break; 5167 case Intrinsic::log: 5168 // log(exp(x)) -> x 5169 if (Q.CxtI->hasAllowReassoc() && 5170 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X; 5171 break; 5172 case Intrinsic::log2: 5173 // log2(exp2(x)) -> x 5174 if (Q.CxtI->hasAllowReassoc() && 5175 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || 5176 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), 5177 m_Value(X))))) return X; 5178 break; 5179 case Intrinsic::log10: 5180 // log10(pow(10.0, x)) -> x 5181 if (Q.CxtI->hasAllowReassoc() && 5182 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), 5183 m_Value(X)))) return X; 5184 break; 5185 case Intrinsic::floor: 5186 case Intrinsic::trunc: 5187 case Intrinsic::ceil: 5188 case Intrinsic::round: 5189 case Intrinsic::roundeven: 5190 case Intrinsic::nearbyint: 5191 case Intrinsic::rint: { 5192 // floor (sitofp x) -> sitofp x 5193 // floor (uitofp x) -> uitofp x 5194 // 5195 // Converting from int always results in a finite integral number or 5196 // infinity. For either of those inputs, these rounding functions always 5197 // return the same value, so the rounding can be eliminated. 5198 if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) 5199 return Op0; 5200 break; 5201 } 5202 default: 5203 break; 5204 } 5205 5206 return nullptr; 5207 } 5208 5209 static Intrinsic::ID getMaxMinOpposite(Intrinsic::ID IID) { 5210 switch (IID) { 5211 case Intrinsic::smax: return Intrinsic::smin; 5212 case Intrinsic::smin: return Intrinsic::smax; 5213 case Intrinsic::umax: return Intrinsic::umin; 5214 case Intrinsic::umin: return Intrinsic::umax; 5215 default: llvm_unreachable("Unexpected intrinsic"); 5216 } 5217 } 5218 5219 static APInt getMaxMinLimit(Intrinsic::ID IID, unsigned BitWidth) { 5220 switch (IID) { 5221 case Intrinsic::smax: return APInt::getSignedMaxValue(BitWidth); 5222 case Intrinsic::smin: return APInt::getSignedMinValue(BitWidth); 5223 case Intrinsic::umax: return APInt::getMaxValue(BitWidth); 5224 case Intrinsic::umin: return APInt::getMinValue(BitWidth); 5225 default: llvm_unreachable("Unexpected intrinsic"); 5226 } 5227 } 5228 5229 static bool isMinMax(Intrinsic::ID IID) { 5230 return IID == Intrinsic::smax || IID == Intrinsic::smin || 5231 IID == Intrinsic::umax || IID == Intrinsic::umin; 5232 } 5233 5234 /// Given a min/max intrinsic, see if it can be removed based on having an 5235 /// operand that is another min/max intrinsic with shared operand(s). The caller 5236 /// is expected to swap the operand arguments to handle commutation. 5237 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) { 5238 assert(isMinMax(IID) && "Expected min/max intrinsic"); 5239 auto *InnerMM = dyn_cast<IntrinsicInst>(Op0); 5240 if (!InnerMM) 5241 return nullptr; 5242 Intrinsic::ID InnerID = InnerMM->getIntrinsicID(); 5243 if (!isMinMax(InnerID)) 5244 return nullptr; 5245 5246 if (Op1 == InnerMM->getOperand(0) || Op1 == InnerMM->getOperand(1)) { 5247 // max (max X, Y), X --> max X, Y 5248 if (InnerID == IID) 5249 return InnerMM; 5250 // max (min X, Y), X --> X 5251 if (InnerID == getMaxMinOpposite(IID)) 5252 return Op1; 5253 } 5254 return nullptr; 5255 } 5256 5257 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, 5258 const SimplifyQuery &Q) { 5259 Intrinsic::ID IID = F->getIntrinsicID(); 5260 Type *ReturnType = F->getReturnType(); 5261 unsigned BitWidth = ReturnType->getScalarSizeInBits(); 5262 switch (IID) { 5263 case Intrinsic::abs: 5264 // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here. 5265 // It is always ok to pick the earlier abs. We'll just lose nsw if its only 5266 // on the outer abs. 5267 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value()))) 5268 return Op0; 5269 // If the sign bit is clear already, then abs does not do anything. 5270 if (isKnownNonNegative(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 5271 return Op0; 5272 break; 5273 5274 case Intrinsic::smax: 5275 case Intrinsic::smin: 5276 case Intrinsic::umax: 5277 case Intrinsic::umin: { 5278 // If the arguments are the same, this is a no-op. 5279 if (Op0 == Op1) 5280 return Op0; 5281 5282 // Canonicalize constant operand as Op1. 5283 if (isa<Constant>(Op0)) 5284 std::swap(Op0, Op1); 5285 5286 // Assume undef is the limit value. 5287 if (isa<UndefValue>(Op1)) 5288 return ConstantInt::get(ReturnType, getMaxMinLimit(IID, BitWidth)); 5289 5290 const APInt *C; 5291 if (match(Op1, m_APIntAllowUndef(C))) { 5292 // Clamp to limit value. For example: 5293 // umax(i8 %x, i8 255) --> 255 5294 if (*C == getMaxMinLimit(IID, BitWidth)) 5295 return ConstantInt::get(ReturnType, *C); 5296 5297 // If the constant op is the opposite of the limit value, the other must 5298 // be larger/smaller or equal. For example: 5299 // umin(i8 %x, i8 255) --> %x 5300 if (*C == getMaxMinLimit(getMaxMinOpposite(IID), BitWidth)) 5301 return Op0; 5302 5303 // Remove nested call if constant operands allow it. Example: 5304 // max (max X, 7), 5 -> max X, 7 5305 auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0); 5306 if (MinMax0 && MinMax0->getIntrinsicID() == IID) { 5307 // TODO: loosen undef/splat restrictions for vector constants. 5308 Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1); 5309 const APInt *InnerC; 5310 if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) && 5311 ((IID == Intrinsic::smax && InnerC->sge(*C)) || 5312 (IID == Intrinsic::smin && InnerC->sle(*C)) || 5313 (IID == Intrinsic::umax && InnerC->uge(*C)) || 5314 (IID == Intrinsic::umin && InnerC->ule(*C)))) 5315 return Op0; 5316 } 5317 } 5318 5319 if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1)) 5320 return V; 5321 if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0)) 5322 return V; 5323 5324 break; 5325 } 5326 case Intrinsic::usub_with_overflow: 5327 case Intrinsic::ssub_with_overflow: 5328 // X - X -> { 0, false } 5329 if (Op0 == Op1) 5330 return Constant::getNullValue(ReturnType); 5331 LLVM_FALLTHROUGH; 5332 case Intrinsic::uadd_with_overflow: 5333 case Intrinsic::sadd_with_overflow: 5334 // X - undef -> { undef, false } 5335 // undef - X -> { undef, false } 5336 // X + undef -> { undef, false } 5337 // undef + x -> { undef, false } 5338 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) { 5339 return ConstantStruct::get( 5340 cast<StructType>(ReturnType), 5341 {UndefValue::get(ReturnType->getStructElementType(0)), 5342 Constant::getNullValue(ReturnType->getStructElementType(1))}); 5343 } 5344 break; 5345 case Intrinsic::umul_with_overflow: 5346 case Intrinsic::smul_with_overflow: 5347 // 0 * X -> { 0, false } 5348 // X * 0 -> { 0, false } 5349 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 5350 return Constant::getNullValue(ReturnType); 5351 // undef * X -> { 0, false } 5352 // X * undef -> { 0, false } 5353 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 5354 return Constant::getNullValue(ReturnType); 5355 break; 5356 case Intrinsic::uadd_sat: 5357 // sat(MAX + X) -> MAX 5358 // sat(X + MAX) -> MAX 5359 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 5360 return Constant::getAllOnesValue(ReturnType); 5361 LLVM_FALLTHROUGH; 5362 case Intrinsic::sadd_sat: 5363 // sat(X + undef) -> -1 5364 // sat(undef + X) -> -1 5365 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 5366 // For signed: Assume undef is ~X, in which case X + ~X = -1. 5367 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 5368 return Constant::getAllOnesValue(ReturnType); 5369 5370 // X + 0 -> X 5371 if (match(Op1, m_Zero())) 5372 return Op0; 5373 // 0 + X -> X 5374 if (match(Op0, m_Zero())) 5375 return Op1; 5376 break; 5377 case Intrinsic::usub_sat: 5378 // sat(0 - X) -> 0, sat(X - MAX) -> 0 5379 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 5380 return Constant::getNullValue(ReturnType); 5381 LLVM_FALLTHROUGH; 5382 case Intrinsic::ssub_sat: 5383 // X - X -> 0, X - undef -> 0, undef - X -> 0 5384 if (Op0 == Op1 || match(Op0, m_Undef()) || match(Op1, m_Undef())) 5385 return Constant::getNullValue(ReturnType); 5386 // X - 0 -> X 5387 if (match(Op1, m_Zero())) 5388 return Op0; 5389 break; 5390 case Intrinsic::load_relative: 5391 if (auto *C0 = dyn_cast<Constant>(Op0)) 5392 if (auto *C1 = dyn_cast<Constant>(Op1)) 5393 return SimplifyRelativeLoad(C0, C1, Q.DL); 5394 break; 5395 case Intrinsic::powi: 5396 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 5397 // powi(x, 0) -> 1.0 5398 if (Power->isZero()) 5399 return ConstantFP::get(Op0->getType(), 1.0); 5400 // powi(x, 1) -> x 5401 if (Power->isOne()) 5402 return Op0; 5403 } 5404 break; 5405 case Intrinsic::copysign: 5406 // copysign X, X --> X 5407 if (Op0 == Op1) 5408 return Op0; 5409 // copysign -X, X --> X 5410 // copysign X, -X --> -X 5411 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5412 match(Op1, m_FNeg(m_Specific(Op0)))) 5413 return Op1; 5414 break; 5415 case Intrinsic::maxnum: 5416 case Intrinsic::minnum: 5417 case Intrinsic::maximum: 5418 case Intrinsic::minimum: { 5419 // If the arguments are the same, this is a no-op. 5420 if (Op0 == Op1) return Op0; 5421 5422 // If one argument is undef, return the other argument. 5423 if (match(Op0, m_Undef())) 5424 return Op1; 5425 if (match(Op1, m_Undef())) 5426 return Op0; 5427 5428 // If one argument is NaN, return other or NaN appropriately. 5429 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 5430 if (match(Op0, m_NaN())) 5431 return PropagateNaN ? Op0 : Op1; 5432 if (match(Op1, m_NaN())) 5433 return PropagateNaN ? Op1 : Op0; 5434 5435 // Min/max of the same operation with common operand: 5436 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 5437 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0)) 5438 if (M0->getIntrinsicID() == IID && 5439 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1)) 5440 return Op0; 5441 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1)) 5442 if (M1->getIntrinsicID() == IID && 5443 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0)) 5444 return Op1; 5445 5446 // min(X, -Inf) --> -Inf (and commuted variant) 5447 // max(X, +Inf) --> +Inf (and commuted variant) 5448 bool UseNegInf = IID == Intrinsic::minnum || IID == Intrinsic::minimum; 5449 const APFloat *C; 5450 if ((match(Op0, m_APFloat(C)) && C->isInfinity() && 5451 C->isNegative() == UseNegInf) || 5452 (match(Op1, m_APFloat(C)) && C->isInfinity() && 5453 C->isNegative() == UseNegInf)) 5454 return ConstantFP::getInfinity(ReturnType, UseNegInf); 5455 5456 // TODO: minnum(nnan x, inf) -> x 5457 // TODO: minnum(nnan ninf x, flt_max) -> x 5458 // TODO: maxnum(nnan x, -inf) -> x 5459 // TODO: maxnum(nnan ninf x, -flt_max) -> x 5460 break; 5461 } 5462 default: 5463 break; 5464 } 5465 5466 return nullptr; 5467 } 5468 5469 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) { 5470 5471 // Intrinsics with no operands have some kind of side effect. Don't simplify. 5472 unsigned NumOperands = Call->getNumArgOperands(); 5473 if (!NumOperands) 5474 return nullptr; 5475 5476 Function *F = cast<Function>(Call->getCalledFunction()); 5477 Intrinsic::ID IID = F->getIntrinsicID(); 5478 if (NumOperands == 1) 5479 return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q); 5480 5481 if (NumOperands == 2) 5482 return simplifyBinaryIntrinsic(F, Call->getArgOperand(0), 5483 Call->getArgOperand(1), Q); 5484 5485 // Handle intrinsics with 3 or more arguments. 5486 switch (IID) { 5487 case Intrinsic::masked_load: 5488 case Intrinsic::masked_gather: { 5489 Value *MaskArg = Call->getArgOperand(2); 5490 Value *PassthruArg = Call->getArgOperand(3); 5491 // If the mask is all zeros or undef, the "passthru" argument is the result. 5492 if (maskIsAllZeroOrUndef(MaskArg)) 5493 return PassthruArg; 5494 return nullptr; 5495 } 5496 case Intrinsic::fshl: 5497 case Intrinsic::fshr: { 5498 Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1), 5499 *ShAmtArg = Call->getArgOperand(2); 5500 5501 // If both operands are undef, the result is undef. 5502 if (match(Op0, m_Undef()) && match(Op1, m_Undef())) 5503 return UndefValue::get(F->getReturnType()); 5504 5505 // If shift amount is undef, assume it is zero. 5506 if (match(ShAmtArg, m_Undef())) 5507 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5508 5509 const APInt *ShAmtC; 5510 if (match(ShAmtArg, m_APInt(ShAmtC))) { 5511 // If there's effectively no shift, return the 1st arg or 2nd arg. 5512 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 5513 if (ShAmtC->urem(BitWidth).isNullValue()) 5514 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5515 } 5516 return nullptr; 5517 } 5518 case Intrinsic::fma: 5519 case Intrinsic::fmuladd: { 5520 Value *Op0 = Call->getArgOperand(0); 5521 Value *Op1 = Call->getArgOperand(1); 5522 Value *Op2 = Call->getArgOperand(2); 5523 if (Value *V = simplifyFPOp({ Op0, Op1, Op2 })) 5524 return V; 5525 return nullptr; 5526 } 5527 default: 5528 return nullptr; 5529 } 5530 } 5531 5532 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) { 5533 auto *F = dyn_cast<Function>(Call->getCalledOperand()); 5534 if (!F || !canConstantFoldCallTo(Call, F)) 5535 return nullptr; 5536 5537 SmallVector<Constant *, 4> ConstantArgs; 5538 unsigned NumArgs = Call->getNumArgOperands(); 5539 ConstantArgs.reserve(NumArgs); 5540 for (auto &Arg : Call->args()) { 5541 Constant *C = dyn_cast<Constant>(&Arg); 5542 if (!C) { 5543 if (isa<MetadataAsValue>(Arg.get())) 5544 continue; 5545 return nullptr; 5546 } 5547 ConstantArgs.push_back(C); 5548 } 5549 5550 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); 5551 } 5552 5553 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) { 5554 // musttail calls can only be simplified if they are also DCEd. 5555 // As we can't guarantee this here, don't simplify them. 5556 if (Call->isMustTailCall()) 5557 return nullptr; 5558 5559 // call undef -> undef 5560 // call null -> undef 5561 Value *Callee = Call->getCalledOperand(); 5562 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee)) 5563 return UndefValue::get(Call->getType()); 5564 5565 if (Value *V = tryConstantFoldCall(Call, Q)) 5566 return V; 5567 5568 auto *F = dyn_cast<Function>(Callee); 5569 if (F && F->isIntrinsic()) 5570 if (Value *Ret = simplifyIntrinsic(Call, Q)) 5571 return Ret; 5572 5573 return nullptr; 5574 } 5575 5576 /// Given operands for a Freeze, see if we can fold the result. 5577 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 5578 // Use a utility function defined in ValueTracking. 5579 if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.CxtI, Q.DT)) 5580 return Op0; 5581 // We have room for improvement. 5582 return nullptr; 5583 } 5584 5585 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 5586 return ::SimplifyFreezeInst(Op0, Q); 5587 } 5588 5589 /// See if we can compute a simplified version of this instruction. 5590 /// If not, this returns null. 5591 5592 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 5593 OptimizationRemarkEmitter *ORE) { 5594 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 5595 Value *Result; 5596 5597 switch (I->getOpcode()) { 5598 default: 5599 Result = ConstantFoldInstruction(I, Q.DL, Q.TLI); 5600 break; 5601 case Instruction::FNeg: 5602 Result = SimplifyFNegInst(I->getOperand(0), I->getFastMathFlags(), Q); 5603 break; 5604 case Instruction::FAdd: 5605 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 5606 I->getFastMathFlags(), Q); 5607 break; 5608 case Instruction::Add: 5609 Result = 5610 SimplifyAddInst(I->getOperand(0), I->getOperand(1), 5611 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5612 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5613 break; 5614 case Instruction::FSub: 5615 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 5616 I->getFastMathFlags(), Q); 5617 break; 5618 case Instruction::Sub: 5619 Result = 5620 SimplifySubInst(I->getOperand(0), I->getOperand(1), 5621 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5622 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5623 break; 5624 case Instruction::FMul: 5625 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 5626 I->getFastMathFlags(), Q); 5627 break; 5628 case Instruction::Mul: 5629 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q); 5630 break; 5631 case Instruction::SDiv: 5632 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q); 5633 break; 5634 case Instruction::UDiv: 5635 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q); 5636 break; 5637 case Instruction::FDiv: 5638 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 5639 I->getFastMathFlags(), Q); 5640 break; 5641 case Instruction::SRem: 5642 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q); 5643 break; 5644 case Instruction::URem: 5645 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q); 5646 break; 5647 case Instruction::FRem: 5648 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 5649 I->getFastMathFlags(), Q); 5650 break; 5651 case Instruction::Shl: 5652 Result = 5653 SimplifyShlInst(I->getOperand(0), I->getOperand(1), 5654 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5655 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5656 break; 5657 case Instruction::LShr: 5658 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 5659 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 5660 break; 5661 case Instruction::AShr: 5662 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 5663 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 5664 break; 5665 case Instruction::And: 5666 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q); 5667 break; 5668 case Instruction::Or: 5669 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q); 5670 break; 5671 case Instruction::Xor: 5672 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q); 5673 break; 5674 case Instruction::ICmp: 5675 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 5676 I->getOperand(0), I->getOperand(1), Q); 5677 break; 5678 case Instruction::FCmp: 5679 Result = 5680 SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0), 5681 I->getOperand(1), I->getFastMathFlags(), Q); 5682 break; 5683 case Instruction::Select: 5684 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 5685 I->getOperand(2), Q); 5686 break; 5687 case Instruction::GetElementPtr: { 5688 SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end()); 5689 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 5690 Ops, Q); 5691 break; 5692 } 5693 case Instruction::InsertValue: { 5694 InsertValueInst *IV = cast<InsertValueInst>(I); 5695 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 5696 IV->getInsertedValueOperand(), 5697 IV->getIndices(), Q); 5698 break; 5699 } 5700 case Instruction::InsertElement: { 5701 auto *IE = cast<InsertElementInst>(I); 5702 Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1), 5703 IE->getOperand(2), Q); 5704 break; 5705 } 5706 case Instruction::ExtractValue: { 5707 auto *EVI = cast<ExtractValueInst>(I); 5708 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 5709 EVI->getIndices(), Q); 5710 break; 5711 } 5712 case Instruction::ExtractElement: { 5713 auto *EEI = cast<ExtractElementInst>(I); 5714 Result = SimplifyExtractElementInst(EEI->getVectorOperand(), 5715 EEI->getIndexOperand(), Q); 5716 break; 5717 } 5718 case Instruction::ShuffleVector: { 5719 auto *SVI = cast<ShuffleVectorInst>(I); 5720 Result = 5721 SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5722 SVI->getShuffleMask(), SVI->getType(), Q); 5723 break; 5724 } 5725 case Instruction::PHI: 5726 Result = SimplifyPHINode(cast<PHINode>(I), Q); 5727 break; 5728 case Instruction::Call: { 5729 Result = SimplifyCall(cast<CallInst>(I), Q); 5730 break; 5731 } 5732 case Instruction::Freeze: 5733 Result = SimplifyFreezeInst(I->getOperand(0), Q); 5734 break; 5735 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 5736 #include "llvm/IR/Instruction.def" 5737 #undef HANDLE_CAST_INST 5738 Result = 5739 SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q); 5740 break; 5741 case Instruction::Alloca: 5742 // No simplifications for Alloca and it can't be constant folded. 5743 Result = nullptr; 5744 break; 5745 } 5746 5747 /// If called on unreachable code, the above logic may report that the 5748 /// instruction simplified to itself. Make life easier for users by 5749 /// detecting that case here, returning a safe value instead. 5750 return Result == I ? UndefValue::get(I->getType()) : Result; 5751 } 5752 5753 /// Implementation of recursive simplification through an instruction's 5754 /// uses. 5755 /// 5756 /// This is the common implementation of the recursive simplification routines. 5757 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 5758 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 5759 /// instructions to process and attempt to simplify it using 5760 /// InstructionSimplify. Recursively visited users which could not be 5761 /// simplified themselves are to the optional UnsimplifiedUsers set for 5762 /// further processing by the caller. 5763 /// 5764 /// This routine returns 'true' only when *it* simplifies something. The passed 5765 /// in simplified value does not count toward this. 5766 static bool replaceAndRecursivelySimplifyImpl( 5767 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 5768 const DominatorTree *DT, AssumptionCache *AC, 5769 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) { 5770 bool Simplified = false; 5771 SmallSetVector<Instruction *, 8> Worklist; 5772 const DataLayout &DL = I->getModule()->getDataLayout(); 5773 5774 // If we have an explicit value to collapse to, do that round of the 5775 // simplification loop by hand initially. 5776 if (SimpleV) { 5777 for (User *U : I->users()) 5778 if (U != I) 5779 Worklist.insert(cast<Instruction>(U)); 5780 5781 // Replace the instruction with its simplified value. 5782 I->replaceAllUsesWith(SimpleV); 5783 5784 // Gracefully handle edge cases where the instruction is not wired into any 5785 // parent block. 5786 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 5787 !I->mayHaveSideEffects()) 5788 I->eraseFromParent(); 5789 } else { 5790 Worklist.insert(I); 5791 } 5792 5793 // Note that we must test the size on each iteration, the worklist can grow. 5794 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 5795 I = Worklist[Idx]; 5796 5797 // See if this instruction simplifies. 5798 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 5799 if (!SimpleV) { 5800 if (UnsimplifiedUsers) 5801 UnsimplifiedUsers->insert(I); 5802 continue; 5803 } 5804 5805 Simplified = true; 5806 5807 // Stash away all the uses of the old instruction so we can check them for 5808 // recursive simplifications after a RAUW. This is cheaper than checking all 5809 // uses of To on the recursive step in most cases. 5810 for (User *U : I->users()) 5811 Worklist.insert(cast<Instruction>(U)); 5812 5813 // Replace the instruction with its simplified value. 5814 I->replaceAllUsesWith(SimpleV); 5815 5816 // Gracefully handle edge cases where the instruction is not wired into any 5817 // parent block. 5818 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 5819 !I->mayHaveSideEffects()) 5820 I->eraseFromParent(); 5821 } 5822 return Simplified; 5823 } 5824 5825 bool llvm::recursivelySimplifyInstruction(Instruction *I, 5826 const TargetLibraryInfo *TLI, 5827 const DominatorTree *DT, 5828 AssumptionCache *AC) { 5829 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC, nullptr); 5830 } 5831 5832 bool llvm::replaceAndRecursivelySimplify( 5833 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 5834 const DominatorTree *DT, AssumptionCache *AC, 5835 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) { 5836 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 5837 assert(SimpleV && "Must provide a simplified value."); 5838 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC, 5839 UnsimplifiedUsers); 5840 } 5841 5842 namespace llvm { 5843 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 5844 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 5845 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 5846 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5847 auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr; 5848 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 5849 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 5850 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 5851 } 5852 5853 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 5854 const DataLayout &DL) { 5855 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 5856 } 5857 5858 template <class T, class... TArgs> 5859 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 5860 Function &F) { 5861 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 5862 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 5863 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 5864 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 5865 } 5866 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 5867 Function &); 5868 } 5869