1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements routines for folding instructions into simpler forms
11 // that do not require creating new instructions.  This does constant folding
12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
14 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
15 // simplified: This is usually true and assuming it simplifies the logic (if
16 // they have not been simplified then results are correct but maybe suboptimal).
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/Analysis/VectorUtils.h"
30 #include "llvm/IR/ConstantRange.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/GetElementPtrTypeIterator.h"
34 #include "llvm/IR/GlobalAlias.h"
35 #include "llvm/IR/Operator.h"
36 #include "llvm/IR/PatternMatch.h"
37 #include "llvm/IR/ValueHandle.h"
38 #include <algorithm>
39 using namespace llvm;
40 using namespace llvm::PatternMatch;
41 
42 #define DEBUG_TYPE "instsimplify"
43 
44 enum { RecursionLimit = 3 };
45 
46 STATISTIC(NumExpand,  "Number of expansions");
47 STATISTIC(NumReassoc, "Number of reassociations");
48 
49 namespace {
50 struct Query {
51   const DataLayout &DL;
52   const TargetLibraryInfo *TLI;
53   const DominatorTree *DT;
54   AssumptionCache *AC;
55   const Instruction *CxtI;
56 
57   Query(const DataLayout &DL, const TargetLibraryInfo *tli,
58         const DominatorTree *dt, AssumptionCache *ac = nullptr,
59         const Instruction *cxti = nullptr)
60       : DL(DL), TLI(tli), DT(dt), AC(ac), CxtI(cxti) {}
61 };
62 } // end anonymous namespace
63 
64 static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
65 static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &,
66                             unsigned);
67 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &,
68                               const Query &, unsigned);
69 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &,
70                               unsigned);
71 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
72                                const Query &Q, unsigned MaxRecurse);
73 static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned);
74 static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned);
75 static Value *SimplifyCastInst(unsigned, Value *, Type *,
76                                const Query &, unsigned);
77 
78 /// For a boolean type, or a vector of boolean type, return false, or
79 /// a vector with every element false, as appropriate for the type.
80 static Constant *getFalse(Type *Ty) {
81   assert(Ty->getScalarType()->isIntegerTy(1) &&
82          "Expected i1 type or a vector of i1!");
83   return Constant::getNullValue(Ty);
84 }
85 
86 /// For a boolean type, or a vector of boolean type, return true, or
87 /// a vector with every element true, as appropriate for the type.
88 static Constant *getTrue(Type *Ty) {
89   assert(Ty->getScalarType()->isIntegerTy(1) &&
90          "Expected i1 type or a vector of i1!");
91   return Constant::getAllOnesValue(Ty);
92 }
93 
94 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
95 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
96                           Value *RHS) {
97   CmpInst *Cmp = dyn_cast<CmpInst>(V);
98   if (!Cmp)
99     return false;
100   CmpInst::Predicate CPred = Cmp->getPredicate();
101   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
102   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
103     return true;
104   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
105     CRHS == LHS;
106 }
107 
108 /// Does the given value dominate the specified phi node?
109 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
110   Instruction *I = dyn_cast<Instruction>(V);
111   if (!I)
112     // Arguments and constants dominate all instructions.
113     return true;
114 
115   // If we are processing instructions (and/or basic blocks) that have not been
116   // fully added to a function, the parent nodes may still be null. Simply
117   // return the conservative answer in these cases.
118   if (!I->getParent() || !P->getParent() || !I->getParent()->getParent())
119     return false;
120 
121   // If we have a DominatorTree then do a precise test.
122   if (DT) {
123     if (!DT->isReachableFromEntry(P->getParent()))
124       return true;
125     if (!DT->isReachableFromEntry(I->getParent()))
126       return false;
127     return DT->dominates(I, P);
128   }
129 
130   // Otherwise, if the instruction is in the entry block and is not an invoke,
131   // then it obviously dominates all phi nodes.
132   if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
133       !isa<InvokeInst>(I))
134     return true;
135 
136   return false;
137 }
138 
139 /// Simplify "A op (B op' C)" by distributing op over op', turning it into
140 /// "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
141 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
142 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
143 /// Returns the simplified value, or null if no simplification was performed.
144 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS,
145                           Instruction::BinaryOps OpcodeToExpand, const Query &Q,
146                           unsigned MaxRecurse) {
147   // Recursion is always used, so bail out at once if we already hit the limit.
148   if (!MaxRecurse--)
149     return nullptr;
150 
151   // Check whether the expression has the form "(A op' B) op C".
152   if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
153     if (Op0->getOpcode() == OpcodeToExpand) {
154       // It does!  Try turning it into "(A op C) op' (B op C)".
155       Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
156       // Do "A op C" and "B op C" both simplify?
157       if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
158         if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
159           // They do! Return "L op' R" if it simplifies or is already available.
160           // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
161           if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
162                                      && L == B && R == A)) {
163             ++NumExpand;
164             return LHS;
165           }
166           // Otherwise return "L op' R" if it simplifies.
167           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
168             ++NumExpand;
169             return V;
170           }
171         }
172     }
173 
174   // Check whether the expression has the form "A op (B op' C)".
175   if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
176     if (Op1->getOpcode() == OpcodeToExpand) {
177       // It does!  Try turning it into "(A op B) op' (A op C)".
178       Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
179       // Do "A op B" and "A op C" both simplify?
180       if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
181         if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
182           // They do! Return "L op' R" if it simplifies or is already available.
183           // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
184           if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
185                                      && L == C && R == B)) {
186             ++NumExpand;
187             return RHS;
188           }
189           // Otherwise return "L op' R" if it simplifies.
190           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
191             ++NumExpand;
192             return V;
193           }
194         }
195     }
196 
197   return nullptr;
198 }
199 
200 /// Generic simplifications for associative binary operations.
201 /// Returns the simpler value, or null if none was found.
202 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
203                                        Value *LHS, Value *RHS, const Query &Q,
204                                        unsigned MaxRecurse) {
205   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
206 
207   // Recursion is always used, so bail out at once if we already hit the limit.
208   if (!MaxRecurse--)
209     return nullptr;
210 
211   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
212   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
213 
214   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
215   if (Op0 && Op0->getOpcode() == Opcode) {
216     Value *A = Op0->getOperand(0);
217     Value *B = Op0->getOperand(1);
218     Value *C = RHS;
219 
220     // Does "B op C" simplify?
221     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
222       // It does!  Return "A op V" if it simplifies or is already available.
223       // If V equals B then "A op V" is just the LHS.
224       if (V == B) return LHS;
225       // Otherwise return "A op V" if it simplifies.
226       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
227         ++NumReassoc;
228         return W;
229       }
230     }
231   }
232 
233   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
234   if (Op1 && Op1->getOpcode() == Opcode) {
235     Value *A = LHS;
236     Value *B = Op1->getOperand(0);
237     Value *C = Op1->getOperand(1);
238 
239     // Does "A op B" simplify?
240     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
241       // It does!  Return "V op C" if it simplifies or is already available.
242       // If V equals B then "V op C" is just the RHS.
243       if (V == B) return RHS;
244       // Otherwise return "V op C" if it simplifies.
245       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
246         ++NumReassoc;
247         return W;
248       }
249     }
250   }
251 
252   // The remaining transforms require commutativity as well as associativity.
253   if (!Instruction::isCommutative(Opcode))
254     return nullptr;
255 
256   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
257   if (Op0 && Op0->getOpcode() == Opcode) {
258     Value *A = Op0->getOperand(0);
259     Value *B = Op0->getOperand(1);
260     Value *C = RHS;
261 
262     // Does "C op A" simplify?
263     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
264       // It does!  Return "V op B" if it simplifies or is already available.
265       // If V equals A then "V op B" is just the LHS.
266       if (V == A) return LHS;
267       // Otherwise return "V op B" if it simplifies.
268       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
269         ++NumReassoc;
270         return W;
271       }
272     }
273   }
274 
275   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
276   if (Op1 && Op1->getOpcode() == Opcode) {
277     Value *A = LHS;
278     Value *B = Op1->getOperand(0);
279     Value *C = Op1->getOperand(1);
280 
281     // Does "C op A" simplify?
282     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
283       // It does!  Return "B op V" if it simplifies or is already available.
284       // If V equals C then "B op V" is just the RHS.
285       if (V == C) return RHS;
286       // Otherwise return "B op V" if it simplifies.
287       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
288         ++NumReassoc;
289         return W;
290       }
291     }
292   }
293 
294   return nullptr;
295 }
296 
297 /// In the case of a binary operation with a select instruction as an operand,
298 /// try to simplify the binop by seeing whether evaluating it on both branches
299 /// of the select results in the same value. Returns the common value if so,
300 /// otherwise returns null.
301 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
302                                     Value *RHS, const Query &Q,
303                                     unsigned MaxRecurse) {
304   // Recursion is always used, so bail out at once if we already hit the limit.
305   if (!MaxRecurse--)
306     return nullptr;
307 
308   SelectInst *SI;
309   if (isa<SelectInst>(LHS)) {
310     SI = cast<SelectInst>(LHS);
311   } else {
312     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
313     SI = cast<SelectInst>(RHS);
314   }
315 
316   // Evaluate the BinOp on the true and false branches of the select.
317   Value *TV;
318   Value *FV;
319   if (SI == LHS) {
320     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
321     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
322   } else {
323     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
324     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
325   }
326 
327   // If they simplified to the same value, then return the common value.
328   // If they both failed to simplify then return null.
329   if (TV == FV)
330     return TV;
331 
332   // If one branch simplified to undef, return the other one.
333   if (TV && isa<UndefValue>(TV))
334     return FV;
335   if (FV && isa<UndefValue>(FV))
336     return TV;
337 
338   // If applying the operation did not change the true and false select values,
339   // then the result of the binop is the select itself.
340   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
341     return SI;
342 
343   // If one branch simplified and the other did not, and the simplified
344   // value is equal to the unsimplified one, return the simplified value.
345   // For example, select (cond, X, X & Z) & Z -> X & Z.
346   if ((FV && !TV) || (TV && !FV)) {
347     // Check that the simplified value has the form "X op Y" where "op" is the
348     // same as the original operation.
349     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
350     if (Simplified && Simplified->getOpcode() == Opcode) {
351       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
352       // We already know that "op" is the same as for the simplified value.  See
353       // if the operands match too.  If so, return the simplified value.
354       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
355       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
356       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
357       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
358           Simplified->getOperand(1) == UnsimplifiedRHS)
359         return Simplified;
360       if (Simplified->isCommutative() &&
361           Simplified->getOperand(1) == UnsimplifiedLHS &&
362           Simplified->getOperand(0) == UnsimplifiedRHS)
363         return Simplified;
364     }
365   }
366 
367   return nullptr;
368 }
369 
370 /// In the case of a comparison with a select instruction, try to simplify the
371 /// comparison by seeing whether both branches of the select result in the same
372 /// value. Returns the common value if so, otherwise returns null.
373 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
374                                   Value *RHS, const Query &Q,
375                                   unsigned MaxRecurse) {
376   // Recursion is always used, so bail out at once if we already hit the limit.
377   if (!MaxRecurse--)
378     return nullptr;
379 
380   // Make sure the select is on the LHS.
381   if (!isa<SelectInst>(LHS)) {
382     std::swap(LHS, RHS);
383     Pred = CmpInst::getSwappedPredicate(Pred);
384   }
385   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
386   SelectInst *SI = cast<SelectInst>(LHS);
387   Value *Cond = SI->getCondition();
388   Value *TV = SI->getTrueValue();
389   Value *FV = SI->getFalseValue();
390 
391   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
392   // Does "cmp TV, RHS" simplify?
393   Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
394   if (TCmp == Cond) {
395     // It not only simplified, it simplified to the select condition.  Replace
396     // it with 'true'.
397     TCmp = getTrue(Cond->getType());
398   } else if (!TCmp) {
399     // It didn't simplify.  However if "cmp TV, RHS" is equal to the select
400     // condition then we can replace it with 'true'.  Otherwise give up.
401     if (!isSameCompare(Cond, Pred, TV, RHS))
402       return nullptr;
403     TCmp = getTrue(Cond->getType());
404   }
405 
406   // Does "cmp FV, RHS" simplify?
407   Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
408   if (FCmp == Cond) {
409     // It not only simplified, it simplified to the select condition.  Replace
410     // it with 'false'.
411     FCmp = getFalse(Cond->getType());
412   } else if (!FCmp) {
413     // It didn't simplify.  However if "cmp FV, RHS" is equal to the select
414     // condition then we can replace it with 'false'.  Otherwise give up.
415     if (!isSameCompare(Cond, Pred, FV, RHS))
416       return nullptr;
417     FCmp = getFalse(Cond->getType());
418   }
419 
420   // If both sides simplified to the same value, then use it as the result of
421   // the original comparison.
422   if (TCmp == FCmp)
423     return TCmp;
424 
425   // The remaining cases only make sense if the select condition has the same
426   // type as the result of the comparison, so bail out if this is not so.
427   if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
428     return nullptr;
429   // If the false value simplified to false, then the result of the compare
430   // is equal to "Cond && TCmp".  This also catches the case when the false
431   // value simplified to false and the true value to true, returning "Cond".
432   if (match(FCmp, m_Zero()))
433     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
434       return V;
435   // If the true value simplified to true, then the result of the compare
436   // is equal to "Cond || FCmp".
437   if (match(TCmp, m_One()))
438     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
439       return V;
440   // Finally, if the false value simplified to true and the true value to
441   // false, then the result of the compare is equal to "!Cond".
442   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
443     if (Value *V =
444         SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
445                         Q, MaxRecurse))
446       return V;
447 
448   return nullptr;
449 }
450 
451 /// In the case of a binary operation with an operand that is a PHI instruction,
452 /// try to simplify the binop by seeing whether evaluating it on the incoming
453 /// phi values yields the same result for every value. If so returns the common
454 /// value, otherwise returns null.
455 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
456                                  Value *RHS, const Query &Q,
457                                  unsigned MaxRecurse) {
458   // Recursion is always used, so bail out at once if we already hit the limit.
459   if (!MaxRecurse--)
460     return nullptr;
461 
462   PHINode *PI;
463   if (isa<PHINode>(LHS)) {
464     PI = cast<PHINode>(LHS);
465     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
466     if (!ValueDominatesPHI(RHS, PI, Q.DT))
467       return nullptr;
468   } else {
469     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
470     PI = cast<PHINode>(RHS);
471     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
472     if (!ValueDominatesPHI(LHS, PI, Q.DT))
473       return nullptr;
474   }
475 
476   // Evaluate the BinOp on the incoming phi values.
477   Value *CommonValue = nullptr;
478   for (Value *Incoming : PI->incoming_values()) {
479     // If the incoming value is the phi node itself, it can safely be skipped.
480     if (Incoming == PI) continue;
481     Value *V = PI == LHS ?
482       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
483       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
484     // If the operation failed to simplify, or simplified to a different value
485     // to previously, then give up.
486     if (!V || (CommonValue && V != CommonValue))
487       return nullptr;
488     CommonValue = V;
489   }
490 
491   return CommonValue;
492 }
493 
494 /// In the case of a comparison with a PHI instruction, try to simplify the
495 /// comparison by seeing whether comparing with all of the incoming phi values
496 /// yields the same result every time. If so returns the common result,
497 /// otherwise returns null.
498 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
499                                const Query &Q, unsigned MaxRecurse) {
500   // Recursion is always used, so bail out at once if we already hit the limit.
501   if (!MaxRecurse--)
502     return nullptr;
503 
504   // Make sure the phi is on the LHS.
505   if (!isa<PHINode>(LHS)) {
506     std::swap(LHS, RHS);
507     Pred = CmpInst::getSwappedPredicate(Pred);
508   }
509   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
510   PHINode *PI = cast<PHINode>(LHS);
511 
512   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
513   if (!ValueDominatesPHI(RHS, PI, Q.DT))
514     return nullptr;
515 
516   // Evaluate the BinOp on the incoming phi values.
517   Value *CommonValue = nullptr;
518   for (Value *Incoming : PI->incoming_values()) {
519     // If the incoming value is the phi node itself, it can safely be skipped.
520     if (Incoming == PI) continue;
521     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
522     // If the operation failed to simplify, or simplified to a different value
523     // to previously, then give up.
524     if (!V || (CommonValue && V != CommonValue))
525       return nullptr;
526     CommonValue = V;
527   }
528 
529   return CommonValue;
530 }
531 
532 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
533                                        Value *&Op0, Value *&Op1,
534                                        const Query &Q) {
535   if (auto *CLHS = dyn_cast<Constant>(Op0)) {
536     if (auto *CRHS = dyn_cast<Constant>(Op1))
537       return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
538 
539     // Canonicalize the constant to the RHS if this is a commutative operation.
540     if (Instruction::isCommutative(Opcode))
541       std::swap(Op0, Op1);
542   }
543   return nullptr;
544 }
545 
546 /// Given operands for an Add, see if we can fold the result.
547 /// If not, this returns null.
548 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
549                               const Query &Q, unsigned MaxRecurse) {
550   if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
551     return C;
552 
553   // X + undef -> undef
554   if (match(Op1, m_Undef()))
555     return Op1;
556 
557   // X + 0 -> X
558   if (match(Op1, m_Zero()))
559     return Op0;
560 
561   // X + (Y - X) -> Y
562   // (Y - X) + X -> Y
563   // Eg: X + -X -> 0
564   Value *Y = nullptr;
565   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
566       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
567     return Y;
568 
569   // X + ~X -> -1   since   ~X = -X-1
570   Type *Ty = Op0->getType();
571   if (match(Op0, m_Not(m_Specific(Op1))) ||
572       match(Op1, m_Not(m_Specific(Op0))))
573     return Constant::getAllOnesValue(Ty);
574 
575   // add nsw/nuw (xor Y, signbit), signbit --> Y
576   // The no-wrapping add guarantees that the top bit will be set by the add.
577   // Therefore, the xor must be clearing the already set sign bit of Y.
578   if ((isNSW || isNUW) && match(Op1, m_SignBit()) &&
579       match(Op0, m_Xor(m_Value(Y), m_SignBit())))
580     return Y;
581 
582   /// i1 add -> xor.
583   if (MaxRecurse && Op0->getType()->getScalarType()->isIntegerTy(1))
584     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
585       return V;
586 
587   // Try some generic simplifications for associative operations.
588   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
589                                           MaxRecurse))
590     return V;
591 
592   // Threading Add over selects and phi nodes is pointless, so don't bother.
593   // Threading over the select in "A + select(cond, B, C)" means evaluating
594   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
595   // only if B and C are equal.  If B and C are equal then (since we assume
596   // that operands have already been simplified) "select(cond, B, C)" should
597   // have been simplified to the common value of B and C already.  Analysing
598   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
599   // for threading over phi nodes.
600 
601   return nullptr;
602 }
603 
604 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
605                              const DataLayout &DL, const TargetLibraryInfo *TLI,
606                              const DominatorTree *DT, AssumptionCache *AC,
607                              const Instruction *CxtI) {
608   return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
609                            RecursionLimit);
610 }
611 
612 /// \brief Compute the base pointer and cumulative constant offsets for V.
613 ///
614 /// This strips all constant offsets off of V, leaving it the base pointer, and
615 /// accumulates the total constant offset applied in the returned constant. It
616 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
617 /// no constant offsets applied.
618 ///
619 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
620 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
621 /// folding.
622 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
623                                                 bool AllowNonInbounds = false) {
624   assert(V->getType()->getScalarType()->isPointerTy());
625 
626   Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
627   APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
628 
629   // Even though we don't look through PHI nodes, we could be called on an
630   // instruction in an unreachable block, which may be on a cycle.
631   SmallPtrSet<Value *, 4> Visited;
632   Visited.insert(V);
633   do {
634     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
635       if ((!AllowNonInbounds && !GEP->isInBounds()) ||
636           !GEP->accumulateConstantOffset(DL, Offset))
637         break;
638       V = GEP->getPointerOperand();
639     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
640       V = cast<Operator>(V)->getOperand(0);
641     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
642       if (GA->isInterposable())
643         break;
644       V = GA->getAliasee();
645     } else {
646       if (auto CS = CallSite(V))
647         if (Value *RV = CS.getReturnedArgOperand()) {
648           V = RV;
649           continue;
650         }
651       break;
652     }
653     assert(V->getType()->getScalarType()->isPointerTy() &&
654            "Unexpected operand type!");
655   } while (Visited.insert(V).second);
656 
657   Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
658   if (V->getType()->isVectorTy())
659     return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
660                                     OffsetIntPtr);
661   return OffsetIntPtr;
662 }
663 
664 /// \brief Compute the constant difference between two pointer values.
665 /// If the difference is not a constant, returns zero.
666 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
667                                           Value *RHS) {
668   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
669   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
670 
671   // If LHS and RHS are not related via constant offsets to the same base
672   // value, there is nothing we can do here.
673   if (LHS != RHS)
674     return nullptr;
675 
676   // Otherwise, the difference of LHS - RHS can be computed as:
677   //    LHS - RHS
678   //  = (LHSOffset + Base) - (RHSOffset + Base)
679   //  = LHSOffset - RHSOffset
680   return ConstantExpr::getSub(LHSOffset, RHSOffset);
681 }
682 
683 /// Given operands for a Sub, see if we can fold the result.
684 /// If not, this returns null.
685 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
686                               const Query &Q, unsigned MaxRecurse) {
687   if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
688     return C;
689 
690   // X - undef -> undef
691   // undef - X -> undef
692   if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
693     return UndefValue::get(Op0->getType());
694 
695   // X - 0 -> X
696   if (match(Op1, m_Zero()))
697     return Op0;
698 
699   // X - X -> 0
700   if (Op0 == Op1)
701     return Constant::getNullValue(Op0->getType());
702 
703   // Is this a negation?
704   if (match(Op0, m_Zero())) {
705     // 0 - X -> 0 if the sub is NUW.
706     if (isNUW)
707       return Op0;
708 
709     unsigned BitWidth = Op1->getType()->getScalarSizeInBits();
710     APInt KnownZero(BitWidth, 0);
711     APInt KnownOne(BitWidth, 0);
712     computeKnownBits(Op1, KnownZero, KnownOne, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
713     if (KnownZero.isMaxSignedValue()) {
714       // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
715       // Op1 must be 0 because negating the minimum signed value is undefined.
716       if (isNSW)
717         return Op0;
718 
719       // 0 - X -> X if X is 0 or the minimum signed value.
720       return Op1;
721     }
722   }
723 
724   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
725   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
726   Value *X = nullptr, *Y = nullptr, *Z = Op1;
727   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
728     // See if "V === Y - Z" simplifies.
729     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
730       // It does!  Now see if "X + V" simplifies.
731       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
732         // It does, we successfully reassociated!
733         ++NumReassoc;
734         return W;
735       }
736     // See if "V === X - Z" simplifies.
737     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
738       // It does!  Now see if "Y + V" simplifies.
739       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
740         // It does, we successfully reassociated!
741         ++NumReassoc;
742         return W;
743       }
744   }
745 
746   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
747   // For example, X - (X + 1) -> -1
748   X = Op0;
749   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
750     // See if "V === X - Y" simplifies.
751     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
752       // It does!  Now see if "V - Z" simplifies.
753       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
754         // It does, we successfully reassociated!
755         ++NumReassoc;
756         return W;
757       }
758     // See if "V === X - Z" simplifies.
759     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
760       // It does!  Now see if "V - Y" simplifies.
761       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
762         // It does, we successfully reassociated!
763         ++NumReassoc;
764         return W;
765       }
766   }
767 
768   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
769   // For example, X - (X - Y) -> Y.
770   Z = Op0;
771   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
772     // See if "V === Z - X" simplifies.
773     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
774       // It does!  Now see if "V + Y" simplifies.
775       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
776         // It does, we successfully reassociated!
777         ++NumReassoc;
778         return W;
779       }
780 
781   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
782   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
783       match(Op1, m_Trunc(m_Value(Y))))
784     if (X->getType() == Y->getType())
785       // See if "V === X - Y" simplifies.
786       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
787         // It does!  Now see if "trunc V" simplifies.
788         if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
789                                         Q, MaxRecurse - 1))
790           // It does, return the simplified "trunc V".
791           return W;
792 
793   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
794   if (match(Op0, m_PtrToInt(m_Value(X))) &&
795       match(Op1, m_PtrToInt(m_Value(Y))))
796     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
797       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
798 
799   // i1 sub -> xor.
800   if (MaxRecurse && Op0->getType()->getScalarType()->isIntegerTy(1))
801     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
802       return V;
803 
804   // Threading Sub over selects and phi nodes is pointless, so don't bother.
805   // Threading over the select in "A - select(cond, B, C)" means evaluating
806   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
807   // only if B and C are equal.  If B and C are equal then (since we assume
808   // that operands have already been simplified) "select(cond, B, C)" should
809   // have been simplified to the common value of B and C already.  Analysing
810   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
811   // for threading over phi nodes.
812 
813   return nullptr;
814 }
815 
816 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
817                              const DataLayout &DL, const TargetLibraryInfo *TLI,
818                              const DominatorTree *DT, AssumptionCache *AC,
819                              const Instruction *CxtI) {
820   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
821                            RecursionLimit);
822 }
823 
824 /// Given operands for an FAdd, see if we can fold the result.  If not, this
825 /// returns null.
826 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
827                               const Query &Q, unsigned MaxRecurse) {
828   if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
829     return C;
830 
831   // fadd X, -0 ==> X
832   if (match(Op1, m_NegZero()))
833     return Op0;
834 
835   // fadd X, 0 ==> X, when we know X is not -0
836   if (match(Op1, m_Zero()) &&
837       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
838     return Op0;
839 
840   // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
841   //   where nnan and ninf have to occur at least once somewhere in this
842   //   expression
843   Value *SubOp = nullptr;
844   if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0))))
845     SubOp = Op1;
846   else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1))))
847     SubOp = Op0;
848   if (SubOp) {
849     Instruction *FSub = cast<Instruction>(SubOp);
850     if ((FMF.noNaNs() || FSub->hasNoNaNs()) &&
851         (FMF.noInfs() || FSub->hasNoInfs()))
852       return Constant::getNullValue(Op0->getType());
853   }
854 
855   return nullptr;
856 }
857 
858 /// Given operands for an FSub, see if we can fold the result.  If not, this
859 /// returns null.
860 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
861                               const Query &Q, unsigned MaxRecurse) {
862   if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
863     return C;
864 
865   // fsub X, 0 ==> X
866   if (match(Op1, m_Zero()))
867     return Op0;
868 
869   // fsub X, -0 ==> X, when we know X is not -0
870   if (match(Op1, m_NegZero()) &&
871       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
872     return Op0;
873 
874   // fsub -0.0, (fsub -0.0, X) ==> X
875   Value *X;
876   if (match(Op0, m_NegZero()) && match(Op1, m_FSub(m_NegZero(), m_Value(X))))
877     return X;
878 
879   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
880   if (FMF.noSignedZeros() && match(Op0, m_AnyZero()) &&
881       match(Op1, m_FSub(m_AnyZero(), m_Value(X))))
882     return X;
883 
884   // fsub nnan x, x ==> 0.0
885   if (FMF.noNaNs() && Op0 == Op1)
886     return Constant::getNullValue(Op0->getType());
887 
888   return nullptr;
889 }
890 
891 /// Given the operands for an FMul, see if we can fold the result
892 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
893                                const Query &Q, unsigned MaxRecurse) {
894   if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
895     return C;
896 
897   // fmul X, 1.0 ==> X
898   if (match(Op1, m_FPOne()))
899     return Op0;
900 
901   // fmul nnan nsz X, 0 ==> 0
902   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero()))
903     return Op1;
904 
905   return nullptr;
906 }
907 
908 /// Given operands for a Mul, see if we can fold the result.
909 /// If not, this returns null.
910 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
911                               unsigned MaxRecurse) {
912   if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
913     return C;
914 
915   // X * undef -> 0
916   if (match(Op1, m_Undef()))
917     return Constant::getNullValue(Op0->getType());
918 
919   // X * 0 -> 0
920   if (match(Op1, m_Zero()))
921     return Op1;
922 
923   // X * 1 -> X
924   if (match(Op1, m_One()))
925     return Op0;
926 
927   // (X / Y) * Y -> X if the division is exact.
928   Value *X = nullptr;
929   if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
930       match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))   // Y * (X / Y)
931     return X;
932 
933   // i1 mul -> and.
934   if (MaxRecurse && Op0->getType()->getScalarType()->isIntegerTy(1))
935     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
936       return V;
937 
938   // Try some generic simplifications for associative operations.
939   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
940                                           MaxRecurse))
941     return V;
942 
943   // Mul distributes over Add.  Try some generic simplifications based on this.
944   if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
945                              Q, MaxRecurse))
946     return V;
947 
948   // If the operation is with the result of a select instruction, check whether
949   // operating on either branch of the select always yields the same value.
950   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
951     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
952                                          MaxRecurse))
953       return V;
954 
955   // If the operation is with the result of a phi instruction, check whether
956   // operating on all incoming values of the phi always yields the same value.
957   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
958     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
959                                       MaxRecurse))
960       return V;
961 
962   return nullptr;
963 }
964 
965 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
966                               const DataLayout &DL,
967                               const TargetLibraryInfo *TLI,
968                               const DominatorTree *DT, AssumptionCache *AC,
969                               const Instruction *CxtI) {
970   return ::SimplifyFAddInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
971                             RecursionLimit);
972 }
973 
974 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
975                               const DataLayout &DL,
976                               const TargetLibraryInfo *TLI,
977                               const DominatorTree *DT, AssumptionCache *AC,
978                               const Instruction *CxtI) {
979   return ::SimplifyFSubInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
980                             RecursionLimit);
981 }
982 
983 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
984                               const DataLayout &DL,
985                               const TargetLibraryInfo *TLI,
986                               const DominatorTree *DT, AssumptionCache *AC,
987                               const Instruction *CxtI) {
988   return ::SimplifyFMulInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
989                             RecursionLimit);
990 }
991 
992 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout &DL,
993                              const TargetLibraryInfo *TLI,
994                              const DominatorTree *DT, AssumptionCache *AC,
995                              const Instruction *CxtI) {
996   return ::SimplifyMulInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
997                            RecursionLimit);
998 }
999 
1000 /// Check for common or similar folds of integer division or integer remainder.
1001 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) {
1002   Type *Ty = Op0->getType();
1003 
1004   // X / undef -> undef
1005   // X % undef -> undef
1006   if (match(Op1, m_Undef()))
1007     return Op1;
1008 
1009   // X / 0 -> undef
1010   // X % 0 -> undef
1011   // We don't need to preserve faults!
1012   if (match(Op1, m_Zero()))
1013     return UndefValue::get(Ty);
1014 
1015   // If any element of a constant divisor vector is zero, the whole op is undef.
1016   auto *Op1C = dyn_cast<Constant>(Op1);
1017   if (Op1C && Ty->isVectorTy()) {
1018     unsigned NumElts = Ty->getVectorNumElements();
1019     for (unsigned i = 0; i != NumElts; ++i) {
1020       Constant *Elt = Op1C->getAggregateElement(i);
1021       if (Elt && Elt->isNullValue())
1022         return UndefValue::get(Ty);
1023     }
1024   }
1025 
1026   // undef / X -> 0
1027   // undef % X -> 0
1028   if (match(Op0, m_Undef()))
1029     return Constant::getNullValue(Ty);
1030 
1031   // 0 / X -> 0
1032   // 0 % X -> 0
1033   if (match(Op0, m_Zero()))
1034     return Op0;
1035 
1036   // X / X -> 1
1037   // X % X -> 0
1038   if (Op0 == Op1)
1039     return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
1040 
1041   // X / 1 -> X
1042   // X % 1 -> 0
1043   // If this is a boolean op (single-bit element type), we can't have
1044   // division-by-zero or remainder-by-zero, so assume the divisor is 1.
1045   if (match(Op1, m_One()) || Ty->getScalarType()->isIntegerTy(1))
1046     return IsDiv ? Op0 : Constant::getNullValue(Ty);
1047 
1048   return nullptr;
1049 }
1050 
1051 /// Given operands for an SDiv or UDiv, see if we can fold the result.
1052 /// If not, this returns null.
1053 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1054                           const Query &Q, unsigned MaxRecurse) {
1055   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1056     return C;
1057 
1058   if (Value *V = simplifyDivRem(Op0, Op1, true))
1059     return V;
1060 
1061   bool isSigned = Opcode == Instruction::SDiv;
1062 
1063   // (X * Y) / Y -> X if the multiplication does not overflow.
1064   Value *X = nullptr, *Y = nullptr;
1065   if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
1066     if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
1067     OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
1068     // If the Mul knows it does not overflow, then we are good to go.
1069     if ((isSigned && Mul->hasNoSignedWrap()) ||
1070         (!isSigned && Mul->hasNoUnsignedWrap()))
1071       return X;
1072     // If X has the form X = A / Y then X * Y cannot overflow.
1073     if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
1074       if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
1075         return X;
1076   }
1077 
1078   // (X rem Y) / Y -> 0
1079   if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1080       (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1081     return Constant::getNullValue(Op0->getType());
1082 
1083   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1084   ConstantInt *C1, *C2;
1085   if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
1086       match(Op1, m_ConstantInt(C2))) {
1087     bool Overflow;
1088     C1->getValue().umul_ov(C2->getValue(), Overflow);
1089     if (Overflow)
1090       return Constant::getNullValue(Op0->getType());
1091   }
1092 
1093   // If the operation is with the result of a select instruction, check whether
1094   // operating on either branch of the select always yields the same value.
1095   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1096     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1097       return V;
1098 
1099   // If the operation is with the result of a phi instruction, check whether
1100   // operating on all incoming values of the phi always yields the same value.
1101   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1102     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1103       return V;
1104 
1105   return nullptr;
1106 }
1107 
1108 /// Given operands for an SDiv, see if we can fold the result.
1109 /// If not, this returns null.
1110 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
1111                                unsigned MaxRecurse) {
1112   if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse))
1113     return V;
1114 
1115   return nullptr;
1116 }
1117 
1118 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout &DL,
1119                               const TargetLibraryInfo *TLI,
1120                               const DominatorTree *DT, AssumptionCache *AC,
1121                               const Instruction *CxtI) {
1122   return ::SimplifySDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1123                             RecursionLimit);
1124 }
1125 
1126 /// Given operands for a UDiv, see if we can fold the result.
1127 /// If not, this returns null.
1128 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
1129                                unsigned MaxRecurse) {
1130   if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse))
1131     return V;
1132 
1133   // udiv %V, C -> 0 if %V < C
1134   if (MaxRecurse) {
1135     if (Constant *C = dyn_cast_or_null<Constant>(SimplifyICmpInst(
1136             ICmpInst::ICMP_ULT, Op0, Op1, Q, MaxRecurse - 1))) {
1137       if (C->isAllOnesValue()) {
1138         return Constant::getNullValue(Op0->getType());
1139       }
1140     }
1141   }
1142 
1143   return nullptr;
1144 }
1145 
1146 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout &DL,
1147                               const TargetLibraryInfo *TLI,
1148                               const DominatorTree *DT, AssumptionCache *AC,
1149                               const Instruction *CxtI) {
1150   return ::SimplifyUDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1151                             RecursionLimit);
1152 }
1153 
1154 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1155                                const Query &Q, unsigned) {
1156   if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
1157     return C;
1158 
1159   // undef / X -> undef    (the undef could be a snan).
1160   if (match(Op0, m_Undef()))
1161     return Op0;
1162 
1163   // X / undef -> undef
1164   if (match(Op1, m_Undef()))
1165     return Op1;
1166 
1167   // X / 1.0 -> X
1168   if (match(Op1, m_FPOne()))
1169     return Op0;
1170 
1171   // 0 / X -> 0
1172   // Requires that NaNs are off (X could be zero) and signed zeroes are
1173   // ignored (X could be positive or negative, so the output sign is unknown).
1174   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
1175     return Op0;
1176 
1177   if (FMF.noNaNs()) {
1178     // X / X -> 1.0 is legal when NaNs are ignored.
1179     if (Op0 == Op1)
1180       return ConstantFP::get(Op0->getType(), 1.0);
1181 
1182     // -X /  X -> -1.0 and
1183     //  X / -X -> -1.0 are legal when NaNs are ignored.
1184     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
1185     if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) &&
1186          BinaryOperator::getFNegArgument(Op0) == Op1) ||
1187         (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) &&
1188          BinaryOperator::getFNegArgument(Op1) == Op0))
1189       return ConstantFP::get(Op0->getType(), -1.0);
1190   }
1191 
1192   return nullptr;
1193 }
1194 
1195 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1196                               const DataLayout &DL,
1197                               const TargetLibraryInfo *TLI,
1198                               const DominatorTree *DT, AssumptionCache *AC,
1199                               const Instruction *CxtI) {
1200   return ::SimplifyFDivInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
1201                             RecursionLimit);
1202 }
1203 
1204 /// Given operands for an SRem or URem, see if we can fold the result.
1205 /// If not, this returns null.
1206 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1207                           const Query &Q, unsigned MaxRecurse) {
1208   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1209     return C;
1210 
1211   if (Value *V = simplifyDivRem(Op0, Op1, false))
1212     return V;
1213 
1214   // (X % Y) % Y -> X % Y
1215   if ((Opcode == Instruction::SRem &&
1216        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1217       (Opcode == Instruction::URem &&
1218        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1219     return Op0;
1220 
1221   // If the operation is with the result of a select instruction, check whether
1222   // operating on either branch of the select always yields the same value.
1223   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1224     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1225       return V;
1226 
1227   // If the operation is with the result of a phi instruction, check whether
1228   // operating on all incoming values of the phi always yields the same value.
1229   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1230     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1231       return V;
1232 
1233   return nullptr;
1234 }
1235 
1236 /// Given operands for an SRem, see if we can fold the result.
1237 /// If not, this returns null.
1238 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
1239                                unsigned MaxRecurse) {
1240   if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse))
1241     return V;
1242 
1243   return nullptr;
1244 }
1245 
1246 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout &DL,
1247                               const TargetLibraryInfo *TLI,
1248                               const DominatorTree *DT, AssumptionCache *AC,
1249                               const Instruction *CxtI) {
1250   return ::SimplifySRemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1251                             RecursionLimit);
1252 }
1253 
1254 /// Given operands for a URem, see if we can fold the result.
1255 /// If not, this returns null.
1256 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
1257                                unsigned MaxRecurse) {
1258   if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse))
1259     return V;
1260 
1261   // urem %V, C -> %V if %V < C
1262   if (MaxRecurse) {
1263     if (Constant *C = dyn_cast_or_null<Constant>(SimplifyICmpInst(
1264             ICmpInst::ICMP_ULT, Op0, Op1, Q, MaxRecurse - 1))) {
1265       if (C->isAllOnesValue()) {
1266         return Op0;
1267       }
1268     }
1269   }
1270 
1271   return nullptr;
1272 }
1273 
1274 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout &DL,
1275                               const TargetLibraryInfo *TLI,
1276                               const DominatorTree *DT, AssumptionCache *AC,
1277                               const Instruction *CxtI) {
1278   return ::SimplifyURemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1279                             RecursionLimit);
1280 }
1281 
1282 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1283                                const Query &Q, unsigned) {
1284   if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
1285     return C;
1286 
1287   // undef % X -> undef    (the undef could be a snan).
1288   if (match(Op0, m_Undef()))
1289     return Op0;
1290 
1291   // X % undef -> undef
1292   if (match(Op1, m_Undef()))
1293     return Op1;
1294 
1295   // 0 % X -> 0
1296   // Requires that NaNs are off (X could be zero) and signed zeroes are
1297   // ignored (X could be positive or negative, so the output sign is unknown).
1298   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
1299     return Op0;
1300 
1301   return nullptr;
1302 }
1303 
1304 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1305                               const DataLayout &DL,
1306                               const TargetLibraryInfo *TLI,
1307                               const DominatorTree *DT, AssumptionCache *AC,
1308                               const Instruction *CxtI) {
1309   return ::SimplifyFRemInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
1310                             RecursionLimit);
1311 }
1312 
1313 /// Returns true if a shift by \c Amount always yields undef.
1314 static bool isUndefShift(Value *Amount) {
1315   Constant *C = dyn_cast<Constant>(Amount);
1316   if (!C)
1317     return false;
1318 
1319   // X shift by undef -> undef because it may shift by the bitwidth.
1320   if (isa<UndefValue>(C))
1321     return true;
1322 
1323   // Shifting by the bitwidth or more is undefined.
1324   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1325     if (CI->getValue().getLimitedValue() >=
1326         CI->getType()->getScalarSizeInBits())
1327       return true;
1328 
1329   // If all lanes of a vector shift are undefined the whole shift is.
1330   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1331     for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I)
1332       if (!isUndefShift(C->getAggregateElement(I)))
1333         return false;
1334     return true;
1335   }
1336 
1337   return false;
1338 }
1339 
1340 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1341 /// If not, this returns null.
1342 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
1343                             Value *Op1, const Query &Q, unsigned MaxRecurse) {
1344   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1345     return C;
1346 
1347   // 0 shift by X -> 0
1348   if (match(Op0, m_Zero()))
1349     return Op0;
1350 
1351   // X shift by 0 -> X
1352   if (match(Op1, m_Zero()))
1353     return Op0;
1354 
1355   // Fold undefined shifts.
1356   if (isUndefShift(Op1))
1357     return UndefValue::get(Op0->getType());
1358 
1359   // If the operation is with the result of a select instruction, check whether
1360   // operating on either branch of the select always yields the same value.
1361   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1362     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1363       return V;
1364 
1365   // If the operation is with the result of a phi instruction, check whether
1366   // operating on all incoming values of the phi always yields the same value.
1367   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1368     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1369       return V;
1370 
1371   // If any bits in the shift amount make that value greater than or equal to
1372   // the number of bits in the type, the shift is undefined.
1373   unsigned BitWidth = Op1->getType()->getScalarSizeInBits();
1374   APInt KnownZero(BitWidth, 0);
1375   APInt KnownOne(BitWidth, 0);
1376   computeKnownBits(Op1, KnownZero, KnownOne, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1377   if (KnownOne.getLimitedValue() >= BitWidth)
1378     return UndefValue::get(Op0->getType());
1379 
1380   // If all valid bits in the shift amount are known zero, the first operand is
1381   // unchanged.
1382   unsigned NumValidShiftBits = Log2_32_Ceil(BitWidth);
1383   APInt ShiftAmountMask = APInt::getLowBitsSet(BitWidth, NumValidShiftBits);
1384   if ((KnownZero & ShiftAmountMask) == ShiftAmountMask)
1385     return Op0;
1386 
1387   return nullptr;
1388 }
1389 
1390 /// \brief Given operands for an Shl, LShr or AShr, see if we can
1391 /// fold the result.  If not, this returns null.
1392 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
1393                                  Value *Op1, bool isExact, const Query &Q,
1394                                  unsigned MaxRecurse) {
1395   if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
1396     return V;
1397 
1398   // X >> X -> 0
1399   if (Op0 == Op1)
1400     return Constant::getNullValue(Op0->getType());
1401 
1402   // undef >> X -> 0
1403   // undef >> X -> undef (if it's exact)
1404   if (match(Op0, m_Undef()))
1405     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1406 
1407   // The low bit cannot be shifted out of an exact shift if it is set.
1408   if (isExact) {
1409     unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
1410     APInt Op0KnownZero(BitWidth, 0);
1411     APInt Op0KnownOne(BitWidth, 0);
1412     computeKnownBits(Op0, Op0KnownZero, Op0KnownOne, Q.DL, /*Depth=*/0, Q.AC,
1413                      Q.CxtI, Q.DT);
1414     if (Op0KnownOne[0])
1415       return Op0;
1416   }
1417 
1418   return nullptr;
1419 }
1420 
1421 /// Given operands for an Shl, see if we can fold the result.
1422 /// If not, this returns null.
1423 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1424                               const Query &Q, unsigned MaxRecurse) {
1425   if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
1426     return V;
1427 
1428   // undef << X -> 0
1429   // undef << X -> undef if (if it's NSW/NUW)
1430   if (match(Op0, m_Undef()))
1431     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1432 
1433   // (X >> A) << A -> X
1434   Value *X;
1435   if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1436     return X;
1437   return nullptr;
1438 }
1439 
1440 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1441                              const DataLayout &DL, const TargetLibraryInfo *TLI,
1442                              const DominatorTree *DT, AssumptionCache *AC,
1443                              const Instruction *CxtI) {
1444   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
1445                            RecursionLimit);
1446 }
1447 
1448 /// Given operands for an LShr, see if we can fold the result.
1449 /// If not, this returns null.
1450 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1451                                const Query &Q, unsigned MaxRecurse) {
1452   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1453                                     MaxRecurse))
1454       return V;
1455 
1456   // (X << A) >> A -> X
1457   Value *X;
1458   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1459     return X;
1460 
1461   return nullptr;
1462 }
1463 
1464 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1465                               const DataLayout &DL,
1466                               const TargetLibraryInfo *TLI,
1467                               const DominatorTree *DT, AssumptionCache *AC,
1468                               const Instruction *CxtI) {
1469   return ::SimplifyLShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI),
1470                             RecursionLimit);
1471 }
1472 
1473 /// Given operands for an AShr, see if we can fold the result.
1474 /// If not, this returns null.
1475 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1476                                const Query &Q, unsigned MaxRecurse) {
1477   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1478                                     MaxRecurse))
1479     return V;
1480 
1481   // all ones >>a X -> all ones
1482   if (match(Op0, m_AllOnes()))
1483     return Op0;
1484 
1485   // (X << A) >> A -> X
1486   Value *X;
1487   if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1488     return X;
1489 
1490   // Arithmetic shifting an all-sign-bit value is a no-op.
1491   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1492   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1493     return Op0;
1494 
1495   return nullptr;
1496 }
1497 
1498 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1499                               const DataLayout &DL,
1500                               const TargetLibraryInfo *TLI,
1501                               const DominatorTree *DT, AssumptionCache *AC,
1502                               const Instruction *CxtI) {
1503   return ::SimplifyAShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI),
1504                             RecursionLimit);
1505 }
1506 
1507 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1508                                          ICmpInst *UnsignedICmp, bool IsAnd) {
1509   Value *X, *Y;
1510 
1511   ICmpInst::Predicate EqPred;
1512   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1513       !ICmpInst::isEquality(EqPred))
1514     return nullptr;
1515 
1516   ICmpInst::Predicate UnsignedPred;
1517   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1518       ICmpInst::isUnsigned(UnsignedPred))
1519     ;
1520   else if (match(UnsignedICmp,
1521                  m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) &&
1522            ICmpInst::isUnsigned(UnsignedPred))
1523     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1524   else
1525     return nullptr;
1526 
1527   // X < Y && Y != 0  -->  X < Y
1528   // X < Y || Y != 0  -->  Y != 0
1529   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1530     return IsAnd ? UnsignedICmp : ZeroICmp;
1531 
1532   // X >= Y || Y != 0  -->  true
1533   // X >= Y || Y == 0  -->  X >= Y
1534   if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) {
1535     if (EqPred == ICmpInst::ICMP_NE)
1536       return getTrue(UnsignedICmp->getType());
1537     return UnsignedICmp;
1538   }
1539 
1540   // X < Y && Y == 0  -->  false
1541   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1542       IsAnd)
1543     return getFalse(UnsignedICmp->getType());
1544 
1545   return nullptr;
1546 }
1547 
1548 /// Commuted variants are assumed to be handled by calling this function again
1549 /// with the parameters swapped.
1550 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1551   ICmpInst::Predicate Pred0, Pred1;
1552   Value *A ,*B;
1553   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1554       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1555     return nullptr;
1556 
1557   // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
1558   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1559   // can eliminate Op1 from this 'and'.
1560   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1561     return Op0;
1562 
1563   // Check for any combination of predicates that are guaranteed to be disjoint.
1564   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1565       (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
1566       (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
1567       (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
1568     return getFalse(Op0->getType());
1569 
1570   return nullptr;
1571 }
1572 
1573 /// Commuted variants are assumed to be handled by calling this function again
1574 /// with the parameters swapped.
1575 static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
1576   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true))
1577     return X;
1578 
1579   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
1580     return X;
1581 
1582   // Look for this pattern: (icmp V, C0) & (icmp V, C1)).
1583   Type *ITy = Op0->getType();
1584   ICmpInst::Predicate Pred0, Pred1;
1585   const APInt *C0, *C1;
1586   Value *V;
1587   if (match(Op0, m_ICmp(Pred0, m_Value(V), m_APInt(C0))) &&
1588       match(Op1, m_ICmp(Pred1, m_Specific(V), m_APInt(C1)))) {
1589     // Make a constant range that's the intersection of the two icmp ranges.
1590     // If the intersection is empty, we know that the result is false.
1591     auto Range0 = ConstantRange::makeAllowedICmpRegion(Pred0, *C0);
1592     auto Range1 = ConstantRange::makeAllowedICmpRegion(Pred1, *C1);
1593     if (Range0.intersectWith(Range1).isEmptySet())
1594       return getFalse(ITy);
1595   }
1596 
1597   // (icmp (add V, C0), C1) & (icmp V, C0)
1598   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1599     return nullptr;
1600 
1601   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1602     return nullptr;
1603 
1604   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1605   if (AddInst->getOperand(1) != Op1->getOperand(1))
1606     return nullptr;
1607 
1608   bool isNSW = AddInst->hasNoSignedWrap();
1609   bool isNUW = AddInst->hasNoUnsignedWrap();
1610 
1611   const APInt Delta = *C1 - *C0;
1612   if (C0->isStrictlyPositive()) {
1613     if (Delta == 2) {
1614       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1615         return getFalse(ITy);
1616       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1617         return getFalse(ITy);
1618     }
1619     if (Delta == 1) {
1620       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1621         return getFalse(ITy);
1622       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1623         return getFalse(ITy);
1624     }
1625   }
1626   if (C0->getBoolValue() && isNUW) {
1627     if (Delta == 2)
1628       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1629         return getFalse(ITy);
1630     if (Delta == 1)
1631       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1632         return getFalse(ITy);
1633   }
1634 
1635   return nullptr;
1636 }
1637 
1638 /// Given operands for an And, see if we can fold the result.
1639 /// If not, this returns null.
1640 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
1641                               unsigned MaxRecurse) {
1642   if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
1643     return C;
1644 
1645   // X & undef -> 0
1646   if (match(Op1, m_Undef()))
1647     return Constant::getNullValue(Op0->getType());
1648 
1649   // X & X = X
1650   if (Op0 == Op1)
1651     return Op0;
1652 
1653   // X & 0 = 0
1654   if (match(Op1, m_Zero()))
1655     return Op1;
1656 
1657   // X & -1 = X
1658   if (match(Op1, m_AllOnes()))
1659     return Op0;
1660 
1661   // A & ~A  =  ~A & A  =  0
1662   if (match(Op0, m_Not(m_Specific(Op1))) ||
1663       match(Op1, m_Not(m_Specific(Op0))))
1664     return Constant::getNullValue(Op0->getType());
1665 
1666   // (A | ?) & A = A
1667   Value *A = nullptr, *B = nullptr;
1668   if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1669       (A == Op1 || B == Op1))
1670     return Op1;
1671 
1672   // A & (A | ?) = A
1673   if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1674       (A == Op0 || B == Op0))
1675     return Op0;
1676 
1677   // A & (-A) = A if A is a power of two or zero.
1678   if (match(Op0, m_Neg(m_Specific(Op1))) ||
1679       match(Op1, m_Neg(m_Specific(Op0)))) {
1680     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1681                                Q.DT))
1682       return Op0;
1683     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1684                                Q.DT))
1685       return Op1;
1686   }
1687 
1688   if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
1689     if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
1690       if (Value *V = SimplifyAndOfICmps(ICILHS, ICIRHS))
1691         return V;
1692       if (Value *V = SimplifyAndOfICmps(ICIRHS, ICILHS))
1693         return V;
1694     }
1695   }
1696 
1697   // The compares may be hidden behind casts. Look through those and try the
1698   // same folds as above.
1699   auto *Cast0 = dyn_cast<CastInst>(Op0);
1700   auto *Cast1 = dyn_cast<CastInst>(Op1);
1701   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1702       Cast0->getSrcTy() == Cast1->getSrcTy()) {
1703     auto *Cmp0 = dyn_cast<ICmpInst>(Cast0->getOperand(0));
1704     auto *Cmp1 = dyn_cast<ICmpInst>(Cast1->getOperand(0));
1705     if (Cmp0 && Cmp1) {
1706       Instruction::CastOps CastOpc = Cast0->getOpcode();
1707       Type *ResultType = Cast0->getType();
1708       if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp0, Cmp1)))
1709         return ConstantExpr::getCast(CastOpc, V, ResultType);
1710       if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp1, Cmp0)))
1711         return ConstantExpr::getCast(CastOpc, V, ResultType);
1712     }
1713   }
1714 
1715   // Try some generic simplifications for associative operations.
1716   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
1717                                           MaxRecurse))
1718     return V;
1719 
1720   // And distributes over Or.  Try some generic simplifications based on this.
1721   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1722                              Q, MaxRecurse))
1723     return V;
1724 
1725   // And distributes over Xor.  Try some generic simplifications based on this.
1726   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1727                              Q, MaxRecurse))
1728     return V;
1729 
1730   // If the operation is with the result of a select instruction, check whether
1731   // operating on either branch of the select always yields the same value.
1732   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1733     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
1734                                          MaxRecurse))
1735       return V;
1736 
1737   // If the operation is with the result of a phi instruction, check whether
1738   // operating on all incoming values of the phi always yields the same value.
1739   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1740     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
1741                                       MaxRecurse))
1742       return V;
1743 
1744   return nullptr;
1745 }
1746 
1747 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout &DL,
1748                              const TargetLibraryInfo *TLI,
1749                              const DominatorTree *DT, AssumptionCache *AC,
1750                              const Instruction *CxtI) {
1751   return ::SimplifyAndInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1752                            RecursionLimit);
1753 }
1754 
1755 /// Commuted variants are assumed to be handled by calling this function again
1756 /// with the parameters swapped.
1757 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1758   ICmpInst::Predicate Pred0, Pred1;
1759   Value *A ,*B;
1760   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1761       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1762     return nullptr;
1763 
1764   // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
1765   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1766   // can eliminate Op0 from this 'or'.
1767   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1768     return Op1;
1769 
1770   // Check for any combination of predicates that cover the entire range of
1771   // possibilities.
1772   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1773       (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
1774       (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
1775       (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
1776     return getTrue(Op0->getType());
1777 
1778   return nullptr;
1779 }
1780 
1781 /// Commuted variants are assumed to be handled by calling this function again
1782 /// with the parameters swapped.
1783 static Value *SimplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
1784   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false))
1785     return X;
1786 
1787   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
1788     return X;
1789 
1790   // (icmp (add V, C0), C1) | (icmp V, C0)
1791   ICmpInst::Predicate Pred0, Pred1;
1792   const APInt *C0, *C1;
1793   Value *V;
1794   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1795     return nullptr;
1796 
1797   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1798     return nullptr;
1799 
1800   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1801   if (AddInst->getOperand(1) != Op1->getOperand(1))
1802     return nullptr;
1803 
1804   Type *ITy = Op0->getType();
1805   bool isNSW = AddInst->hasNoSignedWrap();
1806   bool isNUW = AddInst->hasNoUnsignedWrap();
1807 
1808   const APInt Delta = *C1 - *C0;
1809   if (C0->isStrictlyPositive()) {
1810     if (Delta == 2) {
1811       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1812         return getTrue(ITy);
1813       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1814         return getTrue(ITy);
1815     }
1816     if (Delta == 1) {
1817       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1818         return getTrue(ITy);
1819       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1820         return getTrue(ITy);
1821     }
1822   }
1823   if (C0->getBoolValue() && isNUW) {
1824     if (Delta == 2)
1825       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1826         return getTrue(ITy);
1827     if (Delta == 1)
1828       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1829         return getTrue(ITy);
1830   }
1831 
1832   return nullptr;
1833 }
1834 
1835 /// Given operands for an Or, see if we can fold the result.
1836 /// If not, this returns null.
1837 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
1838                              unsigned MaxRecurse) {
1839   if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
1840     return C;
1841 
1842   // X | undef -> -1
1843   if (match(Op1, m_Undef()))
1844     return Constant::getAllOnesValue(Op0->getType());
1845 
1846   // X | X = X
1847   if (Op0 == Op1)
1848     return Op0;
1849 
1850   // X | 0 = X
1851   if (match(Op1, m_Zero()))
1852     return Op0;
1853 
1854   // X | -1 = -1
1855   if (match(Op1, m_AllOnes()))
1856     return Op1;
1857 
1858   // A | ~A  =  ~A | A  =  -1
1859   if (match(Op0, m_Not(m_Specific(Op1))) ||
1860       match(Op1, m_Not(m_Specific(Op0))))
1861     return Constant::getAllOnesValue(Op0->getType());
1862 
1863   // (A & ?) | A = A
1864   Value *A = nullptr, *B = nullptr;
1865   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1866       (A == Op1 || B == Op1))
1867     return Op1;
1868 
1869   // A | (A & ?) = A
1870   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1871       (A == Op0 || B == Op0))
1872     return Op0;
1873 
1874   // ~(A & ?) | A = -1
1875   if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1876       (A == Op1 || B == Op1))
1877     return Constant::getAllOnesValue(Op1->getType());
1878 
1879   // A | ~(A & ?) = -1
1880   if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1881       (A == Op0 || B == Op0))
1882     return Constant::getAllOnesValue(Op0->getType());
1883 
1884   if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
1885     if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
1886       if (Value *V = SimplifyOrOfICmps(ICILHS, ICIRHS))
1887         return V;
1888       if (Value *V = SimplifyOrOfICmps(ICIRHS, ICILHS))
1889         return V;
1890     }
1891   }
1892 
1893   // Try some generic simplifications for associative operations.
1894   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
1895                                           MaxRecurse))
1896     return V;
1897 
1898   // Or distributes over And.  Try some generic simplifications based on this.
1899   if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
1900                              MaxRecurse))
1901     return V;
1902 
1903   // If the operation is with the result of a select instruction, check whether
1904   // operating on either branch of the select always yields the same value.
1905   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1906     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
1907                                          MaxRecurse))
1908       return V;
1909 
1910   // (A & C)|(B & D)
1911   Value *C = nullptr, *D = nullptr;
1912   if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
1913       match(Op1, m_And(m_Value(B), m_Value(D)))) {
1914     ConstantInt *C1 = dyn_cast<ConstantInt>(C);
1915     ConstantInt *C2 = dyn_cast<ConstantInt>(D);
1916     if (C1 && C2 && (C1->getValue() == ~C2->getValue())) {
1917       // (A & C1)|(B & C2)
1918       // If we have: ((V + N) & C1) | (V & C2)
1919       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
1920       // replace with V+N.
1921       Value *V1, *V2;
1922       if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+
1923           match(A, m_Add(m_Value(V1), m_Value(V2)))) {
1924         // Add commutes, try both ways.
1925         if (V1 == B &&
1926             MaskedValueIsZero(V2, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1927           return A;
1928         if (V2 == B &&
1929             MaskedValueIsZero(V1, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1930           return A;
1931       }
1932       // Or commutes, try both ways.
1933       if ((C1->getValue() & (C1->getValue() + 1)) == 0 &&
1934           match(B, m_Add(m_Value(V1), m_Value(V2)))) {
1935         // Add commutes, try both ways.
1936         if (V1 == A &&
1937             MaskedValueIsZero(V2, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1938           return B;
1939         if (V2 == A &&
1940             MaskedValueIsZero(V1, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1941           return B;
1942       }
1943     }
1944   }
1945 
1946   // If the operation is with the result of a phi instruction, check whether
1947   // operating on all incoming values of the phi always yields the same value.
1948   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1949     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
1950       return V;
1951 
1952   return nullptr;
1953 }
1954 
1955 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout &DL,
1956                             const TargetLibraryInfo *TLI,
1957                             const DominatorTree *DT, AssumptionCache *AC,
1958                             const Instruction *CxtI) {
1959   return ::SimplifyOrInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1960                           RecursionLimit);
1961 }
1962 
1963 /// Given operands for a Xor, see if we can fold the result.
1964 /// If not, this returns null.
1965 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
1966                               unsigned MaxRecurse) {
1967   if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
1968     return C;
1969 
1970   // A ^ undef -> undef
1971   if (match(Op1, m_Undef()))
1972     return Op1;
1973 
1974   // A ^ 0 = A
1975   if (match(Op1, m_Zero()))
1976     return Op0;
1977 
1978   // A ^ A = 0
1979   if (Op0 == Op1)
1980     return Constant::getNullValue(Op0->getType());
1981 
1982   // A ^ ~A  =  ~A ^ A  =  -1
1983   if (match(Op0, m_Not(m_Specific(Op1))) ||
1984       match(Op1, m_Not(m_Specific(Op0))))
1985     return Constant::getAllOnesValue(Op0->getType());
1986 
1987   // Try some generic simplifications for associative operations.
1988   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
1989                                           MaxRecurse))
1990     return V;
1991 
1992   // Threading Xor over selects and phi nodes is pointless, so don't bother.
1993   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1994   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1995   // only if B and C are equal.  If B and C are equal then (since we assume
1996   // that operands have already been simplified) "select(cond, B, C)" should
1997   // have been simplified to the common value of B and C already.  Analysing
1998   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
1999   // for threading over phi nodes.
2000 
2001   return nullptr;
2002 }
2003 
2004 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout &DL,
2005                              const TargetLibraryInfo *TLI,
2006                              const DominatorTree *DT, AssumptionCache *AC,
2007                              const Instruction *CxtI) {
2008   return ::SimplifyXorInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
2009                            RecursionLimit);
2010 }
2011 
2012 static Type *GetCompareTy(Value *Op) {
2013   return CmpInst::makeCmpResultType(Op->getType());
2014 }
2015 
2016 /// Rummage around inside V looking for something equivalent to the comparison
2017 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
2018 /// Helper function for analyzing max/min idioms.
2019 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
2020                                          Value *LHS, Value *RHS) {
2021   SelectInst *SI = dyn_cast<SelectInst>(V);
2022   if (!SI)
2023     return nullptr;
2024   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2025   if (!Cmp)
2026     return nullptr;
2027   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2028   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
2029     return Cmp;
2030   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
2031       LHS == CmpRHS && RHS == CmpLHS)
2032     return Cmp;
2033   return nullptr;
2034 }
2035 
2036 // A significant optimization not implemented here is assuming that alloca
2037 // addresses are not equal to incoming argument values. They don't *alias*,
2038 // as we say, but that doesn't mean they aren't equal, so we take a
2039 // conservative approach.
2040 //
2041 // This is inspired in part by C++11 5.10p1:
2042 //   "Two pointers of the same type compare equal if and only if they are both
2043 //    null, both point to the same function, or both represent the same
2044 //    address."
2045 //
2046 // This is pretty permissive.
2047 //
2048 // It's also partly due to C11 6.5.9p6:
2049 //   "Two pointers compare equal if and only if both are null pointers, both are
2050 //    pointers to the same object (including a pointer to an object and a
2051 //    subobject at its beginning) or function, both are pointers to one past the
2052 //    last element of the same array object, or one is a pointer to one past the
2053 //    end of one array object and the other is a pointer to the start of a
2054 //    different array object that happens to immediately follow the first array
2055 //    object in the address space.)
2056 //
2057 // C11's version is more restrictive, however there's no reason why an argument
2058 // couldn't be a one-past-the-end value for a stack object in the caller and be
2059 // equal to the beginning of a stack object in the callee.
2060 //
2061 // If the C and C++ standards are ever made sufficiently restrictive in this
2062 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2063 // this optimization.
2064 static Constant *
2065 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI,
2066                    const DominatorTree *DT, CmpInst::Predicate Pred,
2067                    const Instruction *CxtI, Value *LHS, Value *RHS) {
2068   // First, skip past any trivial no-ops.
2069   LHS = LHS->stripPointerCasts();
2070   RHS = RHS->stripPointerCasts();
2071 
2072   // A non-null pointer is not equal to a null pointer.
2073   if (llvm::isKnownNonNull(LHS) && isa<ConstantPointerNull>(RHS) &&
2074       (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
2075     return ConstantInt::get(GetCompareTy(LHS),
2076                             !CmpInst::isTrueWhenEqual(Pred));
2077 
2078   // We can only fold certain predicates on pointer comparisons.
2079   switch (Pred) {
2080   default:
2081     return nullptr;
2082 
2083     // Equality comaprisons are easy to fold.
2084   case CmpInst::ICMP_EQ:
2085   case CmpInst::ICMP_NE:
2086     break;
2087 
2088     // We can only handle unsigned relational comparisons because 'inbounds' on
2089     // a GEP only protects against unsigned wrapping.
2090   case CmpInst::ICMP_UGT:
2091   case CmpInst::ICMP_UGE:
2092   case CmpInst::ICMP_ULT:
2093   case CmpInst::ICMP_ULE:
2094     // However, we have to switch them to their signed variants to handle
2095     // negative indices from the base pointer.
2096     Pred = ICmpInst::getSignedPredicate(Pred);
2097     break;
2098   }
2099 
2100   // Strip off any constant offsets so that we can reason about them.
2101   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2102   // here and compare base addresses like AliasAnalysis does, however there are
2103   // numerous hazards. AliasAnalysis and its utilities rely on special rules
2104   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2105   // doesn't need to guarantee pointer inequality when it says NoAlias.
2106   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
2107   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
2108 
2109   // If LHS and RHS are related via constant offsets to the same base
2110   // value, we can replace it with an icmp which just compares the offsets.
2111   if (LHS == RHS)
2112     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
2113 
2114   // Various optimizations for (in)equality comparisons.
2115   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2116     // Different non-empty allocations that exist at the same time have
2117     // different addresses (if the program can tell). Global variables always
2118     // exist, so they always exist during the lifetime of each other and all
2119     // allocas. Two different allocas usually have different addresses...
2120     //
2121     // However, if there's an @llvm.stackrestore dynamically in between two
2122     // allocas, they may have the same address. It's tempting to reduce the
2123     // scope of the problem by only looking at *static* allocas here. That would
2124     // cover the majority of allocas while significantly reducing the likelihood
2125     // of having an @llvm.stackrestore pop up in the middle. However, it's not
2126     // actually impossible for an @llvm.stackrestore to pop up in the middle of
2127     // an entry block. Also, if we have a block that's not attached to a
2128     // function, we can't tell if it's "static" under the current definition.
2129     // Theoretically, this problem could be fixed by creating a new kind of
2130     // instruction kind specifically for static allocas. Such a new instruction
2131     // could be required to be at the top of the entry block, thus preventing it
2132     // from being subject to a @llvm.stackrestore. Instcombine could even
2133     // convert regular allocas into these special allocas. It'd be nifty.
2134     // However, until then, this problem remains open.
2135     //
2136     // So, we'll assume that two non-empty allocas have different addresses
2137     // for now.
2138     //
2139     // With all that, if the offsets are within the bounds of their allocations
2140     // (and not one-past-the-end! so we can't use inbounds!), and their
2141     // allocations aren't the same, the pointers are not equal.
2142     //
2143     // Note that it's not necessary to check for LHS being a global variable
2144     // address, due to canonicalization and constant folding.
2145     if (isa<AllocaInst>(LHS) &&
2146         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2147       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2148       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2149       uint64_t LHSSize, RHSSize;
2150       if (LHSOffsetCI && RHSOffsetCI &&
2151           getObjectSize(LHS, LHSSize, DL, TLI) &&
2152           getObjectSize(RHS, RHSSize, DL, TLI)) {
2153         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2154         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2155         if (!LHSOffsetValue.isNegative() &&
2156             !RHSOffsetValue.isNegative() &&
2157             LHSOffsetValue.ult(LHSSize) &&
2158             RHSOffsetValue.ult(RHSSize)) {
2159           return ConstantInt::get(GetCompareTy(LHS),
2160                                   !CmpInst::isTrueWhenEqual(Pred));
2161         }
2162       }
2163 
2164       // Repeat the above check but this time without depending on DataLayout
2165       // or being able to compute a precise size.
2166       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2167           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2168           LHSOffset->isNullValue() &&
2169           RHSOffset->isNullValue())
2170         return ConstantInt::get(GetCompareTy(LHS),
2171                                 !CmpInst::isTrueWhenEqual(Pred));
2172     }
2173 
2174     // Even if an non-inbounds GEP occurs along the path we can still optimize
2175     // equality comparisons concerning the result. We avoid walking the whole
2176     // chain again by starting where the last calls to
2177     // stripAndComputeConstantOffsets left off and accumulate the offsets.
2178     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2179     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2180     if (LHS == RHS)
2181       return ConstantExpr::getICmp(Pred,
2182                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2183                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2184 
2185     // If one side of the equality comparison must come from a noalias call
2186     // (meaning a system memory allocation function), and the other side must
2187     // come from a pointer that cannot overlap with dynamically-allocated
2188     // memory within the lifetime of the current function (allocas, byval
2189     // arguments, globals), then determine the comparison result here.
2190     SmallVector<Value *, 8> LHSUObjs, RHSUObjs;
2191     GetUnderlyingObjects(LHS, LHSUObjs, DL);
2192     GetUnderlyingObjects(RHS, RHSUObjs, DL);
2193 
2194     // Is the set of underlying objects all noalias calls?
2195     auto IsNAC = [](ArrayRef<Value *> Objects) {
2196       return all_of(Objects, isNoAliasCall);
2197     };
2198 
2199     // Is the set of underlying objects all things which must be disjoint from
2200     // noalias calls. For allocas, we consider only static ones (dynamic
2201     // allocas might be transformed into calls to malloc not simultaneously
2202     // live with the compared-to allocation). For globals, we exclude symbols
2203     // that might be resolve lazily to symbols in another dynamically-loaded
2204     // library (and, thus, could be malloc'ed by the implementation).
2205     auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) {
2206       return all_of(Objects, [](Value *V) {
2207         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2208           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2209         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2210           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2211                   GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2212                  !GV->isThreadLocal();
2213         if (const Argument *A = dyn_cast<Argument>(V))
2214           return A->hasByValAttr();
2215         return false;
2216       });
2217     };
2218 
2219     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2220         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2221         return ConstantInt::get(GetCompareTy(LHS),
2222                                 !CmpInst::isTrueWhenEqual(Pred));
2223 
2224     // Fold comparisons for non-escaping pointer even if the allocation call
2225     // cannot be elided. We cannot fold malloc comparison to null. Also, the
2226     // dynamic allocation call could be either of the operands.
2227     Value *MI = nullptr;
2228     if (isAllocLikeFn(LHS, TLI) && llvm::isKnownNonNullAt(RHS, CxtI, DT))
2229       MI = LHS;
2230     else if (isAllocLikeFn(RHS, TLI) && llvm::isKnownNonNullAt(LHS, CxtI, DT))
2231       MI = RHS;
2232     // FIXME: We should also fold the compare when the pointer escapes, but the
2233     // compare dominates the pointer escape
2234     if (MI && !PointerMayBeCaptured(MI, true, true))
2235       return ConstantInt::get(GetCompareTy(LHS),
2236                               CmpInst::isFalseWhenEqual(Pred));
2237   }
2238 
2239   // Otherwise, fail.
2240   return nullptr;
2241 }
2242 
2243 /// Fold an icmp when its operands have i1 scalar type.
2244 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
2245                                   Value *RHS, const Query &Q) {
2246   Type *ITy = GetCompareTy(LHS); // The return type.
2247   Type *OpTy = LHS->getType();   // The operand type.
2248   if (!OpTy->getScalarType()->isIntegerTy(1))
2249     return nullptr;
2250 
2251   switch (Pred) {
2252   default:
2253     break;
2254   case ICmpInst::ICMP_EQ:
2255     // X == 1 -> X
2256     if (match(RHS, m_One()))
2257       return LHS;
2258     break;
2259   case ICmpInst::ICMP_NE:
2260     // X != 0 -> X
2261     if (match(RHS, m_Zero()))
2262       return LHS;
2263     break;
2264   case ICmpInst::ICMP_UGT:
2265     // X >u 0 -> X
2266     if (match(RHS, m_Zero()))
2267       return LHS;
2268     break;
2269   case ICmpInst::ICMP_UGE:
2270     // X >=u 1 -> X
2271     if (match(RHS, m_One()))
2272       return LHS;
2273     if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
2274       return getTrue(ITy);
2275     break;
2276   case ICmpInst::ICMP_SGE:
2277     /// For signed comparison, the values for an i1 are 0 and -1
2278     /// respectively. This maps into a truth table of:
2279     /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
2280     ///  0  |  0  |  1 (0 >= 0)   |  1
2281     ///  0  |  1  |  1 (0 >= -1)  |  1
2282     ///  1  |  0  |  0 (-1 >= 0)  |  0
2283     ///  1  |  1  |  1 (-1 >= -1) |  1
2284     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2285       return getTrue(ITy);
2286     break;
2287   case ICmpInst::ICMP_SLT:
2288     // X <s 0 -> X
2289     if (match(RHS, m_Zero()))
2290       return LHS;
2291     break;
2292   case ICmpInst::ICMP_SLE:
2293     // X <=s -1 -> X
2294     if (match(RHS, m_One()))
2295       return LHS;
2296     break;
2297   case ICmpInst::ICMP_ULE:
2298     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2299       return getTrue(ITy);
2300     break;
2301   }
2302 
2303   return nullptr;
2304 }
2305 
2306 /// Try hard to fold icmp with zero RHS because this is a common case.
2307 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
2308                                    Value *RHS, const Query &Q) {
2309   if (!match(RHS, m_Zero()))
2310     return nullptr;
2311 
2312   Type *ITy = GetCompareTy(LHS); // The return type.
2313   bool LHSKnownNonNegative, LHSKnownNegative;
2314   switch (Pred) {
2315   default:
2316     llvm_unreachable("Unknown ICmp predicate!");
2317   case ICmpInst::ICMP_ULT:
2318     return getFalse(ITy);
2319   case ICmpInst::ICMP_UGE:
2320     return getTrue(ITy);
2321   case ICmpInst::ICMP_EQ:
2322   case ICmpInst::ICMP_ULE:
2323     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2324       return getFalse(ITy);
2325     break;
2326   case ICmpInst::ICMP_NE:
2327   case ICmpInst::ICMP_UGT:
2328     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2329       return getTrue(ITy);
2330     break;
2331   case ICmpInst::ICMP_SLT:
2332     ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2333                    Q.CxtI, Q.DT);
2334     if (LHSKnownNegative)
2335       return getTrue(ITy);
2336     if (LHSKnownNonNegative)
2337       return getFalse(ITy);
2338     break;
2339   case ICmpInst::ICMP_SLE:
2340     ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2341                    Q.CxtI, Q.DT);
2342     if (LHSKnownNegative)
2343       return getTrue(ITy);
2344     if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2345       return getFalse(ITy);
2346     break;
2347   case ICmpInst::ICMP_SGE:
2348     ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2349                    Q.CxtI, Q.DT);
2350     if (LHSKnownNegative)
2351       return getFalse(ITy);
2352     if (LHSKnownNonNegative)
2353       return getTrue(ITy);
2354     break;
2355   case ICmpInst::ICMP_SGT:
2356     ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2357                    Q.CxtI, Q.DT);
2358     if (LHSKnownNegative)
2359       return getFalse(ITy);
2360     if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2361       return getTrue(ITy);
2362     break;
2363   }
2364 
2365   return nullptr;
2366 }
2367 
2368 /// Many binary operators with a constant operand have an easy-to-compute
2369 /// range of outputs. This can be used to fold a comparison to always true or
2370 /// always false.
2371 static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper) {
2372   unsigned Width = Lower.getBitWidth();
2373   const APInt *C;
2374   switch (BO.getOpcode()) {
2375   case Instruction::Add:
2376     if (match(BO.getOperand(1), m_APInt(C)) && *C != 0) {
2377       // FIXME: If we have both nuw and nsw, we should reduce the range further.
2378       if (BO.hasNoUnsignedWrap()) {
2379         // 'add nuw x, C' produces [C, UINT_MAX].
2380         Lower = *C;
2381       } else if (BO.hasNoSignedWrap()) {
2382         if (C->isNegative()) {
2383           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
2384           Lower = APInt::getSignedMinValue(Width);
2385           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
2386         } else {
2387           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
2388           Lower = APInt::getSignedMinValue(Width) + *C;
2389           Upper = APInt::getSignedMaxValue(Width) + 1;
2390         }
2391       }
2392     }
2393     break;
2394 
2395   case Instruction::And:
2396     if (match(BO.getOperand(1), m_APInt(C)))
2397       // 'and x, C' produces [0, C].
2398       Upper = *C + 1;
2399     break;
2400 
2401   case Instruction::Or:
2402     if (match(BO.getOperand(1), m_APInt(C)))
2403       // 'or x, C' produces [C, UINT_MAX].
2404       Lower = *C;
2405     break;
2406 
2407   case Instruction::AShr:
2408     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
2409       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
2410       Lower = APInt::getSignedMinValue(Width).ashr(*C);
2411       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
2412     } else if (match(BO.getOperand(0), m_APInt(C))) {
2413       unsigned ShiftAmount = Width - 1;
2414       if (*C != 0 && BO.isExact())
2415         ShiftAmount = C->countTrailingZeros();
2416       if (C->isNegative()) {
2417         // 'ashr C, x' produces [C, C >> (Width-1)]
2418         Lower = *C;
2419         Upper = C->ashr(ShiftAmount) + 1;
2420       } else {
2421         // 'ashr C, x' produces [C >> (Width-1), C]
2422         Lower = C->ashr(ShiftAmount);
2423         Upper = *C + 1;
2424       }
2425     }
2426     break;
2427 
2428   case Instruction::LShr:
2429     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
2430       // 'lshr x, C' produces [0, UINT_MAX >> C].
2431       Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
2432     } else if (match(BO.getOperand(0), m_APInt(C))) {
2433       // 'lshr C, x' produces [C >> (Width-1), C].
2434       unsigned ShiftAmount = Width - 1;
2435       if (*C != 0 && BO.isExact())
2436         ShiftAmount = C->countTrailingZeros();
2437       Lower = C->lshr(ShiftAmount);
2438       Upper = *C + 1;
2439     }
2440     break;
2441 
2442   case Instruction::Shl:
2443     if (match(BO.getOperand(0), m_APInt(C))) {
2444       if (BO.hasNoUnsignedWrap()) {
2445         // 'shl nuw C, x' produces [C, C << CLZ(C)]
2446         Lower = *C;
2447         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
2448       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
2449         if (C->isNegative()) {
2450           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
2451           unsigned ShiftAmount = C->countLeadingOnes() - 1;
2452           Lower = C->shl(ShiftAmount);
2453           Upper = *C + 1;
2454         } else {
2455           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
2456           unsigned ShiftAmount = C->countLeadingZeros() - 1;
2457           Lower = *C;
2458           Upper = C->shl(ShiftAmount) + 1;
2459         }
2460       }
2461     }
2462     break;
2463 
2464   case Instruction::SDiv:
2465     if (match(BO.getOperand(1), m_APInt(C))) {
2466       APInt IntMin = APInt::getSignedMinValue(Width);
2467       APInt IntMax = APInt::getSignedMaxValue(Width);
2468       if (C->isAllOnesValue()) {
2469         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
2470         //    where C != -1 and C != 0 and C != 1
2471         Lower = IntMin + 1;
2472         Upper = IntMax + 1;
2473       } else if (C->countLeadingZeros() < Width - 1) {
2474         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
2475         //    where C != -1 and C != 0 and C != 1
2476         Lower = IntMin.sdiv(*C);
2477         Upper = IntMax.sdiv(*C);
2478         if (Lower.sgt(Upper))
2479           std::swap(Lower, Upper);
2480         Upper = Upper + 1;
2481         assert(Upper != Lower && "Upper part of range has wrapped!");
2482       }
2483     } else if (match(BO.getOperand(0), m_APInt(C))) {
2484       if (C->isMinSignedValue()) {
2485         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
2486         Lower = *C;
2487         Upper = Lower.lshr(1) + 1;
2488       } else {
2489         // 'sdiv C, x' produces [-|C|, |C|].
2490         Upper = C->abs() + 1;
2491         Lower = (-Upper) + 1;
2492       }
2493     }
2494     break;
2495 
2496   case Instruction::UDiv:
2497     if (match(BO.getOperand(1), m_APInt(C)) && *C != 0) {
2498       // 'udiv x, C' produces [0, UINT_MAX / C].
2499       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
2500     } else if (match(BO.getOperand(0), m_APInt(C))) {
2501       // 'udiv C, x' produces [0, C].
2502       Upper = *C + 1;
2503     }
2504     break;
2505 
2506   case Instruction::SRem:
2507     if (match(BO.getOperand(1), m_APInt(C))) {
2508       // 'srem x, C' produces (-|C|, |C|).
2509       Upper = C->abs();
2510       Lower = (-Upper) + 1;
2511     }
2512     break;
2513 
2514   case Instruction::URem:
2515     if (match(BO.getOperand(1), m_APInt(C)))
2516       // 'urem x, C' produces [0, C).
2517       Upper = *C;
2518     break;
2519 
2520   default:
2521     break;
2522   }
2523 }
2524 
2525 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
2526                                        Value *RHS) {
2527   const APInt *C;
2528   if (!match(RHS, m_APInt(C)))
2529     return nullptr;
2530 
2531   // Rule out tautological comparisons (eg., ult 0 or uge 0).
2532   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2533   if (RHS_CR.isEmptySet())
2534     return ConstantInt::getFalse(GetCompareTy(RHS));
2535   if (RHS_CR.isFullSet())
2536     return ConstantInt::getTrue(GetCompareTy(RHS));
2537 
2538   // Find the range of possible values for binary operators.
2539   unsigned Width = C->getBitWidth();
2540   APInt Lower = APInt(Width, 0);
2541   APInt Upper = APInt(Width, 0);
2542   if (auto *BO = dyn_cast<BinaryOperator>(LHS))
2543     setLimitsForBinOp(*BO, Lower, Upper);
2544 
2545   ConstantRange LHS_CR =
2546       Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true);
2547 
2548   if (auto *I = dyn_cast<Instruction>(LHS))
2549     if (auto *Ranges = I->getMetadata(LLVMContext::MD_range))
2550       LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges));
2551 
2552   if (!LHS_CR.isFullSet()) {
2553     if (RHS_CR.contains(LHS_CR))
2554       return ConstantInt::getTrue(GetCompareTy(RHS));
2555     if (RHS_CR.inverse().contains(LHS_CR))
2556       return ConstantInt::getFalse(GetCompareTy(RHS));
2557   }
2558 
2559   return nullptr;
2560 }
2561 
2562 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
2563                                     Value *RHS, const Query &Q,
2564                                     unsigned MaxRecurse) {
2565   Type *ITy = GetCompareTy(LHS); // The return type.
2566 
2567   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2568   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2569   if (MaxRecurse && (LBO || RBO)) {
2570     // Analyze the case when either LHS or RHS is an add instruction.
2571     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
2572     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2573     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2574     if (LBO && LBO->getOpcode() == Instruction::Add) {
2575       A = LBO->getOperand(0);
2576       B = LBO->getOperand(1);
2577       NoLHSWrapProblem =
2578           ICmpInst::isEquality(Pred) ||
2579           (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
2580           (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
2581     }
2582     if (RBO && RBO->getOpcode() == Instruction::Add) {
2583       C = RBO->getOperand(0);
2584       D = RBO->getOperand(1);
2585       NoRHSWrapProblem =
2586           ICmpInst::isEquality(Pred) ||
2587           (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
2588           (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
2589     }
2590 
2591     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2592     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2593       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2594                                       Constant::getNullValue(RHS->getType()), Q,
2595                                       MaxRecurse - 1))
2596         return V;
2597 
2598     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2599     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2600       if (Value *V =
2601               SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
2602                                C == LHS ? D : C, Q, MaxRecurse - 1))
2603         return V;
2604 
2605     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2606     if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem &&
2607         NoRHSWrapProblem) {
2608       // Determine Y and Z in the form icmp (X+Y), (X+Z).
2609       Value *Y, *Z;
2610       if (A == C) {
2611         // C + B == C + D  ->  B == D
2612         Y = B;
2613         Z = D;
2614       } else if (A == D) {
2615         // D + B == C + D  ->  B == C
2616         Y = B;
2617         Z = C;
2618       } else if (B == C) {
2619         // A + C == C + D  ->  A == D
2620         Y = A;
2621         Z = D;
2622       } else {
2623         assert(B == D);
2624         // A + D == C + D  ->  A == C
2625         Y = A;
2626         Z = C;
2627       }
2628       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
2629         return V;
2630     }
2631   }
2632 
2633   {
2634     Value *Y = nullptr;
2635     // icmp pred (or X, Y), X
2636     if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
2637       if (Pred == ICmpInst::ICMP_ULT)
2638         return getFalse(ITy);
2639       if (Pred == ICmpInst::ICMP_UGE)
2640         return getTrue(ITy);
2641 
2642       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2643         bool RHSKnownNonNegative, RHSKnownNegative;
2644         bool YKnownNonNegative, YKnownNegative;
2645         ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, Q.DL, 0,
2646                        Q.AC, Q.CxtI, Q.DT);
2647         ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC,
2648                        Q.CxtI, Q.DT);
2649         if (RHSKnownNonNegative && YKnownNegative)
2650           return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
2651         if (RHSKnownNegative || YKnownNonNegative)
2652           return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
2653       }
2654     }
2655     // icmp pred X, (or X, Y)
2656     if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) {
2657       if (Pred == ICmpInst::ICMP_ULE)
2658         return getTrue(ITy);
2659       if (Pred == ICmpInst::ICMP_UGT)
2660         return getFalse(ITy);
2661 
2662       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) {
2663         bool LHSKnownNonNegative, LHSKnownNegative;
2664         bool YKnownNonNegative, YKnownNegative;
2665         ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0,
2666                        Q.AC, Q.CxtI, Q.DT);
2667         ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC,
2668                        Q.CxtI, Q.DT);
2669         if (LHSKnownNonNegative && YKnownNegative)
2670           return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy);
2671         if (LHSKnownNegative || YKnownNonNegative)
2672           return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy);
2673       }
2674     }
2675   }
2676 
2677   // icmp pred (and X, Y), X
2678   if (LBO && match(LBO, m_CombineOr(m_And(m_Value(), m_Specific(RHS)),
2679                                     m_And(m_Specific(RHS), m_Value())))) {
2680     if (Pred == ICmpInst::ICMP_UGT)
2681       return getFalse(ITy);
2682     if (Pred == ICmpInst::ICMP_ULE)
2683       return getTrue(ITy);
2684   }
2685   // icmp pred X, (and X, Y)
2686   if (RBO && match(RBO, m_CombineOr(m_And(m_Value(), m_Specific(LHS)),
2687                                     m_And(m_Specific(LHS), m_Value())))) {
2688     if (Pred == ICmpInst::ICMP_UGE)
2689       return getTrue(ITy);
2690     if (Pred == ICmpInst::ICMP_ULT)
2691       return getFalse(ITy);
2692   }
2693 
2694   // 0 - (zext X) pred C
2695   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
2696     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2697       if (RHSC->getValue().isStrictlyPositive()) {
2698         if (Pred == ICmpInst::ICMP_SLT)
2699           return ConstantInt::getTrue(RHSC->getContext());
2700         if (Pred == ICmpInst::ICMP_SGE)
2701           return ConstantInt::getFalse(RHSC->getContext());
2702         if (Pred == ICmpInst::ICMP_EQ)
2703           return ConstantInt::getFalse(RHSC->getContext());
2704         if (Pred == ICmpInst::ICMP_NE)
2705           return ConstantInt::getTrue(RHSC->getContext());
2706       }
2707       if (RHSC->getValue().isNonNegative()) {
2708         if (Pred == ICmpInst::ICMP_SLE)
2709           return ConstantInt::getTrue(RHSC->getContext());
2710         if (Pred == ICmpInst::ICMP_SGT)
2711           return ConstantInt::getFalse(RHSC->getContext());
2712       }
2713     }
2714   }
2715 
2716   // icmp pred (urem X, Y), Y
2717   if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2718     bool KnownNonNegative, KnownNegative;
2719     switch (Pred) {
2720     default:
2721       break;
2722     case ICmpInst::ICMP_SGT:
2723     case ICmpInst::ICMP_SGE:
2724       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2725                      Q.CxtI, Q.DT);
2726       if (!KnownNonNegative)
2727         break;
2728       LLVM_FALLTHROUGH;
2729     case ICmpInst::ICMP_EQ:
2730     case ICmpInst::ICMP_UGT:
2731     case ICmpInst::ICMP_UGE:
2732       return getFalse(ITy);
2733     case ICmpInst::ICMP_SLT:
2734     case ICmpInst::ICMP_SLE:
2735       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2736                      Q.CxtI, Q.DT);
2737       if (!KnownNonNegative)
2738         break;
2739       LLVM_FALLTHROUGH;
2740     case ICmpInst::ICMP_NE:
2741     case ICmpInst::ICMP_ULT:
2742     case ICmpInst::ICMP_ULE:
2743       return getTrue(ITy);
2744     }
2745   }
2746 
2747   // icmp pred X, (urem Y, X)
2748   if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2749     bool KnownNonNegative, KnownNegative;
2750     switch (Pred) {
2751     default:
2752       break;
2753     case ICmpInst::ICMP_SGT:
2754     case ICmpInst::ICMP_SGE:
2755       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2756                      Q.CxtI, Q.DT);
2757       if (!KnownNonNegative)
2758         break;
2759       LLVM_FALLTHROUGH;
2760     case ICmpInst::ICMP_NE:
2761     case ICmpInst::ICMP_UGT:
2762     case ICmpInst::ICMP_UGE:
2763       return getTrue(ITy);
2764     case ICmpInst::ICMP_SLT:
2765     case ICmpInst::ICMP_SLE:
2766       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2767                      Q.CxtI, Q.DT);
2768       if (!KnownNonNegative)
2769         break;
2770       LLVM_FALLTHROUGH;
2771     case ICmpInst::ICMP_EQ:
2772     case ICmpInst::ICMP_ULT:
2773     case ICmpInst::ICMP_ULE:
2774       return getFalse(ITy);
2775     }
2776   }
2777 
2778   // x >> y <=u x
2779   // x udiv y <=u x.
2780   if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
2781               match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) {
2782     // icmp pred (X op Y), X
2783     if (Pred == ICmpInst::ICMP_UGT)
2784       return getFalse(ITy);
2785     if (Pred == ICmpInst::ICMP_ULE)
2786       return getTrue(ITy);
2787   }
2788 
2789   // x >=u x >> y
2790   // x >=u x udiv y.
2791   if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) ||
2792               match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) {
2793     // icmp pred X, (X op Y)
2794     if (Pred == ICmpInst::ICMP_ULT)
2795       return getFalse(ITy);
2796     if (Pred == ICmpInst::ICMP_UGE)
2797       return getTrue(ITy);
2798   }
2799 
2800   // handle:
2801   //   CI2 << X == CI
2802   //   CI2 << X != CI
2803   //
2804   //   where CI2 is a power of 2 and CI isn't
2805   if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
2806     const APInt *CI2Val, *CIVal = &CI->getValue();
2807     if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
2808         CI2Val->isPowerOf2()) {
2809       if (!CIVal->isPowerOf2()) {
2810         // CI2 << X can equal zero in some circumstances,
2811         // this simplification is unsafe if CI is zero.
2812         //
2813         // We know it is safe if:
2814         // - The shift is nsw, we can't shift out the one bit.
2815         // - The shift is nuw, we can't shift out the one bit.
2816         // - CI2 is one
2817         // - CI isn't zero
2818         if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() ||
2819             *CI2Val == 1 || !CI->isZero()) {
2820           if (Pred == ICmpInst::ICMP_EQ)
2821             return ConstantInt::getFalse(RHS->getContext());
2822           if (Pred == ICmpInst::ICMP_NE)
2823             return ConstantInt::getTrue(RHS->getContext());
2824         }
2825       }
2826       if (CIVal->isSignBit() && *CI2Val == 1) {
2827         if (Pred == ICmpInst::ICMP_UGT)
2828           return ConstantInt::getFalse(RHS->getContext());
2829         if (Pred == ICmpInst::ICMP_ULE)
2830           return ConstantInt::getTrue(RHS->getContext());
2831       }
2832     }
2833   }
2834 
2835   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2836       LBO->getOperand(1) == RBO->getOperand(1)) {
2837     switch (LBO->getOpcode()) {
2838     default:
2839       break;
2840     case Instruction::UDiv:
2841     case Instruction::LShr:
2842       if (ICmpInst::isSigned(Pred))
2843         break;
2844       LLVM_FALLTHROUGH;
2845     case Instruction::SDiv:
2846     case Instruction::AShr:
2847       if (!LBO->isExact() || !RBO->isExact())
2848         break;
2849       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2850                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2851         return V;
2852       break;
2853     case Instruction::Shl: {
2854       bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
2855       bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
2856       if (!NUW && !NSW)
2857         break;
2858       if (!NSW && ICmpInst::isSigned(Pred))
2859         break;
2860       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2861                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2862         return V;
2863       break;
2864     }
2865     }
2866   }
2867   return nullptr;
2868 }
2869 
2870 /// Simplify integer comparisons where at least one operand of the compare
2871 /// matches an integer min/max idiom.
2872 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
2873                                      Value *RHS, const Query &Q,
2874                                      unsigned MaxRecurse) {
2875   Type *ITy = GetCompareTy(LHS); // The return type.
2876   Value *A, *B;
2877   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
2878   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
2879 
2880   // Signed variants on "max(a,b)>=a -> true".
2881   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2882     if (A != RHS)
2883       std::swap(A, B);       // smax(A, B) pred A.
2884     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2885     // We analyze this as smax(A, B) pred A.
2886     P = Pred;
2887   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2888              (A == LHS || B == LHS)) {
2889     if (A != LHS)
2890       std::swap(A, B);       // A pred smax(A, B).
2891     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2892     // We analyze this as smax(A, B) swapped-pred A.
2893     P = CmpInst::getSwappedPredicate(Pred);
2894   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2895              (A == RHS || B == RHS)) {
2896     if (A != RHS)
2897       std::swap(A, B);       // smin(A, B) pred A.
2898     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2899     // We analyze this as smax(-A, -B) swapped-pred -A.
2900     // Note that we do not need to actually form -A or -B thanks to EqP.
2901     P = CmpInst::getSwappedPredicate(Pred);
2902   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
2903              (A == LHS || B == LHS)) {
2904     if (A != LHS)
2905       std::swap(A, B);       // A pred smin(A, B).
2906     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2907     // We analyze this as smax(-A, -B) pred -A.
2908     // Note that we do not need to actually form -A or -B thanks to EqP.
2909     P = Pred;
2910   }
2911   if (P != CmpInst::BAD_ICMP_PREDICATE) {
2912     // Cases correspond to "max(A, B) p A".
2913     switch (P) {
2914     default:
2915       break;
2916     case CmpInst::ICMP_EQ:
2917     case CmpInst::ICMP_SLE:
2918       // Equivalent to "A EqP B".  This may be the same as the condition tested
2919       // in the max/min; if so, we can just return that.
2920       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2921         return V;
2922       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2923         return V;
2924       // Otherwise, see if "A EqP B" simplifies.
2925       if (MaxRecurse)
2926         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
2927           return V;
2928       break;
2929     case CmpInst::ICMP_NE:
2930     case CmpInst::ICMP_SGT: {
2931       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2932       // Equivalent to "A InvEqP B".  This may be the same as the condition
2933       // tested in the max/min; if so, we can just return that.
2934       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2935         return V;
2936       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2937         return V;
2938       // Otherwise, see if "A InvEqP B" simplifies.
2939       if (MaxRecurse)
2940         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
2941           return V;
2942       break;
2943     }
2944     case CmpInst::ICMP_SGE:
2945       // Always true.
2946       return getTrue(ITy);
2947     case CmpInst::ICMP_SLT:
2948       // Always false.
2949       return getFalse(ITy);
2950     }
2951   }
2952 
2953   // Unsigned variants on "max(a,b)>=a -> true".
2954   P = CmpInst::BAD_ICMP_PREDICATE;
2955   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2956     if (A != RHS)
2957       std::swap(A, B);       // umax(A, B) pred A.
2958     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2959     // We analyze this as umax(A, B) pred A.
2960     P = Pred;
2961   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
2962              (A == LHS || B == LHS)) {
2963     if (A != LHS)
2964       std::swap(A, B);       // A pred umax(A, B).
2965     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2966     // We analyze this as umax(A, B) swapped-pred A.
2967     P = CmpInst::getSwappedPredicate(Pred);
2968   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2969              (A == RHS || B == RHS)) {
2970     if (A != RHS)
2971       std::swap(A, B);       // umin(A, B) pred A.
2972     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2973     // We analyze this as umax(-A, -B) swapped-pred -A.
2974     // Note that we do not need to actually form -A or -B thanks to EqP.
2975     P = CmpInst::getSwappedPredicate(Pred);
2976   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
2977              (A == LHS || B == LHS)) {
2978     if (A != LHS)
2979       std::swap(A, B);       // A pred umin(A, B).
2980     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2981     // We analyze this as umax(-A, -B) pred -A.
2982     // Note that we do not need to actually form -A or -B thanks to EqP.
2983     P = Pred;
2984   }
2985   if (P != CmpInst::BAD_ICMP_PREDICATE) {
2986     // Cases correspond to "max(A, B) p A".
2987     switch (P) {
2988     default:
2989       break;
2990     case CmpInst::ICMP_EQ:
2991     case CmpInst::ICMP_ULE:
2992       // Equivalent to "A EqP B".  This may be the same as the condition tested
2993       // in the max/min; if so, we can just return that.
2994       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2995         return V;
2996       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2997         return V;
2998       // Otherwise, see if "A EqP B" simplifies.
2999       if (MaxRecurse)
3000         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3001           return V;
3002       break;
3003     case CmpInst::ICMP_NE:
3004     case CmpInst::ICMP_UGT: {
3005       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3006       // Equivalent to "A InvEqP B".  This may be the same as the condition
3007       // tested in the max/min; if so, we can just return that.
3008       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3009         return V;
3010       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3011         return V;
3012       // Otherwise, see if "A InvEqP B" simplifies.
3013       if (MaxRecurse)
3014         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3015           return V;
3016       break;
3017     }
3018     case CmpInst::ICMP_UGE:
3019       // Always true.
3020       return getTrue(ITy);
3021     case CmpInst::ICMP_ULT:
3022       // Always false.
3023       return getFalse(ITy);
3024     }
3025   }
3026 
3027   // Variants on "max(x,y) >= min(x,z)".
3028   Value *C, *D;
3029   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
3030       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
3031       (A == C || A == D || B == C || B == D)) {
3032     // max(x, ?) pred min(x, ?).
3033     if (Pred == CmpInst::ICMP_SGE)
3034       // Always true.
3035       return getTrue(ITy);
3036     if (Pred == CmpInst::ICMP_SLT)
3037       // Always false.
3038       return getFalse(ITy);
3039   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3040              match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
3041              (A == C || A == D || B == C || B == D)) {
3042     // min(x, ?) pred max(x, ?).
3043     if (Pred == CmpInst::ICMP_SLE)
3044       // Always true.
3045       return getTrue(ITy);
3046     if (Pred == CmpInst::ICMP_SGT)
3047       // Always false.
3048       return getFalse(ITy);
3049   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3050              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3051              (A == C || A == D || B == C || B == D)) {
3052     // max(x, ?) pred min(x, ?).
3053     if (Pred == CmpInst::ICMP_UGE)
3054       // Always true.
3055       return getTrue(ITy);
3056     if (Pred == CmpInst::ICMP_ULT)
3057       // Always false.
3058       return getFalse(ITy);
3059   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3060              match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
3061              (A == C || A == D || B == C || B == D)) {
3062     // min(x, ?) pred max(x, ?).
3063     if (Pred == CmpInst::ICMP_ULE)
3064       // Always true.
3065       return getTrue(ITy);
3066     if (Pred == CmpInst::ICMP_UGT)
3067       // Always false.
3068       return getFalse(ITy);
3069   }
3070 
3071   return nullptr;
3072 }
3073 
3074 /// Given operands for an ICmpInst, see if we can fold the result.
3075 /// If not, this returns null.
3076 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3077                                const Query &Q, unsigned MaxRecurse) {
3078   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3079   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
3080 
3081   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3082     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3083       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3084 
3085     // If we have a constant, make sure it is on the RHS.
3086     std::swap(LHS, RHS);
3087     Pred = CmpInst::getSwappedPredicate(Pred);
3088   }
3089 
3090   Type *ITy = GetCompareTy(LHS); // The return type.
3091 
3092   // icmp X, X -> true/false
3093   // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
3094   // because X could be 0.
3095   if (LHS == RHS || isa<UndefValue>(RHS))
3096     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
3097 
3098   if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
3099     return V;
3100 
3101   if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
3102     return V;
3103 
3104   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS))
3105     return V;
3106 
3107   // If both operands have range metadata, use the metadata
3108   // to simplify the comparison.
3109   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
3110     auto RHS_Instr = cast<Instruction>(RHS);
3111     auto LHS_Instr = cast<Instruction>(LHS);
3112 
3113     if (RHS_Instr->getMetadata(LLVMContext::MD_range) &&
3114         LHS_Instr->getMetadata(LLVMContext::MD_range)) {
3115       auto RHS_CR = getConstantRangeFromMetadata(
3116           *RHS_Instr->getMetadata(LLVMContext::MD_range));
3117       auto LHS_CR = getConstantRangeFromMetadata(
3118           *LHS_Instr->getMetadata(LLVMContext::MD_range));
3119 
3120       auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR);
3121       if (Satisfied_CR.contains(LHS_CR))
3122         return ConstantInt::getTrue(RHS->getContext());
3123 
3124       auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion(
3125                 CmpInst::getInversePredicate(Pred), RHS_CR);
3126       if (InversedSatisfied_CR.contains(LHS_CR))
3127         return ConstantInt::getFalse(RHS->getContext());
3128     }
3129   }
3130 
3131   // Compare of cast, for example (zext X) != 0 -> X != 0
3132   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
3133     Instruction *LI = cast<CastInst>(LHS);
3134     Value *SrcOp = LI->getOperand(0);
3135     Type *SrcTy = SrcOp->getType();
3136     Type *DstTy = LI->getType();
3137 
3138     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3139     // if the integer type is the same size as the pointer type.
3140     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3141         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
3142       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
3143         // Transfer the cast to the constant.
3144         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
3145                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
3146                                         Q, MaxRecurse-1))
3147           return V;
3148       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3149         if (RI->getOperand(0)->getType() == SrcTy)
3150           // Compare without the cast.
3151           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3152                                           Q, MaxRecurse-1))
3153             return V;
3154       }
3155     }
3156 
3157     if (isa<ZExtInst>(LHS)) {
3158       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3159       // same type.
3160       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3161         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3162           // Compare X and Y.  Note that signed predicates become unsigned.
3163           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3164                                           SrcOp, RI->getOperand(0), Q,
3165                                           MaxRecurse-1))
3166             return V;
3167       }
3168       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3169       // too.  If not, then try to deduce the result of the comparison.
3170       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3171         // Compute the constant that would happen if we truncated to SrcTy then
3172         // reextended to DstTy.
3173         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3174         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
3175 
3176         // If the re-extended constant didn't change then this is effectively
3177         // also a case of comparing two zero-extended values.
3178         if (RExt == CI && MaxRecurse)
3179           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3180                                         SrcOp, Trunc, Q, MaxRecurse-1))
3181             return V;
3182 
3183         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3184         // there.  Use this to work out the result of the comparison.
3185         if (RExt != CI) {
3186           switch (Pred) {
3187           default: llvm_unreachable("Unknown ICmp predicate!");
3188           // LHS <u RHS.
3189           case ICmpInst::ICMP_EQ:
3190           case ICmpInst::ICMP_UGT:
3191           case ICmpInst::ICMP_UGE:
3192             return ConstantInt::getFalse(CI->getContext());
3193 
3194           case ICmpInst::ICMP_NE:
3195           case ICmpInst::ICMP_ULT:
3196           case ICmpInst::ICMP_ULE:
3197             return ConstantInt::getTrue(CI->getContext());
3198 
3199           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
3200           // is non-negative then LHS <s RHS.
3201           case ICmpInst::ICMP_SGT:
3202           case ICmpInst::ICMP_SGE:
3203             return CI->getValue().isNegative() ?
3204               ConstantInt::getTrue(CI->getContext()) :
3205               ConstantInt::getFalse(CI->getContext());
3206 
3207           case ICmpInst::ICMP_SLT:
3208           case ICmpInst::ICMP_SLE:
3209             return CI->getValue().isNegative() ?
3210               ConstantInt::getFalse(CI->getContext()) :
3211               ConstantInt::getTrue(CI->getContext());
3212           }
3213         }
3214       }
3215     }
3216 
3217     if (isa<SExtInst>(LHS)) {
3218       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3219       // same type.
3220       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3221         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3222           // Compare X and Y.  Note that the predicate does not change.
3223           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3224                                           Q, MaxRecurse-1))
3225             return V;
3226       }
3227       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3228       // too.  If not, then try to deduce the result of the comparison.
3229       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3230         // Compute the constant that would happen if we truncated to SrcTy then
3231         // reextended to DstTy.
3232         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3233         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
3234 
3235         // If the re-extended constant didn't change then this is effectively
3236         // also a case of comparing two sign-extended values.
3237         if (RExt == CI && MaxRecurse)
3238           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
3239             return V;
3240 
3241         // Otherwise the upper bits of LHS are all equal, while RHS has varying
3242         // bits there.  Use this to work out the result of the comparison.
3243         if (RExt != CI) {
3244           switch (Pred) {
3245           default: llvm_unreachable("Unknown ICmp predicate!");
3246           case ICmpInst::ICMP_EQ:
3247             return ConstantInt::getFalse(CI->getContext());
3248           case ICmpInst::ICMP_NE:
3249             return ConstantInt::getTrue(CI->getContext());
3250 
3251           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
3252           // LHS >s RHS.
3253           case ICmpInst::ICMP_SGT:
3254           case ICmpInst::ICMP_SGE:
3255             return CI->getValue().isNegative() ?
3256               ConstantInt::getTrue(CI->getContext()) :
3257               ConstantInt::getFalse(CI->getContext());
3258           case ICmpInst::ICMP_SLT:
3259           case ICmpInst::ICMP_SLE:
3260             return CI->getValue().isNegative() ?
3261               ConstantInt::getFalse(CI->getContext()) :
3262               ConstantInt::getTrue(CI->getContext());
3263 
3264           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
3265           // LHS >u RHS.
3266           case ICmpInst::ICMP_UGT:
3267           case ICmpInst::ICMP_UGE:
3268             // Comparison is true iff the LHS <s 0.
3269             if (MaxRecurse)
3270               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3271                                               Constant::getNullValue(SrcTy),
3272                                               Q, MaxRecurse-1))
3273                 return V;
3274             break;
3275           case ICmpInst::ICMP_ULT:
3276           case ICmpInst::ICMP_ULE:
3277             // Comparison is true iff the LHS >=s 0.
3278             if (MaxRecurse)
3279               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3280                                               Constant::getNullValue(SrcTy),
3281                                               Q, MaxRecurse-1))
3282                 return V;
3283             break;
3284           }
3285         }
3286       }
3287     }
3288   }
3289 
3290   // icmp eq|ne X, Y -> false|true if X != Y
3291   if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
3292       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) {
3293     LLVMContext &Ctx = LHS->getType()->getContext();
3294     return Pred == ICmpInst::ICMP_NE ?
3295       ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx);
3296   }
3297 
3298   if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
3299     return V;
3300 
3301   if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
3302     return V;
3303 
3304   // Simplify comparisons of related pointers using a powerful, recursive
3305   // GEP-walk when we have target data available..
3306   if (LHS->getType()->isPointerTy())
3307     if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, LHS, RHS))
3308       return C;
3309   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3310     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3311       if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3312               Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3313           Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3314               Q.DL.getTypeSizeInBits(CRHS->getType()))
3315         if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI,
3316                                          CLHS->getPointerOperand(),
3317                                          CRHS->getPointerOperand()))
3318           return C;
3319 
3320   if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
3321     if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
3322       if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
3323           GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
3324           (ICmpInst::isEquality(Pred) ||
3325            (GLHS->isInBounds() && GRHS->isInBounds() &&
3326             Pred == ICmpInst::getSignedPredicate(Pred)))) {
3327         // The bases are equal and the indices are constant.  Build a constant
3328         // expression GEP with the same indices and a null base pointer to see
3329         // what constant folding can make out of it.
3330         Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
3331         SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
3332         Constant *NewLHS = ConstantExpr::getGetElementPtr(
3333             GLHS->getSourceElementType(), Null, IndicesLHS);
3334 
3335         SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
3336         Constant *NewRHS = ConstantExpr::getGetElementPtr(
3337             GLHS->getSourceElementType(), Null, IndicesRHS);
3338         return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
3339       }
3340     }
3341   }
3342 
3343   // If a bit is known to be zero for A and known to be one for B,
3344   // then A and B cannot be equal.
3345   if (ICmpInst::isEquality(Pred)) {
3346     const APInt *RHSVal;
3347     if (match(RHS, m_APInt(RHSVal))) {
3348       unsigned BitWidth = RHSVal->getBitWidth();
3349       APInt LHSKnownZero(BitWidth, 0);
3350       APInt LHSKnownOne(BitWidth, 0);
3351       computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, Q.DL, /*Depth=*/0, Q.AC,
3352                        Q.CxtI, Q.DT);
3353       if (((LHSKnownZero & *RHSVal) != 0) || ((LHSKnownOne & ~(*RHSVal)) != 0))
3354         return Pred == ICmpInst::ICMP_EQ ? ConstantInt::getFalse(ITy)
3355                                          : ConstantInt::getTrue(ITy);
3356     }
3357   }
3358 
3359   // If the comparison is with the result of a select instruction, check whether
3360   // comparing with either branch of the select always yields the same value.
3361   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3362     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3363       return V;
3364 
3365   // If the comparison is with the result of a phi instruction, check whether
3366   // doing the compare with each incoming phi value yields a common result.
3367   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3368     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3369       return V;
3370 
3371   return nullptr;
3372 }
3373 
3374 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3375                               const DataLayout &DL,
3376                               const TargetLibraryInfo *TLI,
3377                               const DominatorTree *DT, AssumptionCache *AC,
3378                               const Instruction *CxtI) {
3379   return ::SimplifyICmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
3380                             RecursionLimit);
3381 }
3382 
3383 /// Given operands for an FCmpInst, see if we can fold the result.
3384 /// If not, this returns null.
3385 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3386                                FastMathFlags FMF, const Query &Q,
3387                                unsigned MaxRecurse) {
3388   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3389   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3390 
3391   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3392     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3393       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3394 
3395     // If we have a constant, make sure it is on the RHS.
3396     std::swap(LHS, RHS);
3397     Pred = CmpInst::getSwappedPredicate(Pred);
3398   }
3399 
3400   // Fold trivial predicates.
3401   Type *RetTy = GetCompareTy(LHS);
3402   if (Pred == FCmpInst::FCMP_FALSE)
3403     return getFalse(RetTy);
3404   if (Pred == FCmpInst::FCMP_TRUE)
3405     return getTrue(RetTy);
3406 
3407   // UNO/ORD predicates can be trivially folded if NaNs are ignored.
3408   if (FMF.noNaNs()) {
3409     if (Pred == FCmpInst::FCMP_UNO)
3410       return getFalse(RetTy);
3411     if (Pred == FCmpInst::FCMP_ORD)
3412       return getTrue(RetTy);
3413   }
3414 
3415   // fcmp pred x, undef  and  fcmp pred undef, x
3416   // fold to true if unordered, false if ordered
3417   if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) {
3418     // Choosing NaN for the undef will always make unordered comparison succeed
3419     // and ordered comparison fail.
3420     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3421   }
3422 
3423   // fcmp x,x -> true/false.  Not all compares are foldable.
3424   if (LHS == RHS) {
3425     if (CmpInst::isTrueWhenEqual(Pred))
3426       return getTrue(RetTy);
3427     if (CmpInst::isFalseWhenEqual(Pred))
3428       return getFalse(RetTy);
3429   }
3430 
3431   // Handle fcmp with constant RHS
3432   const ConstantFP *CFP = nullptr;
3433   if (const auto *RHSC = dyn_cast<Constant>(RHS)) {
3434     if (RHS->getType()->isVectorTy())
3435       CFP = dyn_cast_or_null<ConstantFP>(RHSC->getSplatValue());
3436     else
3437       CFP = dyn_cast<ConstantFP>(RHSC);
3438   }
3439   if (CFP) {
3440     // If the constant is a nan, see if we can fold the comparison based on it.
3441     if (CFP->getValueAPF().isNaN()) {
3442       if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
3443         return getFalse(RetTy);
3444       assert(FCmpInst::isUnordered(Pred) &&
3445              "Comparison must be either ordered or unordered!");
3446       // True if unordered.
3447       return getTrue(RetTy);
3448     }
3449     // Check whether the constant is an infinity.
3450     if (CFP->getValueAPF().isInfinity()) {
3451       if (CFP->getValueAPF().isNegative()) {
3452         switch (Pred) {
3453         case FCmpInst::FCMP_OLT:
3454           // No value is ordered and less than negative infinity.
3455           return getFalse(RetTy);
3456         case FCmpInst::FCMP_UGE:
3457           // All values are unordered with or at least negative infinity.
3458           return getTrue(RetTy);
3459         default:
3460           break;
3461         }
3462       } else {
3463         switch (Pred) {
3464         case FCmpInst::FCMP_OGT:
3465           // No value is ordered and greater than infinity.
3466           return getFalse(RetTy);
3467         case FCmpInst::FCMP_ULE:
3468           // All values are unordered with and at most infinity.
3469           return getTrue(RetTy);
3470         default:
3471           break;
3472         }
3473       }
3474     }
3475     if (CFP->getValueAPF().isZero()) {
3476       switch (Pred) {
3477       case FCmpInst::FCMP_UGE:
3478         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3479           return getTrue(RetTy);
3480         break;
3481       case FCmpInst::FCMP_OLT:
3482         // X < 0
3483         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3484           return getFalse(RetTy);
3485         break;
3486       default:
3487         break;
3488       }
3489     }
3490   }
3491 
3492   // If the comparison is with the result of a select instruction, check whether
3493   // comparing with either branch of the select always yields the same value.
3494   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3495     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3496       return V;
3497 
3498   // If the comparison is with the result of a phi instruction, check whether
3499   // doing the compare with each incoming phi value yields a common result.
3500   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3501     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3502       return V;
3503 
3504   return nullptr;
3505 }
3506 
3507 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3508                               FastMathFlags FMF, const DataLayout &DL,
3509                               const TargetLibraryInfo *TLI,
3510                               const DominatorTree *DT, AssumptionCache *AC,
3511                               const Instruction *CxtI) {
3512   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF,
3513                             Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
3514 }
3515 
3516 /// See if V simplifies when its operand Op is replaced with RepOp.
3517 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3518                                            const Query &Q,
3519                                            unsigned MaxRecurse) {
3520   // Trivial replacement.
3521   if (V == Op)
3522     return RepOp;
3523 
3524   auto *I = dyn_cast<Instruction>(V);
3525   if (!I)
3526     return nullptr;
3527 
3528   // If this is a binary operator, try to simplify it with the replaced op.
3529   if (auto *B = dyn_cast<BinaryOperator>(I)) {
3530     // Consider:
3531     //   %cmp = icmp eq i32 %x, 2147483647
3532     //   %add = add nsw i32 %x, 1
3533     //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
3534     //
3535     // We can't replace %sel with %add unless we strip away the flags.
3536     if (isa<OverflowingBinaryOperator>(B))
3537       if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap())
3538         return nullptr;
3539     if (isa<PossiblyExactOperator>(B))
3540       if (B->isExact())
3541         return nullptr;
3542 
3543     if (MaxRecurse) {
3544       if (B->getOperand(0) == Op)
3545         return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q,
3546                              MaxRecurse - 1);
3547       if (B->getOperand(1) == Op)
3548         return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q,
3549                              MaxRecurse - 1);
3550     }
3551   }
3552 
3553   // Same for CmpInsts.
3554   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
3555     if (MaxRecurse) {
3556       if (C->getOperand(0) == Op)
3557         return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q,
3558                                MaxRecurse - 1);
3559       if (C->getOperand(1) == Op)
3560         return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q,
3561                                MaxRecurse - 1);
3562     }
3563   }
3564 
3565   // TODO: We could hand off more cases to instsimplify here.
3566 
3567   // If all operands are constant after substituting Op for RepOp then we can
3568   // constant fold the instruction.
3569   if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
3570     // Build a list of all constant operands.
3571     SmallVector<Constant *, 8> ConstOps;
3572     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3573       if (I->getOperand(i) == Op)
3574         ConstOps.push_back(CRepOp);
3575       else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
3576         ConstOps.push_back(COp);
3577       else
3578         break;
3579     }
3580 
3581     // All operands were constants, fold it.
3582     if (ConstOps.size() == I->getNumOperands()) {
3583       if (CmpInst *C = dyn_cast<CmpInst>(I))
3584         return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
3585                                                ConstOps[1], Q.DL, Q.TLI);
3586 
3587       if (LoadInst *LI = dyn_cast<LoadInst>(I))
3588         if (!LI->isVolatile())
3589           return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
3590 
3591       return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
3592     }
3593   }
3594 
3595   return nullptr;
3596 }
3597 
3598 /// Try to simplify a select instruction when its condition operand is an
3599 /// integer comparison where one operand of the compare is a constant.
3600 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
3601                                     const APInt *Y, bool TrueWhenUnset) {
3602   const APInt *C;
3603 
3604   // (X & Y) == 0 ? X & ~Y : X  --> X
3605   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
3606   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
3607       *Y == ~*C)
3608     return TrueWhenUnset ? FalseVal : TrueVal;
3609 
3610   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
3611   // (X & Y) != 0 ? X : X & ~Y  --> X
3612   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
3613       *Y == ~*C)
3614     return TrueWhenUnset ? FalseVal : TrueVal;
3615 
3616   if (Y->isPowerOf2()) {
3617     // (X & Y) == 0 ? X | Y : X  --> X | Y
3618     // (X & Y) != 0 ? X | Y : X  --> X
3619     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
3620         *Y == *C)
3621       return TrueWhenUnset ? TrueVal : FalseVal;
3622 
3623     // (X & Y) == 0 ? X : X | Y  --> X
3624     // (X & Y) != 0 ? X : X | Y  --> X | Y
3625     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
3626         *Y == *C)
3627       return TrueWhenUnset ? TrueVal : FalseVal;
3628   }
3629 
3630   return nullptr;
3631 }
3632 
3633 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
3634 /// eq/ne.
3635 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *TrueVal,
3636                                            Value *FalseVal,
3637                                            bool TrueWhenUnset) {
3638   unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
3639   if (!BitWidth)
3640     return nullptr;
3641 
3642   APInt MinSignedValue;
3643   Value *X;
3644   if (match(CmpLHS, m_Trunc(m_Value(X))) && (X == TrueVal || X == FalseVal)) {
3645     // icmp slt (trunc X), 0  <--> icmp ne (and X, C), 0
3646     // icmp sgt (trunc X), -1 <--> icmp eq (and X, C), 0
3647     unsigned DestSize = CmpLHS->getType()->getScalarSizeInBits();
3648     MinSignedValue = APInt::getSignedMinValue(DestSize).zext(BitWidth);
3649   } else {
3650     // icmp slt X, 0  <--> icmp ne (and X, C), 0
3651     // icmp sgt X, -1 <--> icmp eq (and X, C), 0
3652     X = CmpLHS;
3653     MinSignedValue = APInt::getSignedMinValue(BitWidth);
3654   }
3655 
3656   if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, &MinSignedValue,
3657                                        TrueWhenUnset))
3658     return V;
3659 
3660   return nullptr;
3661 }
3662 
3663 /// Try to simplify a select instruction when its condition operand is an
3664 /// integer comparison.
3665 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
3666                                          Value *FalseVal, const Query &Q,
3667                                          unsigned MaxRecurse) {
3668   ICmpInst::Predicate Pred;
3669   Value *CmpLHS, *CmpRHS;
3670   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
3671     return nullptr;
3672 
3673   // FIXME: This code is nearly duplicated in InstCombine. Using/refactoring
3674   // decomposeBitTestICmp() might help.
3675   if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) {
3676     Value *X;
3677     const APInt *Y;
3678     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
3679       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
3680                                            Pred == ICmpInst::ICMP_EQ))
3681         return V;
3682   } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
3683     // Comparing signed-less-than 0 checks if the sign bit is set.
3684     if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal,
3685                                                 false))
3686       return V;
3687   } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
3688     // Comparing signed-greater-than -1 checks if the sign bit is not set.
3689     if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal,
3690                                                 true))
3691       return V;
3692   }
3693 
3694   if (CondVal->hasOneUse()) {
3695     const APInt *C;
3696     if (match(CmpRHS, m_APInt(C))) {
3697       // X < MIN ? T : F  -->  F
3698       if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue())
3699         return FalseVal;
3700       // X < MIN ? T : F  -->  F
3701       if (Pred == ICmpInst::ICMP_ULT && C->isMinValue())
3702         return FalseVal;
3703       // X > MAX ? T : F  -->  F
3704       if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue())
3705         return FalseVal;
3706       // X > MAX ? T : F  -->  F
3707       if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue())
3708         return FalseVal;
3709     }
3710   }
3711 
3712   // If we have an equality comparison, then we know the value in one of the
3713   // arms of the select. See if substituting this value into the arm and
3714   // simplifying the result yields the same value as the other arm.
3715   if (Pred == ICmpInst::ICMP_EQ) {
3716     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3717             TrueVal ||
3718         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3719             TrueVal)
3720       return FalseVal;
3721     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3722             FalseVal ||
3723         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3724             FalseVal)
3725       return FalseVal;
3726   } else if (Pred == ICmpInst::ICMP_NE) {
3727     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3728             FalseVal ||
3729         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3730             FalseVal)
3731       return TrueVal;
3732     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3733             TrueVal ||
3734         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3735             TrueVal)
3736       return TrueVal;
3737   }
3738 
3739   return nullptr;
3740 }
3741 
3742 /// Given operands for a SelectInst, see if we can fold the result.
3743 /// If not, this returns null.
3744 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
3745                                  Value *FalseVal, const Query &Q,
3746                                  unsigned MaxRecurse) {
3747   // select true, X, Y  -> X
3748   // select false, X, Y -> Y
3749   if (Constant *CB = dyn_cast<Constant>(CondVal)) {
3750     if (CB->isAllOnesValue())
3751       return TrueVal;
3752     if (CB->isNullValue())
3753       return FalseVal;
3754   }
3755 
3756   // select C, X, X -> X
3757   if (TrueVal == FalseVal)
3758     return TrueVal;
3759 
3760   if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
3761     if (isa<Constant>(TrueVal))
3762       return TrueVal;
3763     return FalseVal;
3764   }
3765   if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
3766     return FalseVal;
3767   if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
3768     return TrueVal;
3769 
3770   if (Value *V =
3771           simplifySelectWithICmpCond(CondVal, TrueVal, FalseVal, Q, MaxRecurse))
3772     return V;
3773 
3774   return nullptr;
3775 }
3776 
3777 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
3778                                 const DataLayout &DL,
3779                                 const TargetLibraryInfo *TLI,
3780                                 const DominatorTree *DT, AssumptionCache *AC,
3781                                 const Instruction *CxtI) {
3782   return ::SimplifySelectInst(Cond, TrueVal, FalseVal,
3783                               Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
3784 }
3785 
3786 /// Given operands for an GetElementPtrInst, see if we can fold the result.
3787 /// If not, this returns null.
3788 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3789                               const Query &Q, unsigned) {
3790   // The type of the GEP pointer operand.
3791   unsigned AS =
3792       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
3793 
3794   // getelementptr P -> P.
3795   if (Ops.size() == 1)
3796     return Ops[0];
3797 
3798   // Compute the (pointer) type returned by the GEP instruction.
3799   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
3800   Type *GEPTy = PointerType::get(LastType, AS);
3801   if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
3802     GEPTy = VectorType::get(GEPTy, VT->getNumElements());
3803 
3804   if (isa<UndefValue>(Ops[0]))
3805     return UndefValue::get(GEPTy);
3806 
3807   if (Ops.size() == 2) {
3808     // getelementptr P, 0 -> P.
3809     if (match(Ops[1], m_Zero()))
3810       return Ops[0];
3811 
3812     Type *Ty = SrcTy;
3813     if (Ty->isSized()) {
3814       Value *P;
3815       uint64_t C;
3816       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
3817       // getelementptr P, N -> P if P points to a type of zero size.
3818       if (TyAllocSize == 0)
3819         return Ops[0];
3820 
3821       // The following transforms are only safe if the ptrtoint cast
3822       // doesn't truncate the pointers.
3823       if (Ops[1]->getType()->getScalarSizeInBits() ==
3824           Q.DL.getPointerSizeInBits(AS)) {
3825         auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
3826           if (match(P, m_Zero()))
3827             return Constant::getNullValue(GEPTy);
3828           Value *Temp;
3829           if (match(P, m_PtrToInt(m_Value(Temp))))
3830             if (Temp->getType() == GEPTy)
3831               return Temp;
3832           return nullptr;
3833         };
3834 
3835         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
3836         if (TyAllocSize == 1 &&
3837             match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
3838           if (Value *R = PtrToIntOrZero(P))
3839             return R;
3840 
3841         // getelementptr V, (ashr (sub P, V), C) -> Q
3842         // if P points to a type of size 1 << C.
3843         if (match(Ops[1],
3844                   m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3845                          m_ConstantInt(C))) &&
3846             TyAllocSize == 1ULL << C)
3847           if (Value *R = PtrToIntOrZero(P))
3848             return R;
3849 
3850         // getelementptr V, (sdiv (sub P, V), C) -> Q
3851         // if P points to a type of size C.
3852         if (match(Ops[1],
3853                   m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3854                          m_SpecificInt(TyAllocSize))))
3855           if (Value *R = PtrToIntOrZero(P))
3856             return R;
3857       }
3858     }
3859   }
3860 
3861   if (Q.DL.getTypeAllocSize(LastType) == 1 &&
3862       all_of(Ops.slice(1).drop_back(1),
3863              [](Value *Idx) { return match(Idx, m_Zero()); })) {
3864     unsigned PtrWidth =
3865         Q.DL.getPointerSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
3866     if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == PtrWidth) {
3867       APInt BasePtrOffset(PtrWidth, 0);
3868       Value *StrippedBasePtr =
3869           Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
3870                                                             BasePtrOffset);
3871 
3872       // gep (gep V, C), (sub 0, V) -> C
3873       if (match(Ops.back(),
3874                 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) {
3875         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
3876         return ConstantExpr::getIntToPtr(CI, GEPTy);
3877       }
3878       // gep (gep V, C), (xor V, -1) -> C-1
3879       if (match(Ops.back(),
3880                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) {
3881         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
3882         return ConstantExpr::getIntToPtr(CI, GEPTy);
3883       }
3884     }
3885   }
3886 
3887   // Check to see if this is constant foldable.
3888   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3889     if (!isa<Constant>(Ops[i]))
3890       return nullptr;
3891 
3892   return ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
3893                                         Ops.slice(1));
3894 }
3895 
3896 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3897                              const DataLayout &DL,
3898                              const TargetLibraryInfo *TLI,
3899                              const DominatorTree *DT, AssumptionCache *AC,
3900                              const Instruction *CxtI) {
3901   return ::SimplifyGEPInst(SrcTy, Ops,
3902                            Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
3903 }
3904 
3905 /// Given operands for an InsertValueInst, see if we can fold the result.
3906 /// If not, this returns null.
3907 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
3908                                       ArrayRef<unsigned> Idxs, const Query &Q,
3909                                       unsigned) {
3910   if (Constant *CAgg = dyn_cast<Constant>(Agg))
3911     if (Constant *CVal = dyn_cast<Constant>(Val))
3912       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
3913 
3914   // insertvalue x, undef, n -> x
3915   if (match(Val, m_Undef()))
3916     return Agg;
3917 
3918   // insertvalue x, (extractvalue y, n), n
3919   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
3920     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
3921         EV->getIndices() == Idxs) {
3922       // insertvalue undef, (extractvalue y, n), n -> y
3923       if (match(Agg, m_Undef()))
3924         return EV->getAggregateOperand();
3925 
3926       // insertvalue y, (extractvalue y, n), n -> y
3927       if (Agg == EV->getAggregateOperand())
3928         return Agg;
3929     }
3930 
3931   return nullptr;
3932 }
3933 
3934 Value *llvm::SimplifyInsertValueInst(
3935     Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const DataLayout &DL,
3936     const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC,
3937     const Instruction *CxtI) {
3938   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query(DL, TLI, DT, AC, CxtI),
3939                                    RecursionLimit);
3940 }
3941 
3942 /// Given operands for an ExtractValueInst, see if we can fold the result.
3943 /// If not, this returns null.
3944 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
3945                                        const Query &, unsigned) {
3946   if (auto *CAgg = dyn_cast<Constant>(Agg))
3947     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
3948 
3949   // extractvalue x, (insertvalue y, elt, n), n -> elt
3950   unsigned NumIdxs = Idxs.size();
3951   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
3952        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
3953     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
3954     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
3955     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
3956     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
3957         Idxs.slice(0, NumCommonIdxs)) {
3958       if (NumIdxs == NumInsertValueIdxs)
3959         return IVI->getInsertedValueOperand();
3960       break;
3961     }
3962   }
3963 
3964   return nullptr;
3965 }
3966 
3967 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
3968                                       const DataLayout &DL,
3969                                       const TargetLibraryInfo *TLI,
3970                                       const DominatorTree *DT,
3971                                       AssumptionCache *AC,
3972                                       const Instruction *CxtI) {
3973   return ::SimplifyExtractValueInst(Agg, Idxs, Query(DL, TLI, DT, AC, CxtI),
3974                                     RecursionLimit);
3975 }
3976 
3977 /// Given operands for an ExtractElementInst, see if we can fold the result.
3978 /// If not, this returns null.
3979 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const Query &,
3980                                          unsigned) {
3981   if (auto *CVec = dyn_cast<Constant>(Vec)) {
3982     if (auto *CIdx = dyn_cast<Constant>(Idx))
3983       return ConstantFoldExtractElementInstruction(CVec, CIdx);
3984 
3985     // The index is not relevant if our vector is a splat.
3986     if (auto *Splat = CVec->getSplatValue())
3987       return Splat;
3988 
3989     if (isa<UndefValue>(Vec))
3990       return UndefValue::get(Vec->getType()->getVectorElementType());
3991   }
3992 
3993   // If extracting a specified index from the vector, see if we can recursively
3994   // find a previously computed scalar that was inserted into the vector.
3995   if (auto *IdxC = dyn_cast<ConstantInt>(Idx))
3996     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
3997       return Elt;
3998 
3999   return nullptr;
4000 }
4001 
4002 Value *llvm::SimplifyExtractElementInst(
4003     Value *Vec, Value *Idx, const DataLayout &DL, const TargetLibraryInfo *TLI,
4004     const DominatorTree *DT, AssumptionCache *AC, const Instruction *CxtI) {
4005   return ::SimplifyExtractElementInst(Vec, Idx, Query(DL, TLI, DT, AC, CxtI),
4006                                       RecursionLimit);
4007 }
4008 
4009 /// See if we can fold the given phi. If not, returns null.
4010 static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
4011   // If all of the PHI's incoming values are the same then replace the PHI node
4012   // with the common value.
4013   Value *CommonValue = nullptr;
4014   bool HasUndefInput = false;
4015   for (Value *Incoming : PN->incoming_values()) {
4016     // If the incoming value is the phi node itself, it can safely be skipped.
4017     if (Incoming == PN) continue;
4018     if (isa<UndefValue>(Incoming)) {
4019       // Remember that we saw an undef value, but otherwise ignore them.
4020       HasUndefInput = true;
4021       continue;
4022     }
4023     if (CommonValue && Incoming != CommonValue)
4024       return nullptr;  // Not the same, bail out.
4025     CommonValue = Incoming;
4026   }
4027 
4028   // If CommonValue is null then all of the incoming values were either undef or
4029   // equal to the phi node itself.
4030   if (!CommonValue)
4031     return UndefValue::get(PN->getType());
4032 
4033   // If we have a PHI node like phi(X, undef, X), where X is defined by some
4034   // instruction, we cannot return X as the result of the PHI node unless it
4035   // dominates the PHI block.
4036   if (HasUndefInput)
4037     return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
4038 
4039   return CommonValue;
4040 }
4041 
4042 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
4043                                Type *Ty, const Query &Q, unsigned MaxRecurse) {
4044   if (auto *C = dyn_cast<Constant>(Op))
4045     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
4046 
4047   if (auto *CI = dyn_cast<CastInst>(Op)) {
4048     auto *Src = CI->getOperand(0);
4049     Type *SrcTy = Src->getType();
4050     Type *MidTy = CI->getType();
4051     Type *DstTy = Ty;
4052     if (Src->getType() == Ty) {
4053       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
4054       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
4055       Type *SrcIntPtrTy =
4056           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
4057       Type *MidIntPtrTy =
4058           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
4059       Type *DstIntPtrTy =
4060           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
4061       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
4062                                          SrcIntPtrTy, MidIntPtrTy,
4063                                          DstIntPtrTy) == Instruction::BitCast)
4064         return Src;
4065     }
4066   }
4067 
4068   // bitcast x -> x
4069   if (CastOpc == Instruction::BitCast)
4070     if (Op->getType() == Ty)
4071       return Op;
4072 
4073   return nullptr;
4074 }
4075 
4076 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
4077                               const DataLayout &DL,
4078                               const TargetLibraryInfo *TLI,
4079                               const DominatorTree *DT, AssumptionCache *AC,
4080                               const Instruction *CxtI) {
4081   return ::SimplifyCastInst(CastOpc, Op, Ty, Query(DL, TLI, DT, AC, CxtI),
4082                             RecursionLimit);
4083 }
4084 
4085 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
4086                                         Type *RetTy, const Query &Q,
4087                                         unsigned MaxRecurse) {
4088   unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
4089   unsigned InVecNumElts = Op0->getType()->getVectorNumElements();
4090 
4091   auto *Op0Const = dyn_cast<Constant>(Op0);
4092   auto *Op1Const = dyn_cast<Constant>(Op1);
4093 
4094   // If all operands are constant, constant fold the shuffle.
4095   if (Op0Const && Op1Const)
4096     return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask);
4097 
4098   // If only one of the operands is constant, constant fold the shuffle if the
4099   // mask does not select elements from the variable operand.
4100   bool MaskSelects0 = false, MaskSelects1 = false;
4101   for (unsigned i = 0; i != MaskNumElts; ++i) {
4102     int Idx = ShuffleVectorInst::getMaskValue(Mask, i);
4103     if (Idx == -1)
4104       continue;
4105     if ((unsigned)Idx < InVecNumElts)
4106       MaskSelects0 = true;
4107     else
4108       MaskSelects1 = true;
4109   }
4110   if (!MaskSelects0 && Op1Const)
4111     return ConstantFoldShuffleVectorInstruction(UndefValue::get(Op0->getType()),
4112                                                 Op1Const, Mask);
4113   if (!MaskSelects1 && Op0Const)
4114     return ConstantFoldShuffleVectorInstruction(
4115         Op0Const, UndefValue::get(Op0->getType()), Mask);
4116 
4117   return nullptr;
4118 }
4119 
4120 /// Given operands for a ShuffleVectorInst, fold the result or return null.
4121 Value *llvm::SimplifyShuffleVectorInst(
4122     Value *Op0, Value *Op1, Constant *Mask, Type *RetTy,
4123     const DataLayout &DL, const TargetLibraryInfo *TLI, const DominatorTree *DT,
4124     AssumptionCache *AC, const Instruction *CxtI) {
4125   return ::SimplifyShuffleVectorInst(
4126       Op0, Op1, Mask, RetTy, Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
4127 }
4128 
4129 //=== Helper functions for higher up the class hierarchy.
4130 
4131 /// Given operands for a BinaryOperator, see if we can fold the result.
4132 /// If not, this returns null.
4133 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4134                             const Query &Q, unsigned MaxRecurse) {
4135   switch (Opcode) {
4136   case Instruction::Add:
4137     return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
4138   case Instruction::FAdd:
4139     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4140   case Instruction::Sub:
4141     return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
4142   case Instruction::FSub:
4143     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4144   case Instruction::Mul:
4145     return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
4146   case Instruction::FMul:
4147     return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4148   case Instruction::SDiv:
4149     return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
4150   case Instruction::UDiv:
4151     return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
4152   case Instruction::FDiv:
4153     return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4154   case Instruction::SRem:
4155     return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
4156   case Instruction::URem:
4157     return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
4158   case Instruction::FRem:
4159     return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4160   case Instruction::Shl:
4161     return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
4162   case Instruction::LShr:
4163     return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
4164   case Instruction::AShr:
4165     return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
4166   case Instruction::And:
4167     return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
4168   case Instruction::Or:
4169     return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
4170   case Instruction::Xor:
4171     return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
4172   default:
4173     llvm_unreachable("Unexpected opcode");
4174   }
4175 }
4176 
4177 /// Given operands for a BinaryOperator, see if we can fold the result.
4178 /// If not, this returns null.
4179 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the
4180 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp.
4181 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4182                               const FastMathFlags &FMF, const Query &Q,
4183                               unsigned MaxRecurse) {
4184   switch (Opcode) {
4185   case Instruction::FAdd:
4186     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
4187   case Instruction::FSub:
4188     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
4189   case Instruction::FMul:
4190     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
4191   case Instruction::FDiv:
4192     return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
4193   default:
4194     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
4195   }
4196 }
4197 
4198 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4199                            const DataLayout &DL, const TargetLibraryInfo *TLI,
4200                            const DominatorTree *DT, AssumptionCache *AC,
4201                            const Instruction *CxtI) {
4202   return ::SimplifyBinOp(Opcode, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
4203                          RecursionLimit);
4204 }
4205 
4206 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4207                              const FastMathFlags &FMF, const DataLayout &DL,
4208                              const TargetLibraryInfo *TLI,
4209                              const DominatorTree *DT, AssumptionCache *AC,
4210                              const Instruction *CxtI) {
4211   return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Query(DL, TLI, DT, AC, CxtI),
4212                            RecursionLimit);
4213 }
4214 
4215 /// Given operands for a CmpInst, see if we can fold the result.
4216 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4217                               const Query &Q, unsigned MaxRecurse) {
4218   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
4219     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
4220   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4221 }
4222 
4223 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4224                              const DataLayout &DL, const TargetLibraryInfo *TLI,
4225                              const DominatorTree *DT, AssumptionCache *AC,
4226                              const Instruction *CxtI) {
4227   return ::SimplifyCmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
4228                            RecursionLimit);
4229 }
4230 
4231 static bool IsIdempotent(Intrinsic::ID ID) {
4232   switch (ID) {
4233   default: return false;
4234 
4235   // Unary idempotent: f(f(x)) = f(x)
4236   case Intrinsic::fabs:
4237   case Intrinsic::floor:
4238   case Intrinsic::ceil:
4239   case Intrinsic::trunc:
4240   case Intrinsic::rint:
4241   case Intrinsic::nearbyint:
4242   case Intrinsic::round:
4243     return true;
4244   }
4245 }
4246 
4247 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
4248                                    const DataLayout &DL) {
4249   GlobalValue *PtrSym;
4250   APInt PtrOffset;
4251   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
4252     return nullptr;
4253 
4254   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
4255   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
4256   Type *Int32PtrTy = Int32Ty->getPointerTo();
4257   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
4258 
4259   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
4260   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
4261     return nullptr;
4262 
4263   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
4264   if (OffsetInt % 4 != 0)
4265     return nullptr;
4266 
4267   Constant *C = ConstantExpr::getGetElementPtr(
4268       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
4269       ConstantInt::get(Int64Ty, OffsetInt / 4));
4270   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
4271   if (!Loaded)
4272     return nullptr;
4273 
4274   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
4275   if (!LoadedCE)
4276     return nullptr;
4277 
4278   if (LoadedCE->getOpcode() == Instruction::Trunc) {
4279     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4280     if (!LoadedCE)
4281       return nullptr;
4282   }
4283 
4284   if (LoadedCE->getOpcode() != Instruction::Sub)
4285     return nullptr;
4286 
4287   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4288   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
4289     return nullptr;
4290   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
4291 
4292   Constant *LoadedRHS = LoadedCE->getOperand(1);
4293   GlobalValue *LoadedRHSSym;
4294   APInt LoadedRHSOffset;
4295   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
4296                                   DL) ||
4297       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
4298     return nullptr;
4299 
4300   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
4301 }
4302 
4303 static bool maskIsAllZeroOrUndef(Value *Mask) {
4304   auto *ConstMask = dyn_cast<Constant>(Mask);
4305   if (!ConstMask)
4306     return false;
4307   if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
4308     return true;
4309   for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
4310        ++I) {
4311     if (auto *MaskElt = ConstMask->getAggregateElement(I))
4312       if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
4313         continue;
4314     return false;
4315   }
4316   return true;
4317 }
4318 
4319 template <typename IterTy>
4320 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd,
4321                                 const Query &Q, unsigned MaxRecurse) {
4322   Intrinsic::ID IID = F->getIntrinsicID();
4323   unsigned NumOperands = std::distance(ArgBegin, ArgEnd);
4324 
4325   // Unary Ops
4326   if (NumOperands == 1) {
4327     // Perform idempotent optimizations
4328     if (IsIdempotent(IID)) {
4329       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) {
4330         if (II->getIntrinsicID() == IID)
4331           return II;
4332       }
4333     }
4334 
4335     switch (IID) {
4336     case Intrinsic::fabs: {
4337       if (SignBitMustBeZero(*ArgBegin, Q.TLI))
4338         return *ArgBegin;
4339       return nullptr;
4340     }
4341     default:
4342       return nullptr;
4343     }
4344   }
4345 
4346   // Binary Ops
4347   if (NumOperands == 2) {
4348     Value *LHS = *ArgBegin;
4349     Value *RHS = *(ArgBegin + 1);
4350     Type *ReturnType = F->getReturnType();
4351 
4352     switch (IID) {
4353     case Intrinsic::usub_with_overflow:
4354     case Intrinsic::ssub_with_overflow: {
4355       // X - X -> { 0, false }
4356       if (LHS == RHS)
4357         return Constant::getNullValue(ReturnType);
4358 
4359       // X - undef -> undef
4360       // undef - X -> undef
4361       if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
4362         return UndefValue::get(ReturnType);
4363 
4364       return nullptr;
4365     }
4366     case Intrinsic::uadd_with_overflow:
4367     case Intrinsic::sadd_with_overflow: {
4368       // X + undef -> undef
4369       if (isa<UndefValue>(RHS))
4370         return UndefValue::get(ReturnType);
4371 
4372       return nullptr;
4373     }
4374     case Intrinsic::umul_with_overflow:
4375     case Intrinsic::smul_with_overflow: {
4376       // X * 0 -> { 0, false }
4377       if (match(RHS, m_Zero()))
4378         return Constant::getNullValue(ReturnType);
4379 
4380       // X * undef -> { 0, false }
4381       if (match(RHS, m_Undef()))
4382         return Constant::getNullValue(ReturnType);
4383 
4384       return nullptr;
4385     }
4386     case Intrinsic::load_relative: {
4387       Constant *C0 = dyn_cast<Constant>(LHS);
4388       Constant *C1 = dyn_cast<Constant>(RHS);
4389       if (C0 && C1)
4390         return SimplifyRelativeLoad(C0, C1, Q.DL);
4391       return nullptr;
4392     }
4393     default:
4394       return nullptr;
4395     }
4396   }
4397 
4398   // Simplify calls to llvm.masked.load.*
4399   switch (IID) {
4400   case Intrinsic::masked_load: {
4401     Value *MaskArg = ArgBegin[2];
4402     Value *PassthruArg = ArgBegin[3];
4403     // If the mask is all zeros or undef, the "passthru" argument is the result.
4404     if (maskIsAllZeroOrUndef(MaskArg))
4405       return PassthruArg;
4406     return nullptr;
4407   }
4408   default:
4409     return nullptr;
4410   }
4411 }
4412 
4413 template <typename IterTy>
4414 static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd,
4415                            const Query &Q, unsigned MaxRecurse) {
4416   Type *Ty = V->getType();
4417   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
4418     Ty = PTy->getElementType();
4419   FunctionType *FTy = cast<FunctionType>(Ty);
4420 
4421   // call undef -> undef
4422   // call null -> undef
4423   if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V))
4424     return UndefValue::get(FTy->getReturnType());
4425 
4426   Function *F = dyn_cast<Function>(V);
4427   if (!F)
4428     return nullptr;
4429 
4430   if (F->isIntrinsic())
4431     if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse))
4432       return Ret;
4433 
4434   if (!canConstantFoldCallTo(F))
4435     return nullptr;
4436 
4437   SmallVector<Constant *, 4> ConstantArgs;
4438   ConstantArgs.reserve(ArgEnd - ArgBegin);
4439   for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
4440     Constant *C = dyn_cast<Constant>(*I);
4441     if (!C)
4442       return nullptr;
4443     ConstantArgs.push_back(C);
4444   }
4445 
4446   return ConstantFoldCall(F, ConstantArgs, Q.TLI);
4447 }
4448 
4449 Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin,
4450                           User::op_iterator ArgEnd, const DataLayout &DL,
4451                           const TargetLibraryInfo *TLI, const DominatorTree *DT,
4452                           AssumptionCache *AC, const Instruction *CxtI) {
4453   return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT, AC, CxtI),
4454                         RecursionLimit);
4455 }
4456 
4457 Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args,
4458                           const DataLayout &DL, const TargetLibraryInfo *TLI,
4459                           const DominatorTree *DT, AssumptionCache *AC,
4460                           const Instruction *CxtI) {
4461   return ::SimplifyCall(V, Args.begin(), Args.end(),
4462                         Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
4463 }
4464 
4465 /// See if we can compute a simplified version of this instruction.
4466 /// If not, this returns null.
4467 Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout &DL,
4468                                  const TargetLibraryInfo *TLI,
4469                                  const DominatorTree *DT, AssumptionCache *AC,
4470                                  OptimizationRemarkEmitter *ORE) {
4471   Value *Result;
4472 
4473   switch (I->getOpcode()) {
4474   default:
4475     Result = ConstantFoldInstruction(I, DL, TLI);
4476     break;
4477   case Instruction::FAdd:
4478     Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
4479                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4480     break;
4481   case Instruction::Add:
4482     Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
4483                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
4484                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
4485                              TLI, DT, AC, I);
4486     break;
4487   case Instruction::FSub:
4488     Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
4489                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4490     break;
4491   case Instruction::Sub:
4492     Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
4493                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
4494                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
4495                              TLI, DT, AC, I);
4496     break;
4497   case Instruction::FMul:
4498     Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
4499                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4500     break;
4501   case Instruction::Mul:
4502     Result =
4503         SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
4504     break;
4505   case Instruction::SDiv:
4506     Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
4507                               AC, I);
4508     break;
4509   case Instruction::UDiv:
4510     Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
4511                               AC, I);
4512     break;
4513   case Instruction::FDiv:
4514     Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
4515                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4516     break;
4517   case Instruction::SRem:
4518     Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
4519                               AC, I);
4520     break;
4521   case Instruction::URem:
4522     Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
4523                               AC, I);
4524     break;
4525   case Instruction::FRem:
4526     Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
4527                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4528     break;
4529   case Instruction::Shl:
4530     Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
4531                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
4532                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
4533                              TLI, DT, AC, I);
4534     break;
4535   case Instruction::LShr:
4536     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
4537                               cast<BinaryOperator>(I)->isExact(), DL, TLI, DT,
4538                               AC, I);
4539     break;
4540   case Instruction::AShr:
4541     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
4542                               cast<BinaryOperator>(I)->isExact(), DL, TLI, DT,
4543                               AC, I);
4544     break;
4545   case Instruction::And:
4546     Result =
4547         SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
4548     break;
4549   case Instruction::Or:
4550     Result =
4551         SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
4552     break;
4553   case Instruction::Xor:
4554     Result =
4555         SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
4556     break;
4557   case Instruction::ICmp:
4558     Result =
4559         SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), I->getOperand(0),
4560                          I->getOperand(1), DL, TLI, DT, AC, I);
4561     break;
4562   case Instruction::FCmp:
4563     Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
4564                               I->getOperand(0), I->getOperand(1),
4565                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4566     break;
4567   case Instruction::Select:
4568     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
4569                                 I->getOperand(2), DL, TLI, DT, AC, I);
4570     break;
4571   case Instruction::GetElementPtr: {
4572     SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
4573     Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(),
4574                              Ops, DL, TLI, DT, AC, I);
4575     break;
4576   }
4577   case Instruction::InsertValue: {
4578     InsertValueInst *IV = cast<InsertValueInst>(I);
4579     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
4580                                      IV->getInsertedValueOperand(),
4581                                      IV->getIndices(), DL, TLI, DT, AC, I);
4582     break;
4583   }
4584   case Instruction::ExtractValue: {
4585     auto *EVI = cast<ExtractValueInst>(I);
4586     Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
4587                                       EVI->getIndices(), DL, TLI, DT, AC, I);
4588     break;
4589   }
4590   case Instruction::ExtractElement: {
4591     auto *EEI = cast<ExtractElementInst>(I);
4592     Result = SimplifyExtractElementInst(
4593         EEI->getVectorOperand(), EEI->getIndexOperand(), DL, TLI, DT, AC, I);
4594     break;
4595   }
4596   case Instruction::ShuffleVector: {
4597     auto *SVI = cast<ShuffleVectorInst>(I);
4598     Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
4599                                        SVI->getMask(), SVI->getType(), DL, TLI,
4600                                        DT, AC, I);
4601     break;
4602   }
4603   case Instruction::PHI:
4604     Result = SimplifyPHINode(cast<PHINode>(I), Query(DL, TLI, DT, AC, I));
4605     break;
4606   case Instruction::Call: {
4607     CallSite CS(cast<CallInst>(I));
4608     Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), DL,
4609                           TLI, DT, AC, I);
4610     break;
4611   }
4612 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
4613 #include "llvm/IR/Instruction.def"
4614 #undef HANDLE_CAST_INST
4615     Result = SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(),
4616                               DL, TLI, DT, AC, I);
4617     break;
4618   }
4619 
4620   // In general, it is possible for computeKnownBits to determine all bits in a
4621   // value even when the operands are not all constants.
4622   if (!Result && I->getType()->isIntOrIntVectorTy()) {
4623     unsigned BitWidth = I->getType()->getScalarSizeInBits();
4624     APInt KnownZero(BitWidth, 0);
4625     APInt KnownOne(BitWidth, 0);
4626     computeKnownBits(I, KnownZero, KnownOne, DL, /*Depth*/0, AC, I, DT, ORE);
4627     if ((KnownZero | KnownOne).isAllOnesValue())
4628       Result = ConstantInt::get(I->getType(), KnownOne);
4629   }
4630 
4631   /// If called on unreachable code, the above logic may report that the
4632   /// instruction simplified to itself.  Make life easier for users by
4633   /// detecting that case here, returning a safe value instead.
4634   return Result == I ? UndefValue::get(I->getType()) : Result;
4635 }
4636 
4637 /// \brief Implementation of recursive simplification through an instruction's
4638 /// uses.
4639 ///
4640 /// This is the common implementation of the recursive simplification routines.
4641 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
4642 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
4643 /// instructions to process and attempt to simplify it using
4644 /// InstructionSimplify.
4645 ///
4646 /// This routine returns 'true' only when *it* simplifies something. The passed
4647 /// in simplified value does not count toward this.
4648 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
4649                                               const TargetLibraryInfo *TLI,
4650                                               const DominatorTree *DT,
4651                                               AssumptionCache *AC) {
4652   bool Simplified = false;
4653   SmallSetVector<Instruction *, 8> Worklist;
4654   const DataLayout &DL = I->getModule()->getDataLayout();
4655 
4656   // If we have an explicit value to collapse to, do that round of the
4657   // simplification loop by hand initially.
4658   if (SimpleV) {
4659     for (User *U : I->users())
4660       if (U != I)
4661         Worklist.insert(cast<Instruction>(U));
4662 
4663     // Replace the instruction with its simplified value.
4664     I->replaceAllUsesWith(SimpleV);
4665 
4666     // Gracefully handle edge cases where the instruction is not wired into any
4667     // parent block.
4668     if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) &&
4669         !I->mayHaveSideEffects())
4670       I->eraseFromParent();
4671   } else {
4672     Worklist.insert(I);
4673   }
4674 
4675   // Note that we must test the size on each iteration, the worklist can grow.
4676   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
4677     I = Worklist[Idx];
4678 
4679     // See if this instruction simplifies.
4680     SimpleV = SimplifyInstruction(I, DL, TLI, DT, AC);
4681     if (!SimpleV)
4682       continue;
4683 
4684     Simplified = true;
4685 
4686     // Stash away all the uses of the old instruction so we can check them for
4687     // recursive simplifications after a RAUW. This is cheaper than checking all
4688     // uses of To on the recursive step in most cases.
4689     for (User *U : I->users())
4690       Worklist.insert(cast<Instruction>(U));
4691 
4692     // Replace the instruction with its simplified value.
4693     I->replaceAllUsesWith(SimpleV);
4694 
4695     // Gracefully handle edge cases where the instruction is not wired into any
4696     // parent block.
4697     if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) &&
4698         !I->mayHaveSideEffects())
4699       I->eraseFromParent();
4700   }
4701   return Simplified;
4702 }
4703 
4704 bool llvm::recursivelySimplifyInstruction(Instruction *I,
4705                                           const TargetLibraryInfo *TLI,
4706                                           const DominatorTree *DT,
4707                                           AssumptionCache *AC) {
4708   return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC);
4709 }
4710 
4711 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
4712                                          const TargetLibraryInfo *TLI,
4713                                          const DominatorTree *DT,
4714                                          AssumptionCache *AC) {
4715   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
4716   assert(SimpleV && "Must provide a simplified value.");
4717   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC);
4718 }
4719