1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements routines for folding instructions into simpler forms 11 // that do not require creating new instructions. This does constant folding 12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 15 // simplified: This is usually true and assuming it simplifies the logic (if 16 // they have not been simplified then results are correct but maybe suboptimal). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/Analysis/VectorUtils.h" 30 #include "llvm/IR/ConstantRange.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/GetElementPtrTypeIterator.h" 34 #include "llvm/IR/GlobalAlias.h" 35 #include "llvm/IR/Operator.h" 36 #include "llvm/IR/PatternMatch.h" 37 #include "llvm/IR/ValueHandle.h" 38 #include <algorithm> 39 using namespace llvm; 40 using namespace llvm::PatternMatch; 41 42 #define DEBUG_TYPE "instsimplify" 43 44 enum { RecursionLimit = 3 }; 45 46 STATISTIC(NumExpand, "Number of expansions"); 47 STATISTIC(NumReassoc, "Number of reassociations"); 48 49 namespace { 50 struct Query { 51 const DataLayout &DL; 52 const TargetLibraryInfo *TLI; 53 const DominatorTree *DT; 54 AssumptionCache *AC; 55 const Instruction *CxtI; 56 57 Query(const DataLayout &DL, const TargetLibraryInfo *tli, 58 const DominatorTree *dt, AssumptionCache *ac = nullptr, 59 const Instruction *cxti = nullptr) 60 : DL(DL), TLI(tli), DT(dt), AC(ac), CxtI(cxti) {} 61 }; 62 } // end anonymous namespace 63 64 static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned); 65 static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &, 66 unsigned); 67 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &, 68 const Query &, unsigned); 69 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &, 70 unsigned); 71 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 72 const Query &Q, unsigned MaxRecurse); 73 static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned); 74 static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned); 75 static Value *SimplifyCastInst(unsigned, Value *, Type *, 76 const Query &, unsigned); 77 78 /// For a boolean type, or a vector of boolean type, return false, or 79 /// a vector with every element false, as appropriate for the type. 80 static Constant *getFalse(Type *Ty) { 81 assert(Ty->getScalarType()->isIntegerTy(1) && 82 "Expected i1 type or a vector of i1!"); 83 return Constant::getNullValue(Ty); 84 } 85 86 /// For a boolean type, or a vector of boolean type, return true, or 87 /// a vector with every element true, as appropriate for the type. 88 static Constant *getTrue(Type *Ty) { 89 assert(Ty->getScalarType()->isIntegerTy(1) && 90 "Expected i1 type or a vector of i1!"); 91 return Constant::getAllOnesValue(Ty); 92 } 93 94 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 95 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 96 Value *RHS) { 97 CmpInst *Cmp = dyn_cast<CmpInst>(V); 98 if (!Cmp) 99 return false; 100 CmpInst::Predicate CPred = Cmp->getPredicate(); 101 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 102 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 103 return true; 104 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 105 CRHS == LHS; 106 } 107 108 /// Does the given value dominate the specified phi node? 109 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 110 Instruction *I = dyn_cast<Instruction>(V); 111 if (!I) 112 // Arguments and constants dominate all instructions. 113 return true; 114 115 // If we are processing instructions (and/or basic blocks) that have not been 116 // fully added to a function, the parent nodes may still be null. Simply 117 // return the conservative answer in these cases. 118 if (!I->getParent() || !P->getParent() || !I->getParent()->getParent()) 119 return false; 120 121 // If we have a DominatorTree then do a precise test. 122 if (DT) { 123 if (!DT->isReachableFromEntry(P->getParent())) 124 return true; 125 if (!DT->isReachableFromEntry(I->getParent())) 126 return false; 127 return DT->dominates(I, P); 128 } 129 130 // Otherwise, if the instruction is in the entry block and is not an invoke, 131 // then it obviously dominates all phi nodes. 132 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() && 133 !isa<InvokeInst>(I)) 134 return true; 135 136 return false; 137 } 138 139 /// Simplify "A op (B op' C)" by distributing op over op', turning it into 140 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 141 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 142 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 143 /// Returns the simplified value, or null if no simplification was performed. 144 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, 145 Instruction::BinaryOps OpcodeToExpand, const Query &Q, 146 unsigned MaxRecurse) { 147 // Recursion is always used, so bail out at once if we already hit the limit. 148 if (!MaxRecurse--) 149 return nullptr; 150 151 // Check whether the expression has the form "(A op' B) op C". 152 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 153 if (Op0->getOpcode() == OpcodeToExpand) { 154 // It does! Try turning it into "(A op C) op' (B op C)". 155 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 156 // Do "A op C" and "B op C" both simplify? 157 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 158 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 159 // They do! Return "L op' R" if it simplifies or is already available. 160 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 161 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 162 && L == B && R == A)) { 163 ++NumExpand; 164 return LHS; 165 } 166 // Otherwise return "L op' R" if it simplifies. 167 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 168 ++NumExpand; 169 return V; 170 } 171 } 172 } 173 174 // Check whether the expression has the form "A op (B op' C)". 175 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 176 if (Op1->getOpcode() == OpcodeToExpand) { 177 // It does! Try turning it into "(A op B) op' (A op C)". 178 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 179 // Do "A op B" and "A op C" both simplify? 180 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 181 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 182 // They do! Return "L op' R" if it simplifies or is already available. 183 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 184 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 185 && L == C && R == B)) { 186 ++NumExpand; 187 return RHS; 188 } 189 // Otherwise return "L op' R" if it simplifies. 190 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 191 ++NumExpand; 192 return V; 193 } 194 } 195 } 196 197 return nullptr; 198 } 199 200 /// Generic simplifications for associative binary operations. 201 /// Returns the simpler value, or null if none was found. 202 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 203 Value *LHS, Value *RHS, const Query &Q, 204 unsigned MaxRecurse) { 205 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 206 207 // Recursion is always used, so bail out at once if we already hit the limit. 208 if (!MaxRecurse--) 209 return nullptr; 210 211 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 212 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 213 214 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 215 if (Op0 && Op0->getOpcode() == Opcode) { 216 Value *A = Op0->getOperand(0); 217 Value *B = Op0->getOperand(1); 218 Value *C = RHS; 219 220 // Does "B op C" simplify? 221 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 222 // It does! Return "A op V" if it simplifies or is already available. 223 // If V equals B then "A op V" is just the LHS. 224 if (V == B) return LHS; 225 // Otherwise return "A op V" if it simplifies. 226 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 227 ++NumReassoc; 228 return W; 229 } 230 } 231 } 232 233 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 234 if (Op1 && Op1->getOpcode() == Opcode) { 235 Value *A = LHS; 236 Value *B = Op1->getOperand(0); 237 Value *C = Op1->getOperand(1); 238 239 // Does "A op B" simplify? 240 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 241 // It does! Return "V op C" if it simplifies or is already available. 242 // If V equals B then "V op C" is just the RHS. 243 if (V == B) return RHS; 244 // Otherwise return "V op C" if it simplifies. 245 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 246 ++NumReassoc; 247 return W; 248 } 249 } 250 } 251 252 // The remaining transforms require commutativity as well as associativity. 253 if (!Instruction::isCommutative(Opcode)) 254 return nullptr; 255 256 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 257 if (Op0 && Op0->getOpcode() == Opcode) { 258 Value *A = Op0->getOperand(0); 259 Value *B = Op0->getOperand(1); 260 Value *C = RHS; 261 262 // Does "C op A" simplify? 263 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 264 // It does! Return "V op B" if it simplifies or is already available. 265 // If V equals A then "V op B" is just the LHS. 266 if (V == A) return LHS; 267 // Otherwise return "V op B" if it simplifies. 268 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 269 ++NumReassoc; 270 return W; 271 } 272 } 273 } 274 275 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 276 if (Op1 && Op1->getOpcode() == Opcode) { 277 Value *A = LHS; 278 Value *B = Op1->getOperand(0); 279 Value *C = Op1->getOperand(1); 280 281 // Does "C op A" simplify? 282 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 283 // It does! Return "B op V" if it simplifies or is already available. 284 // If V equals C then "B op V" is just the RHS. 285 if (V == C) return RHS; 286 // Otherwise return "B op V" if it simplifies. 287 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 288 ++NumReassoc; 289 return W; 290 } 291 } 292 } 293 294 return nullptr; 295 } 296 297 /// In the case of a binary operation with a select instruction as an operand, 298 /// try to simplify the binop by seeing whether evaluating it on both branches 299 /// of the select results in the same value. Returns the common value if so, 300 /// otherwise returns null. 301 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 302 Value *RHS, const Query &Q, 303 unsigned MaxRecurse) { 304 // Recursion is always used, so bail out at once if we already hit the limit. 305 if (!MaxRecurse--) 306 return nullptr; 307 308 SelectInst *SI; 309 if (isa<SelectInst>(LHS)) { 310 SI = cast<SelectInst>(LHS); 311 } else { 312 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 313 SI = cast<SelectInst>(RHS); 314 } 315 316 // Evaluate the BinOp on the true and false branches of the select. 317 Value *TV; 318 Value *FV; 319 if (SI == LHS) { 320 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 321 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 322 } else { 323 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 324 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 325 } 326 327 // If they simplified to the same value, then return the common value. 328 // If they both failed to simplify then return null. 329 if (TV == FV) 330 return TV; 331 332 // If one branch simplified to undef, return the other one. 333 if (TV && isa<UndefValue>(TV)) 334 return FV; 335 if (FV && isa<UndefValue>(FV)) 336 return TV; 337 338 // If applying the operation did not change the true and false select values, 339 // then the result of the binop is the select itself. 340 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 341 return SI; 342 343 // If one branch simplified and the other did not, and the simplified 344 // value is equal to the unsimplified one, return the simplified value. 345 // For example, select (cond, X, X & Z) & Z -> X & Z. 346 if ((FV && !TV) || (TV && !FV)) { 347 // Check that the simplified value has the form "X op Y" where "op" is the 348 // same as the original operation. 349 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 350 if (Simplified && Simplified->getOpcode() == Opcode) { 351 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 352 // We already know that "op" is the same as for the simplified value. See 353 // if the operands match too. If so, return the simplified value. 354 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 355 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 356 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 357 if (Simplified->getOperand(0) == UnsimplifiedLHS && 358 Simplified->getOperand(1) == UnsimplifiedRHS) 359 return Simplified; 360 if (Simplified->isCommutative() && 361 Simplified->getOperand(1) == UnsimplifiedLHS && 362 Simplified->getOperand(0) == UnsimplifiedRHS) 363 return Simplified; 364 } 365 } 366 367 return nullptr; 368 } 369 370 /// In the case of a comparison with a select instruction, try to simplify the 371 /// comparison by seeing whether both branches of the select result in the same 372 /// value. Returns the common value if so, otherwise returns null. 373 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 374 Value *RHS, const Query &Q, 375 unsigned MaxRecurse) { 376 // Recursion is always used, so bail out at once if we already hit the limit. 377 if (!MaxRecurse--) 378 return nullptr; 379 380 // Make sure the select is on the LHS. 381 if (!isa<SelectInst>(LHS)) { 382 std::swap(LHS, RHS); 383 Pred = CmpInst::getSwappedPredicate(Pred); 384 } 385 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 386 SelectInst *SI = cast<SelectInst>(LHS); 387 Value *Cond = SI->getCondition(); 388 Value *TV = SI->getTrueValue(); 389 Value *FV = SI->getFalseValue(); 390 391 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 392 // Does "cmp TV, RHS" simplify? 393 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 394 if (TCmp == Cond) { 395 // It not only simplified, it simplified to the select condition. Replace 396 // it with 'true'. 397 TCmp = getTrue(Cond->getType()); 398 } else if (!TCmp) { 399 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 400 // condition then we can replace it with 'true'. Otherwise give up. 401 if (!isSameCompare(Cond, Pred, TV, RHS)) 402 return nullptr; 403 TCmp = getTrue(Cond->getType()); 404 } 405 406 // Does "cmp FV, RHS" simplify? 407 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 408 if (FCmp == Cond) { 409 // It not only simplified, it simplified to the select condition. Replace 410 // it with 'false'. 411 FCmp = getFalse(Cond->getType()); 412 } else if (!FCmp) { 413 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 414 // condition then we can replace it with 'false'. Otherwise give up. 415 if (!isSameCompare(Cond, Pred, FV, RHS)) 416 return nullptr; 417 FCmp = getFalse(Cond->getType()); 418 } 419 420 // If both sides simplified to the same value, then use it as the result of 421 // the original comparison. 422 if (TCmp == FCmp) 423 return TCmp; 424 425 // The remaining cases only make sense if the select condition has the same 426 // type as the result of the comparison, so bail out if this is not so. 427 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 428 return nullptr; 429 // If the false value simplified to false, then the result of the compare 430 // is equal to "Cond && TCmp". This also catches the case when the false 431 // value simplified to false and the true value to true, returning "Cond". 432 if (match(FCmp, m_Zero())) 433 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 434 return V; 435 // If the true value simplified to true, then the result of the compare 436 // is equal to "Cond || FCmp". 437 if (match(TCmp, m_One())) 438 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 439 return V; 440 // Finally, if the false value simplified to true and the true value to 441 // false, then the result of the compare is equal to "!Cond". 442 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 443 if (Value *V = 444 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 445 Q, MaxRecurse)) 446 return V; 447 448 return nullptr; 449 } 450 451 /// In the case of a binary operation with an operand that is a PHI instruction, 452 /// try to simplify the binop by seeing whether evaluating it on the incoming 453 /// phi values yields the same result for every value. If so returns the common 454 /// value, otherwise returns null. 455 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 456 Value *RHS, const Query &Q, 457 unsigned MaxRecurse) { 458 // Recursion is always used, so bail out at once if we already hit the limit. 459 if (!MaxRecurse--) 460 return nullptr; 461 462 PHINode *PI; 463 if (isa<PHINode>(LHS)) { 464 PI = cast<PHINode>(LHS); 465 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 466 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 467 return nullptr; 468 } else { 469 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 470 PI = cast<PHINode>(RHS); 471 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 472 if (!ValueDominatesPHI(LHS, PI, Q.DT)) 473 return nullptr; 474 } 475 476 // Evaluate the BinOp on the incoming phi values. 477 Value *CommonValue = nullptr; 478 for (Value *Incoming : PI->incoming_values()) { 479 // If the incoming value is the phi node itself, it can safely be skipped. 480 if (Incoming == PI) continue; 481 Value *V = PI == LHS ? 482 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 483 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 484 // If the operation failed to simplify, or simplified to a different value 485 // to previously, then give up. 486 if (!V || (CommonValue && V != CommonValue)) 487 return nullptr; 488 CommonValue = V; 489 } 490 491 return CommonValue; 492 } 493 494 /// In the case of a comparison with a PHI instruction, try to simplify the 495 /// comparison by seeing whether comparing with all of the incoming phi values 496 /// yields the same result every time. If so returns the common result, 497 /// otherwise returns null. 498 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 499 const Query &Q, unsigned MaxRecurse) { 500 // Recursion is always used, so bail out at once if we already hit the limit. 501 if (!MaxRecurse--) 502 return nullptr; 503 504 // Make sure the phi is on the LHS. 505 if (!isa<PHINode>(LHS)) { 506 std::swap(LHS, RHS); 507 Pred = CmpInst::getSwappedPredicate(Pred); 508 } 509 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 510 PHINode *PI = cast<PHINode>(LHS); 511 512 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 513 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 514 return nullptr; 515 516 // Evaluate the BinOp on the incoming phi values. 517 Value *CommonValue = nullptr; 518 for (Value *Incoming : PI->incoming_values()) { 519 // If the incoming value is the phi node itself, it can safely be skipped. 520 if (Incoming == PI) continue; 521 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 522 // If the operation failed to simplify, or simplified to a different value 523 // to previously, then give up. 524 if (!V || (CommonValue && V != CommonValue)) 525 return nullptr; 526 CommonValue = V; 527 } 528 529 return CommonValue; 530 } 531 532 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 533 Value *&Op0, Value *&Op1, 534 const Query &Q) { 535 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 536 if (auto *CRHS = dyn_cast<Constant>(Op1)) 537 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 538 539 // Canonicalize the constant to the RHS if this is a commutative operation. 540 if (Instruction::isCommutative(Opcode)) 541 std::swap(Op0, Op1); 542 } 543 return nullptr; 544 } 545 546 /// Given operands for an Add, see if we can fold the result. 547 /// If not, this returns null. 548 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 549 const Query &Q, unsigned MaxRecurse) { 550 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 551 return C; 552 553 // X + undef -> undef 554 if (match(Op1, m_Undef())) 555 return Op1; 556 557 // X + 0 -> X 558 if (match(Op1, m_Zero())) 559 return Op0; 560 561 // X + (Y - X) -> Y 562 // (Y - X) + X -> Y 563 // Eg: X + -X -> 0 564 Value *Y = nullptr; 565 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 566 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 567 return Y; 568 569 // X + ~X -> -1 since ~X = -X-1 570 Type *Ty = Op0->getType(); 571 if (match(Op0, m_Not(m_Specific(Op1))) || 572 match(Op1, m_Not(m_Specific(Op0)))) 573 return Constant::getAllOnesValue(Ty); 574 575 // add nsw/nuw (xor Y, signbit), signbit --> Y 576 // The no-wrapping add guarantees that the top bit will be set by the add. 577 // Therefore, the xor must be clearing the already set sign bit of Y. 578 if ((isNSW || isNUW) && match(Op1, m_SignBit()) && 579 match(Op0, m_Xor(m_Value(Y), m_SignBit()))) 580 return Y; 581 582 /// i1 add -> xor. 583 if (MaxRecurse && Op0->getType()->getScalarType()->isIntegerTy(1)) 584 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 585 return V; 586 587 // Try some generic simplifications for associative operations. 588 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 589 MaxRecurse)) 590 return V; 591 592 // Threading Add over selects and phi nodes is pointless, so don't bother. 593 // Threading over the select in "A + select(cond, B, C)" means evaluating 594 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 595 // only if B and C are equal. If B and C are equal then (since we assume 596 // that operands have already been simplified) "select(cond, B, C)" should 597 // have been simplified to the common value of B and C already. Analysing 598 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 599 // for threading over phi nodes. 600 601 return nullptr; 602 } 603 604 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 605 const DataLayout &DL, const TargetLibraryInfo *TLI, 606 const DominatorTree *DT, AssumptionCache *AC, 607 const Instruction *CxtI) { 608 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 609 RecursionLimit); 610 } 611 612 /// \brief Compute the base pointer and cumulative constant offsets for V. 613 /// 614 /// This strips all constant offsets off of V, leaving it the base pointer, and 615 /// accumulates the total constant offset applied in the returned constant. It 616 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 617 /// no constant offsets applied. 618 /// 619 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 620 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 621 /// folding. 622 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 623 bool AllowNonInbounds = false) { 624 assert(V->getType()->getScalarType()->isPointerTy()); 625 626 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 627 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 628 629 // Even though we don't look through PHI nodes, we could be called on an 630 // instruction in an unreachable block, which may be on a cycle. 631 SmallPtrSet<Value *, 4> Visited; 632 Visited.insert(V); 633 do { 634 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 635 if ((!AllowNonInbounds && !GEP->isInBounds()) || 636 !GEP->accumulateConstantOffset(DL, Offset)) 637 break; 638 V = GEP->getPointerOperand(); 639 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 640 V = cast<Operator>(V)->getOperand(0); 641 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 642 if (GA->isInterposable()) 643 break; 644 V = GA->getAliasee(); 645 } else { 646 if (auto CS = CallSite(V)) 647 if (Value *RV = CS.getReturnedArgOperand()) { 648 V = RV; 649 continue; 650 } 651 break; 652 } 653 assert(V->getType()->getScalarType()->isPointerTy() && 654 "Unexpected operand type!"); 655 } while (Visited.insert(V).second); 656 657 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 658 if (V->getType()->isVectorTy()) 659 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 660 OffsetIntPtr); 661 return OffsetIntPtr; 662 } 663 664 /// \brief Compute the constant difference between two pointer values. 665 /// If the difference is not a constant, returns zero. 666 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 667 Value *RHS) { 668 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 669 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 670 671 // If LHS and RHS are not related via constant offsets to the same base 672 // value, there is nothing we can do here. 673 if (LHS != RHS) 674 return nullptr; 675 676 // Otherwise, the difference of LHS - RHS can be computed as: 677 // LHS - RHS 678 // = (LHSOffset + Base) - (RHSOffset + Base) 679 // = LHSOffset - RHSOffset 680 return ConstantExpr::getSub(LHSOffset, RHSOffset); 681 } 682 683 /// Given operands for a Sub, see if we can fold the result. 684 /// If not, this returns null. 685 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 686 const Query &Q, unsigned MaxRecurse) { 687 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 688 return C; 689 690 // X - undef -> undef 691 // undef - X -> undef 692 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 693 return UndefValue::get(Op0->getType()); 694 695 // X - 0 -> X 696 if (match(Op1, m_Zero())) 697 return Op0; 698 699 // X - X -> 0 700 if (Op0 == Op1) 701 return Constant::getNullValue(Op0->getType()); 702 703 // Is this a negation? 704 if (match(Op0, m_Zero())) { 705 // 0 - X -> 0 if the sub is NUW. 706 if (isNUW) 707 return Op0; 708 709 unsigned BitWidth = Op1->getType()->getScalarSizeInBits(); 710 APInt KnownZero(BitWidth, 0); 711 APInt KnownOne(BitWidth, 0); 712 computeKnownBits(Op1, KnownZero, KnownOne, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 713 if (KnownZero.isMaxSignedValue()) { 714 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 715 // Op1 must be 0 because negating the minimum signed value is undefined. 716 if (isNSW) 717 return Op0; 718 719 // 0 - X -> X if X is 0 or the minimum signed value. 720 return Op1; 721 } 722 } 723 724 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 725 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 726 Value *X = nullptr, *Y = nullptr, *Z = Op1; 727 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 728 // See if "V === Y - Z" simplifies. 729 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 730 // It does! Now see if "X + V" simplifies. 731 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 732 // It does, we successfully reassociated! 733 ++NumReassoc; 734 return W; 735 } 736 // See if "V === X - Z" simplifies. 737 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 738 // It does! Now see if "Y + V" simplifies. 739 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 740 // It does, we successfully reassociated! 741 ++NumReassoc; 742 return W; 743 } 744 } 745 746 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 747 // For example, X - (X + 1) -> -1 748 X = Op0; 749 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 750 // See if "V === X - Y" simplifies. 751 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 752 // It does! Now see if "V - Z" simplifies. 753 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 754 // It does, we successfully reassociated! 755 ++NumReassoc; 756 return W; 757 } 758 // See if "V === X - Z" simplifies. 759 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 760 // It does! Now see if "V - Y" simplifies. 761 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 762 // It does, we successfully reassociated! 763 ++NumReassoc; 764 return W; 765 } 766 } 767 768 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 769 // For example, X - (X - Y) -> Y. 770 Z = Op0; 771 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 772 // See if "V === Z - X" simplifies. 773 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 774 // It does! Now see if "V + Y" simplifies. 775 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 776 // It does, we successfully reassociated! 777 ++NumReassoc; 778 return W; 779 } 780 781 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 782 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 783 match(Op1, m_Trunc(m_Value(Y)))) 784 if (X->getType() == Y->getType()) 785 // See if "V === X - Y" simplifies. 786 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 787 // It does! Now see if "trunc V" simplifies. 788 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 789 Q, MaxRecurse - 1)) 790 // It does, return the simplified "trunc V". 791 return W; 792 793 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 794 if (match(Op0, m_PtrToInt(m_Value(X))) && 795 match(Op1, m_PtrToInt(m_Value(Y)))) 796 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 797 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 798 799 // i1 sub -> xor. 800 if (MaxRecurse && Op0->getType()->getScalarType()->isIntegerTy(1)) 801 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 802 return V; 803 804 // Threading Sub over selects and phi nodes is pointless, so don't bother. 805 // Threading over the select in "A - select(cond, B, C)" means evaluating 806 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 807 // only if B and C are equal. If B and C are equal then (since we assume 808 // that operands have already been simplified) "select(cond, B, C)" should 809 // have been simplified to the common value of B and C already. Analysing 810 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 811 // for threading over phi nodes. 812 813 return nullptr; 814 } 815 816 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 817 const DataLayout &DL, const TargetLibraryInfo *TLI, 818 const DominatorTree *DT, AssumptionCache *AC, 819 const Instruction *CxtI) { 820 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 821 RecursionLimit); 822 } 823 824 /// Given operands for an FAdd, see if we can fold the result. If not, this 825 /// returns null. 826 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 827 const Query &Q, unsigned MaxRecurse) { 828 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 829 return C; 830 831 // fadd X, -0 ==> X 832 if (match(Op1, m_NegZero())) 833 return Op0; 834 835 // fadd X, 0 ==> X, when we know X is not -0 836 if (match(Op1, m_Zero()) && 837 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 838 return Op0; 839 840 // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0 841 // where nnan and ninf have to occur at least once somewhere in this 842 // expression 843 Value *SubOp = nullptr; 844 if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0)))) 845 SubOp = Op1; 846 else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1)))) 847 SubOp = Op0; 848 if (SubOp) { 849 Instruction *FSub = cast<Instruction>(SubOp); 850 if ((FMF.noNaNs() || FSub->hasNoNaNs()) && 851 (FMF.noInfs() || FSub->hasNoInfs())) 852 return Constant::getNullValue(Op0->getType()); 853 } 854 855 return nullptr; 856 } 857 858 /// Given operands for an FSub, see if we can fold the result. If not, this 859 /// returns null. 860 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 861 const Query &Q, unsigned MaxRecurse) { 862 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 863 return C; 864 865 // fsub X, 0 ==> X 866 if (match(Op1, m_Zero())) 867 return Op0; 868 869 // fsub X, -0 ==> X, when we know X is not -0 870 if (match(Op1, m_NegZero()) && 871 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 872 return Op0; 873 874 // fsub -0.0, (fsub -0.0, X) ==> X 875 Value *X; 876 if (match(Op0, m_NegZero()) && match(Op1, m_FSub(m_NegZero(), m_Value(X)))) 877 return X; 878 879 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 880 if (FMF.noSignedZeros() && match(Op0, m_AnyZero()) && 881 match(Op1, m_FSub(m_AnyZero(), m_Value(X)))) 882 return X; 883 884 // fsub nnan x, x ==> 0.0 885 if (FMF.noNaNs() && Op0 == Op1) 886 return Constant::getNullValue(Op0->getType()); 887 888 return nullptr; 889 } 890 891 /// Given the operands for an FMul, see if we can fold the result 892 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 893 const Query &Q, unsigned MaxRecurse) { 894 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 895 return C; 896 897 // fmul X, 1.0 ==> X 898 if (match(Op1, m_FPOne())) 899 return Op0; 900 901 // fmul nnan nsz X, 0 ==> 0 902 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero())) 903 return Op1; 904 905 return nullptr; 906 } 907 908 /// Given operands for a Mul, see if we can fold the result. 909 /// If not, this returns null. 910 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q, 911 unsigned MaxRecurse) { 912 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 913 return C; 914 915 // X * undef -> 0 916 if (match(Op1, m_Undef())) 917 return Constant::getNullValue(Op0->getType()); 918 919 // X * 0 -> 0 920 if (match(Op1, m_Zero())) 921 return Op1; 922 923 // X * 1 -> X 924 if (match(Op1, m_One())) 925 return Op0; 926 927 // (X / Y) * Y -> X if the division is exact. 928 Value *X = nullptr; 929 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 930 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y) 931 return X; 932 933 // i1 mul -> and. 934 if (MaxRecurse && Op0->getType()->getScalarType()->isIntegerTy(1)) 935 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 936 return V; 937 938 // Try some generic simplifications for associative operations. 939 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 940 MaxRecurse)) 941 return V; 942 943 // Mul distributes over Add. Try some generic simplifications based on this. 944 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 945 Q, MaxRecurse)) 946 return V; 947 948 // If the operation is with the result of a select instruction, check whether 949 // operating on either branch of the select always yields the same value. 950 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 951 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 952 MaxRecurse)) 953 return V; 954 955 // If the operation is with the result of a phi instruction, check whether 956 // operating on all incoming values of the phi always yields the same value. 957 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 958 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 959 MaxRecurse)) 960 return V; 961 962 return nullptr; 963 } 964 965 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 966 const DataLayout &DL, 967 const TargetLibraryInfo *TLI, 968 const DominatorTree *DT, AssumptionCache *AC, 969 const Instruction *CxtI) { 970 return ::SimplifyFAddInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 971 RecursionLimit); 972 } 973 974 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 975 const DataLayout &DL, 976 const TargetLibraryInfo *TLI, 977 const DominatorTree *DT, AssumptionCache *AC, 978 const Instruction *CxtI) { 979 return ::SimplifyFSubInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 980 RecursionLimit); 981 } 982 983 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 984 const DataLayout &DL, 985 const TargetLibraryInfo *TLI, 986 const DominatorTree *DT, AssumptionCache *AC, 987 const Instruction *CxtI) { 988 return ::SimplifyFMulInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 989 RecursionLimit); 990 } 991 992 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout &DL, 993 const TargetLibraryInfo *TLI, 994 const DominatorTree *DT, AssumptionCache *AC, 995 const Instruction *CxtI) { 996 return ::SimplifyMulInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 997 RecursionLimit); 998 } 999 1000 /// Check for common or similar folds of integer division or integer remainder. 1001 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) { 1002 Type *Ty = Op0->getType(); 1003 1004 // X / undef -> undef 1005 // X % undef -> undef 1006 if (match(Op1, m_Undef())) 1007 return Op1; 1008 1009 // X / 0 -> undef 1010 // X % 0 -> undef 1011 // We don't need to preserve faults! 1012 if (match(Op1, m_Zero())) 1013 return UndefValue::get(Ty); 1014 1015 // If any element of a constant divisor vector is zero, the whole op is undef. 1016 auto *Op1C = dyn_cast<Constant>(Op1); 1017 if (Op1C && Ty->isVectorTy()) { 1018 unsigned NumElts = Ty->getVectorNumElements(); 1019 for (unsigned i = 0; i != NumElts; ++i) { 1020 Constant *Elt = Op1C->getAggregateElement(i); 1021 if (Elt && Elt->isNullValue()) 1022 return UndefValue::get(Ty); 1023 } 1024 } 1025 1026 // undef / X -> 0 1027 // undef % X -> 0 1028 if (match(Op0, m_Undef())) 1029 return Constant::getNullValue(Ty); 1030 1031 // 0 / X -> 0 1032 // 0 % X -> 0 1033 if (match(Op0, m_Zero())) 1034 return Op0; 1035 1036 // X / X -> 1 1037 // X % X -> 0 1038 if (Op0 == Op1) 1039 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 1040 1041 // X / 1 -> X 1042 // X % 1 -> 0 1043 // If this is a boolean op (single-bit element type), we can't have 1044 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 1045 if (match(Op1, m_One()) || Ty->getScalarType()->isIntegerTy(1)) 1046 return IsDiv ? Op0 : Constant::getNullValue(Ty); 1047 1048 return nullptr; 1049 } 1050 1051 /// Given operands for an SDiv or UDiv, see if we can fold the result. 1052 /// If not, this returns null. 1053 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1054 const Query &Q, unsigned MaxRecurse) { 1055 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1056 return C; 1057 1058 if (Value *V = simplifyDivRem(Op0, Op1, true)) 1059 return V; 1060 1061 bool isSigned = Opcode == Instruction::SDiv; 1062 1063 // (X * Y) / Y -> X if the multiplication does not overflow. 1064 Value *X = nullptr, *Y = nullptr; 1065 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) { 1066 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1 1067 OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0); 1068 // If the Mul knows it does not overflow, then we are good to go. 1069 if ((isSigned && Mul->hasNoSignedWrap()) || 1070 (!isSigned && Mul->hasNoUnsignedWrap())) 1071 return X; 1072 // If X has the form X = A / Y then X * Y cannot overflow. 1073 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X)) 1074 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y) 1075 return X; 1076 } 1077 1078 // (X rem Y) / Y -> 0 1079 if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1080 (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1081 return Constant::getNullValue(Op0->getType()); 1082 1083 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1084 ConstantInt *C1, *C2; 1085 if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1086 match(Op1, m_ConstantInt(C2))) { 1087 bool Overflow; 1088 C1->getValue().umul_ov(C2->getValue(), Overflow); 1089 if (Overflow) 1090 return Constant::getNullValue(Op0->getType()); 1091 } 1092 1093 // If the operation is with the result of a select instruction, check whether 1094 // operating on either branch of the select always yields the same value. 1095 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1096 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1097 return V; 1098 1099 // If the operation is with the result of a phi instruction, check whether 1100 // operating on all incoming values of the phi always yields the same value. 1101 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1102 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1103 return V; 1104 1105 return nullptr; 1106 } 1107 1108 /// Given operands for an SDiv, see if we can fold the result. 1109 /// If not, this returns null. 1110 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q, 1111 unsigned MaxRecurse) { 1112 if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse)) 1113 return V; 1114 1115 return nullptr; 1116 } 1117 1118 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout &DL, 1119 const TargetLibraryInfo *TLI, 1120 const DominatorTree *DT, AssumptionCache *AC, 1121 const Instruction *CxtI) { 1122 return ::SimplifySDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1123 RecursionLimit); 1124 } 1125 1126 /// Given operands for a UDiv, see if we can fold the result. 1127 /// If not, this returns null. 1128 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q, 1129 unsigned MaxRecurse) { 1130 if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse)) 1131 return V; 1132 1133 // udiv %V, C -> 0 if %V < C 1134 if (MaxRecurse) { 1135 if (Constant *C = dyn_cast_or_null<Constant>(SimplifyICmpInst( 1136 ICmpInst::ICMP_ULT, Op0, Op1, Q, MaxRecurse - 1))) { 1137 if (C->isAllOnesValue()) { 1138 return Constant::getNullValue(Op0->getType()); 1139 } 1140 } 1141 } 1142 1143 return nullptr; 1144 } 1145 1146 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout &DL, 1147 const TargetLibraryInfo *TLI, 1148 const DominatorTree *DT, AssumptionCache *AC, 1149 const Instruction *CxtI) { 1150 return ::SimplifyUDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1151 RecursionLimit); 1152 } 1153 1154 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1155 const Query &Q, unsigned) { 1156 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 1157 return C; 1158 1159 // undef / X -> undef (the undef could be a snan). 1160 if (match(Op0, m_Undef())) 1161 return Op0; 1162 1163 // X / undef -> undef 1164 if (match(Op1, m_Undef())) 1165 return Op1; 1166 1167 // X / 1.0 -> X 1168 if (match(Op1, m_FPOne())) 1169 return Op0; 1170 1171 // 0 / X -> 0 1172 // Requires that NaNs are off (X could be zero) and signed zeroes are 1173 // ignored (X could be positive or negative, so the output sign is unknown). 1174 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 1175 return Op0; 1176 1177 if (FMF.noNaNs()) { 1178 // X / X -> 1.0 is legal when NaNs are ignored. 1179 if (Op0 == Op1) 1180 return ConstantFP::get(Op0->getType(), 1.0); 1181 1182 // -X / X -> -1.0 and 1183 // X / -X -> -1.0 are legal when NaNs are ignored. 1184 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 1185 if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) && 1186 BinaryOperator::getFNegArgument(Op0) == Op1) || 1187 (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) && 1188 BinaryOperator::getFNegArgument(Op1) == Op0)) 1189 return ConstantFP::get(Op0->getType(), -1.0); 1190 } 1191 1192 return nullptr; 1193 } 1194 1195 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1196 const DataLayout &DL, 1197 const TargetLibraryInfo *TLI, 1198 const DominatorTree *DT, AssumptionCache *AC, 1199 const Instruction *CxtI) { 1200 return ::SimplifyFDivInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 1201 RecursionLimit); 1202 } 1203 1204 /// Given operands for an SRem or URem, see if we can fold the result. 1205 /// If not, this returns null. 1206 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1207 const Query &Q, unsigned MaxRecurse) { 1208 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1209 return C; 1210 1211 if (Value *V = simplifyDivRem(Op0, Op1, false)) 1212 return V; 1213 1214 // (X % Y) % Y -> X % Y 1215 if ((Opcode == Instruction::SRem && 1216 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1217 (Opcode == Instruction::URem && 1218 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1219 return Op0; 1220 1221 // If the operation is with the result of a select instruction, check whether 1222 // operating on either branch of the select always yields the same value. 1223 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1224 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1225 return V; 1226 1227 // If the operation is with the result of a phi instruction, check whether 1228 // operating on all incoming values of the phi always yields the same value. 1229 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1230 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1231 return V; 1232 1233 return nullptr; 1234 } 1235 1236 /// Given operands for an SRem, see if we can fold the result. 1237 /// If not, this returns null. 1238 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q, 1239 unsigned MaxRecurse) { 1240 if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse)) 1241 return V; 1242 1243 return nullptr; 1244 } 1245 1246 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout &DL, 1247 const TargetLibraryInfo *TLI, 1248 const DominatorTree *DT, AssumptionCache *AC, 1249 const Instruction *CxtI) { 1250 return ::SimplifySRemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1251 RecursionLimit); 1252 } 1253 1254 /// Given operands for a URem, see if we can fold the result. 1255 /// If not, this returns null. 1256 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q, 1257 unsigned MaxRecurse) { 1258 if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse)) 1259 return V; 1260 1261 // urem %V, C -> %V if %V < C 1262 if (MaxRecurse) { 1263 if (Constant *C = dyn_cast_or_null<Constant>(SimplifyICmpInst( 1264 ICmpInst::ICMP_ULT, Op0, Op1, Q, MaxRecurse - 1))) { 1265 if (C->isAllOnesValue()) { 1266 return Op0; 1267 } 1268 } 1269 } 1270 1271 return nullptr; 1272 } 1273 1274 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout &DL, 1275 const TargetLibraryInfo *TLI, 1276 const DominatorTree *DT, AssumptionCache *AC, 1277 const Instruction *CxtI) { 1278 return ::SimplifyURemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1279 RecursionLimit); 1280 } 1281 1282 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1283 const Query &Q, unsigned) { 1284 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 1285 return C; 1286 1287 // undef % X -> undef (the undef could be a snan). 1288 if (match(Op0, m_Undef())) 1289 return Op0; 1290 1291 // X % undef -> undef 1292 if (match(Op1, m_Undef())) 1293 return Op1; 1294 1295 // 0 % X -> 0 1296 // Requires that NaNs are off (X could be zero) and signed zeroes are 1297 // ignored (X could be positive or negative, so the output sign is unknown). 1298 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 1299 return Op0; 1300 1301 return nullptr; 1302 } 1303 1304 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1305 const DataLayout &DL, 1306 const TargetLibraryInfo *TLI, 1307 const DominatorTree *DT, AssumptionCache *AC, 1308 const Instruction *CxtI) { 1309 return ::SimplifyFRemInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 1310 RecursionLimit); 1311 } 1312 1313 /// Returns true if a shift by \c Amount always yields undef. 1314 static bool isUndefShift(Value *Amount) { 1315 Constant *C = dyn_cast<Constant>(Amount); 1316 if (!C) 1317 return false; 1318 1319 // X shift by undef -> undef because it may shift by the bitwidth. 1320 if (isa<UndefValue>(C)) 1321 return true; 1322 1323 // Shifting by the bitwidth or more is undefined. 1324 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1325 if (CI->getValue().getLimitedValue() >= 1326 CI->getType()->getScalarSizeInBits()) 1327 return true; 1328 1329 // If all lanes of a vector shift are undefined the whole shift is. 1330 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1331 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) 1332 if (!isUndefShift(C->getAggregateElement(I))) 1333 return false; 1334 return true; 1335 } 1336 1337 return false; 1338 } 1339 1340 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1341 /// If not, this returns null. 1342 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1343 Value *Op1, const Query &Q, unsigned MaxRecurse) { 1344 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1345 return C; 1346 1347 // 0 shift by X -> 0 1348 if (match(Op0, m_Zero())) 1349 return Op0; 1350 1351 // X shift by 0 -> X 1352 if (match(Op1, m_Zero())) 1353 return Op0; 1354 1355 // Fold undefined shifts. 1356 if (isUndefShift(Op1)) 1357 return UndefValue::get(Op0->getType()); 1358 1359 // If the operation is with the result of a select instruction, check whether 1360 // operating on either branch of the select always yields the same value. 1361 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1362 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1363 return V; 1364 1365 // If the operation is with the result of a phi instruction, check whether 1366 // operating on all incoming values of the phi always yields the same value. 1367 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1368 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1369 return V; 1370 1371 // If any bits in the shift amount make that value greater than or equal to 1372 // the number of bits in the type, the shift is undefined. 1373 unsigned BitWidth = Op1->getType()->getScalarSizeInBits(); 1374 APInt KnownZero(BitWidth, 0); 1375 APInt KnownOne(BitWidth, 0); 1376 computeKnownBits(Op1, KnownZero, KnownOne, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1377 if (KnownOne.getLimitedValue() >= BitWidth) 1378 return UndefValue::get(Op0->getType()); 1379 1380 // If all valid bits in the shift amount are known zero, the first operand is 1381 // unchanged. 1382 unsigned NumValidShiftBits = Log2_32_Ceil(BitWidth); 1383 APInt ShiftAmountMask = APInt::getLowBitsSet(BitWidth, NumValidShiftBits); 1384 if ((KnownZero & ShiftAmountMask) == ShiftAmountMask) 1385 return Op0; 1386 1387 return nullptr; 1388 } 1389 1390 /// \brief Given operands for an Shl, LShr or AShr, see if we can 1391 /// fold the result. If not, this returns null. 1392 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1393 Value *Op1, bool isExact, const Query &Q, 1394 unsigned MaxRecurse) { 1395 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1396 return V; 1397 1398 // X >> X -> 0 1399 if (Op0 == Op1) 1400 return Constant::getNullValue(Op0->getType()); 1401 1402 // undef >> X -> 0 1403 // undef >> X -> undef (if it's exact) 1404 if (match(Op0, m_Undef())) 1405 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1406 1407 // The low bit cannot be shifted out of an exact shift if it is set. 1408 if (isExact) { 1409 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 1410 APInt Op0KnownZero(BitWidth, 0); 1411 APInt Op0KnownOne(BitWidth, 0); 1412 computeKnownBits(Op0, Op0KnownZero, Op0KnownOne, Q.DL, /*Depth=*/0, Q.AC, 1413 Q.CxtI, Q.DT); 1414 if (Op0KnownOne[0]) 1415 return Op0; 1416 } 1417 1418 return nullptr; 1419 } 1420 1421 /// Given operands for an Shl, see if we can fold the result. 1422 /// If not, this returns null. 1423 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1424 const Query &Q, unsigned MaxRecurse) { 1425 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1426 return V; 1427 1428 // undef << X -> 0 1429 // undef << X -> undef if (if it's NSW/NUW) 1430 if (match(Op0, m_Undef())) 1431 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1432 1433 // (X >> A) << A -> X 1434 Value *X; 1435 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1436 return X; 1437 return nullptr; 1438 } 1439 1440 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1441 const DataLayout &DL, const TargetLibraryInfo *TLI, 1442 const DominatorTree *DT, AssumptionCache *AC, 1443 const Instruction *CxtI) { 1444 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 1445 RecursionLimit); 1446 } 1447 1448 /// Given operands for an LShr, see if we can fold the result. 1449 /// If not, this returns null. 1450 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1451 const Query &Q, unsigned MaxRecurse) { 1452 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1453 MaxRecurse)) 1454 return V; 1455 1456 // (X << A) >> A -> X 1457 Value *X; 1458 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1459 return X; 1460 1461 return nullptr; 1462 } 1463 1464 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1465 const DataLayout &DL, 1466 const TargetLibraryInfo *TLI, 1467 const DominatorTree *DT, AssumptionCache *AC, 1468 const Instruction *CxtI) { 1469 return ::SimplifyLShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI), 1470 RecursionLimit); 1471 } 1472 1473 /// Given operands for an AShr, see if we can fold the result. 1474 /// If not, this returns null. 1475 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1476 const Query &Q, unsigned MaxRecurse) { 1477 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1478 MaxRecurse)) 1479 return V; 1480 1481 // all ones >>a X -> all ones 1482 if (match(Op0, m_AllOnes())) 1483 return Op0; 1484 1485 // (X << A) >> A -> X 1486 Value *X; 1487 if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1488 return X; 1489 1490 // Arithmetic shifting an all-sign-bit value is a no-op. 1491 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1492 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1493 return Op0; 1494 1495 return nullptr; 1496 } 1497 1498 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1499 const DataLayout &DL, 1500 const TargetLibraryInfo *TLI, 1501 const DominatorTree *DT, AssumptionCache *AC, 1502 const Instruction *CxtI) { 1503 return ::SimplifyAShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI), 1504 RecursionLimit); 1505 } 1506 1507 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1508 ICmpInst *UnsignedICmp, bool IsAnd) { 1509 Value *X, *Y; 1510 1511 ICmpInst::Predicate EqPred; 1512 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1513 !ICmpInst::isEquality(EqPred)) 1514 return nullptr; 1515 1516 ICmpInst::Predicate UnsignedPred; 1517 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1518 ICmpInst::isUnsigned(UnsignedPred)) 1519 ; 1520 else if (match(UnsignedICmp, 1521 m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) && 1522 ICmpInst::isUnsigned(UnsignedPred)) 1523 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1524 else 1525 return nullptr; 1526 1527 // X < Y && Y != 0 --> X < Y 1528 // X < Y || Y != 0 --> Y != 0 1529 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1530 return IsAnd ? UnsignedICmp : ZeroICmp; 1531 1532 // X >= Y || Y != 0 --> true 1533 // X >= Y || Y == 0 --> X >= Y 1534 if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) { 1535 if (EqPred == ICmpInst::ICMP_NE) 1536 return getTrue(UnsignedICmp->getType()); 1537 return UnsignedICmp; 1538 } 1539 1540 // X < Y && Y == 0 --> false 1541 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1542 IsAnd) 1543 return getFalse(UnsignedICmp->getType()); 1544 1545 return nullptr; 1546 } 1547 1548 /// Commuted variants are assumed to be handled by calling this function again 1549 /// with the parameters swapped. 1550 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1551 ICmpInst::Predicate Pred0, Pred1; 1552 Value *A ,*B; 1553 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1554 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1555 return nullptr; 1556 1557 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1558 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1559 // can eliminate Op1 from this 'and'. 1560 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1561 return Op0; 1562 1563 // Check for any combination of predicates that are guaranteed to be disjoint. 1564 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1565 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1566 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1567 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1568 return getFalse(Op0->getType()); 1569 1570 return nullptr; 1571 } 1572 1573 /// Commuted variants are assumed to be handled by calling this function again 1574 /// with the parameters swapped. 1575 static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1576 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true)) 1577 return X; 1578 1579 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1580 return X; 1581 1582 // Look for this pattern: (icmp V, C0) & (icmp V, C1)). 1583 Type *ITy = Op0->getType(); 1584 ICmpInst::Predicate Pred0, Pred1; 1585 const APInt *C0, *C1; 1586 Value *V; 1587 if (match(Op0, m_ICmp(Pred0, m_Value(V), m_APInt(C0))) && 1588 match(Op1, m_ICmp(Pred1, m_Specific(V), m_APInt(C1)))) { 1589 // Make a constant range that's the intersection of the two icmp ranges. 1590 // If the intersection is empty, we know that the result is false. 1591 auto Range0 = ConstantRange::makeAllowedICmpRegion(Pred0, *C0); 1592 auto Range1 = ConstantRange::makeAllowedICmpRegion(Pred1, *C1); 1593 if (Range0.intersectWith(Range1).isEmptySet()) 1594 return getFalse(ITy); 1595 } 1596 1597 // (icmp (add V, C0), C1) & (icmp V, C0) 1598 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1599 return nullptr; 1600 1601 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1602 return nullptr; 1603 1604 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1605 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1606 return nullptr; 1607 1608 bool isNSW = AddInst->hasNoSignedWrap(); 1609 bool isNUW = AddInst->hasNoUnsignedWrap(); 1610 1611 const APInt Delta = *C1 - *C0; 1612 if (C0->isStrictlyPositive()) { 1613 if (Delta == 2) { 1614 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1615 return getFalse(ITy); 1616 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1617 return getFalse(ITy); 1618 } 1619 if (Delta == 1) { 1620 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1621 return getFalse(ITy); 1622 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1623 return getFalse(ITy); 1624 } 1625 } 1626 if (C0->getBoolValue() && isNUW) { 1627 if (Delta == 2) 1628 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1629 return getFalse(ITy); 1630 if (Delta == 1) 1631 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1632 return getFalse(ITy); 1633 } 1634 1635 return nullptr; 1636 } 1637 1638 /// Given operands for an And, see if we can fold the result. 1639 /// If not, this returns null. 1640 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q, 1641 unsigned MaxRecurse) { 1642 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 1643 return C; 1644 1645 // X & undef -> 0 1646 if (match(Op1, m_Undef())) 1647 return Constant::getNullValue(Op0->getType()); 1648 1649 // X & X = X 1650 if (Op0 == Op1) 1651 return Op0; 1652 1653 // X & 0 = 0 1654 if (match(Op1, m_Zero())) 1655 return Op1; 1656 1657 // X & -1 = X 1658 if (match(Op1, m_AllOnes())) 1659 return Op0; 1660 1661 // A & ~A = ~A & A = 0 1662 if (match(Op0, m_Not(m_Specific(Op1))) || 1663 match(Op1, m_Not(m_Specific(Op0)))) 1664 return Constant::getNullValue(Op0->getType()); 1665 1666 // (A | ?) & A = A 1667 Value *A = nullptr, *B = nullptr; 1668 if (match(Op0, m_Or(m_Value(A), m_Value(B))) && 1669 (A == Op1 || B == Op1)) 1670 return Op1; 1671 1672 // A & (A | ?) = A 1673 if (match(Op1, m_Or(m_Value(A), m_Value(B))) && 1674 (A == Op0 || B == Op0)) 1675 return Op0; 1676 1677 // A & (-A) = A if A is a power of two or zero. 1678 if (match(Op0, m_Neg(m_Specific(Op1))) || 1679 match(Op1, m_Neg(m_Specific(Op0)))) { 1680 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1681 Q.DT)) 1682 return Op0; 1683 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1684 Q.DT)) 1685 return Op1; 1686 } 1687 1688 if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) { 1689 if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) { 1690 if (Value *V = SimplifyAndOfICmps(ICILHS, ICIRHS)) 1691 return V; 1692 if (Value *V = SimplifyAndOfICmps(ICIRHS, ICILHS)) 1693 return V; 1694 } 1695 } 1696 1697 // The compares may be hidden behind casts. Look through those and try the 1698 // same folds as above. 1699 auto *Cast0 = dyn_cast<CastInst>(Op0); 1700 auto *Cast1 = dyn_cast<CastInst>(Op1); 1701 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1702 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1703 auto *Cmp0 = dyn_cast<ICmpInst>(Cast0->getOperand(0)); 1704 auto *Cmp1 = dyn_cast<ICmpInst>(Cast1->getOperand(0)); 1705 if (Cmp0 && Cmp1) { 1706 Instruction::CastOps CastOpc = Cast0->getOpcode(); 1707 Type *ResultType = Cast0->getType(); 1708 if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp0, Cmp1))) 1709 return ConstantExpr::getCast(CastOpc, V, ResultType); 1710 if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp1, Cmp0))) 1711 return ConstantExpr::getCast(CastOpc, V, ResultType); 1712 } 1713 } 1714 1715 // Try some generic simplifications for associative operations. 1716 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1717 MaxRecurse)) 1718 return V; 1719 1720 // And distributes over Or. Try some generic simplifications based on this. 1721 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1722 Q, MaxRecurse)) 1723 return V; 1724 1725 // And distributes over Xor. Try some generic simplifications based on this. 1726 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1727 Q, MaxRecurse)) 1728 return V; 1729 1730 // If the operation is with the result of a select instruction, check whether 1731 // operating on either branch of the select always yields the same value. 1732 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1733 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 1734 MaxRecurse)) 1735 return V; 1736 1737 // If the operation is with the result of a phi instruction, check whether 1738 // operating on all incoming values of the phi always yields the same value. 1739 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1740 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 1741 MaxRecurse)) 1742 return V; 1743 1744 return nullptr; 1745 } 1746 1747 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout &DL, 1748 const TargetLibraryInfo *TLI, 1749 const DominatorTree *DT, AssumptionCache *AC, 1750 const Instruction *CxtI) { 1751 return ::SimplifyAndInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1752 RecursionLimit); 1753 } 1754 1755 /// Commuted variants are assumed to be handled by calling this function again 1756 /// with the parameters swapped. 1757 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1758 ICmpInst::Predicate Pred0, Pred1; 1759 Value *A ,*B; 1760 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1761 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1762 return nullptr; 1763 1764 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1765 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1766 // can eliminate Op0 from this 'or'. 1767 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1768 return Op1; 1769 1770 // Check for any combination of predicates that cover the entire range of 1771 // possibilities. 1772 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1773 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1774 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1775 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1776 return getTrue(Op0->getType()); 1777 1778 return nullptr; 1779 } 1780 1781 /// Commuted variants are assumed to be handled by calling this function again 1782 /// with the parameters swapped. 1783 static Value *SimplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1784 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false)) 1785 return X; 1786 1787 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1788 return X; 1789 1790 // (icmp (add V, C0), C1) | (icmp V, C0) 1791 ICmpInst::Predicate Pred0, Pred1; 1792 const APInt *C0, *C1; 1793 Value *V; 1794 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1795 return nullptr; 1796 1797 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1798 return nullptr; 1799 1800 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1801 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1802 return nullptr; 1803 1804 Type *ITy = Op0->getType(); 1805 bool isNSW = AddInst->hasNoSignedWrap(); 1806 bool isNUW = AddInst->hasNoUnsignedWrap(); 1807 1808 const APInt Delta = *C1 - *C0; 1809 if (C0->isStrictlyPositive()) { 1810 if (Delta == 2) { 1811 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1812 return getTrue(ITy); 1813 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1814 return getTrue(ITy); 1815 } 1816 if (Delta == 1) { 1817 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1818 return getTrue(ITy); 1819 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1820 return getTrue(ITy); 1821 } 1822 } 1823 if (C0->getBoolValue() && isNUW) { 1824 if (Delta == 2) 1825 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1826 return getTrue(ITy); 1827 if (Delta == 1) 1828 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1829 return getTrue(ITy); 1830 } 1831 1832 return nullptr; 1833 } 1834 1835 /// Given operands for an Or, see if we can fold the result. 1836 /// If not, this returns null. 1837 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q, 1838 unsigned MaxRecurse) { 1839 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 1840 return C; 1841 1842 // X | undef -> -1 1843 if (match(Op1, m_Undef())) 1844 return Constant::getAllOnesValue(Op0->getType()); 1845 1846 // X | X = X 1847 if (Op0 == Op1) 1848 return Op0; 1849 1850 // X | 0 = X 1851 if (match(Op1, m_Zero())) 1852 return Op0; 1853 1854 // X | -1 = -1 1855 if (match(Op1, m_AllOnes())) 1856 return Op1; 1857 1858 // A | ~A = ~A | A = -1 1859 if (match(Op0, m_Not(m_Specific(Op1))) || 1860 match(Op1, m_Not(m_Specific(Op0)))) 1861 return Constant::getAllOnesValue(Op0->getType()); 1862 1863 // (A & ?) | A = A 1864 Value *A = nullptr, *B = nullptr; 1865 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1866 (A == Op1 || B == Op1)) 1867 return Op1; 1868 1869 // A | (A & ?) = A 1870 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1871 (A == Op0 || B == Op0)) 1872 return Op0; 1873 1874 // ~(A & ?) | A = -1 1875 if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) && 1876 (A == Op1 || B == Op1)) 1877 return Constant::getAllOnesValue(Op1->getType()); 1878 1879 // A | ~(A & ?) = -1 1880 if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) && 1881 (A == Op0 || B == Op0)) 1882 return Constant::getAllOnesValue(Op0->getType()); 1883 1884 if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) { 1885 if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) { 1886 if (Value *V = SimplifyOrOfICmps(ICILHS, ICIRHS)) 1887 return V; 1888 if (Value *V = SimplifyOrOfICmps(ICIRHS, ICILHS)) 1889 return V; 1890 } 1891 } 1892 1893 // Try some generic simplifications for associative operations. 1894 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 1895 MaxRecurse)) 1896 return V; 1897 1898 // Or distributes over And. Try some generic simplifications based on this. 1899 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 1900 MaxRecurse)) 1901 return V; 1902 1903 // If the operation is with the result of a select instruction, check whether 1904 // operating on either branch of the select always yields the same value. 1905 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1906 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 1907 MaxRecurse)) 1908 return V; 1909 1910 // (A & C)|(B & D) 1911 Value *C = nullptr, *D = nullptr; 1912 if (match(Op0, m_And(m_Value(A), m_Value(C))) && 1913 match(Op1, m_And(m_Value(B), m_Value(D)))) { 1914 ConstantInt *C1 = dyn_cast<ConstantInt>(C); 1915 ConstantInt *C2 = dyn_cast<ConstantInt>(D); 1916 if (C1 && C2 && (C1->getValue() == ~C2->getValue())) { 1917 // (A & C1)|(B & C2) 1918 // If we have: ((V + N) & C1) | (V & C2) 1919 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 1920 // replace with V+N. 1921 Value *V1, *V2; 1922 if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+ 1923 match(A, m_Add(m_Value(V1), m_Value(V2)))) { 1924 // Add commutes, try both ways. 1925 if (V1 == B && 1926 MaskedValueIsZero(V2, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1927 return A; 1928 if (V2 == B && 1929 MaskedValueIsZero(V1, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1930 return A; 1931 } 1932 // Or commutes, try both ways. 1933 if ((C1->getValue() & (C1->getValue() + 1)) == 0 && 1934 match(B, m_Add(m_Value(V1), m_Value(V2)))) { 1935 // Add commutes, try both ways. 1936 if (V1 == A && 1937 MaskedValueIsZero(V2, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1938 return B; 1939 if (V2 == A && 1940 MaskedValueIsZero(V1, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1941 return B; 1942 } 1943 } 1944 } 1945 1946 // If the operation is with the result of a phi instruction, check whether 1947 // operating on all incoming values of the phi always yields the same value. 1948 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1949 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 1950 return V; 1951 1952 return nullptr; 1953 } 1954 1955 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout &DL, 1956 const TargetLibraryInfo *TLI, 1957 const DominatorTree *DT, AssumptionCache *AC, 1958 const Instruction *CxtI) { 1959 return ::SimplifyOrInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1960 RecursionLimit); 1961 } 1962 1963 /// Given operands for a Xor, see if we can fold the result. 1964 /// If not, this returns null. 1965 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q, 1966 unsigned MaxRecurse) { 1967 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 1968 return C; 1969 1970 // A ^ undef -> undef 1971 if (match(Op1, m_Undef())) 1972 return Op1; 1973 1974 // A ^ 0 = A 1975 if (match(Op1, m_Zero())) 1976 return Op0; 1977 1978 // A ^ A = 0 1979 if (Op0 == Op1) 1980 return Constant::getNullValue(Op0->getType()); 1981 1982 // A ^ ~A = ~A ^ A = -1 1983 if (match(Op0, m_Not(m_Specific(Op1))) || 1984 match(Op1, m_Not(m_Specific(Op0)))) 1985 return Constant::getAllOnesValue(Op0->getType()); 1986 1987 // Try some generic simplifications for associative operations. 1988 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 1989 MaxRecurse)) 1990 return V; 1991 1992 // Threading Xor over selects and phi nodes is pointless, so don't bother. 1993 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 1994 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 1995 // only if B and C are equal. If B and C are equal then (since we assume 1996 // that operands have already been simplified) "select(cond, B, C)" should 1997 // have been simplified to the common value of B and C already. Analysing 1998 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 1999 // for threading over phi nodes. 2000 2001 return nullptr; 2002 } 2003 2004 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout &DL, 2005 const TargetLibraryInfo *TLI, 2006 const DominatorTree *DT, AssumptionCache *AC, 2007 const Instruction *CxtI) { 2008 return ::SimplifyXorInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 2009 RecursionLimit); 2010 } 2011 2012 static Type *GetCompareTy(Value *Op) { 2013 return CmpInst::makeCmpResultType(Op->getType()); 2014 } 2015 2016 /// Rummage around inside V looking for something equivalent to the comparison 2017 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2018 /// Helper function for analyzing max/min idioms. 2019 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2020 Value *LHS, Value *RHS) { 2021 SelectInst *SI = dyn_cast<SelectInst>(V); 2022 if (!SI) 2023 return nullptr; 2024 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2025 if (!Cmp) 2026 return nullptr; 2027 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2028 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2029 return Cmp; 2030 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2031 LHS == CmpRHS && RHS == CmpLHS) 2032 return Cmp; 2033 return nullptr; 2034 } 2035 2036 // A significant optimization not implemented here is assuming that alloca 2037 // addresses are not equal to incoming argument values. They don't *alias*, 2038 // as we say, but that doesn't mean they aren't equal, so we take a 2039 // conservative approach. 2040 // 2041 // This is inspired in part by C++11 5.10p1: 2042 // "Two pointers of the same type compare equal if and only if they are both 2043 // null, both point to the same function, or both represent the same 2044 // address." 2045 // 2046 // This is pretty permissive. 2047 // 2048 // It's also partly due to C11 6.5.9p6: 2049 // "Two pointers compare equal if and only if both are null pointers, both are 2050 // pointers to the same object (including a pointer to an object and a 2051 // subobject at its beginning) or function, both are pointers to one past the 2052 // last element of the same array object, or one is a pointer to one past the 2053 // end of one array object and the other is a pointer to the start of a 2054 // different array object that happens to immediately follow the first array 2055 // object in the address space.) 2056 // 2057 // C11's version is more restrictive, however there's no reason why an argument 2058 // couldn't be a one-past-the-end value for a stack object in the caller and be 2059 // equal to the beginning of a stack object in the callee. 2060 // 2061 // If the C and C++ standards are ever made sufficiently restrictive in this 2062 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2063 // this optimization. 2064 static Constant * 2065 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 2066 const DominatorTree *DT, CmpInst::Predicate Pred, 2067 const Instruction *CxtI, Value *LHS, Value *RHS) { 2068 // First, skip past any trivial no-ops. 2069 LHS = LHS->stripPointerCasts(); 2070 RHS = RHS->stripPointerCasts(); 2071 2072 // A non-null pointer is not equal to a null pointer. 2073 if (llvm::isKnownNonNull(LHS) && isa<ConstantPointerNull>(RHS) && 2074 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 2075 return ConstantInt::get(GetCompareTy(LHS), 2076 !CmpInst::isTrueWhenEqual(Pred)); 2077 2078 // We can only fold certain predicates on pointer comparisons. 2079 switch (Pred) { 2080 default: 2081 return nullptr; 2082 2083 // Equality comaprisons are easy to fold. 2084 case CmpInst::ICMP_EQ: 2085 case CmpInst::ICMP_NE: 2086 break; 2087 2088 // We can only handle unsigned relational comparisons because 'inbounds' on 2089 // a GEP only protects against unsigned wrapping. 2090 case CmpInst::ICMP_UGT: 2091 case CmpInst::ICMP_UGE: 2092 case CmpInst::ICMP_ULT: 2093 case CmpInst::ICMP_ULE: 2094 // However, we have to switch them to their signed variants to handle 2095 // negative indices from the base pointer. 2096 Pred = ICmpInst::getSignedPredicate(Pred); 2097 break; 2098 } 2099 2100 // Strip off any constant offsets so that we can reason about them. 2101 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2102 // here and compare base addresses like AliasAnalysis does, however there are 2103 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2104 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2105 // doesn't need to guarantee pointer inequality when it says NoAlias. 2106 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2107 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2108 2109 // If LHS and RHS are related via constant offsets to the same base 2110 // value, we can replace it with an icmp which just compares the offsets. 2111 if (LHS == RHS) 2112 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2113 2114 // Various optimizations for (in)equality comparisons. 2115 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2116 // Different non-empty allocations that exist at the same time have 2117 // different addresses (if the program can tell). Global variables always 2118 // exist, so they always exist during the lifetime of each other and all 2119 // allocas. Two different allocas usually have different addresses... 2120 // 2121 // However, if there's an @llvm.stackrestore dynamically in between two 2122 // allocas, they may have the same address. It's tempting to reduce the 2123 // scope of the problem by only looking at *static* allocas here. That would 2124 // cover the majority of allocas while significantly reducing the likelihood 2125 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2126 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2127 // an entry block. Also, if we have a block that's not attached to a 2128 // function, we can't tell if it's "static" under the current definition. 2129 // Theoretically, this problem could be fixed by creating a new kind of 2130 // instruction kind specifically for static allocas. Such a new instruction 2131 // could be required to be at the top of the entry block, thus preventing it 2132 // from being subject to a @llvm.stackrestore. Instcombine could even 2133 // convert regular allocas into these special allocas. It'd be nifty. 2134 // However, until then, this problem remains open. 2135 // 2136 // So, we'll assume that two non-empty allocas have different addresses 2137 // for now. 2138 // 2139 // With all that, if the offsets are within the bounds of their allocations 2140 // (and not one-past-the-end! so we can't use inbounds!), and their 2141 // allocations aren't the same, the pointers are not equal. 2142 // 2143 // Note that it's not necessary to check for LHS being a global variable 2144 // address, due to canonicalization and constant folding. 2145 if (isa<AllocaInst>(LHS) && 2146 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2147 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2148 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2149 uint64_t LHSSize, RHSSize; 2150 if (LHSOffsetCI && RHSOffsetCI && 2151 getObjectSize(LHS, LHSSize, DL, TLI) && 2152 getObjectSize(RHS, RHSSize, DL, TLI)) { 2153 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2154 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2155 if (!LHSOffsetValue.isNegative() && 2156 !RHSOffsetValue.isNegative() && 2157 LHSOffsetValue.ult(LHSSize) && 2158 RHSOffsetValue.ult(RHSSize)) { 2159 return ConstantInt::get(GetCompareTy(LHS), 2160 !CmpInst::isTrueWhenEqual(Pred)); 2161 } 2162 } 2163 2164 // Repeat the above check but this time without depending on DataLayout 2165 // or being able to compute a precise size. 2166 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2167 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2168 LHSOffset->isNullValue() && 2169 RHSOffset->isNullValue()) 2170 return ConstantInt::get(GetCompareTy(LHS), 2171 !CmpInst::isTrueWhenEqual(Pred)); 2172 } 2173 2174 // Even if an non-inbounds GEP occurs along the path we can still optimize 2175 // equality comparisons concerning the result. We avoid walking the whole 2176 // chain again by starting where the last calls to 2177 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2178 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2179 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2180 if (LHS == RHS) 2181 return ConstantExpr::getICmp(Pred, 2182 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2183 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2184 2185 // If one side of the equality comparison must come from a noalias call 2186 // (meaning a system memory allocation function), and the other side must 2187 // come from a pointer that cannot overlap with dynamically-allocated 2188 // memory within the lifetime of the current function (allocas, byval 2189 // arguments, globals), then determine the comparison result here. 2190 SmallVector<Value *, 8> LHSUObjs, RHSUObjs; 2191 GetUnderlyingObjects(LHS, LHSUObjs, DL); 2192 GetUnderlyingObjects(RHS, RHSUObjs, DL); 2193 2194 // Is the set of underlying objects all noalias calls? 2195 auto IsNAC = [](ArrayRef<Value *> Objects) { 2196 return all_of(Objects, isNoAliasCall); 2197 }; 2198 2199 // Is the set of underlying objects all things which must be disjoint from 2200 // noalias calls. For allocas, we consider only static ones (dynamic 2201 // allocas might be transformed into calls to malloc not simultaneously 2202 // live with the compared-to allocation). For globals, we exclude symbols 2203 // that might be resolve lazily to symbols in another dynamically-loaded 2204 // library (and, thus, could be malloc'ed by the implementation). 2205 auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) { 2206 return all_of(Objects, [](Value *V) { 2207 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2208 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2209 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2210 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2211 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2212 !GV->isThreadLocal(); 2213 if (const Argument *A = dyn_cast<Argument>(V)) 2214 return A->hasByValAttr(); 2215 return false; 2216 }); 2217 }; 2218 2219 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2220 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2221 return ConstantInt::get(GetCompareTy(LHS), 2222 !CmpInst::isTrueWhenEqual(Pred)); 2223 2224 // Fold comparisons for non-escaping pointer even if the allocation call 2225 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2226 // dynamic allocation call could be either of the operands. 2227 Value *MI = nullptr; 2228 if (isAllocLikeFn(LHS, TLI) && llvm::isKnownNonNullAt(RHS, CxtI, DT)) 2229 MI = LHS; 2230 else if (isAllocLikeFn(RHS, TLI) && llvm::isKnownNonNullAt(LHS, CxtI, DT)) 2231 MI = RHS; 2232 // FIXME: We should also fold the compare when the pointer escapes, but the 2233 // compare dominates the pointer escape 2234 if (MI && !PointerMayBeCaptured(MI, true, true)) 2235 return ConstantInt::get(GetCompareTy(LHS), 2236 CmpInst::isFalseWhenEqual(Pred)); 2237 } 2238 2239 // Otherwise, fail. 2240 return nullptr; 2241 } 2242 2243 /// Fold an icmp when its operands have i1 scalar type. 2244 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2245 Value *RHS, const Query &Q) { 2246 Type *ITy = GetCompareTy(LHS); // The return type. 2247 Type *OpTy = LHS->getType(); // The operand type. 2248 if (!OpTy->getScalarType()->isIntegerTy(1)) 2249 return nullptr; 2250 2251 switch (Pred) { 2252 default: 2253 break; 2254 case ICmpInst::ICMP_EQ: 2255 // X == 1 -> X 2256 if (match(RHS, m_One())) 2257 return LHS; 2258 break; 2259 case ICmpInst::ICMP_NE: 2260 // X != 0 -> X 2261 if (match(RHS, m_Zero())) 2262 return LHS; 2263 break; 2264 case ICmpInst::ICMP_UGT: 2265 // X >u 0 -> X 2266 if (match(RHS, m_Zero())) 2267 return LHS; 2268 break; 2269 case ICmpInst::ICMP_UGE: 2270 // X >=u 1 -> X 2271 if (match(RHS, m_One())) 2272 return LHS; 2273 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2274 return getTrue(ITy); 2275 break; 2276 case ICmpInst::ICMP_SGE: 2277 /// For signed comparison, the values for an i1 are 0 and -1 2278 /// respectively. This maps into a truth table of: 2279 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2280 /// 0 | 0 | 1 (0 >= 0) | 1 2281 /// 0 | 1 | 1 (0 >= -1) | 1 2282 /// 1 | 0 | 0 (-1 >= 0) | 0 2283 /// 1 | 1 | 1 (-1 >= -1) | 1 2284 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2285 return getTrue(ITy); 2286 break; 2287 case ICmpInst::ICMP_SLT: 2288 // X <s 0 -> X 2289 if (match(RHS, m_Zero())) 2290 return LHS; 2291 break; 2292 case ICmpInst::ICMP_SLE: 2293 // X <=s -1 -> X 2294 if (match(RHS, m_One())) 2295 return LHS; 2296 break; 2297 case ICmpInst::ICMP_ULE: 2298 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2299 return getTrue(ITy); 2300 break; 2301 } 2302 2303 return nullptr; 2304 } 2305 2306 /// Try hard to fold icmp with zero RHS because this is a common case. 2307 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2308 Value *RHS, const Query &Q) { 2309 if (!match(RHS, m_Zero())) 2310 return nullptr; 2311 2312 Type *ITy = GetCompareTy(LHS); // The return type. 2313 bool LHSKnownNonNegative, LHSKnownNegative; 2314 switch (Pred) { 2315 default: 2316 llvm_unreachable("Unknown ICmp predicate!"); 2317 case ICmpInst::ICMP_ULT: 2318 return getFalse(ITy); 2319 case ICmpInst::ICMP_UGE: 2320 return getTrue(ITy); 2321 case ICmpInst::ICMP_EQ: 2322 case ICmpInst::ICMP_ULE: 2323 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2324 return getFalse(ITy); 2325 break; 2326 case ICmpInst::ICMP_NE: 2327 case ICmpInst::ICMP_UGT: 2328 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2329 return getTrue(ITy); 2330 break; 2331 case ICmpInst::ICMP_SLT: 2332 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2333 Q.CxtI, Q.DT); 2334 if (LHSKnownNegative) 2335 return getTrue(ITy); 2336 if (LHSKnownNonNegative) 2337 return getFalse(ITy); 2338 break; 2339 case ICmpInst::ICMP_SLE: 2340 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2341 Q.CxtI, Q.DT); 2342 if (LHSKnownNegative) 2343 return getTrue(ITy); 2344 if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2345 return getFalse(ITy); 2346 break; 2347 case ICmpInst::ICMP_SGE: 2348 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2349 Q.CxtI, Q.DT); 2350 if (LHSKnownNegative) 2351 return getFalse(ITy); 2352 if (LHSKnownNonNegative) 2353 return getTrue(ITy); 2354 break; 2355 case ICmpInst::ICMP_SGT: 2356 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2357 Q.CxtI, Q.DT); 2358 if (LHSKnownNegative) 2359 return getFalse(ITy); 2360 if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2361 return getTrue(ITy); 2362 break; 2363 } 2364 2365 return nullptr; 2366 } 2367 2368 /// Many binary operators with a constant operand have an easy-to-compute 2369 /// range of outputs. This can be used to fold a comparison to always true or 2370 /// always false. 2371 static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper) { 2372 unsigned Width = Lower.getBitWidth(); 2373 const APInt *C; 2374 switch (BO.getOpcode()) { 2375 case Instruction::Add: 2376 if (match(BO.getOperand(1), m_APInt(C)) && *C != 0) { 2377 // FIXME: If we have both nuw and nsw, we should reduce the range further. 2378 if (BO.hasNoUnsignedWrap()) { 2379 // 'add nuw x, C' produces [C, UINT_MAX]. 2380 Lower = *C; 2381 } else if (BO.hasNoSignedWrap()) { 2382 if (C->isNegative()) { 2383 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 2384 Lower = APInt::getSignedMinValue(Width); 2385 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 2386 } else { 2387 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 2388 Lower = APInt::getSignedMinValue(Width) + *C; 2389 Upper = APInt::getSignedMaxValue(Width) + 1; 2390 } 2391 } 2392 } 2393 break; 2394 2395 case Instruction::And: 2396 if (match(BO.getOperand(1), m_APInt(C))) 2397 // 'and x, C' produces [0, C]. 2398 Upper = *C + 1; 2399 break; 2400 2401 case Instruction::Or: 2402 if (match(BO.getOperand(1), m_APInt(C))) 2403 // 'or x, C' produces [C, UINT_MAX]. 2404 Lower = *C; 2405 break; 2406 2407 case Instruction::AShr: 2408 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2409 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 2410 Lower = APInt::getSignedMinValue(Width).ashr(*C); 2411 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 2412 } else if (match(BO.getOperand(0), m_APInt(C))) { 2413 unsigned ShiftAmount = Width - 1; 2414 if (*C != 0 && BO.isExact()) 2415 ShiftAmount = C->countTrailingZeros(); 2416 if (C->isNegative()) { 2417 // 'ashr C, x' produces [C, C >> (Width-1)] 2418 Lower = *C; 2419 Upper = C->ashr(ShiftAmount) + 1; 2420 } else { 2421 // 'ashr C, x' produces [C >> (Width-1), C] 2422 Lower = C->ashr(ShiftAmount); 2423 Upper = *C + 1; 2424 } 2425 } 2426 break; 2427 2428 case Instruction::LShr: 2429 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2430 // 'lshr x, C' produces [0, UINT_MAX >> C]. 2431 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 2432 } else if (match(BO.getOperand(0), m_APInt(C))) { 2433 // 'lshr C, x' produces [C >> (Width-1), C]. 2434 unsigned ShiftAmount = Width - 1; 2435 if (*C != 0 && BO.isExact()) 2436 ShiftAmount = C->countTrailingZeros(); 2437 Lower = C->lshr(ShiftAmount); 2438 Upper = *C + 1; 2439 } 2440 break; 2441 2442 case Instruction::Shl: 2443 if (match(BO.getOperand(0), m_APInt(C))) { 2444 if (BO.hasNoUnsignedWrap()) { 2445 // 'shl nuw C, x' produces [C, C << CLZ(C)] 2446 Lower = *C; 2447 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 2448 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 2449 if (C->isNegative()) { 2450 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 2451 unsigned ShiftAmount = C->countLeadingOnes() - 1; 2452 Lower = C->shl(ShiftAmount); 2453 Upper = *C + 1; 2454 } else { 2455 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 2456 unsigned ShiftAmount = C->countLeadingZeros() - 1; 2457 Lower = *C; 2458 Upper = C->shl(ShiftAmount) + 1; 2459 } 2460 } 2461 } 2462 break; 2463 2464 case Instruction::SDiv: 2465 if (match(BO.getOperand(1), m_APInt(C))) { 2466 APInt IntMin = APInt::getSignedMinValue(Width); 2467 APInt IntMax = APInt::getSignedMaxValue(Width); 2468 if (C->isAllOnesValue()) { 2469 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 2470 // where C != -1 and C != 0 and C != 1 2471 Lower = IntMin + 1; 2472 Upper = IntMax + 1; 2473 } else if (C->countLeadingZeros() < Width - 1) { 2474 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 2475 // where C != -1 and C != 0 and C != 1 2476 Lower = IntMin.sdiv(*C); 2477 Upper = IntMax.sdiv(*C); 2478 if (Lower.sgt(Upper)) 2479 std::swap(Lower, Upper); 2480 Upper = Upper + 1; 2481 assert(Upper != Lower && "Upper part of range has wrapped!"); 2482 } 2483 } else if (match(BO.getOperand(0), m_APInt(C))) { 2484 if (C->isMinSignedValue()) { 2485 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 2486 Lower = *C; 2487 Upper = Lower.lshr(1) + 1; 2488 } else { 2489 // 'sdiv C, x' produces [-|C|, |C|]. 2490 Upper = C->abs() + 1; 2491 Lower = (-Upper) + 1; 2492 } 2493 } 2494 break; 2495 2496 case Instruction::UDiv: 2497 if (match(BO.getOperand(1), m_APInt(C)) && *C != 0) { 2498 // 'udiv x, C' produces [0, UINT_MAX / C]. 2499 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 2500 } else if (match(BO.getOperand(0), m_APInt(C))) { 2501 // 'udiv C, x' produces [0, C]. 2502 Upper = *C + 1; 2503 } 2504 break; 2505 2506 case Instruction::SRem: 2507 if (match(BO.getOperand(1), m_APInt(C))) { 2508 // 'srem x, C' produces (-|C|, |C|). 2509 Upper = C->abs(); 2510 Lower = (-Upper) + 1; 2511 } 2512 break; 2513 2514 case Instruction::URem: 2515 if (match(BO.getOperand(1), m_APInt(C))) 2516 // 'urem x, C' produces [0, C). 2517 Upper = *C; 2518 break; 2519 2520 default: 2521 break; 2522 } 2523 } 2524 2525 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2526 Value *RHS) { 2527 const APInt *C; 2528 if (!match(RHS, m_APInt(C))) 2529 return nullptr; 2530 2531 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2532 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2533 if (RHS_CR.isEmptySet()) 2534 return ConstantInt::getFalse(GetCompareTy(RHS)); 2535 if (RHS_CR.isFullSet()) 2536 return ConstantInt::getTrue(GetCompareTy(RHS)); 2537 2538 // Find the range of possible values for binary operators. 2539 unsigned Width = C->getBitWidth(); 2540 APInt Lower = APInt(Width, 0); 2541 APInt Upper = APInt(Width, 0); 2542 if (auto *BO = dyn_cast<BinaryOperator>(LHS)) 2543 setLimitsForBinOp(*BO, Lower, Upper); 2544 2545 ConstantRange LHS_CR = 2546 Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true); 2547 2548 if (auto *I = dyn_cast<Instruction>(LHS)) 2549 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) 2550 LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges)); 2551 2552 if (!LHS_CR.isFullSet()) { 2553 if (RHS_CR.contains(LHS_CR)) 2554 return ConstantInt::getTrue(GetCompareTy(RHS)); 2555 if (RHS_CR.inverse().contains(LHS_CR)) 2556 return ConstantInt::getFalse(GetCompareTy(RHS)); 2557 } 2558 2559 return nullptr; 2560 } 2561 2562 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 2563 Value *RHS, const Query &Q, 2564 unsigned MaxRecurse) { 2565 Type *ITy = GetCompareTy(LHS); // The return type. 2566 2567 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2568 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2569 if (MaxRecurse && (LBO || RBO)) { 2570 // Analyze the case when either LHS or RHS is an add instruction. 2571 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2572 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2573 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2574 if (LBO && LBO->getOpcode() == Instruction::Add) { 2575 A = LBO->getOperand(0); 2576 B = LBO->getOperand(1); 2577 NoLHSWrapProblem = 2578 ICmpInst::isEquality(Pred) || 2579 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) || 2580 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap()); 2581 } 2582 if (RBO && RBO->getOpcode() == Instruction::Add) { 2583 C = RBO->getOperand(0); 2584 D = RBO->getOperand(1); 2585 NoRHSWrapProblem = 2586 ICmpInst::isEquality(Pred) || 2587 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) || 2588 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap()); 2589 } 2590 2591 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2592 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2593 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2594 Constant::getNullValue(RHS->getType()), Q, 2595 MaxRecurse - 1)) 2596 return V; 2597 2598 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2599 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2600 if (Value *V = 2601 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 2602 C == LHS ? D : C, Q, MaxRecurse - 1)) 2603 return V; 2604 2605 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2606 if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem && 2607 NoRHSWrapProblem) { 2608 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2609 Value *Y, *Z; 2610 if (A == C) { 2611 // C + B == C + D -> B == D 2612 Y = B; 2613 Z = D; 2614 } else if (A == D) { 2615 // D + B == C + D -> B == C 2616 Y = B; 2617 Z = C; 2618 } else if (B == C) { 2619 // A + C == C + D -> A == D 2620 Y = A; 2621 Z = D; 2622 } else { 2623 assert(B == D); 2624 // A + D == C + D -> A == C 2625 Y = A; 2626 Z = C; 2627 } 2628 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 2629 return V; 2630 } 2631 } 2632 2633 { 2634 Value *Y = nullptr; 2635 // icmp pred (or X, Y), X 2636 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2637 if (Pred == ICmpInst::ICMP_ULT) 2638 return getFalse(ITy); 2639 if (Pred == ICmpInst::ICMP_UGE) 2640 return getTrue(ITy); 2641 2642 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2643 bool RHSKnownNonNegative, RHSKnownNegative; 2644 bool YKnownNonNegative, YKnownNegative; 2645 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, Q.DL, 0, 2646 Q.AC, Q.CxtI, Q.DT); 2647 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC, 2648 Q.CxtI, Q.DT); 2649 if (RHSKnownNonNegative && YKnownNegative) 2650 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2651 if (RHSKnownNegative || YKnownNonNegative) 2652 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2653 } 2654 } 2655 // icmp pred X, (or X, Y) 2656 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) { 2657 if (Pred == ICmpInst::ICMP_ULE) 2658 return getTrue(ITy); 2659 if (Pred == ICmpInst::ICMP_UGT) 2660 return getFalse(ITy); 2661 2662 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) { 2663 bool LHSKnownNonNegative, LHSKnownNegative; 2664 bool YKnownNonNegative, YKnownNegative; 2665 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, 2666 Q.AC, Q.CxtI, Q.DT); 2667 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC, 2668 Q.CxtI, Q.DT); 2669 if (LHSKnownNonNegative && YKnownNegative) 2670 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy); 2671 if (LHSKnownNegative || YKnownNonNegative) 2672 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy); 2673 } 2674 } 2675 } 2676 2677 // icmp pred (and X, Y), X 2678 if (LBO && match(LBO, m_CombineOr(m_And(m_Value(), m_Specific(RHS)), 2679 m_And(m_Specific(RHS), m_Value())))) { 2680 if (Pred == ICmpInst::ICMP_UGT) 2681 return getFalse(ITy); 2682 if (Pred == ICmpInst::ICMP_ULE) 2683 return getTrue(ITy); 2684 } 2685 // icmp pred X, (and X, Y) 2686 if (RBO && match(RBO, m_CombineOr(m_And(m_Value(), m_Specific(LHS)), 2687 m_And(m_Specific(LHS), m_Value())))) { 2688 if (Pred == ICmpInst::ICMP_UGE) 2689 return getTrue(ITy); 2690 if (Pred == ICmpInst::ICMP_ULT) 2691 return getFalse(ITy); 2692 } 2693 2694 // 0 - (zext X) pred C 2695 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2696 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2697 if (RHSC->getValue().isStrictlyPositive()) { 2698 if (Pred == ICmpInst::ICMP_SLT) 2699 return ConstantInt::getTrue(RHSC->getContext()); 2700 if (Pred == ICmpInst::ICMP_SGE) 2701 return ConstantInt::getFalse(RHSC->getContext()); 2702 if (Pred == ICmpInst::ICMP_EQ) 2703 return ConstantInt::getFalse(RHSC->getContext()); 2704 if (Pred == ICmpInst::ICMP_NE) 2705 return ConstantInt::getTrue(RHSC->getContext()); 2706 } 2707 if (RHSC->getValue().isNonNegative()) { 2708 if (Pred == ICmpInst::ICMP_SLE) 2709 return ConstantInt::getTrue(RHSC->getContext()); 2710 if (Pred == ICmpInst::ICMP_SGT) 2711 return ConstantInt::getFalse(RHSC->getContext()); 2712 } 2713 } 2714 } 2715 2716 // icmp pred (urem X, Y), Y 2717 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2718 bool KnownNonNegative, KnownNegative; 2719 switch (Pred) { 2720 default: 2721 break; 2722 case ICmpInst::ICMP_SGT: 2723 case ICmpInst::ICMP_SGE: 2724 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2725 Q.CxtI, Q.DT); 2726 if (!KnownNonNegative) 2727 break; 2728 LLVM_FALLTHROUGH; 2729 case ICmpInst::ICMP_EQ: 2730 case ICmpInst::ICMP_UGT: 2731 case ICmpInst::ICMP_UGE: 2732 return getFalse(ITy); 2733 case ICmpInst::ICMP_SLT: 2734 case ICmpInst::ICMP_SLE: 2735 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2736 Q.CxtI, Q.DT); 2737 if (!KnownNonNegative) 2738 break; 2739 LLVM_FALLTHROUGH; 2740 case ICmpInst::ICMP_NE: 2741 case ICmpInst::ICMP_ULT: 2742 case ICmpInst::ICMP_ULE: 2743 return getTrue(ITy); 2744 } 2745 } 2746 2747 // icmp pred X, (urem Y, X) 2748 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2749 bool KnownNonNegative, KnownNegative; 2750 switch (Pred) { 2751 default: 2752 break; 2753 case ICmpInst::ICMP_SGT: 2754 case ICmpInst::ICMP_SGE: 2755 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2756 Q.CxtI, Q.DT); 2757 if (!KnownNonNegative) 2758 break; 2759 LLVM_FALLTHROUGH; 2760 case ICmpInst::ICMP_NE: 2761 case ICmpInst::ICMP_UGT: 2762 case ICmpInst::ICMP_UGE: 2763 return getTrue(ITy); 2764 case ICmpInst::ICMP_SLT: 2765 case ICmpInst::ICMP_SLE: 2766 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2767 Q.CxtI, Q.DT); 2768 if (!KnownNonNegative) 2769 break; 2770 LLVM_FALLTHROUGH; 2771 case ICmpInst::ICMP_EQ: 2772 case ICmpInst::ICMP_ULT: 2773 case ICmpInst::ICMP_ULE: 2774 return getFalse(ITy); 2775 } 2776 } 2777 2778 // x >> y <=u x 2779 // x udiv y <=u x. 2780 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2781 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { 2782 // icmp pred (X op Y), X 2783 if (Pred == ICmpInst::ICMP_UGT) 2784 return getFalse(ITy); 2785 if (Pred == ICmpInst::ICMP_ULE) 2786 return getTrue(ITy); 2787 } 2788 2789 // x >=u x >> y 2790 // x >=u x udiv y. 2791 if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) || 2792 match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) { 2793 // icmp pred X, (X op Y) 2794 if (Pred == ICmpInst::ICMP_ULT) 2795 return getFalse(ITy); 2796 if (Pred == ICmpInst::ICMP_UGE) 2797 return getTrue(ITy); 2798 } 2799 2800 // handle: 2801 // CI2 << X == CI 2802 // CI2 << X != CI 2803 // 2804 // where CI2 is a power of 2 and CI isn't 2805 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2806 const APInt *CI2Val, *CIVal = &CI->getValue(); 2807 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2808 CI2Val->isPowerOf2()) { 2809 if (!CIVal->isPowerOf2()) { 2810 // CI2 << X can equal zero in some circumstances, 2811 // this simplification is unsafe if CI is zero. 2812 // 2813 // We know it is safe if: 2814 // - The shift is nsw, we can't shift out the one bit. 2815 // - The shift is nuw, we can't shift out the one bit. 2816 // - CI2 is one 2817 // - CI isn't zero 2818 if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() || 2819 *CI2Val == 1 || !CI->isZero()) { 2820 if (Pred == ICmpInst::ICMP_EQ) 2821 return ConstantInt::getFalse(RHS->getContext()); 2822 if (Pred == ICmpInst::ICMP_NE) 2823 return ConstantInt::getTrue(RHS->getContext()); 2824 } 2825 } 2826 if (CIVal->isSignBit() && *CI2Val == 1) { 2827 if (Pred == ICmpInst::ICMP_UGT) 2828 return ConstantInt::getFalse(RHS->getContext()); 2829 if (Pred == ICmpInst::ICMP_ULE) 2830 return ConstantInt::getTrue(RHS->getContext()); 2831 } 2832 } 2833 } 2834 2835 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2836 LBO->getOperand(1) == RBO->getOperand(1)) { 2837 switch (LBO->getOpcode()) { 2838 default: 2839 break; 2840 case Instruction::UDiv: 2841 case Instruction::LShr: 2842 if (ICmpInst::isSigned(Pred)) 2843 break; 2844 LLVM_FALLTHROUGH; 2845 case Instruction::SDiv: 2846 case Instruction::AShr: 2847 if (!LBO->isExact() || !RBO->isExact()) 2848 break; 2849 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2850 RBO->getOperand(0), Q, MaxRecurse - 1)) 2851 return V; 2852 break; 2853 case Instruction::Shl: { 2854 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap(); 2855 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap(); 2856 if (!NUW && !NSW) 2857 break; 2858 if (!NSW && ICmpInst::isSigned(Pred)) 2859 break; 2860 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2861 RBO->getOperand(0), Q, MaxRecurse - 1)) 2862 return V; 2863 break; 2864 } 2865 } 2866 } 2867 return nullptr; 2868 } 2869 2870 /// Simplify integer comparisons where at least one operand of the compare 2871 /// matches an integer min/max idiom. 2872 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 2873 Value *RHS, const Query &Q, 2874 unsigned MaxRecurse) { 2875 Type *ITy = GetCompareTy(LHS); // The return type. 2876 Value *A, *B; 2877 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 2878 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 2879 2880 // Signed variants on "max(a,b)>=a -> true". 2881 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2882 if (A != RHS) 2883 std::swap(A, B); // smax(A, B) pred A. 2884 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2885 // We analyze this as smax(A, B) pred A. 2886 P = Pred; 2887 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 2888 (A == LHS || B == LHS)) { 2889 if (A != LHS) 2890 std::swap(A, B); // A pred smax(A, B). 2891 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2892 // We analyze this as smax(A, B) swapped-pred A. 2893 P = CmpInst::getSwappedPredicate(Pred); 2894 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2895 (A == RHS || B == RHS)) { 2896 if (A != RHS) 2897 std::swap(A, B); // smin(A, B) pred A. 2898 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2899 // We analyze this as smax(-A, -B) swapped-pred -A. 2900 // Note that we do not need to actually form -A or -B thanks to EqP. 2901 P = CmpInst::getSwappedPredicate(Pred); 2902 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 2903 (A == LHS || B == LHS)) { 2904 if (A != LHS) 2905 std::swap(A, B); // A pred smin(A, B). 2906 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2907 // We analyze this as smax(-A, -B) pred -A. 2908 // Note that we do not need to actually form -A or -B thanks to EqP. 2909 P = Pred; 2910 } 2911 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2912 // Cases correspond to "max(A, B) p A". 2913 switch (P) { 2914 default: 2915 break; 2916 case CmpInst::ICMP_EQ: 2917 case CmpInst::ICMP_SLE: 2918 // Equivalent to "A EqP B". This may be the same as the condition tested 2919 // in the max/min; if so, we can just return that. 2920 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2921 return V; 2922 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2923 return V; 2924 // Otherwise, see if "A EqP B" simplifies. 2925 if (MaxRecurse) 2926 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 2927 return V; 2928 break; 2929 case CmpInst::ICMP_NE: 2930 case CmpInst::ICMP_SGT: { 2931 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2932 // Equivalent to "A InvEqP B". This may be the same as the condition 2933 // tested in the max/min; if so, we can just return that. 2934 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2935 return V; 2936 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2937 return V; 2938 // Otherwise, see if "A InvEqP B" simplifies. 2939 if (MaxRecurse) 2940 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 2941 return V; 2942 break; 2943 } 2944 case CmpInst::ICMP_SGE: 2945 // Always true. 2946 return getTrue(ITy); 2947 case CmpInst::ICMP_SLT: 2948 // Always false. 2949 return getFalse(ITy); 2950 } 2951 } 2952 2953 // Unsigned variants on "max(a,b)>=a -> true". 2954 P = CmpInst::BAD_ICMP_PREDICATE; 2955 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2956 if (A != RHS) 2957 std::swap(A, B); // umax(A, B) pred A. 2958 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2959 // We analyze this as umax(A, B) pred A. 2960 P = Pred; 2961 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 2962 (A == LHS || B == LHS)) { 2963 if (A != LHS) 2964 std::swap(A, B); // A pred umax(A, B). 2965 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2966 // We analyze this as umax(A, B) swapped-pred A. 2967 P = CmpInst::getSwappedPredicate(Pred); 2968 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2969 (A == RHS || B == RHS)) { 2970 if (A != RHS) 2971 std::swap(A, B); // umin(A, B) pred A. 2972 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2973 // We analyze this as umax(-A, -B) swapped-pred -A. 2974 // Note that we do not need to actually form -A or -B thanks to EqP. 2975 P = CmpInst::getSwappedPredicate(Pred); 2976 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 2977 (A == LHS || B == LHS)) { 2978 if (A != LHS) 2979 std::swap(A, B); // A pred umin(A, B). 2980 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2981 // We analyze this as umax(-A, -B) pred -A. 2982 // Note that we do not need to actually form -A or -B thanks to EqP. 2983 P = Pred; 2984 } 2985 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2986 // Cases correspond to "max(A, B) p A". 2987 switch (P) { 2988 default: 2989 break; 2990 case CmpInst::ICMP_EQ: 2991 case CmpInst::ICMP_ULE: 2992 // Equivalent to "A EqP B". This may be the same as the condition tested 2993 // in the max/min; if so, we can just return that. 2994 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2995 return V; 2996 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2997 return V; 2998 // Otherwise, see if "A EqP B" simplifies. 2999 if (MaxRecurse) 3000 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3001 return V; 3002 break; 3003 case CmpInst::ICMP_NE: 3004 case CmpInst::ICMP_UGT: { 3005 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3006 // Equivalent to "A InvEqP B". This may be the same as the condition 3007 // tested in the max/min; if so, we can just return that. 3008 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3009 return V; 3010 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3011 return V; 3012 // Otherwise, see if "A InvEqP B" simplifies. 3013 if (MaxRecurse) 3014 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3015 return V; 3016 break; 3017 } 3018 case CmpInst::ICMP_UGE: 3019 // Always true. 3020 return getTrue(ITy); 3021 case CmpInst::ICMP_ULT: 3022 // Always false. 3023 return getFalse(ITy); 3024 } 3025 } 3026 3027 // Variants on "max(x,y) >= min(x,z)". 3028 Value *C, *D; 3029 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3030 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3031 (A == C || A == D || B == C || B == D)) { 3032 // max(x, ?) pred min(x, ?). 3033 if (Pred == CmpInst::ICMP_SGE) 3034 // Always true. 3035 return getTrue(ITy); 3036 if (Pred == CmpInst::ICMP_SLT) 3037 // Always false. 3038 return getFalse(ITy); 3039 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3040 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 3041 (A == C || A == D || B == C || B == D)) { 3042 // min(x, ?) pred max(x, ?). 3043 if (Pred == CmpInst::ICMP_SLE) 3044 // Always true. 3045 return getTrue(ITy); 3046 if (Pred == CmpInst::ICMP_SGT) 3047 // Always false. 3048 return getFalse(ITy); 3049 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3050 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3051 (A == C || A == D || B == C || B == D)) { 3052 // max(x, ?) pred min(x, ?). 3053 if (Pred == CmpInst::ICMP_UGE) 3054 // Always true. 3055 return getTrue(ITy); 3056 if (Pred == CmpInst::ICMP_ULT) 3057 // Always false. 3058 return getFalse(ITy); 3059 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3060 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 3061 (A == C || A == D || B == C || B == D)) { 3062 // min(x, ?) pred max(x, ?). 3063 if (Pred == CmpInst::ICMP_ULE) 3064 // Always true. 3065 return getTrue(ITy); 3066 if (Pred == CmpInst::ICMP_UGT) 3067 // Always false. 3068 return getFalse(ITy); 3069 } 3070 3071 return nullptr; 3072 } 3073 3074 /// Given operands for an ICmpInst, see if we can fold the result. 3075 /// If not, this returns null. 3076 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3077 const Query &Q, unsigned MaxRecurse) { 3078 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3079 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3080 3081 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3082 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3083 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3084 3085 // If we have a constant, make sure it is on the RHS. 3086 std::swap(LHS, RHS); 3087 Pred = CmpInst::getSwappedPredicate(Pred); 3088 } 3089 3090 Type *ITy = GetCompareTy(LHS); // The return type. 3091 3092 // icmp X, X -> true/false 3093 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false 3094 // because X could be 0. 3095 if (LHS == RHS || isa<UndefValue>(RHS)) 3096 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3097 3098 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3099 return V; 3100 3101 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3102 return V; 3103 3104 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS)) 3105 return V; 3106 3107 // If both operands have range metadata, use the metadata 3108 // to simplify the comparison. 3109 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3110 auto RHS_Instr = cast<Instruction>(RHS); 3111 auto LHS_Instr = cast<Instruction>(LHS); 3112 3113 if (RHS_Instr->getMetadata(LLVMContext::MD_range) && 3114 LHS_Instr->getMetadata(LLVMContext::MD_range)) { 3115 auto RHS_CR = getConstantRangeFromMetadata( 3116 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3117 auto LHS_CR = getConstantRangeFromMetadata( 3118 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3119 3120 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 3121 if (Satisfied_CR.contains(LHS_CR)) 3122 return ConstantInt::getTrue(RHS->getContext()); 3123 3124 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 3125 CmpInst::getInversePredicate(Pred), RHS_CR); 3126 if (InversedSatisfied_CR.contains(LHS_CR)) 3127 return ConstantInt::getFalse(RHS->getContext()); 3128 } 3129 } 3130 3131 // Compare of cast, for example (zext X) != 0 -> X != 0 3132 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3133 Instruction *LI = cast<CastInst>(LHS); 3134 Value *SrcOp = LI->getOperand(0); 3135 Type *SrcTy = SrcOp->getType(); 3136 Type *DstTy = LI->getType(); 3137 3138 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3139 // if the integer type is the same size as the pointer type. 3140 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3141 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3142 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3143 // Transfer the cast to the constant. 3144 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3145 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3146 Q, MaxRecurse-1)) 3147 return V; 3148 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3149 if (RI->getOperand(0)->getType() == SrcTy) 3150 // Compare without the cast. 3151 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3152 Q, MaxRecurse-1)) 3153 return V; 3154 } 3155 } 3156 3157 if (isa<ZExtInst>(LHS)) { 3158 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3159 // same type. 3160 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3161 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3162 // Compare X and Y. Note that signed predicates become unsigned. 3163 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3164 SrcOp, RI->getOperand(0), Q, 3165 MaxRecurse-1)) 3166 return V; 3167 } 3168 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3169 // too. If not, then try to deduce the result of the comparison. 3170 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3171 // Compute the constant that would happen if we truncated to SrcTy then 3172 // reextended to DstTy. 3173 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3174 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3175 3176 // If the re-extended constant didn't change then this is effectively 3177 // also a case of comparing two zero-extended values. 3178 if (RExt == CI && MaxRecurse) 3179 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3180 SrcOp, Trunc, Q, MaxRecurse-1)) 3181 return V; 3182 3183 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3184 // there. Use this to work out the result of the comparison. 3185 if (RExt != CI) { 3186 switch (Pred) { 3187 default: llvm_unreachable("Unknown ICmp predicate!"); 3188 // LHS <u RHS. 3189 case ICmpInst::ICMP_EQ: 3190 case ICmpInst::ICMP_UGT: 3191 case ICmpInst::ICMP_UGE: 3192 return ConstantInt::getFalse(CI->getContext()); 3193 3194 case ICmpInst::ICMP_NE: 3195 case ICmpInst::ICMP_ULT: 3196 case ICmpInst::ICMP_ULE: 3197 return ConstantInt::getTrue(CI->getContext()); 3198 3199 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3200 // is non-negative then LHS <s RHS. 3201 case ICmpInst::ICMP_SGT: 3202 case ICmpInst::ICMP_SGE: 3203 return CI->getValue().isNegative() ? 3204 ConstantInt::getTrue(CI->getContext()) : 3205 ConstantInt::getFalse(CI->getContext()); 3206 3207 case ICmpInst::ICMP_SLT: 3208 case ICmpInst::ICMP_SLE: 3209 return CI->getValue().isNegative() ? 3210 ConstantInt::getFalse(CI->getContext()) : 3211 ConstantInt::getTrue(CI->getContext()); 3212 } 3213 } 3214 } 3215 } 3216 3217 if (isa<SExtInst>(LHS)) { 3218 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3219 // same type. 3220 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3221 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3222 // Compare X and Y. Note that the predicate does not change. 3223 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3224 Q, MaxRecurse-1)) 3225 return V; 3226 } 3227 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3228 // too. If not, then try to deduce the result of the comparison. 3229 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3230 // Compute the constant that would happen if we truncated to SrcTy then 3231 // reextended to DstTy. 3232 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3233 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3234 3235 // If the re-extended constant didn't change then this is effectively 3236 // also a case of comparing two sign-extended values. 3237 if (RExt == CI && MaxRecurse) 3238 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3239 return V; 3240 3241 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3242 // bits there. Use this to work out the result of the comparison. 3243 if (RExt != CI) { 3244 switch (Pred) { 3245 default: llvm_unreachable("Unknown ICmp predicate!"); 3246 case ICmpInst::ICMP_EQ: 3247 return ConstantInt::getFalse(CI->getContext()); 3248 case ICmpInst::ICMP_NE: 3249 return ConstantInt::getTrue(CI->getContext()); 3250 3251 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3252 // LHS >s RHS. 3253 case ICmpInst::ICMP_SGT: 3254 case ICmpInst::ICMP_SGE: 3255 return CI->getValue().isNegative() ? 3256 ConstantInt::getTrue(CI->getContext()) : 3257 ConstantInt::getFalse(CI->getContext()); 3258 case ICmpInst::ICMP_SLT: 3259 case ICmpInst::ICMP_SLE: 3260 return CI->getValue().isNegative() ? 3261 ConstantInt::getFalse(CI->getContext()) : 3262 ConstantInt::getTrue(CI->getContext()); 3263 3264 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3265 // LHS >u RHS. 3266 case ICmpInst::ICMP_UGT: 3267 case ICmpInst::ICMP_UGE: 3268 // Comparison is true iff the LHS <s 0. 3269 if (MaxRecurse) 3270 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3271 Constant::getNullValue(SrcTy), 3272 Q, MaxRecurse-1)) 3273 return V; 3274 break; 3275 case ICmpInst::ICMP_ULT: 3276 case ICmpInst::ICMP_ULE: 3277 // Comparison is true iff the LHS >=s 0. 3278 if (MaxRecurse) 3279 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3280 Constant::getNullValue(SrcTy), 3281 Q, MaxRecurse-1)) 3282 return V; 3283 break; 3284 } 3285 } 3286 } 3287 } 3288 } 3289 3290 // icmp eq|ne X, Y -> false|true if X != Y 3291 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 3292 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) { 3293 LLVMContext &Ctx = LHS->getType()->getContext(); 3294 return Pred == ICmpInst::ICMP_NE ? 3295 ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx); 3296 } 3297 3298 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3299 return V; 3300 3301 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3302 return V; 3303 3304 // Simplify comparisons of related pointers using a powerful, recursive 3305 // GEP-walk when we have target data available.. 3306 if (LHS->getType()->isPointerTy()) 3307 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, LHS, RHS)) 3308 return C; 3309 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3310 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3311 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3312 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3313 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3314 Q.DL.getTypeSizeInBits(CRHS->getType())) 3315 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, 3316 CLHS->getPointerOperand(), 3317 CRHS->getPointerOperand())) 3318 return C; 3319 3320 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3321 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3322 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3323 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3324 (ICmpInst::isEquality(Pred) || 3325 (GLHS->isInBounds() && GRHS->isInBounds() && 3326 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3327 // The bases are equal and the indices are constant. Build a constant 3328 // expression GEP with the same indices and a null base pointer to see 3329 // what constant folding can make out of it. 3330 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3331 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3332 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3333 GLHS->getSourceElementType(), Null, IndicesLHS); 3334 3335 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3336 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3337 GLHS->getSourceElementType(), Null, IndicesRHS); 3338 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3339 } 3340 } 3341 } 3342 3343 // If a bit is known to be zero for A and known to be one for B, 3344 // then A and B cannot be equal. 3345 if (ICmpInst::isEquality(Pred)) { 3346 const APInt *RHSVal; 3347 if (match(RHS, m_APInt(RHSVal))) { 3348 unsigned BitWidth = RHSVal->getBitWidth(); 3349 APInt LHSKnownZero(BitWidth, 0); 3350 APInt LHSKnownOne(BitWidth, 0); 3351 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, Q.DL, /*Depth=*/0, Q.AC, 3352 Q.CxtI, Q.DT); 3353 if (((LHSKnownZero & *RHSVal) != 0) || ((LHSKnownOne & ~(*RHSVal)) != 0)) 3354 return Pred == ICmpInst::ICMP_EQ ? ConstantInt::getFalse(ITy) 3355 : ConstantInt::getTrue(ITy); 3356 } 3357 } 3358 3359 // If the comparison is with the result of a select instruction, check whether 3360 // comparing with either branch of the select always yields the same value. 3361 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3362 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3363 return V; 3364 3365 // If the comparison is with the result of a phi instruction, check whether 3366 // doing the compare with each incoming phi value yields a common result. 3367 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3368 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3369 return V; 3370 3371 return nullptr; 3372 } 3373 3374 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3375 const DataLayout &DL, 3376 const TargetLibraryInfo *TLI, 3377 const DominatorTree *DT, AssumptionCache *AC, 3378 const Instruction *CxtI) { 3379 return ::SimplifyICmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 3380 RecursionLimit); 3381 } 3382 3383 /// Given operands for an FCmpInst, see if we can fold the result. 3384 /// If not, this returns null. 3385 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3386 FastMathFlags FMF, const Query &Q, 3387 unsigned MaxRecurse) { 3388 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3389 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3390 3391 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3392 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3393 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3394 3395 // If we have a constant, make sure it is on the RHS. 3396 std::swap(LHS, RHS); 3397 Pred = CmpInst::getSwappedPredicate(Pred); 3398 } 3399 3400 // Fold trivial predicates. 3401 Type *RetTy = GetCompareTy(LHS); 3402 if (Pred == FCmpInst::FCMP_FALSE) 3403 return getFalse(RetTy); 3404 if (Pred == FCmpInst::FCMP_TRUE) 3405 return getTrue(RetTy); 3406 3407 // UNO/ORD predicates can be trivially folded if NaNs are ignored. 3408 if (FMF.noNaNs()) { 3409 if (Pred == FCmpInst::FCMP_UNO) 3410 return getFalse(RetTy); 3411 if (Pred == FCmpInst::FCMP_ORD) 3412 return getTrue(RetTy); 3413 } 3414 3415 // fcmp pred x, undef and fcmp pred undef, x 3416 // fold to true if unordered, false if ordered 3417 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3418 // Choosing NaN for the undef will always make unordered comparison succeed 3419 // and ordered comparison fail. 3420 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3421 } 3422 3423 // fcmp x,x -> true/false. Not all compares are foldable. 3424 if (LHS == RHS) { 3425 if (CmpInst::isTrueWhenEqual(Pred)) 3426 return getTrue(RetTy); 3427 if (CmpInst::isFalseWhenEqual(Pred)) 3428 return getFalse(RetTy); 3429 } 3430 3431 // Handle fcmp with constant RHS 3432 const ConstantFP *CFP = nullptr; 3433 if (const auto *RHSC = dyn_cast<Constant>(RHS)) { 3434 if (RHS->getType()->isVectorTy()) 3435 CFP = dyn_cast_or_null<ConstantFP>(RHSC->getSplatValue()); 3436 else 3437 CFP = dyn_cast<ConstantFP>(RHSC); 3438 } 3439 if (CFP) { 3440 // If the constant is a nan, see if we can fold the comparison based on it. 3441 if (CFP->getValueAPF().isNaN()) { 3442 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo" 3443 return getFalse(RetTy); 3444 assert(FCmpInst::isUnordered(Pred) && 3445 "Comparison must be either ordered or unordered!"); 3446 // True if unordered. 3447 return getTrue(RetTy); 3448 } 3449 // Check whether the constant is an infinity. 3450 if (CFP->getValueAPF().isInfinity()) { 3451 if (CFP->getValueAPF().isNegative()) { 3452 switch (Pred) { 3453 case FCmpInst::FCMP_OLT: 3454 // No value is ordered and less than negative infinity. 3455 return getFalse(RetTy); 3456 case FCmpInst::FCMP_UGE: 3457 // All values are unordered with or at least negative infinity. 3458 return getTrue(RetTy); 3459 default: 3460 break; 3461 } 3462 } else { 3463 switch (Pred) { 3464 case FCmpInst::FCMP_OGT: 3465 // No value is ordered and greater than infinity. 3466 return getFalse(RetTy); 3467 case FCmpInst::FCMP_ULE: 3468 // All values are unordered with and at most infinity. 3469 return getTrue(RetTy); 3470 default: 3471 break; 3472 } 3473 } 3474 } 3475 if (CFP->getValueAPF().isZero()) { 3476 switch (Pred) { 3477 case FCmpInst::FCMP_UGE: 3478 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3479 return getTrue(RetTy); 3480 break; 3481 case FCmpInst::FCMP_OLT: 3482 // X < 0 3483 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3484 return getFalse(RetTy); 3485 break; 3486 default: 3487 break; 3488 } 3489 } 3490 } 3491 3492 // If the comparison is with the result of a select instruction, check whether 3493 // comparing with either branch of the select always yields the same value. 3494 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3495 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3496 return V; 3497 3498 // If the comparison is with the result of a phi instruction, check whether 3499 // doing the compare with each incoming phi value yields a common result. 3500 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3501 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3502 return V; 3503 3504 return nullptr; 3505 } 3506 3507 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3508 FastMathFlags FMF, const DataLayout &DL, 3509 const TargetLibraryInfo *TLI, 3510 const DominatorTree *DT, AssumptionCache *AC, 3511 const Instruction *CxtI) { 3512 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, 3513 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3514 } 3515 3516 /// See if V simplifies when its operand Op is replaced with RepOp. 3517 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3518 const Query &Q, 3519 unsigned MaxRecurse) { 3520 // Trivial replacement. 3521 if (V == Op) 3522 return RepOp; 3523 3524 auto *I = dyn_cast<Instruction>(V); 3525 if (!I) 3526 return nullptr; 3527 3528 // If this is a binary operator, try to simplify it with the replaced op. 3529 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3530 // Consider: 3531 // %cmp = icmp eq i32 %x, 2147483647 3532 // %add = add nsw i32 %x, 1 3533 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3534 // 3535 // We can't replace %sel with %add unless we strip away the flags. 3536 if (isa<OverflowingBinaryOperator>(B)) 3537 if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap()) 3538 return nullptr; 3539 if (isa<PossiblyExactOperator>(B)) 3540 if (B->isExact()) 3541 return nullptr; 3542 3543 if (MaxRecurse) { 3544 if (B->getOperand(0) == Op) 3545 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3546 MaxRecurse - 1); 3547 if (B->getOperand(1) == Op) 3548 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3549 MaxRecurse - 1); 3550 } 3551 } 3552 3553 // Same for CmpInsts. 3554 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3555 if (MaxRecurse) { 3556 if (C->getOperand(0) == Op) 3557 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3558 MaxRecurse - 1); 3559 if (C->getOperand(1) == Op) 3560 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3561 MaxRecurse - 1); 3562 } 3563 } 3564 3565 // TODO: We could hand off more cases to instsimplify here. 3566 3567 // If all operands are constant after substituting Op for RepOp then we can 3568 // constant fold the instruction. 3569 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3570 // Build a list of all constant operands. 3571 SmallVector<Constant *, 8> ConstOps; 3572 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3573 if (I->getOperand(i) == Op) 3574 ConstOps.push_back(CRepOp); 3575 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3576 ConstOps.push_back(COp); 3577 else 3578 break; 3579 } 3580 3581 // All operands were constants, fold it. 3582 if (ConstOps.size() == I->getNumOperands()) { 3583 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3584 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3585 ConstOps[1], Q.DL, Q.TLI); 3586 3587 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3588 if (!LI->isVolatile()) 3589 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3590 3591 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3592 } 3593 } 3594 3595 return nullptr; 3596 } 3597 3598 /// Try to simplify a select instruction when its condition operand is an 3599 /// integer comparison where one operand of the compare is a constant. 3600 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3601 const APInt *Y, bool TrueWhenUnset) { 3602 const APInt *C; 3603 3604 // (X & Y) == 0 ? X & ~Y : X --> X 3605 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3606 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3607 *Y == ~*C) 3608 return TrueWhenUnset ? FalseVal : TrueVal; 3609 3610 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3611 // (X & Y) != 0 ? X : X & ~Y --> X 3612 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3613 *Y == ~*C) 3614 return TrueWhenUnset ? FalseVal : TrueVal; 3615 3616 if (Y->isPowerOf2()) { 3617 // (X & Y) == 0 ? X | Y : X --> X | Y 3618 // (X & Y) != 0 ? X | Y : X --> X 3619 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3620 *Y == *C) 3621 return TrueWhenUnset ? TrueVal : FalseVal; 3622 3623 // (X & Y) == 0 ? X : X | Y --> X 3624 // (X & Y) != 0 ? X : X | Y --> X | Y 3625 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3626 *Y == *C) 3627 return TrueWhenUnset ? TrueVal : FalseVal; 3628 } 3629 3630 return nullptr; 3631 } 3632 3633 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 3634 /// eq/ne. 3635 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *TrueVal, 3636 Value *FalseVal, 3637 bool TrueWhenUnset) { 3638 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits(); 3639 if (!BitWidth) 3640 return nullptr; 3641 3642 APInt MinSignedValue; 3643 Value *X; 3644 if (match(CmpLHS, m_Trunc(m_Value(X))) && (X == TrueVal || X == FalseVal)) { 3645 // icmp slt (trunc X), 0 <--> icmp ne (and X, C), 0 3646 // icmp sgt (trunc X), -1 <--> icmp eq (and X, C), 0 3647 unsigned DestSize = CmpLHS->getType()->getScalarSizeInBits(); 3648 MinSignedValue = APInt::getSignedMinValue(DestSize).zext(BitWidth); 3649 } else { 3650 // icmp slt X, 0 <--> icmp ne (and X, C), 0 3651 // icmp sgt X, -1 <--> icmp eq (and X, C), 0 3652 X = CmpLHS; 3653 MinSignedValue = APInt::getSignedMinValue(BitWidth); 3654 } 3655 3656 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, &MinSignedValue, 3657 TrueWhenUnset)) 3658 return V; 3659 3660 return nullptr; 3661 } 3662 3663 /// Try to simplify a select instruction when its condition operand is an 3664 /// integer comparison. 3665 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 3666 Value *FalseVal, const Query &Q, 3667 unsigned MaxRecurse) { 3668 ICmpInst::Predicate Pred; 3669 Value *CmpLHS, *CmpRHS; 3670 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 3671 return nullptr; 3672 3673 // FIXME: This code is nearly duplicated in InstCombine. Using/refactoring 3674 // decomposeBitTestICmp() might help. 3675 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) { 3676 Value *X; 3677 const APInt *Y; 3678 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 3679 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 3680 Pred == ICmpInst::ICMP_EQ)) 3681 return V; 3682 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 3683 // Comparing signed-less-than 0 checks if the sign bit is set. 3684 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal, 3685 false)) 3686 return V; 3687 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 3688 // Comparing signed-greater-than -1 checks if the sign bit is not set. 3689 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal, 3690 true)) 3691 return V; 3692 } 3693 3694 if (CondVal->hasOneUse()) { 3695 const APInt *C; 3696 if (match(CmpRHS, m_APInt(C))) { 3697 // X < MIN ? T : F --> F 3698 if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue()) 3699 return FalseVal; 3700 // X < MIN ? T : F --> F 3701 if (Pred == ICmpInst::ICMP_ULT && C->isMinValue()) 3702 return FalseVal; 3703 // X > MAX ? T : F --> F 3704 if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue()) 3705 return FalseVal; 3706 // X > MAX ? T : F --> F 3707 if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue()) 3708 return FalseVal; 3709 } 3710 } 3711 3712 // If we have an equality comparison, then we know the value in one of the 3713 // arms of the select. See if substituting this value into the arm and 3714 // simplifying the result yields the same value as the other arm. 3715 if (Pred == ICmpInst::ICMP_EQ) { 3716 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3717 TrueVal || 3718 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3719 TrueVal) 3720 return FalseVal; 3721 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3722 FalseVal || 3723 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3724 FalseVal) 3725 return FalseVal; 3726 } else if (Pred == ICmpInst::ICMP_NE) { 3727 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3728 FalseVal || 3729 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3730 FalseVal) 3731 return TrueVal; 3732 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3733 TrueVal || 3734 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3735 TrueVal) 3736 return TrueVal; 3737 } 3738 3739 return nullptr; 3740 } 3741 3742 /// Given operands for a SelectInst, see if we can fold the result. 3743 /// If not, this returns null. 3744 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal, 3745 Value *FalseVal, const Query &Q, 3746 unsigned MaxRecurse) { 3747 // select true, X, Y -> X 3748 // select false, X, Y -> Y 3749 if (Constant *CB = dyn_cast<Constant>(CondVal)) { 3750 if (CB->isAllOnesValue()) 3751 return TrueVal; 3752 if (CB->isNullValue()) 3753 return FalseVal; 3754 } 3755 3756 // select C, X, X -> X 3757 if (TrueVal == FalseVal) 3758 return TrueVal; 3759 3760 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y 3761 if (isa<Constant>(TrueVal)) 3762 return TrueVal; 3763 return FalseVal; 3764 } 3765 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X 3766 return FalseVal; 3767 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X 3768 return TrueVal; 3769 3770 if (Value *V = 3771 simplifySelectWithICmpCond(CondVal, TrueVal, FalseVal, Q, MaxRecurse)) 3772 return V; 3773 3774 return nullptr; 3775 } 3776 3777 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3778 const DataLayout &DL, 3779 const TargetLibraryInfo *TLI, 3780 const DominatorTree *DT, AssumptionCache *AC, 3781 const Instruction *CxtI) { 3782 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, 3783 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3784 } 3785 3786 /// Given operands for an GetElementPtrInst, see if we can fold the result. 3787 /// If not, this returns null. 3788 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3789 const Query &Q, unsigned) { 3790 // The type of the GEP pointer operand. 3791 unsigned AS = 3792 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 3793 3794 // getelementptr P -> P. 3795 if (Ops.size() == 1) 3796 return Ops[0]; 3797 3798 // Compute the (pointer) type returned by the GEP instruction. 3799 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 3800 Type *GEPTy = PointerType::get(LastType, AS); 3801 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 3802 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3803 3804 if (isa<UndefValue>(Ops[0])) 3805 return UndefValue::get(GEPTy); 3806 3807 if (Ops.size() == 2) { 3808 // getelementptr P, 0 -> P. 3809 if (match(Ops[1], m_Zero())) 3810 return Ops[0]; 3811 3812 Type *Ty = SrcTy; 3813 if (Ty->isSized()) { 3814 Value *P; 3815 uint64_t C; 3816 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 3817 // getelementptr P, N -> P if P points to a type of zero size. 3818 if (TyAllocSize == 0) 3819 return Ops[0]; 3820 3821 // The following transforms are only safe if the ptrtoint cast 3822 // doesn't truncate the pointers. 3823 if (Ops[1]->getType()->getScalarSizeInBits() == 3824 Q.DL.getPointerSizeInBits(AS)) { 3825 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 3826 if (match(P, m_Zero())) 3827 return Constant::getNullValue(GEPTy); 3828 Value *Temp; 3829 if (match(P, m_PtrToInt(m_Value(Temp)))) 3830 if (Temp->getType() == GEPTy) 3831 return Temp; 3832 return nullptr; 3833 }; 3834 3835 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 3836 if (TyAllocSize == 1 && 3837 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 3838 if (Value *R = PtrToIntOrZero(P)) 3839 return R; 3840 3841 // getelementptr V, (ashr (sub P, V), C) -> Q 3842 // if P points to a type of size 1 << C. 3843 if (match(Ops[1], 3844 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3845 m_ConstantInt(C))) && 3846 TyAllocSize == 1ULL << C) 3847 if (Value *R = PtrToIntOrZero(P)) 3848 return R; 3849 3850 // getelementptr V, (sdiv (sub P, V), C) -> Q 3851 // if P points to a type of size C. 3852 if (match(Ops[1], 3853 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3854 m_SpecificInt(TyAllocSize)))) 3855 if (Value *R = PtrToIntOrZero(P)) 3856 return R; 3857 } 3858 } 3859 } 3860 3861 if (Q.DL.getTypeAllocSize(LastType) == 1 && 3862 all_of(Ops.slice(1).drop_back(1), 3863 [](Value *Idx) { return match(Idx, m_Zero()); })) { 3864 unsigned PtrWidth = 3865 Q.DL.getPointerSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 3866 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == PtrWidth) { 3867 APInt BasePtrOffset(PtrWidth, 0); 3868 Value *StrippedBasePtr = 3869 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 3870 BasePtrOffset); 3871 3872 // gep (gep V, C), (sub 0, V) -> C 3873 if (match(Ops.back(), 3874 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { 3875 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 3876 return ConstantExpr::getIntToPtr(CI, GEPTy); 3877 } 3878 // gep (gep V, C), (xor V, -1) -> C-1 3879 if (match(Ops.back(), 3880 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { 3881 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 3882 return ConstantExpr::getIntToPtr(CI, GEPTy); 3883 } 3884 } 3885 } 3886 3887 // Check to see if this is constant foldable. 3888 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3889 if (!isa<Constant>(Ops[i])) 3890 return nullptr; 3891 3892 return ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 3893 Ops.slice(1)); 3894 } 3895 3896 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3897 const DataLayout &DL, 3898 const TargetLibraryInfo *TLI, 3899 const DominatorTree *DT, AssumptionCache *AC, 3900 const Instruction *CxtI) { 3901 return ::SimplifyGEPInst(SrcTy, Ops, 3902 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3903 } 3904 3905 /// Given operands for an InsertValueInst, see if we can fold the result. 3906 /// If not, this returns null. 3907 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 3908 ArrayRef<unsigned> Idxs, const Query &Q, 3909 unsigned) { 3910 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 3911 if (Constant *CVal = dyn_cast<Constant>(Val)) 3912 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 3913 3914 // insertvalue x, undef, n -> x 3915 if (match(Val, m_Undef())) 3916 return Agg; 3917 3918 // insertvalue x, (extractvalue y, n), n 3919 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 3920 if (EV->getAggregateOperand()->getType() == Agg->getType() && 3921 EV->getIndices() == Idxs) { 3922 // insertvalue undef, (extractvalue y, n), n -> y 3923 if (match(Agg, m_Undef())) 3924 return EV->getAggregateOperand(); 3925 3926 // insertvalue y, (extractvalue y, n), n -> y 3927 if (Agg == EV->getAggregateOperand()) 3928 return Agg; 3929 } 3930 3931 return nullptr; 3932 } 3933 3934 Value *llvm::SimplifyInsertValueInst( 3935 Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const DataLayout &DL, 3936 const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC, 3937 const Instruction *CxtI) { 3938 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query(DL, TLI, DT, AC, CxtI), 3939 RecursionLimit); 3940 } 3941 3942 /// Given operands for an ExtractValueInst, see if we can fold the result. 3943 /// If not, this returns null. 3944 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3945 const Query &, unsigned) { 3946 if (auto *CAgg = dyn_cast<Constant>(Agg)) 3947 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 3948 3949 // extractvalue x, (insertvalue y, elt, n), n -> elt 3950 unsigned NumIdxs = Idxs.size(); 3951 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 3952 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 3953 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 3954 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 3955 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 3956 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 3957 Idxs.slice(0, NumCommonIdxs)) { 3958 if (NumIdxs == NumInsertValueIdxs) 3959 return IVI->getInsertedValueOperand(); 3960 break; 3961 } 3962 } 3963 3964 return nullptr; 3965 } 3966 3967 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3968 const DataLayout &DL, 3969 const TargetLibraryInfo *TLI, 3970 const DominatorTree *DT, 3971 AssumptionCache *AC, 3972 const Instruction *CxtI) { 3973 return ::SimplifyExtractValueInst(Agg, Idxs, Query(DL, TLI, DT, AC, CxtI), 3974 RecursionLimit); 3975 } 3976 3977 /// Given operands for an ExtractElementInst, see if we can fold the result. 3978 /// If not, this returns null. 3979 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const Query &, 3980 unsigned) { 3981 if (auto *CVec = dyn_cast<Constant>(Vec)) { 3982 if (auto *CIdx = dyn_cast<Constant>(Idx)) 3983 return ConstantFoldExtractElementInstruction(CVec, CIdx); 3984 3985 // The index is not relevant if our vector is a splat. 3986 if (auto *Splat = CVec->getSplatValue()) 3987 return Splat; 3988 3989 if (isa<UndefValue>(Vec)) 3990 return UndefValue::get(Vec->getType()->getVectorElementType()); 3991 } 3992 3993 // If extracting a specified index from the vector, see if we can recursively 3994 // find a previously computed scalar that was inserted into the vector. 3995 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) 3996 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 3997 return Elt; 3998 3999 return nullptr; 4000 } 4001 4002 Value *llvm::SimplifyExtractElementInst( 4003 Value *Vec, Value *Idx, const DataLayout &DL, const TargetLibraryInfo *TLI, 4004 const DominatorTree *DT, AssumptionCache *AC, const Instruction *CxtI) { 4005 return ::SimplifyExtractElementInst(Vec, Idx, Query(DL, TLI, DT, AC, CxtI), 4006 RecursionLimit); 4007 } 4008 4009 /// See if we can fold the given phi. If not, returns null. 4010 static Value *SimplifyPHINode(PHINode *PN, const Query &Q) { 4011 // If all of the PHI's incoming values are the same then replace the PHI node 4012 // with the common value. 4013 Value *CommonValue = nullptr; 4014 bool HasUndefInput = false; 4015 for (Value *Incoming : PN->incoming_values()) { 4016 // If the incoming value is the phi node itself, it can safely be skipped. 4017 if (Incoming == PN) continue; 4018 if (isa<UndefValue>(Incoming)) { 4019 // Remember that we saw an undef value, but otherwise ignore them. 4020 HasUndefInput = true; 4021 continue; 4022 } 4023 if (CommonValue && Incoming != CommonValue) 4024 return nullptr; // Not the same, bail out. 4025 CommonValue = Incoming; 4026 } 4027 4028 // If CommonValue is null then all of the incoming values were either undef or 4029 // equal to the phi node itself. 4030 if (!CommonValue) 4031 return UndefValue::get(PN->getType()); 4032 4033 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4034 // instruction, we cannot return X as the result of the PHI node unless it 4035 // dominates the PHI block. 4036 if (HasUndefInput) 4037 return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4038 4039 return CommonValue; 4040 } 4041 4042 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4043 Type *Ty, const Query &Q, unsigned MaxRecurse) { 4044 if (auto *C = dyn_cast<Constant>(Op)) 4045 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4046 4047 if (auto *CI = dyn_cast<CastInst>(Op)) { 4048 auto *Src = CI->getOperand(0); 4049 Type *SrcTy = Src->getType(); 4050 Type *MidTy = CI->getType(); 4051 Type *DstTy = Ty; 4052 if (Src->getType() == Ty) { 4053 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4054 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4055 Type *SrcIntPtrTy = 4056 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4057 Type *MidIntPtrTy = 4058 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4059 Type *DstIntPtrTy = 4060 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4061 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4062 SrcIntPtrTy, MidIntPtrTy, 4063 DstIntPtrTy) == Instruction::BitCast) 4064 return Src; 4065 } 4066 } 4067 4068 // bitcast x -> x 4069 if (CastOpc == Instruction::BitCast) 4070 if (Op->getType() == Ty) 4071 return Op; 4072 4073 return nullptr; 4074 } 4075 4076 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4077 const DataLayout &DL, 4078 const TargetLibraryInfo *TLI, 4079 const DominatorTree *DT, AssumptionCache *AC, 4080 const Instruction *CxtI) { 4081 return ::SimplifyCastInst(CastOpc, Op, Ty, Query(DL, TLI, DT, AC, CxtI), 4082 RecursionLimit); 4083 } 4084 4085 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4086 Type *RetTy, const Query &Q, 4087 unsigned MaxRecurse) { 4088 unsigned MaskNumElts = Mask->getType()->getVectorNumElements(); 4089 unsigned InVecNumElts = Op0->getType()->getVectorNumElements(); 4090 4091 auto *Op0Const = dyn_cast<Constant>(Op0); 4092 auto *Op1Const = dyn_cast<Constant>(Op1); 4093 4094 // If all operands are constant, constant fold the shuffle. 4095 if (Op0Const && Op1Const) 4096 return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask); 4097 4098 // If only one of the operands is constant, constant fold the shuffle if the 4099 // mask does not select elements from the variable operand. 4100 bool MaskSelects0 = false, MaskSelects1 = false; 4101 for (unsigned i = 0; i != MaskNumElts; ++i) { 4102 int Idx = ShuffleVectorInst::getMaskValue(Mask, i); 4103 if (Idx == -1) 4104 continue; 4105 if ((unsigned)Idx < InVecNumElts) 4106 MaskSelects0 = true; 4107 else 4108 MaskSelects1 = true; 4109 } 4110 if (!MaskSelects0 && Op1Const) 4111 return ConstantFoldShuffleVectorInstruction(UndefValue::get(Op0->getType()), 4112 Op1Const, Mask); 4113 if (!MaskSelects1 && Op0Const) 4114 return ConstantFoldShuffleVectorInstruction( 4115 Op0Const, UndefValue::get(Op0->getType()), Mask); 4116 4117 return nullptr; 4118 } 4119 4120 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4121 Value *llvm::SimplifyShuffleVectorInst( 4122 Value *Op0, Value *Op1, Constant *Mask, Type *RetTy, 4123 const DataLayout &DL, const TargetLibraryInfo *TLI, const DominatorTree *DT, 4124 AssumptionCache *AC, const Instruction *CxtI) { 4125 return ::SimplifyShuffleVectorInst( 4126 Op0, Op1, Mask, RetTy, Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 4127 } 4128 4129 //=== Helper functions for higher up the class hierarchy. 4130 4131 /// Given operands for a BinaryOperator, see if we can fold the result. 4132 /// If not, this returns null. 4133 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4134 const Query &Q, unsigned MaxRecurse) { 4135 switch (Opcode) { 4136 case Instruction::Add: 4137 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 4138 case Instruction::FAdd: 4139 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4140 case Instruction::Sub: 4141 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 4142 case Instruction::FSub: 4143 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4144 case Instruction::Mul: 4145 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 4146 case Instruction::FMul: 4147 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4148 case Instruction::SDiv: 4149 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 4150 case Instruction::UDiv: 4151 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 4152 case Instruction::FDiv: 4153 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4154 case Instruction::SRem: 4155 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 4156 case Instruction::URem: 4157 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 4158 case Instruction::FRem: 4159 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4160 case Instruction::Shl: 4161 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 4162 case Instruction::LShr: 4163 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 4164 case Instruction::AShr: 4165 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 4166 case Instruction::And: 4167 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 4168 case Instruction::Or: 4169 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 4170 case Instruction::Xor: 4171 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 4172 default: 4173 llvm_unreachable("Unexpected opcode"); 4174 } 4175 } 4176 4177 /// Given operands for a BinaryOperator, see if we can fold the result. 4178 /// If not, this returns null. 4179 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the 4180 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp. 4181 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4182 const FastMathFlags &FMF, const Query &Q, 4183 unsigned MaxRecurse) { 4184 switch (Opcode) { 4185 case Instruction::FAdd: 4186 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 4187 case Instruction::FSub: 4188 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 4189 case Instruction::FMul: 4190 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 4191 case Instruction::FDiv: 4192 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 4193 default: 4194 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 4195 } 4196 } 4197 4198 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4199 const DataLayout &DL, const TargetLibraryInfo *TLI, 4200 const DominatorTree *DT, AssumptionCache *AC, 4201 const Instruction *CxtI) { 4202 return ::SimplifyBinOp(Opcode, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 4203 RecursionLimit); 4204 } 4205 4206 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4207 const FastMathFlags &FMF, const DataLayout &DL, 4208 const TargetLibraryInfo *TLI, 4209 const DominatorTree *DT, AssumptionCache *AC, 4210 const Instruction *CxtI) { 4211 return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Query(DL, TLI, DT, AC, CxtI), 4212 RecursionLimit); 4213 } 4214 4215 /// Given operands for a CmpInst, see if we can fold the result. 4216 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4217 const Query &Q, unsigned MaxRecurse) { 4218 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 4219 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 4220 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4221 } 4222 4223 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4224 const DataLayout &DL, const TargetLibraryInfo *TLI, 4225 const DominatorTree *DT, AssumptionCache *AC, 4226 const Instruction *CxtI) { 4227 return ::SimplifyCmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 4228 RecursionLimit); 4229 } 4230 4231 static bool IsIdempotent(Intrinsic::ID ID) { 4232 switch (ID) { 4233 default: return false; 4234 4235 // Unary idempotent: f(f(x)) = f(x) 4236 case Intrinsic::fabs: 4237 case Intrinsic::floor: 4238 case Intrinsic::ceil: 4239 case Intrinsic::trunc: 4240 case Intrinsic::rint: 4241 case Intrinsic::nearbyint: 4242 case Intrinsic::round: 4243 return true; 4244 } 4245 } 4246 4247 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 4248 const DataLayout &DL) { 4249 GlobalValue *PtrSym; 4250 APInt PtrOffset; 4251 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 4252 return nullptr; 4253 4254 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 4255 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 4256 Type *Int32PtrTy = Int32Ty->getPointerTo(); 4257 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 4258 4259 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 4260 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 4261 return nullptr; 4262 4263 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 4264 if (OffsetInt % 4 != 0) 4265 return nullptr; 4266 4267 Constant *C = ConstantExpr::getGetElementPtr( 4268 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 4269 ConstantInt::get(Int64Ty, OffsetInt / 4)); 4270 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 4271 if (!Loaded) 4272 return nullptr; 4273 4274 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 4275 if (!LoadedCE) 4276 return nullptr; 4277 4278 if (LoadedCE->getOpcode() == Instruction::Trunc) { 4279 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4280 if (!LoadedCE) 4281 return nullptr; 4282 } 4283 4284 if (LoadedCE->getOpcode() != Instruction::Sub) 4285 return nullptr; 4286 4287 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4288 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 4289 return nullptr; 4290 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 4291 4292 Constant *LoadedRHS = LoadedCE->getOperand(1); 4293 GlobalValue *LoadedRHSSym; 4294 APInt LoadedRHSOffset; 4295 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 4296 DL) || 4297 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 4298 return nullptr; 4299 4300 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 4301 } 4302 4303 static bool maskIsAllZeroOrUndef(Value *Mask) { 4304 auto *ConstMask = dyn_cast<Constant>(Mask); 4305 if (!ConstMask) 4306 return false; 4307 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 4308 return true; 4309 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; 4310 ++I) { 4311 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 4312 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 4313 continue; 4314 return false; 4315 } 4316 return true; 4317 } 4318 4319 template <typename IterTy> 4320 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd, 4321 const Query &Q, unsigned MaxRecurse) { 4322 Intrinsic::ID IID = F->getIntrinsicID(); 4323 unsigned NumOperands = std::distance(ArgBegin, ArgEnd); 4324 4325 // Unary Ops 4326 if (NumOperands == 1) { 4327 // Perform idempotent optimizations 4328 if (IsIdempotent(IID)) { 4329 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) { 4330 if (II->getIntrinsicID() == IID) 4331 return II; 4332 } 4333 } 4334 4335 switch (IID) { 4336 case Intrinsic::fabs: { 4337 if (SignBitMustBeZero(*ArgBegin, Q.TLI)) 4338 return *ArgBegin; 4339 return nullptr; 4340 } 4341 default: 4342 return nullptr; 4343 } 4344 } 4345 4346 // Binary Ops 4347 if (NumOperands == 2) { 4348 Value *LHS = *ArgBegin; 4349 Value *RHS = *(ArgBegin + 1); 4350 Type *ReturnType = F->getReturnType(); 4351 4352 switch (IID) { 4353 case Intrinsic::usub_with_overflow: 4354 case Intrinsic::ssub_with_overflow: { 4355 // X - X -> { 0, false } 4356 if (LHS == RHS) 4357 return Constant::getNullValue(ReturnType); 4358 4359 // X - undef -> undef 4360 // undef - X -> undef 4361 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 4362 return UndefValue::get(ReturnType); 4363 4364 return nullptr; 4365 } 4366 case Intrinsic::uadd_with_overflow: 4367 case Intrinsic::sadd_with_overflow: { 4368 // X + undef -> undef 4369 if (isa<UndefValue>(RHS)) 4370 return UndefValue::get(ReturnType); 4371 4372 return nullptr; 4373 } 4374 case Intrinsic::umul_with_overflow: 4375 case Intrinsic::smul_with_overflow: { 4376 // X * 0 -> { 0, false } 4377 if (match(RHS, m_Zero())) 4378 return Constant::getNullValue(ReturnType); 4379 4380 // X * undef -> { 0, false } 4381 if (match(RHS, m_Undef())) 4382 return Constant::getNullValue(ReturnType); 4383 4384 return nullptr; 4385 } 4386 case Intrinsic::load_relative: { 4387 Constant *C0 = dyn_cast<Constant>(LHS); 4388 Constant *C1 = dyn_cast<Constant>(RHS); 4389 if (C0 && C1) 4390 return SimplifyRelativeLoad(C0, C1, Q.DL); 4391 return nullptr; 4392 } 4393 default: 4394 return nullptr; 4395 } 4396 } 4397 4398 // Simplify calls to llvm.masked.load.* 4399 switch (IID) { 4400 case Intrinsic::masked_load: { 4401 Value *MaskArg = ArgBegin[2]; 4402 Value *PassthruArg = ArgBegin[3]; 4403 // If the mask is all zeros or undef, the "passthru" argument is the result. 4404 if (maskIsAllZeroOrUndef(MaskArg)) 4405 return PassthruArg; 4406 return nullptr; 4407 } 4408 default: 4409 return nullptr; 4410 } 4411 } 4412 4413 template <typename IterTy> 4414 static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd, 4415 const Query &Q, unsigned MaxRecurse) { 4416 Type *Ty = V->getType(); 4417 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 4418 Ty = PTy->getElementType(); 4419 FunctionType *FTy = cast<FunctionType>(Ty); 4420 4421 // call undef -> undef 4422 // call null -> undef 4423 if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V)) 4424 return UndefValue::get(FTy->getReturnType()); 4425 4426 Function *F = dyn_cast<Function>(V); 4427 if (!F) 4428 return nullptr; 4429 4430 if (F->isIntrinsic()) 4431 if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse)) 4432 return Ret; 4433 4434 if (!canConstantFoldCallTo(F)) 4435 return nullptr; 4436 4437 SmallVector<Constant *, 4> ConstantArgs; 4438 ConstantArgs.reserve(ArgEnd - ArgBegin); 4439 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) { 4440 Constant *C = dyn_cast<Constant>(*I); 4441 if (!C) 4442 return nullptr; 4443 ConstantArgs.push_back(C); 4444 } 4445 4446 return ConstantFoldCall(F, ConstantArgs, Q.TLI); 4447 } 4448 4449 Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin, 4450 User::op_iterator ArgEnd, const DataLayout &DL, 4451 const TargetLibraryInfo *TLI, const DominatorTree *DT, 4452 AssumptionCache *AC, const Instruction *CxtI) { 4453 return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT, AC, CxtI), 4454 RecursionLimit); 4455 } 4456 4457 Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args, 4458 const DataLayout &DL, const TargetLibraryInfo *TLI, 4459 const DominatorTree *DT, AssumptionCache *AC, 4460 const Instruction *CxtI) { 4461 return ::SimplifyCall(V, Args.begin(), Args.end(), 4462 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 4463 } 4464 4465 /// See if we can compute a simplified version of this instruction. 4466 /// If not, this returns null. 4467 Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout &DL, 4468 const TargetLibraryInfo *TLI, 4469 const DominatorTree *DT, AssumptionCache *AC, 4470 OptimizationRemarkEmitter *ORE) { 4471 Value *Result; 4472 4473 switch (I->getOpcode()) { 4474 default: 4475 Result = ConstantFoldInstruction(I, DL, TLI); 4476 break; 4477 case Instruction::FAdd: 4478 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 4479 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4480 break; 4481 case Instruction::Add: 4482 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), 4483 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4484 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4485 TLI, DT, AC, I); 4486 break; 4487 case Instruction::FSub: 4488 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 4489 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4490 break; 4491 case Instruction::Sub: 4492 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), 4493 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4494 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4495 TLI, DT, AC, I); 4496 break; 4497 case Instruction::FMul: 4498 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 4499 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4500 break; 4501 case Instruction::Mul: 4502 Result = 4503 SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4504 break; 4505 case Instruction::SDiv: 4506 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4507 AC, I); 4508 break; 4509 case Instruction::UDiv: 4510 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4511 AC, I); 4512 break; 4513 case Instruction::FDiv: 4514 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 4515 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4516 break; 4517 case Instruction::SRem: 4518 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4519 AC, I); 4520 break; 4521 case Instruction::URem: 4522 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4523 AC, I); 4524 break; 4525 case Instruction::FRem: 4526 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 4527 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4528 break; 4529 case Instruction::Shl: 4530 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), 4531 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4532 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4533 TLI, DT, AC, I); 4534 break; 4535 case Instruction::LShr: 4536 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 4537 cast<BinaryOperator>(I)->isExact(), DL, TLI, DT, 4538 AC, I); 4539 break; 4540 case Instruction::AShr: 4541 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 4542 cast<BinaryOperator>(I)->isExact(), DL, TLI, DT, 4543 AC, I); 4544 break; 4545 case Instruction::And: 4546 Result = 4547 SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4548 break; 4549 case Instruction::Or: 4550 Result = 4551 SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4552 break; 4553 case Instruction::Xor: 4554 Result = 4555 SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4556 break; 4557 case Instruction::ICmp: 4558 Result = 4559 SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), I->getOperand(0), 4560 I->getOperand(1), DL, TLI, DT, AC, I); 4561 break; 4562 case Instruction::FCmp: 4563 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), 4564 I->getOperand(0), I->getOperand(1), 4565 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4566 break; 4567 case Instruction::Select: 4568 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 4569 I->getOperand(2), DL, TLI, DT, AC, I); 4570 break; 4571 case Instruction::GetElementPtr: { 4572 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 4573 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 4574 Ops, DL, TLI, DT, AC, I); 4575 break; 4576 } 4577 case Instruction::InsertValue: { 4578 InsertValueInst *IV = cast<InsertValueInst>(I); 4579 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 4580 IV->getInsertedValueOperand(), 4581 IV->getIndices(), DL, TLI, DT, AC, I); 4582 break; 4583 } 4584 case Instruction::ExtractValue: { 4585 auto *EVI = cast<ExtractValueInst>(I); 4586 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 4587 EVI->getIndices(), DL, TLI, DT, AC, I); 4588 break; 4589 } 4590 case Instruction::ExtractElement: { 4591 auto *EEI = cast<ExtractElementInst>(I); 4592 Result = SimplifyExtractElementInst( 4593 EEI->getVectorOperand(), EEI->getIndexOperand(), DL, TLI, DT, AC, I); 4594 break; 4595 } 4596 case Instruction::ShuffleVector: { 4597 auto *SVI = cast<ShuffleVectorInst>(I); 4598 Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 4599 SVI->getMask(), SVI->getType(), DL, TLI, 4600 DT, AC, I); 4601 break; 4602 } 4603 case Instruction::PHI: 4604 Result = SimplifyPHINode(cast<PHINode>(I), Query(DL, TLI, DT, AC, I)); 4605 break; 4606 case Instruction::Call: { 4607 CallSite CS(cast<CallInst>(I)); 4608 Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), DL, 4609 TLI, DT, AC, I); 4610 break; 4611 } 4612 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 4613 #include "llvm/IR/Instruction.def" 4614 #undef HANDLE_CAST_INST 4615 Result = SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), 4616 DL, TLI, DT, AC, I); 4617 break; 4618 } 4619 4620 // In general, it is possible for computeKnownBits to determine all bits in a 4621 // value even when the operands are not all constants. 4622 if (!Result && I->getType()->isIntOrIntVectorTy()) { 4623 unsigned BitWidth = I->getType()->getScalarSizeInBits(); 4624 APInt KnownZero(BitWidth, 0); 4625 APInt KnownOne(BitWidth, 0); 4626 computeKnownBits(I, KnownZero, KnownOne, DL, /*Depth*/0, AC, I, DT, ORE); 4627 if ((KnownZero | KnownOne).isAllOnesValue()) 4628 Result = ConstantInt::get(I->getType(), KnownOne); 4629 } 4630 4631 /// If called on unreachable code, the above logic may report that the 4632 /// instruction simplified to itself. Make life easier for users by 4633 /// detecting that case here, returning a safe value instead. 4634 return Result == I ? UndefValue::get(I->getType()) : Result; 4635 } 4636 4637 /// \brief Implementation of recursive simplification through an instruction's 4638 /// uses. 4639 /// 4640 /// This is the common implementation of the recursive simplification routines. 4641 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 4642 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 4643 /// instructions to process and attempt to simplify it using 4644 /// InstructionSimplify. 4645 /// 4646 /// This routine returns 'true' only when *it* simplifies something. The passed 4647 /// in simplified value does not count toward this. 4648 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, 4649 const TargetLibraryInfo *TLI, 4650 const DominatorTree *DT, 4651 AssumptionCache *AC) { 4652 bool Simplified = false; 4653 SmallSetVector<Instruction *, 8> Worklist; 4654 const DataLayout &DL = I->getModule()->getDataLayout(); 4655 4656 // If we have an explicit value to collapse to, do that round of the 4657 // simplification loop by hand initially. 4658 if (SimpleV) { 4659 for (User *U : I->users()) 4660 if (U != I) 4661 Worklist.insert(cast<Instruction>(U)); 4662 4663 // Replace the instruction with its simplified value. 4664 I->replaceAllUsesWith(SimpleV); 4665 4666 // Gracefully handle edge cases where the instruction is not wired into any 4667 // parent block. 4668 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4669 !I->mayHaveSideEffects()) 4670 I->eraseFromParent(); 4671 } else { 4672 Worklist.insert(I); 4673 } 4674 4675 // Note that we must test the size on each iteration, the worklist can grow. 4676 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 4677 I = Worklist[Idx]; 4678 4679 // See if this instruction simplifies. 4680 SimpleV = SimplifyInstruction(I, DL, TLI, DT, AC); 4681 if (!SimpleV) 4682 continue; 4683 4684 Simplified = true; 4685 4686 // Stash away all the uses of the old instruction so we can check them for 4687 // recursive simplifications after a RAUW. This is cheaper than checking all 4688 // uses of To on the recursive step in most cases. 4689 for (User *U : I->users()) 4690 Worklist.insert(cast<Instruction>(U)); 4691 4692 // Replace the instruction with its simplified value. 4693 I->replaceAllUsesWith(SimpleV); 4694 4695 // Gracefully handle edge cases where the instruction is not wired into any 4696 // parent block. 4697 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4698 !I->mayHaveSideEffects()) 4699 I->eraseFromParent(); 4700 } 4701 return Simplified; 4702 } 4703 4704 bool llvm::recursivelySimplifyInstruction(Instruction *I, 4705 const TargetLibraryInfo *TLI, 4706 const DominatorTree *DT, 4707 AssumptionCache *AC) { 4708 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC); 4709 } 4710 4711 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, 4712 const TargetLibraryInfo *TLI, 4713 const DominatorTree *DT, 4714 AssumptionCache *AC) { 4715 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 4716 assert(SimpleV && "Must provide a simplified value."); 4717 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC); 4718 } 4719