1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements routines for folding instructions into simpler forms 11 // that do not require creating new instructions. For example, this does 12 // constant folding, and can handle identities like (X&0)->0. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/InstructionSimplify.h" 17 #include "llvm/Analysis/ConstantFolding.h" 18 #include "llvm/Support/ValueHandle.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Support/PatternMatch.h" 21 using namespace llvm; 22 using namespace llvm::PatternMatch; 23 24 /// SimplifyAddInst - Given operands for an Add, see if we can 25 /// fold the result. If not, this returns null. 26 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 27 const TargetData *TD) { 28 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 29 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 30 Constant *Ops[] = { CLHS, CRHS }; 31 return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), 32 Ops, 2, TD); 33 } 34 35 // Canonicalize the constant to the RHS. 36 std::swap(Op0, Op1); 37 } 38 39 if (Constant *Op1C = dyn_cast<Constant>(Op1)) { 40 // X + undef -> undef 41 if (isa<UndefValue>(Op1C)) 42 return Op1C; 43 44 // X + 0 --> X 45 if (Op1C->isNullValue()) 46 return Op0; 47 } 48 49 // FIXME: Could pull several more out of instcombine. 50 return 0; 51 } 52 53 /// SimplifyAndInst - Given operands for an And, see if we can 54 /// fold the result. If not, this returns null. 55 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD) { 56 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 57 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 58 Constant *Ops[] = { CLHS, CRHS }; 59 return ConstantFoldInstOperands(Instruction::And, CLHS->getType(), 60 Ops, 2, TD); 61 } 62 63 // Canonicalize the constant to the RHS. 64 std::swap(Op0, Op1); 65 } 66 67 // X & undef -> 0 68 if (isa<UndefValue>(Op1)) 69 return Constant::getNullValue(Op0->getType()); 70 71 // X & X = X 72 if (Op0 == Op1) 73 return Op0; 74 75 // X & <0,0> = <0,0> 76 if (isa<ConstantAggregateZero>(Op1)) 77 return Op1; 78 79 // X & <-1,-1> = X 80 if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) 81 if (CP->isAllOnesValue()) 82 return Op0; 83 84 if (ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1)) { 85 // X & 0 = 0 86 if (Op1CI->isZero()) 87 return Op1CI; 88 // X & -1 = X 89 if (Op1CI->isAllOnesValue()) 90 return Op0; 91 } 92 93 // A & ~A = ~A & A = 0 94 Value *A, *B; 95 if ((match(Op0, m_Not(m_Value(A))) && A == Op1) || 96 (match(Op1, m_Not(m_Value(A))) && A == Op0)) 97 return Constant::getNullValue(Op0->getType()); 98 99 // (A | ?) & A = A 100 if (match(Op0, m_Or(m_Value(A), m_Value(B))) && 101 (A == Op1 || B == Op1)) 102 return Op1; 103 104 // A & (A | ?) = A 105 if (match(Op1, m_Or(m_Value(A), m_Value(B))) && 106 (A == Op0 || B == Op0)) 107 return Op0; 108 109 // (A & B) & A -> A & B 110 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 111 (A == Op1 || B == Op1)) 112 return Op0; 113 114 // A & (A & B) -> A & B 115 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 116 (A == Op0 || B == Op0)) 117 return Op1; 118 119 return 0; 120 } 121 122 /// SimplifyOrInst - Given operands for an Or, see if we can 123 /// fold the result. If not, this returns null. 124 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD) { 125 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 126 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 127 Constant *Ops[] = { CLHS, CRHS }; 128 return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(), 129 Ops, 2, TD); 130 } 131 132 // Canonicalize the constant to the RHS. 133 std::swap(Op0, Op1); 134 } 135 136 // X | undef -> -1 137 if (isa<UndefValue>(Op1)) 138 return Constant::getAllOnesValue(Op0->getType()); 139 140 // X | X = X 141 if (Op0 == Op1) 142 return Op0; 143 144 // X | <0,0> = X 145 if (isa<ConstantAggregateZero>(Op1)) 146 return Op0; 147 148 // X | <-1,-1> = <-1,-1> 149 if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) 150 if (CP->isAllOnesValue()) 151 return Op1; 152 153 if (ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1)) { 154 // X | 0 = X 155 if (Op1CI->isZero()) 156 return Op0; 157 // X | -1 = -1 158 if (Op1CI->isAllOnesValue()) 159 return Op1CI; 160 } 161 162 // A | ~A = ~A | A = -1 163 Value *A, *B; 164 if ((match(Op0, m_Not(m_Value(A))) && A == Op1) || 165 (match(Op1, m_Not(m_Value(A))) && A == Op0)) 166 return Constant::getAllOnesValue(Op0->getType()); 167 168 // (A & ?) | A = A 169 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 170 (A == Op1 || B == Op1)) 171 return Op1; 172 173 // A | (A & ?) = A 174 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 175 (A == Op0 || B == Op0)) 176 return Op0; 177 178 // (A | B) | A -> A | B 179 if (match(Op0, m_Or(m_Value(A), m_Value(B))) && 180 (A == Op1 || B == Op1)) 181 return Op0; 182 183 // A | (A | B) -> A | B 184 if (match(Op1, m_Or(m_Value(A), m_Value(B))) && 185 (A == Op0 || B == Op0)) 186 return Op1; 187 188 return 0; 189 } 190 191 192 static const Type *GetCompareTy(Value *Op) { 193 return CmpInst::makeCmpResultType(Op->getType()); 194 } 195 196 197 /// SimplifyICmpInst - Given operands for an ICmpInst, see if we can 198 /// fold the result. If not, this returns null. 199 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 200 const TargetData *TD) { 201 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 202 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 203 204 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 205 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 206 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD); 207 208 // If we have a constant, make sure it is on the RHS. 209 std::swap(LHS, RHS); 210 Pred = CmpInst::getSwappedPredicate(Pred); 211 } 212 213 // ITy - This is the return type of the compare we're considering. 214 const Type *ITy = GetCompareTy(LHS); 215 216 // icmp X, X -> true/false 217 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false 218 // because X could be 0. 219 if (LHS == RHS || isa<UndefValue>(RHS)) 220 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 221 222 // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value 223 // addresses never equal each other! We already know that Op0 != Op1. 224 if ((isa<GlobalValue>(LHS) || isa<AllocaInst>(LHS) || 225 isa<ConstantPointerNull>(LHS)) && 226 (isa<GlobalValue>(RHS) || isa<AllocaInst>(RHS) || 227 isa<ConstantPointerNull>(RHS))) 228 return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred)); 229 230 // See if we are doing a comparison with a constant. 231 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 232 // If we have an icmp le or icmp ge instruction, turn it into the 233 // appropriate icmp lt or icmp gt instruction. This allows us to rely on 234 // them being folded in the code below. 235 switch (Pred) { 236 default: break; 237 case ICmpInst::ICMP_ULE: 238 if (CI->isMaxValue(false)) // A <=u MAX -> TRUE 239 return ConstantInt::getTrue(CI->getContext()); 240 break; 241 case ICmpInst::ICMP_SLE: 242 if (CI->isMaxValue(true)) // A <=s MAX -> TRUE 243 return ConstantInt::getTrue(CI->getContext()); 244 break; 245 case ICmpInst::ICMP_UGE: 246 if (CI->isMinValue(false)) // A >=u MIN -> TRUE 247 return ConstantInt::getTrue(CI->getContext()); 248 break; 249 case ICmpInst::ICMP_SGE: 250 if (CI->isMinValue(true)) // A >=s MIN -> TRUE 251 return ConstantInt::getTrue(CI->getContext()); 252 break; 253 } 254 } 255 256 257 return 0; 258 } 259 260 /// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can 261 /// fold the result. If not, this returns null. 262 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 263 const TargetData *TD) { 264 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 265 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 266 267 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 268 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 269 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD); 270 271 // If we have a constant, make sure it is on the RHS. 272 std::swap(LHS, RHS); 273 Pred = CmpInst::getSwappedPredicate(Pred); 274 } 275 276 // Fold trivial predicates. 277 if (Pred == FCmpInst::FCMP_FALSE) 278 return ConstantInt::get(GetCompareTy(LHS), 0); 279 if (Pred == FCmpInst::FCMP_TRUE) 280 return ConstantInt::get(GetCompareTy(LHS), 1); 281 282 if (isa<UndefValue>(RHS)) // fcmp pred X, undef -> undef 283 return UndefValue::get(GetCompareTy(LHS)); 284 285 // fcmp x,x -> true/false. Not all compares are foldable. 286 if (LHS == RHS) { 287 if (CmpInst::isTrueWhenEqual(Pred)) 288 return ConstantInt::get(GetCompareTy(LHS), 1); 289 if (CmpInst::isFalseWhenEqual(Pred)) 290 return ConstantInt::get(GetCompareTy(LHS), 0); 291 } 292 293 // Handle fcmp with constant RHS 294 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 295 // If the constant is a nan, see if we can fold the comparison based on it. 296 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) { 297 if (CFP->getValueAPF().isNaN()) { 298 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo" 299 return ConstantInt::getFalse(CFP->getContext()); 300 assert(FCmpInst::isUnordered(Pred) && 301 "Comparison must be either ordered or unordered!"); 302 // True if unordered. 303 return ConstantInt::getTrue(CFP->getContext()); 304 } 305 // Check whether the constant is an infinity. 306 if (CFP->getValueAPF().isInfinity()) { 307 if (CFP->getValueAPF().isNegative()) { 308 switch (Pred) { 309 case FCmpInst::FCMP_OLT: 310 // No value is ordered and less than negative infinity. 311 return ConstantInt::getFalse(CFP->getContext()); 312 case FCmpInst::FCMP_UGE: 313 // All values are unordered with or at least negative infinity. 314 return ConstantInt::getTrue(CFP->getContext()); 315 default: 316 break; 317 } 318 } else { 319 switch (Pred) { 320 case FCmpInst::FCMP_OGT: 321 // No value is ordered and greater than infinity. 322 return ConstantInt::getFalse(CFP->getContext()); 323 case FCmpInst::FCMP_ULE: 324 // All values are unordered with and at most infinity. 325 return ConstantInt::getTrue(CFP->getContext()); 326 default: 327 break; 328 } 329 } 330 } 331 } 332 } 333 334 return 0; 335 } 336 337 /// SimplifySelectInst - Given operands for a SelectInst, see if we can fold 338 /// the result. If not, this returns null. 339 Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal, 340 const TargetData *TD) { 341 // select true, X, Y -> X 342 // select false, X, Y -> Y 343 if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal)) 344 return CB->getZExtValue() ? TrueVal : FalseVal; 345 346 // select C, X, X -> X 347 if (TrueVal == FalseVal) 348 return TrueVal; 349 350 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X 351 return FalseVal; 352 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X 353 return TrueVal; 354 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y 355 if (isa<Constant>(TrueVal)) 356 return TrueVal; 357 return FalseVal; 358 } 359 360 361 362 return 0; 363 } 364 365 366 /// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can 367 /// fold the result. If not, this returns null. 368 Value *llvm::SimplifyGEPInst(Value *const *Ops, unsigned NumOps, 369 const TargetData *TD) { 370 // getelementptr P -> P. 371 if (NumOps == 1) 372 return Ops[0]; 373 374 // TODO. 375 //if (isa<UndefValue>(Ops[0])) 376 // return UndefValue::get(GEP.getType()); 377 378 // getelementptr P, 0 -> P. 379 if (NumOps == 2) 380 if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1])) 381 if (C->isZero()) 382 return Ops[0]; 383 384 // Check to see if this is constant foldable. 385 for (unsigned i = 0; i != NumOps; ++i) 386 if (!isa<Constant>(Ops[i])) 387 return 0; 388 389 return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), 390 (Constant *const*)Ops+1, NumOps-1); 391 } 392 393 394 //=== Helper functions for higher up the class hierarchy. 395 396 /// SimplifyBinOp - Given operands for a BinaryOperator, see if we can 397 /// fold the result. If not, this returns null. 398 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 399 const TargetData *TD) { 400 switch (Opcode) { 401 case Instruction::And: return SimplifyAndInst(LHS, RHS, TD); 402 case Instruction::Or: return SimplifyOrInst(LHS, RHS, TD); 403 default: 404 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 405 if (Constant *CRHS = dyn_cast<Constant>(RHS)) { 406 Constant *COps[] = {CLHS, CRHS}; 407 return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, 2, TD); 408 } 409 return 0; 410 } 411 } 412 413 /// SimplifyCmpInst - Given operands for a CmpInst, see if we can 414 /// fold the result. 415 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 416 const TargetData *TD) { 417 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 418 return SimplifyICmpInst(Predicate, LHS, RHS, TD); 419 return SimplifyFCmpInst(Predicate, LHS, RHS, TD); 420 } 421 422 423 /// SimplifyInstruction - See if we can compute a simplified version of this 424 /// instruction. If not, this returns null. 425 Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD) { 426 switch (I->getOpcode()) { 427 default: 428 return ConstantFoldInstruction(I, TD); 429 case Instruction::Add: 430 return SimplifyAddInst(I->getOperand(0), I->getOperand(1), 431 cast<BinaryOperator>(I)->hasNoSignedWrap(), 432 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), TD); 433 case Instruction::And: 434 return SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD); 435 case Instruction::Or: 436 return SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD); 437 case Instruction::ICmp: 438 return SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 439 I->getOperand(0), I->getOperand(1), TD); 440 case Instruction::FCmp: 441 return SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), 442 I->getOperand(0), I->getOperand(1), TD); 443 case Instruction::Select: 444 return SimplifySelectInst(I->getOperand(0), I->getOperand(1), 445 I->getOperand(2), TD); 446 case Instruction::GetElementPtr: { 447 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 448 return SimplifyGEPInst(&Ops[0], Ops.size(), TD); 449 } 450 } 451 } 452 453 /// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then 454 /// delete the From instruction. In addition to a basic RAUW, this does a 455 /// recursive simplification of the newly formed instructions. This catches 456 /// things where one simplification exposes other opportunities. This only 457 /// simplifies and deletes scalar operations, it does not change the CFG. 458 /// 459 void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To, 460 const TargetData *TD) { 461 assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!"); 462 463 // FromHandle/ToHandle - This keeps a WeakVH on the from/to values so that 464 // we can know if it gets deleted out from under us or replaced in a 465 // recursive simplification. 466 WeakVH FromHandle(From); 467 WeakVH ToHandle(To); 468 469 while (!From->use_empty()) { 470 // Update the instruction to use the new value. 471 Use &TheUse = From->use_begin().getUse(); 472 Instruction *User = cast<Instruction>(TheUse.getUser()); 473 TheUse = To; 474 475 // Check to see if the instruction can be folded due to the operand 476 // replacement. For example changing (or X, Y) into (or X, -1) can replace 477 // the 'or' with -1. 478 Value *SimplifiedVal; 479 { 480 // Sanity check to make sure 'User' doesn't dangle across 481 // SimplifyInstruction. 482 AssertingVH<> UserHandle(User); 483 484 SimplifiedVal = SimplifyInstruction(User, TD); 485 if (SimplifiedVal == 0) continue; 486 } 487 488 // Recursively simplify this user to the new value. 489 ReplaceAndSimplifyAllUses(User, SimplifiedVal, TD); 490 From = dyn_cast_or_null<Instruction>((Value*)FromHandle); 491 To = ToHandle; 492 493 assert(ToHandle && "To value deleted by recursive simplification?"); 494 495 // If the recursive simplification ended up revisiting and deleting 496 // 'From' then we're done. 497 if (From == 0) 498 return; 499 } 500 501 // If 'From' has value handles referring to it, do a real RAUW to update them. 502 From->replaceAllUsesWith(To); 503 504 From->eraseFromParent(); 505 } 506 507