1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements routines for folding instructions into simpler forms
10 // that do not require creating new instructions.  This does constant folding
11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
13 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
14 // simplified: This is usually true and assuming it simplifies the logic (if
15 // they have not been simplified then results are correct but maybe suboptimal).
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/CmpInstAnalysis.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/LoopAnalysisManager.h"
28 #include "llvm/Analysis/MemoryBuiltins.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/IR/ConstantRange.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/GetElementPtrTypeIterator.h"
35 #include "llvm/IR/GlobalAlias.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/IR/PatternMatch.h"
40 #include "llvm/IR/ValueHandle.h"
41 #include "llvm/Support/KnownBits.h"
42 #include <algorithm>
43 using namespace llvm;
44 using namespace llvm::PatternMatch;
45 
46 #define DEBUG_TYPE "instsimplify"
47 
48 enum { RecursionLimit = 3 };
49 
50 STATISTIC(NumExpand,  "Number of expansions");
51 STATISTIC(NumReassoc, "Number of reassociations");
52 
53 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned);
54 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned);
55 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &,
56                              const SimplifyQuery &, unsigned);
57 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
58                             unsigned);
59 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &,
60                             const SimplifyQuery &, unsigned);
61 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
62                               unsigned);
63 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
64                                const SimplifyQuery &Q, unsigned MaxRecurse);
65 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
66 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned);
67 static Value *SimplifyCastInst(unsigned, Value *, Type *,
68                                const SimplifyQuery &, unsigned);
69 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &,
70                               unsigned);
71 
72 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal,
73                                      Value *FalseVal) {
74   BinaryOperator::BinaryOps BinOpCode;
75   if (auto *BO = dyn_cast<BinaryOperator>(Cond))
76     BinOpCode = BO->getOpcode();
77   else
78     return nullptr;
79 
80   CmpInst::Predicate ExpectedPred, Pred1, Pred2;
81   if (BinOpCode == BinaryOperator::Or) {
82     ExpectedPred = ICmpInst::ICMP_NE;
83   } else if (BinOpCode == BinaryOperator::And) {
84     ExpectedPred = ICmpInst::ICMP_EQ;
85   } else
86     return nullptr;
87 
88   // %A = icmp eq %TV, %FV
89   // %B = icmp eq %X, %Y (and one of these is a select operand)
90   // %C = and %A, %B
91   // %D = select %C, %TV, %FV
92   // -->
93   // %FV
94 
95   // %A = icmp ne %TV, %FV
96   // %B = icmp ne %X, %Y (and one of these is a select operand)
97   // %C = or %A, %B
98   // %D = select %C, %TV, %FV
99   // -->
100   // %TV
101   Value *X, *Y;
102   if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal),
103                                       m_Specific(FalseVal)),
104                              m_ICmp(Pred2, m_Value(X), m_Value(Y)))) ||
105       Pred1 != Pred2 || Pred1 != ExpectedPred)
106     return nullptr;
107 
108   if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal)
109     return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal;
110 
111   return nullptr;
112 }
113 
114 /// For a boolean type or a vector of boolean type, return false or a vector
115 /// with every element false.
116 static Constant *getFalse(Type *Ty) {
117   return ConstantInt::getFalse(Ty);
118 }
119 
120 /// For a boolean type or a vector of boolean type, return true or a vector
121 /// with every element true.
122 static Constant *getTrue(Type *Ty) {
123   return ConstantInt::getTrue(Ty);
124 }
125 
126 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
127 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
128                           Value *RHS) {
129   CmpInst *Cmp = dyn_cast<CmpInst>(V);
130   if (!Cmp)
131     return false;
132   CmpInst::Predicate CPred = Cmp->getPredicate();
133   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
134   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
135     return true;
136   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
137     CRHS == LHS;
138 }
139 
140 /// Simplify comparison with true or false branch of select:
141 ///  %sel = select i1 %cond, i32 %tv, i32 %fv
142 ///  %cmp = icmp sle i32 %sel, %rhs
143 /// Compose new comparison by substituting %sel with either %tv or %fv
144 /// and see if it simplifies.
145 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS,
146                                  Value *RHS, Value *Cond,
147                                  const SimplifyQuery &Q, unsigned MaxRecurse,
148                                  Constant *TrueOrFalse) {
149   Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse);
150   if (SimplifiedCmp == Cond) {
151     // %cmp simplified to the select condition (%cond).
152     return TrueOrFalse;
153   } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) {
154     // It didn't simplify. However, if composed comparison is equivalent
155     // to the select condition (%cond) then we can replace it.
156     return TrueOrFalse;
157   }
158   return SimplifiedCmp;
159 }
160 
161 /// Simplify comparison with true branch of select
162 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS,
163                                      Value *RHS, Value *Cond,
164                                      const SimplifyQuery &Q,
165                                      unsigned MaxRecurse) {
166   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
167                             getTrue(Cond->getType()));
168 }
169 
170 /// Simplify comparison with false branch of select
171 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS,
172                                       Value *RHS, Value *Cond,
173                                       const SimplifyQuery &Q,
174                                       unsigned MaxRecurse) {
175   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
176                             getFalse(Cond->getType()));
177 }
178 
179 /// We know comparison with both branches of select can be simplified, but they
180 /// are not equal. This routine handles some logical simplifications.
181 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp,
182                                                Value *Cond,
183                                                const SimplifyQuery &Q,
184                                                unsigned MaxRecurse) {
185   // If the false value simplified to false, then the result of the compare
186   // is equal to "Cond && TCmp".  This also catches the case when the false
187   // value simplified to false and the true value to true, returning "Cond".
188   if (match(FCmp, m_Zero()))
189     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
190       return V;
191   // If the true value simplified to true, then the result of the compare
192   // is equal to "Cond || FCmp".
193   if (match(TCmp, m_One()))
194     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
195       return V;
196   // Finally, if the false value simplified to true and the true value to
197   // false, then the result of the compare is equal to "!Cond".
198   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
199     if (Value *V = SimplifyXorInst(
200             Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse))
201       return V;
202   return nullptr;
203 }
204 
205 /// Does the given value dominate the specified phi node?
206 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
207   Instruction *I = dyn_cast<Instruction>(V);
208   if (!I)
209     // Arguments and constants dominate all instructions.
210     return true;
211 
212   // If we are processing instructions (and/or basic blocks) that have not been
213   // fully added to a function, the parent nodes may still be null. Simply
214   // return the conservative answer in these cases.
215   if (!I->getParent() || !P->getParent() || !I->getFunction())
216     return false;
217 
218   // If we have a DominatorTree then do a precise test.
219   if (DT)
220     return DT->dominates(I, P);
221 
222   // Otherwise, if the instruction is in the entry block and is not an invoke,
223   // then it obviously dominates all phi nodes.
224   if (I->getParent() == &I->getFunction()->getEntryBlock() &&
225       !isa<InvokeInst>(I) && !isa<CallBrInst>(I))
226     return true;
227 
228   return false;
229 }
230 
231 /// Try to simplify a binary operator of form "V op OtherOp" where V is
232 /// "(B0 opex B1)" by distributing 'op' across 'opex' as
233 /// "(B0 op OtherOp) opex (B1 op OtherOp)".
234 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V,
235                           Value *OtherOp, Instruction::BinaryOps OpcodeToExpand,
236                           const SimplifyQuery &Q, unsigned MaxRecurse) {
237   auto *B = dyn_cast<BinaryOperator>(V);
238   if (!B || B->getOpcode() != OpcodeToExpand)
239     return nullptr;
240   Value *B0 = B->getOperand(0), *B1 = B->getOperand(1);
241   Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(),
242                            MaxRecurse);
243   if (!L)
244     return nullptr;
245   Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(),
246                            MaxRecurse);
247   if (!R)
248     return nullptr;
249 
250   // Does the expanded pair of binops simplify to the existing binop?
251   if ((L == B0 && R == B1) ||
252       (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) {
253     ++NumExpand;
254     return B;
255   }
256 
257   // Otherwise, return "L op' R" if it simplifies.
258   Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse);
259   if (!S)
260     return nullptr;
261 
262   ++NumExpand;
263   return S;
264 }
265 
266 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by
267 /// distributing op over op'.
268 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode,
269                                      Value *L, Value *R,
270                                      Instruction::BinaryOps OpcodeToExpand,
271                                      const SimplifyQuery &Q,
272                                      unsigned MaxRecurse) {
273   // Recursion is always used, so bail out at once if we already hit the limit.
274   if (!MaxRecurse--)
275     return nullptr;
276 
277   if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse))
278     return V;
279   if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse))
280     return V;
281   return nullptr;
282 }
283 
284 /// Generic simplifications for associative binary operations.
285 /// Returns the simpler value, or null if none was found.
286 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
287                                        Value *LHS, Value *RHS,
288                                        const SimplifyQuery &Q,
289                                        unsigned MaxRecurse) {
290   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
291 
292   // Recursion is always used, so bail out at once if we already hit the limit.
293   if (!MaxRecurse--)
294     return nullptr;
295 
296   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
297   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
298 
299   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
300   if (Op0 && Op0->getOpcode() == Opcode) {
301     Value *A = Op0->getOperand(0);
302     Value *B = Op0->getOperand(1);
303     Value *C = RHS;
304 
305     // Does "B op C" simplify?
306     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
307       // It does!  Return "A op V" if it simplifies or is already available.
308       // If V equals B then "A op V" is just the LHS.
309       if (V == B) return LHS;
310       // Otherwise return "A op V" if it simplifies.
311       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
312         ++NumReassoc;
313         return W;
314       }
315     }
316   }
317 
318   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
319   if (Op1 && Op1->getOpcode() == Opcode) {
320     Value *A = LHS;
321     Value *B = Op1->getOperand(0);
322     Value *C = Op1->getOperand(1);
323 
324     // Does "A op B" simplify?
325     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
326       // It does!  Return "V op C" if it simplifies or is already available.
327       // If V equals B then "V op C" is just the RHS.
328       if (V == B) return RHS;
329       // Otherwise return "V op C" if it simplifies.
330       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
331         ++NumReassoc;
332         return W;
333       }
334     }
335   }
336 
337   // The remaining transforms require commutativity as well as associativity.
338   if (!Instruction::isCommutative(Opcode))
339     return nullptr;
340 
341   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
342   if (Op0 && Op0->getOpcode() == Opcode) {
343     Value *A = Op0->getOperand(0);
344     Value *B = Op0->getOperand(1);
345     Value *C = RHS;
346 
347     // Does "C op A" simplify?
348     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
349       // It does!  Return "V op B" if it simplifies or is already available.
350       // If V equals A then "V op B" is just the LHS.
351       if (V == A) return LHS;
352       // Otherwise return "V op B" if it simplifies.
353       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
354         ++NumReassoc;
355         return W;
356       }
357     }
358   }
359 
360   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
361   if (Op1 && Op1->getOpcode() == Opcode) {
362     Value *A = LHS;
363     Value *B = Op1->getOperand(0);
364     Value *C = Op1->getOperand(1);
365 
366     // Does "C op A" simplify?
367     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
368       // It does!  Return "B op V" if it simplifies or is already available.
369       // If V equals C then "B op V" is just the RHS.
370       if (V == C) return RHS;
371       // Otherwise return "B op V" if it simplifies.
372       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
373         ++NumReassoc;
374         return W;
375       }
376     }
377   }
378 
379   return nullptr;
380 }
381 
382 /// In the case of a binary operation with a select instruction as an operand,
383 /// try to simplify the binop by seeing whether evaluating it on both branches
384 /// of the select results in the same value. Returns the common value if so,
385 /// otherwise returns null.
386 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
387                                     Value *RHS, const SimplifyQuery &Q,
388                                     unsigned MaxRecurse) {
389   // Recursion is always used, so bail out at once if we already hit the limit.
390   if (!MaxRecurse--)
391     return nullptr;
392 
393   SelectInst *SI;
394   if (isa<SelectInst>(LHS)) {
395     SI = cast<SelectInst>(LHS);
396   } else {
397     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
398     SI = cast<SelectInst>(RHS);
399   }
400 
401   // Evaluate the BinOp on the true and false branches of the select.
402   Value *TV;
403   Value *FV;
404   if (SI == LHS) {
405     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
406     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
407   } else {
408     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
409     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
410   }
411 
412   // If they simplified to the same value, then return the common value.
413   // If they both failed to simplify then return null.
414   if (TV == FV)
415     return TV;
416 
417   // If one branch simplified to undef, return the other one.
418   if (TV && Q.isUndefValue(TV))
419     return FV;
420   if (FV && Q.isUndefValue(FV))
421     return TV;
422 
423   // If applying the operation did not change the true and false select values,
424   // then the result of the binop is the select itself.
425   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
426     return SI;
427 
428   // If one branch simplified and the other did not, and the simplified
429   // value is equal to the unsimplified one, return the simplified value.
430   // For example, select (cond, X, X & Z) & Z -> X & Z.
431   if ((FV && !TV) || (TV && !FV)) {
432     // Check that the simplified value has the form "X op Y" where "op" is the
433     // same as the original operation.
434     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
435     if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) {
436       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
437       // We already know that "op" is the same as for the simplified value.  See
438       // if the operands match too.  If so, return the simplified value.
439       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
440       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
441       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
442       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
443           Simplified->getOperand(1) == UnsimplifiedRHS)
444         return Simplified;
445       if (Simplified->isCommutative() &&
446           Simplified->getOperand(1) == UnsimplifiedLHS &&
447           Simplified->getOperand(0) == UnsimplifiedRHS)
448         return Simplified;
449     }
450   }
451 
452   return nullptr;
453 }
454 
455 /// In the case of a comparison with a select instruction, try to simplify the
456 /// comparison by seeing whether both branches of the select result in the same
457 /// value. Returns the common value if so, otherwise returns null.
458 /// For example, if we have:
459 ///  %tmp = select i1 %cmp, i32 1, i32 2
460 ///  %cmp1 = icmp sle i32 %tmp, 3
461 /// We can simplify %cmp1 to true, because both branches of select are
462 /// less than 3. We compose new comparison by substituting %tmp with both
463 /// branches of select and see if it can be simplified.
464 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
465                                   Value *RHS, const SimplifyQuery &Q,
466                                   unsigned MaxRecurse) {
467   // Recursion is always used, so bail out at once if we already hit the limit.
468   if (!MaxRecurse--)
469     return nullptr;
470 
471   // Make sure the select is on the LHS.
472   if (!isa<SelectInst>(LHS)) {
473     std::swap(LHS, RHS);
474     Pred = CmpInst::getSwappedPredicate(Pred);
475   }
476   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
477   SelectInst *SI = cast<SelectInst>(LHS);
478   Value *Cond = SI->getCondition();
479   Value *TV = SI->getTrueValue();
480   Value *FV = SI->getFalseValue();
481 
482   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
483   // Does "cmp TV, RHS" simplify?
484   Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse);
485   if (!TCmp)
486     return nullptr;
487 
488   // Does "cmp FV, RHS" simplify?
489   Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse);
490   if (!FCmp)
491     return nullptr;
492 
493   // If both sides simplified to the same value, then use it as the result of
494   // the original comparison.
495   if (TCmp == FCmp)
496     return TCmp;
497 
498   // The remaining cases only make sense if the select condition has the same
499   // type as the result of the comparison, so bail out if this is not so.
500   if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy())
501     return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse);
502 
503   return nullptr;
504 }
505 
506 /// In the case of a binary operation with an operand that is a PHI instruction,
507 /// try to simplify the binop by seeing whether evaluating it on the incoming
508 /// phi values yields the same result for every value. If so returns the common
509 /// value, otherwise returns null.
510 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
511                                  Value *RHS, const SimplifyQuery &Q,
512                                  unsigned MaxRecurse) {
513   // Recursion is always used, so bail out at once if we already hit the limit.
514   if (!MaxRecurse--)
515     return nullptr;
516 
517   PHINode *PI;
518   if (isa<PHINode>(LHS)) {
519     PI = cast<PHINode>(LHS);
520     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
521     if (!valueDominatesPHI(RHS, PI, Q.DT))
522       return nullptr;
523   } else {
524     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
525     PI = cast<PHINode>(RHS);
526     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
527     if (!valueDominatesPHI(LHS, PI, Q.DT))
528       return nullptr;
529   }
530 
531   // Evaluate the BinOp on the incoming phi values.
532   Value *CommonValue = nullptr;
533   for (Value *Incoming : PI->incoming_values()) {
534     // If the incoming value is the phi node itself, it can safely be skipped.
535     if (Incoming == PI) continue;
536     Value *V = PI == LHS ?
537       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
538       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
539     // If the operation failed to simplify, or simplified to a different value
540     // to previously, then give up.
541     if (!V || (CommonValue && V != CommonValue))
542       return nullptr;
543     CommonValue = V;
544   }
545 
546   return CommonValue;
547 }
548 
549 /// In the case of a comparison with a PHI instruction, try to simplify the
550 /// comparison by seeing whether comparing with all of the incoming phi values
551 /// yields the same result every time. If so returns the common result,
552 /// otherwise returns null.
553 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
554                                const SimplifyQuery &Q, unsigned MaxRecurse) {
555   // Recursion is always used, so bail out at once if we already hit the limit.
556   if (!MaxRecurse--)
557     return nullptr;
558 
559   // Make sure the phi is on the LHS.
560   if (!isa<PHINode>(LHS)) {
561     std::swap(LHS, RHS);
562     Pred = CmpInst::getSwappedPredicate(Pred);
563   }
564   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
565   PHINode *PI = cast<PHINode>(LHS);
566 
567   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
568   if (!valueDominatesPHI(RHS, PI, Q.DT))
569     return nullptr;
570 
571   // Evaluate the BinOp on the incoming phi values.
572   Value *CommonValue = nullptr;
573   for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) {
574     Value *Incoming = PI->getIncomingValue(u);
575     Instruction *InTI = PI->getIncomingBlock(u)->getTerminator();
576     // If the incoming value is the phi node itself, it can safely be skipped.
577     if (Incoming == PI) continue;
578     // Change the context instruction to the "edge" that flows into the phi.
579     // This is important because that is where incoming is actually "evaluated"
580     // even though it is used later somewhere else.
581     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI),
582                                MaxRecurse);
583     // If the operation failed to simplify, or simplified to a different value
584     // to previously, then give up.
585     if (!V || (CommonValue && V != CommonValue))
586       return nullptr;
587     CommonValue = V;
588   }
589 
590   return CommonValue;
591 }
592 
593 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
594                                        Value *&Op0, Value *&Op1,
595                                        const SimplifyQuery &Q) {
596   if (auto *CLHS = dyn_cast<Constant>(Op0)) {
597     if (auto *CRHS = dyn_cast<Constant>(Op1))
598       return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
599 
600     // Canonicalize the constant to the RHS if this is a commutative operation.
601     if (Instruction::isCommutative(Opcode))
602       std::swap(Op0, Op1);
603   }
604   return nullptr;
605 }
606 
607 /// Given operands for an Add, see if we can fold the result.
608 /// If not, this returns null.
609 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
610                               const SimplifyQuery &Q, unsigned MaxRecurse) {
611   if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
612     return C;
613 
614   // X + undef -> undef
615   if (Q.isUndefValue(Op1))
616     return Op1;
617 
618   // X + 0 -> X
619   if (match(Op1, m_Zero()))
620     return Op0;
621 
622   // If two operands are negative, return 0.
623   if (isKnownNegation(Op0, Op1))
624     return Constant::getNullValue(Op0->getType());
625 
626   // X + (Y - X) -> Y
627   // (Y - X) + X -> Y
628   // Eg: X + -X -> 0
629   Value *Y = nullptr;
630   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
631       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
632     return Y;
633 
634   // X + ~X -> -1   since   ~X = -X-1
635   Type *Ty = Op0->getType();
636   if (match(Op0, m_Not(m_Specific(Op1))) ||
637       match(Op1, m_Not(m_Specific(Op0))))
638     return Constant::getAllOnesValue(Ty);
639 
640   // add nsw/nuw (xor Y, signmask), signmask --> Y
641   // The no-wrapping add guarantees that the top bit will be set by the add.
642   // Therefore, the xor must be clearing the already set sign bit of Y.
643   if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) &&
644       match(Op0, m_Xor(m_Value(Y), m_SignMask())))
645     return Y;
646 
647   // add nuw %x, -1  ->  -1, because %x can only be 0.
648   if (IsNUW && match(Op1, m_AllOnes()))
649     return Op1; // Which is -1.
650 
651   /// i1 add -> xor.
652   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
653     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
654       return V;
655 
656   // Try some generic simplifications for associative operations.
657   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
658                                           MaxRecurse))
659     return V;
660 
661   // Threading Add over selects and phi nodes is pointless, so don't bother.
662   // Threading over the select in "A + select(cond, B, C)" means evaluating
663   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
664   // only if B and C are equal.  If B and C are equal then (since we assume
665   // that operands have already been simplified) "select(cond, B, C)" should
666   // have been simplified to the common value of B and C already.  Analysing
667   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
668   // for threading over phi nodes.
669 
670   return nullptr;
671 }
672 
673 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
674                              const SimplifyQuery &Query) {
675   return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit);
676 }
677 
678 /// Compute the base pointer and cumulative constant offsets for V.
679 ///
680 /// This strips all constant offsets off of V, leaving it the base pointer, and
681 /// accumulates the total constant offset applied in the returned constant. It
682 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
683 /// no constant offsets applied.
684 ///
685 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
686 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
687 /// folding.
688 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
689                                                 bool AllowNonInbounds = false) {
690   assert(V->getType()->isPtrOrPtrVectorTy());
691 
692   Type *IntIdxTy = DL.getIndexType(V->getType())->getScalarType();
693   APInt Offset = APInt::getNullValue(IntIdxTy->getIntegerBitWidth());
694 
695   V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds);
696   // As that strip may trace through `addrspacecast`, need to sext or trunc
697   // the offset calculated.
698   IntIdxTy = DL.getIndexType(V->getType())->getScalarType();
699   Offset = Offset.sextOrTrunc(IntIdxTy->getIntegerBitWidth());
700 
701   Constant *OffsetIntPtr = ConstantInt::get(IntIdxTy, Offset);
702   if (VectorType *VecTy = dyn_cast<VectorType>(V->getType()))
703     return ConstantVector::getSplat(VecTy->getElementCount(), OffsetIntPtr);
704   return OffsetIntPtr;
705 }
706 
707 /// Compute the constant difference between two pointer values.
708 /// If the difference is not a constant, returns zero.
709 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
710                                           Value *RHS) {
711   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
712   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
713 
714   // If LHS and RHS are not related via constant offsets to the same base
715   // value, there is nothing we can do here.
716   if (LHS != RHS)
717     return nullptr;
718 
719   // Otherwise, the difference of LHS - RHS can be computed as:
720   //    LHS - RHS
721   //  = (LHSOffset + Base) - (RHSOffset + Base)
722   //  = LHSOffset - RHSOffset
723   return ConstantExpr::getSub(LHSOffset, RHSOffset);
724 }
725 
726 /// Given operands for a Sub, see if we can fold the result.
727 /// If not, this returns null.
728 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
729                               const SimplifyQuery &Q, unsigned MaxRecurse) {
730   if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
731     return C;
732 
733   // X - undef -> undef
734   // undef - X -> undef
735   if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
736     return UndefValue::get(Op0->getType());
737 
738   // X - 0 -> X
739   if (match(Op1, m_Zero()))
740     return Op0;
741 
742   // X - X -> 0
743   if (Op0 == Op1)
744     return Constant::getNullValue(Op0->getType());
745 
746   // Is this a negation?
747   if (match(Op0, m_Zero())) {
748     // 0 - X -> 0 if the sub is NUW.
749     if (isNUW)
750       return Constant::getNullValue(Op0->getType());
751 
752     KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
753     if (Known.Zero.isMaxSignedValue()) {
754       // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
755       // Op1 must be 0 because negating the minimum signed value is undefined.
756       if (isNSW)
757         return Constant::getNullValue(Op0->getType());
758 
759       // 0 - X -> X if X is 0 or the minimum signed value.
760       return Op1;
761     }
762   }
763 
764   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
765   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
766   Value *X = nullptr, *Y = nullptr, *Z = Op1;
767   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
768     // See if "V === Y - Z" simplifies.
769     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
770       // It does!  Now see if "X + V" simplifies.
771       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
772         // It does, we successfully reassociated!
773         ++NumReassoc;
774         return W;
775       }
776     // See if "V === X - Z" simplifies.
777     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
778       // It does!  Now see if "Y + V" simplifies.
779       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
780         // It does, we successfully reassociated!
781         ++NumReassoc;
782         return W;
783       }
784   }
785 
786   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
787   // For example, X - (X + 1) -> -1
788   X = Op0;
789   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
790     // See if "V === X - Y" simplifies.
791     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
792       // It does!  Now see if "V - Z" simplifies.
793       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
794         // It does, we successfully reassociated!
795         ++NumReassoc;
796         return W;
797       }
798     // See if "V === X - Z" simplifies.
799     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
800       // It does!  Now see if "V - Y" simplifies.
801       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
802         // It does, we successfully reassociated!
803         ++NumReassoc;
804         return W;
805       }
806   }
807 
808   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
809   // For example, X - (X - Y) -> Y.
810   Z = Op0;
811   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
812     // See if "V === Z - X" simplifies.
813     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
814       // It does!  Now see if "V + Y" simplifies.
815       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
816         // It does, we successfully reassociated!
817         ++NumReassoc;
818         return W;
819       }
820 
821   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
822   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
823       match(Op1, m_Trunc(m_Value(Y))))
824     if (X->getType() == Y->getType())
825       // See if "V === X - Y" simplifies.
826       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
827         // It does!  Now see if "trunc V" simplifies.
828         if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
829                                         Q, MaxRecurse - 1))
830           // It does, return the simplified "trunc V".
831           return W;
832 
833   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
834   if (match(Op0, m_PtrToInt(m_Value(X))) &&
835       match(Op1, m_PtrToInt(m_Value(Y))))
836     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
837       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
838 
839   // i1 sub -> xor.
840   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
841     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
842       return V;
843 
844   // Threading Sub over selects and phi nodes is pointless, so don't bother.
845   // Threading over the select in "A - select(cond, B, C)" means evaluating
846   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
847   // only if B and C are equal.  If B and C are equal then (since we assume
848   // that operands have already been simplified) "select(cond, B, C)" should
849   // have been simplified to the common value of B and C already.  Analysing
850   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
851   // for threading over phi nodes.
852 
853   return nullptr;
854 }
855 
856 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
857                              const SimplifyQuery &Q) {
858   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
859 }
860 
861 /// Given operands for a Mul, see if we can fold the result.
862 /// If not, this returns null.
863 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
864                               unsigned MaxRecurse) {
865   if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
866     return C;
867 
868   // X * undef -> 0
869   // X * 0 -> 0
870   if (Q.isUndefValue(Op1) || match(Op1, m_Zero()))
871     return Constant::getNullValue(Op0->getType());
872 
873   // X * 1 -> X
874   if (match(Op1, m_One()))
875     return Op0;
876 
877   // (X / Y) * Y -> X if the division is exact.
878   Value *X = nullptr;
879   if (Q.IIQ.UseInstrInfo &&
880       (match(Op0,
881              m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) ||     // (X / Y) * Y
882        match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y)
883     return X;
884 
885   // i1 mul -> and.
886   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
887     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
888       return V;
889 
890   // Try some generic simplifications for associative operations.
891   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
892                                           MaxRecurse))
893     return V;
894 
895   // Mul distributes over Add. Try some generic simplifications based on this.
896   if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1,
897                                         Instruction::Add, Q, MaxRecurse))
898     return V;
899 
900   // If the operation is with the result of a select instruction, check whether
901   // operating on either branch of the select always yields the same value.
902   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
903     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
904                                          MaxRecurse))
905       return V;
906 
907   // If the operation is with the result of a phi instruction, check whether
908   // operating on all incoming values of the phi always yields the same value.
909   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
910     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
911                                       MaxRecurse))
912       return V;
913 
914   return nullptr;
915 }
916 
917 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
918   return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit);
919 }
920 
921 /// Check for common or similar folds of integer division or integer remainder.
922 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
923 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv,
924                              const SimplifyQuery &Q) {
925   Type *Ty = Op0->getType();
926 
927   // X / undef -> undef
928   // X % undef -> undef
929   if (Q.isUndefValue(Op1))
930     return Op1;
931 
932   // X / 0 -> undef
933   // X % 0 -> undef
934   // We don't need to preserve faults!
935   if (match(Op1, m_Zero()))
936     return UndefValue::get(Ty);
937 
938   // If any element of a constant divisor fixed width vector is zero or undef,
939   // the whole op is undef.
940   auto *Op1C = dyn_cast<Constant>(Op1);
941   auto *VTy = dyn_cast<FixedVectorType>(Ty);
942   if (Op1C && VTy) {
943     unsigned NumElts = VTy->getNumElements();
944     for (unsigned i = 0; i != NumElts; ++i) {
945       Constant *Elt = Op1C->getAggregateElement(i);
946       if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt)))
947         return UndefValue::get(Ty);
948     }
949   }
950 
951   // undef / X -> 0
952   // undef % X -> 0
953   if (Q.isUndefValue(Op0))
954     return Constant::getNullValue(Ty);
955 
956   // 0 / X -> 0
957   // 0 % X -> 0
958   if (match(Op0, m_Zero()))
959     return Constant::getNullValue(Op0->getType());
960 
961   // X / X -> 1
962   // X % X -> 0
963   if (Op0 == Op1)
964     return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
965 
966   // X / 1 -> X
967   // X % 1 -> 0
968   // If this is a boolean op (single-bit element type), we can't have
969   // division-by-zero or remainder-by-zero, so assume the divisor is 1.
970   // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1.
971   Value *X;
972   if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) ||
973       (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
974     return IsDiv ? Op0 : Constant::getNullValue(Ty);
975 
976   return nullptr;
977 }
978 
979 /// Given a predicate and two operands, return true if the comparison is true.
980 /// This is a helper for div/rem simplification where we return some other value
981 /// when we can prove a relationship between the operands.
982 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
983                        const SimplifyQuery &Q, unsigned MaxRecurse) {
984   Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
985   Constant *C = dyn_cast_or_null<Constant>(V);
986   return (C && C->isAllOnesValue());
987 }
988 
989 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
990 /// to simplify X % Y to X.
991 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
992                       unsigned MaxRecurse, bool IsSigned) {
993   // Recursion is always used, so bail out at once if we already hit the limit.
994   if (!MaxRecurse--)
995     return false;
996 
997   if (IsSigned) {
998     // |X| / |Y| --> 0
999     //
1000     // We require that 1 operand is a simple constant. That could be extended to
1001     // 2 variables if we computed the sign bit for each.
1002     //
1003     // Make sure that a constant is not the minimum signed value because taking
1004     // the abs() of that is undefined.
1005     Type *Ty = X->getType();
1006     const APInt *C;
1007     if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
1008       // Is the variable divisor magnitude always greater than the constant
1009       // dividend magnitude?
1010       // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
1011       Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
1012       Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
1013       if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
1014           isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
1015         return true;
1016     }
1017     if (match(Y, m_APInt(C))) {
1018       // Special-case: we can't take the abs() of a minimum signed value. If
1019       // that's the divisor, then all we have to do is prove that the dividend
1020       // is also not the minimum signed value.
1021       if (C->isMinSignedValue())
1022         return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
1023 
1024       // Is the variable dividend magnitude always less than the constant
1025       // divisor magnitude?
1026       // |X| < |C| --> X > -abs(C) and X < abs(C)
1027       Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
1028       Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
1029       if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
1030           isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
1031         return true;
1032     }
1033     return false;
1034   }
1035 
1036   // IsSigned == false.
1037   // Is the dividend unsigned less than the divisor?
1038   return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
1039 }
1040 
1041 /// These are simplifications common to SDiv and UDiv.
1042 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1043                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1044   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1045     return C;
1046 
1047   if (Value *V = simplifyDivRem(Op0, Op1, true, Q))
1048     return V;
1049 
1050   bool IsSigned = Opcode == Instruction::SDiv;
1051 
1052   // (X * Y) / Y -> X if the multiplication does not overflow.
1053   Value *X;
1054   if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) {
1055     auto *Mul = cast<OverflowingBinaryOperator>(Op0);
1056     // If the Mul does not overflow, then we are good to go.
1057     if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) ||
1058         (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)))
1059       return X;
1060     // If X has the form X = A / Y, then X * Y cannot overflow.
1061     if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) ||
1062         (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1)))))
1063       return X;
1064   }
1065 
1066   // (X rem Y) / Y -> 0
1067   if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1068       (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1069     return Constant::getNullValue(Op0->getType());
1070 
1071   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1072   ConstantInt *C1, *C2;
1073   if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
1074       match(Op1, m_ConstantInt(C2))) {
1075     bool Overflow;
1076     (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
1077     if (Overflow)
1078       return Constant::getNullValue(Op0->getType());
1079   }
1080 
1081   // If the operation is with the result of a select instruction, check whether
1082   // operating on either branch of the select always yields the same value.
1083   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1084     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1085       return V;
1086 
1087   // If the operation is with the result of a phi instruction, check whether
1088   // operating on all incoming values of the phi always yields the same value.
1089   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1090     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1091       return V;
1092 
1093   if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
1094     return Constant::getNullValue(Op0->getType());
1095 
1096   return nullptr;
1097 }
1098 
1099 /// These are simplifications common to SRem and URem.
1100 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1101                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1102   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1103     return C;
1104 
1105   if (Value *V = simplifyDivRem(Op0, Op1, false, Q))
1106     return V;
1107 
1108   // (X % Y) % Y -> X % Y
1109   if ((Opcode == Instruction::SRem &&
1110        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1111       (Opcode == Instruction::URem &&
1112        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1113     return Op0;
1114 
1115   // (X << Y) % X -> 0
1116   if (Q.IIQ.UseInstrInfo &&
1117       ((Opcode == Instruction::SRem &&
1118         match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) ||
1119        (Opcode == Instruction::URem &&
1120         match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))))
1121     return Constant::getNullValue(Op0->getType());
1122 
1123   // If the operation is with the result of a select instruction, check whether
1124   // operating on either branch of the select always yields the same value.
1125   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1126     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1127       return V;
1128 
1129   // If the operation is with the result of a phi instruction, check whether
1130   // operating on all incoming values of the phi always yields the same value.
1131   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1132     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1133       return V;
1134 
1135   // If X / Y == 0, then X % Y == X.
1136   if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem))
1137     return Op0;
1138 
1139   return nullptr;
1140 }
1141 
1142 /// Given operands for an SDiv, see if we can fold the result.
1143 /// If not, this returns null.
1144 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1145                                unsigned MaxRecurse) {
1146   // If two operands are negated and no signed overflow, return -1.
1147   if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true))
1148     return Constant::getAllOnesValue(Op0->getType());
1149 
1150   return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse);
1151 }
1152 
1153 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1154   return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit);
1155 }
1156 
1157 /// Given operands for a UDiv, see if we can fold the result.
1158 /// If not, this returns null.
1159 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1160                                unsigned MaxRecurse) {
1161   return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse);
1162 }
1163 
1164 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1165   return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit);
1166 }
1167 
1168 /// Given operands for an SRem, see if we can fold the result.
1169 /// If not, this returns null.
1170 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1171                                unsigned MaxRecurse) {
1172   // If the divisor is 0, the result is undefined, so assume the divisor is -1.
1173   // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
1174   Value *X;
1175   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1176     return ConstantInt::getNullValue(Op0->getType());
1177 
1178   // If the two operands are negated, return 0.
1179   if (isKnownNegation(Op0, Op1))
1180     return ConstantInt::getNullValue(Op0->getType());
1181 
1182   return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
1183 }
1184 
1185 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1186   return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit);
1187 }
1188 
1189 /// Given operands for a URem, see if we can fold the result.
1190 /// If not, this returns null.
1191 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1192                                unsigned MaxRecurse) {
1193   return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
1194 }
1195 
1196 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1197   return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit);
1198 }
1199 
1200 /// Returns true if a shift by \c Amount always yields undef.
1201 static bool isUndefShift(Value *Amount, const SimplifyQuery &Q) {
1202   Constant *C = dyn_cast<Constant>(Amount);
1203   if (!C)
1204     return false;
1205 
1206   // X shift by undef -> undef because it may shift by the bitwidth.
1207   if (Q.isUndefValue(C))
1208     return true;
1209 
1210   // Shifting by the bitwidth or more is undefined.
1211   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1212     if (CI->getValue().getLimitedValue() >=
1213         CI->getType()->getScalarSizeInBits())
1214       return true;
1215 
1216   // If all lanes of a vector shift are undefined the whole shift is.
1217   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1218     for (unsigned I = 0,
1219                   E = cast<FixedVectorType>(C->getType())->getNumElements();
1220          I != E; ++I)
1221       if (!isUndefShift(C->getAggregateElement(I), Q))
1222         return false;
1223     return true;
1224   }
1225 
1226   return false;
1227 }
1228 
1229 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1230 /// If not, this returns null.
1231 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
1232                             Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) {
1233   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1234     return C;
1235 
1236   // 0 shift by X -> 0
1237   if (match(Op0, m_Zero()))
1238     return Constant::getNullValue(Op0->getType());
1239 
1240   // X shift by 0 -> X
1241   // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
1242   // would be poison.
1243   Value *X;
1244   if (match(Op1, m_Zero()) ||
1245       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1246     return Op0;
1247 
1248   // Fold undefined shifts.
1249   if (isUndefShift(Op1, Q))
1250     return UndefValue::get(Op0->getType());
1251 
1252   // If the operation is with the result of a select instruction, check whether
1253   // operating on either branch of the select always yields the same value.
1254   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1255     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1256       return V;
1257 
1258   // If the operation is with the result of a phi instruction, check whether
1259   // operating on all incoming values of the phi always yields the same value.
1260   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1261     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1262       return V;
1263 
1264   // If any bits in the shift amount make that value greater than or equal to
1265   // the number of bits in the type, the shift is undefined.
1266   KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1267   if (Known.One.getLimitedValue() >= Known.getBitWidth())
1268     return UndefValue::get(Op0->getType());
1269 
1270   // If all valid bits in the shift amount are known zero, the first operand is
1271   // unchanged.
1272   unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth());
1273   if (Known.countMinTrailingZeros() >= NumValidShiftBits)
1274     return Op0;
1275 
1276   return nullptr;
1277 }
1278 
1279 /// Given operands for an Shl, LShr or AShr, see if we can
1280 /// fold the result.  If not, this returns null.
1281 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
1282                                  Value *Op1, bool isExact, const SimplifyQuery &Q,
1283                                  unsigned MaxRecurse) {
1284   if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
1285     return V;
1286 
1287   // X >> X -> 0
1288   if (Op0 == Op1)
1289     return Constant::getNullValue(Op0->getType());
1290 
1291   // undef >> X -> 0
1292   // undef >> X -> undef (if it's exact)
1293   if (Q.isUndefValue(Op0))
1294     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1295 
1296   // The low bit cannot be shifted out of an exact shift if it is set.
1297   if (isExact) {
1298     KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1299     if (Op0Known.One[0])
1300       return Op0;
1301   }
1302 
1303   return nullptr;
1304 }
1305 
1306 /// Given operands for an Shl, see if we can fold the result.
1307 /// If not, this returns null.
1308 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1309                               const SimplifyQuery &Q, unsigned MaxRecurse) {
1310   if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
1311     return V;
1312 
1313   // undef << X -> 0
1314   // undef << X -> undef if (if it's NSW/NUW)
1315   if (Q.isUndefValue(Op0))
1316     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1317 
1318   // (X >> A) << A -> X
1319   Value *X;
1320   if (Q.IIQ.UseInstrInfo &&
1321       match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1322     return X;
1323 
1324   // shl nuw i8 C, %x  ->  C  iff C has sign bit set.
1325   if (isNUW && match(Op0, m_Negative()))
1326     return Op0;
1327   // NOTE: could use computeKnownBits() / LazyValueInfo,
1328   // but the cost-benefit analysis suggests it isn't worth it.
1329 
1330   return nullptr;
1331 }
1332 
1333 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1334                              const SimplifyQuery &Q) {
1335   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
1336 }
1337 
1338 /// Given operands for an LShr, see if we can fold the result.
1339 /// If not, this returns null.
1340 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1341                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1342   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1343                                     MaxRecurse))
1344       return V;
1345 
1346   // (X << A) >> A -> X
1347   Value *X;
1348   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1349     return X;
1350 
1351   // ((X << A) | Y) >> A -> X  if effective width of Y is not larger than A.
1352   // We can return X as we do in the above case since OR alters no bits in X.
1353   // SimplifyDemandedBits in InstCombine can do more general optimization for
1354   // bit manipulation. This pattern aims to provide opportunities for other
1355   // optimizers by supporting a simple but common case in InstSimplify.
1356   Value *Y;
1357   const APInt *ShRAmt, *ShLAmt;
1358   if (match(Op1, m_APInt(ShRAmt)) &&
1359       match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) &&
1360       *ShRAmt == *ShLAmt) {
1361     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1362     const unsigned Width = Op0->getType()->getScalarSizeInBits();
1363     const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
1364     if (ShRAmt->uge(EffWidthY))
1365       return X;
1366   }
1367 
1368   return nullptr;
1369 }
1370 
1371 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1372                               const SimplifyQuery &Q) {
1373   return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1374 }
1375 
1376 /// Given operands for an AShr, see if we can fold the result.
1377 /// If not, this returns null.
1378 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1379                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1380   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1381                                     MaxRecurse))
1382     return V;
1383 
1384   // all ones >>a X -> -1
1385   // Do not return Op0 because it may contain undef elements if it's a vector.
1386   if (match(Op0, m_AllOnes()))
1387     return Constant::getAllOnesValue(Op0->getType());
1388 
1389   // (X << A) >> A -> X
1390   Value *X;
1391   if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1392     return X;
1393 
1394   // Arithmetic shifting an all-sign-bit value is a no-op.
1395   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1396   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1397     return Op0;
1398 
1399   return nullptr;
1400 }
1401 
1402 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1403                               const SimplifyQuery &Q) {
1404   return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1405 }
1406 
1407 /// Commuted variants are assumed to be handled by calling this function again
1408 /// with the parameters swapped.
1409 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1410                                          ICmpInst *UnsignedICmp, bool IsAnd,
1411                                          const SimplifyQuery &Q) {
1412   Value *X, *Y;
1413 
1414   ICmpInst::Predicate EqPred;
1415   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1416       !ICmpInst::isEquality(EqPred))
1417     return nullptr;
1418 
1419   ICmpInst::Predicate UnsignedPred;
1420 
1421   Value *A, *B;
1422   // Y = (A - B);
1423   if (match(Y, m_Sub(m_Value(A), m_Value(B)))) {
1424     if (match(UnsignedICmp,
1425               m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) &&
1426         ICmpInst::isUnsigned(UnsignedPred)) {
1427       // A >=/<= B || (A - B) != 0  <-->  true
1428       if ((UnsignedPred == ICmpInst::ICMP_UGE ||
1429            UnsignedPred == ICmpInst::ICMP_ULE) &&
1430           EqPred == ICmpInst::ICMP_NE && !IsAnd)
1431         return ConstantInt::getTrue(UnsignedICmp->getType());
1432       // A </> B && (A - B) == 0  <-->  false
1433       if ((UnsignedPred == ICmpInst::ICMP_ULT ||
1434            UnsignedPred == ICmpInst::ICMP_UGT) &&
1435           EqPred == ICmpInst::ICMP_EQ && IsAnd)
1436         return ConstantInt::getFalse(UnsignedICmp->getType());
1437 
1438       // A </> B && (A - B) != 0  <-->  A </> B
1439       // A </> B || (A - B) != 0  <-->  (A - B) != 0
1440       if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT ||
1441                                           UnsignedPred == ICmpInst::ICMP_UGT))
1442         return IsAnd ? UnsignedICmp : ZeroICmp;
1443 
1444       // A <=/>= B && (A - B) == 0  <-->  (A - B) == 0
1445       // A <=/>= B || (A - B) == 0  <-->  A <=/>= B
1446       if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE ||
1447                                           UnsignedPred == ICmpInst::ICMP_UGE))
1448         return IsAnd ? ZeroICmp : UnsignedICmp;
1449     }
1450 
1451     // Given  Y = (A - B)
1452     //   Y >= A && Y != 0  --> Y >= A  iff B != 0
1453     //   Y <  A || Y == 0  --> Y <  A  iff B != 0
1454     if (match(UnsignedICmp,
1455               m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) {
1456       if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd &&
1457           EqPred == ICmpInst::ICMP_NE &&
1458           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1459         return UnsignedICmp;
1460       if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd &&
1461           EqPred == ICmpInst::ICMP_EQ &&
1462           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1463         return UnsignedICmp;
1464     }
1465   }
1466 
1467   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1468       ICmpInst::isUnsigned(UnsignedPred))
1469     ;
1470   else if (match(UnsignedICmp,
1471                  m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) &&
1472            ICmpInst::isUnsigned(UnsignedPred))
1473     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1474   else
1475     return nullptr;
1476 
1477   // X > Y && Y == 0  -->  Y == 0  iff X != 0
1478   // X > Y || Y == 0  -->  X > Y   iff X != 0
1479   if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1480       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1481     return IsAnd ? ZeroICmp : UnsignedICmp;
1482 
1483   // X <= Y && Y != 0  -->  X <= Y  iff X != 0
1484   // X <= Y || Y != 0  -->  Y != 0  iff X != 0
1485   if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
1486       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1487     return IsAnd ? UnsignedICmp : ZeroICmp;
1488 
1489   // The transforms below here are expected to be handled more generally with
1490   // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's
1491   // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap,
1492   // these are candidates for removal.
1493 
1494   // X < Y && Y != 0  -->  X < Y
1495   // X < Y || Y != 0  -->  Y != 0
1496   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1497     return IsAnd ? UnsignedICmp : ZeroICmp;
1498 
1499   // X >= Y && Y == 0  -->  Y == 0
1500   // X >= Y || Y == 0  -->  X >= Y
1501   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ)
1502     return IsAnd ? ZeroICmp : UnsignedICmp;
1503 
1504   // X < Y && Y == 0  -->  false
1505   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1506       IsAnd)
1507     return getFalse(UnsignedICmp->getType());
1508 
1509   // X >= Y || Y != 0  -->  true
1510   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE &&
1511       !IsAnd)
1512     return getTrue(UnsignedICmp->getType());
1513 
1514   return nullptr;
1515 }
1516 
1517 /// Commuted variants are assumed to be handled by calling this function again
1518 /// with the parameters swapped.
1519 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1520   ICmpInst::Predicate Pred0, Pred1;
1521   Value *A ,*B;
1522   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1523       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1524     return nullptr;
1525 
1526   // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
1527   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1528   // can eliminate Op1 from this 'and'.
1529   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1530     return Op0;
1531 
1532   // Check for any combination of predicates that are guaranteed to be disjoint.
1533   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1534       (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
1535       (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
1536       (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
1537     return getFalse(Op0->getType());
1538 
1539   return nullptr;
1540 }
1541 
1542 /// Commuted variants are assumed to be handled by calling this function again
1543 /// with the parameters swapped.
1544 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1545   ICmpInst::Predicate Pred0, Pred1;
1546   Value *A ,*B;
1547   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1548       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1549     return nullptr;
1550 
1551   // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
1552   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1553   // can eliminate Op0 from this 'or'.
1554   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1555     return Op1;
1556 
1557   // Check for any combination of predicates that cover the entire range of
1558   // possibilities.
1559   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1560       (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
1561       (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
1562       (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
1563     return getTrue(Op0->getType());
1564 
1565   return nullptr;
1566 }
1567 
1568 /// Test if a pair of compares with a shared operand and 2 constants has an
1569 /// empty set intersection, full set union, or if one compare is a superset of
1570 /// the other.
1571 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
1572                                                 bool IsAnd) {
1573   // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
1574   if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
1575     return nullptr;
1576 
1577   const APInt *C0, *C1;
1578   if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
1579       !match(Cmp1->getOperand(1), m_APInt(C1)))
1580     return nullptr;
1581 
1582   auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
1583   auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
1584 
1585   // For and-of-compares, check if the intersection is empty:
1586   // (icmp X, C0) && (icmp X, C1) --> empty set --> false
1587   if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1588     return getFalse(Cmp0->getType());
1589 
1590   // For or-of-compares, check if the union is full:
1591   // (icmp X, C0) || (icmp X, C1) --> full set --> true
1592   if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1593     return getTrue(Cmp0->getType());
1594 
1595   // Is one range a superset of the other?
1596   // If this is and-of-compares, take the smaller set:
1597   // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
1598   // If this is or-of-compares, take the larger set:
1599   // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
1600   if (Range0.contains(Range1))
1601     return IsAnd ? Cmp1 : Cmp0;
1602   if (Range1.contains(Range0))
1603     return IsAnd ? Cmp0 : Cmp1;
1604 
1605   return nullptr;
1606 }
1607 
1608 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1,
1609                                            bool IsAnd) {
1610   ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate();
1611   if (!match(Cmp0->getOperand(1), m_Zero()) ||
1612       !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1)
1613     return nullptr;
1614 
1615   if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ))
1616     return nullptr;
1617 
1618   // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
1619   Value *X = Cmp0->getOperand(0);
1620   Value *Y = Cmp1->getOperand(0);
1621 
1622   // If one of the compares is a masked version of a (not) null check, then
1623   // that compare implies the other, so we eliminate the other. Optionally, look
1624   // through a pointer-to-int cast to match a null check of a pointer type.
1625 
1626   // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
1627   // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
1628   // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
1629   // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
1630   if (match(Y, m_c_And(m_Specific(X), m_Value())) ||
1631       match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value())))
1632     return Cmp1;
1633 
1634   // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
1635   // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
1636   // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
1637   // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
1638   if (match(X, m_c_And(m_Specific(Y), m_Value())) ||
1639       match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value())))
1640     return Cmp0;
1641 
1642   return nullptr;
1643 }
1644 
1645 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1646                                         const InstrInfoQuery &IIQ) {
1647   // (icmp (add V, C0), C1) & (icmp V, C0)
1648   ICmpInst::Predicate Pred0, Pred1;
1649   const APInt *C0, *C1;
1650   Value *V;
1651   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1652     return nullptr;
1653 
1654   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1655     return nullptr;
1656 
1657   auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0));
1658   if (AddInst->getOperand(1) != Op1->getOperand(1))
1659     return nullptr;
1660 
1661   Type *ITy = Op0->getType();
1662   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1663   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1664 
1665   const APInt Delta = *C1 - *C0;
1666   if (C0->isStrictlyPositive()) {
1667     if (Delta == 2) {
1668       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1669         return getFalse(ITy);
1670       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1671         return getFalse(ITy);
1672     }
1673     if (Delta == 1) {
1674       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1675         return getFalse(ITy);
1676       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1677         return getFalse(ITy);
1678     }
1679   }
1680   if (C0->getBoolValue() && isNUW) {
1681     if (Delta == 2)
1682       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1683         return getFalse(ITy);
1684     if (Delta == 1)
1685       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1686         return getFalse(ITy);
1687   }
1688 
1689   return nullptr;
1690 }
1691 
1692 /// Try to eliminate compares with signed or unsigned min/max constants.
1693 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1,
1694                                                  bool IsAnd) {
1695   // Canonicalize an equality compare as Cmp0.
1696   if (Cmp1->isEquality())
1697     std::swap(Cmp0, Cmp1);
1698   if (!Cmp0->isEquality())
1699     return nullptr;
1700 
1701   // The non-equality compare must include a common operand (X). Canonicalize
1702   // the common operand as operand 0 (the predicate is swapped if the common
1703   // operand was operand 1).
1704   ICmpInst::Predicate Pred0 = Cmp0->getPredicate();
1705   Value *X = Cmp0->getOperand(0);
1706   ICmpInst::Predicate Pred1;
1707   bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value()));
1708   if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value())))
1709     return nullptr;
1710   if (ICmpInst::isEquality(Pred1))
1711     return nullptr;
1712 
1713   // The equality compare must be against a constant. Flip bits if we matched
1714   // a bitwise not. Convert a null pointer constant to an integer zero value.
1715   APInt MinMaxC;
1716   const APInt *C;
1717   if (match(Cmp0->getOperand(1), m_APInt(C)))
1718     MinMaxC = HasNotOp ? ~*C : *C;
1719   else if (isa<ConstantPointerNull>(Cmp0->getOperand(1)))
1720     MinMaxC = APInt::getNullValue(8);
1721   else
1722     return nullptr;
1723 
1724   // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1.
1725   if (!IsAnd) {
1726     Pred0 = ICmpInst::getInversePredicate(Pred0);
1727     Pred1 = ICmpInst::getInversePredicate(Pred1);
1728   }
1729 
1730   // Normalize to unsigned compare and unsigned min/max value.
1731   // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255
1732   if (ICmpInst::isSigned(Pred1)) {
1733     Pred1 = ICmpInst::getUnsignedPredicate(Pred1);
1734     MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth());
1735   }
1736 
1737   // (X != MAX) && (X < Y) --> X < Y
1738   // (X == MAX) || (X >= Y) --> X >= Y
1739   if (MinMaxC.isMaxValue())
1740     if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT)
1741       return Cmp1;
1742 
1743   // (X != MIN) && (X > Y) -->  X > Y
1744   // (X == MIN) || (X <= Y) --> X <= Y
1745   if (MinMaxC.isMinValue())
1746     if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT)
1747       return Cmp1;
1748 
1749   return nullptr;
1750 }
1751 
1752 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1753                                  const SimplifyQuery &Q) {
1754   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q))
1755     return X;
1756   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q))
1757     return X;
1758 
1759   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
1760     return X;
1761   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
1762     return X;
1763 
1764   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
1765     return X;
1766 
1767   if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true))
1768     return X;
1769 
1770   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true))
1771     return X;
1772 
1773   if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1774     return X;
1775   if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1776     return X;
1777 
1778   return nullptr;
1779 }
1780 
1781 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1782                                        const InstrInfoQuery &IIQ) {
1783   // (icmp (add V, C0), C1) | (icmp V, C0)
1784   ICmpInst::Predicate Pred0, Pred1;
1785   const APInt *C0, *C1;
1786   Value *V;
1787   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1788     return nullptr;
1789 
1790   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1791     return nullptr;
1792 
1793   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1794   if (AddInst->getOperand(1) != Op1->getOperand(1))
1795     return nullptr;
1796 
1797   Type *ITy = Op0->getType();
1798   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1799   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1800 
1801   const APInt Delta = *C1 - *C0;
1802   if (C0->isStrictlyPositive()) {
1803     if (Delta == 2) {
1804       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1805         return getTrue(ITy);
1806       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1807         return getTrue(ITy);
1808     }
1809     if (Delta == 1) {
1810       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1811         return getTrue(ITy);
1812       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1813         return getTrue(ITy);
1814     }
1815   }
1816   if (C0->getBoolValue() && isNUW) {
1817     if (Delta == 2)
1818       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1819         return getTrue(ITy);
1820     if (Delta == 1)
1821       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1822         return getTrue(ITy);
1823   }
1824 
1825   return nullptr;
1826 }
1827 
1828 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1829                                 const SimplifyQuery &Q) {
1830   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q))
1831     return X;
1832   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q))
1833     return X;
1834 
1835   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
1836     return X;
1837   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
1838     return X;
1839 
1840   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
1841     return X;
1842 
1843   if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false))
1844     return X;
1845 
1846   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false))
1847     return X;
1848 
1849   if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1850     return X;
1851   if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1852     return X;
1853 
1854   return nullptr;
1855 }
1856 
1857 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI,
1858                                    FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
1859   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1860   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1861   if (LHS0->getType() != RHS0->getType())
1862     return nullptr;
1863 
1864   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1865   if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1866       (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
1867     // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
1868     // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
1869     // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
1870     // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
1871     // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
1872     // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
1873     // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
1874     // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
1875     if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) ||
1876         (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1)))
1877       return RHS;
1878 
1879     // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
1880     // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
1881     // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
1882     // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
1883     // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
1884     // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
1885     // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
1886     // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
1887     if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) ||
1888         (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1)))
1889       return LHS;
1890   }
1891 
1892   return nullptr;
1893 }
1894 
1895 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q,
1896                                   Value *Op0, Value *Op1, bool IsAnd) {
1897   // Look through casts of the 'and' operands to find compares.
1898   auto *Cast0 = dyn_cast<CastInst>(Op0);
1899   auto *Cast1 = dyn_cast<CastInst>(Op1);
1900   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1901       Cast0->getSrcTy() == Cast1->getSrcTy()) {
1902     Op0 = Cast0->getOperand(0);
1903     Op1 = Cast1->getOperand(0);
1904   }
1905 
1906   Value *V = nullptr;
1907   auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
1908   auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
1909   if (ICmp0 && ICmp1)
1910     V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q)
1911               : simplifyOrOfICmps(ICmp0, ICmp1, Q);
1912 
1913   auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
1914   auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
1915   if (FCmp0 && FCmp1)
1916     V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd);
1917 
1918   if (!V)
1919     return nullptr;
1920   if (!Cast0)
1921     return V;
1922 
1923   // If we looked through casts, we can only handle a constant simplification
1924   // because we are not allowed to create a cast instruction here.
1925   if (auto *C = dyn_cast<Constant>(V))
1926     return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
1927 
1928   return nullptr;
1929 }
1930 
1931 /// Check that the Op1 is in expected form, i.e.:
1932 ///   %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???)
1933 ///   %Op1 = extractvalue { i4, i1 } %Agg, 1
1934 static bool omitCheckForZeroBeforeMulWithOverflowInternal(Value *Op1,
1935                                                           Value *X) {
1936   auto *Extract = dyn_cast<ExtractValueInst>(Op1);
1937   // We should only be extracting the overflow bit.
1938   if (!Extract || !Extract->getIndices().equals(1))
1939     return false;
1940   Value *Agg = Extract->getAggregateOperand();
1941   // This should be a multiplication-with-overflow intrinsic.
1942   if (!match(Agg, m_CombineOr(m_Intrinsic<Intrinsic::umul_with_overflow>(),
1943                               m_Intrinsic<Intrinsic::smul_with_overflow>())))
1944     return false;
1945   // One of its multipliers should be the value we checked for zero before.
1946   if (!match(Agg, m_CombineOr(m_Argument<0>(m_Specific(X)),
1947                               m_Argument<1>(m_Specific(X)))))
1948     return false;
1949   return true;
1950 }
1951 
1952 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some
1953 /// other form of check, e.g. one that was using division; it may have been
1954 /// guarded against division-by-zero. We can drop that check now.
1955 /// Look for:
1956 ///   %Op0 = icmp ne i4 %X, 0
1957 ///   %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???)
1958 ///   %Op1 = extractvalue { i4, i1 } %Agg, 1
1959 ///   %??? = and i1 %Op0, %Op1
1960 /// We can just return  %Op1
1961 static Value *omitCheckForZeroBeforeMulWithOverflow(Value *Op0, Value *Op1) {
1962   ICmpInst::Predicate Pred;
1963   Value *X;
1964   if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) ||
1965       Pred != ICmpInst::Predicate::ICMP_NE)
1966     return nullptr;
1967   // Is Op1 in expected form?
1968   if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X))
1969     return nullptr;
1970   // Can omit 'and', and just return the overflow bit.
1971   return Op1;
1972 }
1973 
1974 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some
1975 /// other form of check, e.g. one that was using division; it may have been
1976 /// guarded against division-by-zero. We can drop that check now.
1977 /// Look for:
1978 ///   %Op0 = icmp eq i4 %X, 0
1979 ///   %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???)
1980 ///   %Op1 = extractvalue { i4, i1 } %Agg, 1
1981 ///   %NotOp1 = xor i1 %Op1, true
1982 ///   %or = or i1 %Op0, %NotOp1
1983 /// We can just return  %NotOp1
1984 static Value *omitCheckForZeroBeforeInvertedMulWithOverflow(Value *Op0,
1985                                                             Value *NotOp1) {
1986   ICmpInst::Predicate Pred;
1987   Value *X;
1988   if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) ||
1989       Pred != ICmpInst::Predicate::ICMP_EQ)
1990     return nullptr;
1991   // We expect the other hand of an 'or' to be a 'not'.
1992   Value *Op1;
1993   if (!match(NotOp1, m_Not(m_Value(Op1))))
1994     return nullptr;
1995   // Is Op1 in expected form?
1996   if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X))
1997     return nullptr;
1998   // Can omit 'and', and just return the inverted overflow bit.
1999   return NotOp1;
2000 }
2001 
2002 /// Given operands for an And, see if we can fold the result.
2003 /// If not, this returns null.
2004 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2005                               unsigned MaxRecurse) {
2006   if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
2007     return C;
2008 
2009   // X & undef -> 0
2010   if (Q.isUndefValue(Op1))
2011     return Constant::getNullValue(Op0->getType());
2012 
2013   // X & X = X
2014   if (Op0 == Op1)
2015     return Op0;
2016 
2017   // X & 0 = 0
2018   if (match(Op1, m_Zero()))
2019     return Constant::getNullValue(Op0->getType());
2020 
2021   // X & -1 = X
2022   if (match(Op1, m_AllOnes()))
2023     return Op0;
2024 
2025   // A & ~A  =  ~A & A  =  0
2026   if (match(Op0, m_Not(m_Specific(Op1))) ||
2027       match(Op1, m_Not(m_Specific(Op0))))
2028     return Constant::getNullValue(Op0->getType());
2029 
2030   // (A | ?) & A = A
2031   if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
2032     return Op1;
2033 
2034   // A & (A | ?) = A
2035   if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
2036     return Op0;
2037 
2038   // A mask that only clears known zeros of a shifted value is a no-op.
2039   Value *X;
2040   const APInt *Mask;
2041   const APInt *ShAmt;
2042   if (match(Op1, m_APInt(Mask))) {
2043     // If all bits in the inverted and shifted mask are clear:
2044     // and (shl X, ShAmt), Mask --> shl X, ShAmt
2045     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
2046         (~(*Mask)).lshr(*ShAmt).isNullValue())
2047       return Op0;
2048 
2049     // If all bits in the inverted and shifted mask are clear:
2050     // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
2051     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
2052         (~(*Mask)).shl(*ShAmt).isNullValue())
2053       return Op0;
2054   }
2055 
2056   // If we have a multiplication overflow check that is being 'and'ed with a
2057   // check that one of the multipliers is not zero, we can omit the 'and', and
2058   // only keep the overflow check.
2059   if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op0, Op1))
2060     return V;
2061   if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op1, Op0))
2062     return V;
2063 
2064   // A & (-A) = A if A is a power of two or zero.
2065   if (match(Op0, m_Neg(m_Specific(Op1))) ||
2066       match(Op1, m_Neg(m_Specific(Op0)))) {
2067     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2068                                Q.DT))
2069       return Op0;
2070     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2071                                Q.DT))
2072       return Op1;
2073   }
2074 
2075   // This is a similar pattern used for checking if a value is a power-of-2:
2076   // (A - 1) & A --> 0 (if A is a power-of-2 or 0)
2077   // A & (A - 1) --> 0 (if A is a power-of-2 or 0)
2078   if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) &&
2079       isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2080     return Constant::getNullValue(Op1->getType());
2081   if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) &&
2082       isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2083     return Constant::getNullValue(Op0->getType());
2084 
2085   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true))
2086     return V;
2087 
2088   // Try some generic simplifications for associative operations.
2089   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
2090                                           MaxRecurse))
2091     return V;
2092 
2093   // And distributes over Or.  Try some generic simplifications based on this.
2094   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2095                                         Instruction::Or, Q, MaxRecurse))
2096     return V;
2097 
2098   // And distributes over Xor.  Try some generic simplifications based on this.
2099   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2100                                         Instruction::Xor, Q, MaxRecurse))
2101     return V;
2102 
2103   // If the operation is with the result of a select instruction, check whether
2104   // operating on either branch of the select always yields the same value.
2105   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
2106     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
2107                                          MaxRecurse))
2108       return V;
2109 
2110   // If the operation is with the result of a phi instruction, check whether
2111   // operating on all incoming values of the phi always yields the same value.
2112   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2113     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
2114                                       MaxRecurse))
2115       return V;
2116 
2117   // Assuming the effective width of Y is not larger than A, i.e. all bits
2118   // from X and Y are disjoint in (X << A) | Y,
2119   // if the mask of this AND op covers all bits of X or Y, while it covers
2120   // no bits from the other, we can bypass this AND op. E.g.,
2121   // ((X << A) | Y) & Mask -> Y,
2122   //     if Mask = ((1 << effective_width_of(Y)) - 1)
2123   // ((X << A) | Y) & Mask -> X << A,
2124   //     if Mask = ((1 << effective_width_of(X)) - 1) << A
2125   // SimplifyDemandedBits in InstCombine can optimize the general case.
2126   // This pattern aims to help other passes for a common case.
2127   Value *Y, *XShifted;
2128   if (match(Op1, m_APInt(Mask)) &&
2129       match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)),
2130                                      m_Value(XShifted)),
2131                         m_Value(Y)))) {
2132     const unsigned Width = Op0->getType()->getScalarSizeInBits();
2133     const unsigned ShftCnt = ShAmt->getLimitedValue(Width);
2134     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2135     const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
2136     if (EffWidthY <= ShftCnt) {
2137       const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI,
2138                                                 Q.DT);
2139       const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros();
2140       const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY);
2141       const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt;
2142       // If the mask is extracting all bits from X or Y as is, we can skip
2143       // this AND op.
2144       if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask))
2145         return Y;
2146       if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask))
2147         return XShifted;
2148     }
2149   }
2150 
2151   return nullptr;
2152 }
2153 
2154 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2155   return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit);
2156 }
2157 
2158 /// Given operands for an Or, see if we can fold the result.
2159 /// If not, this returns null.
2160 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2161                              unsigned MaxRecurse) {
2162   if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
2163     return C;
2164 
2165   // X | undef -> -1
2166   // X | -1 = -1
2167   // Do not return Op1 because it may contain undef elements if it's a vector.
2168   if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes()))
2169     return Constant::getAllOnesValue(Op0->getType());
2170 
2171   // X | X = X
2172   // X | 0 = X
2173   if (Op0 == Op1 || match(Op1, m_Zero()))
2174     return Op0;
2175 
2176   // A | ~A  =  ~A | A  =  -1
2177   if (match(Op0, m_Not(m_Specific(Op1))) ||
2178       match(Op1, m_Not(m_Specific(Op0))))
2179     return Constant::getAllOnesValue(Op0->getType());
2180 
2181   // (A & ?) | A = A
2182   if (match(Op0, m_c_And(m_Specific(Op1), m_Value())))
2183     return Op1;
2184 
2185   // A | (A & ?) = A
2186   if (match(Op1, m_c_And(m_Specific(Op0), m_Value())))
2187     return Op0;
2188 
2189   // ~(A & ?) | A = -1
2190   if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
2191     return Constant::getAllOnesValue(Op1->getType());
2192 
2193   // A | ~(A & ?) = -1
2194   if (match(Op1, m_Not(m_c_And(m_Specific(Op0), m_Value()))))
2195     return Constant::getAllOnesValue(Op0->getType());
2196 
2197   Value *A, *B;
2198   // (A & ~B) | (A ^ B) -> (A ^ B)
2199   // (~B & A) | (A ^ B) -> (A ^ B)
2200   // (A & ~B) | (B ^ A) -> (B ^ A)
2201   // (~B & A) | (B ^ A) -> (B ^ A)
2202   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2203       (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
2204        match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
2205     return Op1;
2206 
2207   // Commute the 'or' operands.
2208   // (A ^ B) | (A & ~B) -> (A ^ B)
2209   // (A ^ B) | (~B & A) -> (A ^ B)
2210   // (B ^ A) | (A & ~B) -> (B ^ A)
2211   // (B ^ A) | (~B & A) -> (B ^ A)
2212   if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
2213       (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
2214        match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
2215     return Op0;
2216 
2217   // (A & B) | (~A ^ B) -> (~A ^ B)
2218   // (B & A) | (~A ^ B) -> (~A ^ B)
2219   // (A & B) | (B ^ ~A) -> (B ^ ~A)
2220   // (B & A) | (B ^ ~A) -> (B ^ ~A)
2221   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2222       (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
2223        match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
2224     return Op1;
2225 
2226   // (~A ^ B) | (A & B) -> (~A ^ B)
2227   // (~A ^ B) | (B & A) -> (~A ^ B)
2228   // (B ^ ~A) | (A & B) -> (B ^ ~A)
2229   // (B ^ ~A) | (B & A) -> (B ^ ~A)
2230   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
2231       (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
2232        match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
2233     return Op0;
2234 
2235   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false))
2236     return V;
2237 
2238   // If we have a multiplication overflow check that is being 'and'ed with a
2239   // check that one of the multipliers is not zero, we can omit the 'and', and
2240   // only keep the overflow check.
2241   if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op0, Op1))
2242     return V;
2243   if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op1, Op0))
2244     return V;
2245 
2246   // Try some generic simplifications for associative operations.
2247   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
2248                                           MaxRecurse))
2249     return V;
2250 
2251   // Or distributes over And.  Try some generic simplifications based on this.
2252   if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1,
2253                                         Instruction::And, Q, MaxRecurse))
2254     return V;
2255 
2256   // If the operation is with the result of a select instruction, check whether
2257   // operating on either branch of the select always yields the same value.
2258   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
2259     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
2260                                          MaxRecurse))
2261       return V;
2262 
2263   // (A & C1)|(B & C2)
2264   const APInt *C1, *C2;
2265   if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
2266       match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
2267     if (*C1 == ~*C2) {
2268       // (A & C1)|(B & C2)
2269       // If we have: ((V + N) & C1) | (V & C2)
2270       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2271       // replace with V+N.
2272       Value *N;
2273       if (C2->isMask() && // C2 == 0+1+
2274           match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
2275         // Add commutes, try both ways.
2276         if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2277           return A;
2278       }
2279       // Or commutes, try both ways.
2280       if (C1->isMask() &&
2281           match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
2282         // Add commutes, try both ways.
2283         if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2284           return B;
2285       }
2286     }
2287   }
2288 
2289   // If the operation is with the result of a phi instruction, check whether
2290   // operating on all incoming values of the phi always yields the same value.
2291   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2292     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2293       return V;
2294 
2295   return nullptr;
2296 }
2297 
2298 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2299   return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit);
2300 }
2301 
2302 /// Given operands for a Xor, see if we can fold the result.
2303 /// If not, this returns null.
2304 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2305                               unsigned MaxRecurse) {
2306   if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
2307     return C;
2308 
2309   // A ^ undef -> undef
2310   if (Q.isUndefValue(Op1))
2311     return Op1;
2312 
2313   // A ^ 0 = A
2314   if (match(Op1, m_Zero()))
2315     return Op0;
2316 
2317   // A ^ A = 0
2318   if (Op0 == Op1)
2319     return Constant::getNullValue(Op0->getType());
2320 
2321   // A ^ ~A  =  ~A ^ A  =  -1
2322   if (match(Op0, m_Not(m_Specific(Op1))) ||
2323       match(Op1, m_Not(m_Specific(Op0))))
2324     return Constant::getAllOnesValue(Op0->getType());
2325 
2326   // Try some generic simplifications for associative operations.
2327   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
2328                                           MaxRecurse))
2329     return V;
2330 
2331   // Threading Xor over selects and phi nodes is pointless, so don't bother.
2332   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
2333   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
2334   // only if B and C are equal.  If B and C are equal then (since we assume
2335   // that operands have already been simplified) "select(cond, B, C)" should
2336   // have been simplified to the common value of B and C already.  Analysing
2337   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
2338   // for threading over phi nodes.
2339 
2340   return nullptr;
2341 }
2342 
2343 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2344   return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit);
2345 }
2346 
2347 
2348 static Type *GetCompareTy(Value *Op) {
2349   return CmpInst::makeCmpResultType(Op->getType());
2350 }
2351 
2352 /// Rummage around inside V looking for something equivalent to the comparison
2353 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
2354 /// Helper function for analyzing max/min idioms.
2355 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
2356                                          Value *LHS, Value *RHS) {
2357   SelectInst *SI = dyn_cast<SelectInst>(V);
2358   if (!SI)
2359     return nullptr;
2360   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2361   if (!Cmp)
2362     return nullptr;
2363   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2364   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
2365     return Cmp;
2366   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
2367       LHS == CmpRHS && RHS == CmpLHS)
2368     return Cmp;
2369   return nullptr;
2370 }
2371 
2372 // A significant optimization not implemented here is assuming that alloca
2373 // addresses are not equal to incoming argument values. They don't *alias*,
2374 // as we say, but that doesn't mean they aren't equal, so we take a
2375 // conservative approach.
2376 //
2377 // This is inspired in part by C++11 5.10p1:
2378 //   "Two pointers of the same type compare equal if and only if they are both
2379 //    null, both point to the same function, or both represent the same
2380 //    address."
2381 //
2382 // This is pretty permissive.
2383 //
2384 // It's also partly due to C11 6.5.9p6:
2385 //   "Two pointers compare equal if and only if both are null pointers, both are
2386 //    pointers to the same object (including a pointer to an object and a
2387 //    subobject at its beginning) or function, both are pointers to one past the
2388 //    last element of the same array object, or one is a pointer to one past the
2389 //    end of one array object and the other is a pointer to the start of a
2390 //    different array object that happens to immediately follow the first array
2391 //    object in the address space.)
2392 //
2393 // C11's version is more restrictive, however there's no reason why an argument
2394 // couldn't be a one-past-the-end value for a stack object in the caller and be
2395 // equal to the beginning of a stack object in the callee.
2396 //
2397 // If the C and C++ standards are ever made sufficiently restrictive in this
2398 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2399 // this optimization.
2400 static Constant *
2401 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI,
2402                    const DominatorTree *DT, CmpInst::Predicate Pred,
2403                    AssumptionCache *AC, const Instruction *CxtI,
2404                    const InstrInfoQuery &IIQ, Value *LHS, Value *RHS) {
2405   // First, skip past any trivial no-ops.
2406   LHS = LHS->stripPointerCasts();
2407   RHS = RHS->stripPointerCasts();
2408 
2409   // A non-null pointer is not equal to a null pointer.
2410   if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) &&
2411       llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr,
2412                            IIQ.UseInstrInfo))
2413     return ConstantInt::get(GetCompareTy(LHS),
2414                             !CmpInst::isTrueWhenEqual(Pred));
2415 
2416   // We can only fold certain predicates on pointer comparisons.
2417   switch (Pred) {
2418   default:
2419     return nullptr;
2420 
2421     // Equality comaprisons are easy to fold.
2422   case CmpInst::ICMP_EQ:
2423   case CmpInst::ICMP_NE:
2424     break;
2425 
2426     // We can only handle unsigned relational comparisons because 'inbounds' on
2427     // a GEP only protects against unsigned wrapping.
2428   case CmpInst::ICMP_UGT:
2429   case CmpInst::ICMP_UGE:
2430   case CmpInst::ICMP_ULT:
2431   case CmpInst::ICMP_ULE:
2432     // However, we have to switch them to their signed variants to handle
2433     // negative indices from the base pointer.
2434     Pred = ICmpInst::getSignedPredicate(Pred);
2435     break;
2436   }
2437 
2438   // Strip off any constant offsets so that we can reason about them.
2439   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2440   // here and compare base addresses like AliasAnalysis does, however there are
2441   // numerous hazards. AliasAnalysis and its utilities rely on special rules
2442   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2443   // doesn't need to guarantee pointer inequality when it says NoAlias.
2444   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
2445   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
2446 
2447   // If LHS and RHS are related via constant offsets to the same base
2448   // value, we can replace it with an icmp which just compares the offsets.
2449   if (LHS == RHS)
2450     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
2451 
2452   // Various optimizations for (in)equality comparisons.
2453   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2454     // Different non-empty allocations that exist at the same time have
2455     // different addresses (if the program can tell). Global variables always
2456     // exist, so they always exist during the lifetime of each other and all
2457     // allocas. Two different allocas usually have different addresses...
2458     //
2459     // However, if there's an @llvm.stackrestore dynamically in between two
2460     // allocas, they may have the same address. It's tempting to reduce the
2461     // scope of the problem by only looking at *static* allocas here. That would
2462     // cover the majority of allocas while significantly reducing the likelihood
2463     // of having an @llvm.stackrestore pop up in the middle. However, it's not
2464     // actually impossible for an @llvm.stackrestore to pop up in the middle of
2465     // an entry block. Also, if we have a block that's not attached to a
2466     // function, we can't tell if it's "static" under the current definition.
2467     // Theoretically, this problem could be fixed by creating a new kind of
2468     // instruction kind specifically for static allocas. Such a new instruction
2469     // could be required to be at the top of the entry block, thus preventing it
2470     // from being subject to a @llvm.stackrestore. Instcombine could even
2471     // convert regular allocas into these special allocas. It'd be nifty.
2472     // However, until then, this problem remains open.
2473     //
2474     // So, we'll assume that two non-empty allocas have different addresses
2475     // for now.
2476     //
2477     // With all that, if the offsets are within the bounds of their allocations
2478     // (and not one-past-the-end! so we can't use inbounds!), and their
2479     // allocations aren't the same, the pointers are not equal.
2480     //
2481     // Note that it's not necessary to check for LHS being a global variable
2482     // address, due to canonicalization and constant folding.
2483     if (isa<AllocaInst>(LHS) &&
2484         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2485       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2486       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2487       uint64_t LHSSize, RHSSize;
2488       ObjectSizeOpts Opts;
2489       Opts.NullIsUnknownSize =
2490           NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction());
2491       if (LHSOffsetCI && RHSOffsetCI &&
2492           getObjectSize(LHS, LHSSize, DL, TLI, Opts) &&
2493           getObjectSize(RHS, RHSSize, DL, TLI, Opts)) {
2494         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2495         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2496         if (!LHSOffsetValue.isNegative() &&
2497             !RHSOffsetValue.isNegative() &&
2498             LHSOffsetValue.ult(LHSSize) &&
2499             RHSOffsetValue.ult(RHSSize)) {
2500           return ConstantInt::get(GetCompareTy(LHS),
2501                                   !CmpInst::isTrueWhenEqual(Pred));
2502         }
2503       }
2504 
2505       // Repeat the above check but this time without depending on DataLayout
2506       // or being able to compute a precise size.
2507       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2508           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2509           LHSOffset->isNullValue() &&
2510           RHSOffset->isNullValue())
2511         return ConstantInt::get(GetCompareTy(LHS),
2512                                 !CmpInst::isTrueWhenEqual(Pred));
2513     }
2514 
2515     // Even if an non-inbounds GEP occurs along the path we can still optimize
2516     // equality comparisons concerning the result. We avoid walking the whole
2517     // chain again by starting where the last calls to
2518     // stripAndComputeConstantOffsets left off and accumulate the offsets.
2519     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2520     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2521     if (LHS == RHS)
2522       return ConstantExpr::getICmp(Pred,
2523                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2524                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2525 
2526     // If one side of the equality comparison must come from a noalias call
2527     // (meaning a system memory allocation function), and the other side must
2528     // come from a pointer that cannot overlap with dynamically-allocated
2529     // memory within the lifetime of the current function (allocas, byval
2530     // arguments, globals), then determine the comparison result here.
2531     SmallVector<const Value *, 8> LHSUObjs, RHSUObjs;
2532     getUnderlyingObjects(LHS, LHSUObjs);
2533     getUnderlyingObjects(RHS, RHSUObjs);
2534 
2535     // Is the set of underlying objects all noalias calls?
2536     auto IsNAC = [](ArrayRef<const Value *> Objects) {
2537       return all_of(Objects, isNoAliasCall);
2538     };
2539 
2540     // Is the set of underlying objects all things which must be disjoint from
2541     // noalias calls. For allocas, we consider only static ones (dynamic
2542     // allocas might be transformed into calls to malloc not simultaneously
2543     // live with the compared-to allocation). For globals, we exclude symbols
2544     // that might be resolve lazily to symbols in another dynamically-loaded
2545     // library (and, thus, could be malloc'ed by the implementation).
2546     auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) {
2547       return all_of(Objects, [](const Value *V) {
2548         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2549           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2550         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2551           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2552                   GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2553                  !GV->isThreadLocal();
2554         if (const Argument *A = dyn_cast<Argument>(V))
2555           return A->hasByValAttr();
2556         return false;
2557       });
2558     };
2559 
2560     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2561         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2562         return ConstantInt::get(GetCompareTy(LHS),
2563                                 !CmpInst::isTrueWhenEqual(Pred));
2564 
2565     // Fold comparisons for non-escaping pointer even if the allocation call
2566     // cannot be elided. We cannot fold malloc comparison to null. Also, the
2567     // dynamic allocation call could be either of the operands.
2568     Value *MI = nullptr;
2569     if (isAllocLikeFn(LHS, TLI) &&
2570         llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT))
2571       MI = LHS;
2572     else if (isAllocLikeFn(RHS, TLI) &&
2573              llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT))
2574       MI = RHS;
2575     // FIXME: We should also fold the compare when the pointer escapes, but the
2576     // compare dominates the pointer escape
2577     if (MI && !PointerMayBeCaptured(MI, true, true))
2578       return ConstantInt::get(GetCompareTy(LHS),
2579                               CmpInst::isFalseWhenEqual(Pred));
2580   }
2581 
2582   // Otherwise, fail.
2583   return nullptr;
2584 }
2585 
2586 /// Fold an icmp when its operands have i1 scalar type.
2587 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
2588                                   Value *RHS, const SimplifyQuery &Q) {
2589   Type *ITy = GetCompareTy(LHS); // The return type.
2590   Type *OpTy = LHS->getType();   // The operand type.
2591   if (!OpTy->isIntOrIntVectorTy(1))
2592     return nullptr;
2593 
2594   // A boolean compared to true/false can be simplified in 14 out of the 20
2595   // (10 predicates * 2 constants) possible combinations. Cases not handled here
2596   // require a 'not' of the LHS, so those must be transformed in InstCombine.
2597   if (match(RHS, m_Zero())) {
2598     switch (Pred) {
2599     case CmpInst::ICMP_NE:  // X !=  0 -> X
2600     case CmpInst::ICMP_UGT: // X >u  0 -> X
2601     case CmpInst::ICMP_SLT: // X <s  0 -> X
2602       return LHS;
2603 
2604     case CmpInst::ICMP_ULT: // X <u  0 -> false
2605     case CmpInst::ICMP_SGT: // X >s  0 -> false
2606       return getFalse(ITy);
2607 
2608     case CmpInst::ICMP_UGE: // X >=u 0 -> true
2609     case CmpInst::ICMP_SLE: // X <=s 0 -> true
2610       return getTrue(ITy);
2611 
2612     default: break;
2613     }
2614   } else if (match(RHS, m_One())) {
2615     switch (Pred) {
2616     case CmpInst::ICMP_EQ:  // X ==   1 -> X
2617     case CmpInst::ICMP_UGE: // X >=u  1 -> X
2618     case CmpInst::ICMP_SLE: // X <=s -1 -> X
2619       return LHS;
2620 
2621     case CmpInst::ICMP_UGT: // X >u   1 -> false
2622     case CmpInst::ICMP_SLT: // X <s  -1 -> false
2623       return getFalse(ITy);
2624 
2625     case CmpInst::ICMP_ULE: // X <=u  1 -> true
2626     case CmpInst::ICMP_SGE: // X >=s -1 -> true
2627       return getTrue(ITy);
2628 
2629     default: break;
2630     }
2631   }
2632 
2633   switch (Pred) {
2634   default:
2635     break;
2636   case ICmpInst::ICMP_UGE:
2637     if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
2638       return getTrue(ITy);
2639     break;
2640   case ICmpInst::ICMP_SGE:
2641     /// For signed comparison, the values for an i1 are 0 and -1
2642     /// respectively. This maps into a truth table of:
2643     /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
2644     ///  0  |  0  |  1 (0 >= 0)   |  1
2645     ///  0  |  1  |  1 (0 >= -1)  |  1
2646     ///  1  |  0  |  0 (-1 >= 0)  |  0
2647     ///  1  |  1  |  1 (-1 >= -1) |  1
2648     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2649       return getTrue(ITy);
2650     break;
2651   case ICmpInst::ICMP_ULE:
2652     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2653       return getTrue(ITy);
2654     break;
2655   }
2656 
2657   return nullptr;
2658 }
2659 
2660 /// Try hard to fold icmp with zero RHS because this is a common case.
2661 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
2662                                    Value *RHS, const SimplifyQuery &Q) {
2663   if (!match(RHS, m_Zero()))
2664     return nullptr;
2665 
2666   Type *ITy = GetCompareTy(LHS); // The return type.
2667   switch (Pred) {
2668   default:
2669     llvm_unreachable("Unknown ICmp predicate!");
2670   case ICmpInst::ICMP_ULT:
2671     return getFalse(ITy);
2672   case ICmpInst::ICMP_UGE:
2673     return getTrue(ITy);
2674   case ICmpInst::ICMP_EQ:
2675   case ICmpInst::ICMP_ULE:
2676     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2677       return getFalse(ITy);
2678     break;
2679   case ICmpInst::ICMP_NE:
2680   case ICmpInst::ICMP_UGT:
2681     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2682       return getTrue(ITy);
2683     break;
2684   case ICmpInst::ICMP_SLT: {
2685     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2686     if (LHSKnown.isNegative())
2687       return getTrue(ITy);
2688     if (LHSKnown.isNonNegative())
2689       return getFalse(ITy);
2690     break;
2691   }
2692   case ICmpInst::ICMP_SLE: {
2693     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2694     if (LHSKnown.isNegative())
2695       return getTrue(ITy);
2696     if (LHSKnown.isNonNegative() &&
2697         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2698       return getFalse(ITy);
2699     break;
2700   }
2701   case ICmpInst::ICMP_SGE: {
2702     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2703     if (LHSKnown.isNegative())
2704       return getFalse(ITy);
2705     if (LHSKnown.isNonNegative())
2706       return getTrue(ITy);
2707     break;
2708   }
2709   case ICmpInst::ICMP_SGT: {
2710     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2711     if (LHSKnown.isNegative())
2712       return getFalse(ITy);
2713     if (LHSKnown.isNonNegative() &&
2714         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2715       return getTrue(ITy);
2716     break;
2717   }
2718   }
2719 
2720   return nullptr;
2721 }
2722 
2723 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
2724                                        Value *RHS, const InstrInfoQuery &IIQ) {
2725   Type *ITy = GetCompareTy(RHS); // The return type.
2726 
2727   Value *X;
2728   // Sign-bit checks can be optimized to true/false after unsigned
2729   // floating-point casts:
2730   // icmp slt (bitcast (uitofp X)),  0 --> false
2731   // icmp sgt (bitcast (uitofp X)), -1 --> true
2732   if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) {
2733     if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero()))
2734       return ConstantInt::getFalse(ITy);
2735     if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes()))
2736       return ConstantInt::getTrue(ITy);
2737   }
2738 
2739   const APInt *C;
2740   if (!match(RHS, m_APIntAllowUndef(C)))
2741     return nullptr;
2742 
2743   // Rule out tautological comparisons (eg., ult 0 or uge 0).
2744   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2745   if (RHS_CR.isEmptySet())
2746     return ConstantInt::getFalse(ITy);
2747   if (RHS_CR.isFullSet())
2748     return ConstantInt::getTrue(ITy);
2749 
2750   ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo);
2751   if (!LHS_CR.isFullSet()) {
2752     if (RHS_CR.contains(LHS_CR))
2753       return ConstantInt::getTrue(ITy);
2754     if (RHS_CR.inverse().contains(LHS_CR))
2755       return ConstantInt::getFalse(ITy);
2756   }
2757 
2758   // (mul nuw/nsw X, MulC) != C --> true  (if C is not a multiple of MulC)
2759   // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC)
2760   const APInt *MulC;
2761   if (ICmpInst::isEquality(Pred) &&
2762       ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
2763         *MulC != 0 && C->urem(*MulC) != 0) ||
2764        (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
2765         *MulC != 0 && C->srem(*MulC) != 0)))
2766     return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE);
2767 
2768   return nullptr;
2769 }
2770 
2771 static Value *simplifyICmpWithBinOpOnLHS(
2772     CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS,
2773     const SimplifyQuery &Q, unsigned MaxRecurse) {
2774   Type *ITy = GetCompareTy(RHS); // The return type.
2775 
2776   Value *Y = nullptr;
2777   // icmp pred (or X, Y), X
2778   if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
2779     if (Pred == ICmpInst::ICMP_ULT)
2780       return getFalse(ITy);
2781     if (Pred == ICmpInst::ICMP_UGE)
2782       return getTrue(ITy);
2783 
2784     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2785       KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2786       KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2787       if (RHSKnown.isNonNegative() && YKnown.isNegative())
2788         return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
2789       if (RHSKnown.isNegative() || YKnown.isNonNegative())
2790         return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
2791     }
2792   }
2793 
2794   // icmp pred (and X, Y), X
2795   if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
2796     if (Pred == ICmpInst::ICMP_UGT)
2797       return getFalse(ITy);
2798     if (Pred == ICmpInst::ICMP_ULE)
2799       return getTrue(ITy);
2800   }
2801 
2802   // icmp pred (urem X, Y), Y
2803   if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2804     switch (Pred) {
2805     default:
2806       break;
2807     case ICmpInst::ICMP_SGT:
2808     case ICmpInst::ICMP_SGE: {
2809       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2810       if (!Known.isNonNegative())
2811         break;
2812       LLVM_FALLTHROUGH;
2813     }
2814     case ICmpInst::ICMP_EQ:
2815     case ICmpInst::ICMP_UGT:
2816     case ICmpInst::ICMP_UGE:
2817       return getFalse(ITy);
2818     case ICmpInst::ICMP_SLT:
2819     case ICmpInst::ICMP_SLE: {
2820       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2821       if (!Known.isNonNegative())
2822         break;
2823       LLVM_FALLTHROUGH;
2824     }
2825     case ICmpInst::ICMP_NE:
2826     case ICmpInst::ICMP_ULT:
2827     case ICmpInst::ICMP_ULE:
2828       return getTrue(ITy);
2829     }
2830   }
2831 
2832   // icmp pred (urem X, Y), X
2833   if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) {
2834     if (Pred == ICmpInst::ICMP_ULE)
2835       return getTrue(ITy);
2836     if (Pred == ICmpInst::ICMP_UGT)
2837       return getFalse(ITy);
2838   }
2839 
2840   // x >> y <=u x
2841   // x udiv y <=u x.
2842   if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
2843       match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
2844     // icmp pred (X op Y), X
2845     if (Pred == ICmpInst::ICMP_UGT)
2846       return getFalse(ITy);
2847     if (Pred == ICmpInst::ICMP_ULE)
2848       return getTrue(ITy);
2849   }
2850 
2851   return nullptr;
2852 }
2853 
2854 
2855 // If only one of the icmp's operands has NSW flags, try to prove that:
2856 //
2857 //   icmp slt (x + C1), (x +nsw C2)
2858 //
2859 // is equivalent to:
2860 //
2861 //   icmp slt C1, C2
2862 //
2863 // which is true if x + C2 has the NSW flags set and:
2864 // *) C1 < C2 && C1 >= 0, or
2865 // *) C2 < C1 && C1 <= 0.
2866 //
2867 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS,
2868                                     Value *RHS) {
2869   // TODO: only support icmp slt for now.
2870   if (Pred != CmpInst::ICMP_SLT)
2871     return false;
2872 
2873   // Canonicalize nsw add as RHS.
2874   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
2875     std::swap(LHS, RHS);
2876   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
2877     return false;
2878 
2879   Value *X;
2880   const APInt *C1, *C2;
2881   if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) ||
2882       !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2))))
2883     return false;
2884 
2885   return (C1->slt(*C2) && C1->isNonNegative()) ||
2886          (C2->slt(*C1) && C1->isNonPositive());
2887 }
2888 
2889 
2890 /// TODO: A large part of this logic is duplicated in InstCombine's
2891 /// foldICmpBinOp(). We should be able to share that and avoid the code
2892 /// duplication.
2893 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
2894                                     Value *RHS, const SimplifyQuery &Q,
2895                                     unsigned MaxRecurse) {
2896   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2897   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2898   if (MaxRecurse && (LBO || RBO)) {
2899     // Analyze the case when either LHS or RHS is an add instruction.
2900     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
2901     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2902     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2903     if (LBO && LBO->getOpcode() == Instruction::Add) {
2904       A = LBO->getOperand(0);
2905       B = LBO->getOperand(1);
2906       NoLHSWrapProblem =
2907           ICmpInst::isEquality(Pred) ||
2908           (CmpInst::isUnsigned(Pred) &&
2909            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) ||
2910           (CmpInst::isSigned(Pred) &&
2911            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)));
2912     }
2913     if (RBO && RBO->getOpcode() == Instruction::Add) {
2914       C = RBO->getOperand(0);
2915       D = RBO->getOperand(1);
2916       NoRHSWrapProblem =
2917           ICmpInst::isEquality(Pred) ||
2918           (CmpInst::isUnsigned(Pred) &&
2919            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) ||
2920           (CmpInst::isSigned(Pred) &&
2921            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO)));
2922     }
2923 
2924     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2925     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2926       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2927                                       Constant::getNullValue(RHS->getType()), Q,
2928                                       MaxRecurse - 1))
2929         return V;
2930 
2931     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2932     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2933       if (Value *V =
2934               SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
2935                                C == LHS ? D : C, Q, MaxRecurse - 1))
2936         return V;
2937 
2938     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2939     bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) ||
2940                        trySimplifyICmpWithAdds(Pred, LHS, RHS);
2941     if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) {
2942       // Determine Y and Z in the form icmp (X+Y), (X+Z).
2943       Value *Y, *Z;
2944       if (A == C) {
2945         // C + B == C + D  ->  B == D
2946         Y = B;
2947         Z = D;
2948       } else if (A == D) {
2949         // D + B == C + D  ->  B == C
2950         Y = B;
2951         Z = C;
2952       } else if (B == C) {
2953         // A + C == C + D  ->  A == D
2954         Y = A;
2955         Z = D;
2956       } else {
2957         assert(B == D);
2958         // A + D == C + D  ->  A == C
2959         Y = A;
2960         Z = C;
2961       }
2962       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
2963         return V;
2964     }
2965   }
2966 
2967   if (LBO)
2968     if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse))
2969       return V;
2970 
2971   if (RBO)
2972     if (Value *V = simplifyICmpWithBinOpOnLHS(
2973             ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse))
2974       return V;
2975 
2976   // 0 - (zext X) pred C
2977   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
2978     const APInt *C;
2979     if (match(RHS, m_APInt(C))) {
2980       if (C->isStrictlyPositive()) {
2981         if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE)
2982           return ConstantInt::getTrue(GetCompareTy(RHS));
2983         if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ)
2984           return ConstantInt::getFalse(GetCompareTy(RHS));
2985       }
2986       if (C->isNonNegative()) {
2987         if (Pred == ICmpInst::ICMP_SLE)
2988           return ConstantInt::getTrue(GetCompareTy(RHS));
2989         if (Pred == ICmpInst::ICMP_SGT)
2990           return ConstantInt::getFalse(GetCompareTy(RHS));
2991       }
2992     }
2993   }
2994 
2995   //   If C2 is a power-of-2 and C is not:
2996   //   (C2 << X) == C --> false
2997   //   (C2 << X) != C --> true
2998   const APInt *C;
2999   if (match(LHS, m_Shl(m_Power2(), m_Value())) &&
3000       match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) {
3001     // C2 << X can equal zero in some circumstances.
3002     // This simplification might be unsafe if C is zero.
3003     //
3004     // We know it is safe if:
3005     // - The shift is nsw. We can't shift out the one bit.
3006     // - The shift is nuw. We can't shift out the one bit.
3007     // - C2 is one.
3008     // - C isn't zero.
3009     if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3010         Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3011         match(LHS, m_Shl(m_One(), m_Value())) || !C->isNullValue()) {
3012       if (Pred == ICmpInst::ICMP_EQ)
3013         return ConstantInt::getFalse(GetCompareTy(RHS));
3014       if (Pred == ICmpInst::ICMP_NE)
3015         return ConstantInt::getTrue(GetCompareTy(RHS));
3016     }
3017   }
3018 
3019   // TODO: This is overly constrained. LHS can be any power-of-2.
3020   // (1 << X)  >u 0x8000 --> false
3021   // (1 << X) <=u 0x8000 --> true
3022   if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) {
3023     if (Pred == ICmpInst::ICMP_UGT)
3024       return ConstantInt::getFalse(GetCompareTy(RHS));
3025     if (Pred == ICmpInst::ICMP_ULE)
3026       return ConstantInt::getTrue(GetCompareTy(RHS));
3027   }
3028 
3029   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
3030       LBO->getOperand(1) == RBO->getOperand(1)) {
3031     switch (LBO->getOpcode()) {
3032     default:
3033       break;
3034     case Instruction::UDiv:
3035     case Instruction::LShr:
3036       if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) ||
3037           !Q.IIQ.isExact(RBO))
3038         break;
3039       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3040                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3041           return V;
3042       break;
3043     case Instruction::SDiv:
3044       if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) ||
3045           !Q.IIQ.isExact(RBO))
3046         break;
3047       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3048                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3049         return V;
3050       break;
3051     case Instruction::AShr:
3052       if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO))
3053         break;
3054       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3055                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3056         return V;
3057       break;
3058     case Instruction::Shl: {
3059       bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO);
3060       bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO);
3061       if (!NUW && !NSW)
3062         break;
3063       if (!NSW && ICmpInst::isSigned(Pred))
3064         break;
3065       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3066                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3067         return V;
3068       break;
3069     }
3070     }
3071   }
3072   return nullptr;
3073 }
3074 
3075 /// Simplify integer comparisons where at least one operand of the compare
3076 /// matches an integer min/max idiom.
3077 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
3078                                      Value *RHS, const SimplifyQuery &Q,
3079                                      unsigned MaxRecurse) {
3080   Type *ITy = GetCompareTy(LHS); // The return type.
3081   Value *A, *B;
3082   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
3083   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
3084 
3085   // Signed variants on "max(a,b)>=a -> true".
3086   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3087     if (A != RHS)
3088       std::swap(A, B);       // smax(A, B) pred A.
3089     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3090     // We analyze this as smax(A, B) pred A.
3091     P = Pred;
3092   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
3093              (A == LHS || B == LHS)) {
3094     if (A != LHS)
3095       std::swap(A, B);       // A pred smax(A, B).
3096     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3097     // We analyze this as smax(A, B) swapped-pred A.
3098     P = CmpInst::getSwappedPredicate(Pred);
3099   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3100              (A == RHS || B == RHS)) {
3101     if (A != RHS)
3102       std::swap(A, B);       // smin(A, B) pred A.
3103     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3104     // We analyze this as smax(-A, -B) swapped-pred -A.
3105     // Note that we do not need to actually form -A or -B thanks to EqP.
3106     P = CmpInst::getSwappedPredicate(Pred);
3107   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
3108              (A == LHS || B == LHS)) {
3109     if (A != LHS)
3110       std::swap(A, B);       // A pred smin(A, B).
3111     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3112     // We analyze this as smax(-A, -B) pred -A.
3113     // Note that we do not need to actually form -A or -B thanks to EqP.
3114     P = Pred;
3115   }
3116   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3117     // Cases correspond to "max(A, B) p A".
3118     switch (P) {
3119     default:
3120       break;
3121     case CmpInst::ICMP_EQ:
3122     case CmpInst::ICMP_SLE:
3123       // Equivalent to "A EqP B".  This may be the same as the condition tested
3124       // in the max/min; if so, we can just return that.
3125       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3126         return V;
3127       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3128         return V;
3129       // Otherwise, see if "A EqP B" simplifies.
3130       if (MaxRecurse)
3131         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3132           return V;
3133       break;
3134     case CmpInst::ICMP_NE:
3135     case CmpInst::ICMP_SGT: {
3136       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3137       // Equivalent to "A InvEqP B".  This may be the same as the condition
3138       // tested in the max/min; if so, we can just return that.
3139       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3140         return V;
3141       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3142         return V;
3143       // Otherwise, see if "A InvEqP B" simplifies.
3144       if (MaxRecurse)
3145         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3146           return V;
3147       break;
3148     }
3149     case CmpInst::ICMP_SGE:
3150       // Always true.
3151       return getTrue(ITy);
3152     case CmpInst::ICMP_SLT:
3153       // Always false.
3154       return getFalse(ITy);
3155     }
3156   }
3157 
3158   // Unsigned variants on "max(a,b)>=a -> true".
3159   P = CmpInst::BAD_ICMP_PREDICATE;
3160   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3161     if (A != RHS)
3162       std::swap(A, B);       // umax(A, B) pred A.
3163     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3164     // We analyze this as umax(A, B) pred A.
3165     P = Pred;
3166   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
3167              (A == LHS || B == LHS)) {
3168     if (A != LHS)
3169       std::swap(A, B);       // A pred umax(A, B).
3170     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3171     // We analyze this as umax(A, B) swapped-pred A.
3172     P = CmpInst::getSwappedPredicate(Pred);
3173   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3174              (A == RHS || B == RHS)) {
3175     if (A != RHS)
3176       std::swap(A, B);       // umin(A, B) pred A.
3177     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3178     // We analyze this as umax(-A, -B) swapped-pred -A.
3179     // Note that we do not need to actually form -A or -B thanks to EqP.
3180     P = CmpInst::getSwappedPredicate(Pred);
3181   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
3182              (A == LHS || B == LHS)) {
3183     if (A != LHS)
3184       std::swap(A, B);       // A pred umin(A, B).
3185     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3186     // We analyze this as umax(-A, -B) pred -A.
3187     // Note that we do not need to actually form -A or -B thanks to EqP.
3188     P = Pred;
3189   }
3190   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3191     // Cases correspond to "max(A, B) p A".
3192     switch (P) {
3193     default:
3194       break;
3195     case CmpInst::ICMP_EQ:
3196     case CmpInst::ICMP_ULE:
3197       // Equivalent to "A EqP B".  This may be the same as the condition tested
3198       // in the max/min; if so, we can just return that.
3199       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3200         return V;
3201       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3202         return V;
3203       // Otherwise, see if "A EqP B" simplifies.
3204       if (MaxRecurse)
3205         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3206           return V;
3207       break;
3208     case CmpInst::ICMP_NE:
3209     case CmpInst::ICMP_UGT: {
3210       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3211       // Equivalent to "A InvEqP B".  This may be the same as the condition
3212       // tested in the max/min; if so, we can just return that.
3213       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3214         return V;
3215       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3216         return V;
3217       // Otherwise, see if "A InvEqP B" simplifies.
3218       if (MaxRecurse)
3219         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3220           return V;
3221       break;
3222     }
3223     case CmpInst::ICMP_UGE:
3224       return getTrue(ITy);
3225     case CmpInst::ICMP_ULT:
3226       return getFalse(ITy);
3227     }
3228   }
3229 
3230   // Comparing 1 each of min/max with a common operand?
3231   // Canonicalize min operand to RHS.
3232   if (match(LHS, m_UMin(m_Value(), m_Value())) ||
3233       match(LHS, m_SMin(m_Value(), m_Value()))) {
3234     std::swap(LHS, RHS);
3235     Pred = ICmpInst::getSwappedPredicate(Pred);
3236   }
3237 
3238   Value *C, *D;
3239   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
3240       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
3241       (A == C || A == D || B == C || B == D)) {
3242     // smax(A, B) >=s smin(A, D) --> true
3243     if (Pred == CmpInst::ICMP_SGE)
3244       return getTrue(ITy);
3245     // smax(A, B) <s smin(A, D) --> false
3246     if (Pred == CmpInst::ICMP_SLT)
3247       return getFalse(ITy);
3248   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3249              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3250              (A == C || A == D || B == C || B == D)) {
3251     // umax(A, B) >=u umin(A, D) --> true
3252     if (Pred == CmpInst::ICMP_UGE)
3253       return getTrue(ITy);
3254     // umax(A, B) <u umin(A, D) --> false
3255     if (Pred == CmpInst::ICMP_ULT)
3256       return getFalse(ITy);
3257   }
3258 
3259   return nullptr;
3260 }
3261 
3262 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate,
3263                                                Value *LHS, Value *RHS,
3264                                                const SimplifyQuery &Q) {
3265   // Gracefully handle instructions that have not been inserted yet.
3266   if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent())
3267     return nullptr;
3268 
3269   for (Value *AssumeBaseOp : {LHS, RHS}) {
3270     for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) {
3271       if (!AssumeVH)
3272         continue;
3273 
3274       CallInst *Assume = cast<CallInst>(AssumeVH);
3275       if (Optional<bool> Imp =
3276               isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS,
3277                                  Q.DL))
3278         if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT))
3279           return ConstantInt::get(GetCompareTy(LHS), *Imp);
3280     }
3281   }
3282 
3283   return nullptr;
3284 }
3285 
3286 /// Given operands for an ICmpInst, see if we can fold the result.
3287 /// If not, this returns null.
3288 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3289                                const SimplifyQuery &Q, unsigned MaxRecurse) {
3290   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3291   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
3292 
3293   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3294     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3295       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3296 
3297     // If we have a constant, make sure it is on the RHS.
3298     std::swap(LHS, RHS);
3299     Pred = CmpInst::getSwappedPredicate(Pred);
3300   }
3301   assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X");
3302 
3303   Type *ITy = GetCompareTy(LHS); // The return type.
3304 
3305   // For EQ and NE, we can always pick a value for the undef to make the
3306   // predicate pass or fail, so we can return undef.
3307   // Matches behavior in llvm::ConstantFoldCompareInstruction.
3308   if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred))
3309     return UndefValue::get(ITy);
3310 
3311   // icmp X, X -> true/false
3312   // icmp X, undef -> true/false because undef could be X.
3313   if (LHS == RHS || Q.isUndefValue(RHS))
3314     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
3315 
3316   if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
3317     return V;
3318 
3319   if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
3320     return V;
3321 
3322   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ))
3323     return V;
3324 
3325   // If both operands have range metadata, use the metadata
3326   // to simplify the comparison.
3327   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
3328     auto RHS_Instr = cast<Instruction>(RHS);
3329     auto LHS_Instr = cast<Instruction>(LHS);
3330 
3331     if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) &&
3332         Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) {
3333       auto RHS_CR = getConstantRangeFromMetadata(
3334           *RHS_Instr->getMetadata(LLVMContext::MD_range));
3335       auto LHS_CR = getConstantRangeFromMetadata(
3336           *LHS_Instr->getMetadata(LLVMContext::MD_range));
3337 
3338       auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR);
3339       if (Satisfied_CR.contains(LHS_CR))
3340         return ConstantInt::getTrue(RHS->getContext());
3341 
3342       auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion(
3343                 CmpInst::getInversePredicate(Pred), RHS_CR);
3344       if (InversedSatisfied_CR.contains(LHS_CR))
3345         return ConstantInt::getFalse(RHS->getContext());
3346     }
3347   }
3348 
3349   // Compare of cast, for example (zext X) != 0 -> X != 0
3350   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
3351     Instruction *LI = cast<CastInst>(LHS);
3352     Value *SrcOp = LI->getOperand(0);
3353     Type *SrcTy = SrcOp->getType();
3354     Type *DstTy = LI->getType();
3355 
3356     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3357     // if the integer type is the same size as the pointer type.
3358     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3359         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
3360       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
3361         // Transfer the cast to the constant.
3362         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
3363                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
3364                                         Q, MaxRecurse-1))
3365           return V;
3366       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3367         if (RI->getOperand(0)->getType() == SrcTy)
3368           // Compare without the cast.
3369           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3370                                           Q, MaxRecurse-1))
3371             return V;
3372       }
3373     }
3374 
3375     if (isa<ZExtInst>(LHS)) {
3376       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3377       // same type.
3378       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3379         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3380           // Compare X and Y.  Note that signed predicates become unsigned.
3381           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3382                                           SrcOp, RI->getOperand(0), Q,
3383                                           MaxRecurse-1))
3384             return V;
3385       }
3386       // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true.
3387       else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3388         if (SrcOp == RI->getOperand(0)) {
3389           if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE)
3390             return ConstantInt::getTrue(ITy);
3391           if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT)
3392             return ConstantInt::getFalse(ITy);
3393         }
3394       }
3395       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3396       // too.  If not, then try to deduce the result of the comparison.
3397       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3398         // Compute the constant that would happen if we truncated to SrcTy then
3399         // reextended to DstTy.
3400         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3401         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
3402 
3403         // If the re-extended constant didn't change then this is effectively
3404         // also a case of comparing two zero-extended values.
3405         if (RExt == CI && MaxRecurse)
3406           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3407                                         SrcOp, Trunc, Q, MaxRecurse-1))
3408             return V;
3409 
3410         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3411         // there.  Use this to work out the result of the comparison.
3412         if (RExt != CI) {
3413           switch (Pred) {
3414           default: llvm_unreachable("Unknown ICmp predicate!");
3415           // LHS <u RHS.
3416           case ICmpInst::ICMP_EQ:
3417           case ICmpInst::ICMP_UGT:
3418           case ICmpInst::ICMP_UGE:
3419             return ConstantInt::getFalse(CI->getContext());
3420 
3421           case ICmpInst::ICMP_NE:
3422           case ICmpInst::ICMP_ULT:
3423           case ICmpInst::ICMP_ULE:
3424             return ConstantInt::getTrue(CI->getContext());
3425 
3426           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
3427           // is non-negative then LHS <s RHS.
3428           case ICmpInst::ICMP_SGT:
3429           case ICmpInst::ICMP_SGE:
3430             return CI->getValue().isNegative() ?
3431               ConstantInt::getTrue(CI->getContext()) :
3432               ConstantInt::getFalse(CI->getContext());
3433 
3434           case ICmpInst::ICMP_SLT:
3435           case ICmpInst::ICMP_SLE:
3436             return CI->getValue().isNegative() ?
3437               ConstantInt::getFalse(CI->getContext()) :
3438               ConstantInt::getTrue(CI->getContext());
3439           }
3440         }
3441       }
3442     }
3443 
3444     if (isa<SExtInst>(LHS)) {
3445       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3446       // same type.
3447       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3448         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3449           // Compare X and Y.  Note that the predicate does not change.
3450           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3451                                           Q, MaxRecurse-1))
3452             return V;
3453       }
3454       // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true.
3455       else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3456         if (SrcOp == RI->getOperand(0)) {
3457           if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE)
3458             return ConstantInt::getTrue(ITy);
3459           if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT)
3460             return ConstantInt::getFalse(ITy);
3461         }
3462       }
3463       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3464       // too.  If not, then try to deduce the result of the comparison.
3465       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3466         // Compute the constant that would happen if we truncated to SrcTy then
3467         // reextended to DstTy.
3468         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3469         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
3470 
3471         // If the re-extended constant didn't change then this is effectively
3472         // also a case of comparing two sign-extended values.
3473         if (RExt == CI && MaxRecurse)
3474           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
3475             return V;
3476 
3477         // Otherwise the upper bits of LHS are all equal, while RHS has varying
3478         // bits there.  Use this to work out the result of the comparison.
3479         if (RExt != CI) {
3480           switch (Pred) {
3481           default: llvm_unreachable("Unknown ICmp predicate!");
3482           case ICmpInst::ICMP_EQ:
3483             return ConstantInt::getFalse(CI->getContext());
3484           case ICmpInst::ICMP_NE:
3485             return ConstantInt::getTrue(CI->getContext());
3486 
3487           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
3488           // LHS >s RHS.
3489           case ICmpInst::ICMP_SGT:
3490           case ICmpInst::ICMP_SGE:
3491             return CI->getValue().isNegative() ?
3492               ConstantInt::getTrue(CI->getContext()) :
3493               ConstantInt::getFalse(CI->getContext());
3494           case ICmpInst::ICMP_SLT:
3495           case ICmpInst::ICMP_SLE:
3496             return CI->getValue().isNegative() ?
3497               ConstantInt::getFalse(CI->getContext()) :
3498               ConstantInt::getTrue(CI->getContext());
3499 
3500           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
3501           // LHS >u RHS.
3502           case ICmpInst::ICMP_UGT:
3503           case ICmpInst::ICMP_UGE:
3504             // Comparison is true iff the LHS <s 0.
3505             if (MaxRecurse)
3506               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3507                                               Constant::getNullValue(SrcTy),
3508                                               Q, MaxRecurse-1))
3509                 return V;
3510             break;
3511           case ICmpInst::ICMP_ULT:
3512           case ICmpInst::ICMP_ULE:
3513             // Comparison is true iff the LHS >=s 0.
3514             if (MaxRecurse)
3515               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3516                                               Constant::getNullValue(SrcTy),
3517                                               Q, MaxRecurse-1))
3518                 return V;
3519             break;
3520           }
3521         }
3522       }
3523     }
3524   }
3525 
3526   // icmp eq|ne X, Y -> false|true if X != Y
3527   if (ICmpInst::isEquality(Pred) &&
3528       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) {
3529     return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
3530   }
3531 
3532   if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
3533     return V;
3534 
3535   if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
3536     return V;
3537 
3538   if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q))
3539     return V;
3540 
3541   // Simplify comparisons of related pointers using a powerful, recursive
3542   // GEP-walk when we have target data available..
3543   if (LHS->getType()->isPointerTy())
3544     if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI,
3545                                      Q.IIQ, LHS, RHS))
3546       return C;
3547   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3548     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3549       if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3550               Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3551           Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3552               Q.DL.getTypeSizeInBits(CRHS->getType()))
3553         if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI,
3554                                          Q.IIQ, CLHS->getPointerOperand(),
3555                                          CRHS->getPointerOperand()))
3556           return C;
3557 
3558   if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
3559     if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
3560       if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
3561           GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
3562           (ICmpInst::isEquality(Pred) ||
3563            (GLHS->isInBounds() && GRHS->isInBounds() &&
3564             Pred == ICmpInst::getSignedPredicate(Pred)))) {
3565         // The bases are equal and the indices are constant.  Build a constant
3566         // expression GEP with the same indices and a null base pointer to see
3567         // what constant folding can make out of it.
3568         Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
3569         SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
3570         Constant *NewLHS = ConstantExpr::getGetElementPtr(
3571             GLHS->getSourceElementType(), Null, IndicesLHS);
3572 
3573         SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
3574         Constant *NewRHS = ConstantExpr::getGetElementPtr(
3575             GLHS->getSourceElementType(), Null, IndicesRHS);
3576         Constant *NewICmp = ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
3577         return ConstantFoldConstant(NewICmp, Q.DL);
3578       }
3579     }
3580   }
3581 
3582   // If the comparison is with the result of a select instruction, check whether
3583   // comparing with either branch of the select always yields the same value.
3584   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3585     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3586       return V;
3587 
3588   // If the comparison is with the result of a phi instruction, check whether
3589   // doing the compare with each incoming phi value yields a common result.
3590   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3591     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3592       return V;
3593 
3594   return nullptr;
3595 }
3596 
3597 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3598                               const SimplifyQuery &Q) {
3599   return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
3600 }
3601 
3602 /// Given operands for an FCmpInst, see if we can fold the result.
3603 /// If not, this returns null.
3604 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3605                                FastMathFlags FMF, const SimplifyQuery &Q,
3606                                unsigned MaxRecurse) {
3607   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3608   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3609 
3610   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3611     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3612       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3613 
3614     // If we have a constant, make sure it is on the RHS.
3615     std::swap(LHS, RHS);
3616     Pred = CmpInst::getSwappedPredicate(Pred);
3617   }
3618 
3619   // Fold trivial predicates.
3620   Type *RetTy = GetCompareTy(LHS);
3621   if (Pred == FCmpInst::FCMP_FALSE)
3622     return getFalse(RetTy);
3623   if (Pred == FCmpInst::FCMP_TRUE)
3624     return getTrue(RetTy);
3625 
3626   // Fold (un)ordered comparison if we can determine there are no NaNs.
3627   if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD)
3628     if (FMF.noNaNs() ||
3629         (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI)))
3630       return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD);
3631 
3632   // NaN is unordered; NaN is not ordered.
3633   assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) &&
3634          "Comparison must be either ordered or unordered");
3635   if (match(RHS, m_NaN()))
3636     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3637 
3638   // fcmp pred x, undef  and  fcmp pred undef, x
3639   // fold to true if unordered, false if ordered
3640   if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) {
3641     // Choosing NaN for the undef will always make unordered comparison succeed
3642     // and ordered comparison fail.
3643     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3644   }
3645 
3646   // fcmp x,x -> true/false.  Not all compares are foldable.
3647   if (LHS == RHS) {
3648     if (CmpInst::isTrueWhenEqual(Pred))
3649       return getTrue(RetTy);
3650     if (CmpInst::isFalseWhenEqual(Pred))
3651       return getFalse(RetTy);
3652   }
3653 
3654   // Handle fcmp with constant RHS.
3655   // TODO: Use match with a specific FP value, so these work with vectors with
3656   // undef lanes.
3657   const APFloat *C;
3658   if (match(RHS, m_APFloat(C))) {
3659     // Check whether the constant is an infinity.
3660     if (C->isInfinity()) {
3661       if (C->isNegative()) {
3662         switch (Pred) {
3663         case FCmpInst::FCMP_OLT:
3664           // No value is ordered and less than negative infinity.
3665           return getFalse(RetTy);
3666         case FCmpInst::FCMP_UGE:
3667           // All values are unordered with or at least negative infinity.
3668           return getTrue(RetTy);
3669         default:
3670           break;
3671         }
3672       } else {
3673         switch (Pred) {
3674         case FCmpInst::FCMP_OGT:
3675           // No value is ordered and greater than infinity.
3676           return getFalse(RetTy);
3677         case FCmpInst::FCMP_ULE:
3678           // All values are unordered with and at most infinity.
3679           return getTrue(RetTy);
3680         default:
3681           break;
3682         }
3683       }
3684 
3685       // LHS == Inf
3686       if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI))
3687         return getFalse(RetTy);
3688       // LHS != Inf
3689       if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI))
3690         return getTrue(RetTy);
3691       // LHS == Inf || LHS == NaN
3692       if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) &&
3693           isKnownNeverNaN(LHS, Q.TLI))
3694         return getFalse(RetTy);
3695       // LHS != Inf && LHS != NaN
3696       if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) &&
3697           isKnownNeverNaN(LHS, Q.TLI))
3698         return getTrue(RetTy);
3699     }
3700     if (C->isNegative() && !C->isNegZero()) {
3701       assert(!C->isNaN() && "Unexpected NaN constant!");
3702       // TODO: We can catch more cases by using a range check rather than
3703       //       relying on CannotBeOrderedLessThanZero.
3704       switch (Pred) {
3705       case FCmpInst::FCMP_UGE:
3706       case FCmpInst::FCMP_UGT:
3707       case FCmpInst::FCMP_UNE:
3708         // (X >= 0) implies (X > C) when (C < 0)
3709         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3710           return getTrue(RetTy);
3711         break;
3712       case FCmpInst::FCMP_OEQ:
3713       case FCmpInst::FCMP_OLE:
3714       case FCmpInst::FCMP_OLT:
3715         // (X >= 0) implies !(X < C) when (C < 0)
3716         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3717           return getFalse(RetTy);
3718         break;
3719       default:
3720         break;
3721       }
3722     }
3723 
3724     // Check comparison of [minnum/maxnum with constant] with other constant.
3725     const APFloat *C2;
3726     if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) &&
3727          *C2 < *C) ||
3728         (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) &&
3729          *C2 > *C)) {
3730       bool IsMaxNum =
3731           cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum;
3732       // The ordered relationship and minnum/maxnum guarantee that we do not
3733       // have NaN constants, so ordered/unordered preds are handled the same.
3734       switch (Pred) {
3735       case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ:
3736         // minnum(X, LesserC)  == C --> false
3737         // maxnum(X, GreaterC) == C --> false
3738         return getFalse(RetTy);
3739       case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE:
3740         // minnum(X, LesserC)  != C --> true
3741         // maxnum(X, GreaterC) != C --> true
3742         return getTrue(RetTy);
3743       case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE:
3744       case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT:
3745         // minnum(X, LesserC)  >= C --> false
3746         // minnum(X, LesserC)  >  C --> false
3747         // maxnum(X, GreaterC) >= C --> true
3748         // maxnum(X, GreaterC) >  C --> true
3749         return ConstantInt::get(RetTy, IsMaxNum);
3750       case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE:
3751       case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT:
3752         // minnum(X, LesserC)  <= C --> true
3753         // minnum(X, LesserC)  <  C --> true
3754         // maxnum(X, GreaterC) <= C --> false
3755         // maxnum(X, GreaterC) <  C --> false
3756         return ConstantInt::get(RetTy, !IsMaxNum);
3757       default:
3758         // TRUE/FALSE/ORD/UNO should be handled before this.
3759         llvm_unreachable("Unexpected fcmp predicate");
3760       }
3761     }
3762   }
3763 
3764   if (match(RHS, m_AnyZeroFP())) {
3765     switch (Pred) {
3766     case FCmpInst::FCMP_OGE:
3767     case FCmpInst::FCMP_ULT:
3768       // Positive or zero X >= 0.0 --> true
3769       // Positive or zero X <  0.0 --> false
3770       if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) &&
3771           CannotBeOrderedLessThanZero(LHS, Q.TLI))
3772         return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy);
3773       break;
3774     case FCmpInst::FCMP_UGE:
3775     case FCmpInst::FCMP_OLT:
3776       // Positive or zero or nan X >= 0.0 --> true
3777       // Positive or zero or nan X <  0.0 --> false
3778       if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3779         return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy);
3780       break;
3781     default:
3782       break;
3783     }
3784   }
3785 
3786   // If the comparison is with the result of a select instruction, check whether
3787   // comparing with either branch of the select always yields the same value.
3788   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3789     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3790       return V;
3791 
3792   // If the comparison is with the result of a phi instruction, check whether
3793   // doing the compare with each incoming phi value yields a common result.
3794   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3795     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3796       return V;
3797 
3798   return nullptr;
3799 }
3800 
3801 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3802                               FastMathFlags FMF, const SimplifyQuery &Q) {
3803   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
3804 }
3805 
3806 static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3807                                      const SimplifyQuery &Q,
3808                                      bool AllowRefinement,
3809                                      unsigned MaxRecurse) {
3810   // Trivial replacement.
3811   if (V == Op)
3812     return RepOp;
3813 
3814   // We cannot replace a constant, and shouldn't even try.
3815   if (isa<Constant>(Op))
3816     return nullptr;
3817 
3818   auto *I = dyn_cast<Instruction>(V);
3819   if (!I)
3820     return nullptr;
3821 
3822   // Consider:
3823   //   %cmp = icmp eq i32 %x, 2147483647
3824   //   %add = add nsw i32 %x, 1
3825   //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
3826   //
3827   // We can't replace %sel with %add unless we strip away the flags (which will
3828   // be done in InstCombine).
3829   // TODO: This is unsound, because it only catches some forms of refinement.
3830   if (!AllowRefinement && canCreatePoison(cast<Operator>(I)))
3831     return nullptr;
3832 
3833   // The simplification queries below may return the original value. Consider:
3834   //   %div = udiv i32 %arg, %arg2
3835   //   %mul = mul nsw i32 %div, %arg2
3836   //   %cmp = icmp eq i32 %mul, %arg
3837   //   %sel = select i1 %cmp, i32 %div, i32 undef
3838   // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which
3839   // simplifies back to %arg. This can only happen because %mul does not
3840   // dominate %div. To ensure a consistent return value contract, we make sure
3841   // that this case returns nullptr as well.
3842   auto PreventSelfSimplify = [V](Value *Simplified) {
3843     return Simplified != V ? Simplified : nullptr;
3844   };
3845 
3846   // If this is a binary operator, try to simplify it with the replaced op.
3847   if (auto *B = dyn_cast<BinaryOperator>(I)) {
3848     if (MaxRecurse) {
3849       if (B->getOperand(0) == Op)
3850         return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), RepOp,
3851                                                  B->getOperand(1), Q,
3852                                                  MaxRecurse - 1));
3853       if (B->getOperand(1) == Op)
3854         return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(),
3855                                                  B->getOperand(0), RepOp, Q,
3856                                                  MaxRecurse - 1));
3857     }
3858   }
3859 
3860   // Same for CmpInsts.
3861   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
3862     if (MaxRecurse) {
3863       if (C->getOperand(0) == Op)
3864         return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), RepOp,
3865                                                    C->getOperand(1), Q,
3866                                                    MaxRecurse - 1));
3867       if (C->getOperand(1) == Op)
3868         return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(),
3869                                                    C->getOperand(0), RepOp, Q,
3870                                                    MaxRecurse - 1));
3871     }
3872   }
3873 
3874   // Same for GEPs.
3875   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
3876     if (MaxRecurse) {
3877       SmallVector<Value *, 8> NewOps(GEP->getNumOperands());
3878       transform(GEP->operands(), NewOps.begin(),
3879                 [&](Value *V) { return V == Op ? RepOp : V; });
3880       return PreventSelfSimplify(SimplifyGEPInst(GEP->getSourceElementType(),
3881                                                  NewOps, Q, MaxRecurse - 1));
3882     }
3883   }
3884 
3885   // TODO: We could hand off more cases to instsimplify here.
3886 
3887   // If all operands are constant after substituting Op for RepOp then we can
3888   // constant fold the instruction.
3889   if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
3890     // Build a list of all constant operands.
3891     SmallVector<Constant *, 8> ConstOps;
3892     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3893       if (I->getOperand(i) == Op)
3894         ConstOps.push_back(CRepOp);
3895       else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
3896         ConstOps.push_back(COp);
3897       else
3898         break;
3899     }
3900 
3901     // All operands were constants, fold it.
3902     if (ConstOps.size() == I->getNumOperands()) {
3903       if (CmpInst *C = dyn_cast<CmpInst>(I))
3904         return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
3905                                                ConstOps[1], Q.DL, Q.TLI);
3906 
3907       if (LoadInst *LI = dyn_cast<LoadInst>(I))
3908         if (!LI->isVolatile())
3909           return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
3910 
3911       return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
3912     }
3913   }
3914 
3915   return nullptr;
3916 }
3917 
3918 Value *llvm::SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3919                                     const SimplifyQuery &Q,
3920                                     bool AllowRefinement) {
3921   return ::SimplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement,
3922                                   RecursionLimit);
3923 }
3924 
3925 /// Try to simplify a select instruction when its condition operand is an
3926 /// integer comparison where one operand of the compare is a constant.
3927 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
3928                                     const APInt *Y, bool TrueWhenUnset) {
3929   const APInt *C;
3930 
3931   // (X & Y) == 0 ? X & ~Y : X  --> X
3932   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
3933   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
3934       *Y == ~*C)
3935     return TrueWhenUnset ? FalseVal : TrueVal;
3936 
3937   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
3938   // (X & Y) != 0 ? X : X & ~Y  --> X
3939   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
3940       *Y == ~*C)
3941     return TrueWhenUnset ? FalseVal : TrueVal;
3942 
3943   if (Y->isPowerOf2()) {
3944     // (X & Y) == 0 ? X | Y : X  --> X | Y
3945     // (X & Y) != 0 ? X | Y : X  --> X
3946     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
3947         *Y == *C)
3948       return TrueWhenUnset ? TrueVal : FalseVal;
3949 
3950     // (X & Y) == 0 ? X : X | Y  --> X
3951     // (X & Y) != 0 ? X : X | Y  --> X | Y
3952     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
3953         *Y == *C)
3954       return TrueWhenUnset ? TrueVal : FalseVal;
3955   }
3956 
3957   return nullptr;
3958 }
3959 
3960 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
3961 /// eq/ne.
3962 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
3963                                            ICmpInst::Predicate Pred,
3964                                            Value *TrueVal, Value *FalseVal) {
3965   Value *X;
3966   APInt Mask;
3967   if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
3968     return nullptr;
3969 
3970   return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
3971                                Pred == ICmpInst::ICMP_EQ);
3972 }
3973 
3974 /// Try to simplify a select instruction when its condition operand is an
3975 /// integer comparison.
3976 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
3977                                          Value *FalseVal, const SimplifyQuery &Q,
3978                                          unsigned MaxRecurse) {
3979   ICmpInst::Predicate Pred;
3980   Value *CmpLHS, *CmpRHS;
3981   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
3982     return nullptr;
3983 
3984   // Canonicalize ne to eq predicate.
3985   if (Pred == ICmpInst::ICMP_NE) {
3986     Pred = ICmpInst::ICMP_EQ;
3987     std::swap(TrueVal, FalseVal);
3988   }
3989 
3990   if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) {
3991     Value *X;
3992     const APInt *Y;
3993     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
3994       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
3995                                            /*TrueWhenUnset=*/true))
3996         return V;
3997 
3998     // Test for a bogus zero-shift-guard-op around funnel-shift or rotate.
3999     Value *ShAmt;
4000     auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)),
4001                              m_FShr(m_Value(), m_Value(X), m_Value(ShAmt)));
4002     // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X
4003     // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X
4004     if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt)
4005       return X;
4006 
4007     // Test for a zero-shift-guard-op around rotates. These are used to
4008     // avoid UB from oversized shifts in raw IR rotate patterns, but the
4009     // intrinsics do not have that problem.
4010     // We do not allow this transform for the general funnel shift case because
4011     // that would not preserve the poison safety of the original code.
4012     auto isRotate =
4013         m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)),
4014                     m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt)));
4015     // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt)
4016     // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt)
4017     if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt &&
4018         Pred == ICmpInst::ICMP_EQ)
4019       return FalseVal;
4020 
4021     // X == 0 ? abs(X) : -abs(X) --> -abs(X)
4022     // X == 0 ? -abs(X) : abs(X) --> abs(X)
4023     if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Value(X))) &&
4024         match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(X)))))
4025       return FalseVal;
4026     if (match(TrueVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Value(X)))) &&
4027         match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(X))))
4028       return FalseVal;
4029   }
4030 
4031   // Check for other compares that behave like bit test.
4032   if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred,
4033                                               TrueVal, FalseVal))
4034     return V;
4035 
4036   // If we have an equality comparison, then we know the value in one of the
4037   // arms of the select. See if substituting this value into the arm and
4038   // simplifying the result yields the same value as the other arm.
4039   if (Pred == ICmpInst::ICMP_EQ) {
4040     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q,
4041                                /* AllowRefinement */ false, MaxRecurse) ==
4042             TrueVal ||
4043         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q,
4044                                /* AllowRefinement */ false, MaxRecurse) ==
4045             TrueVal)
4046       return FalseVal;
4047     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q,
4048                                /* AllowRefinement */ true, MaxRecurse) ==
4049             FalseVal ||
4050         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q,
4051                                /* AllowRefinement */ true, MaxRecurse) ==
4052             FalseVal)
4053       return FalseVal;
4054   }
4055 
4056   return nullptr;
4057 }
4058 
4059 /// Try to simplify a select instruction when its condition operand is a
4060 /// floating-point comparison.
4061 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F,
4062                                      const SimplifyQuery &Q) {
4063   FCmpInst::Predicate Pred;
4064   if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) &&
4065       !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T))))
4066     return nullptr;
4067 
4068   // This transform is safe if we do not have (do not care about) -0.0 or if
4069   // at least one operand is known to not be -0.0. Otherwise, the select can
4070   // change the sign of a zero operand.
4071   bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) &&
4072                           Q.CxtI->hasNoSignedZeros();
4073   const APFloat *C;
4074   if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) ||
4075                           (match(F, m_APFloat(C)) && C->isNonZero())) {
4076     // (T == F) ? T : F --> F
4077     // (F == T) ? T : F --> F
4078     if (Pred == FCmpInst::FCMP_OEQ)
4079       return F;
4080 
4081     // (T != F) ? T : F --> T
4082     // (F != T) ? T : F --> T
4083     if (Pred == FCmpInst::FCMP_UNE)
4084       return T;
4085   }
4086 
4087   return nullptr;
4088 }
4089 
4090 /// Given operands for a SelectInst, see if we can fold the result.
4091 /// If not, this returns null.
4092 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4093                                  const SimplifyQuery &Q, unsigned MaxRecurse) {
4094   if (auto *CondC = dyn_cast<Constant>(Cond)) {
4095     if (auto *TrueC = dyn_cast<Constant>(TrueVal))
4096       if (auto *FalseC = dyn_cast<Constant>(FalseVal))
4097         return ConstantFoldSelectInstruction(CondC, TrueC, FalseC);
4098 
4099     // select undef, X, Y -> X or Y
4100     if (Q.isUndefValue(CondC))
4101       return isa<Constant>(FalseVal) ? FalseVal : TrueVal;
4102 
4103     // TODO: Vector constants with undef elements don't simplify.
4104 
4105     // select true, X, Y  -> X
4106     if (CondC->isAllOnesValue())
4107       return TrueVal;
4108     // select false, X, Y -> Y
4109     if (CondC->isNullValue())
4110       return FalseVal;
4111   }
4112 
4113   // select i1 Cond, i1 true, i1 false --> i1 Cond
4114   assert(Cond->getType()->isIntOrIntVectorTy(1) &&
4115          "Select must have bool or bool vector condition");
4116   assert(TrueVal->getType() == FalseVal->getType() &&
4117          "Select must have same types for true/false ops");
4118   if (Cond->getType() == TrueVal->getType() &&
4119       match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt()))
4120     return Cond;
4121 
4122   // select ?, X, X -> X
4123   if (TrueVal == FalseVal)
4124     return TrueVal;
4125 
4126   // If the true or false value is undef, we can fold to the other value as
4127   // long as the other value isn't poison.
4128   // select ?, undef, X -> X
4129   if (Q.isUndefValue(TrueVal) &&
4130       isGuaranteedNotToBeUndefOrPoison(FalseVal, Q.AC, Q.CxtI, Q.DT))
4131     return FalseVal;
4132   // select ?, X, undef -> X
4133   if (Q.isUndefValue(FalseVal) &&
4134       isGuaranteedNotToBeUndefOrPoison(TrueVal, Q.AC, Q.CxtI, Q.DT))
4135     return TrueVal;
4136 
4137   // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC''
4138   Constant *TrueC, *FalseC;
4139   if (isa<FixedVectorType>(TrueVal->getType()) &&
4140       match(TrueVal, m_Constant(TrueC)) &&
4141       match(FalseVal, m_Constant(FalseC))) {
4142     unsigned NumElts =
4143         cast<FixedVectorType>(TrueC->getType())->getNumElements();
4144     SmallVector<Constant *, 16> NewC;
4145     for (unsigned i = 0; i != NumElts; ++i) {
4146       // Bail out on incomplete vector constants.
4147       Constant *TEltC = TrueC->getAggregateElement(i);
4148       Constant *FEltC = FalseC->getAggregateElement(i);
4149       if (!TEltC || !FEltC)
4150         break;
4151 
4152       // If the elements match (undef or not), that value is the result. If only
4153       // one element is undef, choose the defined element as the safe result.
4154       if (TEltC == FEltC)
4155         NewC.push_back(TEltC);
4156       else if (Q.isUndefValue(TEltC) &&
4157                isGuaranteedNotToBeUndefOrPoison(FEltC))
4158         NewC.push_back(FEltC);
4159       else if (Q.isUndefValue(FEltC) &&
4160                isGuaranteedNotToBeUndefOrPoison(TEltC))
4161         NewC.push_back(TEltC);
4162       else
4163         break;
4164     }
4165     if (NewC.size() == NumElts)
4166       return ConstantVector::get(NewC);
4167   }
4168 
4169   if (Value *V =
4170           simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse))
4171     return V;
4172 
4173   if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q))
4174     return V;
4175 
4176   if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal))
4177     return V;
4178 
4179   Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL);
4180   if (Imp)
4181     return *Imp ? TrueVal : FalseVal;
4182 
4183   return nullptr;
4184 }
4185 
4186 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4187                                 const SimplifyQuery &Q) {
4188   return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
4189 }
4190 
4191 /// Given operands for an GetElementPtrInst, see if we can fold the result.
4192 /// If not, this returns null.
4193 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
4194                               const SimplifyQuery &Q, unsigned) {
4195   // The type of the GEP pointer operand.
4196   unsigned AS =
4197       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
4198 
4199   // getelementptr P -> P.
4200   if (Ops.size() == 1)
4201     return Ops[0];
4202 
4203   // Compute the (pointer) type returned by the GEP instruction.
4204   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
4205   Type *GEPTy = PointerType::get(LastType, AS);
4206   if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
4207     GEPTy = VectorType::get(GEPTy, VT->getElementCount());
4208   else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType()))
4209     GEPTy = VectorType::get(GEPTy, VT->getElementCount());
4210 
4211   if (Q.isUndefValue(Ops[0]))
4212     return UndefValue::get(GEPTy);
4213 
4214   bool IsScalableVec = isa<ScalableVectorType>(SrcTy);
4215 
4216   if (Ops.size() == 2) {
4217     // getelementptr P, 0 -> P.
4218     if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy)
4219       return Ops[0];
4220 
4221     Type *Ty = SrcTy;
4222     if (!IsScalableVec && Ty->isSized()) {
4223       Value *P;
4224       uint64_t C;
4225       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
4226       // getelementptr P, N -> P if P points to a type of zero size.
4227       if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy)
4228         return Ops[0];
4229 
4230       // The following transforms are only safe if the ptrtoint cast
4231       // doesn't truncate the pointers.
4232       if (Ops[1]->getType()->getScalarSizeInBits() ==
4233           Q.DL.getPointerSizeInBits(AS)) {
4234         auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
4235           if (match(P, m_Zero()))
4236             return Constant::getNullValue(GEPTy);
4237           Value *Temp;
4238           if (match(P, m_PtrToInt(m_Value(Temp))))
4239             if (Temp->getType() == GEPTy)
4240               return Temp;
4241           return nullptr;
4242         };
4243 
4244         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
4245         if (TyAllocSize == 1 &&
4246             match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
4247           if (Value *R = PtrToIntOrZero(P))
4248             return R;
4249 
4250         // getelementptr V, (ashr (sub P, V), C) -> Q
4251         // if P points to a type of size 1 << C.
4252         if (match(Ops[1],
4253                   m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
4254                          m_ConstantInt(C))) &&
4255             TyAllocSize == 1ULL << C)
4256           if (Value *R = PtrToIntOrZero(P))
4257             return R;
4258 
4259         // getelementptr V, (sdiv (sub P, V), C) -> Q
4260         // if P points to a type of size C.
4261         if (match(Ops[1],
4262                   m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
4263                          m_SpecificInt(TyAllocSize))))
4264           if (Value *R = PtrToIntOrZero(P))
4265             return R;
4266       }
4267     }
4268   }
4269 
4270   if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 &&
4271       all_of(Ops.slice(1).drop_back(1),
4272              [](Value *Idx) { return match(Idx, m_Zero()); })) {
4273     unsigned IdxWidth =
4274         Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
4275     if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) {
4276       APInt BasePtrOffset(IdxWidth, 0);
4277       Value *StrippedBasePtr =
4278           Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
4279                                                             BasePtrOffset);
4280 
4281       // gep (gep V, C), (sub 0, V) -> C
4282       if (match(Ops.back(),
4283                 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) {
4284         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
4285         return ConstantExpr::getIntToPtr(CI, GEPTy);
4286       }
4287       // gep (gep V, C), (xor V, -1) -> C-1
4288       if (match(Ops.back(),
4289                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) {
4290         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
4291         return ConstantExpr::getIntToPtr(CI, GEPTy);
4292       }
4293     }
4294   }
4295 
4296   // Check to see if this is constant foldable.
4297   if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); }))
4298     return nullptr;
4299 
4300   auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
4301                                             Ops.slice(1));
4302   return ConstantFoldConstant(CE, Q.DL);
4303 }
4304 
4305 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
4306                              const SimplifyQuery &Q) {
4307   return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit);
4308 }
4309 
4310 /// Given operands for an InsertValueInst, see if we can fold the result.
4311 /// If not, this returns null.
4312 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
4313                                       ArrayRef<unsigned> Idxs, const SimplifyQuery &Q,
4314                                       unsigned) {
4315   if (Constant *CAgg = dyn_cast<Constant>(Agg))
4316     if (Constant *CVal = dyn_cast<Constant>(Val))
4317       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
4318 
4319   // insertvalue x, undef, n -> x
4320   if (Q.isUndefValue(Val))
4321     return Agg;
4322 
4323   // insertvalue x, (extractvalue y, n), n
4324   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
4325     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
4326         EV->getIndices() == Idxs) {
4327       // insertvalue undef, (extractvalue y, n), n -> y
4328       if (Q.isUndefValue(Agg))
4329         return EV->getAggregateOperand();
4330 
4331       // insertvalue y, (extractvalue y, n), n -> y
4332       if (Agg == EV->getAggregateOperand())
4333         return Agg;
4334     }
4335 
4336   return nullptr;
4337 }
4338 
4339 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
4340                                      ArrayRef<unsigned> Idxs,
4341                                      const SimplifyQuery &Q) {
4342   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
4343 }
4344 
4345 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx,
4346                                        const SimplifyQuery &Q) {
4347   // Try to constant fold.
4348   auto *VecC = dyn_cast<Constant>(Vec);
4349   auto *ValC = dyn_cast<Constant>(Val);
4350   auto *IdxC = dyn_cast<Constant>(Idx);
4351   if (VecC && ValC && IdxC)
4352     return ConstantExpr::getInsertElement(VecC, ValC, IdxC);
4353 
4354   // For fixed-length vector, fold into undef if index is out of bounds.
4355   if (auto *CI = dyn_cast<ConstantInt>(Idx)) {
4356     if (isa<FixedVectorType>(Vec->getType()) &&
4357         CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements()))
4358       return UndefValue::get(Vec->getType());
4359   }
4360 
4361   // If index is undef, it might be out of bounds (see above case)
4362   if (Q.isUndefValue(Idx))
4363     return UndefValue::get(Vec->getType());
4364 
4365   // If the scalar is undef, and there is no risk of propagating poison from the
4366   // vector value, simplify to the vector value.
4367   if (Q.isUndefValue(Val) &&
4368       isGuaranteedNotToBeUndefOrPoison(Vec))
4369     return Vec;
4370 
4371   // If we are extracting a value from a vector, then inserting it into the same
4372   // place, that's the input vector:
4373   // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec
4374   if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx))))
4375     return Vec;
4376 
4377   return nullptr;
4378 }
4379 
4380 /// Given operands for an ExtractValueInst, see if we can fold the result.
4381 /// If not, this returns null.
4382 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4383                                        const SimplifyQuery &, unsigned) {
4384   if (auto *CAgg = dyn_cast<Constant>(Agg))
4385     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
4386 
4387   // extractvalue x, (insertvalue y, elt, n), n -> elt
4388   unsigned NumIdxs = Idxs.size();
4389   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
4390        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
4391     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
4392     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
4393     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
4394     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
4395         Idxs.slice(0, NumCommonIdxs)) {
4396       if (NumIdxs == NumInsertValueIdxs)
4397         return IVI->getInsertedValueOperand();
4398       break;
4399     }
4400   }
4401 
4402   return nullptr;
4403 }
4404 
4405 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4406                                       const SimplifyQuery &Q) {
4407   return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
4408 }
4409 
4410 /// Given operands for an ExtractElementInst, see if we can fold the result.
4411 /// If not, this returns null.
4412 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx,
4413                                          const SimplifyQuery &Q, unsigned) {
4414   auto *VecVTy = cast<VectorType>(Vec->getType());
4415   if (auto *CVec = dyn_cast<Constant>(Vec)) {
4416     if (auto *CIdx = dyn_cast<Constant>(Idx))
4417       return ConstantExpr::getExtractElement(CVec, CIdx);
4418 
4419     // The index is not relevant if our vector is a splat.
4420     if (auto *Splat = CVec->getSplatValue())
4421       return Splat;
4422 
4423     if (Q.isUndefValue(Vec))
4424       return UndefValue::get(VecVTy->getElementType());
4425   }
4426 
4427   // If extracting a specified index from the vector, see if we can recursively
4428   // find a previously computed scalar that was inserted into the vector.
4429   if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) {
4430     // For fixed-length vector, fold into undef if index is out of bounds.
4431     if (isa<FixedVectorType>(VecVTy) &&
4432         IdxC->getValue().uge(cast<FixedVectorType>(VecVTy)->getNumElements()))
4433       return UndefValue::get(VecVTy->getElementType());
4434     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
4435       return Elt;
4436   }
4437 
4438   // An undef extract index can be arbitrarily chosen to be an out-of-range
4439   // index value, which would result in the instruction being undef.
4440   if (Q.isUndefValue(Idx))
4441     return UndefValue::get(VecVTy->getElementType());
4442 
4443   return nullptr;
4444 }
4445 
4446 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx,
4447                                         const SimplifyQuery &Q) {
4448   return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
4449 }
4450 
4451 /// See if we can fold the given phi. If not, returns null.
4452 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) {
4453   // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE
4454   //          here, because the PHI we may succeed simplifying to was not
4455   //          def-reachable from the original PHI!
4456 
4457   // If all of the PHI's incoming values are the same then replace the PHI node
4458   // with the common value.
4459   Value *CommonValue = nullptr;
4460   bool HasUndefInput = false;
4461   for (Value *Incoming : PN->incoming_values()) {
4462     // If the incoming value is the phi node itself, it can safely be skipped.
4463     if (Incoming == PN) continue;
4464     if (Q.isUndefValue(Incoming)) {
4465       // Remember that we saw an undef value, but otherwise ignore them.
4466       HasUndefInput = true;
4467       continue;
4468     }
4469     if (CommonValue && Incoming != CommonValue)
4470       return nullptr;  // Not the same, bail out.
4471     CommonValue = Incoming;
4472   }
4473 
4474   // If CommonValue is null then all of the incoming values were either undef or
4475   // equal to the phi node itself.
4476   if (!CommonValue)
4477     return UndefValue::get(PN->getType());
4478 
4479   // If we have a PHI node like phi(X, undef, X), where X is defined by some
4480   // instruction, we cannot return X as the result of the PHI node unless it
4481   // dominates the PHI block.
4482   if (HasUndefInput)
4483     return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
4484 
4485   return CommonValue;
4486 }
4487 
4488 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
4489                                Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) {
4490   if (auto *C = dyn_cast<Constant>(Op))
4491     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
4492 
4493   if (auto *CI = dyn_cast<CastInst>(Op)) {
4494     auto *Src = CI->getOperand(0);
4495     Type *SrcTy = Src->getType();
4496     Type *MidTy = CI->getType();
4497     Type *DstTy = Ty;
4498     if (Src->getType() == Ty) {
4499       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
4500       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
4501       Type *SrcIntPtrTy =
4502           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
4503       Type *MidIntPtrTy =
4504           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
4505       Type *DstIntPtrTy =
4506           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
4507       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
4508                                          SrcIntPtrTy, MidIntPtrTy,
4509                                          DstIntPtrTy) == Instruction::BitCast)
4510         return Src;
4511     }
4512   }
4513 
4514   // bitcast x -> x
4515   if (CastOpc == Instruction::BitCast)
4516     if (Op->getType() == Ty)
4517       return Op;
4518 
4519   return nullptr;
4520 }
4521 
4522 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
4523                               const SimplifyQuery &Q) {
4524   return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
4525 }
4526 
4527 /// For the given destination element of a shuffle, peek through shuffles to
4528 /// match a root vector source operand that contains that element in the same
4529 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
4530 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
4531                                    int MaskVal, Value *RootVec,
4532                                    unsigned MaxRecurse) {
4533   if (!MaxRecurse--)
4534     return nullptr;
4535 
4536   // Bail out if any mask value is undefined. That kind of shuffle may be
4537   // simplified further based on demanded bits or other folds.
4538   if (MaskVal == -1)
4539     return nullptr;
4540 
4541   // The mask value chooses which source operand we need to look at next.
4542   int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements();
4543   int RootElt = MaskVal;
4544   Value *SourceOp = Op0;
4545   if (MaskVal >= InVecNumElts) {
4546     RootElt = MaskVal - InVecNumElts;
4547     SourceOp = Op1;
4548   }
4549 
4550   // If the source operand is a shuffle itself, look through it to find the
4551   // matching root vector.
4552   if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
4553     return foldIdentityShuffles(
4554         DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
4555         SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
4556   }
4557 
4558   // TODO: Look through bitcasts? What if the bitcast changes the vector element
4559   // size?
4560 
4561   // The source operand is not a shuffle. Initialize the root vector value for
4562   // this shuffle if that has not been done yet.
4563   if (!RootVec)
4564     RootVec = SourceOp;
4565 
4566   // Give up as soon as a source operand does not match the existing root value.
4567   if (RootVec != SourceOp)
4568     return nullptr;
4569 
4570   // The element must be coming from the same lane in the source vector
4571   // (although it may have crossed lanes in intermediate shuffles).
4572   if (RootElt != DestElt)
4573     return nullptr;
4574 
4575   return RootVec;
4576 }
4577 
4578 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1,
4579                                         ArrayRef<int> Mask, Type *RetTy,
4580                                         const SimplifyQuery &Q,
4581                                         unsigned MaxRecurse) {
4582   if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; }))
4583     return UndefValue::get(RetTy);
4584 
4585   auto *InVecTy = cast<VectorType>(Op0->getType());
4586   unsigned MaskNumElts = Mask.size();
4587   ElementCount InVecEltCount = InVecTy->getElementCount();
4588 
4589   bool Scalable = InVecEltCount.isScalable();
4590 
4591   SmallVector<int, 32> Indices;
4592   Indices.assign(Mask.begin(), Mask.end());
4593 
4594   // Canonicalization: If mask does not select elements from an input vector,
4595   // replace that input vector with undef.
4596   if (!Scalable) {
4597     bool MaskSelects0 = false, MaskSelects1 = false;
4598     unsigned InVecNumElts = InVecEltCount.getKnownMinValue();
4599     for (unsigned i = 0; i != MaskNumElts; ++i) {
4600       if (Indices[i] == -1)
4601         continue;
4602       if ((unsigned)Indices[i] < InVecNumElts)
4603         MaskSelects0 = true;
4604       else
4605         MaskSelects1 = true;
4606     }
4607     if (!MaskSelects0)
4608       Op0 = UndefValue::get(InVecTy);
4609     if (!MaskSelects1)
4610       Op1 = UndefValue::get(InVecTy);
4611   }
4612 
4613   auto *Op0Const = dyn_cast<Constant>(Op0);
4614   auto *Op1Const = dyn_cast<Constant>(Op1);
4615 
4616   // If all operands are constant, constant fold the shuffle. This
4617   // transformation depends on the value of the mask which is not known at
4618   // compile time for scalable vectors
4619   if (Op0Const && Op1Const)
4620     return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask);
4621 
4622   // Canonicalization: if only one input vector is constant, it shall be the
4623   // second one. This transformation depends on the value of the mask which
4624   // is not known at compile time for scalable vectors
4625   if (!Scalable && Op0Const && !Op1Const) {
4626     std::swap(Op0, Op1);
4627     ShuffleVectorInst::commuteShuffleMask(Indices,
4628                                           InVecEltCount.getKnownMinValue());
4629   }
4630 
4631   // A splat of an inserted scalar constant becomes a vector constant:
4632   // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...>
4633   // NOTE: We may have commuted above, so analyze the updated Indices, not the
4634   //       original mask constant.
4635   // NOTE: This transformation depends on the value of the mask which is not
4636   // known at compile time for scalable vectors
4637   Constant *C;
4638   ConstantInt *IndexC;
4639   if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C),
4640                                           m_ConstantInt(IndexC)))) {
4641     // Match a splat shuffle mask of the insert index allowing undef elements.
4642     int InsertIndex = IndexC->getZExtValue();
4643     if (all_of(Indices, [InsertIndex](int MaskElt) {
4644           return MaskElt == InsertIndex || MaskElt == -1;
4645         })) {
4646       assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat");
4647 
4648       // Shuffle mask undefs become undefined constant result elements.
4649       SmallVector<Constant *, 16> VecC(MaskNumElts, C);
4650       for (unsigned i = 0; i != MaskNumElts; ++i)
4651         if (Indices[i] == -1)
4652           VecC[i] = UndefValue::get(C->getType());
4653       return ConstantVector::get(VecC);
4654     }
4655   }
4656 
4657   // A shuffle of a splat is always the splat itself. Legal if the shuffle's
4658   // value type is same as the input vectors' type.
4659   if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
4660     if (Q.isUndefValue(Op1) && RetTy == InVecTy &&
4661         is_splat(OpShuf->getShuffleMask()))
4662       return Op0;
4663 
4664   // All remaining transformation depend on the value of the mask, which is
4665   // not known at compile time for scalable vectors.
4666   if (Scalable)
4667     return nullptr;
4668 
4669   // Don't fold a shuffle with undef mask elements. This may get folded in a
4670   // better way using demanded bits or other analysis.
4671   // TODO: Should we allow this?
4672   if (find(Indices, -1) != Indices.end())
4673     return nullptr;
4674 
4675   // Check if every element of this shuffle can be mapped back to the
4676   // corresponding element of a single root vector. If so, we don't need this
4677   // shuffle. This handles simple identity shuffles as well as chains of
4678   // shuffles that may widen/narrow and/or move elements across lanes and back.
4679   Value *RootVec = nullptr;
4680   for (unsigned i = 0; i != MaskNumElts; ++i) {
4681     // Note that recursion is limited for each vector element, so if any element
4682     // exceeds the limit, this will fail to simplify.
4683     RootVec =
4684         foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
4685 
4686     // We can't replace a widening/narrowing shuffle with one of its operands.
4687     if (!RootVec || RootVec->getType() != RetTy)
4688       return nullptr;
4689   }
4690   return RootVec;
4691 }
4692 
4693 /// Given operands for a ShuffleVectorInst, fold the result or return null.
4694 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1,
4695                                        ArrayRef<int> Mask, Type *RetTy,
4696                                        const SimplifyQuery &Q) {
4697   return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
4698 }
4699 
4700 static Constant *foldConstant(Instruction::UnaryOps Opcode,
4701                               Value *&Op, const SimplifyQuery &Q) {
4702   if (auto *C = dyn_cast<Constant>(Op))
4703     return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL);
4704   return nullptr;
4705 }
4706 
4707 /// Given the operand for an FNeg, see if we can fold the result.  If not, this
4708 /// returns null.
4709 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF,
4710                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4711   if (Constant *C = foldConstant(Instruction::FNeg, Op, Q))
4712     return C;
4713 
4714   Value *X;
4715   // fneg (fneg X) ==> X
4716   if (match(Op, m_FNeg(m_Value(X))))
4717     return X;
4718 
4719   return nullptr;
4720 }
4721 
4722 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF,
4723                               const SimplifyQuery &Q) {
4724   return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit);
4725 }
4726 
4727 static Constant *propagateNaN(Constant *In) {
4728   // If the input is a vector with undef elements, just return a default NaN.
4729   if (!In->isNaN())
4730     return ConstantFP::getNaN(In->getType());
4731 
4732   // Propagate the existing NaN constant when possible.
4733   // TODO: Should we quiet a signaling NaN?
4734   return In;
4735 }
4736 
4737 /// Perform folds that are common to any floating-point operation. This implies
4738 /// transforms based on undef/NaN because the operation itself makes no
4739 /// difference to the result.
4740 static Constant *simplifyFPOp(ArrayRef<Value *> Ops,
4741                               FastMathFlags FMF,
4742                               const SimplifyQuery &Q) {
4743   for (Value *V : Ops) {
4744     bool IsNan = match(V, m_NaN());
4745     bool IsInf = match(V, m_Inf());
4746     bool IsUndef = Q.isUndefValue(V);
4747 
4748     // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
4749     // (an undef operand can be chosen to be Nan/Inf), then the result of
4750     // this operation is poison. That result can be relaxed to undef.
4751     if (FMF.noNaNs() && (IsNan || IsUndef))
4752       return UndefValue::get(V->getType());
4753     if (FMF.noInfs() && (IsInf || IsUndef))
4754       return UndefValue::get(V->getType());
4755 
4756     if (IsUndef || IsNan)
4757       return propagateNaN(cast<Constant>(V));
4758   }
4759   return nullptr;
4760 }
4761 
4762 /// Given operands for an FAdd, see if we can fold the result.  If not, this
4763 /// returns null.
4764 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4765                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4766   if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
4767     return C;
4768 
4769   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q))
4770     return C;
4771 
4772   // fadd X, -0 ==> X
4773   if (match(Op1, m_NegZeroFP()))
4774     return Op0;
4775 
4776   // fadd X, 0 ==> X, when we know X is not -0
4777   if (match(Op1, m_PosZeroFP()) &&
4778       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4779     return Op0;
4780 
4781   // With nnan: -X + X --> 0.0 (and commuted variant)
4782   // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
4783   // Negative zeros are allowed because we always end up with positive zero:
4784   // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4785   // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4786   // X =  0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
4787   // X =  0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
4788   if (FMF.noNaNs()) {
4789     if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) ||
4790         match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))
4791       return ConstantFP::getNullValue(Op0->getType());
4792 
4793     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
4794         match(Op1, m_FNeg(m_Specific(Op0))))
4795       return ConstantFP::getNullValue(Op0->getType());
4796   }
4797 
4798   // (X - Y) + Y --> X
4799   // Y + (X - Y) --> X
4800   Value *X;
4801   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
4802       (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) ||
4803        match(Op1, m_FSub(m_Value(X), m_Specific(Op0)))))
4804     return X;
4805 
4806   return nullptr;
4807 }
4808 
4809 /// Given operands for an FSub, see if we can fold the result.  If not, this
4810 /// returns null.
4811 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4812                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4813   if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
4814     return C;
4815 
4816   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q))
4817     return C;
4818 
4819   // fsub X, +0 ==> X
4820   if (match(Op1, m_PosZeroFP()))
4821     return Op0;
4822 
4823   // fsub X, -0 ==> X, when we know X is not -0
4824   if (match(Op1, m_NegZeroFP()) &&
4825       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4826     return Op0;
4827 
4828   // fsub -0.0, (fsub -0.0, X) ==> X
4829   // fsub -0.0, (fneg X) ==> X
4830   Value *X;
4831   if (match(Op0, m_NegZeroFP()) &&
4832       match(Op1, m_FNeg(m_Value(X))))
4833     return X;
4834 
4835   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
4836   // fsub 0.0, (fneg X) ==> X if signed zeros are ignored.
4837   if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) &&
4838       (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) ||
4839        match(Op1, m_FNeg(m_Value(X)))))
4840     return X;
4841 
4842   // fsub nnan x, x ==> 0.0
4843   if (FMF.noNaNs() && Op0 == Op1)
4844     return Constant::getNullValue(Op0->getType());
4845 
4846   // Y - (Y - X) --> X
4847   // (X + Y) - Y --> X
4848   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
4849       (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) ||
4850        match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X)))))
4851     return X;
4852 
4853   return nullptr;
4854 }
4855 
4856 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
4857                               const SimplifyQuery &Q, unsigned MaxRecurse) {
4858   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q))
4859     return C;
4860 
4861   // fmul X, 1.0 ==> X
4862   if (match(Op1, m_FPOne()))
4863     return Op0;
4864 
4865   // fmul 1.0, X ==> X
4866   if (match(Op0, m_FPOne()))
4867     return Op1;
4868 
4869   // fmul nnan nsz X, 0 ==> 0
4870   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP()))
4871     return ConstantFP::getNullValue(Op0->getType());
4872 
4873   // fmul nnan nsz 0, X ==> 0
4874   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
4875     return ConstantFP::getNullValue(Op1->getType());
4876 
4877   // sqrt(X) * sqrt(X) --> X, if we can:
4878   // 1. Remove the intermediate rounding (reassociate).
4879   // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
4880   // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
4881   Value *X;
4882   if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) &&
4883       FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros())
4884     return X;
4885 
4886   return nullptr;
4887 }
4888 
4889 /// Given the operands for an FMul, see if we can fold the result
4890 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4891                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4892   if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
4893     return C;
4894 
4895   // Now apply simplifications that do not require rounding.
4896   return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse);
4897 }
4898 
4899 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4900                               const SimplifyQuery &Q) {
4901   return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit);
4902 }
4903 
4904 
4905 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4906                               const SimplifyQuery &Q) {
4907   return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit);
4908 }
4909 
4910 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4911                               const SimplifyQuery &Q) {
4912   return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit);
4913 }
4914 
4915 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
4916                              const SimplifyQuery &Q) {
4917   return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit);
4918 }
4919 
4920 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4921                                const SimplifyQuery &Q, unsigned) {
4922   if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
4923     return C;
4924 
4925   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q))
4926     return C;
4927 
4928   // X / 1.0 -> X
4929   if (match(Op1, m_FPOne()))
4930     return Op0;
4931 
4932   // 0 / X -> 0
4933   // Requires that NaNs are off (X could be zero) and signed zeroes are
4934   // ignored (X could be positive or negative, so the output sign is unknown).
4935   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
4936     return ConstantFP::getNullValue(Op0->getType());
4937 
4938   if (FMF.noNaNs()) {
4939     // X / X -> 1.0 is legal when NaNs are ignored.
4940     // We can ignore infinities because INF/INF is NaN.
4941     if (Op0 == Op1)
4942       return ConstantFP::get(Op0->getType(), 1.0);
4943 
4944     // (X * Y) / Y --> X if we can reassociate to the above form.
4945     Value *X;
4946     if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1))))
4947       return X;
4948 
4949     // -X /  X -> -1.0 and
4950     //  X / -X -> -1.0 are legal when NaNs are ignored.
4951     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
4952     if (match(Op0, m_FNegNSZ(m_Specific(Op1))) ||
4953         match(Op1, m_FNegNSZ(m_Specific(Op0))))
4954       return ConstantFP::get(Op0->getType(), -1.0);
4955   }
4956 
4957   return nullptr;
4958 }
4959 
4960 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4961                               const SimplifyQuery &Q) {
4962   return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit);
4963 }
4964 
4965 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4966                                const SimplifyQuery &Q, unsigned) {
4967   if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
4968     return C;
4969 
4970   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q))
4971     return C;
4972 
4973   // Unlike fdiv, the result of frem always matches the sign of the dividend.
4974   // The constant match may include undef elements in a vector, so return a full
4975   // zero constant as the result.
4976   if (FMF.noNaNs()) {
4977     // +0 % X -> 0
4978     if (match(Op0, m_PosZeroFP()))
4979       return ConstantFP::getNullValue(Op0->getType());
4980     // -0 % X -> -0
4981     if (match(Op0, m_NegZeroFP()))
4982       return ConstantFP::getNegativeZero(Op0->getType());
4983   }
4984 
4985   return nullptr;
4986 }
4987 
4988 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4989                               const SimplifyQuery &Q) {
4990   return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit);
4991 }
4992 
4993 //=== Helper functions for higher up the class hierarchy.
4994 
4995 /// Given the operand for a UnaryOperator, see if we can fold the result.
4996 /// If not, this returns null.
4997 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q,
4998                            unsigned MaxRecurse) {
4999   switch (Opcode) {
5000   case Instruction::FNeg:
5001     return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse);
5002   default:
5003     llvm_unreachable("Unexpected opcode");
5004   }
5005 }
5006 
5007 /// Given the operand for a UnaryOperator, see if we can fold the result.
5008 /// If not, this returns null.
5009 /// Try to use FastMathFlags when folding the result.
5010 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op,
5011                              const FastMathFlags &FMF,
5012                              const SimplifyQuery &Q, unsigned MaxRecurse) {
5013   switch (Opcode) {
5014   case Instruction::FNeg:
5015     return simplifyFNegInst(Op, FMF, Q, MaxRecurse);
5016   default:
5017     return simplifyUnOp(Opcode, Op, Q, MaxRecurse);
5018   }
5019 }
5020 
5021 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) {
5022   return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit);
5023 }
5024 
5025 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF,
5026                           const SimplifyQuery &Q) {
5027   return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit);
5028 }
5029 
5030 /// Given operands for a BinaryOperator, see if we can fold the result.
5031 /// If not, this returns null.
5032 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5033                             const SimplifyQuery &Q, unsigned MaxRecurse) {
5034   switch (Opcode) {
5035   case Instruction::Add:
5036     return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
5037   case Instruction::Sub:
5038     return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
5039   case Instruction::Mul:
5040     return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
5041   case Instruction::SDiv:
5042     return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
5043   case Instruction::UDiv:
5044     return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
5045   case Instruction::SRem:
5046     return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
5047   case Instruction::URem:
5048     return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
5049   case Instruction::Shl:
5050     return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
5051   case Instruction::LShr:
5052     return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
5053   case Instruction::AShr:
5054     return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
5055   case Instruction::And:
5056     return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
5057   case Instruction::Or:
5058     return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
5059   case Instruction::Xor:
5060     return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
5061   case Instruction::FAdd:
5062     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5063   case Instruction::FSub:
5064     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5065   case Instruction::FMul:
5066     return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5067   case Instruction::FDiv:
5068     return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5069   case Instruction::FRem:
5070     return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5071   default:
5072     llvm_unreachable("Unexpected opcode");
5073   }
5074 }
5075 
5076 /// Given operands for a BinaryOperator, see if we can fold the result.
5077 /// If not, this returns null.
5078 /// Try to use FastMathFlags when folding the result.
5079 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5080                             const FastMathFlags &FMF, const SimplifyQuery &Q,
5081                             unsigned MaxRecurse) {
5082   switch (Opcode) {
5083   case Instruction::FAdd:
5084     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
5085   case Instruction::FSub:
5086     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
5087   case Instruction::FMul:
5088     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
5089   case Instruction::FDiv:
5090     return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
5091   default:
5092     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
5093   }
5094 }
5095 
5096 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5097                            const SimplifyQuery &Q) {
5098   return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
5099 }
5100 
5101 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5102                            FastMathFlags FMF, const SimplifyQuery &Q) {
5103   return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
5104 }
5105 
5106 /// Given operands for a CmpInst, see if we can fold the result.
5107 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
5108                               const SimplifyQuery &Q, unsigned MaxRecurse) {
5109   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
5110     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
5111   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5112 }
5113 
5114 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
5115                              const SimplifyQuery &Q) {
5116   return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
5117 }
5118 
5119 static bool IsIdempotent(Intrinsic::ID ID) {
5120   switch (ID) {
5121   default: return false;
5122 
5123   // Unary idempotent: f(f(x)) = f(x)
5124   case Intrinsic::fabs:
5125   case Intrinsic::floor:
5126   case Intrinsic::ceil:
5127   case Intrinsic::trunc:
5128   case Intrinsic::rint:
5129   case Intrinsic::nearbyint:
5130   case Intrinsic::round:
5131   case Intrinsic::roundeven:
5132   case Intrinsic::canonicalize:
5133     return true;
5134   }
5135 }
5136 
5137 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
5138                                    const DataLayout &DL) {
5139   GlobalValue *PtrSym;
5140   APInt PtrOffset;
5141   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
5142     return nullptr;
5143 
5144   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
5145   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
5146   Type *Int32PtrTy = Int32Ty->getPointerTo();
5147   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
5148 
5149   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
5150   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
5151     return nullptr;
5152 
5153   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
5154   if (OffsetInt % 4 != 0)
5155     return nullptr;
5156 
5157   Constant *C = ConstantExpr::getGetElementPtr(
5158       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
5159       ConstantInt::get(Int64Ty, OffsetInt / 4));
5160   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
5161   if (!Loaded)
5162     return nullptr;
5163 
5164   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
5165   if (!LoadedCE)
5166     return nullptr;
5167 
5168   if (LoadedCE->getOpcode() == Instruction::Trunc) {
5169     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
5170     if (!LoadedCE)
5171       return nullptr;
5172   }
5173 
5174   if (LoadedCE->getOpcode() != Instruction::Sub)
5175     return nullptr;
5176 
5177   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
5178   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
5179     return nullptr;
5180   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
5181 
5182   Constant *LoadedRHS = LoadedCE->getOperand(1);
5183   GlobalValue *LoadedRHSSym;
5184   APInt LoadedRHSOffset;
5185   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
5186                                   DL) ||
5187       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
5188     return nullptr;
5189 
5190   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
5191 }
5192 
5193 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0,
5194                                      const SimplifyQuery &Q) {
5195   // Idempotent functions return the same result when called repeatedly.
5196   Intrinsic::ID IID = F->getIntrinsicID();
5197   if (IsIdempotent(IID))
5198     if (auto *II = dyn_cast<IntrinsicInst>(Op0))
5199       if (II->getIntrinsicID() == IID)
5200         return II;
5201 
5202   Value *X;
5203   switch (IID) {
5204   case Intrinsic::fabs:
5205     if (SignBitMustBeZero(Op0, Q.TLI)) return Op0;
5206     break;
5207   case Intrinsic::bswap:
5208     // bswap(bswap(x)) -> x
5209     if (match(Op0, m_BSwap(m_Value(X)))) return X;
5210     break;
5211   case Intrinsic::bitreverse:
5212     // bitreverse(bitreverse(x)) -> x
5213     if (match(Op0, m_BitReverse(m_Value(X)))) return X;
5214     break;
5215   case Intrinsic::exp:
5216     // exp(log(x)) -> x
5217     if (Q.CxtI->hasAllowReassoc() &&
5218         match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X;
5219     break;
5220   case Intrinsic::exp2:
5221     // exp2(log2(x)) -> x
5222     if (Q.CxtI->hasAllowReassoc() &&
5223         match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X;
5224     break;
5225   case Intrinsic::log:
5226     // log(exp(x)) -> x
5227     if (Q.CxtI->hasAllowReassoc() &&
5228         match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X;
5229     break;
5230   case Intrinsic::log2:
5231     // log2(exp2(x)) -> x
5232     if (Q.CxtI->hasAllowReassoc() &&
5233         (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) ||
5234          match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0),
5235                                                 m_Value(X))))) return X;
5236     break;
5237   case Intrinsic::log10:
5238     // log10(pow(10.0, x)) -> x
5239     if (Q.CxtI->hasAllowReassoc() &&
5240         match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0),
5241                                                m_Value(X)))) return X;
5242     break;
5243   case Intrinsic::floor:
5244   case Intrinsic::trunc:
5245   case Intrinsic::ceil:
5246   case Intrinsic::round:
5247   case Intrinsic::roundeven:
5248   case Intrinsic::nearbyint:
5249   case Intrinsic::rint: {
5250     // floor (sitofp x) -> sitofp x
5251     // floor (uitofp x) -> uitofp x
5252     //
5253     // Converting from int always results in a finite integral number or
5254     // infinity. For either of those inputs, these rounding functions always
5255     // return the same value, so the rounding can be eliminated.
5256     if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value())))
5257       return Op0;
5258     break;
5259   }
5260   default:
5261     break;
5262   }
5263 
5264   return nullptr;
5265 }
5266 
5267 static Intrinsic::ID getMaxMinOpposite(Intrinsic::ID IID) {
5268   switch (IID) {
5269   case Intrinsic::smax: return Intrinsic::smin;
5270   case Intrinsic::smin: return Intrinsic::smax;
5271   case Intrinsic::umax: return Intrinsic::umin;
5272   case Intrinsic::umin: return Intrinsic::umax;
5273   default: llvm_unreachable("Unexpected intrinsic");
5274   }
5275 }
5276 
5277 static APInt getMaxMinLimit(Intrinsic::ID IID, unsigned BitWidth) {
5278   switch (IID) {
5279   case Intrinsic::smax: return APInt::getSignedMaxValue(BitWidth);
5280   case Intrinsic::smin: return APInt::getSignedMinValue(BitWidth);
5281   case Intrinsic::umax: return APInt::getMaxValue(BitWidth);
5282   case Intrinsic::umin: return APInt::getMinValue(BitWidth);
5283   default: llvm_unreachable("Unexpected intrinsic");
5284   }
5285 }
5286 
5287 static ICmpInst::Predicate getMaxMinPredicate(Intrinsic::ID IID) {
5288   switch (IID) {
5289   case Intrinsic::smax: return ICmpInst::ICMP_SGE;
5290   case Intrinsic::smin: return ICmpInst::ICMP_SLE;
5291   case Intrinsic::umax: return ICmpInst::ICMP_UGE;
5292   case Intrinsic::umin: return ICmpInst::ICMP_ULE;
5293   default: llvm_unreachable("Unexpected intrinsic");
5294   }
5295 }
5296 
5297 /// Given a min/max intrinsic, see if it can be removed based on having an
5298 /// operand that is another min/max intrinsic with shared operand(s). The caller
5299 /// is expected to swap the operand arguments to handle commutation.
5300 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) {
5301   Value *X, *Y;
5302   if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y))))
5303     return nullptr;
5304 
5305   auto *MM0 = dyn_cast<IntrinsicInst>(Op0);
5306   if (!MM0)
5307     return nullptr;
5308   Intrinsic::ID IID0 = MM0->getIntrinsicID();
5309 
5310   if (Op1 == X || Op1 == Y ||
5311       match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) {
5312     // max (max X, Y), X --> max X, Y
5313     if (IID0 == IID)
5314       return MM0;
5315     // max (min X, Y), X --> X
5316     if (IID0 == getMaxMinOpposite(IID))
5317       return Op1;
5318   }
5319   return nullptr;
5320 }
5321 
5322 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1,
5323                                       const SimplifyQuery &Q) {
5324   Intrinsic::ID IID = F->getIntrinsicID();
5325   Type *ReturnType = F->getReturnType();
5326   unsigned BitWidth = ReturnType->getScalarSizeInBits();
5327   switch (IID) {
5328   case Intrinsic::abs:
5329     // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here.
5330     // It is always ok to pick the earlier abs. We'll just lose nsw if its only
5331     // on the outer abs.
5332     if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value())))
5333       return Op0;
5334     break;
5335 
5336   case Intrinsic::smax:
5337   case Intrinsic::smin:
5338   case Intrinsic::umax:
5339   case Intrinsic::umin: {
5340     // If the arguments are the same, this is a no-op.
5341     if (Op0 == Op1)
5342       return Op0;
5343 
5344     // Canonicalize constant operand as Op1.
5345     if (isa<Constant>(Op0))
5346       std::swap(Op0, Op1);
5347 
5348     // Assume undef is the limit value.
5349     if (Q.isUndefValue(Op1))
5350       return ConstantInt::get(ReturnType, getMaxMinLimit(IID, BitWidth));
5351 
5352     const APInt *C;
5353     if (match(Op1, m_APIntAllowUndef(C))) {
5354       // Clamp to limit value. For example:
5355       // umax(i8 %x, i8 255) --> 255
5356       if (*C == getMaxMinLimit(IID, BitWidth))
5357         return ConstantInt::get(ReturnType, *C);
5358 
5359       // If the constant op is the opposite of the limit value, the other must
5360       // be larger/smaller or equal. For example:
5361       // umin(i8 %x, i8 255) --> %x
5362       if (*C == getMaxMinLimit(getMaxMinOpposite(IID), BitWidth))
5363         return Op0;
5364 
5365       // Remove nested call if constant operands allow it. Example:
5366       // max (max X, 7), 5 -> max X, 7
5367       auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0);
5368       if (MinMax0 && MinMax0->getIntrinsicID() == IID) {
5369         // TODO: loosen undef/splat restrictions for vector constants.
5370         Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1);
5371         const APInt *InnerC;
5372         if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) &&
5373             ((IID == Intrinsic::smax && InnerC->sge(*C)) ||
5374              (IID == Intrinsic::smin && InnerC->sle(*C)) ||
5375              (IID == Intrinsic::umax && InnerC->uge(*C)) ||
5376              (IID == Intrinsic::umin && InnerC->ule(*C))))
5377           return Op0;
5378       }
5379     }
5380 
5381     if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1))
5382       return V;
5383     if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0))
5384       return V;
5385 
5386     ICmpInst::Predicate Pred = getMaxMinPredicate(IID);
5387     if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit))
5388       return Op0;
5389     if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit))
5390       return Op1;
5391 
5392     if (Optional<bool> Imp =
5393             isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL))
5394       return *Imp ? Op0 : Op1;
5395     if (Optional<bool> Imp =
5396             isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL))
5397       return *Imp ? Op1 : Op0;
5398 
5399     break;
5400   }
5401   case Intrinsic::usub_with_overflow:
5402   case Intrinsic::ssub_with_overflow:
5403     // X - X -> { 0, false }
5404     if (Op0 == Op1)
5405       return Constant::getNullValue(ReturnType);
5406     LLVM_FALLTHROUGH;
5407   case Intrinsic::uadd_with_overflow:
5408   case Intrinsic::sadd_with_overflow:
5409     // X - undef -> { undef, false }
5410     // undef - X -> { undef, false }
5411     // X + undef -> { undef, false }
5412     // undef + x -> { undef, false }
5413     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) {
5414       return ConstantStruct::get(
5415           cast<StructType>(ReturnType),
5416           {UndefValue::get(ReturnType->getStructElementType(0)),
5417            Constant::getNullValue(ReturnType->getStructElementType(1))});
5418     }
5419     break;
5420   case Intrinsic::umul_with_overflow:
5421   case Intrinsic::smul_with_overflow:
5422     // 0 * X -> { 0, false }
5423     // X * 0 -> { 0, false }
5424     if (match(Op0, m_Zero()) || match(Op1, m_Zero()))
5425       return Constant::getNullValue(ReturnType);
5426     // undef * X -> { 0, false }
5427     // X * undef -> { 0, false }
5428     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5429       return Constant::getNullValue(ReturnType);
5430     break;
5431   case Intrinsic::uadd_sat:
5432     // sat(MAX + X) -> MAX
5433     // sat(X + MAX) -> MAX
5434     if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes()))
5435       return Constant::getAllOnesValue(ReturnType);
5436     LLVM_FALLTHROUGH;
5437   case Intrinsic::sadd_sat:
5438     // sat(X + undef) -> -1
5439     // sat(undef + X) -> -1
5440     // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1).
5441     // For signed: Assume undef is ~X, in which case X + ~X = -1.
5442     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5443       return Constant::getAllOnesValue(ReturnType);
5444 
5445     // X + 0 -> X
5446     if (match(Op1, m_Zero()))
5447       return Op0;
5448     // 0 + X -> X
5449     if (match(Op0, m_Zero()))
5450       return Op1;
5451     break;
5452   case Intrinsic::usub_sat:
5453     // sat(0 - X) -> 0, sat(X - MAX) -> 0
5454     if (match(Op0, m_Zero()) || match(Op1, m_AllOnes()))
5455       return Constant::getNullValue(ReturnType);
5456     LLVM_FALLTHROUGH;
5457   case Intrinsic::ssub_sat:
5458     // X - X -> 0, X - undef -> 0, undef - X -> 0
5459     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5460       return Constant::getNullValue(ReturnType);
5461     // X - 0 -> X
5462     if (match(Op1, m_Zero()))
5463       return Op0;
5464     break;
5465   case Intrinsic::load_relative:
5466     if (auto *C0 = dyn_cast<Constant>(Op0))
5467       if (auto *C1 = dyn_cast<Constant>(Op1))
5468         return SimplifyRelativeLoad(C0, C1, Q.DL);
5469     break;
5470   case Intrinsic::powi:
5471     if (auto *Power = dyn_cast<ConstantInt>(Op1)) {
5472       // powi(x, 0) -> 1.0
5473       if (Power->isZero())
5474         return ConstantFP::get(Op0->getType(), 1.0);
5475       // powi(x, 1) -> x
5476       if (Power->isOne())
5477         return Op0;
5478     }
5479     break;
5480   case Intrinsic::copysign:
5481     // copysign X, X --> X
5482     if (Op0 == Op1)
5483       return Op0;
5484     // copysign -X, X --> X
5485     // copysign X, -X --> -X
5486     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
5487         match(Op1, m_FNeg(m_Specific(Op0))))
5488       return Op1;
5489     break;
5490   case Intrinsic::maxnum:
5491   case Intrinsic::minnum:
5492   case Intrinsic::maximum:
5493   case Intrinsic::minimum: {
5494     // If the arguments are the same, this is a no-op.
5495     if (Op0 == Op1) return Op0;
5496 
5497     // Canonicalize constant operand as Op1.
5498     if (isa<Constant>(Op0))
5499       std::swap(Op0, Op1);
5500 
5501     // If an argument is undef, return the other argument.
5502     if (Q.isUndefValue(Op1))
5503       return Op0;
5504 
5505     bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
5506     bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum;
5507 
5508     // minnum(X, nan) -> X
5509     // maxnum(X, nan) -> X
5510     // minimum(X, nan) -> nan
5511     // maximum(X, nan) -> nan
5512     if (match(Op1, m_NaN()))
5513       return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0;
5514 
5515     // In the following folds, inf can be replaced with the largest finite
5516     // float, if the ninf flag is set.
5517     const APFloat *C;
5518     if (match(Op1, m_APFloat(C)) &&
5519         (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) {
5520       // minnum(X, -inf) -> -inf
5521       // maxnum(X, +inf) -> +inf
5522       // minimum(X, -inf) -> -inf if nnan
5523       // maximum(X, +inf) -> +inf if nnan
5524       if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs()))
5525         return ConstantFP::get(ReturnType, *C);
5526 
5527       // minnum(X, +inf) -> X if nnan
5528       // maxnum(X, -inf) -> X if nnan
5529       // minimum(X, +inf) -> X
5530       // maximum(X, -inf) -> X
5531       if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs()))
5532         return Op0;
5533     }
5534 
5535     // Min/max of the same operation with common operand:
5536     // m(m(X, Y)), X --> m(X, Y) (4 commuted variants)
5537     if (auto *M0 = dyn_cast<IntrinsicInst>(Op0))
5538       if (M0->getIntrinsicID() == IID &&
5539           (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1))
5540         return Op0;
5541     if (auto *M1 = dyn_cast<IntrinsicInst>(Op1))
5542       if (M1->getIntrinsicID() == IID &&
5543           (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0))
5544         return Op1;
5545 
5546     break;
5547   }
5548   default:
5549     break;
5550   }
5551 
5552   return nullptr;
5553 }
5554 
5555 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) {
5556 
5557   // Intrinsics with no operands have some kind of side effect. Don't simplify.
5558   unsigned NumOperands = Call->getNumArgOperands();
5559   if (!NumOperands)
5560     return nullptr;
5561 
5562   Function *F = cast<Function>(Call->getCalledFunction());
5563   Intrinsic::ID IID = F->getIntrinsicID();
5564   if (NumOperands == 1)
5565     return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q);
5566 
5567   if (NumOperands == 2)
5568     return simplifyBinaryIntrinsic(F, Call->getArgOperand(0),
5569                                    Call->getArgOperand(1), Q);
5570 
5571   // Handle intrinsics with 3 or more arguments.
5572   switch (IID) {
5573   case Intrinsic::masked_load:
5574   case Intrinsic::masked_gather: {
5575     Value *MaskArg = Call->getArgOperand(2);
5576     Value *PassthruArg = Call->getArgOperand(3);
5577     // If the mask is all zeros or undef, the "passthru" argument is the result.
5578     if (maskIsAllZeroOrUndef(MaskArg))
5579       return PassthruArg;
5580     return nullptr;
5581   }
5582   case Intrinsic::fshl:
5583   case Intrinsic::fshr: {
5584     Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1),
5585           *ShAmtArg = Call->getArgOperand(2);
5586 
5587     // If both operands are undef, the result is undef.
5588     if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1))
5589       return UndefValue::get(F->getReturnType());
5590 
5591     // If shift amount is undef, assume it is zero.
5592     if (Q.isUndefValue(ShAmtArg))
5593       return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5594 
5595     const APInt *ShAmtC;
5596     if (match(ShAmtArg, m_APInt(ShAmtC))) {
5597       // If there's effectively no shift, return the 1st arg or 2nd arg.
5598       APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth());
5599       if (ShAmtC->urem(BitWidth).isNullValue())
5600         return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5601     }
5602     return nullptr;
5603   }
5604   case Intrinsic::fma:
5605   case Intrinsic::fmuladd: {
5606     Value *Op0 = Call->getArgOperand(0);
5607     Value *Op1 = Call->getArgOperand(1);
5608     Value *Op2 = Call->getArgOperand(2);
5609     if (Value *V = simplifyFPOp({ Op0, Op1, Op2 }, {}, Q))
5610       return V;
5611     return nullptr;
5612   }
5613   default:
5614     return nullptr;
5615   }
5616 }
5617 
5618 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) {
5619   auto *F = dyn_cast<Function>(Call->getCalledOperand());
5620   if (!F || !canConstantFoldCallTo(Call, F))
5621     return nullptr;
5622 
5623   SmallVector<Constant *, 4> ConstantArgs;
5624   unsigned NumArgs = Call->getNumArgOperands();
5625   ConstantArgs.reserve(NumArgs);
5626   for (auto &Arg : Call->args()) {
5627     Constant *C = dyn_cast<Constant>(&Arg);
5628     if (!C) {
5629       if (isa<MetadataAsValue>(Arg.get()))
5630         continue;
5631       return nullptr;
5632     }
5633     ConstantArgs.push_back(C);
5634   }
5635 
5636   return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI);
5637 }
5638 
5639 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) {
5640   // musttail calls can only be simplified if they are also DCEd.
5641   // As we can't guarantee this here, don't simplify them.
5642   if (Call->isMustTailCall())
5643     return nullptr;
5644 
5645   // call undef -> undef
5646   // call null -> undef
5647   Value *Callee = Call->getCalledOperand();
5648   if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee))
5649     return UndefValue::get(Call->getType());
5650 
5651   if (Value *V = tryConstantFoldCall(Call, Q))
5652     return V;
5653 
5654   auto *F = dyn_cast<Function>(Callee);
5655   if (F && F->isIntrinsic())
5656     if (Value *Ret = simplifyIntrinsic(Call, Q))
5657       return Ret;
5658 
5659   return nullptr;
5660 }
5661 
5662 /// Given operands for a Freeze, see if we can fold the result.
5663 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
5664   // Use a utility function defined in ValueTracking.
5665   if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT))
5666     return Op0;
5667   // We have room for improvement.
5668   return nullptr;
5669 }
5670 
5671 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
5672   return ::SimplifyFreezeInst(Op0, Q);
5673 }
5674 
5675 /// See if we can compute a simplified version of this instruction.
5676 /// If not, this returns null.
5677 
5678 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
5679                                  OptimizationRemarkEmitter *ORE) {
5680   const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
5681   Value *Result;
5682 
5683   switch (I->getOpcode()) {
5684   default:
5685     Result = ConstantFoldInstruction(I, Q.DL, Q.TLI);
5686     break;
5687   case Instruction::FNeg:
5688     Result = SimplifyFNegInst(I->getOperand(0), I->getFastMathFlags(), Q);
5689     break;
5690   case Instruction::FAdd:
5691     Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
5692                               I->getFastMathFlags(), Q);
5693     break;
5694   case Instruction::Add:
5695     Result =
5696         SimplifyAddInst(I->getOperand(0), I->getOperand(1),
5697                         Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5698                         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5699     break;
5700   case Instruction::FSub:
5701     Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
5702                               I->getFastMathFlags(), Q);
5703     break;
5704   case Instruction::Sub:
5705     Result =
5706         SimplifySubInst(I->getOperand(0), I->getOperand(1),
5707                         Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5708                         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5709     break;
5710   case Instruction::FMul:
5711     Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
5712                               I->getFastMathFlags(), Q);
5713     break;
5714   case Instruction::Mul:
5715     Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q);
5716     break;
5717   case Instruction::SDiv:
5718     Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q);
5719     break;
5720   case Instruction::UDiv:
5721     Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q);
5722     break;
5723   case Instruction::FDiv:
5724     Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
5725                               I->getFastMathFlags(), Q);
5726     break;
5727   case Instruction::SRem:
5728     Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q);
5729     break;
5730   case Instruction::URem:
5731     Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q);
5732     break;
5733   case Instruction::FRem:
5734     Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
5735                               I->getFastMathFlags(), Q);
5736     break;
5737   case Instruction::Shl:
5738     Result =
5739         SimplifyShlInst(I->getOperand(0), I->getOperand(1),
5740                         Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5741                         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5742     break;
5743   case Instruction::LShr:
5744     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
5745                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
5746     break;
5747   case Instruction::AShr:
5748     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
5749                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
5750     break;
5751   case Instruction::And:
5752     Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q);
5753     break;
5754   case Instruction::Or:
5755     Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q);
5756     break;
5757   case Instruction::Xor:
5758     Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q);
5759     break;
5760   case Instruction::ICmp:
5761     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
5762                               I->getOperand(0), I->getOperand(1), Q);
5763     break;
5764   case Instruction::FCmp:
5765     Result =
5766         SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0),
5767                          I->getOperand(1), I->getFastMathFlags(), Q);
5768     break;
5769   case Instruction::Select:
5770     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
5771                                 I->getOperand(2), Q);
5772     break;
5773   case Instruction::GetElementPtr: {
5774     SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end());
5775     Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(),
5776                              Ops, Q);
5777     break;
5778   }
5779   case Instruction::InsertValue: {
5780     InsertValueInst *IV = cast<InsertValueInst>(I);
5781     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
5782                                      IV->getInsertedValueOperand(),
5783                                      IV->getIndices(), Q);
5784     break;
5785   }
5786   case Instruction::InsertElement: {
5787     auto *IE = cast<InsertElementInst>(I);
5788     Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1),
5789                                        IE->getOperand(2), Q);
5790     break;
5791   }
5792   case Instruction::ExtractValue: {
5793     auto *EVI = cast<ExtractValueInst>(I);
5794     Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
5795                                       EVI->getIndices(), Q);
5796     break;
5797   }
5798   case Instruction::ExtractElement: {
5799     auto *EEI = cast<ExtractElementInst>(I);
5800     Result = SimplifyExtractElementInst(EEI->getVectorOperand(),
5801                                         EEI->getIndexOperand(), Q);
5802     break;
5803   }
5804   case Instruction::ShuffleVector: {
5805     auto *SVI = cast<ShuffleVectorInst>(I);
5806     Result =
5807         SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
5808                                   SVI->getShuffleMask(), SVI->getType(), Q);
5809     break;
5810   }
5811   case Instruction::PHI:
5812     Result = SimplifyPHINode(cast<PHINode>(I), Q);
5813     break;
5814   case Instruction::Call: {
5815     Result = SimplifyCall(cast<CallInst>(I), Q);
5816     break;
5817   }
5818   case Instruction::Freeze:
5819     Result = SimplifyFreezeInst(I->getOperand(0), Q);
5820     break;
5821 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
5822 #include "llvm/IR/Instruction.def"
5823 #undef HANDLE_CAST_INST
5824     Result =
5825         SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q);
5826     break;
5827   case Instruction::Alloca:
5828     // No simplifications for Alloca and it can't be constant folded.
5829     Result = nullptr;
5830     break;
5831   }
5832 
5833   /// If called on unreachable code, the above logic may report that the
5834   /// instruction simplified to itself.  Make life easier for users by
5835   /// detecting that case here, returning a safe value instead.
5836   return Result == I ? UndefValue::get(I->getType()) : Result;
5837 }
5838 
5839 /// Implementation of recursive simplification through an instruction's
5840 /// uses.
5841 ///
5842 /// This is the common implementation of the recursive simplification routines.
5843 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
5844 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
5845 /// instructions to process and attempt to simplify it using
5846 /// InstructionSimplify. Recursively visited users which could not be
5847 /// simplified themselves are to the optional UnsimplifiedUsers set for
5848 /// further processing by the caller.
5849 ///
5850 /// This routine returns 'true' only when *it* simplifies something. The passed
5851 /// in simplified value does not count toward this.
5852 static bool replaceAndRecursivelySimplifyImpl(
5853     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
5854     const DominatorTree *DT, AssumptionCache *AC,
5855     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) {
5856   bool Simplified = false;
5857   SmallSetVector<Instruction *, 8> Worklist;
5858   const DataLayout &DL = I->getModule()->getDataLayout();
5859 
5860   // If we have an explicit value to collapse to, do that round of the
5861   // simplification loop by hand initially.
5862   if (SimpleV) {
5863     for (User *U : I->users())
5864       if (U != I)
5865         Worklist.insert(cast<Instruction>(U));
5866 
5867     // Replace the instruction with its simplified value.
5868     I->replaceAllUsesWith(SimpleV);
5869 
5870     // Gracefully handle edge cases where the instruction is not wired into any
5871     // parent block.
5872     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
5873         !I->mayHaveSideEffects())
5874       I->eraseFromParent();
5875   } else {
5876     Worklist.insert(I);
5877   }
5878 
5879   // Note that we must test the size on each iteration, the worklist can grow.
5880   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
5881     I = Worklist[Idx];
5882 
5883     // See if this instruction simplifies.
5884     SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC});
5885     if (!SimpleV) {
5886       if (UnsimplifiedUsers)
5887         UnsimplifiedUsers->insert(I);
5888       continue;
5889     }
5890 
5891     Simplified = true;
5892 
5893     // Stash away all the uses of the old instruction so we can check them for
5894     // recursive simplifications after a RAUW. This is cheaper than checking all
5895     // uses of To on the recursive step in most cases.
5896     for (User *U : I->users())
5897       Worklist.insert(cast<Instruction>(U));
5898 
5899     // Replace the instruction with its simplified value.
5900     I->replaceAllUsesWith(SimpleV);
5901 
5902     // Gracefully handle edge cases where the instruction is not wired into any
5903     // parent block.
5904     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
5905         !I->mayHaveSideEffects())
5906       I->eraseFromParent();
5907   }
5908   return Simplified;
5909 }
5910 
5911 bool llvm::recursivelySimplifyInstruction(Instruction *I,
5912                                           const TargetLibraryInfo *TLI,
5913                                           const DominatorTree *DT,
5914                                           AssumptionCache *AC) {
5915   return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC, nullptr);
5916 }
5917 
5918 bool llvm::replaceAndRecursivelySimplify(
5919     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
5920     const DominatorTree *DT, AssumptionCache *AC,
5921     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) {
5922   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
5923   assert(SimpleV && "Must provide a simplified value.");
5924   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC,
5925                                            UnsimplifiedUsers);
5926 }
5927 
5928 namespace llvm {
5929 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
5930   auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
5931   auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
5932   auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
5933   auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr;
5934   auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
5935   auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
5936   return {F.getParent()->getDataLayout(), TLI, DT, AC};
5937 }
5938 
5939 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
5940                                          const DataLayout &DL) {
5941   return {DL, &AR.TLI, &AR.DT, &AR.AC};
5942 }
5943 
5944 template <class T, class... TArgs>
5945 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
5946                                          Function &F) {
5947   auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
5948   auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
5949   auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
5950   return {F.getParent()->getDataLayout(), TLI, DT, AC};
5951 }
5952 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
5953                                                   Function &);
5954 }
5955