1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements routines for folding instructions into simpler forms 10 // that do not require creating new instructions. This does constant folding 11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 14 // simplified: This is usually true and assuming it simplifies the logic (if 15 // they have not been simplified then results are correct but maybe suboptimal). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/CmpInstAnalysis.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/LoopAnalysisManager.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/IR/ConstantRange.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/GetElementPtrTypeIterator.h" 35 #include "llvm/IR/GlobalAlias.h" 36 #include "llvm/IR/InstrTypes.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/IR/PatternMatch.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/KnownBits.h" 42 #include <algorithm> 43 using namespace llvm; 44 using namespace llvm::PatternMatch; 45 46 #define DEBUG_TYPE "instsimplify" 47 48 enum { RecursionLimit = 3 }; 49 50 STATISTIC(NumExpand, "Number of expansions"); 51 STATISTIC(NumReassoc, "Number of reassociations"); 52 53 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 54 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); 55 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, 56 const SimplifyQuery &, unsigned); 57 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 58 unsigned); 59 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &, 60 const SimplifyQuery &, unsigned); 61 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 62 unsigned); 63 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 64 const SimplifyQuery &Q, unsigned MaxRecurse); 65 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 66 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 67 static Value *SimplifyCastInst(unsigned, Value *, Type *, 68 const SimplifyQuery &, unsigned); 69 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &, 70 unsigned); 71 static Value *SimplifySelectInst(Value *, Value *, Value *, 72 const SimplifyQuery &, unsigned); 73 74 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 75 Value *FalseVal) { 76 BinaryOperator::BinaryOps BinOpCode; 77 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 78 BinOpCode = BO->getOpcode(); 79 else 80 return nullptr; 81 82 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 83 if (BinOpCode == BinaryOperator::Or) { 84 ExpectedPred = ICmpInst::ICMP_NE; 85 } else if (BinOpCode == BinaryOperator::And) { 86 ExpectedPred = ICmpInst::ICMP_EQ; 87 } else 88 return nullptr; 89 90 // %A = icmp eq %TV, %FV 91 // %B = icmp eq %X, %Y (and one of these is a select operand) 92 // %C = and %A, %B 93 // %D = select %C, %TV, %FV 94 // --> 95 // %FV 96 97 // %A = icmp ne %TV, %FV 98 // %B = icmp ne %X, %Y (and one of these is a select operand) 99 // %C = or %A, %B 100 // %D = select %C, %TV, %FV 101 // --> 102 // %TV 103 Value *X, *Y; 104 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 105 m_Specific(FalseVal)), 106 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 107 Pred1 != Pred2 || Pred1 != ExpectedPred) 108 return nullptr; 109 110 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 111 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 112 113 return nullptr; 114 } 115 116 /// For a boolean type or a vector of boolean type, return false or a vector 117 /// with every element false. 118 static Constant *getFalse(Type *Ty) { 119 return ConstantInt::getFalse(Ty); 120 } 121 122 /// For a boolean type or a vector of boolean type, return true or a vector 123 /// with every element true. 124 static Constant *getTrue(Type *Ty) { 125 return ConstantInt::getTrue(Ty); 126 } 127 128 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 129 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 130 Value *RHS) { 131 CmpInst *Cmp = dyn_cast<CmpInst>(V); 132 if (!Cmp) 133 return false; 134 CmpInst::Predicate CPred = Cmp->getPredicate(); 135 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 136 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 137 return true; 138 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 139 CRHS == LHS; 140 } 141 142 /// Simplify comparison with true or false branch of select: 143 /// %sel = select i1 %cond, i32 %tv, i32 %fv 144 /// %cmp = icmp sle i32 %sel, %rhs 145 /// Compose new comparison by substituting %sel with either %tv or %fv 146 /// and see if it simplifies. 147 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS, 148 Value *RHS, Value *Cond, 149 const SimplifyQuery &Q, unsigned MaxRecurse, 150 Constant *TrueOrFalse) { 151 Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse); 152 if (SimplifiedCmp == Cond) { 153 // %cmp simplified to the select condition (%cond). 154 return TrueOrFalse; 155 } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) { 156 // It didn't simplify. However, if composed comparison is equivalent 157 // to the select condition (%cond) then we can replace it. 158 return TrueOrFalse; 159 } 160 return SimplifiedCmp; 161 } 162 163 /// Simplify comparison with true branch of select 164 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS, 165 Value *RHS, Value *Cond, 166 const SimplifyQuery &Q, 167 unsigned MaxRecurse) { 168 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 169 getTrue(Cond->getType())); 170 } 171 172 /// Simplify comparison with false branch of select 173 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS, 174 Value *RHS, Value *Cond, 175 const SimplifyQuery &Q, 176 unsigned MaxRecurse) { 177 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 178 getFalse(Cond->getType())); 179 } 180 181 /// We know comparison with both branches of select can be simplified, but they 182 /// are not equal. This routine handles some logical simplifications. 183 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, 184 Value *Cond, 185 const SimplifyQuery &Q, 186 unsigned MaxRecurse) { 187 // If the false value simplified to false, then the result of the compare 188 // is equal to "Cond && TCmp". This also catches the case when the false 189 // value simplified to false and the true value to true, returning "Cond". 190 if (match(FCmp, m_Zero())) 191 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 192 return V; 193 // If the true value simplified to true, then the result of the compare 194 // is equal to "Cond || FCmp". 195 if (match(TCmp, m_One())) 196 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 197 return V; 198 // Finally, if the false value simplified to true and the true value to 199 // false, then the result of the compare is equal to "!Cond". 200 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 201 if (Value *V = SimplifyXorInst( 202 Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse)) 203 return V; 204 return nullptr; 205 } 206 207 /// Does the given value dominate the specified phi node? 208 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 209 Instruction *I = dyn_cast<Instruction>(V); 210 if (!I) 211 // Arguments and constants dominate all instructions. 212 return true; 213 214 // If we are processing instructions (and/or basic blocks) that have not been 215 // fully added to a function, the parent nodes may still be null. Simply 216 // return the conservative answer in these cases. 217 if (!I->getParent() || !P->getParent() || !I->getFunction()) 218 return false; 219 220 // If we have a DominatorTree then do a precise test. 221 if (DT) 222 return DT->dominates(I, P); 223 224 // Otherwise, if the instruction is in the entry block and is not an invoke, 225 // then it obviously dominates all phi nodes. 226 if (I->getParent() == &I->getFunction()->getEntryBlock() && 227 !isa<InvokeInst>(I) && !isa<CallBrInst>(I)) 228 return true; 229 230 return false; 231 } 232 233 /// Try to simplify a binary operator of form "V op OtherOp" where V is 234 /// "(B0 opex B1)" by distributing 'op' across 'opex' as 235 /// "(B0 op OtherOp) opex (B1 op OtherOp)". 236 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V, 237 Value *OtherOp, Instruction::BinaryOps OpcodeToExpand, 238 const SimplifyQuery &Q, unsigned MaxRecurse) { 239 auto *B = dyn_cast<BinaryOperator>(V); 240 if (!B || B->getOpcode() != OpcodeToExpand) 241 return nullptr; 242 Value *B0 = B->getOperand(0), *B1 = B->getOperand(1); 243 Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(), 244 MaxRecurse); 245 if (!L) 246 return nullptr; 247 Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(), 248 MaxRecurse); 249 if (!R) 250 return nullptr; 251 252 // Does the expanded pair of binops simplify to the existing binop? 253 if ((L == B0 && R == B1) || 254 (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) { 255 ++NumExpand; 256 return B; 257 } 258 259 // Otherwise, return "L op' R" if it simplifies. 260 Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse); 261 if (!S) 262 return nullptr; 263 264 ++NumExpand; 265 return S; 266 } 267 268 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by 269 /// distributing op over op'. 270 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode, 271 Value *L, Value *R, 272 Instruction::BinaryOps OpcodeToExpand, 273 const SimplifyQuery &Q, 274 unsigned MaxRecurse) { 275 // Recursion is always used, so bail out at once if we already hit the limit. 276 if (!MaxRecurse--) 277 return nullptr; 278 279 if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse)) 280 return V; 281 if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse)) 282 return V; 283 return nullptr; 284 } 285 286 /// Generic simplifications for associative binary operations. 287 /// Returns the simpler value, or null if none was found. 288 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 289 Value *LHS, Value *RHS, 290 const SimplifyQuery &Q, 291 unsigned MaxRecurse) { 292 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 293 294 // Recursion is always used, so bail out at once if we already hit the limit. 295 if (!MaxRecurse--) 296 return nullptr; 297 298 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 299 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 300 301 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 302 if (Op0 && Op0->getOpcode() == Opcode) { 303 Value *A = Op0->getOperand(0); 304 Value *B = Op0->getOperand(1); 305 Value *C = RHS; 306 307 // Does "B op C" simplify? 308 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 309 // It does! Return "A op V" if it simplifies or is already available. 310 // If V equals B then "A op V" is just the LHS. 311 if (V == B) return LHS; 312 // Otherwise return "A op V" if it simplifies. 313 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 314 ++NumReassoc; 315 return W; 316 } 317 } 318 } 319 320 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 321 if (Op1 && Op1->getOpcode() == Opcode) { 322 Value *A = LHS; 323 Value *B = Op1->getOperand(0); 324 Value *C = Op1->getOperand(1); 325 326 // Does "A op B" simplify? 327 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 328 // It does! Return "V op C" if it simplifies or is already available. 329 // If V equals B then "V op C" is just the RHS. 330 if (V == B) return RHS; 331 // Otherwise return "V op C" if it simplifies. 332 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 333 ++NumReassoc; 334 return W; 335 } 336 } 337 } 338 339 // The remaining transforms require commutativity as well as associativity. 340 if (!Instruction::isCommutative(Opcode)) 341 return nullptr; 342 343 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 344 if (Op0 && Op0->getOpcode() == Opcode) { 345 Value *A = Op0->getOperand(0); 346 Value *B = Op0->getOperand(1); 347 Value *C = RHS; 348 349 // Does "C op A" simplify? 350 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 351 // It does! Return "V op B" if it simplifies or is already available. 352 // If V equals A then "V op B" is just the LHS. 353 if (V == A) return LHS; 354 // Otherwise return "V op B" if it simplifies. 355 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 356 ++NumReassoc; 357 return W; 358 } 359 } 360 } 361 362 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 363 if (Op1 && Op1->getOpcode() == Opcode) { 364 Value *A = LHS; 365 Value *B = Op1->getOperand(0); 366 Value *C = Op1->getOperand(1); 367 368 // Does "C op A" simplify? 369 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 370 // It does! Return "B op V" if it simplifies or is already available. 371 // If V equals C then "B op V" is just the RHS. 372 if (V == C) return RHS; 373 // Otherwise return "B op V" if it simplifies. 374 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 375 ++NumReassoc; 376 return W; 377 } 378 } 379 } 380 381 return nullptr; 382 } 383 384 /// In the case of a binary operation with a select instruction as an operand, 385 /// try to simplify the binop by seeing whether evaluating it on both branches 386 /// of the select results in the same value. Returns the common value if so, 387 /// otherwise returns null. 388 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 389 Value *RHS, const SimplifyQuery &Q, 390 unsigned MaxRecurse) { 391 // Recursion is always used, so bail out at once if we already hit the limit. 392 if (!MaxRecurse--) 393 return nullptr; 394 395 SelectInst *SI; 396 if (isa<SelectInst>(LHS)) { 397 SI = cast<SelectInst>(LHS); 398 } else { 399 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 400 SI = cast<SelectInst>(RHS); 401 } 402 403 // Evaluate the BinOp on the true and false branches of the select. 404 Value *TV; 405 Value *FV; 406 if (SI == LHS) { 407 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 408 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 409 } else { 410 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 411 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 412 } 413 414 // If they simplified to the same value, then return the common value. 415 // If they both failed to simplify then return null. 416 if (TV == FV) 417 return TV; 418 419 // If one branch simplified to undef, return the other one. 420 if (TV && Q.isUndefValue(TV)) 421 return FV; 422 if (FV && Q.isUndefValue(FV)) 423 return TV; 424 425 // If applying the operation did not change the true and false select values, 426 // then the result of the binop is the select itself. 427 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 428 return SI; 429 430 // If one branch simplified and the other did not, and the simplified 431 // value is equal to the unsimplified one, return the simplified value. 432 // For example, select (cond, X, X & Z) & Z -> X & Z. 433 if ((FV && !TV) || (TV && !FV)) { 434 // Check that the simplified value has the form "X op Y" where "op" is the 435 // same as the original operation. 436 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 437 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 438 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 439 // We already know that "op" is the same as for the simplified value. See 440 // if the operands match too. If so, return the simplified value. 441 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 442 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 443 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 444 if (Simplified->getOperand(0) == UnsimplifiedLHS && 445 Simplified->getOperand(1) == UnsimplifiedRHS) 446 return Simplified; 447 if (Simplified->isCommutative() && 448 Simplified->getOperand(1) == UnsimplifiedLHS && 449 Simplified->getOperand(0) == UnsimplifiedRHS) 450 return Simplified; 451 } 452 } 453 454 return nullptr; 455 } 456 457 /// In the case of a comparison with a select instruction, try to simplify the 458 /// comparison by seeing whether both branches of the select result in the same 459 /// value. Returns the common value if so, otherwise returns null. 460 /// For example, if we have: 461 /// %tmp = select i1 %cmp, i32 1, i32 2 462 /// %cmp1 = icmp sle i32 %tmp, 3 463 /// We can simplify %cmp1 to true, because both branches of select are 464 /// less than 3. We compose new comparison by substituting %tmp with both 465 /// branches of select and see if it can be simplified. 466 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 467 Value *RHS, const SimplifyQuery &Q, 468 unsigned MaxRecurse) { 469 // Recursion is always used, so bail out at once if we already hit the limit. 470 if (!MaxRecurse--) 471 return nullptr; 472 473 // Make sure the select is on the LHS. 474 if (!isa<SelectInst>(LHS)) { 475 std::swap(LHS, RHS); 476 Pred = CmpInst::getSwappedPredicate(Pred); 477 } 478 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 479 SelectInst *SI = cast<SelectInst>(LHS); 480 Value *Cond = SI->getCondition(); 481 Value *TV = SI->getTrueValue(); 482 Value *FV = SI->getFalseValue(); 483 484 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 485 // Does "cmp TV, RHS" simplify? 486 Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse); 487 if (!TCmp) 488 return nullptr; 489 490 // Does "cmp FV, RHS" simplify? 491 Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse); 492 if (!FCmp) 493 return nullptr; 494 495 // If both sides simplified to the same value, then use it as the result of 496 // the original comparison. 497 if (TCmp == FCmp) 498 return TCmp; 499 500 // The remaining cases only make sense if the select condition has the same 501 // type as the result of the comparison, so bail out if this is not so. 502 if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy()) 503 return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse); 504 505 return nullptr; 506 } 507 508 /// In the case of a binary operation with an operand that is a PHI instruction, 509 /// try to simplify the binop by seeing whether evaluating it on the incoming 510 /// phi values yields the same result for every value. If so returns the common 511 /// value, otherwise returns null. 512 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 513 Value *RHS, const SimplifyQuery &Q, 514 unsigned MaxRecurse) { 515 // Recursion is always used, so bail out at once if we already hit the limit. 516 if (!MaxRecurse--) 517 return nullptr; 518 519 PHINode *PI; 520 if (isa<PHINode>(LHS)) { 521 PI = cast<PHINode>(LHS); 522 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 523 if (!valueDominatesPHI(RHS, PI, Q.DT)) 524 return nullptr; 525 } else { 526 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 527 PI = cast<PHINode>(RHS); 528 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 529 if (!valueDominatesPHI(LHS, PI, Q.DT)) 530 return nullptr; 531 } 532 533 // Evaluate the BinOp on the incoming phi values. 534 Value *CommonValue = nullptr; 535 for (Value *Incoming : PI->incoming_values()) { 536 // If the incoming value is the phi node itself, it can safely be skipped. 537 if (Incoming == PI) continue; 538 Value *V = PI == LHS ? 539 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 540 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 541 // If the operation failed to simplify, or simplified to a different value 542 // to previously, then give up. 543 if (!V || (CommonValue && V != CommonValue)) 544 return nullptr; 545 CommonValue = V; 546 } 547 548 return CommonValue; 549 } 550 551 /// In the case of a comparison with a PHI instruction, try to simplify the 552 /// comparison by seeing whether comparing with all of the incoming phi values 553 /// yields the same result every time. If so returns the common result, 554 /// otherwise returns null. 555 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 556 const SimplifyQuery &Q, unsigned MaxRecurse) { 557 // Recursion is always used, so bail out at once if we already hit the limit. 558 if (!MaxRecurse--) 559 return nullptr; 560 561 // Make sure the phi is on the LHS. 562 if (!isa<PHINode>(LHS)) { 563 std::swap(LHS, RHS); 564 Pred = CmpInst::getSwappedPredicate(Pred); 565 } 566 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 567 PHINode *PI = cast<PHINode>(LHS); 568 569 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 570 if (!valueDominatesPHI(RHS, PI, Q.DT)) 571 return nullptr; 572 573 // Evaluate the BinOp on the incoming phi values. 574 Value *CommonValue = nullptr; 575 for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) { 576 Value *Incoming = PI->getIncomingValue(u); 577 Instruction *InTI = PI->getIncomingBlock(u)->getTerminator(); 578 // If the incoming value is the phi node itself, it can safely be skipped. 579 if (Incoming == PI) continue; 580 // Change the context instruction to the "edge" that flows into the phi. 581 // This is important because that is where incoming is actually "evaluated" 582 // even though it is used later somewhere else. 583 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI), 584 MaxRecurse); 585 // If the operation failed to simplify, or simplified to a different value 586 // to previously, then give up. 587 if (!V || (CommonValue && V != CommonValue)) 588 return nullptr; 589 CommonValue = V; 590 } 591 592 return CommonValue; 593 } 594 595 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 596 Value *&Op0, Value *&Op1, 597 const SimplifyQuery &Q) { 598 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 599 if (auto *CRHS = dyn_cast<Constant>(Op1)) 600 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 601 602 // Canonicalize the constant to the RHS if this is a commutative operation. 603 if (Instruction::isCommutative(Opcode)) 604 std::swap(Op0, Op1); 605 } 606 return nullptr; 607 } 608 609 /// Given operands for an Add, see if we can fold the result. 610 /// If not, this returns null. 611 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 612 const SimplifyQuery &Q, unsigned MaxRecurse) { 613 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 614 return C; 615 616 // X + undef -> undef 617 if (Q.isUndefValue(Op1)) 618 return Op1; 619 620 // X + 0 -> X 621 if (match(Op1, m_Zero())) 622 return Op0; 623 624 // If two operands are negative, return 0. 625 if (isKnownNegation(Op0, Op1)) 626 return Constant::getNullValue(Op0->getType()); 627 628 // X + (Y - X) -> Y 629 // (Y - X) + X -> Y 630 // Eg: X + -X -> 0 631 Value *Y = nullptr; 632 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 633 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 634 return Y; 635 636 // X + ~X -> -1 since ~X = -X-1 637 Type *Ty = Op0->getType(); 638 if (match(Op0, m_Not(m_Specific(Op1))) || 639 match(Op1, m_Not(m_Specific(Op0)))) 640 return Constant::getAllOnesValue(Ty); 641 642 // add nsw/nuw (xor Y, signmask), signmask --> Y 643 // The no-wrapping add guarantees that the top bit will be set by the add. 644 // Therefore, the xor must be clearing the already set sign bit of Y. 645 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 646 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 647 return Y; 648 649 // add nuw %x, -1 -> -1, because %x can only be 0. 650 if (IsNUW && match(Op1, m_AllOnes())) 651 return Op1; // Which is -1. 652 653 /// i1 add -> xor. 654 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 655 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 656 return V; 657 658 // Try some generic simplifications for associative operations. 659 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 660 MaxRecurse)) 661 return V; 662 663 // Threading Add over selects and phi nodes is pointless, so don't bother. 664 // Threading over the select in "A + select(cond, B, C)" means evaluating 665 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 666 // only if B and C are equal. If B and C are equal then (since we assume 667 // that operands have already been simplified) "select(cond, B, C)" should 668 // have been simplified to the common value of B and C already. Analysing 669 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 670 // for threading over phi nodes. 671 672 return nullptr; 673 } 674 675 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 676 const SimplifyQuery &Query) { 677 return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 678 } 679 680 /// Compute the base pointer and cumulative constant offsets for V. 681 /// 682 /// This strips all constant offsets off of V, leaving it the base pointer, and 683 /// accumulates the total constant offset applied in the returned constant. It 684 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 685 /// no constant offsets applied. 686 /// 687 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 688 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 689 /// folding. 690 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 691 bool AllowNonInbounds = false) { 692 assert(V->getType()->isPtrOrPtrVectorTy()); 693 694 Type *IntIdxTy = DL.getIndexType(V->getType())->getScalarType(); 695 APInt Offset = APInt::getNullValue(IntIdxTy->getIntegerBitWidth()); 696 697 V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds); 698 // As that strip may trace through `addrspacecast`, need to sext or trunc 699 // the offset calculated. 700 IntIdxTy = DL.getIndexType(V->getType())->getScalarType(); 701 Offset = Offset.sextOrTrunc(IntIdxTy->getIntegerBitWidth()); 702 703 Constant *OffsetIntPtr = ConstantInt::get(IntIdxTy, Offset); 704 if (VectorType *VecTy = dyn_cast<VectorType>(V->getType())) 705 return ConstantVector::getSplat(VecTy->getElementCount(), OffsetIntPtr); 706 return OffsetIntPtr; 707 } 708 709 /// Compute the constant difference between two pointer values. 710 /// If the difference is not a constant, returns zero. 711 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 712 Value *RHS) { 713 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 714 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 715 716 // If LHS and RHS are not related via constant offsets to the same base 717 // value, there is nothing we can do here. 718 if (LHS != RHS) 719 return nullptr; 720 721 // Otherwise, the difference of LHS - RHS can be computed as: 722 // LHS - RHS 723 // = (LHSOffset + Base) - (RHSOffset + Base) 724 // = LHSOffset - RHSOffset 725 return ConstantExpr::getSub(LHSOffset, RHSOffset); 726 } 727 728 /// Given operands for a Sub, see if we can fold the result. 729 /// If not, this returns null. 730 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 731 const SimplifyQuery &Q, unsigned MaxRecurse) { 732 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 733 return C; 734 735 // X - undef -> undef 736 // undef - X -> undef 737 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 738 return UndefValue::get(Op0->getType()); 739 740 // X - 0 -> X 741 if (match(Op1, m_Zero())) 742 return Op0; 743 744 // X - X -> 0 745 if (Op0 == Op1) 746 return Constant::getNullValue(Op0->getType()); 747 748 // Is this a negation? 749 if (match(Op0, m_Zero())) { 750 // 0 - X -> 0 if the sub is NUW. 751 if (isNUW) 752 return Constant::getNullValue(Op0->getType()); 753 754 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 755 if (Known.Zero.isMaxSignedValue()) { 756 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 757 // Op1 must be 0 because negating the minimum signed value is undefined. 758 if (isNSW) 759 return Constant::getNullValue(Op0->getType()); 760 761 // 0 - X -> X if X is 0 or the minimum signed value. 762 return Op1; 763 } 764 } 765 766 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 767 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 768 Value *X = nullptr, *Y = nullptr, *Z = Op1; 769 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 770 // See if "V === Y - Z" simplifies. 771 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 772 // It does! Now see if "X + V" simplifies. 773 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 774 // It does, we successfully reassociated! 775 ++NumReassoc; 776 return W; 777 } 778 // See if "V === X - Z" simplifies. 779 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 780 // It does! Now see if "Y + V" simplifies. 781 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 782 // It does, we successfully reassociated! 783 ++NumReassoc; 784 return W; 785 } 786 } 787 788 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 789 // For example, X - (X + 1) -> -1 790 X = Op0; 791 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 792 // See if "V === X - Y" simplifies. 793 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 794 // It does! Now see if "V - Z" simplifies. 795 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 796 // It does, we successfully reassociated! 797 ++NumReassoc; 798 return W; 799 } 800 // See if "V === X - Z" simplifies. 801 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 802 // It does! Now see if "V - Y" simplifies. 803 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 804 // It does, we successfully reassociated! 805 ++NumReassoc; 806 return W; 807 } 808 } 809 810 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 811 // For example, X - (X - Y) -> Y. 812 Z = Op0; 813 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 814 // See if "V === Z - X" simplifies. 815 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 816 // It does! Now see if "V + Y" simplifies. 817 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 818 // It does, we successfully reassociated! 819 ++NumReassoc; 820 return W; 821 } 822 823 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 824 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 825 match(Op1, m_Trunc(m_Value(Y)))) 826 if (X->getType() == Y->getType()) 827 // See if "V === X - Y" simplifies. 828 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 829 // It does! Now see if "trunc V" simplifies. 830 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 831 Q, MaxRecurse - 1)) 832 // It does, return the simplified "trunc V". 833 return W; 834 835 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 836 if (match(Op0, m_PtrToInt(m_Value(X))) && 837 match(Op1, m_PtrToInt(m_Value(Y)))) 838 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 839 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 840 841 // i1 sub -> xor. 842 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 843 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 844 return V; 845 846 // Threading Sub over selects and phi nodes is pointless, so don't bother. 847 // Threading over the select in "A - select(cond, B, C)" means evaluating 848 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 849 // only if B and C are equal. If B and C are equal then (since we assume 850 // that operands have already been simplified) "select(cond, B, C)" should 851 // have been simplified to the common value of B and C already. Analysing 852 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 853 // for threading over phi nodes. 854 855 return nullptr; 856 } 857 858 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 859 const SimplifyQuery &Q) { 860 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 861 } 862 863 /// Given operands for a Mul, see if we can fold the result. 864 /// If not, this returns null. 865 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 866 unsigned MaxRecurse) { 867 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 868 return C; 869 870 // X * undef -> 0 871 // X * 0 -> 0 872 if (Q.isUndefValue(Op1) || match(Op1, m_Zero())) 873 return Constant::getNullValue(Op0->getType()); 874 875 // X * 1 -> X 876 if (match(Op1, m_One())) 877 return Op0; 878 879 // (X / Y) * Y -> X if the division is exact. 880 Value *X = nullptr; 881 if (Q.IIQ.UseInstrInfo && 882 (match(Op0, 883 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 884 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 885 return X; 886 887 // i1 mul -> and. 888 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 889 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 890 return V; 891 892 // Try some generic simplifications for associative operations. 893 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 894 MaxRecurse)) 895 return V; 896 897 // Mul distributes over Add. Try some generic simplifications based on this. 898 if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1, 899 Instruction::Add, Q, MaxRecurse)) 900 return V; 901 902 // If the operation is with the result of a select instruction, check whether 903 // operating on either branch of the select always yields the same value. 904 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 905 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 906 MaxRecurse)) 907 return V; 908 909 // If the operation is with the result of a phi instruction, check whether 910 // operating on all incoming values of the phi always yields the same value. 911 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 912 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 913 MaxRecurse)) 914 return V; 915 916 return nullptr; 917 } 918 919 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 920 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 921 } 922 923 /// Check for common or similar folds of integer division or integer remainder. 924 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 925 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv, 926 const SimplifyQuery &Q) { 927 Type *Ty = Op0->getType(); 928 929 // X / undef -> poison 930 // X % undef -> poison 931 if (Q.isUndefValue(Op1)) 932 return PoisonValue::get(Ty); 933 934 // X / 0 -> poison 935 // X % 0 -> poison 936 // We don't need to preserve faults! 937 if (match(Op1, m_Zero())) 938 return PoisonValue::get(Ty); 939 940 // If any element of a constant divisor fixed width vector is zero or undef 941 // the behavior is undefined and we can fold the whole op to poison. 942 auto *Op1C = dyn_cast<Constant>(Op1); 943 auto *VTy = dyn_cast<FixedVectorType>(Ty); 944 if (Op1C && VTy) { 945 unsigned NumElts = VTy->getNumElements(); 946 for (unsigned i = 0; i != NumElts; ++i) { 947 Constant *Elt = Op1C->getAggregateElement(i); 948 if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt))) 949 return PoisonValue::get(Ty); 950 } 951 } 952 953 // undef / X -> 0 954 // undef % X -> 0 955 if (Q.isUndefValue(Op0)) 956 return Constant::getNullValue(Ty); 957 958 // 0 / X -> 0 959 // 0 % X -> 0 960 if (match(Op0, m_Zero())) 961 return Constant::getNullValue(Op0->getType()); 962 963 // X / X -> 1 964 // X % X -> 0 965 if (Op0 == Op1) 966 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 967 968 // X / 1 -> X 969 // X % 1 -> 0 970 // If this is a boolean op (single-bit element type), we can't have 971 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 972 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. 973 Value *X; 974 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || 975 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 976 return IsDiv ? Op0 : Constant::getNullValue(Ty); 977 978 return nullptr; 979 } 980 981 /// Given a predicate and two operands, return true if the comparison is true. 982 /// This is a helper for div/rem simplification where we return some other value 983 /// when we can prove a relationship between the operands. 984 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 985 const SimplifyQuery &Q, unsigned MaxRecurse) { 986 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 987 Constant *C = dyn_cast_or_null<Constant>(V); 988 return (C && C->isAllOnesValue()); 989 } 990 991 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 992 /// to simplify X % Y to X. 993 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 994 unsigned MaxRecurse, bool IsSigned) { 995 // Recursion is always used, so bail out at once if we already hit the limit. 996 if (!MaxRecurse--) 997 return false; 998 999 if (IsSigned) { 1000 // |X| / |Y| --> 0 1001 // 1002 // We require that 1 operand is a simple constant. That could be extended to 1003 // 2 variables if we computed the sign bit for each. 1004 // 1005 // Make sure that a constant is not the minimum signed value because taking 1006 // the abs() of that is undefined. 1007 Type *Ty = X->getType(); 1008 const APInt *C; 1009 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 1010 // Is the variable divisor magnitude always greater than the constant 1011 // dividend magnitude? 1012 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 1013 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 1014 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 1015 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 1016 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 1017 return true; 1018 } 1019 if (match(Y, m_APInt(C))) { 1020 // Special-case: we can't take the abs() of a minimum signed value. If 1021 // that's the divisor, then all we have to do is prove that the dividend 1022 // is also not the minimum signed value. 1023 if (C->isMinSignedValue()) 1024 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 1025 1026 // Is the variable dividend magnitude always less than the constant 1027 // divisor magnitude? 1028 // |X| < |C| --> X > -abs(C) and X < abs(C) 1029 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 1030 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 1031 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 1032 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 1033 return true; 1034 } 1035 return false; 1036 } 1037 1038 // IsSigned == false. 1039 // Is the dividend unsigned less than the divisor? 1040 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1041 } 1042 1043 /// These are simplifications common to SDiv and UDiv. 1044 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1045 const SimplifyQuery &Q, unsigned MaxRecurse) { 1046 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1047 return C; 1048 1049 if (Value *V = simplifyDivRem(Op0, Op1, true, Q)) 1050 return V; 1051 1052 bool IsSigned = Opcode == Instruction::SDiv; 1053 1054 // (X * Y) / Y -> X if the multiplication does not overflow. 1055 Value *X; 1056 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1057 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1058 // If the Mul does not overflow, then we are good to go. 1059 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 1060 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul))) 1061 return X; 1062 // If X has the form X = A / Y, then X * Y cannot overflow. 1063 if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1064 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) 1065 return X; 1066 } 1067 1068 // (X rem Y) / Y -> 0 1069 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1070 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1071 return Constant::getNullValue(Op0->getType()); 1072 1073 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1074 ConstantInt *C1, *C2; 1075 if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1076 match(Op1, m_ConstantInt(C2))) { 1077 bool Overflow; 1078 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1079 if (Overflow) 1080 return Constant::getNullValue(Op0->getType()); 1081 } 1082 1083 // If the operation is with the result of a select instruction, check whether 1084 // operating on either branch of the select always yields the same value. 1085 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1086 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1087 return V; 1088 1089 // If the operation is with the result of a phi instruction, check whether 1090 // operating on all incoming values of the phi always yields the same value. 1091 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1092 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1093 return V; 1094 1095 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1096 return Constant::getNullValue(Op0->getType()); 1097 1098 return nullptr; 1099 } 1100 1101 /// These are simplifications common to SRem and URem. 1102 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1103 const SimplifyQuery &Q, unsigned MaxRecurse) { 1104 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1105 return C; 1106 1107 if (Value *V = simplifyDivRem(Op0, Op1, false, Q)) 1108 return V; 1109 1110 // (X % Y) % Y -> X % Y 1111 if ((Opcode == Instruction::SRem && 1112 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1113 (Opcode == Instruction::URem && 1114 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1115 return Op0; 1116 1117 // (X << Y) % X -> 0 1118 if (Q.IIQ.UseInstrInfo && 1119 ((Opcode == Instruction::SRem && 1120 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1121 (Opcode == Instruction::URem && 1122 match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) 1123 return Constant::getNullValue(Op0->getType()); 1124 1125 // If the operation is with the result of a select instruction, check whether 1126 // operating on either branch of the select always yields the same value. 1127 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1128 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1129 return V; 1130 1131 // If the operation is with the result of a phi instruction, check whether 1132 // operating on all incoming values of the phi always yields the same value. 1133 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1134 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1135 return V; 1136 1137 // If X / Y == 0, then X % Y == X. 1138 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1139 return Op0; 1140 1141 return nullptr; 1142 } 1143 1144 /// Given operands for an SDiv, see if we can fold the result. 1145 /// If not, this returns null. 1146 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1147 unsigned MaxRecurse) { 1148 // If two operands are negated and no signed overflow, return -1. 1149 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1150 return Constant::getAllOnesValue(Op0->getType()); 1151 1152 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1153 } 1154 1155 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1156 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1157 } 1158 1159 /// Given operands for a UDiv, see if we can fold the result. 1160 /// If not, this returns null. 1161 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1162 unsigned MaxRecurse) { 1163 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1164 } 1165 1166 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1167 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1168 } 1169 1170 /// Given operands for an SRem, see if we can fold the result. 1171 /// If not, this returns null. 1172 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1173 unsigned MaxRecurse) { 1174 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1175 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1176 Value *X; 1177 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1178 return ConstantInt::getNullValue(Op0->getType()); 1179 1180 // If the two operands are negated, return 0. 1181 if (isKnownNegation(Op0, Op1)) 1182 return ConstantInt::getNullValue(Op0->getType()); 1183 1184 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1185 } 1186 1187 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1188 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1189 } 1190 1191 /// Given operands for a URem, see if we can fold the result. 1192 /// If not, this returns null. 1193 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1194 unsigned MaxRecurse) { 1195 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1196 } 1197 1198 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1199 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1200 } 1201 1202 /// Returns true if a shift by \c Amount always yields poison. 1203 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) { 1204 Constant *C = dyn_cast<Constant>(Amount); 1205 if (!C) 1206 return false; 1207 1208 // X shift by undef -> poison because it may shift by the bitwidth. 1209 if (Q.isUndefValue(C)) 1210 return true; 1211 1212 // Shifting by the bitwidth or more is undefined. 1213 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1214 if (CI->getValue().uge(CI->getType()->getScalarSizeInBits())) 1215 return true; 1216 1217 // If all lanes of a vector shift are undefined the whole shift is. 1218 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1219 for (unsigned I = 0, 1220 E = cast<FixedVectorType>(C->getType())->getNumElements(); 1221 I != E; ++I) 1222 if (!isPoisonShift(C->getAggregateElement(I), Q)) 1223 return false; 1224 return true; 1225 } 1226 1227 return false; 1228 } 1229 1230 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1231 /// If not, this returns null. 1232 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1233 Value *Op1, bool IsNSW, const SimplifyQuery &Q, 1234 unsigned MaxRecurse) { 1235 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1236 return C; 1237 1238 // 0 shift by X -> 0 1239 if (match(Op0, m_Zero())) 1240 return Constant::getNullValue(Op0->getType()); 1241 1242 // X shift by 0 -> X 1243 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1244 // would be poison. 1245 Value *X; 1246 if (match(Op1, m_Zero()) || 1247 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1248 return Op0; 1249 1250 // Fold undefined shifts. 1251 if (isPoisonShift(Op1, Q)) 1252 return PoisonValue::get(Op0->getType()); 1253 1254 // If the operation is with the result of a select instruction, check whether 1255 // operating on either branch of the select always yields the same value. 1256 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1257 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1258 return V; 1259 1260 // If the operation is with the result of a phi instruction, check whether 1261 // operating on all incoming values of the phi always yields the same value. 1262 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1263 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1264 return V; 1265 1266 // If any bits in the shift amount make that value greater than or equal to 1267 // the number of bits in the type, the shift is undefined. 1268 KnownBits KnownAmt = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1269 if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth())) 1270 return PoisonValue::get(Op0->getType()); 1271 1272 // If all valid bits in the shift amount are known zero, the first operand is 1273 // unchanged. 1274 unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth()); 1275 if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits) 1276 return Op0; 1277 1278 // Check for nsw shl leading to a poison value. 1279 if (IsNSW) { 1280 assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction"); 1281 KnownBits KnownVal = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1282 KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt); 1283 1284 if (KnownVal.Zero.isSignBitSet()) 1285 KnownShl.Zero.setSignBit(); 1286 if (KnownVal.One.isSignBitSet()) 1287 KnownShl.One.setSignBit(); 1288 1289 if (KnownShl.hasConflict()) 1290 return PoisonValue::get(Op0->getType()); 1291 } 1292 1293 return nullptr; 1294 } 1295 1296 /// Given operands for an Shl, LShr or AShr, see if we can 1297 /// fold the result. If not, this returns null. 1298 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1299 Value *Op1, bool isExact, const SimplifyQuery &Q, 1300 unsigned MaxRecurse) { 1301 if (Value *V = 1302 SimplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse)) 1303 return V; 1304 1305 // X >> X -> 0 1306 if (Op0 == Op1) 1307 return Constant::getNullValue(Op0->getType()); 1308 1309 // undef >> X -> 0 1310 // undef >> X -> undef (if it's exact) 1311 if (Q.isUndefValue(Op0)) 1312 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1313 1314 // The low bit cannot be shifted out of an exact shift if it is set. 1315 if (isExact) { 1316 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1317 if (Op0Known.One[0]) 1318 return Op0; 1319 } 1320 1321 return nullptr; 1322 } 1323 1324 /// Given operands for an Shl, see if we can fold the result. 1325 /// If not, this returns null. 1326 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1327 const SimplifyQuery &Q, unsigned MaxRecurse) { 1328 if (Value *V = 1329 SimplifyShift(Instruction::Shl, Op0, Op1, isNSW, Q, MaxRecurse)) 1330 return V; 1331 1332 // undef << X -> 0 1333 // undef << X -> undef if (if it's NSW/NUW) 1334 if (Q.isUndefValue(Op0)) 1335 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1336 1337 // (X >> A) << A -> X 1338 Value *X; 1339 if (Q.IIQ.UseInstrInfo && 1340 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1341 return X; 1342 1343 // shl nuw i8 C, %x -> C iff C has sign bit set. 1344 if (isNUW && match(Op0, m_Negative())) 1345 return Op0; 1346 // NOTE: could use computeKnownBits() / LazyValueInfo, 1347 // but the cost-benefit analysis suggests it isn't worth it. 1348 1349 return nullptr; 1350 } 1351 1352 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1353 const SimplifyQuery &Q) { 1354 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1355 } 1356 1357 /// Given operands for an LShr, see if we can fold the result. 1358 /// If not, this returns null. 1359 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1360 const SimplifyQuery &Q, unsigned MaxRecurse) { 1361 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1362 MaxRecurse)) 1363 return V; 1364 1365 // (X << A) >> A -> X 1366 Value *X; 1367 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1368 return X; 1369 1370 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1371 // We can return X as we do in the above case since OR alters no bits in X. 1372 // SimplifyDemandedBits in InstCombine can do more general optimization for 1373 // bit manipulation. This pattern aims to provide opportunities for other 1374 // optimizers by supporting a simple but common case in InstSimplify. 1375 Value *Y; 1376 const APInt *ShRAmt, *ShLAmt; 1377 if (match(Op1, m_APInt(ShRAmt)) && 1378 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1379 *ShRAmt == *ShLAmt) { 1380 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1381 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 1382 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 1383 if (ShRAmt->uge(EffWidthY)) 1384 return X; 1385 } 1386 1387 return nullptr; 1388 } 1389 1390 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1391 const SimplifyQuery &Q) { 1392 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1393 } 1394 1395 /// Given operands for an AShr, see if we can fold the result. 1396 /// If not, this returns null. 1397 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1398 const SimplifyQuery &Q, unsigned MaxRecurse) { 1399 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1400 MaxRecurse)) 1401 return V; 1402 1403 // all ones >>a X -> -1 1404 // Do not return Op0 because it may contain undef elements if it's a vector. 1405 if (match(Op0, m_AllOnes())) 1406 return Constant::getAllOnesValue(Op0->getType()); 1407 1408 // (X << A) >> A -> X 1409 Value *X; 1410 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1411 return X; 1412 1413 // Arithmetic shifting an all-sign-bit value is a no-op. 1414 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1415 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1416 return Op0; 1417 1418 return nullptr; 1419 } 1420 1421 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1422 const SimplifyQuery &Q) { 1423 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1424 } 1425 1426 /// Commuted variants are assumed to be handled by calling this function again 1427 /// with the parameters swapped. 1428 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1429 ICmpInst *UnsignedICmp, bool IsAnd, 1430 const SimplifyQuery &Q) { 1431 Value *X, *Y; 1432 1433 ICmpInst::Predicate EqPred; 1434 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1435 !ICmpInst::isEquality(EqPred)) 1436 return nullptr; 1437 1438 ICmpInst::Predicate UnsignedPred; 1439 1440 Value *A, *B; 1441 // Y = (A - B); 1442 if (match(Y, m_Sub(m_Value(A), m_Value(B)))) { 1443 if (match(UnsignedICmp, 1444 m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) && 1445 ICmpInst::isUnsigned(UnsignedPred)) { 1446 // A >=/<= B || (A - B) != 0 <--> true 1447 if ((UnsignedPred == ICmpInst::ICMP_UGE || 1448 UnsignedPred == ICmpInst::ICMP_ULE) && 1449 EqPred == ICmpInst::ICMP_NE && !IsAnd) 1450 return ConstantInt::getTrue(UnsignedICmp->getType()); 1451 // A </> B && (A - B) == 0 <--> false 1452 if ((UnsignedPred == ICmpInst::ICMP_ULT || 1453 UnsignedPred == ICmpInst::ICMP_UGT) && 1454 EqPred == ICmpInst::ICMP_EQ && IsAnd) 1455 return ConstantInt::getFalse(UnsignedICmp->getType()); 1456 1457 // A </> B && (A - B) != 0 <--> A </> B 1458 // A </> B || (A - B) != 0 <--> (A - B) != 0 1459 if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT || 1460 UnsignedPred == ICmpInst::ICMP_UGT)) 1461 return IsAnd ? UnsignedICmp : ZeroICmp; 1462 1463 // A <=/>= B && (A - B) == 0 <--> (A - B) == 0 1464 // A <=/>= B || (A - B) == 0 <--> A <=/>= B 1465 if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE || 1466 UnsignedPred == ICmpInst::ICMP_UGE)) 1467 return IsAnd ? ZeroICmp : UnsignedICmp; 1468 } 1469 1470 // Given Y = (A - B) 1471 // Y >= A && Y != 0 --> Y >= A iff B != 0 1472 // Y < A || Y == 0 --> Y < A iff B != 0 1473 if (match(UnsignedICmp, 1474 m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) { 1475 if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd && 1476 EqPred == ICmpInst::ICMP_NE && 1477 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1478 return UnsignedICmp; 1479 if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd && 1480 EqPred == ICmpInst::ICMP_EQ && 1481 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1482 return UnsignedICmp; 1483 } 1484 } 1485 1486 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1487 ICmpInst::isUnsigned(UnsignedPred)) 1488 ; 1489 else if (match(UnsignedICmp, 1490 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1491 ICmpInst::isUnsigned(UnsignedPred)) 1492 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1493 else 1494 return nullptr; 1495 1496 // X > Y && Y == 0 --> Y == 0 iff X != 0 1497 // X > Y || Y == 0 --> X > Y iff X != 0 1498 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1499 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1500 return IsAnd ? ZeroICmp : UnsignedICmp; 1501 1502 // X <= Y && Y != 0 --> X <= Y iff X != 0 1503 // X <= Y || Y != 0 --> Y != 0 iff X != 0 1504 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1505 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1506 return IsAnd ? UnsignedICmp : ZeroICmp; 1507 1508 // The transforms below here are expected to be handled more generally with 1509 // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's 1510 // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap, 1511 // these are candidates for removal. 1512 1513 // X < Y && Y != 0 --> X < Y 1514 // X < Y || Y != 0 --> Y != 0 1515 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1516 return IsAnd ? UnsignedICmp : ZeroICmp; 1517 1518 // X >= Y && Y == 0 --> Y == 0 1519 // X >= Y || Y == 0 --> X >= Y 1520 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ) 1521 return IsAnd ? ZeroICmp : UnsignedICmp; 1522 1523 // X < Y && Y == 0 --> false 1524 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1525 IsAnd) 1526 return getFalse(UnsignedICmp->getType()); 1527 1528 // X >= Y || Y != 0 --> true 1529 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE && 1530 !IsAnd) 1531 return getTrue(UnsignedICmp->getType()); 1532 1533 return nullptr; 1534 } 1535 1536 /// Commuted variants are assumed to be handled by calling this function again 1537 /// with the parameters swapped. 1538 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1539 ICmpInst::Predicate Pred0, Pred1; 1540 Value *A ,*B; 1541 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1542 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1543 return nullptr; 1544 1545 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1546 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1547 // can eliminate Op1 from this 'and'. 1548 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1549 return Op0; 1550 1551 // Check for any combination of predicates that are guaranteed to be disjoint. 1552 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1553 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1554 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1555 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1556 return getFalse(Op0->getType()); 1557 1558 return nullptr; 1559 } 1560 1561 /// Commuted variants are assumed to be handled by calling this function again 1562 /// with the parameters swapped. 1563 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1564 ICmpInst::Predicate Pred0, Pred1; 1565 Value *A ,*B; 1566 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1567 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1568 return nullptr; 1569 1570 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1571 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1572 // can eliminate Op0 from this 'or'. 1573 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1574 return Op1; 1575 1576 // Check for any combination of predicates that cover the entire range of 1577 // possibilities. 1578 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1579 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1580 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1581 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1582 return getTrue(Op0->getType()); 1583 1584 return nullptr; 1585 } 1586 1587 /// Test if a pair of compares with a shared operand and 2 constants has an 1588 /// empty set intersection, full set union, or if one compare is a superset of 1589 /// the other. 1590 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1591 bool IsAnd) { 1592 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1593 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1594 return nullptr; 1595 1596 const APInt *C0, *C1; 1597 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1598 !match(Cmp1->getOperand(1), m_APInt(C1))) 1599 return nullptr; 1600 1601 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1602 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1603 1604 // For and-of-compares, check if the intersection is empty: 1605 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1606 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1607 return getFalse(Cmp0->getType()); 1608 1609 // For or-of-compares, check if the union is full: 1610 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1611 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1612 return getTrue(Cmp0->getType()); 1613 1614 // Is one range a superset of the other? 1615 // If this is and-of-compares, take the smaller set: 1616 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1617 // If this is or-of-compares, take the larger set: 1618 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1619 if (Range0.contains(Range1)) 1620 return IsAnd ? Cmp1 : Cmp0; 1621 if (Range1.contains(Range0)) 1622 return IsAnd ? Cmp0 : Cmp1; 1623 1624 return nullptr; 1625 } 1626 1627 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1628 bool IsAnd) { 1629 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1630 if (!match(Cmp0->getOperand(1), m_Zero()) || 1631 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1632 return nullptr; 1633 1634 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1635 return nullptr; 1636 1637 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1638 Value *X = Cmp0->getOperand(0); 1639 Value *Y = Cmp1->getOperand(0); 1640 1641 // If one of the compares is a masked version of a (not) null check, then 1642 // that compare implies the other, so we eliminate the other. Optionally, look 1643 // through a pointer-to-int cast to match a null check of a pointer type. 1644 1645 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1646 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1647 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1648 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1649 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1650 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1651 return Cmp1; 1652 1653 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1654 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1655 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1656 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1657 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1658 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1659 return Cmp0; 1660 1661 return nullptr; 1662 } 1663 1664 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1665 const InstrInfoQuery &IIQ) { 1666 // (icmp (add V, C0), C1) & (icmp V, C0) 1667 ICmpInst::Predicate Pred0, Pred1; 1668 const APInt *C0, *C1; 1669 Value *V; 1670 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1671 return nullptr; 1672 1673 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1674 return nullptr; 1675 1676 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1677 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1678 return nullptr; 1679 1680 Type *ITy = Op0->getType(); 1681 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1682 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1683 1684 const APInt Delta = *C1 - *C0; 1685 if (C0->isStrictlyPositive()) { 1686 if (Delta == 2) { 1687 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1688 return getFalse(ITy); 1689 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1690 return getFalse(ITy); 1691 } 1692 if (Delta == 1) { 1693 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1694 return getFalse(ITy); 1695 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1696 return getFalse(ITy); 1697 } 1698 } 1699 if (C0->getBoolValue() && isNUW) { 1700 if (Delta == 2) 1701 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1702 return getFalse(ITy); 1703 if (Delta == 1) 1704 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1705 return getFalse(ITy); 1706 } 1707 1708 return nullptr; 1709 } 1710 1711 /// Try to eliminate compares with signed or unsigned min/max constants. 1712 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1, 1713 bool IsAnd) { 1714 // Canonicalize an equality compare as Cmp0. 1715 if (Cmp1->isEquality()) 1716 std::swap(Cmp0, Cmp1); 1717 if (!Cmp0->isEquality()) 1718 return nullptr; 1719 1720 // The non-equality compare must include a common operand (X). Canonicalize 1721 // the common operand as operand 0 (the predicate is swapped if the common 1722 // operand was operand 1). 1723 ICmpInst::Predicate Pred0 = Cmp0->getPredicate(); 1724 Value *X = Cmp0->getOperand(0); 1725 ICmpInst::Predicate Pred1; 1726 bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value())); 1727 if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value()))) 1728 return nullptr; 1729 if (ICmpInst::isEquality(Pred1)) 1730 return nullptr; 1731 1732 // The equality compare must be against a constant. Flip bits if we matched 1733 // a bitwise not. Convert a null pointer constant to an integer zero value. 1734 APInt MinMaxC; 1735 const APInt *C; 1736 if (match(Cmp0->getOperand(1), m_APInt(C))) 1737 MinMaxC = HasNotOp ? ~*C : *C; 1738 else if (isa<ConstantPointerNull>(Cmp0->getOperand(1))) 1739 MinMaxC = APInt::getNullValue(8); 1740 else 1741 return nullptr; 1742 1743 // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1. 1744 if (!IsAnd) { 1745 Pred0 = ICmpInst::getInversePredicate(Pred0); 1746 Pred1 = ICmpInst::getInversePredicate(Pred1); 1747 } 1748 1749 // Normalize to unsigned compare and unsigned min/max value. 1750 // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255 1751 if (ICmpInst::isSigned(Pred1)) { 1752 Pred1 = ICmpInst::getUnsignedPredicate(Pred1); 1753 MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth()); 1754 } 1755 1756 // (X != MAX) && (X < Y) --> X < Y 1757 // (X == MAX) || (X >= Y) --> X >= Y 1758 if (MinMaxC.isMaxValue()) 1759 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) 1760 return Cmp1; 1761 1762 // (X != MIN) && (X > Y) --> X > Y 1763 // (X == MIN) || (X <= Y) --> X <= Y 1764 if (MinMaxC.isMinValue()) 1765 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT) 1766 return Cmp1; 1767 1768 return nullptr; 1769 } 1770 1771 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1772 const SimplifyQuery &Q) { 1773 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q)) 1774 return X; 1775 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q)) 1776 return X; 1777 1778 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1779 return X; 1780 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1781 return X; 1782 1783 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1784 return X; 1785 1786 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true)) 1787 return X; 1788 1789 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1790 return X; 1791 1792 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1793 return X; 1794 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1795 return X; 1796 1797 return nullptr; 1798 } 1799 1800 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1801 const InstrInfoQuery &IIQ) { 1802 // (icmp (add V, C0), C1) | (icmp V, C0) 1803 ICmpInst::Predicate Pred0, Pred1; 1804 const APInt *C0, *C1; 1805 Value *V; 1806 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1807 return nullptr; 1808 1809 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1810 return nullptr; 1811 1812 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1813 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1814 return nullptr; 1815 1816 Type *ITy = Op0->getType(); 1817 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1818 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1819 1820 const APInt Delta = *C1 - *C0; 1821 if (C0->isStrictlyPositive()) { 1822 if (Delta == 2) { 1823 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1824 return getTrue(ITy); 1825 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1826 return getTrue(ITy); 1827 } 1828 if (Delta == 1) { 1829 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1830 return getTrue(ITy); 1831 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1832 return getTrue(ITy); 1833 } 1834 } 1835 if (C0->getBoolValue() && isNUW) { 1836 if (Delta == 2) 1837 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1838 return getTrue(ITy); 1839 if (Delta == 1) 1840 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1841 return getTrue(ITy); 1842 } 1843 1844 return nullptr; 1845 } 1846 1847 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1848 const SimplifyQuery &Q) { 1849 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q)) 1850 return X; 1851 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q)) 1852 return X; 1853 1854 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1855 return X; 1856 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1857 return X; 1858 1859 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1860 return X; 1861 1862 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false)) 1863 return X; 1864 1865 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1866 return X; 1867 1868 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1869 return X; 1870 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1871 return X; 1872 1873 return nullptr; 1874 } 1875 1876 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, 1877 FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1878 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1879 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1880 if (LHS0->getType() != RHS0->getType()) 1881 return nullptr; 1882 1883 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1884 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1885 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1886 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1887 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1888 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1889 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1890 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1891 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1892 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1893 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1894 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1895 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1))) 1896 return RHS; 1897 1898 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1899 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1900 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1901 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1902 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1903 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1904 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1905 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1906 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1907 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1))) 1908 return LHS; 1909 } 1910 1911 return nullptr; 1912 } 1913 1914 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, 1915 Value *Op0, Value *Op1, bool IsAnd) { 1916 // Look through casts of the 'and' operands to find compares. 1917 auto *Cast0 = dyn_cast<CastInst>(Op0); 1918 auto *Cast1 = dyn_cast<CastInst>(Op1); 1919 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1920 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1921 Op0 = Cast0->getOperand(0); 1922 Op1 = Cast1->getOperand(0); 1923 } 1924 1925 Value *V = nullptr; 1926 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1927 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1928 if (ICmp0 && ICmp1) 1929 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q) 1930 : simplifyOrOfICmps(ICmp0, ICmp1, Q); 1931 1932 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1933 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1934 if (FCmp0 && FCmp1) 1935 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd); 1936 1937 if (!V) 1938 return nullptr; 1939 if (!Cast0) 1940 return V; 1941 1942 // If we looked through casts, we can only handle a constant simplification 1943 // because we are not allowed to create a cast instruction here. 1944 if (auto *C = dyn_cast<Constant>(V)) 1945 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1946 1947 return nullptr; 1948 } 1949 1950 /// Check that the Op1 is in expected form, i.e.: 1951 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) 1952 /// %Op1 = extractvalue { i4, i1 } %Agg, 1 1953 static bool omitCheckForZeroBeforeMulWithOverflowInternal(Value *Op1, 1954 Value *X) { 1955 auto *Extract = dyn_cast<ExtractValueInst>(Op1); 1956 // We should only be extracting the overflow bit. 1957 if (!Extract || !Extract->getIndices().equals(1)) 1958 return false; 1959 Value *Agg = Extract->getAggregateOperand(); 1960 // This should be a multiplication-with-overflow intrinsic. 1961 if (!match(Agg, m_CombineOr(m_Intrinsic<Intrinsic::umul_with_overflow>(), 1962 m_Intrinsic<Intrinsic::smul_with_overflow>()))) 1963 return false; 1964 // One of its multipliers should be the value we checked for zero before. 1965 if (!match(Agg, m_CombineOr(m_Argument<0>(m_Specific(X)), 1966 m_Argument<1>(m_Specific(X))))) 1967 return false; 1968 return true; 1969 } 1970 1971 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some 1972 /// other form of check, e.g. one that was using division; it may have been 1973 /// guarded against division-by-zero. We can drop that check now. 1974 /// Look for: 1975 /// %Op0 = icmp ne i4 %X, 0 1976 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) 1977 /// %Op1 = extractvalue { i4, i1 } %Agg, 1 1978 /// %??? = and i1 %Op0, %Op1 1979 /// We can just return %Op1 1980 static Value *omitCheckForZeroBeforeMulWithOverflow(Value *Op0, Value *Op1) { 1981 ICmpInst::Predicate Pred; 1982 Value *X; 1983 if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) || 1984 Pred != ICmpInst::Predicate::ICMP_NE) 1985 return nullptr; 1986 // Is Op1 in expected form? 1987 if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X)) 1988 return nullptr; 1989 // Can omit 'and', and just return the overflow bit. 1990 return Op1; 1991 } 1992 1993 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some 1994 /// other form of check, e.g. one that was using division; it may have been 1995 /// guarded against division-by-zero. We can drop that check now. 1996 /// Look for: 1997 /// %Op0 = icmp eq i4 %X, 0 1998 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) 1999 /// %Op1 = extractvalue { i4, i1 } %Agg, 1 2000 /// %NotOp1 = xor i1 %Op1, true 2001 /// %or = or i1 %Op0, %NotOp1 2002 /// We can just return %NotOp1 2003 static Value *omitCheckForZeroBeforeInvertedMulWithOverflow(Value *Op0, 2004 Value *NotOp1) { 2005 ICmpInst::Predicate Pred; 2006 Value *X; 2007 if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) || 2008 Pred != ICmpInst::Predicate::ICMP_EQ) 2009 return nullptr; 2010 // We expect the other hand of an 'or' to be a 'not'. 2011 Value *Op1; 2012 if (!match(NotOp1, m_Not(m_Value(Op1)))) 2013 return nullptr; 2014 // Is Op1 in expected form? 2015 if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X)) 2016 return nullptr; 2017 // Can omit 'and', and just return the inverted overflow bit. 2018 return NotOp1; 2019 } 2020 2021 /// Given a bitwise logic op, check if the operands are add/sub with a common 2022 /// source value and inverted constant (identity: C - X -> ~(X + ~C)). 2023 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1, 2024 Instruction::BinaryOps Opcode) { 2025 assert(Op0->getType() == Op1->getType() && "Mismatched binop types"); 2026 assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op"); 2027 Value *X; 2028 Constant *C1, *C2; 2029 if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) && 2030 match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) || 2031 (match(Op1, m_Add(m_Value(X), m_Constant(C1))) && 2032 match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) { 2033 if (ConstantExpr::getNot(C1) == C2) { 2034 // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0 2035 // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1 2036 // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1 2037 Type *Ty = Op0->getType(); 2038 return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty) 2039 : ConstantInt::getAllOnesValue(Ty); 2040 } 2041 } 2042 return nullptr; 2043 } 2044 2045 /// Given operands for an And, see if we can fold the result. 2046 /// If not, this returns null. 2047 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2048 unsigned MaxRecurse) { 2049 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 2050 return C; 2051 2052 // X & undef -> 0 2053 if (Q.isUndefValue(Op1)) 2054 return Constant::getNullValue(Op0->getType()); 2055 2056 // X & X = X 2057 if (Op0 == Op1) 2058 return Op0; 2059 2060 // X & 0 = 0 2061 if (match(Op1, m_Zero())) 2062 return Constant::getNullValue(Op0->getType()); 2063 2064 // X & -1 = X 2065 if (match(Op1, m_AllOnes())) 2066 return Op0; 2067 2068 // A & ~A = ~A & A = 0 2069 if (match(Op0, m_Not(m_Specific(Op1))) || 2070 match(Op1, m_Not(m_Specific(Op0)))) 2071 return Constant::getNullValue(Op0->getType()); 2072 2073 // (A | ?) & A = A 2074 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 2075 return Op1; 2076 2077 // A & (A | ?) = A 2078 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 2079 return Op0; 2080 2081 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And)) 2082 return V; 2083 2084 // A mask that only clears known zeros of a shifted value is a no-op. 2085 Value *X; 2086 const APInt *Mask; 2087 const APInt *ShAmt; 2088 if (match(Op1, m_APInt(Mask))) { 2089 // If all bits in the inverted and shifted mask are clear: 2090 // and (shl X, ShAmt), Mask --> shl X, ShAmt 2091 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 2092 (~(*Mask)).lshr(*ShAmt).isNullValue()) 2093 return Op0; 2094 2095 // If all bits in the inverted and shifted mask are clear: 2096 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 2097 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 2098 (~(*Mask)).shl(*ShAmt).isNullValue()) 2099 return Op0; 2100 } 2101 2102 // If we have a multiplication overflow check that is being 'and'ed with a 2103 // check that one of the multipliers is not zero, we can omit the 'and', and 2104 // only keep the overflow check. 2105 if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op0, Op1)) 2106 return V; 2107 if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op1, Op0)) 2108 return V; 2109 2110 // A & (-A) = A if A is a power of two or zero. 2111 if (match(Op0, m_Neg(m_Specific(Op1))) || 2112 match(Op1, m_Neg(m_Specific(Op0)))) { 2113 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2114 Q.DT)) 2115 return Op0; 2116 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2117 Q.DT)) 2118 return Op1; 2119 } 2120 2121 // This is a similar pattern used for checking if a value is a power-of-2: 2122 // (A - 1) & A --> 0 (if A is a power-of-2 or 0) 2123 // A & (A - 1) --> 0 (if A is a power-of-2 or 0) 2124 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) && 2125 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2126 return Constant::getNullValue(Op1->getType()); 2127 if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) && 2128 isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2129 return Constant::getNullValue(Op0->getType()); 2130 2131 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 2132 return V; 2133 2134 // Try some generic simplifications for associative operations. 2135 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 2136 MaxRecurse)) 2137 return V; 2138 2139 // And distributes over Or. Try some generic simplifications based on this. 2140 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2141 Instruction::Or, Q, MaxRecurse)) 2142 return V; 2143 2144 // And distributes over Xor. Try some generic simplifications based on this. 2145 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2146 Instruction::Xor, Q, MaxRecurse)) 2147 return V; 2148 2149 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2150 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2151 // A & (A && B) -> A && B 2152 if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero()))) 2153 return Op1; 2154 else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero()))) 2155 return Op0; 2156 } 2157 // If the operation is with the result of a select instruction, check 2158 // whether operating on either branch of the select always yields the same 2159 // value. 2160 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 2161 MaxRecurse)) 2162 return V; 2163 } 2164 2165 // If the operation is with the result of a phi instruction, check whether 2166 // operating on all incoming values of the phi always yields the same value. 2167 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2168 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 2169 MaxRecurse)) 2170 return V; 2171 2172 // Assuming the effective width of Y is not larger than A, i.e. all bits 2173 // from X and Y are disjoint in (X << A) | Y, 2174 // if the mask of this AND op covers all bits of X or Y, while it covers 2175 // no bits from the other, we can bypass this AND op. E.g., 2176 // ((X << A) | Y) & Mask -> Y, 2177 // if Mask = ((1 << effective_width_of(Y)) - 1) 2178 // ((X << A) | Y) & Mask -> X << A, 2179 // if Mask = ((1 << effective_width_of(X)) - 1) << A 2180 // SimplifyDemandedBits in InstCombine can optimize the general case. 2181 // This pattern aims to help other passes for a common case. 2182 Value *Y, *XShifted; 2183 if (match(Op1, m_APInt(Mask)) && 2184 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 2185 m_Value(XShifted)), 2186 m_Value(Y)))) { 2187 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 2188 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 2189 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2190 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 2191 if (EffWidthY <= ShftCnt) { 2192 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, 2193 Q.DT); 2194 const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros(); 2195 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 2196 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 2197 // If the mask is extracting all bits from X or Y as is, we can skip 2198 // this AND op. 2199 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 2200 return Y; 2201 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 2202 return XShifted; 2203 } 2204 } 2205 2206 return nullptr; 2207 } 2208 2209 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2210 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 2211 } 2212 2213 /// Given operands for an Or, see if we can fold the result. 2214 /// If not, this returns null. 2215 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2216 unsigned MaxRecurse) { 2217 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 2218 return C; 2219 2220 // X | undef -> -1 2221 // X | -1 = -1 2222 // Do not return Op1 because it may contain undef elements if it's a vector. 2223 if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes())) 2224 return Constant::getAllOnesValue(Op0->getType()); 2225 2226 // X | X = X 2227 // X | 0 = X 2228 if (Op0 == Op1 || match(Op1, m_Zero())) 2229 return Op0; 2230 2231 // A | ~A = ~A | A = -1 2232 if (match(Op0, m_Not(m_Specific(Op1))) || 2233 match(Op1, m_Not(m_Specific(Op0)))) 2234 return Constant::getAllOnesValue(Op0->getType()); 2235 2236 // (A & ?) | A = A 2237 if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) 2238 return Op1; 2239 2240 // A | (A & ?) = A 2241 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) 2242 return Op0; 2243 2244 // ~(A & ?) | A = -1 2245 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 2246 return Constant::getAllOnesValue(Op1->getType()); 2247 2248 // A | ~(A & ?) = -1 2249 if (match(Op1, m_Not(m_c_And(m_Specific(Op0), m_Value())))) 2250 return Constant::getAllOnesValue(Op0->getType()); 2251 2252 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or)) 2253 return V; 2254 2255 Value *A, *B, *NotA; 2256 // (A & ~B) | (A ^ B) -> (A ^ B) 2257 // (~B & A) | (A ^ B) -> (A ^ B) 2258 // (A & ~B) | (B ^ A) -> (B ^ A) 2259 // (~B & A) | (B ^ A) -> (B ^ A) 2260 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 2261 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 2262 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 2263 return Op1; 2264 2265 // Commute the 'or' operands. 2266 // (A ^ B) | (A & ~B) -> (A ^ B) 2267 // (A ^ B) | (~B & A) -> (A ^ B) 2268 // (B ^ A) | (A & ~B) -> (B ^ A) 2269 // (B ^ A) | (~B & A) -> (B ^ A) 2270 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 2271 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 2272 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 2273 return Op0; 2274 2275 // (A & B) | (~A ^ B) -> (~A ^ B) 2276 // (B & A) | (~A ^ B) -> (~A ^ B) 2277 // (A & B) | (B ^ ~A) -> (B ^ ~A) 2278 // (B & A) | (B ^ ~A) -> (B ^ ~A) 2279 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 2280 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 2281 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 2282 return Op1; 2283 2284 // Commute the 'or' operands. 2285 // (~A ^ B) | (A & B) -> (~A ^ B) 2286 // (~A ^ B) | (B & A) -> (~A ^ B) 2287 // (B ^ ~A) | (A & B) -> (B ^ ~A) 2288 // (B ^ ~A) | (B & A) -> (B ^ ~A) 2289 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 2290 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 2291 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 2292 return Op0; 2293 2294 // (~A & B) | ~(A | B) --> ~A 2295 // (~A & B) | ~(B | A) --> ~A 2296 // (B & ~A) | ~(A | B) --> ~A 2297 // (B & ~A) | ~(B | A) --> ~A 2298 if (match(Op0, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))), 2299 m_Value(B))) && 2300 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 2301 return NotA; 2302 2303 // Commute the 'or' operands. 2304 // ~(A | B) | (~A & B) --> ~A 2305 // ~(B | A) | (~A & B) --> ~A 2306 // ~(A | B) | (B & ~A) --> ~A 2307 // ~(B | A) | (B & ~A) --> ~A 2308 if (match(Op1, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))), 2309 m_Value(B))) && 2310 match(Op0, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 2311 return NotA; 2312 2313 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 2314 return V; 2315 2316 // If we have a multiplication overflow check that is being 'and'ed with a 2317 // check that one of the multipliers is not zero, we can omit the 'and', and 2318 // only keep the overflow check. 2319 if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op0, Op1)) 2320 return V; 2321 if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op1, Op0)) 2322 return V; 2323 2324 // Try some generic simplifications for associative operations. 2325 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 2326 MaxRecurse)) 2327 return V; 2328 2329 // Or distributes over And. Try some generic simplifications based on this. 2330 if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1, 2331 Instruction::And, Q, MaxRecurse)) 2332 return V; 2333 2334 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2335 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2336 // A | (A || B) -> A || B 2337 if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value()))) 2338 return Op1; 2339 else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value()))) 2340 return Op0; 2341 } 2342 // If the operation is with the result of a select instruction, check 2343 // whether operating on either branch of the select always yields the same 2344 // value. 2345 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 2346 MaxRecurse)) 2347 return V; 2348 } 2349 2350 // (A & C1)|(B & C2) 2351 const APInt *C1, *C2; 2352 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2353 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2354 if (*C1 == ~*C2) { 2355 // (A & C1)|(B & C2) 2356 // If we have: ((V + N) & C1) | (V & C2) 2357 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2358 // replace with V+N. 2359 Value *N; 2360 if (C2->isMask() && // C2 == 0+1+ 2361 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2362 // Add commutes, try both ways. 2363 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2364 return A; 2365 } 2366 // Or commutes, try both ways. 2367 if (C1->isMask() && 2368 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2369 // Add commutes, try both ways. 2370 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2371 return B; 2372 } 2373 } 2374 } 2375 2376 // If the operation is with the result of a phi instruction, check whether 2377 // operating on all incoming values of the phi always yields the same value. 2378 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2379 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2380 return V; 2381 2382 return nullptr; 2383 } 2384 2385 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2386 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 2387 } 2388 2389 /// Given operands for a Xor, see if we can fold the result. 2390 /// If not, this returns null. 2391 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2392 unsigned MaxRecurse) { 2393 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2394 return C; 2395 2396 // A ^ undef -> undef 2397 if (Q.isUndefValue(Op1)) 2398 return Op1; 2399 2400 // A ^ 0 = A 2401 if (match(Op1, m_Zero())) 2402 return Op0; 2403 2404 // A ^ A = 0 2405 if (Op0 == Op1) 2406 return Constant::getNullValue(Op0->getType()); 2407 2408 // A ^ ~A = ~A ^ A = -1 2409 if (match(Op0, m_Not(m_Specific(Op1))) || 2410 match(Op1, m_Not(m_Specific(Op0)))) 2411 return Constant::getAllOnesValue(Op0->getType()); 2412 2413 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor)) 2414 return V; 2415 2416 // Try some generic simplifications for associative operations. 2417 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 2418 MaxRecurse)) 2419 return V; 2420 2421 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2422 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2423 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2424 // only if B and C are equal. If B and C are equal then (since we assume 2425 // that operands have already been simplified) "select(cond, B, C)" should 2426 // have been simplified to the common value of B and C already. Analysing 2427 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2428 // for threading over phi nodes. 2429 2430 return nullptr; 2431 } 2432 2433 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2434 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 2435 } 2436 2437 2438 static Type *GetCompareTy(Value *Op) { 2439 return CmpInst::makeCmpResultType(Op->getType()); 2440 } 2441 2442 /// Rummage around inside V looking for something equivalent to the comparison 2443 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2444 /// Helper function for analyzing max/min idioms. 2445 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2446 Value *LHS, Value *RHS) { 2447 SelectInst *SI = dyn_cast<SelectInst>(V); 2448 if (!SI) 2449 return nullptr; 2450 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2451 if (!Cmp) 2452 return nullptr; 2453 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2454 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2455 return Cmp; 2456 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2457 LHS == CmpRHS && RHS == CmpLHS) 2458 return Cmp; 2459 return nullptr; 2460 } 2461 2462 // A significant optimization not implemented here is assuming that alloca 2463 // addresses are not equal to incoming argument values. They don't *alias*, 2464 // as we say, but that doesn't mean they aren't equal, so we take a 2465 // conservative approach. 2466 // 2467 // This is inspired in part by C++11 5.10p1: 2468 // "Two pointers of the same type compare equal if and only if they are both 2469 // null, both point to the same function, or both represent the same 2470 // address." 2471 // 2472 // This is pretty permissive. 2473 // 2474 // It's also partly due to C11 6.5.9p6: 2475 // "Two pointers compare equal if and only if both are null pointers, both are 2476 // pointers to the same object (including a pointer to an object and a 2477 // subobject at its beginning) or function, both are pointers to one past the 2478 // last element of the same array object, or one is a pointer to one past the 2479 // end of one array object and the other is a pointer to the start of a 2480 // different array object that happens to immediately follow the first array 2481 // object in the address space.) 2482 // 2483 // C11's version is more restrictive, however there's no reason why an argument 2484 // couldn't be a one-past-the-end value for a stack object in the caller and be 2485 // equal to the beginning of a stack object in the callee. 2486 // 2487 // If the C and C++ standards are ever made sufficiently restrictive in this 2488 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2489 // this optimization. 2490 static Constant * 2491 computePointerICmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 2492 const SimplifyQuery &Q) { 2493 const DataLayout &DL = Q.DL; 2494 const TargetLibraryInfo *TLI = Q.TLI; 2495 const DominatorTree *DT = Q.DT; 2496 const Instruction *CxtI = Q.CxtI; 2497 const InstrInfoQuery &IIQ = Q.IIQ; 2498 2499 // First, skip past any trivial no-ops. 2500 LHS = LHS->stripPointerCasts(); 2501 RHS = RHS->stripPointerCasts(); 2502 2503 // A non-null pointer is not equal to a null pointer. 2504 if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) && 2505 llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, 2506 IIQ.UseInstrInfo)) 2507 return ConstantInt::get(GetCompareTy(LHS), 2508 !CmpInst::isTrueWhenEqual(Pred)); 2509 2510 // We can only fold certain predicates on pointer comparisons. 2511 switch (Pred) { 2512 default: 2513 return nullptr; 2514 2515 // Equality comaprisons are easy to fold. 2516 case CmpInst::ICMP_EQ: 2517 case CmpInst::ICMP_NE: 2518 break; 2519 2520 // We can only handle unsigned relational comparisons because 'inbounds' on 2521 // a GEP only protects against unsigned wrapping. 2522 case CmpInst::ICMP_UGT: 2523 case CmpInst::ICMP_UGE: 2524 case CmpInst::ICMP_ULT: 2525 case CmpInst::ICMP_ULE: 2526 // However, we have to switch them to their signed variants to handle 2527 // negative indices from the base pointer. 2528 Pred = ICmpInst::getSignedPredicate(Pred); 2529 break; 2530 } 2531 2532 // Strip off any constant offsets so that we can reason about them. 2533 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2534 // here and compare base addresses like AliasAnalysis does, however there are 2535 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2536 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2537 // doesn't need to guarantee pointer inequality when it says NoAlias. 2538 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2539 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2540 2541 // If LHS and RHS are related via constant offsets to the same base 2542 // value, we can replace it with an icmp which just compares the offsets. 2543 if (LHS == RHS) 2544 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2545 2546 // Various optimizations for (in)equality comparisons. 2547 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2548 // Different non-empty allocations that exist at the same time have 2549 // different addresses (if the program can tell). Global variables always 2550 // exist, so they always exist during the lifetime of each other and all 2551 // allocas. Two different allocas usually have different addresses... 2552 // 2553 // However, if there's an @llvm.stackrestore dynamically in between two 2554 // allocas, they may have the same address. It's tempting to reduce the 2555 // scope of the problem by only looking at *static* allocas here. That would 2556 // cover the majority of allocas while significantly reducing the likelihood 2557 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2558 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2559 // an entry block. Also, if we have a block that's not attached to a 2560 // function, we can't tell if it's "static" under the current definition. 2561 // Theoretically, this problem could be fixed by creating a new kind of 2562 // instruction kind specifically for static allocas. Such a new instruction 2563 // could be required to be at the top of the entry block, thus preventing it 2564 // from being subject to a @llvm.stackrestore. Instcombine could even 2565 // convert regular allocas into these special allocas. It'd be nifty. 2566 // However, until then, this problem remains open. 2567 // 2568 // So, we'll assume that two non-empty allocas have different addresses 2569 // for now. 2570 // 2571 // With all that, if the offsets are within the bounds of their allocations 2572 // (and not one-past-the-end! so we can't use inbounds!), and their 2573 // allocations aren't the same, the pointers are not equal. 2574 // 2575 // Note that it's not necessary to check for LHS being a global variable 2576 // address, due to canonicalization and constant folding. 2577 if (isa<AllocaInst>(LHS) && 2578 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2579 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2580 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2581 uint64_t LHSSize, RHSSize; 2582 ObjectSizeOpts Opts; 2583 Opts.NullIsUnknownSize = 2584 NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction()); 2585 if (LHSOffsetCI && RHSOffsetCI && 2586 getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2587 getObjectSize(RHS, RHSSize, DL, TLI, Opts)) { 2588 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2589 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2590 if (!LHSOffsetValue.isNegative() && 2591 !RHSOffsetValue.isNegative() && 2592 LHSOffsetValue.ult(LHSSize) && 2593 RHSOffsetValue.ult(RHSSize)) { 2594 return ConstantInt::get(GetCompareTy(LHS), 2595 !CmpInst::isTrueWhenEqual(Pred)); 2596 } 2597 } 2598 2599 // Repeat the above check but this time without depending on DataLayout 2600 // or being able to compute a precise size. 2601 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2602 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2603 LHSOffset->isNullValue() && 2604 RHSOffset->isNullValue()) 2605 return ConstantInt::get(GetCompareTy(LHS), 2606 !CmpInst::isTrueWhenEqual(Pred)); 2607 } 2608 2609 // Even if an non-inbounds GEP occurs along the path we can still optimize 2610 // equality comparisons concerning the result. We avoid walking the whole 2611 // chain again by starting where the last calls to 2612 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2613 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2614 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2615 if (LHS == RHS) 2616 return ConstantExpr::getICmp(Pred, 2617 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2618 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2619 2620 // If one side of the equality comparison must come from a noalias call 2621 // (meaning a system memory allocation function), and the other side must 2622 // come from a pointer that cannot overlap with dynamically-allocated 2623 // memory within the lifetime of the current function (allocas, byval 2624 // arguments, globals), then determine the comparison result here. 2625 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; 2626 getUnderlyingObjects(LHS, LHSUObjs); 2627 getUnderlyingObjects(RHS, RHSUObjs); 2628 2629 // Is the set of underlying objects all noalias calls? 2630 auto IsNAC = [](ArrayRef<const Value *> Objects) { 2631 return all_of(Objects, isNoAliasCall); 2632 }; 2633 2634 // Is the set of underlying objects all things which must be disjoint from 2635 // noalias calls. For allocas, we consider only static ones (dynamic 2636 // allocas might be transformed into calls to malloc not simultaneously 2637 // live with the compared-to allocation). For globals, we exclude symbols 2638 // that might be resolve lazily to symbols in another dynamically-loaded 2639 // library (and, thus, could be malloc'ed by the implementation). 2640 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { 2641 return all_of(Objects, [](const Value *V) { 2642 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2643 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2644 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2645 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2646 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2647 !GV->isThreadLocal(); 2648 if (const Argument *A = dyn_cast<Argument>(V)) 2649 return A->hasByValAttr(); 2650 return false; 2651 }); 2652 }; 2653 2654 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2655 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2656 return ConstantInt::get(GetCompareTy(LHS), 2657 !CmpInst::isTrueWhenEqual(Pred)); 2658 2659 // Fold comparisons for non-escaping pointer even if the allocation call 2660 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2661 // dynamic allocation call could be either of the operands. 2662 Value *MI = nullptr; 2663 if (isAllocLikeFn(LHS, TLI) && 2664 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2665 MI = LHS; 2666 else if (isAllocLikeFn(RHS, TLI) && 2667 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2668 MI = RHS; 2669 // FIXME: We should also fold the compare when the pointer escapes, but the 2670 // compare dominates the pointer escape 2671 if (MI && !PointerMayBeCaptured(MI, true, true)) 2672 return ConstantInt::get(GetCompareTy(LHS), 2673 CmpInst::isFalseWhenEqual(Pred)); 2674 } 2675 2676 // Otherwise, fail. 2677 return nullptr; 2678 } 2679 2680 /// Fold an icmp when its operands have i1 scalar type. 2681 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2682 Value *RHS, const SimplifyQuery &Q) { 2683 Type *ITy = GetCompareTy(LHS); // The return type. 2684 Type *OpTy = LHS->getType(); // The operand type. 2685 if (!OpTy->isIntOrIntVectorTy(1)) 2686 return nullptr; 2687 2688 // A boolean compared to true/false can be simplified in 14 out of the 20 2689 // (10 predicates * 2 constants) possible combinations. Cases not handled here 2690 // require a 'not' of the LHS, so those must be transformed in InstCombine. 2691 if (match(RHS, m_Zero())) { 2692 switch (Pred) { 2693 case CmpInst::ICMP_NE: // X != 0 -> X 2694 case CmpInst::ICMP_UGT: // X >u 0 -> X 2695 case CmpInst::ICMP_SLT: // X <s 0 -> X 2696 return LHS; 2697 2698 case CmpInst::ICMP_ULT: // X <u 0 -> false 2699 case CmpInst::ICMP_SGT: // X >s 0 -> false 2700 return getFalse(ITy); 2701 2702 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2703 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2704 return getTrue(ITy); 2705 2706 default: break; 2707 } 2708 } else if (match(RHS, m_One())) { 2709 switch (Pred) { 2710 case CmpInst::ICMP_EQ: // X == 1 -> X 2711 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2712 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2713 return LHS; 2714 2715 case CmpInst::ICMP_UGT: // X >u 1 -> false 2716 case CmpInst::ICMP_SLT: // X <s -1 -> false 2717 return getFalse(ITy); 2718 2719 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2720 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2721 return getTrue(ITy); 2722 2723 default: break; 2724 } 2725 } 2726 2727 switch (Pred) { 2728 default: 2729 break; 2730 case ICmpInst::ICMP_UGE: 2731 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2732 return getTrue(ITy); 2733 break; 2734 case ICmpInst::ICMP_SGE: 2735 /// For signed comparison, the values for an i1 are 0 and -1 2736 /// respectively. This maps into a truth table of: 2737 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2738 /// 0 | 0 | 1 (0 >= 0) | 1 2739 /// 0 | 1 | 1 (0 >= -1) | 1 2740 /// 1 | 0 | 0 (-1 >= 0) | 0 2741 /// 1 | 1 | 1 (-1 >= -1) | 1 2742 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2743 return getTrue(ITy); 2744 break; 2745 case ICmpInst::ICMP_ULE: 2746 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2747 return getTrue(ITy); 2748 break; 2749 } 2750 2751 return nullptr; 2752 } 2753 2754 /// Try hard to fold icmp with zero RHS because this is a common case. 2755 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2756 Value *RHS, const SimplifyQuery &Q) { 2757 if (!match(RHS, m_Zero())) 2758 return nullptr; 2759 2760 Type *ITy = GetCompareTy(LHS); // The return type. 2761 switch (Pred) { 2762 default: 2763 llvm_unreachable("Unknown ICmp predicate!"); 2764 case ICmpInst::ICMP_ULT: 2765 return getFalse(ITy); 2766 case ICmpInst::ICMP_UGE: 2767 return getTrue(ITy); 2768 case ICmpInst::ICMP_EQ: 2769 case ICmpInst::ICMP_ULE: 2770 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2771 return getFalse(ITy); 2772 break; 2773 case ICmpInst::ICMP_NE: 2774 case ICmpInst::ICMP_UGT: 2775 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2776 return getTrue(ITy); 2777 break; 2778 case ICmpInst::ICMP_SLT: { 2779 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2780 if (LHSKnown.isNegative()) 2781 return getTrue(ITy); 2782 if (LHSKnown.isNonNegative()) 2783 return getFalse(ITy); 2784 break; 2785 } 2786 case ICmpInst::ICMP_SLE: { 2787 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2788 if (LHSKnown.isNegative()) 2789 return getTrue(ITy); 2790 if (LHSKnown.isNonNegative() && 2791 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2792 return getFalse(ITy); 2793 break; 2794 } 2795 case ICmpInst::ICMP_SGE: { 2796 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2797 if (LHSKnown.isNegative()) 2798 return getFalse(ITy); 2799 if (LHSKnown.isNonNegative()) 2800 return getTrue(ITy); 2801 break; 2802 } 2803 case ICmpInst::ICMP_SGT: { 2804 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2805 if (LHSKnown.isNegative()) 2806 return getFalse(ITy); 2807 if (LHSKnown.isNonNegative() && 2808 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2809 return getTrue(ITy); 2810 break; 2811 } 2812 } 2813 2814 return nullptr; 2815 } 2816 2817 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2818 Value *RHS, const InstrInfoQuery &IIQ) { 2819 Type *ITy = GetCompareTy(RHS); // The return type. 2820 2821 Value *X; 2822 // Sign-bit checks can be optimized to true/false after unsigned 2823 // floating-point casts: 2824 // icmp slt (bitcast (uitofp X)), 0 --> false 2825 // icmp sgt (bitcast (uitofp X)), -1 --> true 2826 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 2827 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 2828 return ConstantInt::getFalse(ITy); 2829 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 2830 return ConstantInt::getTrue(ITy); 2831 } 2832 2833 const APInt *C; 2834 if (!match(RHS, m_APIntAllowUndef(C))) 2835 return nullptr; 2836 2837 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2838 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2839 if (RHS_CR.isEmptySet()) 2840 return ConstantInt::getFalse(ITy); 2841 if (RHS_CR.isFullSet()) 2842 return ConstantInt::getTrue(ITy); 2843 2844 ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo); 2845 if (!LHS_CR.isFullSet()) { 2846 if (RHS_CR.contains(LHS_CR)) 2847 return ConstantInt::getTrue(ITy); 2848 if (RHS_CR.inverse().contains(LHS_CR)) 2849 return ConstantInt::getFalse(ITy); 2850 } 2851 2852 // (mul nuw/nsw X, MulC) != C --> true (if C is not a multiple of MulC) 2853 // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC) 2854 const APInt *MulC; 2855 if (ICmpInst::isEquality(Pred) && 2856 ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2857 *MulC != 0 && C->urem(*MulC) != 0) || 2858 (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2859 *MulC != 0 && C->srem(*MulC) != 0))) 2860 return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE); 2861 2862 return nullptr; 2863 } 2864 2865 static Value *simplifyICmpWithBinOpOnLHS( 2866 CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS, 2867 const SimplifyQuery &Q, unsigned MaxRecurse) { 2868 Type *ITy = GetCompareTy(RHS); // The return type. 2869 2870 Value *Y = nullptr; 2871 // icmp pred (or X, Y), X 2872 if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2873 if (Pred == ICmpInst::ICMP_ULT) 2874 return getFalse(ITy); 2875 if (Pred == ICmpInst::ICMP_UGE) 2876 return getTrue(ITy); 2877 2878 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2879 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2880 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2881 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2882 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2883 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2884 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2885 } 2886 } 2887 2888 // icmp pred (and X, Y), X 2889 if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2890 if (Pred == ICmpInst::ICMP_UGT) 2891 return getFalse(ITy); 2892 if (Pred == ICmpInst::ICMP_ULE) 2893 return getTrue(ITy); 2894 } 2895 2896 // icmp pred (urem X, Y), Y 2897 if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2898 switch (Pred) { 2899 default: 2900 break; 2901 case ICmpInst::ICMP_SGT: 2902 case ICmpInst::ICMP_SGE: { 2903 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2904 if (!Known.isNonNegative()) 2905 break; 2906 LLVM_FALLTHROUGH; 2907 } 2908 case ICmpInst::ICMP_EQ: 2909 case ICmpInst::ICMP_UGT: 2910 case ICmpInst::ICMP_UGE: 2911 return getFalse(ITy); 2912 case ICmpInst::ICMP_SLT: 2913 case ICmpInst::ICMP_SLE: { 2914 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2915 if (!Known.isNonNegative()) 2916 break; 2917 LLVM_FALLTHROUGH; 2918 } 2919 case ICmpInst::ICMP_NE: 2920 case ICmpInst::ICMP_ULT: 2921 case ICmpInst::ICMP_ULE: 2922 return getTrue(ITy); 2923 } 2924 } 2925 2926 // icmp pred (urem X, Y), X 2927 if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) { 2928 if (Pred == ICmpInst::ICMP_ULE) 2929 return getTrue(ITy); 2930 if (Pred == ICmpInst::ICMP_UGT) 2931 return getFalse(ITy); 2932 } 2933 2934 // x >> y <=u x 2935 // x udiv y <=u x. 2936 if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2937 match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) { 2938 // icmp pred (X op Y), X 2939 if (Pred == ICmpInst::ICMP_UGT) 2940 return getFalse(ITy); 2941 if (Pred == ICmpInst::ICMP_ULE) 2942 return getTrue(ITy); 2943 } 2944 2945 // (x*C1)/C2 <= x for C1 <= C2. 2946 // This holds even if the multiplication overflows: Assume that x != 0 and 2947 // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and 2948 // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x. 2949 // 2950 // Additionally, either the multiplication and division might be represented 2951 // as shifts: 2952 // (x*C1)>>C2 <= x for C1 < 2**C2. 2953 // (x<<C1)/C2 <= x for 2**C1 < C2. 2954 const APInt *C1, *C2; 2955 if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 2956 C1->ule(*C2)) || 2957 (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 2958 C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) || 2959 (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 2960 (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) { 2961 if (Pred == ICmpInst::ICMP_UGT) 2962 return getFalse(ITy); 2963 if (Pred == ICmpInst::ICMP_ULE) 2964 return getTrue(ITy); 2965 } 2966 2967 return nullptr; 2968 } 2969 2970 2971 // If only one of the icmp's operands has NSW flags, try to prove that: 2972 // 2973 // icmp slt (x + C1), (x +nsw C2) 2974 // 2975 // is equivalent to: 2976 // 2977 // icmp slt C1, C2 2978 // 2979 // which is true if x + C2 has the NSW flags set and: 2980 // *) C1 < C2 && C1 >= 0, or 2981 // *) C2 < C1 && C1 <= 0. 2982 // 2983 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS, 2984 Value *RHS) { 2985 // TODO: only support icmp slt for now. 2986 if (Pred != CmpInst::ICMP_SLT) 2987 return false; 2988 2989 // Canonicalize nsw add as RHS. 2990 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 2991 std::swap(LHS, RHS); 2992 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 2993 return false; 2994 2995 Value *X; 2996 const APInt *C1, *C2; 2997 if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) || 2998 !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2)))) 2999 return false; 3000 3001 return (C1->slt(*C2) && C1->isNonNegative()) || 3002 (C2->slt(*C1) && C1->isNonPositive()); 3003 } 3004 3005 3006 /// TODO: A large part of this logic is duplicated in InstCombine's 3007 /// foldICmpBinOp(). We should be able to share that and avoid the code 3008 /// duplication. 3009 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 3010 Value *RHS, const SimplifyQuery &Q, 3011 unsigned MaxRecurse) { 3012 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 3013 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 3014 if (MaxRecurse && (LBO || RBO)) { 3015 // Analyze the case when either LHS or RHS is an add instruction. 3016 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3017 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 3018 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 3019 if (LBO && LBO->getOpcode() == Instruction::Add) { 3020 A = LBO->getOperand(0); 3021 B = LBO->getOperand(1); 3022 NoLHSWrapProblem = 3023 ICmpInst::isEquality(Pred) || 3024 (CmpInst::isUnsigned(Pred) && 3025 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 3026 (CmpInst::isSigned(Pred) && 3027 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 3028 } 3029 if (RBO && RBO->getOpcode() == Instruction::Add) { 3030 C = RBO->getOperand(0); 3031 D = RBO->getOperand(1); 3032 NoRHSWrapProblem = 3033 ICmpInst::isEquality(Pred) || 3034 (CmpInst::isUnsigned(Pred) && 3035 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 3036 (CmpInst::isSigned(Pred) && 3037 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 3038 } 3039 3040 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 3041 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 3042 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 3043 Constant::getNullValue(RHS->getType()), Q, 3044 MaxRecurse - 1)) 3045 return V; 3046 3047 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 3048 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 3049 if (Value *V = 3050 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 3051 C == LHS ? D : C, Q, MaxRecurse - 1)) 3052 return V; 3053 3054 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 3055 bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) || 3056 trySimplifyICmpWithAdds(Pred, LHS, RHS); 3057 if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) { 3058 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3059 Value *Y, *Z; 3060 if (A == C) { 3061 // C + B == C + D -> B == D 3062 Y = B; 3063 Z = D; 3064 } else if (A == D) { 3065 // D + B == C + D -> B == C 3066 Y = B; 3067 Z = C; 3068 } else if (B == C) { 3069 // A + C == C + D -> A == D 3070 Y = A; 3071 Z = D; 3072 } else { 3073 assert(B == D); 3074 // A + D == C + D -> A == C 3075 Y = A; 3076 Z = C; 3077 } 3078 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 3079 return V; 3080 } 3081 } 3082 3083 if (LBO) 3084 if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse)) 3085 return V; 3086 3087 if (RBO) 3088 if (Value *V = simplifyICmpWithBinOpOnLHS( 3089 ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse)) 3090 return V; 3091 3092 // 0 - (zext X) pred C 3093 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 3094 const APInt *C; 3095 if (match(RHS, m_APInt(C))) { 3096 if (C->isStrictlyPositive()) { 3097 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE) 3098 return ConstantInt::getTrue(GetCompareTy(RHS)); 3099 if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ) 3100 return ConstantInt::getFalse(GetCompareTy(RHS)); 3101 } 3102 if (C->isNonNegative()) { 3103 if (Pred == ICmpInst::ICMP_SLE) 3104 return ConstantInt::getTrue(GetCompareTy(RHS)); 3105 if (Pred == ICmpInst::ICMP_SGT) 3106 return ConstantInt::getFalse(GetCompareTy(RHS)); 3107 } 3108 } 3109 } 3110 3111 // If C2 is a power-of-2 and C is not: 3112 // (C2 << X) == C --> false 3113 // (C2 << X) != C --> true 3114 const APInt *C; 3115 if (match(LHS, m_Shl(m_Power2(), m_Value())) && 3116 match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) { 3117 // C2 << X can equal zero in some circumstances. 3118 // This simplification might be unsafe if C is zero. 3119 // 3120 // We know it is safe if: 3121 // - The shift is nsw. We can't shift out the one bit. 3122 // - The shift is nuw. We can't shift out the one bit. 3123 // - C2 is one. 3124 // - C isn't zero. 3125 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3126 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3127 match(LHS, m_Shl(m_One(), m_Value())) || !C->isNullValue()) { 3128 if (Pred == ICmpInst::ICMP_EQ) 3129 return ConstantInt::getFalse(GetCompareTy(RHS)); 3130 if (Pred == ICmpInst::ICMP_NE) 3131 return ConstantInt::getTrue(GetCompareTy(RHS)); 3132 } 3133 } 3134 3135 // TODO: This is overly constrained. LHS can be any power-of-2. 3136 // (1 << X) >u 0x8000 --> false 3137 // (1 << X) <=u 0x8000 --> true 3138 if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) { 3139 if (Pred == ICmpInst::ICMP_UGT) 3140 return ConstantInt::getFalse(GetCompareTy(RHS)); 3141 if (Pred == ICmpInst::ICMP_ULE) 3142 return ConstantInt::getTrue(GetCompareTy(RHS)); 3143 } 3144 3145 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 3146 LBO->getOperand(1) == RBO->getOperand(1)) { 3147 switch (LBO->getOpcode()) { 3148 default: 3149 break; 3150 case Instruction::UDiv: 3151 case Instruction::LShr: 3152 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 3153 !Q.IIQ.isExact(RBO)) 3154 break; 3155 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3156 RBO->getOperand(0), Q, MaxRecurse - 1)) 3157 return V; 3158 break; 3159 case Instruction::SDiv: 3160 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 3161 !Q.IIQ.isExact(RBO)) 3162 break; 3163 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3164 RBO->getOperand(0), Q, MaxRecurse - 1)) 3165 return V; 3166 break; 3167 case Instruction::AShr: 3168 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 3169 break; 3170 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3171 RBO->getOperand(0), Q, MaxRecurse - 1)) 3172 return V; 3173 break; 3174 case Instruction::Shl: { 3175 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 3176 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 3177 if (!NUW && !NSW) 3178 break; 3179 if (!NSW && ICmpInst::isSigned(Pred)) 3180 break; 3181 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3182 RBO->getOperand(0), Q, MaxRecurse - 1)) 3183 return V; 3184 break; 3185 } 3186 } 3187 } 3188 return nullptr; 3189 } 3190 3191 /// Simplify integer comparisons where at least one operand of the compare 3192 /// matches an integer min/max idiom. 3193 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 3194 Value *RHS, const SimplifyQuery &Q, 3195 unsigned MaxRecurse) { 3196 Type *ITy = GetCompareTy(LHS); // The return type. 3197 Value *A, *B; 3198 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 3199 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 3200 3201 // Signed variants on "max(a,b)>=a -> true". 3202 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3203 if (A != RHS) 3204 std::swap(A, B); // smax(A, B) pred A. 3205 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3206 // We analyze this as smax(A, B) pred A. 3207 P = Pred; 3208 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 3209 (A == LHS || B == LHS)) { 3210 if (A != LHS) 3211 std::swap(A, B); // A pred smax(A, B). 3212 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3213 // We analyze this as smax(A, B) swapped-pred A. 3214 P = CmpInst::getSwappedPredicate(Pred); 3215 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3216 (A == RHS || B == RHS)) { 3217 if (A != RHS) 3218 std::swap(A, B); // smin(A, B) pred A. 3219 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3220 // We analyze this as smax(-A, -B) swapped-pred -A. 3221 // Note that we do not need to actually form -A or -B thanks to EqP. 3222 P = CmpInst::getSwappedPredicate(Pred); 3223 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 3224 (A == LHS || B == LHS)) { 3225 if (A != LHS) 3226 std::swap(A, B); // A pred smin(A, B). 3227 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3228 // We analyze this as smax(-A, -B) pred -A. 3229 // Note that we do not need to actually form -A or -B thanks to EqP. 3230 P = Pred; 3231 } 3232 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3233 // Cases correspond to "max(A, B) p A". 3234 switch (P) { 3235 default: 3236 break; 3237 case CmpInst::ICMP_EQ: 3238 case CmpInst::ICMP_SLE: 3239 // Equivalent to "A EqP B". This may be the same as the condition tested 3240 // in the max/min; if so, we can just return that. 3241 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3242 return V; 3243 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3244 return V; 3245 // Otherwise, see if "A EqP B" simplifies. 3246 if (MaxRecurse) 3247 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3248 return V; 3249 break; 3250 case CmpInst::ICMP_NE: 3251 case CmpInst::ICMP_SGT: { 3252 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3253 // Equivalent to "A InvEqP B". This may be the same as the condition 3254 // tested in the max/min; if so, we can just return that. 3255 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3256 return V; 3257 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3258 return V; 3259 // Otherwise, see if "A InvEqP B" simplifies. 3260 if (MaxRecurse) 3261 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3262 return V; 3263 break; 3264 } 3265 case CmpInst::ICMP_SGE: 3266 // Always true. 3267 return getTrue(ITy); 3268 case CmpInst::ICMP_SLT: 3269 // Always false. 3270 return getFalse(ITy); 3271 } 3272 } 3273 3274 // Unsigned variants on "max(a,b)>=a -> true". 3275 P = CmpInst::BAD_ICMP_PREDICATE; 3276 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3277 if (A != RHS) 3278 std::swap(A, B); // umax(A, B) pred A. 3279 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3280 // We analyze this as umax(A, B) pred A. 3281 P = Pred; 3282 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 3283 (A == LHS || B == LHS)) { 3284 if (A != LHS) 3285 std::swap(A, B); // A pred umax(A, B). 3286 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3287 // We analyze this as umax(A, B) swapped-pred A. 3288 P = CmpInst::getSwappedPredicate(Pred); 3289 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3290 (A == RHS || B == RHS)) { 3291 if (A != RHS) 3292 std::swap(A, B); // umin(A, B) pred A. 3293 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3294 // We analyze this as umax(-A, -B) swapped-pred -A. 3295 // Note that we do not need to actually form -A or -B thanks to EqP. 3296 P = CmpInst::getSwappedPredicate(Pred); 3297 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3298 (A == LHS || B == LHS)) { 3299 if (A != LHS) 3300 std::swap(A, B); // A pred umin(A, B). 3301 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3302 // We analyze this as umax(-A, -B) pred -A. 3303 // Note that we do not need to actually form -A or -B thanks to EqP. 3304 P = Pred; 3305 } 3306 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3307 // Cases correspond to "max(A, B) p A". 3308 switch (P) { 3309 default: 3310 break; 3311 case CmpInst::ICMP_EQ: 3312 case CmpInst::ICMP_ULE: 3313 // Equivalent to "A EqP B". This may be the same as the condition tested 3314 // in the max/min; if so, we can just return that. 3315 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3316 return V; 3317 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3318 return V; 3319 // Otherwise, see if "A EqP B" simplifies. 3320 if (MaxRecurse) 3321 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3322 return V; 3323 break; 3324 case CmpInst::ICMP_NE: 3325 case CmpInst::ICMP_UGT: { 3326 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3327 // Equivalent to "A InvEqP B". This may be the same as the condition 3328 // tested in the max/min; if so, we can just return that. 3329 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3330 return V; 3331 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3332 return V; 3333 // Otherwise, see if "A InvEqP B" simplifies. 3334 if (MaxRecurse) 3335 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3336 return V; 3337 break; 3338 } 3339 case CmpInst::ICMP_UGE: 3340 return getTrue(ITy); 3341 case CmpInst::ICMP_ULT: 3342 return getFalse(ITy); 3343 } 3344 } 3345 3346 // Comparing 1 each of min/max with a common operand? 3347 // Canonicalize min operand to RHS. 3348 if (match(LHS, m_UMin(m_Value(), m_Value())) || 3349 match(LHS, m_SMin(m_Value(), m_Value()))) { 3350 std::swap(LHS, RHS); 3351 Pred = ICmpInst::getSwappedPredicate(Pred); 3352 } 3353 3354 Value *C, *D; 3355 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3356 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3357 (A == C || A == D || B == C || B == D)) { 3358 // smax(A, B) >=s smin(A, D) --> true 3359 if (Pred == CmpInst::ICMP_SGE) 3360 return getTrue(ITy); 3361 // smax(A, B) <s smin(A, D) --> false 3362 if (Pred == CmpInst::ICMP_SLT) 3363 return getFalse(ITy); 3364 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3365 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3366 (A == C || A == D || B == C || B == D)) { 3367 // umax(A, B) >=u umin(A, D) --> true 3368 if (Pred == CmpInst::ICMP_UGE) 3369 return getTrue(ITy); 3370 // umax(A, B) <u umin(A, D) --> false 3371 if (Pred == CmpInst::ICMP_ULT) 3372 return getFalse(ITy); 3373 } 3374 3375 return nullptr; 3376 } 3377 3378 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate, 3379 Value *LHS, Value *RHS, 3380 const SimplifyQuery &Q) { 3381 // Gracefully handle instructions that have not been inserted yet. 3382 if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent()) 3383 return nullptr; 3384 3385 for (Value *AssumeBaseOp : {LHS, RHS}) { 3386 for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) { 3387 if (!AssumeVH) 3388 continue; 3389 3390 CallInst *Assume = cast<CallInst>(AssumeVH); 3391 if (Optional<bool> Imp = 3392 isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS, 3393 Q.DL)) 3394 if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT)) 3395 return ConstantInt::get(GetCompareTy(LHS), *Imp); 3396 } 3397 } 3398 3399 return nullptr; 3400 } 3401 3402 /// Given operands for an ICmpInst, see if we can fold the result. 3403 /// If not, this returns null. 3404 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3405 const SimplifyQuery &Q, unsigned MaxRecurse) { 3406 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3407 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3408 3409 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3410 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3411 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3412 3413 // If we have a constant, make sure it is on the RHS. 3414 std::swap(LHS, RHS); 3415 Pred = CmpInst::getSwappedPredicate(Pred); 3416 } 3417 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); 3418 3419 Type *ITy = GetCompareTy(LHS); // The return type. 3420 3421 // For EQ and NE, we can always pick a value for the undef to make the 3422 // predicate pass or fail, so we can return undef. 3423 // Matches behavior in llvm::ConstantFoldCompareInstruction. 3424 if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred)) 3425 return UndefValue::get(ITy); 3426 3427 // icmp X, X -> true/false 3428 // icmp X, undef -> true/false because undef could be X. 3429 if (LHS == RHS || Q.isUndefValue(RHS)) 3430 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3431 3432 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3433 return V; 3434 3435 // TODO: Sink/common this with other potentially expensive calls that use 3436 // ValueTracking? See comment below for isKnownNonEqual(). 3437 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3438 return V; 3439 3440 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3441 return V; 3442 3443 // If both operands have range metadata, use the metadata 3444 // to simplify the comparison. 3445 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3446 auto RHS_Instr = cast<Instruction>(RHS); 3447 auto LHS_Instr = cast<Instruction>(LHS); 3448 3449 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && 3450 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { 3451 auto RHS_CR = getConstantRangeFromMetadata( 3452 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3453 auto LHS_CR = getConstantRangeFromMetadata( 3454 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3455 3456 if (LHS_CR.icmp(Pred, RHS_CR)) 3457 return ConstantInt::getTrue(RHS->getContext()); 3458 3459 if (LHS_CR.icmp(CmpInst::getInversePredicate(Pred), RHS_CR)) 3460 return ConstantInt::getFalse(RHS->getContext()); 3461 } 3462 } 3463 3464 // Compare of cast, for example (zext X) != 0 -> X != 0 3465 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3466 Instruction *LI = cast<CastInst>(LHS); 3467 Value *SrcOp = LI->getOperand(0); 3468 Type *SrcTy = SrcOp->getType(); 3469 Type *DstTy = LI->getType(); 3470 3471 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3472 // if the integer type is the same size as the pointer type. 3473 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3474 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3475 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3476 // Transfer the cast to the constant. 3477 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3478 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3479 Q, MaxRecurse-1)) 3480 return V; 3481 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3482 if (RI->getOperand(0)->getType() == SrcTy) 3483 // Compare without the cast. 3484 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3485 Q, MaxRecurse-1)) 3486 return V; 3487 } 3488 } 3489 3490 if (isa<ZExtInst>(LHS)) { 3491 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3492 // same type. 3493 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3494 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3495 // Compare X and Y. Note that signed predicates become unsigned. 3496 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3497 SrcOp, RI->getOperand(0), Q, 3498 MaxRecurse-1)) 3499 return V; 3500 } 3501 // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true. 3502 else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3503 if (SrcOp == RI->getOperand(0)) { 3504 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE) 3505 return ConstantInt::getTrue(ITy); 3506 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT) 3507 return ConstantInt::getFalse(ITy); 3508 } 3509 } 3510 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3511 // too. If not, then try to deduce the result of the comparison. 3512 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3513 // Compute the constant that would happen if we truncated to SrcTy then 3514 // reextended to DstTy. 3515 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3516 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3517 3518 // If the re-extended constant didn't change then this is effectively 3519 // also a case of comparing two zero-extended values. 3520 if (RExt == CI && MaxRecurse) 3521 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3522 SrcOp, Trunc, Q, MaxRecurse-1)) 3523 return V; 3524 3525 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3526 // there. Use this to work out the result of the comparison. 3527 if (RExt != CI) { 3528 switch (Pred) { 3529 default: llvm_unreachable("Unknown ICmp predicate!"); 3530 // LHS <u RHS. 3531 case ICmpInst::ICMP_EQ: 3532 case ICmpInst::ICMP_UGT: 3533 case ICmpInst::ICMP_UGE: 3534 return ConstantInt::getFalse(CI->getContext()); 3535 3536 case ICmpInst::ICMP_NE: 3537 case ICmpInst::ICMP_ULT: 3538 case ICmpInst::ICMP_ULE: 3539 return ConstantInt::getTrue(CI->getContext()); 3540 3541 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3542 // is non-negative then LHS <s RHS. 3543 case ICmpInst::ICMP_SGT: 3544 case ICmpInst::ICMP_SGE: 3545 return CI->getValue().isNegative() ? 3546 ConstantInt::getTrue(CI->getContext()) : 3547 ConstantInt::getFalse(CI->getContext()); 3548 3549 case ICmpInst::ICMP_SLT: 3550 case ICmpInst::ICMP_SLE: 3551 return CI->getValue().isNegative() ? 3552 ConstantInt::getFalse(CI->getContext()) : 3553 ConstantInt::getTrue(CI->getContext()); 3554 } 3555 } 3556 } 3557 } 3558 3559 if (isa<SExtInst>(LHS)) { 3560 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3561 // same type. 3562 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3563 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3564 // Compare X and Y. Note that the predicate does not change. 3565 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3566 Q, MaxRecurse-1)) 3567 return V; 3568 } 3569 // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true. 3570 else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3571 if (SrcOp == RI->getOperand(0)) { 3572 if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE) 3573 return ConstantInt::getTrue(ITy); 3574 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT) 3575 return ConstantInt::getFalse(ITy); 3576 } 3577 } 3578 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3579 // too. If not, then try to deduce the result of the comparison. 3580 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3581 // Compute the constant that would happen if we truncated to SrcTy then 3582 // reextended to DstTy. 3583 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3584 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3585 3586 // If the re-extended constant didn't change then this is effectively 3587 // also a case of comparing two sign-extended values. 3588 if (RExt == CI && MaxRecurse) 3589 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3590 return V; 3591 3592 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3593 // bits there. Use this to work out the result of the comparison. 3594 if (RExt != CI) { 3595 switch (Pred) { 3596 default: llvm_unreachable("Unknown ICmp predicate!"); 3597 case ICmpInst::ICMP_EQ: 3598 return ConstantInt::getFalse(CI->getContext()); 3599 case ICmpInst::ICMP_NE: 3600 return ConstantInt::getTrue(CI->getContext()); 3601 3602 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3603 // LHS >s RHS. 3604 case ICmpInst::ICMP_SGT: 3605 case ICmpInst::ICMP_SGE: 3606 return CI->getValue().isNegative() ? 3607 ConstantInt::getTrue(CI->getContext()) : 3608 ConstantInt::getFalse(CI->getContext()); 3609 case ICmpInst::ICMP_SLT: 3610 case ICmpInst::ICMP_SLE: 3611 return CI->getValue().isNegative() ? 3612 ConstantInt::getFalse(CI->getContext()) : 3613 ConstantInt::getTrue(CI->getContext()); 3614 3615 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3616 // LHS >u RHS. 3617 case ICmpInst::ICMP_UGT: 3618 case ICmpInst::ICMP_UGE: 3619 // Comparison is true iff the LHS <s 0. 3620 if (MaxRecurse) 3621 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3622 Constant::getNullValue(SrcTy), 3623 Q, MaxRecurse-1)) 3624 return V; 3625 break; 3626 case ICmpInst::ICMP_ULT: 3627 case ICmpInst::ICMP_ULE: 3628 // Comparison is true iff the LHS >=s 0. 3629 if (MaxRecurse) 3630 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3631 Constant::getNullValue(SrcTy), 3632 Q, MaxRecurse-1)) 3633 return V; 3634 break; 3635 } 3636 } 3637 } 3638 } 3639 } 3640 3641 // icmp eq|ne X, Y -> false|true if X != Y 3642 // This is potentially expensive, and we have already computedKnownBits for 3643 // compares with 0 above here, so only try this for a non-zero compare. 3644 if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) && 3645 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 3646 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3647 } 3648 3649 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3650 return V; 3651 3652 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3653 return V; 3654 3655 if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q)) 3656 return V; 3657 3658 // Simplify comparisons of related pointers using a powerful, recursive 3659 // GEP-walk when we have target data available.. 3660 if (LHS->getType()->isPointerTy()) 3661 if (auto *C = computePointerICmp(Pred, LHS, RHS, Q)) 3662 return C; 3663 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3664 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3665 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3666 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3667 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3668 Q.DL.getTypeSizeInBits(CRHS->getType())) 3669 if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(), 3670 CRHS->getPointerOperand(), Q)) 3671 return C; 3672 3673 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3674 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3675 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3676 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3677 (ICmpInst::isEquality(Pred) || 3678 (GLHS->isInBounds() && GRHS->isInBounds() && 3679 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3680 // The bases are equal and the indices are constant. Build a constant 3681 // expression GEP with the same indices and a null base pointer to see 3682 // what constant folding can make out of it. 3683 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3684 SmallVector<Value *, 4> IndicesLHS(GLHS->indices()); 3685 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3686 GLHS->getSourceElementType(), Null, IndicesLHS); 3687 3688 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3689 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3690 GLHS->getSourceElementType(), Null, IndicesRHS); 3691 Constant *NewICmp = ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3692 return ConstantFoldConstant(NewICmp, Q.DL); 3693 } 3694 } 3695 } 3696 3697 // If the comparison is with the result of a select instruction, check whether 3698 // comparing with either branch of the select always yields the same value. 3699 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3700 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3701 return V; 3702 3703 // If the comparison is with the result of a phi instruction, check whether 3704 // doing the compare with each incoming phi value yields a common result. 3705 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3706 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3707 return V; 3708 3709 return nullptr; 3710 } 3711 3712 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3713 const SimplifyQuery &Q) { 3714 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3715 } 3716 3717 /// Given operands for an FCmpInst, see if we can fold the result. 3718 /// If not, this returns null. 3719 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3720 FastMathFlags FMF, const SimplifyQuery &Q, 3721 unsigned MaxRecurse) { 3722 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3723 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3724 3725 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3726 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3727 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3728 3729 // If we have a constant, make sure it is on the RHS. 3730 std::swap(LHS, RHS); 3731 Pred = CmpInst::getSwappedPredicate(Pred); 3732 } 3733 3734 // Fold trivial predicates. 3735 Type *RetTy = GetCompareTy(LHS); 3736 if (Pred == FCmpInst::FCMP_FALSE) 3737 return getFalse(RetTy); 3738 if (Pred == FCmpInst::FCMP_TRUE) 3739 return getTrue(RetTy); 3740 3741 // Fold (un)ordered comparison if we can determine there are no NaNs. 3742 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) 3743 if (FMF.noNaNs() || 3744 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI))) 3745 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 3746 3747 // NaN is unordered; NaN is not ordered. 3748 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && 3749 "Comparison must be either ordered or unordered"); 3750 if (match(RHS, m_NaN())) 3751 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3752 3753 // fcmp pred x, undef and fcmp pred undef, x 3754 // fold to true if unordered, false if ordered 3755 if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) { 3756 // Choosing NaN for the undef will always make unordered comparison succeed 3757 // and ordered comparison fail. 3758 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3759 } 3760 3761 // fcmp x,x -> true/false. Not all compares are foldable. 3762 if (LHS == RHS) { 3763 if (CmpInst::isTrueWhenEqual(Pred)) 3764 return getTrue(RetTy); 3765 if (CmpInst::isFalseWhenEqual(Pred)) 3766 return getFalse(RetTy); 3767 } 3768 3769 // Handle fcmp with constant RHS. 3770 // TODO: Use match with a specific FP value, so these work with vectors with 3771 // undef lanes. 3772 const APFloat *C; 3773 if (match(RHS, m_APFloat(C))) { 3774 // Check whether the constant is an infinity. 3775 if (C->isInfinity()) { 3776 if (C->isNegative()) { 3777 switch (Pred) { 3778 case FCmpInst::FCMP_OLT: 3779 // No value is ordered and less than negative infinity. 3780 return getFalse(RetTy); 3781 case FCmpInst::FCMP_UGE: 3782 // All values are unordered with or at least negative infinity. 3783 return getTrue(RetTy); 3784 default: 3785 break; 3786 } 3787 } else { 3788 switch (Pred) { 3789 case FCmpInst::FCMP_OGT: 3790 // No value is ordered and greater than infinity. 3791 return getFalse(RetTy); 3792 case FCmpInst::FCMP_ULE: 3793 // All values are unordered with and at most infinity. 3794 return getTrue(RetTy); 3795 default: 3796 break; 3797 } 3798 } 3799 3800 // LHS == Inf 3801 if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI)) 3802 return getFalse(RetTy); 3803 // LHS != Inf 3804 if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI)) 3805 return getTrue(RetTy); 3806 // LHS == Inf || LHS == NaN 3807 if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) && 3808 isKnownNeverNaN(LHS, Q.TLI)) 3809 return getFalse(RetTy); 3810 // LHS != Inf && LHS != NaN 3811 if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) && 3812 isKnownNeverNaN(LHS, Q.TLI)) 3813 return getTrue(RetTy); 3814 } 3815 if (C->isNegative() && !C->isNegZero()) { 3816 assert(!C->isNaN() && "Unexpected NaN constant!"); 3817 // TODO: We can catch more cases by using a range check rather than 3818 // relying on CannotBeOrderedLessThanZero. 3819 switch (Pred) { 3820 case FCmpInst::FCMP_UGE: 3821 case FCmpInst::FCMP_UGT: 3822 case FCmpInst::FCMP_UNE: 3823 // (X >= 0) implies (X > C) when (C < 0) 3824 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3825 return getTrue(RetTy); 3826 break; 3827 case FCmpInst::FCMP_OEQ: 3828 case FCmpInst::FCMP_OLE: 3829 case FCmpInst::FCMP_OLT: 3830 // (X >= 0) implies !(X < C) when (C < 0) 3831 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3832 return getFalse(RetTy); 3833 break; 3834 default: 3835 break; 3836 } 3837 } 3838 3839 // Check comparison of [minnum/maxnum with constant] with other constant. 3840 const APFloat *C2; 3841 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) && 3842 *C2 < *C) || 3843 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) && 3844 *C2 > *C)) { 3845 bool IsMaxNum = 3846 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum; 3847 // The ordered relationship and minnum/maxnum guarantee that we do not 3848 // have NaN constants, so ordered/unordered preds are handled the same. 3849 switch (Pred) { 3850 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ: 3851 // minnum(X, LesserC) == C --> false 3852 // maxnum(X, GreaterC) == C --> false 3853 return getFalse(RetTy); 3854 case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE: 3855 // minnum(X, LesserC) != C --> true 3856 // maxnum(X, GreaterC) != C --> true 3857 return getTrue(RetTy); 3858 case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE: 3859 case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT: 3860 // minnum(X, LesserC) >= C --> false 3861 // minnum(X, LesserC) > C --> false 3862 // maxnum(X, GreaterC) >= C --> true 3863 // maxnum(X, GreaterC) > C --> true 3864 return ConstantInt::get(RetTy, IsMaxNum); 3865 case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE: 3866 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT: 3867 // minnum(X, LesserC) <= C --> true 3868 // minnum(X, LesserC) < C --> true 3869 // maxnum(X, GreaterC) <= C --> false 3870 // maxnum(X, GreaterC) < C --> false 3871 return ConstantInt::get(RetTy, !IsMaxNum); 3872 default: 3873 // TRUE/FALSE/ORD/UNO should be handled before this. 3874 llvm_unreachable("Unexpected fcmp predicate"); 3875 } 3876 } 3877 } 3878 3879 if (match(RHS, m_AnyZeroFP())) { 3880 switch (Pred) { 3881 case FCmpInst::FCMP_OGE: 3882 case FCmpInst::FCMP_ULT: 3883 // Positive or zero X >= 0.0 --> true 3884 // Positive or zero X < 0.0 --> false 3885 if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) && 3886 CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3887 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy); 3888 break; 3889 case FCmpInst::FCMP_UGE: 3890 case FCmpInst::FCMP_OLT: 3891 // Positive or zero or nan X >= 0.0 --> true 3892 // Positive or zero or nan X < 0.0 --> false 3893 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3894 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy); 3895 break; 3896 default: 3897 break; 3898 } 3899 } 3900 3901 // If the comparison is with the result of a select instruction, check whether 3902 // comparing with either branch of the select always yields the same value. 3903 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3904 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3905 return V; 3906 3907 // If the comparison is with the result of a phi instruction, check whether 3908 // doing the compare with each incoming phi value yields a common result. 3909 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3910 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3911 return V; 3912 3913 return nullptr; 3914 } 3915 3916 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3917 FastMathFlags FMF, const SimplifyQuery &Q) { 3918 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 3919 } 3920 3921 static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3922 const SimplifyQuery &Q, 3923 bool AllowRefinement, 3924 unsigned MaxRecurse) { 3925 // Trivial replacement. 3926 if (V == Op) 3927 return RepOp; 3928 3929 // We cannot replace a constant, and shouldn't even try. 3930 if (isa<Constant>(Op)) 3931 return nullptr; 3932 3933 auto *I = dyn_cast<Instruction>(V); 3934 if (!I || !is_contained(I->operands(), Op)) 3935 return nullptr; 3936 3937 // Replace Op with RepOp in instruction operands. 3938 SmallVector<Value *, 8> NewOps(I->getNumOperands()); 3939 transform(I->operands(), NewOps.begin(), 3940 [&](Value *V) { return V == Op ? RepOp : V; }); 3941 3942 if (!AllowRefinement) { 3943 // General InstSimplify functions may refine the result, e.g. by returning 3944 // a constant for a potentially poison value. To avoid this, implement only 3945 // a few non-refining but profitable transforms here. 3946 3947 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3948 unsigned Opcode = BO->getOpcode(); 3949 // id op x -> x, x op id -> x 3950 if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType())) 3951 return NewOps[1]; 3952 if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(), 3953 /* RHS */ true)) 3954 return NewOps[0]; 3955 3956 // x & x -> x, x | x -> x 3957 if ((Opcode == Instruction::And || Opcode == Instruction::Or) && 3958 NewOps[0] == NewOps[1]) 3959 return NewOps[0]; 3960 } 3961 3962 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 3963 // getelementptr x, 0 -> x 3964 if (NewOps.size() == 2 && match(NewOps[1], m_Zero()) && 3965 !GEP->isInBounds()) 3966 return NewOps[0]; 3967 } 3968 } else if (MaxRecurse) { 3969 // The simplification queries below may return the original value. Consider: 3970 // %div = udiv i32 %arg, %arg2 3971 // %mul = mul nsw i32 %div, %arg2 3972 // %cmp = icmp eq i32 %mul, %arg 3973 // %sel = select i1 %cmp, i32 %div, i32 undef 3974 // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which 3975 // simplifies back to %arg. This can only happen because %mul does not 3976 // dominate %div. To ensure a consistent return value contract, we make sure 3977 // that this case returns nullptr as well. 3978 auto PreventSelfSimplify = [V](Value *Simplified) { 3979 return Simplified != V ? Simplified : nullptr; 3980 }; 3981 3982 if (auto *B = dyn_cast<BinaryOperator>(I)) 3983 return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), NewOps[0], 3984 NewOps[1], Q, MaxRecurse - 1)); 3985 3986 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3987 return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), NewOps[0], 3988 NewOps[1], Q, MaxRecurse - 1)); 3989 3990 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 3991 return PreventSelfSimplify(SimplifyGEPInst(GEP->getSourceElementType(), 3992 NewOps, Q, MaxRecurse - 1)); 3993 3994 if (isa<SelectInst>(I)) 3995 return PreventSelfSimplify( 3996 SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q, 3997 MaxRecurse - 1)); 3998 // TODO: We could hand off more cases to instsimplify here. 3999 } 4000 4001 // If all operands are constant after substituting Op for RepOp then we can 4002 // constant fold the instruction. 4003 SmallVector<Constant *, 8> ConstOps; 4004 for (Value *NewOp : NewOps) { 4005 if (Constant *ConstOp = dyn_cast<Constant>(NewOp)) 4006 ConstOps.push_back(ConstOp); 4007 else 4008 return nullptr; 4009 } 4010 4011 // Consider: 4012 // %cmp = icmp eq i32 %x, 2147483647 4013 // %add = add nsw i32 %x, 1 4014 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 4015 // 4016 // We can't replace %sel with %add unless we strip away the flags (which 4017 // will be done in InstCombine). 4018 // TODO: This may be unsound, because it only catches some forms of 4019 // refinement. 4020 if (!AllowRefinement && canCreatePoison(cast<Operator>(I))) 4021 return nullptr; 4022 4023 if (CmpInst *C = dyn_cast<CmpInst>(I)) 4024 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 4025 ConstOps[1], Q.DL, Q.TLI); 4026 4027 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 4028 if (!LI->isVolatile()) 4029 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 4030 4031 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 4032 } 4033 4034 Value *llvm::SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 4035 const SimplifyQuery &Q, 4036 bool AllowRefinement) { 4037 return ::SimplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement, 4038 RecursionLimit); 4039 } 4040 4041 /// Try to simplify a select instruction when its condition operand is an 4042 /// integer comparison where one operand of the compare is a constant. 4043 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 4044 const APInt *Y, bool TrueWhenUnset) { 4045 const APInt *C; 4046 4047 // (X & Y) == 0 ? X & ~Y : X --> X 4048 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 4049 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 4050 *Y == ~*C) 4051 return TrueWhenUnset ? FalseVal : TrueVal; 4052 4053 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 4054 // (X & Y) != 0 ? X : X & ~Y --> X 4055 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 4056 *Y == ~*C) 4057 return TrueWhenUnset ? FalseVal : TrueVal; 4058 4059 if (Y->isPowerOf2()) { 4060 // (X & Y) == 0 ? X | Y : X --> X | Y 4061 // (X & Y) != 0 ? X | Y : X --> X 4062 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 4063 *Y == *C) 4064 return TrueWhenUnset ? TrueVal : FalseVal; 4065 4066 // (X & Y) == 0 ? X : X | Y --> X 4067 // (X & Y) != 0 ? X : X | Y --> X | Y 4068 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 4069 *Y == *C) 4070 return TrueWhenUnset ? TrueVal : FalseVal; 4071 } 4072 4073 return nullptr; 4074 } 4075 4076 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 4077 /// eq/ne. 4078 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 4079 ICmpInst::Predicate Pred, 4080 Value *TrueVal, Value *FalseVal) { 4081 Value *X; 4082 APInt Mask; 4083 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 4084 return nullptr; 4085 4086 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 4087 Pred == ICmpInst::ICMP_EQ); 4088 } 4089 4090 /// Try to simplify a select instruction when its condition operand is an 4091 /// integer comparison. 4092 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 4093 Value *FalseVal, const SimplifyQuery &Q, 4094 unsigned MaxRecurse) { 4095 ICmpInst::Predicate Pred; 4096 Value *CmpLHS, *CmpRHS; 4097 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 4098 return nullptr; 4099 4100 // Canonicalize ne to eq predicate. 4101 if (Pred == ICmpInst::ICMP_NE) { 4102 Pred = ICmpInst::ICMP_EQ; 4103 std::swap(TrueVal, FalseVal); 4104 } 4105 4106 if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) { 4107 Value *X; 4108 const APInt *Y; 4109 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 4110 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 4111 /*TrueWhenUnset=*/true)) 4112 return V; 4113 4114 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. 4115 Value *ShAmt; 4116 auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)), 4117 m_FShr(m_Value(), m_Value(X), m_Value(ShAmt))); 4118 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 4119 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 4120 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt) 4121 return X; 4122 4123 // Test for a zero-shift-guard-op around rotates. These are used to 4124 // avoid UB from oversized shifts in raw IR rotate patterns, but the 4125 // intrinsics do not have that problem. 4126 // We do not allow this transform for the general funnel shift case because 4127 // that would not preserve the poison safety of the original code. 4128 auto isRotate = 4129 m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)), 4130 m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt))); 4131 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) 4132 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) 4133 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && 4134 Pred == ICmpInst::ICMP_EQ) 4135 return FalseVal; 4136 4137 // X == 0 ? abs(X) : -abs(X) --> -abs(X) 4138 // X == 0 ? -abs(X) : abs(X) --> abs(X) 4139 if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) && 4140 match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))) 4141 return FalseVal; 4142 if (match(TrueVal, 4143 m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) && 4144 match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) 4145 return FalseVal; 4146 } 4147 4148 // Check for other compares that behave like bit test. 4149 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 4150 TrueVal, FalseVal)) 4151 return V; 4152 4153 // If we have a scalar equality comparison, then we know the value in one of 4154 // the arms of the select. See if substituting this value into the arm and 4155 // simplifying the result yields the same value as the other arm. 4156 // Note that the equivalence/replacement opportunity does not hold for vectors 4157 // because each element of a vector select is chosen independently. 4158 if (Pred == ICmpInst::ICMP_EQ && !CondVal->getType()->isVectorTy()) { 4159 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, 4160 /* AllowRefinement */ false, MaxRecurse) == 4161 TrueVal || 4162 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, 4163 /* AllowRefinement */ false, MaxRecurse) == 4164 TrueVal) 4165 return FalseVal; 4166 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, 4167 /* AllowRefinement */ true, MaxRecurse) == 4168 FalseVal || 4169 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, 4170 /* AllowRefinement */ true, MaxRecurse) == 4171 FalseVal) 4172 return FalseVal; 4173 } 4174 4175 return nullptr; 4176 } 4177 4178 /// Try to simplify a select instruction when its condition operand is a 4179 /// floating-point comparison. 4180 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, 4181 const SimplifyQuery &Q) { 4182 FCmpInst::Predicate Pred; 4183 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && 4184 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) 4185 return nullptr; 4186 4187 // This transform is safe if we do not have (do not care about) -0.0 or if 4188 // at least one operand is known to not be -0.0. Otherwise, the select can 4189 // change the sign of a zero operand. 4190 bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) && 4191 Q.CxtI->hasNoSignedZeros(); 4192 const APFloat *C; 4193 if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) || 4194 (match(F, m_APFloat(C)) && C->isNonZero())) { 4195 // (T == F) ? T : F --> F 4196 // (F == T) ? T : F --> F 4197 if (Pred == FCmpInst::FCMP_OEQ) 4198 return F; 4199 4200 // (T != F) ? T : F --> T 4201 // (F != T) ? T : F --> T 4202 if (Pred == FCmpInst::FCMP_UNE) 4203 return T; 4204 } 4205 4206 return nullptr; 4207 } 4208 4209 /// Given operands for a SelectInst, see if we can fold the result. 4210 /// If not, this returns null. 4211 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4212 const SimplifyQuery &Q, unsigned MaxRecurse) { 4213 if (auto *CondC = dyn_cast<Constant>(Cond)) { 4214 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 4215 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 4216 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); 4217 4218 // select undef, X, Y -> X or Y 4219 if (Q.isUndefValue(CondC)) 4220 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 4221 4222 // TODO: Vector constants with undef elements don't simplify. 4223 4224 // select true, X, Y -> X 4225 if (CondC->isAllOnesValue()) 4226 return TrueVal; 4227 // select false, X, Y -> Y 4228 if (CondC->isNullValue()) 4229 return FalseVal; 4230 } 4231 4232 // select i1 Cond, i1 true, i1 false --> i1 Cond 4233 assert(Cond->getType()->isIntOrIntVectorTy(1) && 4234 "Select must have bool or bool vector condition"); 4235 assert(TrueVal->getType() == FalseVal->getType() && 4236 "Select must have same types for true/false ops"); 4237 if (Cond->getType() == TrueVal->getType() && 4238 match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt())) 4239 return Cond; 4240 4241 // select ?, X, X -> X 4242 if (TrueVal == FalseVal) 4243 return TrueVal; 4244 4245 // If the true or false value is undef, we can fold to the other value as 4246 // long as the other value isn't poison. 4247 // select ?, undef, X -> X 4248 if (Q.isUndefValue(TrueVal) && 4249 isGuaranteedNotToBeUndefOrPoison(FalseVal, Q.AC, Q.CxtI, Q.DT)) 4250 return FalseVal; 4251 // select ?, X, undef -> X 4252 if (Q.isUndefValue(FalseVal) && 4253 isGuaranteedNotToBeUndefOrPoison(TrueVal, Q.AC, Q.CxtI, Q.DT)) 4254 return TrueVal; 4255 4256 // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC'' 4257 Constant *TrueC, *FalseC; 4258 if (isa<FixedVectorType>(TrueVal->getType()) && 4259 match(TrueVal, m_Constant(TrueC)) && 4260 match(FalseVal, m_Constant(FalseC))) { 4261 unsigned NumElts = 4262 cast<FixedVectorType>(TrueC->getType())->getNumElements(); 4263 SmallVector<Constant *, 16> NewC; 4264 for (unsigned i = 0; i != NumElts; ++i) { 4265 // Bail out on incomplete vector constants. 4266 Constant *TEltC = TrueC->getAggregateElement(i); 4267 Constant *FEltC = FalseC->getAggregateElement(i); 4268 if (!TEltC || !FEltC) 4269 break; 4270 4271 // If the elements match (undef or not), that value is the result. If only 4272 // one element is undef, choose the defined element as the safe result. 4273 if (TEltC == FEltC) 4274 NewC.push_back(TEltC); 4275 else if (Q.isUndefValue(TEltC) && 4276 isGuaranteedNotToBeUndefOrPoison(FEltC)) 4277 NewC.push_back(FEltC); 4278 else if (Q.isUndefValue(FEltC) && 4279 isGuaranteedNotToBeUndefOrPoison(TEltC)) 4280 NewC.push_back(TEltC); 4281 else 4282 break; 4283 } 4284 if (NewC.size() == NumElts) 4285 return ConstantVector::get(NewC); 4286 } 4287 4288 if (Value *V = 4289 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 4290 return V; 4291 4292 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q)) 4293 return V; 4294 4295 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 4296 return V; 4297 4298 Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 4299 if (Imp) 4300 return *Imp ? TrueVal : FalseVal; 4301 4302 return nullptr; 4303 } 4304 4305 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4306 const SimplifyQuery &Q) { 4307 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 4308 } 4309 4310 /// Given operands for an GetElementPtrInst, see if we can fold the result. 4311 /// If not, this returns null. 4312 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 4313 const SimplifyQuery &Q, unsigned) { 4314 // The type of the GEP pointer operand. 4315 unsigned AS = 4316 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 4317 4318 // getelementptr P -> P. 4319 if (Ops.size() == 1) 4320 return Ops[0]; 4321 4322 // Compute the (pointer) type returned by the GEP instruction. 4323 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 4324 Type *GEPTy = PointerType::get(LastType, AS); 4325 for (Value *Op : Ops) { 4326 // If one of the operands is a vector, the result type is a vector of 4327 // pointers. All vector operands must have the same number of elements. 4328 if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) { 4329 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4330 break; 4331 } 4332 } 4333 4334 // getelementptr poison, idx -> poison 4335 // getelementptr baseptr, poison -> poison 4336 if (any_of(Ops, [](const auto *V) { return isa<PoisonValue>(V); })) 4337 return PoisonValue::get(GEPTy); 4338 4339 if (Q.isUndefValue(Ops[0])) 4340 return UndefValue::get(GEPTy); 4341 4342 bool IsScalableVec = 4343 isa<ScalableVectorType>(SrcTy) || any_of(Ops, [](const Value *V) { 4344 return isa<ScalableVectorType>(V->getType()); 4345 }); 4346 4347 if (Ops.size() == 2) { 4348 // getelementptr P, 0 -> P. 4349 if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy) 4350 return Ops[0]; 4351 4352 Type *Ty = SrcTy; 4353 if (!IsScalableVec && Ty->isSized()) { 4354 Value *P; 4355 uint64_t C; 4356 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 4357 // getelementptr P, N -> P if P points to a type of zero size. 4358 if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy) 4359 return Ops[0]; 4360 4361 // The following transforms are only safe if the ptrtoint cast 4362 // doesn't truncate the pointers. 4363 if (Ops[1]->getType()->getScalarSizeInBits() == 4364 Q.DL.getPointerSizeInBits(AS)) { 4365 auto CanSimplify = [GEPTy, &P, V = Ops[0]]() -> bool { 4366 return P->getType() == GEPTy && 4367 getUnderlyingObject(P) == getUnderlyingObject(V); 4368 }; 4369 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 4370 if (TyAllocSize == 1 && 4371 match(Ops[1], m_Sub(m_PtrToInt(m_Value(P)), 4372 m_PtrToInt(m_Specific(Ops[0])))) && 4373 CanSimplify()) 4374 return P; 4375 4376 // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of 4377 // size 1 << C. 4378 if (match(Ops[1], m_AShr(m_Sub(m_PtrToInt(m_Value(P)), 4379 m_PtrToInt(m_Specific(Ops[0]))), 4380 m_ConstantInt(C))) && 4381 TyAllocSize == 1ULL << C && CanSimplify()) 4382 return P; 4383 4384 // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of 4385 // size C. 4386 if (match(Ops[1], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)), 4387 m_PtrToInt(m_Specific(Ops[0]))), 4388 m_SpecificInt(TyAllocSize))) && 4389 CanSimplify()) 4390 return P; 4391 } 4392 } 4393 } 4394 4395 if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 && 4396 all_of(Ops.slice(1).drop_back(1), 4397 [](Value *Idx) { return match(Idx, m_Zero()); })) { 4398 unsigned IdxWidth = 4399 Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 4400 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) { 4401 APInt BasePtrOffset(IdxWidth, 0); 4402 Value *StrippedBasePtr = 4403 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 4404 BasePtrOffset); 4405 4406 // Avoid creating inttoptr of zero here: While LLVMs treatment of 4407 // inttoptr is generally conservative, this particular case is folded to 4408 // a null pointer, which will have incorrect provenance. 4409 4410 // gep (gep V, C), (sub 0, V) -> C 4411 if (match(Ops.back(), 4412 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) && 4413 !BasePtrOffset.isNullValue()) { 4414 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 4415 return ConstantExpr::getIntToPtr(CI, GEPTy); 4416 } 4417 // gep (gep V, C), (xor V, -1) -> C-1 4418 if (match(Ops.back(), 4419 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) && 4420 !BasePtrOffset.isOneValue()) { 4421 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 4422 return ConstantExpr::getIntToPtr(CI, GEPTy); 4423 } 4424 } 4425 } 4426 4427 // Check to see if this is constant foldable. 4428 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 4429 return nullptr; 4430 4431 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 4432 Ops.slice(1)); 4433 return ConstantFoldConstant(CE, Q.DL); 4434 } 4435 4436 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 4437 const SimplifyQuery &Q) { 4438 return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit); 4439 } 4440 4441 /// Given operands for an InsertValueInst, see if we can fold the result. 4442 /// If not, this returns null. 4443 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 4444 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 4445 unsigned) { 4446 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 4447 if (Constant *CVal = dyn_cast<Constant>(Val)) 4448 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 4449 4450 // insertvalue x, undef, n -> x 4451 if (Q.isUndefValue(Val)) 4452 return Agg; 4453 4454 // insertvalue x, (extractvalue y, n), n 4455 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 4456 if (EV->getAggregateOperand()->getType() == Agg->getType() && 4457 EV->getIndices() == Idxs) { 4458 // insertvalue undef, (extractvalue y, n), n -> y 4459 if (Q.isUndefValue(Agg)) 4460 return EV->getAggregateOperand(); 4461 4462 // insertvalue y, (extractvalue y, n), n -> y 4463 if (Agg == EV->getAggregateOperand()) 4464 return Agg; 4465 } 4466 4467 return nullptr; 4468 } 4469 4470 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 4471 ArrayRef<unsigned> Idxs, 4472 const SimplifyQuery &Q) { 4473 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 4474 } 4475 4476 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 4477 const SimplifyQuery &Q) { 4478 // Try to constant fold. 4479 auto *VecC = dyn_cast<Constant>(Vec); 4480 auto *ValC = dyn_cast<Constant>(Val); 4481 auto *IdxC = dyn_cast<Constant>(Idx); 4482 if (VecC && ValC && IdxC) 4483 return ConstantExpr::getInsertElement(VecC, ValC, IdxC); 4484 4485 // For fixed-length vector, fold into poison if index is out of bounds. 4486 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 4487 if (isa<FixedVectorType>(Vec->getType()) && 4488 CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements())) 4489 return PoisonValue::get(Vec->getType()); 4490 } 4491 4492 // If index is undef, it might be out of bounds (see above case) 4493 if (Q.isUndefValue(Idx)) 4494 return PoisonValue::get(Vec->getType()); 4495 4496 // If the scalar is poison, or it is undef and there is no risk of 4497 // propagating poison from the vector value, simplify to the vector value. 4498 if (isa<PoisonValue>(Val) || 4499 (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec))) 4500 return Vec; 4501 4502 // If we are extracting a value from a vector, then inserting it into the same 4503 // place, that's the input vector: 4504 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec 4505 if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx)))) 4506 return Vec; 4507 4508 return nullptr; 4509 } 4510 4511 /// Given operands for an ExtractValueInst, see if we can fold the result. 4512 /// If not, this returns null. 4513 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4514 const SimplifyQuery &, unsigned) { 4515 if (auto *CAgg = dyn_cast<Constant>(Agg)) 4516 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 4517 4518 // extractvalue x, (insertvalue y, elt, n), n -> elt 4519 unsigned NumIdxs = Idxs.size(); 4520 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 4521 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 4522 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 4523 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 4524 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 4525 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 4526 Idxs.slice(0, NumCommonIdxs)) { 4527 if (NumIdxs == NumInsertValueIdxs) 4528 return IVI->getInsertedValueOperand(); 4529 break; 4530 } 4531 } 4532 4533 return nullptr; 4534 } 4535 4536 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4537 const SimplifyQuery &Q) { 4538 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 4539 } 4540 4541 /// Given operands for an ExtractElementInst, see if we can fold the result. 4542 /// If not, this returns null. 4543 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, 4544 const SimplifyQuery &Q, unsigned) { 4545 auto *VecVTy = cast<VectorType>(Vec->getType()); 4546 if (auto *CVec = dyn_cast<Constant>(Vec)) { 4547 if (auto *CIdx = dyn_cast<Constant>(Idx)) 4548 return ConstantExpr::getExtractElement(CVec, CIdx); 4549 4550 // The index is not relevant if our vector is a splat. 4551 if (auto *Splat = CVec->getSplatValue()) 4552 return Splat; 4553 4554 if (Q.isUndefValue(Vec)) 4555 return UndefValue::get(VecVTy->getElementType()); 4556 } 4557 4558 // If extracting a specified index from the vector, see if we can recursively 4559 // find a previously computed scalar that was inserted into the vector. 4560 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 4561 // For fixed-length vector, fold into undef if index is out of bounds. 4562 if (isa<FixedVectorType>(VecVTy) && 4563 IdxC->getValue().uge(cast<FixedVectorType>(VecVTy)->getNumElements())) 4564 return PoisonValue::get(VecVTy->getElementType()); 4565 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4566 return Elt; 4567 } 4568 4569 // An undef extract index can be arbitrarily chosen to be an out-of-range 4570 // index value, which would result in the instruction being poison. 4571 if (Q.isUndefValue(Idx)) 4572 return PoisonValue::get(VecVTy->getElementType()); 4573 4574 return nullptr; 4575 } 4576 4577 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 4578 const SimplifyQuery &Q) { 4579 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 4580 } 4581 4582 /// See if we can fold the given phi. If not, returns null. 4583 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) { 4584 // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE 4585 // here, because the PHI we may succeed simplifying to was not 4586 // def-reachable from the original PHI! 4587 4588 // If all of the PHI's incoming values are the same then replace the PHI node 4589 // with the common value. 4590 Value *CommonValue = nullptr; 4591 bool HasUndefInput = false; 4592 for (Value *Incoming : PN->incoming_values()) { 4593 // If the incoming value is the phi node itself, it can safely be skipped. 4594 if (Incoming == PN) continue; 4595 if (Q.isUndefValue(Incoming)) { 4596 // Remember that we saw an undef value, but otherwise ignore them. 4597 HasUndefInput = true; 4598 continue; 4599 } 4600 if (CommonValue && Incoming != CommonValue) 4601 return nullptr; // Not the same, bail out. 4602 CommonValue = Incoming; 4603 } 4604 4605 // If CommonValue is null then all of the incoming values were either undef or 4606 // equal to the phi node itself. 4607 if (!CommonValue) 4608 return UndefValue::get(PN->getType()); 4609 4610 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4611 // instruction, we cannot return X as the result of the PHI node unless it 4612 // dominates the PHI block. 4613 if (HasUndefInput) 4614 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4615 4616 return CommonValue; 4617 } 4618 4619 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4620 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 4621 if (auto *C = dyn_cast<Constant>(Op)) 4622 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4623 4624 if (auto *CI = dyn_cast<CastInst>(Op)) { 4625 auto *Src = CI->getOperand(0); 4626 Type *SrcTy = Src->getType(); 4627 Type *MidTy = CI->getType(); 4628 Type *DstTy = Ty; 4629 if (Src->getType() == Ty) { 4630 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4631 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4632 Type *SrcIntPtrTy = 4633 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4634 Type *MidIntPtrTy = 4635 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4636 Type *DstIntPtrTy = 4637 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4638 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4639 SrcIntPtrTy, MidIntPtrTy, 4640 DstIntPtrTy) == Instruction::BitCast) 4641 return Src; 4642 } 4643 } 4644 4645 // bitcast x -> x 4646 if (CastOpc == Instruction::BitCast) 4647 if (Op->getType() == Ty) 4648 return Op; 4649 4650 return nullptr; 4651 } 4652 4653 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4654 const SimplifyQuery &Q) { 4655 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4656 } 4657 4658 /// For the given destination element of a shuffle, peek through shuffles to 4659 /// match a root vector source operand that contains that element in the same 4660 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4661 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4662 int MaskVal, Value *RootVec, 4663 unsigned MaxRecurse) { 4664 if (!MaxRecurse--) 4665 return nullptr; 4666 4667 // Bail out if any mask value is undefined. That kind of shuffle may be 4668 // simplified further based on demanded bits or other folds. 4669 if (MaskVal == -1) 4670 return nullptr; 4671 4672 // The mask value chooses which source operand we need to look at next. 4673 int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements(); 4674 int RootElt = MaskVal; 4675 Value *SourceOp = Op0; 4676 if (MaskVal >= InVecNumElts) { 4677 RootElt = MaskVal - InVecNumElts; 4678 SourceOp = Op1; 4679 } 4680 4681 // If the source operand is a shuffle itself, look through it to find the 4682 // matching root vector. 4683 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4684 return foldIdentityShuffles( 4685 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4686 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4687 } 4688 4689 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4690 // size? 4691 4692 // The source operand is not a shuffle. Initialize the root vector value for 4693 // this shuffle if that has not been done yet. 4694 if (!RootVec) 4695 RootVec = SourceOp; 4696 4697 // Give up as soon as a source operand does not match the existing root value. 4698 if (RootVec != SourceOp) 4699 return nullptr; 4700 4701 // The element must be coming from the same lane in the source vector 4702 // (although it may have crossed lanes in intermediate shuffles). 4703 if (RootElt != DestElt) 4704 return nullptr; 4705 4706 return RootVec; 4707 } 4708 4709 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4710 ArrayRef<int> Mask, Type *RetTy, 4711 const SimplifyQuery &Q, 4712 unsigned MaxRecurse) { 4713 if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; })) 4714 return UndefValue::get(RetTy); 4715 4716 auto *InVecTy = cast<VectorType>(Op0->getType()); 4717 unsigned MaskNumElts = Mask.size(); 4718 ElementCount InVecEltCount = InVecTy->getElementCount(); 4719 4720 bool Scalable = InVecEltCount.isScalable(); 4721 4722 SmallVector<int, 32> Indices; 4723 Indices.assign(Mask.begin(), Mask.end()); 4724 4725 // Canonicalization: If mask does not select elements from an input vector, 4726 // replace that input vector with poison. 4727 if (!Scalable) { 4728 bool MaskSelects0 = false, MaskSelects1 = false; 4729 unsigned InVecNumElts = InVecEltCount.getKnownMinValue(); 4730 for (unsigned i = 0; i != MaskNumElts; ++i) { 4731 if (Indices[i] == -1) 4732 continue; 4733 if ((unsigned)Indices[i] < InVecNumElts) 4734 MaskSelects0 = true; 4735 else 4736 MaskSelects1 = true; 4737 } 4738 if (!MaskSelects0) 4739 Op0 = PoisonValue::get(InVecTy); 4740 if (!MaskSelects1) 4741 Op1 = PoisonValue::get(InVecTy); 4742 } 4743 4744 auto *Op0Const = dyn_cast<Constant>(Op0); 4745 auto *Op1Const = dyn_cast<Constant>(Op1); 4746 4747 // If all operands are constant, constant fold the shuffle. This 4748 // transformation depends on the value of the mask which is not known at 4749 // compile time for scalable vectors 4750 if (Op0Const && Op1Const) 4751 return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask); 4752 4753 // Canonicalization: if only one input vector is constant, it shall be the 4754 // second one. This transformation depends on the value of the mask which 4755 // is not known at compile time for scalable vectors 4756 if (!Scalable && Op0Const && !Op1Const) { 4757 std::swap(Op0, Op1); 4758 ShuffleVectorInst::commuteShuffleMask(Indices, 4759 InVecEltCount.getKnownMinValue()); 4760 } 4761 4762 // A splat of an inserted scalar constant becomes a vector constant: 4763 // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...> 4764 // NOTE: We may have commuted above, so analyze the updated Indices, not the 4765 // original mask constant. 4766 // NOTE: This transformation depends on the value of the mask which is not 4767 // known at compile time for scalable vectors 4768 Constant *C; 4769 ConstantInt *IndexC; 4770 if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C), 4771 m_ConstantInt(IndexC)))) { 4772 // Match a splat shuffle mask of the insert index allowing undef elements. 4773 int InsertIndex = IndexC->getZExtValue(); 4774 if (all_of(Indices, [InsertIndex](int MaskElt) { 4775 return MaskElt == InsertIndex || MaskElt == -1; 4776 })) { 4777 assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat"); 4778 4779 // Shuffle mask undefs become undefined constant result elements. 4780 SmallVector<Constant *, 16> VecC(MaskNumElts, C); 4781 for (unsigned i = 0; i != MaskNumElts; ++i) 4782 if (Indices[i] == -1) 4783 VecC[i] = UndefValue::get(C->getType()); 4784 return ConstantVector::get(VecC); 4785 } 4786 } 4787 4788 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4789 // value type is same as the input vectors' type. 4790 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4791 if (Q.isUndefValue(Op1) && RetTy == InVecTy && 4792 is_splat(OpShuf->getShuffleMask())) 4793 return Op0; 4794 4795 // All remaining transformation depend on the value of the mask, which is 4796 // not known at compile time for scalable vectors. 4797 if (Scalable) 4798 return nullptr; 4799 4800 // Don't fold a shuffle with undef mask elements. This may get folded in a 4801 // better way using demanded bits or other analysis. 4802 // TODO: Should we allow this? 4803 if (is_contained(Indices, -1)) 4804 return nullptr; 4805 4806 // Check if every element of this shuffle can be mapped back to the 4807 // corresponding element of a single root vector. If so, we don't need this 4808 // shuffle. This handles simple identity shuffles as well as chains of 4809 // shuffles that may widen/narrow and/or move elements across lanes and back. 4810 Value *RootVec = nullptr; 4811 for (unsigned i = 0; i != MaskNumElts; ++i) { 4812 // Note that recursion is limited for each vector element, so if any element 4813 // exceeds the limit, this will fail to simplify. 4814 RootVec = 4815 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4816 4817 // We can't replace a widening/narrowing shuffle with one of its operands. 4818 if (!RootVec || RootVec->getType() != RetTy) 4819 return nullptr; 4820 } 4821 return RootVec; 4822 } 4823 4824 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4825 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4826 ArrayRef<int> Mask, Type *RetTy, 4827 const SimplifyQuery &Q) { 4828 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4829 } 4830 4831 static Constant *foldConstant(Instruction::UnaryOps Opcode, 4832 Value *&Op, const SimplifyQuery &Q) { 4833 if (auto *C = dyn_cast<Constant>(Op)) 4834 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); 4835 return nullptr; 4836 } 4837 4838 /// Given the operand for an FNeg, see if we can fold the result. If not, this 4839 /// returns null. 4840 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, 4841 const SimplifyQuery &Q, unsigned MaxRecurse) { 4842 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) 4843 return C; 4844 4845 Value *X; 4846 // fneg (fneg X) ==> X 4847 if (match(Op, m_FNeg(m_Value(X)))) 4848 return X; 4849 4850 return nullptr; 4851 } 4852 4853 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF, 4854 const SimplifyQuery &Q) { 4855 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); 4856 } 4857 4858 static Constant *propagateNaN(Constant *In) { 4859 // If the input is a vector with undef elements, just return a default NaN. 4860 if (!In->isNaN()) 4861 return ConstantFP::getNaN(In->getType()); 4862 4863 // Propagate the existing NaN constant when possible. 4864 // TODO: Should we quiet a signaling NaN? 4865 return In; 4866 } 4867 4868 /// Perform folds that are common to any floating-point operation. This implies 4869 /// transforms based on undef/NaN because the operation itself makes no 4870 /// difference to the result. 4871 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, 4872 FastMathFlags FMF, 4873 const SimplifyQuery &Q) { 4874 for (Value *V : Ops) { 4875 bool IsNan = match(V, m_NaN()); 4876 bool IsInf = match(V, m_Inf()); 4877 bool IsUndef = Q.isUndefValue(V); 4878 4879 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 4880 // (an undef operand can be chosen to be Nan/Inf), then the result of 4881 // this operation is poison. 4882 if (FMF.noNaNs() && (IsNan || IsUndef)) 4883 return PoisonValue::get(V->getType()); 4884 if (FMF.noInfs() && (IsInf || IsUndef)) 4885 return PoisonValue::get(V->getType()); 4886 4887 if (IsUndef || IsNan) 4888 return propagateNaN(cast<Constant>(V)); 4889 } 4890 return nullptr; 4891 } 4892 4893 /// Given operands for an FAdd, see if we can fold the result. If not, this 4894 /// returns null. 4895 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4896 const SimplifyQuery &Q, unsigned MaxRecurse) { 4897 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 4898 return C; 4899 4900 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 4901 return C; 4902 4903 // fadd X, -0 ==> X 4904 if (match(Op1, m_NegZeroFP())) 4905 return Op0; 4906 4907 // fadd X, 0 ==> X, when we know X is not -0 4908 if (match(Op1, m_PosZeroFP()) && 4909 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4910 return Op0; 4911 4912 // With nnan: -X + X --> 0.0 (and commuted variant) 4913 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 4914 // Negative zeros are allowed because we always end up with positive zero: 4915 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4916 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4917 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 4918 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 4919 if (FMF.noNaNs()) { 4920 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 4921 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) 4922 return ConstantFP::getNullValue(Op0->getType()); 4923 4924 if (match(Op0, m_FNeg(m_Specific(Op1))) || 4925 match(Op1, m_FNeg(m_Specific(Op0)))) 4926 return ConstantFP::getNullValue(Op0->getType()); 4927 } 4928 4929 // (X - Y) + Y --> X 4930 // Y + (X - Y) --> X 4931 Value *X; 4932 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4933 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 4934 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 4935 return X; 4936 4937 return nullptr; 4938 } 4939 4940 /// Given operands for an FSub, see if we can fold the result. If not, this 4941 /// returns null. 4942 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4943 const SimplifyQuery &Q, unsigned MaxRecurse) { 4944 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 4945 return C; 4946 4947 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 4948 return C; 4949 4950 // fsub X, +0 ==> X 4951 if (match(Op1, m_PosZeroFP())) 4952 return Op0; 4953 4954 // fsub X, -0 ==> X, when we know X is not -0 4955 if (match(Op1, m_NegZeroFP()) && 4956 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4957 return Op0; 4958 4959 // fsub -0.0, (fsub -0.0, X) ==> X 4960 // fsub -0.0, (fneg X) ==> X 4961 Value *X; 4962 if (match(Op0, m_NegZeroFP()) && 4963 match(Op1, m_FNeg(m_Value(X)))) 4964 return X; 4965 4966 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 4967 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. 4968 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 4969 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) || 4970 match(Op1, m_FNeg(m_Value(X))))) 4971 return X; 4972 4973 // fsub nnan x, x ==> 0.0 4974 if (FMF.noNaNs() && Op0 == Op1) 4975 return Constant::getNullValue(Op0->getType()); 4976 4977 // Y - (Y - X) --> X 4978 // (X + Y) - Y --> X 4979 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4980 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 4981 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 4982 return X; 4983 4984 return nullptr; 4985 } 4986 4987 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 4988 const SimplifyQuery &Q, unsigned MaxRecurse) { 4989 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 4990 return C; 4991 4992 // fmul X, 1.0 ==> X 4993 if (match(Op1, m_FPOne())) 4994 return Op0; 4995 4996 // fmul 1.0, X ==> X 4997 if (match(Op0, m_FPOne())) 4998 return Op1; 4999 5000 // fmul nnan nsz X, 0 ==> 0 5001 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) 5002 return ConstantFP::getNullValue(Op0->getType()); 5003 5004 // fmul nnan nsz 0, X ==> 0 5005 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5006 return ConstantFP::getNullValue(Op1->getType()); 5007 5008 // sqrt(X) * sqrt(X) --> X, if we can: 5009 // 1. Remove the intermediate rounding (reassociate). 5010 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 5011 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 5012 Value *X; 5013 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && 5014 FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros()) 5015 return X; 5016 5017 return nullptr; 5018 } 5019 5020 /// Given the operands for an FMul, see if we can fold the result 5021 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5022 const SimplifyQuery &Q, unsigned MaxRecurse) { 5023 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 5024 return C; 5025 5026 // Now apply simplifications that do not require rounding. 5027 return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse); 5028 } 5029 5030 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5031 const SimplifyQuery &Q) { 5032 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit); 5033 } 5034 5035 5036 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5037 const SimplifyQuery &Q) { 5038 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit); 5039 } 5040 5041 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5042 const SimplifyQuery &Q) { 5043 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit); 5044 } 5045 5046 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5047 const SimplifyQuery &Q) { 5048 return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit); 5049 } 5050 5051 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5052 const SimplifyQuery &Q, unsigned) { 5053 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 5054 return C; 5055 5056 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 5057 return C; 5058 5059 // X / 1.0 -> X 5060 if (match(Op1, m_FPOne())) 5061 return Op0; 5062 5063 // 0 / X -> 0 5064 // Requires that NaNs are off (X could be zero) and signed zeroes are 5065 // ignored (X could be positive or negative, so the output sign is unknown). 5066 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5067 return ConstantFP::getNullValue(Op0->getType()); 5068 5069 if (FMF.noNaNs()) { 5070 // X / X -> 1.0 is legal when NaNs are ignored. 5071 // We can ignore infinities because INF/INF is NaN. 5072 if (Op0 == Op1) 5073 return ConstantFP::get(Op0->getType(), 1.0); 5074 5075 // (X * Y) / Y --> X if we can reassociate to the above form. 5076 Value *X; 5077 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 5078 return X; 5079 5080 // -X / X -> -1.0 and 5081 // X / -X -> -1.0 are legal when NaNs are ignored. 5082 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 5083 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 5084 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 5085 return ConstantFP::get(Op0->getType(), -1.0); 5086 } 5087 5088 return nullptr; 5089 } 5090 5091 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5092 const SimplifyQuery &Q) { 5093 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit); 5094 } 5095 5096 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5097 const SimplifyQuery &Q, unsigned) { 5098 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 5099 return C; 5100 5101 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 5102 return C; 5103 5104 // Unlike fdiv, the result of frem always matches the sign of the dividend. 5105 // The constant match may include undef elements in a vector, so return a full 5106 // zero constant as the result. 5107 if (FMF.noNaNs()) { 5108 // +0 % X -> 0 5109 if (match(Op0, m_PosZeroFP())) 5110 return ConstantFP::getNullValue(Op0->getType()); 5111 // -0 % X -> -0 5112 if (match(Op0, m_NegZeroFP())) 5113 return ConstantFP::getNegativeZero(Op0->getType()); 5114 } 5115 5116 return nullptr; 5117 } 5118 5119 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5120 const SimplifyQuery &Q) { 5121 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit); 5122 } 5123 5124 //=== Helper functions for higher up the class hierarchy. 5125 5126 /// Given the operand for a UnaryOperator, see if we can fold the result. 5127 /// If not, this returns null. 5128 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, 5129 unsigned MaxRecurse) { 5130 switch (Opcode) { 5131 case Instruction::FNeg: 5132 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); 5133 default: 5134 llvm_unreachable("Unexpected opcode"); 5135 } 5136 } 5137 5138 /// Given the operand for a UnaryOperator, see if we can fold the result. 5139 /// If not, this returns null. 5140 /// Try to use FastMathFlags when folding the result. 5141 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, 5142 const FastMathFlags &FMF, 5143 const SimplifyQuery &Q, unsigned MaxRecurse) { 5144 switch (Opcode) { 5145 case Instruction::FNeg: 5146 return simplifyFNegInst(Op, FMF, Q, MaxRecurse); 5147 default: 5148 return simplifyUnOp(Opcode, Op, Q, MaxRecurse); 5149 } 5150 } 5151 5152 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { 5153 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit); 5154 } 5155 5156 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, 5157 const SimplifyQuery &Q) { 5158 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); 5159 } 5160 5161 /// Given operands for a BinaryOperator, see if we can fold the result. 5162 /// If not, this returns null. 5163 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5164 const SimplifyQuery &Q, unsigned MaxRecurse) { 5165 switch (Opcode) { 5166 case Instruction::Add: 5167 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 5168 case Instruction::Sub: 5169 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 5170 case Instruction::Mul: 5171 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 5172 case Instruction::SDiv: 5173 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 5174 case Instruction::UDiv: 5175 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 5176 case Instruction::SRem: 5177 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 5178 case Instruction::URem: 5179 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 5180 case Instruction::Shl: 5181 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 5182 case Instruction::LShr: 5183 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 5184 case Instruction::AShr: 5185 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 5186 case Instruction::And: 5187 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 5188 case Instruction::Or: 5189 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 5190 case Instruction::Xor: 5191 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 5192 case Instruction::FAdd: 5193 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5194 case Instruction::FSub: 5195 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5196 case Instruction::FMul: 5197 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5198 case Instruction::FDiv: 5199 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5200 case Instruction::FRem: 5201 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5202 default: 5203 llvm_unreachable("Unexpected opcode"); 5204 } 5205 } 5206 5207 /// Given operands for a BinaryOperator, see if we can fold the result. 5208 /// If not, this returns null. 5209 /// Try to use FastMathFlags when folding the result. 5210 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5211 const FastMathFlags &FMF, const SimplifyQuery &Q, 5212 unsigned MaxRecurse) { 5213 switch (Opcode) { 5214 case Instruction::FAdd: 5215 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 5216 case Instruction::FSub: 5217 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 5218 case Instruction::FMul: 5219 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 5220 case Instruction::FDiv: 5221 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 5222 default: 5223 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 5224 } 5225 } 5226 5227 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5228 const SimplifyQuery &Q) { 5229 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 5230 } 5231 5232 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5233 FastMathFlags FMF, const SimplifyQuery &Q) { 5234 return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 5235 } 5236 5237 /// Given operands for a CmpInst, see if we can fold the result. 5238 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5239 const SimplifyQuery &Q, unsigned MaxRecurse) { 5240 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 5241 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 5242 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5243 } 5244 5245 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5246 const SimplifyQuery &Q) { 5247 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 5248 } 5249 5250 static bool IsIdempotent(Intrinsic::ID ID) { 5251 switch (ID) { 5252 default: return false; 5253 5254 // Unary idempotent: f(f(x)) = f(x) 5255 case Intrinsic::fabs: 5256 case Intrinsic::floor: 5257 case Intrinsic::ceil: 5258 case Intrinsic::trunc: 5259 case Intrinsic::rint: 5260 case Intrinsic::nearbyint: 5261 case Intrinsic::round: 5262 case Intrinsic::roundeven: 5263 case Intrinsic::canonicalize: 5264 return true; 5265 } 5266 } 5267 5268 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 5269 const DataLayout &DL) { 5270 GlobalValue *PtrSym; 5271 APInt PtrOffset; 5272 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 5273 return nullptr; 5274 5275 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 5276 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 5277 Type *Int32PtrTy = Int32Ty->getPointerTo(); 5278 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 5279 5280 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 5281 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 5282 return nullptr; 5283 5284 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 5285 if (OffsetInt % 4 != 0) 5286 return nullptr; 5287 5288 Constant *C = ConstantExpr::getGetElementPtr( 5289 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 5290 ConstantInt::get(Int64Ty, OffsetInt / 4)); 5291 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 5292 if (!Loaded) 5293 return nullptr; 5294 5295 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 5296 if (!LoadedCE) 5297 return nullptr; 5298 5299 if (LoadedCE->getOpcode() == Instruction::Trunc) { 5300 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5301 if (!LoadedCE) 5302 return nullptr; 5303 } 5304 5305 if (LoadedCE->getOpcode() != Instruction::Sub) 5306 return nullptr; 5307 5308 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5309 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 5310 return nullptr; 5311 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 5312 5313 Constant *LoadedRHS = LoadedCE->getOperand(1); 5314 GlobalValue *LoadedRHSSym; 5315 APInt LoadedRHSOffset; 5316 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 5317 DL) || 5318 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 5319 return nullptr; 5320 5321 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 5322 } 5323 5324 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 5325 const SimplifyQuery &Q) { 5326 // Idempotent functions return the same result when called repeatedly. 5327 Intrinsic::ID IID = F->getIntrinsicID(); 5328 if (IsIdempotent(IID)) 5329 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 5330 if (II->getIntrinsicID() == IID) 5331 return II; 5332 5333 Value *X; 5334 switch (IID) { 5335 case Intrinsic::fabs: 5336 if (SignBitMustBeZero(Op0, Q.TLI)) return Op0; 5337 break; 5338 case Intrinsic::bswap: 5339 // bswap(bswap(x)) -> x 5340 if (match(Op0, m_BSwap(m_Value(X)))) return X; 5341 break; 5342 case Intrinsic::bitreverse: 5343 // bitreverse(bitreverse(x)) -> x 5344 if (match(Op0, m_BitReverse(m_Value(X)))) return X; 5345 break; 5346 case Intrinsic::ctpop: { 5347 // If everything but the lowest bit is zero, that bit is the pop-count. Ex: 5348 // ctpop(and X, 1) --> and X, 1 5349 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 5350 if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1), 5351 Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 5352 return Op0; 5353 break; 5354 } 5355 case Intrinsic::exp: 5356 // exp(log(x)) -> x 5357 if (Q.CxtI->hasAllowReassoc() && 5358 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X; 5359 break; 5360 case Intrinsic::exp2: 5361 // exp2(log2(x)) -> x 5362 if (Q.CxtI->hasAllowReassoc() && 5363 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X; 5364 break; 5365 case Intrinsic::log: 5366 // log(exp(x)) -> x 5367 if (Q.CxtI->hasAllowReassoc() && 5368 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X; 5369 break; 5370 case Intrinsic::log2: 5371 // log2(exp2(x)) -> x 5372 if (Q.CxtI->hasAllowReassoc() && 5373 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || 5374 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), 5375 m_Value(X))))) return X; 5376 break; 5377 case Intrinsic::log10: 5378 // log10(pow(10.0, x)) -> x 5379 if (Q.CxtI->hasAllowReassoc() && 5380 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), 5381 m_Value(X)))) return X; 5382 break; 5383 case Intrinsic::floor: 5384 case Intrinsic::trunc: 5385 case Intrinsic::ceil: 5386 case Intrinsic::round: 5387 case Intrinsic::roundeven: 5388 case Intrinsic::nearbyint: 5389 case Intrinsic::rint: { 5390 // floor (sitofp x) -> sitofp x 5391 // floor (uitofp x) -> uitofp x 5392 // 5393 // Converting from int always results in a finite integral number or 5394 // infinity. For either of those inputs, these rounding functions always 5395 // return the same value, so the rounding can be eliminated. 5396 if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) 5397 return Op0; 5398 break; 5399 } 5400 case Intrinsic::experimental_vector_reverse: 5401 // experimental.vector.reverse(experimental.vector.reverse(x)) -> x 5402 if (match(Op0, 5403 m_Intrinsic<Intrinsic::experimental_vector_reverse>(m_Value(X)))) 5404 return X; 5405 break; 5406 default: 5407 break; 5408 } 5409 5410 return nullptr; 5411 } 5412 5413 static APInt getMaxMinLimit(Intrinsic::ID IID, unsigned BitWidth) { 5414 switch (IID) { 5415 case Intrinsic::smax: return APInt::getSignedMaxValue(BitWidth); 5416 case Intrinsic::smin: return APInt::getSignedMinValue(BitWidth); 5417 case Intrinsic::umax: return APInt::getMaxValue(BitWidth); 5418 case Intrinsic::umin: return APInt::getMinValue(BitWidth); 5419 default: llvm_unreachable("Unexpected intrinsic"); 5420 } 5421 } 5422 5423 static ICmpInst::Predicate getMaxMinPredicate(Intrinsic::ID IID) { 5424 switch (IID) { 5425 case Intrinsic::smax: return ICmpInst::ICMP_SGE; 5426 case Intrinsic::smin: return ICmpInst::ICMP_SLE; 5427 case Intrinsic::umax: return ICmpInst::ICMP_UGE; 5428 case Intrinsic::umin: return ICmpInst::ICMP_ULE; 5429 default: llvm_unreachable("Unexpected intrinsic"); 5430 } 5431 } 5432 5433 /// Given a min/max intrinsic, see if it can be removed based on having an 5434 /// operand that is another min/max intrinsic with shared operand(s). The caller 5435 /// is expected to swap the operand arguments to handle commutation. 5436 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) { 5437 Value *X, *Y; 5438 if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y)))) 5439 return nullptr; 5440 5441 auto *MM0 = dyn_cast<IntrinsicInst>(Op0); 5442 if (!MM0) 5443 return nullptr; 5444 Intrinsic::ID IID0 = MM0->getIntrinsicID(); 5445 5446 if (Op1 == X || Op1 == Y || 5447 match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) { 5448 // max (max X, Y), X --> max X, Y 5449 if (IID0 == IID) 5450 return MM0; 5451 // max (min X, Y), X --> X 5452 if (IID0 == getInverseMinMaxIntrinsic(IID)) 5453 return Op1; 5454 } 5455 return nullptr; 5456 } 5457 5458 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, 5459 const SimplifyQuery &Q) { 5460 Intrinsic::ID IID = F->getIntrinsicID(); 5461 Type *ReturnType = F->getReturnType(); 5462 unsigned BitWidth = ReturnType->getScalarSizeInBits(); 5463 switch (IID) { 5464 case Intrinsic::abs: 5465 // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here. 5466 // It is always ok to pick the earlier abs. We'll just lose nsw if its only 5467 // on the outer abs. 5468 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value()))) 5469 return Op0; 5470 break; 5471 5472 case Intrinsic::cttz: { 5473 Value *X; 5474 if (match(Op0, m_Shl(m_One(), m_Value(X)))) 5475 return X; 5476 break; 5477 } 5478 case Intrinsic::ctlz: { 5479 Value *X; 5480 if (match(Op0, m_LShr(m_SignMask(), m_Value(X)))) 5481 return X; 5482 break; 5483 } 5484 case Intrinsic::smax: 5485 case Intrinsic::smin: 5486 case Intrinsic::umax: 5487 case Intrinsic::umin: { 5488 // If the arguments are the same, this is a no-op. 5489 if (Op0 == Op1) 5490 return Op0; 5491 5492 // Canonicalize constant operand as Op1. 5493 if (isa<Constant>(Op0)) 5494 std::swap(Op0, Op1); 5495 5496 // Assume undef is the limit value. 5497 if (Q.isUndefValue(Op1)) 5498 return ConstantInt::get(ReturnType, getMaxMinLimit(IID, BitWidth)); 5499 5500 const APInt *C; 5501 if (match(Op1, m_APIntAllowUndef(C))) { 5502 // Clamp to limit value. For example: 5503 // umax(i8 %x, i8 255) --> 255 5504 if (*C == getMaxMinLimit(IID, BitWidth)) 5505 return ConstantInt::get(ReturnType, *C); 5506 5507 // If the constant op is the opposite of the limit value, the other must 5508 // be larger/smaller or equal. For example: 5509 // umin(i8 %x, i8 255) --> %x 5510 if (*C == getMaxMinLimit(getInverseMinMaxIntrinsic(IID), BitWidth)) 5511 return Op0; 5512 5513 // Remove nested call if constant operands allow it. Example: 5514 // max (max X, 7), 5 -> max X, 7 5515 auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0); 5516 if (MinMax0 && MinMax0->getIntrinsicID() == IID) { 5517 // TODO: loosen undef/splat restrictions for vector constants. 5518 Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1); 5519 const APInt *InnerC; 5520 if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) && 5521 ((IID == Intrinsic::smax && InnerC->sge(*C)) || 5522 (IID == Intrinsic::smin && InnerC->sle(*C)) || 5523 (IID == Intrinsic::umax && InnerC->uge(*C)) || 5524 (IID == Intrinsic::umin && InnerC->ule(*C)))) 5525 return Op0; 5526 } 5527 } 5528 5529 if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1)) 5530 return V; 5531 if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0)) 5532 return V; 5533 5534 ICmpInst::Predicate Pred = getMaxMinPredicate(IID); 5535 if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit)) 5536 return Op0; 5537 if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit)) 5538 return Op1; 5539 5540 if (Optional<bool> Imp = 5541 isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL)) 5542 return *Imp ? Op0 : Op1; 5543 if (Optional<bool> Imp = 5544 isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL)) 5545 return *Imp ? Op1 : Op0; 5546 5547 break; 5548 } 5549 case Intrinsic::usub_with_overflow: 5550 case Intrinsic::ssub_with_overflow: 5551 // X - X -> { 0, false } 5552 // X - undef -> { 0, false } 5553 // undef - X -> { 0, false } 5554 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5555 return Constant::getNullValue(ReturnType); 5556 break; 5557 case Intrinsic::uadd_with_overflow: 5558 case Intrinsic::sadd_with_overflow: 5559 // X + undef -> { -1, false } 5560 // undef + x -> { -1, false } 5561 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) { 5562 return ConstantStruct::get( 5563 cast<StructType>(ReturnType), 5564 {Constant::getAllOnesValue(ReturnType->getStructElementType(0)), 5565 Constant::getNullValue(ReturnType->getStructElementType(1))}); 5566 } 5567 break; 5568 case Intrinsic::umul_with_overflow: 5569 case Intrinsic::smul_with_overflow: 5570 // 0 * X -> { 0, false } 5571 // X * 0 -> { 0, false } 5572 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 5573 return Constant::getNullValue(ReturnType); 5574 // undef * X -> { 0, false } 5575 // X * undef -> { 0, false } 5576 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5577 return Constant::getNullValue(ReturnType); 5578 break; 5579 case Intrinsic::uadd_sat: 5580 // sat(MAX + X) -> MAX 5581 // sat(X + MAX) -> MAX 5582 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 5583 return Constant::getAllOnesValue(ReturnType); 5584 LLVM_FALLTHROUGH; 5585 case Intrinsic::sadd_sat: 5586 // sat(X + undef) -> -1 5587 // sat(undef + X) -> -1 5588 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 5589 // For signed: Assume undef is ~X, in which case X + ~X = -1. 5590 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5591 return Constant::getAllOnesValue(ReturnType); 5592 5593 // X + 0 -> X 5594 if (match(Op1, m_Zero())) 5595 return Op0; 5596 // 0 + X -> X 5597 if (match(Op0, m_Zero())) 5598 return Op1; 5599 break; 5600 case Intrinsic::usub_sat: 5601 // sat(0 - X) -> 0, sat(X - MAX) -> 0 5602 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 5603 return Constant::getNullValue(ReturnType); 5604 LLVM_FALLTHROUGH; 5605 case Intrinsic::ssub_sat: 5606 // X - X -> 0, X - undef -> 0, undef - X -> 0 5607 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5608 return Constant::getNullValue(ReturnType); 5609 // X - 0 -> X 5610 if (match(Op1, m_Zero())) 5611 return Op0; 5612 break; 5613 case Intrinsic::load_relative: 5614 if (auto *C0 = dyn_cast<Constant>(Op0)) 5615 if (auto *C1 = dyn_cast<Constant>(Op1)) 5616 return SimplifyRelativeLoad(C0, C1, Q.DL); 5617 break; 5618 case Intrinsic::powi: 5619 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 5620 // powi(x, 0) -> 1.0 5621 if (Power->isZero()) 5622 return ConstantFP::get(Op0->getType(), 1.0); 5623 // powi(x, 1) -> x 5624 if (Power->isOne()) 5625 return Op0; 5626 } 5627 break; 5628 case Intrinsic::copysign: 5629 // copysign X, X --> X 5630 if (Op0 == Op1) 5631 return Op0; 5632 // copysign -X, X --> X 5633 // copysign X, -X --> -X 5634 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5635 match(Op1, m_FNeg(m_Specific(Op0)))) 5636 return Op1; 5637 break; 5638 case Intrinsic::maxnum: 5639 case Intrinsic::minnum: 5640 case Intrinsic::maximum: 5641 case Intrinsic::minimum: { 5642 // If the arguments are the same, this is a no-op. 5643 if (Op0 == Op1) return Op0; 5644 5645 // Canonicalize constant operand as Op1. 5646 if (isa<Constant>(Op0)) 5647 std::swap(Op0, Op1); 5648 5649 // If an argument is undef, return the other argument. 5650 if (Q.isUndefValue(Op1)) 5651 return Op0; 5652 5653 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 5654 bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum; 5655 5656 // minnum(X, nan) -> X 5657 // maxnum(X, nan) -> X 5658 // minimum(X, nan) -> nan 5659 // maximum(X, nan) -> nan 5660 if (match(Op1, m_NaN())) 5661 return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0; 5662 5663 // In the following folds, inf can be replaced with the largest finite 5664 // float, if the ninf flag is set. 5665 const APFloat *C; 5666 if (match(Op1, m_APFloat(C)) && 5667 (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) { 5668 // minnum(X, -inf) -> -inf 5669 // maxnum(X, +inf) -> +inf 5670 // minimum(X, -inf) -> -inf if nnan 5671 // maximum(X, +inf) -> +inf if nnan 5672 if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs())) 5673 return ConstantFP::get(ReturnType, *C); 5674 5675 // minnum(X, +inf) -> X if nnan 5676 // maxnum(X, -inf) -> X if nnan 5677 // minimum(X, +inf) -> X 5678 // maximum(X, -inf) -> X 5679 if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs())) 5680 return Op0; 5681 } 5682 5683 // Min/max of the same operation with common operand: 5684 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 5685 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0)) 5686 if (M0->getIntrinsicID() == IID && 5687 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1)) 5688 return Op0; 5689 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1)) 5690 if (M1->getIntrinsicID() == IID && 5691 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0)) 5692 return Op1; 5693 5694 break; 5695 } 5696 default: 5697 break; 5698 } 5699 5700 return nullptr; 5701 } 5702 5703 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) { 5704 5705 // Intrinsics with no operands have some kind of side effect. Don't simplify. 5706 unsigned NumOperands = Call->getNumArgOperands(); 5707 if (!NumOperands) 5708 return nullptr; 5709 5710 Function *F = cast<Function>(Call->getCalledFunction()); 5711 Intrinsic::ID IID = F->getIntrinsicID(); 5712 if (NumOperands == 1) 5713 return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q); 5714 5715 if (NumOperands == 2) 5716 return simplifyBinaryIntrinsic(F, Call->getArgOperand(0), 5717 Call->getArgOperand(1), Q); 5718 5719 // Handle intrinsics with 3 or more arguments. 5720 switch (IID) { 5721 case Intrinsic::masked_load: 5722 case Intrinsic::masked_gather: { 5723 Value *MaskArg = Call->getArgOperand(2); 5724 Value *PassthruArg = Call->getArgOperand(3); 5725 // If the mask is all zeros or undef, the "passthru" argument is the result. 5726 if (maskIsAllZeroOrUndef(MaskArg)) 5727 return PassthruArg; 5728 return nullptr; 5729 } 5730 case Intrinsic::fshl: 5731 case Intrinsic::fshr: { 5732 Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1), 5733 *ShAmtArg = Call->getArgOperand(2); 5734 5735 // If both operands are undef, the result is undef. 5736 if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1)) 5737 return UndefValue::get(F->getReturnType()); 5738 5739 // If shift amount is undef, assume it is zero. 5740 if (Q.isUndefValue(ShAmtArg)) 5741 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5742 5743 const APInt *ShAmtC; 5744 if (match(ShAmtArg, m_APInt(ShAmtC))) { 5745 // If there's effectively no shift, return the 1st arg or 2nd arg. 5746 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 5747 if (ShAmtC->urem(BitWidth).isNullValue()) 5748 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5749 } 5750 return nullptr; 5751 } 5752 case Intrinsic::fma: 5753 case Intrinsic::fmuladd: { 5754 Value *Op0 = Call->getArgOperand(0); 5755 Value *Op1 = Call->getArgOperand(1); 5756 Value *Op2 = Call->getArgOperand(2); 5757 if (Value *V = simplifyFPOp({ Op0, Op1, Op2 }, {}, Q)) 5758 return V; 5759 return nullptr; 5760 } 5761 case Intrinsic::smul_fix: 5762 case Intrinsic::smul_fix_sat: { 5763 Value *Op0 = Call->getArgOperand(0); 5764 Value *Op1 = Call->getArgOperand(1); 5765 Value *Op2 = Call->getArgOperand(2); 5766 Type *ReturnType = F->getReturnType(); 5767 5768 // Canonicalize constant operand as Op1 (ConstantFolding handles the case 5769 // when both Op0 and Op1 are constant so we do not care about that special 5770 // case here). 5771 if (isa<Constant>(Op0)) 5772 std::swap(Op0, Op1); 5773 5774 // X * 0 -> 0 5775 if (match(Op1, m_Zero())) 5776 return Constant::getNullValue(ReturnType); 5777 5778 // X * undef -> 0 5779 if (Q.isUndefValue(Op1)) 5780 return Constant::getNullValue(ReturnType); 5781 5782 // X * (1 << Scale) -> X 5783 APInt ScaledOne = 5784 APInt::getOneBitSet(ReturnType->getScalarSizeInBits(), 5785 cast<ConstantInt>(Op2)->getZExtValue()); 5786 if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne))) 5787 return Op0; 5788 5789 return nullptr; 5790 } 5791 default: 5792 return nullptr; 5793 } 5794 } 5795 5796 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) { 5797 auto *F = dyn_cast<Function>(Call->getCalledOperand()); 5798 if (!F || !canConstantFoldCallTo(Call, F)) 5799 return nullptr; 5800 5801 SmallVector<Constant *, 4> ConstantArgs; 5802 unsigned NumArgs = Call->getNumArgOperands(); 5803 ConstantArgs.reserve(NumArgs); 5804 for (auto &Arg : Call->args()) { 5805 Constant *C = dyn_cast<Constant>(&Arg); 5806 if (!C) { 5807 if (isa<MetadataAsValue>(Arg.get())) 5808 continue; 5809 return nullptr; 5810 } 5811 ConstantArgs.push_back(C); 5812 } 5813 5814 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); 5815 } 5816 5817 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) { 5818 // musttail calls can only be simplified if they are also DCEd. 5819 // As we can't guarantee this here, don't simplify them. 5820 if (Call->isMustTailCall()) 5821 return nullptr; 5822 5823 // call undef -> poison 5824 // call null -> poison 5825 Value *Callee = Call->getCalledOperand(); 5826 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee)) 5827 return PoisonValue::get(Call->getType()); 5828 5829 if (Value *V = tryConstantFoldCall(Call, Q)) 5830 return V; 5831 5832 auto *F = dyn_cast<Function>(Callee); 5833 if (F && F->isIntrinsic()) 5834 if (Value *Ret = simplifyIntrinsic(Call, Q)) 5835 return Ret; 5836 5837 return nullptr; 5838 } 5839 5840 /// Given operands for a Freeze, see if we can fold the result. 5841 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 5842 // Use a utility function defined in ValueTracking. 5843 if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT)) 5844 return Op0; 5845 // We have room for improvement. 5846 return nullptr; 5847 } 5848 5849 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 5850 return ::SimplifyFreezeInst(Op0, Q); 5851 } 5852 5853 /// See if we can compute a simplified version of this instruction. 5854 /// If not, this returns null. 5855 5856 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 5857 OptimizationRemarkEmitter *ORE) { 5858 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 5859 Value *Result; 5860 5861 switch (I->getOpcode()) { 5862 default: 5863 Result = ConstantFoldInstruction(I, Q.DL, Q.TLI); 5864 break; 5865 case Instruction::FNeg: 5866 Result = SimplifyFNegInst(I->getOperand(0), I->getFastMathFlags(), Q); 5867 break; 5868 case Instruction::FAdd: 5869 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 5870 I->getFastMathFlags(), Q); 5871 break; 5872 case Instruction::Add: 5873 Result = 5874 SimplifyAddInst(I->getOperand(0), I->getOperand(1), 5875 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5876 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5877 break; 5878 case Instruction::FSub: 5879 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 5880 I->getFastMathFlags(), Q); 5881 break; 5882 case Instruction::Sub: 5883 Result = 5884 SimplifySubInst(I->getOperand(0), I->getOperand(1), 5885 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5886 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5887 break; 5888 case Instruction::FMul: 5889 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 5890 I->getFastMathFlags(), Q); 5891 break; 5892 case Instruction::Mul: 5893 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q); 5894 break; 5895 case Instruction::SDiv: 5896 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q); 5897 break; 5898 case Instruction::UDiv: 5899 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q); 5900 break; 5901 case Instruction::FDiv: 5902 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 5903 I->getFastMathFlags(), Q); 5904 break; 5905 case Instruction::SRem: 5906 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q); 5907 break; 5908 case Instruction::URem: 5909 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q); 5910 break; 5911 case Instruction::FRem: 5912 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 5913 I->getFastMathFlags(), Q); 5914 break; 5915 case Instruction::Shl: 5916 Result = 5917 SimplifyShlInst(I->getOperand(0), I->getOperand(1), 5918 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5919 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5920 break; 5921 case Instruction::LShr: 5922 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 5923 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 5924 break; 5925 case Instruction::AShr: 5926 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 5927 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 5928 break; 5929 case Instruction::And: 5930 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q); 5931 break; 5932 case Instruction::Or: 5933 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q); 5934 break; 5935 case Instruction::Xor: 5936 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q); 5937 break; 5938 case Instruction::ICmp: 5939 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 5940 I->getOperand(0), I->getOperand(1), Q); 5941 break; 5942 case Instruction::FCmp: 5943 Result = 5944 SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0), 5945 I->getOperand(1), I->getFastMathFlags(), Q); 5946 break; 5947 case Instruction::Select: 5948 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 5949 I->getOperand(2), Q); 5950 break; 5951 case Instruction::GetElementPtr: { 5952 SmallVector<Value *, 8> Ops(I->operands()); 5953 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 5954 Ops, Q); 5955 break; 5956 } 5957 case Instruction::InsertValue: { 5958 InsertValueInst *IV = cast<InsertValueInst>(I); 5959 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 5960 IV->getInsertedValueOperand(), 5961 IV->getIndices(), Q); 5962 break; 5963 } 5964 case Instruction::InsertElement: { 5965 auto *IE = cast<InsertElementInst>(I); 5966 Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1), 5967 IE->getOperand(2), Q); 5968 break; 5969 } 5970 case Instruction::ExtractValue: { 5971 auto *EVI = cast<ExtractValueInst>(I); 5972 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 5973 EVI->getIndices(), Q); 5974 break; 5975 } 5976 case Instruction::ExtractElement: { 5977 auto *EEI = cast<ExtractElementInst>(I); 5978 Result = SimplifyExtractElementInst(EEI->getVectorOperand(), 5979 EEI->getIndexOperand(), Q); 5980 break; 5981 } 5982 case Instruction::ShuffleVector: { 5983 auto *SVI = cast<ShuffleVectorInst>(I); 5984 Result = 5985 SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5986 SVI->getShuffleMask(), SVI->getType(), Q); 5987 break; 5988 } 5989 case Instruction::PHI: 5990 Result = SimplifyPHINode(cast<PHINode>(I), Q); 5991 break; 5992 case Instruction::Call: { 5993 Result = SimplifyCall(cast<CallInst>(I), Q); 5994 break; 5995 } 5996 case Instruction::Freeze: 5997 Result = SimplifyFreezeInst(I->getOperand(0), Q); 5998 break; 5999 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 6000 #include "llvm/IR/Instruction.def" 6001 #undef HANDLE_CAST_INST 6002 Result = 6003 SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q); 6004 break; 6005 case Instruction::Alloca: 6006 // No simplifications for Alloca and it can't be constant folded. 6007 Result = nullptr; 6008 break; 6009 } 6010 6011 /// If called on unreachable code, the above logic may report that the 6012 /// instruction simplified to itself. Make life easier for users by 6013 /// detecting that case here, returning a safe value instead. 6014 return Result == I ? UndefValue::get(I->getType()) : Result; 6015 } 6016 6017 /// Implementation of recursive simplification through an instruction's 6018 /// uses. 6019 /// 6020 /// This is the common implementation of the recursive simplification routines. 6021 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 6022 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 6023 /// instructions to process and attempt to simplify it using 6024 /// InstructionSimplify. Recursively visited users which could not be 6025 /// simplified themselves are to the optional UnsimplifiedUsers set for 6026 /// further processing by the caller. 6027 /// 6028 /// This routine returns 'true' only when *it* simplifies something. The passed 6029 /// in simplified value does not count toward this. 6030 static bool replaceAndRecursivelySimplifyImpl( 6031 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6032 const DominatorTree *DT, AssumptionCache *AC, 6033 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) { 6034 bool Simplified = false; 6035 SmallSetVector<Instruction *, 8> Worklist; 6036 const DataLayout &DL = I->getModule()->getDataLayout(); 6037 6038 // If we have an explicit value to collapse to, do that round of the 6039 // simplification loop by hand initially. 6040 if (SimpleV) { 6041 for (User *U : I->users()) 6042 if (U != I) 6043 Worklist.insert(cast<Instruction>(U)); 6044 6045 // Replace the instruction with its simplified value. 6046 I->replaceAllUsesWith(SimpleV); 6047 6048 // Gracefully handle edge cases where the instruction is not wired into any 6049 // parent block. 6050 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 6051 !I->mayHaveSideEffects()) 6052 I->eraseFromParent(); 6053 } else { 6054 Worklist.insert(I); 6055 } 6056 6057 // Note that we must test the size on each iteration, the worklist can grow. 6058 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 6059 I = Worklist[Idx]; 6060 6061 // See if this instruction simplifies. 6062 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 6063 if (!SimpleV) { 6064 if (UnsimplifiedUsers) 6065 UnsimplifiedUsers->insert(I); 6066 continue; 6067 } 6068 6069 Simplified = true; 6070 6071 // Stash away all the uses of the old instruction so we can check them for 6072 // recursive simplifications after a RAUW. This is cheaper than checking all 6073 // uses of To on the recursive step in most cases. 6074 for (User *U : I->users()) 6075 Worklist.insert(cast<Instruction>(U)); 6076 6077 // Replace the instruction with its simplified value. 6078 I->replaceAllUsesWith(SimpleV); 6079 6080 // Gracefully handle edge cases where the instruction is not wired into any 6081 // parent block. 6082 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 6083 !I->mayHaveSideEffects()) 6084 I->eraseFromParent(); 6085 } 6086 return Simplified; 6087 } 6088 6089 bool llvm::replaceAndRecursivelySimplify( 6090 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6091 const DominatorTree *DT, AssumptionCache *AC, 6092 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) { 6093 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 6094 assert(SimpleV && "Must provide a simplified value."); 6095 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC, 6096 UnsimplifiedUsers); 6097 } 6098 6099 namespace llvm { 6100 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 6101 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 6102 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 6103 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 6104 auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr; 6105 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 6106 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 6107 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6108 } 6109 6110 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 6111 const DataLayout &DL) { 6112 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 6113 } 6114 6115 template <class T, class... TArgs> 6116 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 6117 Function &F) { 6118 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 6119 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 6120 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 6121 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6122 } 6123 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 6124 Function &); 6125 } 6126